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The FEniCS project

◮ Initiated in 2003

◮ Collaborators (in order of appearance):
◮ University of Chicago
◮ Argonne National Laboratory
◮ Delft University of Technology
◮ Royal Institute of Technology (KTH)
◮ Simula Research Laboratory
◮ Texas Tech

◮ Automated solution of
differential equations

◮ www.fenics.org
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Automate the solution of differential equations

◮ Build a calculator

◮ One button for each
equation?

◮ Too many buttons!
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Automate the solution of differential equations

◮ Input: Differential equation

◮ Generate computer code

◮ Compute solution

◮ Build a calculator for each
equation!

◮ Automate the generation of
calculators!
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Automate the solution of differential equations

input 1

input 2

output

Generating

machine

Automating machine

Generated

machine

input
output = Generated machine
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Generality and efficiency

◮ Any equation

◮ Any (finite element) method

◮ Maximum efficiency

Possible to combine generality with efficiency by generating code

Generality Efficiency

Compiler
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Generality

◮ Any (multilinear) form

◮ Any element:

Pk Arbitrary degree Lagrange elements

DGk Arbitrary degree discontinuous elements

BDMk Arbitrary degree Brezzi–Douglas–Marini

RTk Arbitrary degree Raviart-Thomas

CR1 Crouzeix–Raviart

. . . (more in preparation)

◮ 2D (triangles) and 3D (tetrahedra)
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Efficiency

◮ CPU time for computing the “element stiffness matrix”

◮ Straight-line C++ code generated by the FEniCS Form
Compiler (FFC)

◮ Speedup vs a standard quadrature-based C++ code with
loops over quadrature points

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232
Mass 3D 21 81 189 355 616 881 1442 1475
Poisson 2D 8 29 56 86 129 144 189 236
Poisson 3D 9 56 143 259 427 341 285 356
Navier–Stokes 2D 32 33 53 37 — — — —
Navier–Stokes 3D 77 100 61 42 — — — —
Elasticity 2D 10 43 67 97 — — — —
Elasticity 3D 14 87 103 134 — — — —
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Poisson’s equation
Differential equation

Differential equation:

−∆u = f

◮ Heat transfer

◮ Electrostatics

◮ Magnetostatics

◮ Fluid flow

◮ etc.
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Poisson’s equation
Variational formulation

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v · ∇u dx

L(v) =

∫
Ω

vf dx
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Poisson’s equation
Implementation

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx
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Linear elasticity
Differential equation

Differential equation:

−∇ · σ(u) = f

where

σ(v) = 2µǫ(v) + λtr ǫ(v) I

ǫ(v) =
1

2
(∇v + (∇v)⊤)

◮ Displacement u = u(x)

◮ Stress σ = σ(x)
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Linear elasticity
Variational formulation

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v : σ(u) dx

L(v) =

∫
Ω

v · f dx
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Linear elasticity
Implementation

element = VectorElement("Lagrange", "tetrahedron", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

def sigma(v):

return 2*mu*epsilon(v) + lmbda*mult(trace(epsilon(v)), I)

a = dot(grad(v), sigma(u))*dx

L = dot(v, f)*dx
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The Stokes equations
Differential equation

Differential equation:

−∆u +∇p = f

∇ · u = 0

◮ Fluid velocity u = u(x)

◮ Pressure p = p(x)
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The Stokes equations
Variational formulation

Find (u, p) ∈ V such that

a((v, q), (u, p)) = L((v, q)) ∀(v, q) ∈ V̂

where

a((v, q), (u, p)) =

∫
Ω

∇v · ∇u−∇ · v p + q∇ · u dx

L((v, q)) =

∫
Ω

v · f dx
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The Stokes equations
Implementation

P2 = VectorElement("Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = TestFunctions(TH)

(u, p) = TrialFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(u)) - div(v)*p + q*div(u))*dx

L = dot(v, f)*dx
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Mixed Poisson with H(div) elements
Differential equation

Differential equation:

σ +∇u = 0

∇ · σ = f

◮ u ∈ L2

◮ σ ∈ H(div)
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Mixed Poisson with H(div) elements
Variational formulation

Find (σ, u) ∈ V such that

a((τ, w), (σ, u)) = L((τ, w)) ∀(τ, w) ∈ V̂

where

a((τ, w), (σ, u)) =

∫
Ω

τ · σ −∇ · τ u + w∇ · σ dx

L((τ, w)) =

∫
Ω

w f dx
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Mixed Poisson with H(div) elements
Implementation

BDM1 = FiniteElement("Brezzi-Douglas-Marini", "triangle", 1)

DG0 = FiniteElement("Discontinuous Lagrange", "triangle", 0)

element = BDM1 + DG0

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

f = Function(DG0)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

L = w*f*dx
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Poisson’s equation with DG elements
Differential equation

Differential equation:

−∆u = f

◮ u ∈ L2

◮ u discontinuous across
element boundaries
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Poisson’s equation with DG elements
Variational formulation (interior penalty method)

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v · ∇u dx

+
∑
S

∫
S

−〈∇v〉 · JuKn − JvKn · 〈∇u〉+ (α/h)JvKn · JuKn dS

+

∫
∂Ω

−∇v · JuKn − JvKn · ∇u + (γ/h)vu ds

L(v) =

∫
Ω

vf dx +

∫
∂Ω

vg ds
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Poisson’s equation with DG elements
Implementation

DG1 = FiniteElement("Discontinuous Lagrange", "triangle", 1)

v = TestFunction(DG1)

u = TrialFunction(DG1)

f = Function(DG1)

g = Function(DG1)

n = FacetNormal("triangle")

h = MeshSize("triangle")

a = dot(grad(v), grad(u))*dx - dot(avg(grad(v)), jump(u, n))*dS

- dot(jump(v, n), avg(grad(u)))*dS

+ alpha/h(’+’)*dot(jump(v, n), jump(u, n))*dS

- dot(grad(v), jump(u, n))*ds - dot(jump(v, n), grad(u))*ds

+ gamma/h*v*u*ds

L = v*f*dx + v*g*ds
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Recent updates

◮ UFC, a framework for finite element assembly

◮ DG, BDM and RT elements

◮ A new improved mesh library, adaptive refinement

◮ Mesh and graph partitioning

◮ Improved linear algebra supporting PETSc and uBLAS

◮ Optimized code generation (FErari)

◮ Improved ODE solvers

◮ Python bindings

◮ Bugzilla database, pkg-config, improved manual, compiler
support, demos, file formats, built-in plotting, . . .
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Future plans (highlights)

◮ UFL/UFC

◮ Automation of error control
◮ Automatic generation of dual problems
◮ Automatic generation of a posteriori error estimates

◮ Improved geometry support (MeshBuilder)

◮ Debian/Ubuntu packages

◮ Finite element exterior calculus

→ www.fenics.org ←
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Additional slides
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Software components
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Automation of CMM

(i)

(iii)

(iv)

(ii)

Au = f

TOL

U ≈ u

U ≈ u

U ≈ u

tol > 0

Ãũ = f̃

(V, V̂ )

F (x) = 0 X ≈ x
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A common framework: UFL/UFC

◮ UFL - Unified Form Language

◮ UFC - Unified Form-assembly Code

◮ Unify, standardize, extend

◮ Working prototypes: FFC (Logg), SyFi (Mardal)
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Compiling Poisson’s equation: non-optimized, 16 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[0] = 0.5*G0_0_0 + 0.5*G0_0_1 +

0.5*G0_1_0 + 0.5*G0_1_1;

block[1] = -0.5*G0_0_0 - 0.5*G0_1_0;

block[2] = -0.5*G0_0_1 - 0.5*G0_1_1;

block[3] = -0.5*G0_0_0 - 0.5*G0_0_1;

block[4] = 0.5*G0_0_0;

block[5] = 0.5*G0_0_1;

block[6] = -0.5*G0_1_0 - 0.5*G0_1_1;

block[7] = 0.5*G0_1_0;

block[8] = 0.5*G0_1_1;

}
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Compiling Poisson’s equation: ffc -O, 11 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[1] = -0.5*G0_0_0 + -0.5*G0_1_0;

block[0] = -block[1] + 0.5*G0_0_1 + 0.5*G0_1_1;

block[7] = -block[1] + -0.5*G0_0_0;

block[6] = -block[7] + -0.5*G0_1_1;

block[8] = -block[6] + -0.5*G0_1_0;

block[2] = -block[8] + -0.5*G0_0_1;

block[5] = -block[2] + -0.5*G0_1_1;

block[3] = -block[5] + -0.5*G0_0_0;

block[4] = -block[1] + -0.5*G0_1_0;

}
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Compiling Poisson’s equation: ffc -f blas, 36 ops

void eval(real block[], const AffineMap& map) const

{

[...]

cblas_dgemv(CblasRowMajor, CblasNoTrans,

blas.mi, blas.ni, 1.0,

blas.Ai, blas.ni, blas.Gi,

1, 0.0, block, 1);

}

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Key Features

◮ Simple and intuitive object-oriented API, C++ or Python

◮ Automatic and efficient evaluation of variational forms

◮ Automatic and efficient assembly of linear systems

◮ General families of finite elements, including arbitrary order
continuous and discontinuous Lagrange elements, BDM, RT

◮ Arbitrary mixed elements

◮ High-performance parallel linear algebra

◮ General meshes, adaptive mesh refinement

◮ mcG(q)/mdG(q) and cG(q)/dG(q) ODE solvers

◮ Support for a range of output formats for post-processing,
including DOLFIN XML, ParaView/Mayavi/VTK, OpenDX,
Octave, MATLAB, GiD

◮ Built-in plotting
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Linear algebra

◮ Complete support for PETSc
◮ High-performance parallel linear algebra
◮ Krylov solvers, preconditioners

◮ Complete support for uBLAS
◮ BLAS level 1, 2 and 3
◮ Dense, packed and sparse matrices
◮ C++ operator overloading and expression templates
◮ Krylov solvers, preconditioners added by DOLFIN

◮ Uniform interface to both linear algebra backends

◮ LU factorization by UMFPACK for uBLAS matrix types

◮ Eigenvalue problems solved by SLEPc for PETSc matrix types

◮ Matrix-free solvers (“virtual matrices”)
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