
Automated Solution of Differential Equations

Anders Logg

Simula Research Laboratory

ICIAM’07 Zürich, July 18 2007

Acknowledgments: Martin Sandve Alnæs, Johan Hoffman, Johan Jansson, Claes
Johnson, Robert C. Kirby, Matthew G. Knepley, Hans Petter Langtangen,

Kent-Andre Mardal, Kristian Oelgaard, Marie Rognes, L. Ridgway Scott, Andy R.
Terrel, Garth N. Wells, Åsmund Ødeg̊ard, Magnus Vikstrøm



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

The FEniCS project

◮ Initiated in 2003

◮ Collaborators (in order of appearance):
◮ University of Chicago
◮ Argonne National Laboratory
◮ Delft University of Technology
◮ Royal Institute of Technology (KTH)
◮ Simula Research Laboratory
◮ Texas Tech

◮ Automated solution of
differential equations

◮ www.fenics.org

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Automate the solution of differential equations

◮ Build a calculator

◮ One button for each
equation?

◮ Too many buttons!

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Automate the solution of differential equations

◮ Input: Differential equation

◮ Generate computer code

◮ Compute solution

◮ Build a calculator for each
equation!

◮ Automate the generation of
calculators!

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Automate the solution of differential equations

input 1

input 2

output

Generating

machine

Automating machine

Generated

machine

input
output = Generated machine

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Generality and efficiency

◮ Any equation

◮ Any (finite element) method

◮ Maximum efficiency

Possible to combine generality with efficiency by generating code

Generality Efficiency

Compiler

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Generality

◮ Any (multilinear) form

◮ Any element:

Pk Arbitrary degree Lagrange elements

DGk Arbitrary degree discontinuous elements

BDMk Arbitrary degree Brezzi–Douglas–Marini

RTk Arbitrary degree Raviart-Thomas

CR1 Crouzeix–Raviart

. . . (more in preparation)

◮ 2D (triangles) and 3D (tetrahedra)

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

FEniCS
Automation
Generality and efficiency

Efficiency

◮ CPU time for computing the “element stiffness matrix”

◮ Straight-line C++ code generated by the FEniCS Form
Compiler (FFC)

◮ Speedup vs a standard quadrature-based C++ code with
loops over quadrature points

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232
Mass 3D 21 81 189 355 616 881 1442 1475
Poisson 2D 8 29 56 86 129 144 189 236
Poisson 3D 9 56 143 259 427 341 285 356
Navier–Stokes 2D 32 33 53 37 — — — —
Navier–Stokes 3D 77 100 61 42 — — — —
Elasticity 2D 10 43 67 97 — — — —
Elasticity 3D 14 87 103 134 — — — —

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation
Differential equation

Differential equation:

−∆u = f

◮ Heat transfer

◮ Electrostatics

◮ Magnetostatics

◮ Fluid flow

◮ etc.

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation
Variational formulation

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v · ∇u dx

L(v) =

∫
Ω

vf dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation
Implementation

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Linear elasticity
Differential equation

Differential equation:

−∇ · σ(u) = f

where

σ(v) = 2µǫ(v) + λtr ǫ(v) I

ǫ(v) =
1

2
(∇v + (∇v)⊤)

◮ Displacement u = u(x)

◮ Stress σ = σ(x)

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Linear elasticity
Variational formulation

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v : σ(u) dx

L(v) =

∫
Ω

v · f dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Linear elasticity
Implementation

element = VectorElement("Lagrange", "tetrahedron", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

def sigma(v):

return 2*mu*epsilon(v) + lmbda*mult(trace(epsilon(v)), I)

a = dot(grad(v), sigma(u))*dx

L = dot(v, f)*dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

The Stokes equations
Differential equation

Differential equation:

−∆u +∇p = f

∇ · u = 0

◮ Fluid velocity u = u(x)

◮ Pressure p = p(x)

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

The Stokes equations
Variational formulation

Find (u, p) ∈ V such that

a((v, q), (u, p)) = L((v, q)) ∀(v, q) ∈ V̂

where

a((v, q), (u, p)) =

∫
Ω

∇v · ∇u−∇ · v p + q∇ · u dx

L((v, q)) =

∫
Ω

v · f dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

The Stokes equations
Implementation

P2 = VectorElement("Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = TestFunctions(TH)

(u, p) = TrialFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(u)) - div(v)*p + q*div(u))*dx

L = dot(v, f)*dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Mixed Poisson with H(div) elements
Differential equation

Differential equation:

σ +∇u = 0

∇ · σ = f

◮ u ∈ L2

◮ σ ∈ H(div)

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Mixed Poisson with H(div) elements
Variational formulation

Find (σ, u) ∈ V such that

a((τ, w), (σ, u)) = L((τ, w)) ∀(τ, w) ∈ V̂

where

a((τ, w), (σ, u)) =

∫
Ω

τ · σ −∇ · τ u + w∇ · σ dx

L((τ, w)) =

∫
Ω

w f dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Mixed Poisson with H(div) elements
Implementation

BDM1 = FiniteElement("Brezzi-Douglas-Marini", "triangle", 1)

DG0 = FiniteElement("Discontinuous Lagrange", "triangle", 0)

element = BDM1 + DG0

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

f = Function(DG0)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

L = w*f*dx

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation with DG elements
Differential equation

Differential equation:

−∆u = f

◮ u ∈ L2

◮ u discontinuous across
element boundaries

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation with DG elements
Variational formulation (interior penalty method)

Find u ∈ V such that

a(v, u) = L(v) ∀v ∈ V̂

where

a(v, u) =

∫
Ω

∇v · ∇u dx

+
∑
S

∫
S

−〈∇v〉 · JuKn − JvKn · 〈∇u〉+ (α/h)JvKn · JuKn dS

+

∫
∂Ω

−∇v · JuKn − JvKn · ∇u + (γ/h)vu ds

L(v) =

∫
Ω

vf dx +

∫
∂Ω

vg ds

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Poisson’s equation with DG elements
Implementation

DG1 = FiniteElement("Discontinuous Lagrange", "triangle", 1)

v = TestFunction(DG1)

u = TrialFunction(DG1)

f = Function(DG1)

g = Function(DG1)

n = FacetNormal("triangle")

h = MeshSize("triangle")

a = dot(grad(v), grad(u))*dx - dot(avg(grad(v)), jump(u, n))*dS

- dot(jump(v, n), avg(grad(u)))*dS

+ alpha/h(’+’)*dot(jump(v, n), jump(u, n))*dS

- dot(grad(v), jump(u, n))*ds - dot(jump(v, n), grad(u))*ds

+ gamma/h*v*u*ds

L = v*f*dx + v*g*ds

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Recent updates

◮ UFC, a framework for finite element assembly

◮ DG, BDM and RT elements

◮ A new improved mesh library, adaptive refinement

◮ Mesh and graph partitioning

◮ Improved linear algebra supporting PETSc and uBLAS

◮ Optimized code generation (FErari)

◮ Improved ODE solvers

◮ Python bindings

◮ Bugzilla database, pkg-config, improved manual, compiler
support, demos, file formats, built-in plotting, . . .

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Future plans (highlights)

◮ UFL/UFC

◮ Automation of error control
◮ Automatic generation of dual problems
◮ Automatic generation of a posteriori error estimates

◮ Improved geometry support (MeshBuilder)

◮ Debian/Ubuntu packages

◮ Finite element exterior calculus

→ www.fenics.org ←

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Additional slides

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Software components

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Automation of CMM

(i)

(iii)

(iv)

(ii)

Au = f

TOL

U ≈ u

U ≈ u

U ≈ u

tol > 0

Ãũ = f̃

(V, V̂ )

F (x) = 0 X ≈ x

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

A common framework: UFL/UFC

◮ UFL - Unified Form Language

◮ UFC - Unified Form-assembly Code

◮ Unify, standardize, extend

◮ Working prototypes: FFC (Logg), SyFi (Mardal)

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Compiling Poisson’s equation: non-optimized, 16 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[0] = 0.5*G0_0_0 + 0.5*G0_0_1 +

0.5*G0_1_0 + 0.5*G0_1_1;

block[1] = -0.5*G0_0_0 - 0.5*G0_1_0;

block[2] = -0.5*G0_0_1 - 0.5*G0_1_1;

block[3] = -0.5*G0_0_0 - 0.5*G0_0_1;

block[4] = 0.5*G0_0_0;

block[5] = 0.5*G0_0_1;

block[6] = -0.5*G0_1_0 - 0.5*G0_1_1;

block[7] = 0.5*G0_1_0;

block[8] = 0.5*G0_1_1;

}

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Compiling Poisson’s equation: ffc -O, 11 ops

void eval(real block[], const AffineMap& map) const

{

[...]

block[1] = -0.5*G0_0_0 + -0.5*G0_1_0;

block[0] = -block[1] + 0.5*G0_0_1 + 0.5*G0_1_1;

block[7] = -block[1] + -0.5*G0_0_0;

block[6] = -block[7] + -0.5*G0_1_1;

block[8] = -block[6] + -0.5*G0_1_0;

block[2] = -block[8] + -0.5*G0_0_1;

block[5] = -block[2] + -0.5*G0_1_1;

block[3] = -block[5] + -0.5*G0_0_0;

block[4] = -block[1] + -0.5*G0_1_0;

}

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Compiling Poisson’s equation: ffc -f blas, 36 ops

void eval(real block[], const AffineMap& map) const

{

[...]

cblas_dgemv(CblasRowMajor, CblasNoTrans,

blas.mi, blas.ni, 1.0,

blas.Ai, blas.ni, blas.Gi,

1, 0.0, block, 1);

}

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Key Features

◮ Simple and intuitive object-oriented API, C++ or Python

◮ Automatic and efficient evaluation of variational forms

◮ Automatic and efficient assembly of linear systems

◮ General families of finite elements, including arbitrary order
continuous and discontinuous Lagrange elements, BDM, RT

◮ Arbitrary mixed elements

◮ High-performance parallel linear algebra

◮ General meshes, adaptive mesh refinement

◮ mcG(q)/mdG(q) and cG(q)/dG(q) ODE solvers

◮ Support for a range of output formats for post-processing,
including DOLFIN XML, ParaView/Mayavi/VTK, OpenDX,
Octave, MATLAB, GiD

◮ Built-in plotting

Anders Logg Automated Solution of Differential Equations



Introduction
Examples

Future

Linear algebra

◮ Complete support for PETSc
◮ High-performance parallel linear algebra
◮ Krylov solvers, preconditioners

◮ Complete support for uBLAS
◮ BLAS level 1, 2 and 3
◮ Dense, packed and sparse matrices
◮ C++ operator overloading and expression templates
◮ Krylov solvers, preconditioners added by DOLFIN

◮ Uniform interface to both linear algebra backends

◮ LU factorization by UMFPACK for uBLAS matrix types

◮ Eigenvalue problems solved by SLEPc for PETSc matrix types

◮ Matrix-free solvers (“virtual matrices”)

Anders Logg Automated Solution of Differential Equations


	Introduction
	FEniCS
	Automation
	Generality and efficiency

	Examples
	Future
	

