
Unified Framework for Finite
Element Assembly

M. S. Alnæs
Simula Research Laboratory, Norway
E-mail: martinal@simula.no∗

(Corresponding author)

A. Logg
Simula Research Laboratory
Dept. of Informatics, University of Oslo, Norway
E-mail: logg@simula.no

K.-A. Mardal
Simula Research Laboratory
Dept. of Informatics, University of Oslo, Norway
E-mail: kent-and@simula.no†

O. Skavhaug
Simula Research Laboratory
Dept. of Informatics, University of Oslo, Norway
E-mail: skavhaug@simula.no

H. P. Langtangen
Simula Research Laboratory
Dept. of Informatics, University of Oslo, Norway
E-mail: hpl@simula.no

Abstract: Over the last fifty years, the finite element method has emerged as a suc-
cessful methodology for solving a wide range of partial differential equations. At the
heart of any finite element simulation is the assembly of matrices and vectors from finite
element variational forms. In this paper, we present a general and unified framework
for finite element assembly. Based on this framework, we propose a specific software
interface (UFC) between problem-specific and general-purpose components of finite
element programs. The interface is general in the sense that it applies to a wide range
of finite element problems (including mixed finite elements and discontinuous Galerkin
methods) and may be used with libraries that differ widely in their design. The inter-
face consists of a minimal set of abstract C++ classes and data transfer is via plain C
arrays.

We discuss how one may use the UFC interface to build a plug-and-play system for
finite element simulation where basic components such as computational meshes, linear
algebra and, in particular, variational form evaluation may come from different libraries
and be used interchangeably. We further discuss how the UFC interface is used to glue
together components from the FEniCS suite of software to provide an integrated high-
level environment where variational forms may be entered as expressions directly in
Python and assembled efficiently into sparse matrices.

A central design goal for the interface is to minimize dependency on external libraries
for the problem-specific code used in applications. Thus, the UFC interface consists
of a single C++ header file and does not rely on external libraries for its operation.
In particular, the UFC interface does not depend on any other FEniCS components.
As a result, finite element code developers may use the interface to detach equation
specific details from general-purpose library code, allowing very flexible connections to
alternative libraries. We encourage developers of finite element libraries to incorporate
the interface in their libraries. The UFC interface is released into the public domain.

Keywords: Finite elements, assembly, implementation, code generation, UFC

Reference to this paper should be made as follows: M. S. Alnæs, A. Logg, K.-A.
Mardal, O. Skavhaug, and H. P. Langtangen (2008) ‘Unified Framework for Finite
Element Assembly’

1 Introduction

Software for solving physical problems have traditionally
been tailored to the problem at hand, often resulting in
computationally very efficient special-purpose codes. How-
ever, experience has shown that such codes may be difficult
and costly to extend to new problems. To decrease turn-
over time from problem definition to its numerical solution,
scientific code writers have to an increasingly larger extent
tried to create general libraries, containing common nu-
merical algorithms applicable to a wide range of problems.
Such libraries can reduce the size of the application code
dramatically and hide implementation details. In the field
of finite element solution of partial differential equations,
many general and successful libraries have emerged during
the last couple of decades, e.g., Cactus, Cogito, COMSOL
Multiphysics, Deal.II, Diffpack, DOLFIN (FEniCS), Get-
fem++, Kaskade, Sundance, and UG (see the reference list
for papers and websites).

General finite element libraries implement many stan-
dard mathematical and numerical concepts, but the soft-
ware components are often not as carefully designed as
their mathematical counterparts. From a software engi-
neering point of view it is important to achieve clear sepa-
ration of the various software components that build up a
finite element library, such that each component can be re-
placed separately. Not only does this offer greater flexibil-
ity for application and library developers, but it also makes
the software easier to maintain, especially under changing
requirements of several developers in long-term projects.
These arguments have received much attention by devel-
opers of general finite element libraries in recent years (see,
e.g., Bangerth et al. (2007); Bastian et al. (2007a)).

Well designed libraries provide clear interfaces to repre-
sent this separation. Typically, the application code uses
functions or objects in the interface to perform basic “high
level” steps of the solution process. Problem-specific de-
tails, such as the variational form, the mesh and coefficients
are passed through the interface to the library to compute
a solution. Such libraries and their interfaces are generally
referred to as problem solving environments (PSEs).

However, one fundamental issue in designing such soft-
ware libraries is how to separate problem-specific code from
general library code. Some components, such as computa-
tional meshes and linear algebra, may be implemented as
reusable components (e.g. as a set of C++ classes) with
well-defined interfaces. However, other components, such
as variational forms, are intrinsically problem-specific. As
a result, those components must either be implemented
and provided by the user or generated automatically by
the library from a high-level description of the variational
form. In either case, it becomes important to settle on a
well-defined interface for how the library should communi-

∗Alnæs has been supported by an Outstanding Young Investigator

grant from the Norwegian Research Council.
†Mardal has been supported by the Norwegian Research Council

under the grant 170650.

Copyright c© 200x Inderscience Enterprises Ltd.

cate with those problem-specific components.
The design of such an interface is the subject of the

present paper. We propose a C++ interface called Uni-
fied Form-assembly Code (abbreviated UFC), which pro-
vides an interface between general reusable finite element
libraries and problem-specific code. In particular, a finite
element library may assemble the global sparse matrix for a
wide range of finite element variational forms from a given
code that implements the UFC interface.

To make a successful interface, one needs a sufficiently
general framework for the underlying mathematical struc-
tures and operations. The software interface in the cur-
rent paper relies on a more general view of variational
forms and finite element assembly than commonly found in
textbooks. We therefore precisely state the mathematical
background and notation in Sections 2 and 3.

UFC is significantly inspired by our needs in the tools
FFC, SFC, and DOLFIN, which are software units within
FEniCS, see Kirby and Logg (2006, 2007); Alnæs and
Mardal (2007); Logg (2007). The interplay between these
tools and UFC is explained in Section 4, which provides
additional and more specific motivation for the design of
UFC. Highlights of the interface are covered in Section 5.
Section 6 contains some examples of high-level specifica-
tions of variational forms with the form compilers FFC
and SFC, which automatically generate code compatible
with the UFC interface for computing element matrices
and vectors. We also explain how the interface can be
used with existing libraries.

Related Work

One major reason for the success of general finite element
libraries is that many widely different physical problems
can be solved by quite short application codes utilizing
the same library. The opposite strategy, i.e., one appli-
cation utilizing different alternative libraries, has received
less attention. For example, an application might want
to use an adaptive mesh data structure and its function-
ality from one library, a very efficient assembly routine
from another library, basic iterative methods from, e.g.,
PETSc, combined with a preconditioner from Trilinos or
Hypre. To make this composition a true plug-and-play op-
eration, the various libraries would need to conform to a
unified interface to the basic operations needed in finite
element solvers. Alternatively, low level interfaces can be
implemented with thin wrapper code to connect separate
software components.

In numerical linear algebra, the BLAS and LAPACK in-
terfaces have greatly simplified code writing. By express-
ing operations in the application code in terms of BLAS
and LAPACK calls, and using the associated data (array)
formats, one program can be linked to different implemen-
tations of the BLAS and LAPACK operations. Despite
the great success of this approach, the idea has to little ex-
tent been explored in other areas of computational science.
One recent example is Easyviz (Ring et al. (2008)), a thin
unified interface to curve plotting and 2D/3D scalar- and

2

vector-field visualization. This interface allows an applica-
tion program to use a MATLAB-compatible syntax to cre-
ate graphics, independently of the choice of graphics pack-
age (Gnuplot, Grace, MATLAB, VTK, VisIt, OpenDX,
etc.). Another example is GLAS (Meerbergen (2008)), a
community initiative to specify a general interface for lin-
ear algebra libraries. GLAS can be viewed as an extension
and modernization of the BLAS/LAPACK idea, utilizing
powerful constructs offered by C++.

Within finite elements, DUNE (Bastian et al. (2007a,b))
is a very promising attempt to define unified interfaces be-
tween application code and libraries for finite element com-
puting. DUNE provides interfaces to data structures and
solution algorithms, especially finite element grids and it-
erative solution methods for linear systems. In principle,
one can write an application code independently of the grid
data structure and the matrix solution method. DUNE
does not directly address interfaces between the finite el-
ement problem definition (element matrices and vectors),
and the assembly process, which is the topic of the present
paper. Another difference between DUNE and our UFC in-
terface is the choice of programming technology used in the
interface: DUNE relies heavily on inlining via C++ tem-
plates for efficient single-point data retrieval, while UFC
applies pointers to chunks of data. However, our view of a
finite element mesh is easily adapted to a DUNE grid. The
DUNE-FEM module (under development) represents in-
terfaces to various discretization operators and serves some
of the purposes of the UFC interface, though being tech-
nically quite different.

In the finite element world, there are many competing
libraries, each with their own specialties. Thin interfaces
offering only the least common denominator functional-
ity do not support special features for special problems
and may therefore be met with criticism. Thick interfaces,
trying to incorporate “all” functionality in “all” libraries,
become too complicated to serve the original purpose of
simplifying software development. Obtaining community
consensus for the thickness and syntax of a unified inter-
face is obviously an extremely challenging process. The
authors of this paper suggest another approach: a small
group of people defines a thin (and hence efficient and easy-
to-use) interface, they make the software publicly available
together with a detailed documentation, and demonstrate
its advantages. This is our aim with the present paper.

2 Finite Element Discretization

2.1 The Finite Element

A finite element is mathematically defined as a triplet con-
sisting of a polygon, a polynomial function space, and a
set of linear functionals, see Ciarlet (1978). Given that
the dimension of the function space and the number of the
(linearly independent) linear functionals are equal, the fi-
nite element is uniquely defined. Hence, we will refer to a
finite element as a collection of

• a polygon K,

• a polynomial space PK on K,

• a set of linearly independent linear functionals, the
degrees of freedom, Li : PK → R, i = 1, 2, . . . , n.

With this definition the basis functions {φK
i }n

i=1 are ob-
tained by solving the following system of equations,

Li(φj) = δij , i, j = 1, 2, . . . , n. (1)

The computation of such a nodal basis can be automated,
given (a basis for) the polynomial space PK and the set
of linear functionals {Li}

n
i=1, see Kirby (2004); Alnæs and

Mardal (2007).

2.2 Variational Forms

Consider the weighted Poisson problem −∇ · (w∇u) = f

with Dirichlet boundary conditions on a domain Ω ⊂ R
d.

Multiplying by a test function v ∈ Vh and integrating by
parts, one obtains the variational problem

∫
Ω

w∇v · ∇u dx =

∫
Ω

vf dx ∀v ∈ Vh, (2)

for u ∈ Vh. If w, f ∈ Wh for some discrete finite element
space Wh (which may be different from Vh), we may thus
write (2) as

a(v, u;w) = L(v; f) ∀v ∈ Vh, (3)

where the trilinear form a : Vh × Vh ×Wh → R is given by

a(v, u;w) =

∫
Ω

w∇v · ∇u dx (4)

and the bilinear form L : Vh × Wh → R is given by

L(v; f) =

∫
Ω

vf dx. (5)

Note here that a is bilinear for any given fixed w ∈ Wh

and L is linear for any given fixed f ∈ Wh.
In general, we shall be concerned with the discretization

of finite element variational forms of general arity r+n > 0,

a : V 1
h × V 2

h × · · · × V r
h ×W 1

h ×W 2
h × · · · ×Wn

h → R, (6)

defined on the product space V 1
h × V 2

h × · · · × V r
h × W 1

h ×

W 2
h × · · · × Wn

h of two sets {V j
h }

r
j=1, {W

j
h}

n
j=1 of dis-

crete finite element function spaces on Ω. We refer to
(v1, v2, . . . , vr) ∈ V 1

h × V 2
h × · · · × V r

h as primary argu-
ments, and to (w1, w2, . . . , wn) ∈ W 1

h × W 2
h × · · · × Wn

h as
coefficients and write

a = a(v1, . . . , vr;w1, . . . , wn). (7)

In the simplest case, all function spaces are equal but there
are many important examples, such as mixed methods,
where the arguments come from different function spaces.

3

2.3 Discretization

To discretize the form a, we introduce a set of
bases {φ1

i }
N1

i=1, {φ
2
i }

N2

i=1, . . . , {φ
r
i }

Nr

i=1 for the function spaces
V 1

h , V 2
h , . . . , V r

h respectively and let i = (i1, i2, . . . , ir) be a
multiindex of length |i| = r. The form a then defines a
rank r tensor given by

Ai = a(φ1
i1

, φ2
i2

, . . . , φr
ir

;w1, w2, . . . , wn) ∀i ∈ I, (8)

where I is the index set

I =

r∏
j=1

[1, |V j
h |] =

{(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (N1, N2, . . . , Nr)}.

(9)

We refer to the tensor A as the discrete operator generated
by the form a and the particular choice of basis functions.
For any given form of arity r+n, the tensor A is a (typically
sparse) tensor of rank r and dimension |V 1

h | × |V 2
h | × . . .×

|V r
h | = N1 × N2 × . . . × Nr.
Typically, the rank r is 0, 1, or 2. When r = 0, the

tensor A is a scalar (a tensor of rank zero), when r = 1,
the tensor A is a vector (the “load vector”) and when r = 2,
the tensor A is a matrix (the “stiffness matrix”). Forms of
higher arity also appear, though they are rarely assembled
as a higher-dimensional sparse tensor.

Note here that we consider the functions w1, w2, . . . , wn

as fixed in the sense that the discrete operator A is com-
puted for a given set of functions, which we refer to as
coefficients. As an example, consider again the variational
problem (2) for the weighted Poisson’s equation. For the
trilinear form a, the rank is r = 2 and the number of co-
efficients is n = 1, while for the linear form L, the rank is
r = 1 and the number of coefficients is n = 1. We may
also choose to directly compute the action of the form a

obtained by assembling a vector from the form

a(v1;w1, w2) =

∫
Ω

w1∇v1 · ∇w2 dx, (10)

where now r = 1 and n = 2.
We list below a few other examples to illustrate the no-

tation.

Example 2.1. Our first example is related to the diver-
gence constraint in fluid flow. Let the form a be given by

a(q, u) =

∫
Ω

q∇ · u dx, q ∈ V 1
h , u ∈ V 2

h , (11)

where V 1
h is a space of scalar-valued functions and where

V 2
h is a space of vector-valued functions. The form a :

V 1
h × V 2

h → R has two primary arguments and thus r = 2.
Furthermore, the form does not depend on any coefficients
and thus n = 0.

Example 2.2. Another common form in fluid flow (with
variable density) is

a(v, u;w, ̺) =

∫
Ω

v ̺w · ∇u dx. (12)

Here, v ∈ V 1
h , u ∈ V 2

h , w ∈ W 1
h , ̺ ∈ W 2

h , where V 1
h , V 2

h ,
and W 1

h are spaces of vector-valued functions, while W 2
h

is a space of scalar-valued functions. The form takes four
arguments, where two of the arguments are coefficients,

a : V 1
h × V 2

h × W 1
h × W 2

h → R. (13)

Hence, r = 2 and n = 2.

Example 2.3. The H1(Ω) norm of the error e = u − uh

squared is

a(;u, uh) =

∫
Ω

(u − uh)2 + |∇(u − uh)|2 dx. (14)

The form takes two arguments and both are coefficients,

a : W 1
h × W 2

h → R. (15)

Hence, r = 0 and n = 2.

3 Finite Element Assembly

The standard algorithm for computing the global sparse
tensor A is known as assembly, see Zienkiewicz et al.
(1967); Hughes (1987). By this algorithm, the tensor A

may be computed by assembling (summing) the contribu-
tions from the local entities of a finite element mesh. To
express this algorithm for assembly of the global sparse
tensor A for a general finite element variational form of
arity r, we introduce the following notation and assump-
tions.

Let T = {K} be a set of disjoint cells (a triangulation)
partitioning the domain Ω = ∪K∈T K. Further, let ∂eT
denote the set of exterior facets (the set of cell facets in-
cident with the boundary ∂Ω), and let ∂iT denote the
set of interior facets (the set of cell facets non-incident
with the boundary ∂Ω). For each discrete function space

V
j
h , j = 1, 2, . . . , r, we assume that the global basis {φj

i}
Nj

i=1

is obtained by patching together local function spaces Pj
K

on each cell K as determined by a local-to-global mapping.
We shall further assume that the variational form (6)

may be expressed as a sum of integrals over the cells T , the
exterior facets ∂eT and the interior facets ∂iT . We shall
allow integrals expressed on disjoint subsets T = ∪nc

k=1Tk,
∂eT = ∪ne

k=1∂eTk and ∂iT = ∪ni

k=1∂iTk respectively.
We thus assume that the form a is given by

a(v1, . . . , vr;w1, . . . , wn) =
nc∑

k=1

∑
K∈Tk

∫
K

Ic
k(v1, . . . , vr;w1, . . . wn) dx

+

ne∑
k=1

∑
S∈∂eTk

∫
S

Ie
k(v1, . . . , vr;w1, . . . , wn) ds

+

ni∑
k=1

∑
S∈∂iTk

∫
S

Ii
k(v1, . . . , vr;w1, . . . , wn) ds.

(16)

4

We refer to an integral over a cell K as a cell integral, an
integral over an exterior facet S as an exterior facet in-
tegral (typically used to implement Neumann and Robin
type boundary conditions), and to an integral over an in-
terior facet S as an interior facet integral (typically used
in discontinuous Galerkin methods).

For simplicity, we consider here initially assembly of the
global sparse tensor A corresponding to a form a given by
a single integral over all cells T , and later extend to the
general case where we must also account for contributions
from several cell integrals, interior facet integrals and ex-
terior facet integrals.

We thus consider the form

a(v1, . . . , vr;w1, . . . , wn) =
∑
K∈T

∫
K

Ic(v1, . . . , vr;w1, . . . , wn) dx,
(17)

for which the global sparse tensor A is given by

Ai =
∑
K∈T

∫
K

Ic(φ1
i1

, . . . , φr
ir

;w1, . . . , wn) dx. (18)

To see how to compute the tensor A by summing the local
contributions from each cell K, we let n

j
K = |Pj

K | denote
the dimension of the local finite element space on K for
the jth primary argument vj ∈ V

j
h for j = 1, 2, . . . , r.

Furthermore, let

ι
j
K : [1, nj

K] → [1, N j] (19)

denote the local-to-global mapping for V
j
h , that is, on any

given K ∈ T , the mapping ι
j
K maps the number of a local

degree of freedom (or, equivalently, local basis function) to
the number of the corresponding global degree of freedom
(or, equivalently, global basis function). We then define
for each K ∈ T the collective local-to-global mapping ιK :
IK → I by

ιK(i) = (ι1K(i1), ι
2
K(i2), . . . , ι

r
K(ir)) ∀i ∈ IK , (20)

where IK is the index set

IK =

r∏
j=1

[1, |Pj
K |]

= {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (n1
K , n2

K , . . . , nr
K)}.

(21)

Furthermore, for each V
j
h we let {φK,j

i }
n

j

K

i=1 denote the
restriction to an element K of the subset of the basis
{φj

i}
Nj

i=1 ⊂ Pj
K of V

j
h supported on K.

We may now compute A by summing the contributions
from the local cells,

Ai =
∑

K∈Ti

∫
K

Ic(φ1
i1

, . . . , φr
ir

;w1, . . . , wn) dx

=
∑

K∈Ti

∫
K

Ic(φK,1
(ι1

K
)−1(i1)

, . . . , φ
K,r

(ιr
K

)−1(ir);w1, . . . , wn) dx

=
∑

K∈Ti

AK

ι
−1
K

(i)
,

(22)

where AK is the local cell tensor on cell K (the “element
stiffness matrix”), given by

AK
i =

∫
K

Ic(φK,1
i1

, . . . , φ
K,r
ir

;w1, . . . , wn) dx, (23)

and where Ti denotes the set of cells on which all basis
functions φ1

i1
, φ2

i2
, . . . , φr

ir
are supported. Similarly, we may

sum the local contributions from the exterior and interior
facets in the form of local exterior facet tensors and inte-
rior facet tensors.

Figure 1: Adding the entries of a cell tensor AK to the
global tensor A using the local-to-global mapping ιK , il-
lustrated here for a rank two tensor (a matrix).

In Algorithm 1, we present a general algorithm for as-
sembling the contributions from the local cell, exterior
facet and interior facet tensors into a global sparse ten-
sor. In all cases, we iterate over all entities (cells, exterior
or interior facets), compute the local cell tensor AK (or
exterior/interior facet tensor AS) and add it to the global
sparse tensor as determined by the local-to-global map-
ping, see Figure 1.

4 Software Framework for Finite Element Assembly

In a finite element application code, typical input from the
user is the variational (weak) form of a PDE, a choice of
finite elements, a geometry represented by a mesh, and
user-defined functions that appear as coefficients in the
variational form. For a linear PDE, the typical solution
procedure consists of first assembling a (sparse) linear sys-
tem AU = b from given user input and then solving that
linear system to obtain the degrees of freedom U for the
discrete finite element approximation uh of the exact so-
lution u of the PDE. Even when the solution procedure
is more involved, as for a nonlinear problem requiring an
iterative procedure, each iteration may involve assembling
matrices and vectors. It is therefore clear that the assembly
of matrices and vectors (or in general tensors) is an impor-
tant task for any finite element software framework. We
refer to the software component responsible for assembling

5

Algorithm 1 Assembling the global tensor A from the lo-
cal contributions on all cells, exterior and interior facets.
For assembly over exterior facets, K(S) refers to the cell
K ∈ T incident to the exterior facet S, and for assem-
bly over interior facets, K(S) refers to the “macro cell”
consisting of the pair of cells K+ and K− incident to the
interior facet S.
A = 0

(i) Assemble contributions from all cells
for each K ∈ T

for j = 1, 2, . . . , r:
Tabulate the local-to-global mapping ι

j
K

for j = 1, 2, . . . , n:
Extract the values of wj on K

Take 0 ≤ k ≤ nc such that K ∈ Tk

Tabulate the cell tensor AK for Ic
k

Add AK
i to Aι1

K
(i1),ι2K(i2),...,ιr

K
(ir) for i ∈ IK

(ii) Assemble contributions from all exterior facets
for each S ∈ ∂eT

for j = 1, 2, . . . , r:
Tabulate the local-to-global mapping ι

j

K(S)

for j = 1, 2, . . . , n:
Extract the values of wj on K(S)

Take 0 ≤ k ≤ ne such that S ∈ ∂eTk

Tabulate the exterior facet tensor AS for Ie
k

Add AS
i to Aι1

K(S)
(i1),ι2K(S)

(i2),...,ιr
K(S)

(ir) for i ∈ IK(S)

(iii) Assemble contributions from all interior facets
for each S ∈ ∂iT

for j = 1, 2, . . . , r:
Tabulate the local-to-global mapping ι

j

K(S)

for j = 1, 2, . . . , n:
Extract the values of wj on K(S)

Take 0 ≤ k ≤ ni such that S ∈ ∂iTk

Tabulate the interior facet tensor AS for Ii
k

Add AS
i to Aι1

K(S)
(i1),ι2K(S)

(i2),...,ιr
K(S)

(ir) for i ∈ IK(S)

a tensor from given user input consisting of a variational
form, finite element function spaces, mesh and coefficients
as the Assembler.

As demonstrated in Algorithm 1, the Assembler needs to
iterate over the cells in the mesh, tabulate degree of free-
dom mappings, extract local values of coefficients, com-
pute the local element tensor, and add each element ten-

sor to the global tensor which is the final output. Thus,
the Assembler is a software component where many other
components are combined. It is therefore important that
the software components on which the Assembler depends
have well-defined interfaces. We discuss some issues re-
lating to the design of these software components below
and then demonstrate how these software components to-
gether with the Assembler may be combined into a general
software framework for finite element assembly.

4.1 Variational Forms

Implementations of discrete variational forms in a general
finite element library usually consists of programming ex-
pressions for the integrands Ic

k, Ie
k, Ii

k (see Equation (16)),
eventually writing a quadrature loop and loop over element
matrix indices depending on the abstraction level of the li-
brary (see Bangerth et al. (2007); Langtangen (2003b)).

The motivation behind the UFC interface is to separate
the implementation of the form from other details of the
assembly such as the mesh and linear algebra libraries in
use.

In the FEniCS finite element software framework a high-
level form language embedded in Python is used to define
the variational form and finite elements. This reduces the
distance from the mathematical formulation of a PDE to
an implementation of a PDE solver, removes tedious and
error-prone tasks such as coding PDE-specific assembly
loops, and enables rapid prototyping of new models and
methods. To retain computational efficiency, we generate
efficient low-level code from the abstract form description.
Code generation adds another complexity layer to the soft-
ware, and it becomes even more important to keep a clear
separation between software components such that the in-
terface between generated code and library code is well
defined. This is achieved by generating implementations
of the UFC interface.

4.2 Mesh Libraries

Many different representations of computational meshes
exist. Typically, each finite element library provides its
own internal implementation of a computational mesh. We
have not wished to tie the UFC interface to one particular
mesh representation or one particular library. Still, several
operations like the element tensor computation depends on
local mesh data. For this reason, the UFC interface pro-
vides a low-level data structure to communicate single cell
data. In addition, a small data structure is used to com-
municate global mesh dimensions, which is necessary for
computing the local-to-global mapping. Assemblers im-
plemented on top of the UFC interface must therefore be
able to copy/translate cell data from the mesh library be-
ing used to the UFC data structure (which involves a min-
imal overhead). This makes it possible to achieve sepa-
ration between the mesh representation and the element
tensor computation. The Assembler implemented in FEn-
iCS (as part of DOLFIN) is implemented for one particular

6

mesh format, see Logg (2008), but an Assembler compo-
nent could easily be written for other mesh libraries like
the PETSc Sieve, see Karpeev and Knepley (2005) and
DUNE’s grid interface (Bastian et al. (2007a,b)).

4.3 Linear Algebra Libraries

It is desirable to reuse existing high-performance linear
algebra libraries like PETSc and Trilinos. It is therefore
important that the Assembler is able to assemble element
tensors into global matrices and vectors implemented by
external libraries. Aggregation into matrix and vector data
structures are fairly similar operations, typically consisting
of passing array pointers to existing functions in the linear
algebra libraries. By implementing a common interface for
assembly into tensors of arbitrary rank, the same assembly
routine can be reused for any linear algebra library without
changes. This avoids duplication of assembly code, and
one may easily change the output format of the assembly
procedure. The details of these interfaces are beyond the
scope of the current paper. At the time of writing, we
have written assembly routines with support for matrices
and vectors from Epetra (Trilinos), PETSc, PyCC, and
uBLAS in addition to scalars.

With components available for finite element variational
forms, mesh representation, and linear algebra, we may
use the UFC interface to combine these components to
build a PSE for partial differential equations. The central
component of this PSE is the Assembler. As illustrated in
Figure 2, the Assembler takes as input a variational form,
communicated through the UFC interface, a mesh and a
set of functions (the coefficients), and assembles a tensor.

Figure 2: Assembling a tensor from a given UFC, mesh
and functions (coefficients).

In FEniCS, we have additional application-level abstrac-
tions for expressing variational forms, meshes, functions
and linear algebra objects to achieve a consistent high-level
user-interface. The generation of the UFC code may then
be hidden from the user, who just provides a high-level
description of the form. The PSE may then automatically
generate the UFC at run-time, functioning as just-in-time
(JIT) compiler, and call the Assembler with the generated
UFC. Below, we demonstrate how this may be done in the
Python interface of DOLFIN. The user here defines a finite
element function space, and a pair of bilinear and linear

forms a(v, u) =
∫
Ω
∇v ·∇u+vu dx and L =

∫
Ω

vf dx, from
which a matrix and vector may be assembled by calls to
the function assemble. A linear system solver may then be
invoked to compute the degrees of freedom of the solution.

element = FiniteElement("CG", "triangle", 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Function(element, mesh, 100.0)

a = dot(grad(v), grad(u))*dx + v*u*dx
L = v*f*dx

A = assemble(a, mesh)
b = assemble(L, mesh)

U = solve(A, b)

While FEniCS provides an integrated environment, in-
cluding the PSE DOLFIN and the two form compilers FFC
(FEniCS Form Compiler) and SFC (SyFi Form Compiler),
the fact that these components comply with the UFC inter-
face means that they may also be used interchangeably in
heterogeneous environments together with other libraries
(that implement or use the UFC interface). This is il-
lustrated in the flow diagram of Figure 3 where alternate
routes from mathematical description to matrix assembly
are demonstrated.

Figure 3: Alternate routes from mathematical description
to matrix assembly enabled by the UFC interface (Note
that the Diffpack example is fictional).

In Figure 3, we have also included another interface UFL
(Unified Form Language) which provides a unified way to
express finite element variational forms. The UFL inter-
face is currently in development. Together, UFL and UFC
provide a unified interface for the input and output of form
compilers, see Figure 4 .

Figure 4: An abstract definition (UFL) of a finite element
variational form is given as input to a form compiler, which
generates UFC code as output.

7

5 The UFC Interface

Figure 5: UML diagram of the UFC class relations

The UFC interface consists of a small collection of ab-
stract C++ classes that represent common components
for assembling tensors using the finite element method.
These classes are accompanied by a well documented (Al-
næs et al. (2007)) set of conventions for numbering of cell
data and other arrays. We have strived to make the classes
as simple as possible while not sacrificing generality or ef-
ficiency. Data is passed as plain C arrays for efficiency
and minimal dependencies. Most functions are declared
const, reflecting that the operations they represent should
not change the outcome of future operations.1 Other ini-
tialization of implementation-specific data should ideally
be performed in constructors.

One can ask why the UFC interface consists of classes
and not plain functions. There are three reasons for this.
First, we want to handle each form as a self contained
“black box”, which can be passed around easily in an ap-
plication. Many functions belong together conceptually,
thus making it natural to collect them in a class “names-
pace”. Second, we need multiple versions of each function
in the software representation of variational forms, in par-
ticular to represent multiple variational forms and multi-
ple finite element function spaces. This is best achieved by
making each such function a member function of a class
and having multiple instances of that class. Third, UFC
function implementations may need access to stored data,
and with a plain function-based interface these data would
then need to be global variables. In particular, when exist-
ing libraries or applications want to implement the UFC
interface, it may be necessary for the subclasses of UFC
classes to inherit from existing classes or to have pointers
to other objects.

5.1 Class Relations

Figure (5) shows all the classes and their relations. The
classes mesh, cell, and function provide the means for

1The exceptions are the functions to initialize a dof map.

communicating mesh and coefficient function data as ar-
guments. Each argument of the form (both primary argu-
ments and coefficients) is represented by a finite element

and dof map object. The integrals are represented by one
of the classes cell integral, exterior facet integral,
or interior facet integral. An object of the class form
gives access to all other objects in a particular implemen-
tation. In this paper, we will not describe all the functions
of these classes in detail. A complete specification can be
found in the manual (Alnæs et al. (2007)).

At the core of UFC is the class form, which
represents the general variational form a of Equa-
tion (16). Subclasses of form must implement
factory functions which may be called to cre-
ate cell integral, exterior facet integral and
interior facet integral objects. These objects in turn
know how to compute their respective contribution from
a cell or facet during assembly. A code snippet from the
form class declaration is shown below.

class form
{
public:

...

/// Create cell integral on sub domain i
virtual cell_integral*
create_cell_integral(unsigned int i)
const = 0;

/// Create exterior facet integral on sub domain i
virtual exterior_facet_integral*
create_exterior_facet_integral(unsigned int i)
const = 0;

/// Create interior facet integral on sub domain i
virtual interior_facet_integral*
create_interior_facet_integral(unsigned int i)
const = 0;

};

The form class also specifies functions for creating
finite element and dof map objects for the finite element
function spaces {V j

h }
r
j=1, {W

j
h}

n
j=1 of the variational form.

The finite element object provides functionality such as
evaluation of degrees of freedom and evaluation of basis
functions and their derivatives. The dof map object pro-
vides functionality such as tabulating the local-to-global
mapping of degrees of freedom on a single element, as well
as tabulation of subsets associated with particular mesh
entities, used to apply Dirichlet boundary conditions and
build connectivity information.

Both the finite element and dof map classes can rep-
resent mixed elements, in which case it is possible to ob-
tain finite element and dof map objects for each sub-
element in a hierarchical manner. Vector elements com-
posed of scalar elements are in this context treated as spe-
cial cases of mixed elements where all sub-elements are
equal. Thus, e.g., from a dof map representing a P2 − P1

Taylor-Hood element, it is possible to extract one dof map

for the quadratic vector element and one dof map for the
linear scalar element. From the vector element, a dof map

for the quadratic scalar element of each vector component

8

can be obtained. This can be used to access subcompo-
nents from the solution of a mixed system.

5.2 Stages in the Assembly Algorithm

enum shape {interval, triangle, quadrilateral,
tetrahedron, hexahedron};

class cell {
public:

shape cell_shape;
unsigned int topological_dimension;
unsigned int geometric_dimension;

/// Array of global indices for the mesh entities of the cell
unsigned int** entity_indices;

/// Array of coordinates for the vertices of the cell
double** coordinates;

};

Figure 6: Data structure for communicating single cell
data.

Next, we focus on a few key parts of the interface and
explain how these can be used to implement the assembly
algorithm (Algorithm 1). This algorithm consists of three
stages: (i) assembling the contributions from all cells, (ii)
assembling the contributions from all exterior facets, and
(iii) assembling the contributions from all interior facets.

Each of the three assembly stages (i)–(iii) of Algorithm 1
is further composed of five steps. In the first step, the
polygon K is fetched from the mesh, typically implemented
by filling a cell structure (see Figure 6) with coordinate
data and global numbering of the mesh entities in the cell.
This step depends on the specific mesh being used.

Secondly, the local-to-global mapping of degrees of free-
dom is tabulated for each of the function spaces. That
is, for each of the discrete finite element spaces on K, we
tabulate (or possibly compute) the global indices for the
degrees of freedom on {V j

h }
r
j=1 and {W j

h}
n
j=1.

The class dof map represents the mapping between local
and global degrees of freedom for a finite element space.
A dof map is initialized with global mesh dimensions by
calling the function init mesh(const mesh& m). If this
function returns true, the dof map should be additionally
initialized by calling the function init cell(const mesh&

m, const cell& c) for each cell in the global mesh, fol-
lowed by init cell finalize after the last cell. After
the initialization stage, the mapping may be tabulated at
a given cell by calling a function with the following signa-
ture.

void dof_map::tabulate_dofs(unsigned int* dofs,
const mesh& m,
const cell& c) const

Here, unsigned int* dofs is a pointer to the first el-
ement of an array of unsigned integers that will be filled
with the local-to-global mapping on the current cell during
the function call.

In the third step of each stage of Algorithm 1, we may
use the tabulated local-to-global mapping to interpolate
(extract) the local values of any of the coefficients in
{W j

h}
n
j=1.

If a coefficient wj is not given as a linear combination

of basis functions for W
j
h , it must at this step be interpo-

lated into W
j
h , using the interpolant defined by the degrees

of freedom of W
j
h (for example point evaluation at a set

of nodal points). In this case, the coefficient function is
passed as an implementation of the function interface (a
simple functor) to the function evaluate dofs.

/// Evaluate linear functionals for all dofs on the function f
void finite_element::evaluate_dofs(double *values,

const function& f,
const cell& c) const

In the fourth step, the local element tensor contribu-
tions (cell or exterior/interior facet tensors) are computed.
This is done by a call to the function tabulate tensor,
illustrated below for a cell integral.

void cell_integral::tabulate_tensor(double* A,
const double * const * w,
const cell& c) const

Similarly, one may evaluate interior and exterior facet con-
tributions using slightly different function signatures.

Finally, at the fifth step, the local element tensor contri-
butions are added to the global tensor, using the local-
to-global mappings previously obtained by calls to the
tabulate dofs function. This is a simple operation that
depends on the linear algebra library in use.

6 Examples

In this section, we demonstrate how UFC is used in prac-
tice in DOLFIN, FFC, and SFC. First, we show a part
of the assembly algorithm (Algorithm 1) as implemented
in DOLFIN. We then show examples of input to the form
compilers FFC and SFC as well as part of the correspond-
ing UFC code generated as output. Examples include Pois-
son’s equation and linear convection (see Example 2.2).

6.1 An Example UFC Assembler

To demonstrate how one may implement an assembler
based on the UFC interface, we provide here a (somewhat
simplified) excerpt from the DOLFIN assembler.

for (CellIterator cell(mesh); !cell.end(); ++cell)
{

ufc.update(*cell);

for (uint i = 0; i < ufc.form.rank(); i++)
dof_map_set[i].tabulate_dofs(ufc.dofs[i], *cell);

for (uint i = 0; i < coefficients.size(); i++)
coefficients[i]->interpolate(ufc.w[i], ufc.cell,

*ufc.coefficient_elements[i],
*cell);

integral->tabulate_tensor(ufc.A, ufc.w, ufc.cell);

9

A.add(ufc.A, ufc.local_dimensions, ufc.dofs);
}

The outer loop iterates over all cells in a given mesh. For
each cell, a ufc::cell is updated and the local-to-global
mapping is constructed. We then interpolate all the form
coefficients on the cell and compute the element tensor.
At the end of the iteration, the local-to-global mapping is
used to add the local tensor to the global tensor.

6.2 FFC Examples

The form compiler FFC provides a simple language for
specification of variational forms, which may be entered ei-
ther directly in Python or in text files given to the compiler
on the command-line. For each variational form given as
input, FFC generates UFC-compliant C++ code for eval-
uation of the corresponding element tensor(s).

Poisson’s Equation

We consider the following input file to FFC for Poisson’s
equation.

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Function(element)

a = dot(grad(v), grad(u))*dx
L = v*f*dx

Here, the two forms a (bilinear) and L (linear) are de-
fined. Both the test and trial spaces are spanned by linear
Lagrange elements on triangles in two dimensions. When
compiling this code using FFC, a C++ header file is cre-
ated, containing UFC code that may be used to assemble
the global sparse stiffness matrix and load vector. Below,
we present the code generated for evaluation of the element
stiffness matrix for the bilinear form a.

virtual void tabulate_tensor(double* A,
const double * const * w,
const ufc::cell& c) const

{
// Extract vertex coordinates
const double * const * x = c.coordinates;

// Compute Jacobian of affine map from reference cell
const double J_00 = x[1][0] - x[0][0];
const double J_01 = x[2][0] - x[0][0];
const double J_10 = x[1][1] - x[0][1];
const double J_11 = x[2][1] - x[0][1];

// Compute determinant of Jacobian
double detJ = J_00*J_11 - J_01*J_10;

// Compute inverse of Jacobian
const double Jinv_00 = J_11 / detJ;
const double Jinv_01 = -J_01 / detJ;
const double Jinv_10 = -J_10 / detJ;
const double Jinv_11 = J_00 / detJ;

// Set scale factor
const double det = std::abs(detJ);

// Compute geometry tensors
const double G0_0_0 = det*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01);
const double G0_0_1 = det*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11);
const double G0_1_0 = det*(Jinv_10*Jinv_00 + Jinv_11*Jinv_01);

const double G0_1_1 = det*(Jinv_10*Jinv_10 + Jinv_11*Jinv_11);

// Compute element tensor
A[0] = 0.5*G0_0_0 + 0.5*G0_0_1 + 0.5*G0_1_0 + 0.5*G0_1_1;
A[1] = -0.5*G0_0_0 - 0.5*G0_1_0;
A[2] = -0.5*G0_0_1 - 0.5*G0_1_1;
A[3] = -0.5*G0_0_0 - 0.5*G0_0_1;
A[4] = 0.5*G0_0_0;
A[5] = 0.5*G0_0_1;
A[6] = -0.5*G0_1_0 - 0.5*G0_1_1;
A[7] = 0.5*G0_1_0;
A[8] = 0.5*G0_1_1;

}

In FFC, an element tensor contribution is computed as
a tensor contraction between a geometry tensor varying
from cell to cell, and a geometry independent tensor on a
reference element, see Kirby and Logg (2006, 2007). For
simple forms, like the one under discussion, the main work
is then to construct the geometry tensor, related to the
geometrical mapping between the reference element and
physical element.

Having computed the element tensor, one needs to com-
pute the local-to-global mapping in order to know where
to insert the local contributions in the global tensor. This
mapping may be obtained by calling the member func-
tion tabulate dofs of the class ufc::dof map. FFC uses
an implicit ordering scheme, based on the indices of the
topological entities in the mesh. This information may be
extracted from the ufc::cell attribute entity indices.

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const

{
dofs[0] = c.entity_indices[0][0];
dofs[1] = c.entity_indices[0][1];
dofs[2] = c.entity_indices[0][2];

}

For Lagrange elements on triangles, each degree of free-
dom is associated with a global vertex. Hence, FFC con-
structs the mapping by picking the corresponding global
vertex number for each degree of freedom.

Linear Convection

Consider the variational form in Example 2.2. The input
file to FFC reads as follows.

vector_element = VectorElement("Lagrange", "triangle", 1)
scalar_element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(vector_element)
u = TrialFunction(vector_element)
w = Function(vector_element)
rho = Function(scalar_element)

a = rho*v[i]*w[j]*u[i].dx(j)*dx

The code generated for the tabulate tensor function is
presented below. Computations involving coefficients are
performed by interpolating the functions w and ρ on the
cell under consideration. (These values are stored in the
array w below.) For clarity, some code has been omitted
in this example.

10

virtual void tabulate_tensor(double* A,
const double * const * w,
const ufc::cell& c) const

{
// Extract vertex coordinates and compute Jacobian etc
// as in previous example
...
// Compute coefficients
const double c1_0_0_0 = w[1][0];
const double c1_0_0_1 = w[1][1];
const double c1_0_0_2 = w[1][2];
const double c0_0_1_0 = w[0][0];
const double c0_0_1_1 = w[0][1];
const double c0_0_1_2 = w[0][2];
const double c0_0_1_3 = w[0][3];
const double c0_0_1_4 = w[0][4];
const double c0_0_1_5 = w[0][5];
// Compute geometry tensors
const double G0_0_0_0_0 = det*c1_0_0_0*c0_0_1_0*Jinv_00;
const double G0_0_0_1_0 = det*c1_0_0_0*c0_0_1_0*Jinv_10;
const double G0_0_1_0_0 = det*c1_0_0_0*c0_0_1_1*Jinv_00;
...
// Compute element tensor
A[0] = -0.05*G0_0_0_0_0 - ...
A[1] = 0.05*G0_0_0_0_0 + ...
A[2] = 0.05*G0_0_0_1_0 + ...
...

}

The local-to-global mapping for the space of piecewise
linear vectors is computed by associating two values with
each vertex. The code generated for tabulate dofs is
presented below.

virtual void tabulate_dofs(unsigned int* dofs,
const ufc::mesh& m,
const ufc::cell& c) const

{
dofs[0] = c.entity_indices[0][0];
dofs[1] = c.entity_indices[0][1];
dofs[2] = c.entity_indices[0][2];
unsigned int offset = m.num_entities[0];
dofs[3] = offset + c.entity_indices[0][0];
dofs[4] = offset + c.entity_indices[0][1];
dofs[5] = offset + c.entity_indices[0][2];

}

FFC generates code for arbitrary multilinear forms and
currently supports arbitrary degree continuous Lagrange
elements, discontinuous elements, RT elements, BDM ele-
ments, BDFM elements and Nedelec elements in two and
three space dimensions.

6.3 SFC Examples

SFC is another form compiler producing UFC code, in
which the user defines variational forms in Python using
a symbolic engine based on GiNaC (Bauer et al. (2006)).
It has a slightly different feature set than FFC, e.g., us-
ing symbolic differentiation to automatically compute the
Jacobi matrix of a nonlinear form. The resulting low-level
UFC code is very similar.

Poisson’s Equation

The Poisson equation in SFC is specified by defining the
following callback function.

def poisson(v, u, itg):
GinvT = itg.GinvT()
Du = grad(u, GinvT)

Dv = grad(v, GinvT)
return inner(Du, Dv)

Here, v and u are the test and trial functions, respec-
tively, and itg is an integral object containing information
about the mapping between physical coordinates and the
reference element.

The generated code for tabulating the element stiffness
matrix for scalar linear Lagrange elements on triangles
reads as follows.

void stiffness_matrix::tabulate_tensor(double* A,
const double * const * w,

const ufc::cell& c) const
{

const double x0 = c.coordinates[0][0];
const double y0 = c.coordinates[0][1];
const double x1 = c.coordinates[1][0];
const double y1 = c.coordinates[1][1];
const double x2 = c.coordinates[2][0];
const double y2 = c.coordinates[2][1];
const double G00 = x1-x0;
const double G01 = -x0+x2;
const double G10 = y1-y0;
const double G11 = -y0+y2;
const double detG = fabs(-G01*G10+G11*G00);
const double GinvT00 = -G11/(G01*G10-G11*G00);
const double GinvT01 = 1.0/(G01*G10-G11*G00)*G10;
const double GinvT10 = 1.0/(G01*G10-G11*G00)*G01;
const double GinvT11 = -G00/(G01*G10-G11*G00);

A[3*0 + 0] = detG*(5.e-01*(GinvT11*GinvT11)+...
A[3*0 + 1] = (-5.e-01*GinvT00*GinvT01+-5.e-0...
A[3*0 + 2] = (-5.e-01*(GinvT11*GinvT11)+-5.e...
A[3*1 + 0] = (-5.e-01*GinvT00*GinvT01+-5.e-0...
A[3*1 + 1] = (5.e-01*(GinvT00*GinvT00)+5.e-0...
A[3*1 + 2] = detG*(5.e-01*GinvT00*GinvT01+5....
A[3*2 + 0] = (-5.e-01*(GinvT11*GinvT11)+-5.e...
A[3*2 + 1] = detG*(5.e-01*GinvT00*GinvT01+5....
A[3*2 + 2] = detG*(5.e-01*(GinvT11*GinvT11)+...

}

In the current implementation, SFC explicitly constructs
a local-to-global mapping at run-time. In this case, with
Lagrange elements, the global coordinates identify the de-
grees of freedom. The UFC interface supports constructing
the local-to-global mapping through the init mesh and
init cell methods of ufc::dof map. Below, we present
the code generated for init cell (where we use additional
structures of type Ptv (point) for representing degrees of
freedom and the container Dof Ptv dof for building the
local-to-global mapping).

void dof_map_2D::init_cell(const ufc::mesh& m, const ufc::cell& c)
{

// coordinates
double x0 = c.coordinates[0][0]; double y0 = c.coordinates[0][1];
double x1 = c.coordinates[1][0]; double y1 = c.coordinates[1][1];
double x2 = c.coordinates[2][0]; double y2 = c.coordinates[2][1];

// affine map
double G00 = x1 - x0;
double G01 = x2 - x0;

double G10 = y1 - y0;
double G11 = y2 - y0;

unsigned int element = c.entity_indices[2][0];

double dof0[2] = { x0, y0 };
Ptv pdof0(2, dof0);
dof.insert_dof(element, 0, pdof0);

double dof1[2] = { G00+x0, y0+G10 };
Ptv pdof1(2, dof1);

11

dof.insert_dof(element, 1, pdof1);

double dof2[2] = { x0+G01, G11+y0 };
Ptv pdof2(2, dof2);
dof.insert_dof(element, 2, pdof2);

}

The dof map class is only responsible for the unique-
ness of the local-to-global mapping. Possible renumbering
strategies may be imposed by the assembler, for example
to minimize communication when assembling in parallel.

7 Discussion

We have used (generated) UFC for many applications, in-
cluding Poisson’s equation; convection–diffusion–reaction
equations; continuum equations for linear elasticity, hy-
perelasticity, and plasticity; the incompressible Navier-
Stokes equations; and mixed formulations for the Hodge
Laplacian. The types of finite elements involved in-
clude standard continuous Lagrange elements of arbi-
trary order, discontinuous Galerkin formulations, BDM el-
ements, Raviart–Thomas elements, Crouzeix–Raviart ele-
ments, and Nedelec elements.

The form compilers FFC and SFC are UFC compli-
ant, both generating efficient UFC code from an abstract
problem definition. Assemblers have been implemented in
DOLFIN and PyCC, using the DOLFIN mesh represen-
tation, and together covering linear algebra formats from
PETSc, Trilinos (Epetra), uBLAS, and PyCC. Parallel as-
sembly is supported in the current development version
of DOLFIN, without requiring any modifications to UFC
since it operates on an element level. Altogether, this
demonstrates that the UFC interface is flexible both in
terms of the applications and finite element formulations
it covers, and in terms of its interoperability with existing
libraries.

One of the main limitations in the current version of the
UFC interface (v1.1) is the assumption of a homogeneous
mesh, that is, only one cell shape is allowed throughout
the mesh. Thus, although mesh ordering conventions have
been defined for the interval, triangle, tetrahedron, quadri-
lateral, and hexahedron, only one type of shape can be
used at any time. Also, higher order (non-affinely mapped)
meshes are not supported in the current version of the in-
terface. Another limitation is that only one fixed finite el-
ement space can be chosen for each argument of the form,
which excludes p-refinement (increasing the element or-
der in a subset of the cells). All these limitations may
be removed in future versions of UFC, and we encourage
interested developers to make contact to address these lim-
itations.

UFC provides a unified interface for code generated as
output by form compilers such as FFC and SFC. Similarly,
we are currently working on a specification for a unified
form language (UFL) to function as a common input to
form compilers. Currently, both FFC and SFC provide
(different) form languages for easy specification of varia-

tional forms in a high-level syntax. With a unified form
language, a user may specify a variational form in that
language and assemble the corresponding discrete opera-
tor (tensor), independently of the components being used
to generate the UFC from the UFL, and independent of
the components being used to assemble the tensor from
the UFC.

8 Conclusion

We have presented a general framework for assembly of
finite element variational forms. Based on this framework,
we have then extracted an interface (UFC) that may be
used to provide a communication layer between general-
purpose and problem-specific code for assembly of finite
element variational forms.

The interface makes minimal assumptions on the type of
problem being solved and the data structures involved. For
example, the discrete variational form may in general be
multilinear and hence assemble into a tensor of arbitrary
rank. The basic data structures used to pass data through
the interface are composed of plain C arrays. The minimal
set of assumptions on problem and data structures enables
application of the interface to a wide range of variational
forms and a large collection of finite element libraries.

We have used the UFC interface in the implementation
of the FEniCS suite of finite element tools. In a simple
Python script, one may define a variational form and a
mesh, and assemble the corresponding global sparse ma-
trix (or vector). When doing so, UFC code is generated
by either of the form compilers FFC or SFC, and passed
to the UFC-compatible assembler of the general-purpose
finite element library DOLFIN.

We encourage developers of finite element software to
use the UFC interface in their libraries. By doing so, those
libraries may directly take advantage of the form compil-
ers FFC or SFC to specify finite element problems. More-
over, one can think of already existing specifications of
complicated finite element problems that via UFC can be
combined with other libraries than the specifications were
originally written for. We have tried to make minimal as-
sumptions to make this possible.

We believe that UFC itself and the ideas behind it con-
stitute an important step towards greater flexibility in fi-
nite element software. By code generation via tools like
FFC and SFC, this flexibility may be retained also in com-
bination with very high performance.

REFERENCES

Cactus. http://www.cactuscode.org/.

COMSOL Multiphysics. http://www.comsol.com.

FEniCS. http://www.fenics.org.

Getfem++. http://home.gna.org/getfem/.

12

Hypre. http://acts.nersc.gov/hypre/.

Kaskade.
http://www.zib.de/Numerik/numsoft/kaskade/.

Trilinos. http://software.sandia.gov/trilinos.

Alnæs, M., H.-P. Langtangen, A.Logg, K.-A. Mardal, and
O. Skavhaug (2007). UFC Specification and User Man-
ual. http//www.fenics.org/ufc/.

Alnæs, M. S. and K.-A. Mardal (2007). SyFi: Symbolic
finite elements. http://www.fenics.org/syfi/.

Balay, S., K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang
(2008). PETSc. http://www.mcs.anl.gov/petsc/.

Bangerth, W., R. Hartmann, and G. Kanschat
(2006). deal.II Differential Equations Analysis Library.
http://www.dealii.org/.

Bangerth, W., R. Hartmann, and G. Kanschat (2007).
Deal.II — a general-purpose object-oriented finite ele-
ment library. ACM Trans. Math. Softw. 33 (4).

Bastian, P., K. Birken, S. Lang, K. Johannsen, N. Neuss,
H. Rentz-Reichert, and C. Wieners (1997). UG - a flexi-
ble software toolbox for solving partial differential equa-
tions. Computing and Visualization in Science 1, 27–40.

Bastian, P., M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Ohlberger, and O. Sander (2007a). A generic grid
interface for parallel and adaptive scientific computing.
Part I: Abstract framework. Computing . Submitted.
Available from the DUNE website.

Bastian, P., M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Ohlberger, and O. Sander (2007b). A generic grid
interface for parallel and adaptive scientific computing.
Part II: Implementation and tests in DUNE. Computing .
Submitted. Available from the DUNE website.

Bauer, C., C. Dams, A. Frink, V. V. Kisil, R. Kreckel,
A. Sheplyakov, and J. Vollinga (2006). GiNaC.
http://www.ginac.de.

Ciarlet, P. G. (1978). The Finite Element Method for El-
liptic Problems. North-Holland, Amsterdam, New York,
Oxford.

Hughes, T. J. R. (1987). The Finite Element Method:
Linear Static and Dynamic Finite Element Analysis.
Prentice-Hall.

Karpeev, D. A. and M. G. Knepley (2005). Flexible repre-
sentation of computational meshes. submitted to ACM
Trans. Math. Softw..

Kirby, R. C. (2004). FIAT: A new paradigm for comput-
ing finite element basis functions. ACM Trans. Math.
Software 30, 502–516.

Kirby, R. C. and A. Logg (2006). A compiler for varia-
tional forms. ACM Transactions on Mathematical Soft-
ware 32 (3), 417–444.

Kirby, R. C. and A. Logg (2007). Efficient compilation
of a class of variational forms. ACM Transactions on
Mathematical Software 33 (3).

Langtangen, H. P. (2003a). Computational Partial Dif-
ferential Equations - Numerical Methods and Diffpack
Programming (2nd ed.). Texts in Computational Sci-
ence and Engineering, vol 1. Springer.
http://www.diffpack.com.

Langtangen, H. P. (2003b). Computational Partial Dif-
ferential Equations - Numerical Methods and Diffpack
Programming. Springer-Verlag. 2nd edition, 855 pages.

Logg, A. (2007). Automating the finite element method.
Arch. Comput. Methods Eng. 14 (2), 93–138.

Logg, A. (2008). Efficient representation of computational
meshes. Submitted to International Journal of Compu-
tational Science and Engineering .

Logg, A. et al. (2008). FFC: FEniCS form compiler.
http//www.fenics.org/ffc/.

Logg, A., G. Wells, J. Hoffman, J. Jansson, et al.
DOLFIN: A general-purpose finite element library.
http//www.fenics.org/dolfin/.

Long, K. (2006). Sundance.
http://software.sandia.gov/sundance/.

Meerbergen, K. (2008). GLAS: Generic interface for Linear
Algebra Software. http://glas.sourceforge.net/.

Ring, J., H. P. Langtangen, and R. Bredesen (2008).
Easyviz. Subpackage of SciTools:
http://code.google.com/p/scitools/.

Skavhaug, O., M. S. Alnæs, and K.-A. Mardal (2007).
PyCC. Software framework under development.
http://www.simula.no/pycc.

Thuné, M., E. Mossberg, P. Olsson, J. Rantakokko, K. A.
hlander, and K. Otto (1997). Object-oriented construc-
tion of parallel PDE solvers. In E. Arge, A. M. Bruaset,
and H. P. Langtangen (Eds.), Modern Software Tools for
Scientific Computing, pp. 203–226. Birkhäuser.

Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu (2005, first
published in 1967). The Finite Element Method — Its
Basis and Fundamentals, 6th edition. Elsevier.

13

