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Abstract 
 

Software maintenance is often expensive; hence, 
strategies for assessing the maintainability of complete 
software systems are important. Nevertheless, a 
software client usually has few means of assessing the 
maintainability of a software system as part of the 
acquisition process. Assessing the maintainability of 
complete systems is difficult due to the influence of 
many factors, such as the people, tasks and tools, in 
addition to the code. Furthermore, most research on 
maintainability focuses on individual classes of 
individual systems.  

This paper describes an empirical study in which the 
maintainability of four functionally equivalent systems 
developed in Java was assessed using both structural 
measures and expert assessments. The results suggest 
that such a combination may be useful. Although the 
assessment based on structural measures mostly 
corresponded with the expert assessments, there were 
several examples of potential problems regarding 
maintainability that were not captured by the structural 
measures.  
 
1. Introduction 
 

Due to the high costs of software maintenance, a 
software client wants systems that will be easy to 
maintain. However, software clients typically have few 
means of assessing the maintainability of the software 
system that they are in the process of acquiring. It is 
also far from common for software development 
organizations to have control over the maintainability 
of their developed software. Furthermore, even if the 
software developers manage to assess the 
maintainability of their software, they may not wish to 
share this information with their clients. From the point 
of view of a software development organization, it may 
be most economically beneficial to spend few 

resources on developing maintainable and extendable 
software initially, and then achieve higher earnings 
from providing costly extensions in the maintenance 
phase. 

It is therefore of great economic importance for 
software clients to be able to assess the maintainability 
of software systems or products. Nevertheless, what 
constitutes a maintainable software system is not well 
defined, and we do not know the conditions under 
which a system is maintainable. To the author’s 
knowledge, few studies have compared the 
maintainability of different systems.  

Maintainability may be affected by a large number 
of factors in addition to properties of the code, such as 
the qualifications of the people performing the 
maintenance, the maintenance tasks, and the tools 
used. Furthermore, the fact that technology changes 
frequently means that new standards for design and 
architecture of software systems are set frequently. It 
may therefore not be feasible to establish once and for 
all the factors that affect the maintainability of 
software systems.  

Assessing the maintainability of a software system 
is equivalent to making a prediction, on the basis of 
information about the existing system, about the effort 
that will be expended on maintaining it. The strengths 
and weaknesses of experts, formal methods, and 
combinations of these have been studied in the field of 
software estimation. The findings are that a 
combination of expert assessments and formal methods 
usually provides the best results [12]. Although there 
are obvious differences between estimating software 
development effort and assessing maintainability 
(maintenance effort), there are also similarities, which 
indicates that further studies on the role of expert 
assessments may be beneficial also in the field of 
software maintainability.  

This paper presents a qualitative comparison of 
assessments of maintainability based on structural 
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measures and expert assessments. Four functionally 
equivalent systems developed using Java, with Simula 
Research Laboratory as client, provided us with a 
unique opportunity to compare the effects of different 
design choices on maintainability. The goals of the 
study were twofold: 1) to identify properties of Java 
software systems that are considered important for 
maintainability by experts who have a great deal of 
experience of Java development, and 2) to identify 
strengths and weaknesses of assessing maintainability 
using structural measures and using expert 
assessments.  

The results showed that there was mostly 
correspondence between the overall assessments of 
maintainability based on structural measures and those 
based on expert assessments, but also that many 
potential maintainability problems are difficult to 
detect using only structural measures. Examples of 
such maintainability problems are: choice of concepts 
to be implemented as classes that do not support 
understanding of the code and/or do not support 
traceability from the requirements; trivial components 
and unnecessary classes; a design that is not 
appropriate for the size and complexity of the system; 
and the inappropriate use of names. These problems 
are difficult to detect using structural measures, 
therefore the results support the claim that the 
maintainability of software systems can best be 
assessed by using a combination of expert assessments 
and structural measures. The results of the study 
reported herein could constitute one step towards 
formulating a combined strategy for assessing the 
maintainability of complete software systems. 

The remainder of this paper is organized as follows. 
Section 2 describes the concept of maintainability and 
discusses factors that affect maintainability. Section 3 
presents approaches to assessing maintainability. 
Section 4 describes the case study. Section 5 describes 
the use of structural measurements when assessing the 
maintainability of the case systems. Section 6 describes 
the expert assessments. Section 7 describes the scope 
of the results and presents threats to validity. Section 8 
concludes and presents plans for future work. 

  
2. Maintainability  
 

The IEEE standard for software engineering 
terminology defines software maintainability as the 
ease with which a software system or component can 
be modified to correct faults, improve performance or 
other attributes, or to adapt to a changed environment 
[11].  

The maintainability of a software system is affected 
by design and architectural principles. However, such 
principles change over time as technology changes; 
hence, the establishment of definitive criteria for 
assessing maintainability is probably not feasible. 
Nevertheless, many criteria are likely to be stable for 
quite some time; hence, the fast pace in the software 
industry should not be used as a reason to abandon the 
attempt to improve strategies for assessing the 
maintainability of complete software systems. 

Two project factors affecting maintainability are: 
the maintenance tasks to be performed on the system 
and the people who will perform them. With respect to 
the former, small tasks restricted to a limited part of 
the system may be easier to perform on software with 
fewer and larger classes because it is then easy to 
identify the class or cluster of classes where changes 
must be made. By contrast, larger change tasks that 
require changes to larger parts of the software depend 
more on the organization of the code and the 
programming principles that have been applied.  

With respect to the latter, the IT industry is 
characterized by people who frequently change their 
job, or at least change projects, within an organization. 
Hence, new developers are often assigned to an 
existing project and must relate to the old code in order 
to develop the system further. A maintainable system 
should therefore be easy to understand for new 
developers. Furthermore, studies have shown that the 
experience and education of the developers play a 
significant role in understanding and applying the 
principles behind different designs [3,18].  

 
3. Assessing Maintainability 
 

Maintainability can only be measured indirectly. 
When assessing maintainability we typically must 
choose between using (i) well-defined measures that 
may not correspond to our intuitive understanding of 
maintainability and that may use, for example, 
structural code measures, and (ii) a vague definition of 
maintainability and use experts. 

 
3.1 Structural Measures 
 

A large amount of empirical research has been done 
on measuring the structural properties of software. 
Briand and Wuest provide an overview of empirical 
work on structural measures and conclude that 
measures of size, coupling and cohesion of classes are 
generally correlated with their maintainability [6]. 

Chidamber & Kemerer’s set of structural measures, 
denoted CK-metrics, is probably the most used. Its 

 



relation to maintainability has been confirmed 
empirically [7,8]. The CK-metrics include the 
following class-level measures: WMC (Number of 
methods in class), CBO (Coupling between objects), 
NOC (Number of children), DIT (Depth of inheritance 
tree), LCOM (Cohesion of methods) and RFC 
(Response set for a class). 

Research on maintainability has focused mostly on 
the maintainability of classes or clusters of classes of 
individual systems, while the maintainability of 
complete software systems has received relatively little 
attention. Furthermore, models for assessing 
maintainability that are based on structural measures 
have rarely been used on unknown systems, that is, on 
systems to which they have not been calibrated [4]. 
However, Bakota et al. investigated how the different 
CK-metrics behaved over a set of unrelated systems. 
They found that the measures WMC and RFC behaved 
very differently on different systems. 

Another set of metrics, MOOD, is intended to 
provide an overall assessment of a software system 
[10]. The set measures method hiding, attribute hiding, 
method inheritance and attribute inheritance, coupling, 
and polymorphism. Hence, it is focused more on 
methods than on classes, as is the case for the CK-
metrics. However, the relationship of the MOOD set of 
metrics to maintainability of complete software 
systems has not been confirmed empirically.  
 
3.2 Expert Assessments 
 

The most commonly used strategies in practice for 
assessing maintainability are guided and unguided 
expert assessments [15]. One example of a guided 
strategy is The Air Force operation Test and 
Evaluation Center (AFOTEC) pamphlet, which 
provides a rich set of instructions for evaluating 
software maintainability [1]. Another guided strategy 
is to search the code for so-called code smells. 
According to Fowler and Beck, a defined set of code 
smells can indicate poor maintainability and a need for 
refactoring [9]. However, this has not been confirmed 
empirically and in an experiment experts judged the 
code differently with respect to the presence of code 
smells [15].  

The reliability of expert assessments is open to 
question. Different studies have obtained different 
results regarding the reliability of expert assessments. 
Schneiderman found little agreement in the expert 
evaluation of code quality where experts had not 
developed the code [16], while Shepperd found high 
reliability within development teams [17].  

Another difficulty with expert assessments is that 
they depend on having people who are both qualified 

to make them and are representative of, or understand 
the qualifications of, those who will perform 
maintenance on the systems. Finally, experts may also 
be biased in their opinions, for example by considering 
designs that they are not familiar with as problematic. 

 
3.3. Combined Assessments 

 
There are few studies on the correspondence 

between measurement-based assessments and expert 
assessments or on how to combine measurement 
strategies. Mayrand and Coallier describe an approach 
for software system assessment used as part of an 
acquisition [14]. This approach combines structural 
measures with expert assessments, but it is described in 
little detail. Measurements were found useful to guide 
design evaluations in [13].  

Assessing the maintainability of a software system 
is equivalent to predicting future costs related to 
maintaining the system. The strengths and weaknesses 
of using expert judgment vs. formal methods in 
making predictions in software engineering have been 
studied in the context of software estimation [12]. 
Results from that field show that expert assessments 
are more common in practice than formal methods and 
also that expert assessments outperform the formal 
methods. The reasons for this are suggested to be that 
the important variables influencing development effort 
are not well established, the relationship between 
characteristics of a software project, and the formal 
methods usually only have small sets of previous 
projects on which they can be calibrated. However, 
expert assessments may be biased due, for example, to 
the expectations of project members or simply the 
current mood of the estimator(s). Hence, combining 
expert estimates and formal estimation models appears 
to yield the best results in software estimation [12]. 

There are both similarities and differences between 
software estimations and assessments of 
maintainability. Both are about assessing future costs, 
but the main difference is that assessing 
maintainability is about assessing software that already 
exists. However, the results from software effort 
estimation suggest that it is worthwhile to investigate 
how to combine expert assessments and more formal 
assessments based on, for example, structural 
measures, in the field of software maintenance as well.  

A problem with expert assessments of large 
software systems is that it will often be impossible to 
assess all the code. A strategy for selecting which parts 
of the code to assess is therefore required. AFOTEC, 
relies on random samples of the code [1], while the 
approach described by Mayrand and Coallier relies on 
samples chosen by the developers [14]. 

 



 
4. The Case Study 

 
The Software Engineering (SE) Department at 

Simula Research Laboratory sent out a tender for a 
software system to 85 Norwegian software consultancy 
firms. Of the 35 companies that responded, four 
companies were selected to develop individual 
software systems based on the same requirements 
specifications. These software systems, hereafter called 
A, B, C and D, presented us with the challenge of 
assessing which was the most maintainable, and also 
provided us with a unique opportunity to investigate 
and compare the maintainability of four functionally 
equivalent systems. The development projects and the 
resulting systems are described more in detail in [2,5]. 
The four companies and the people involved in the 
development knew that they were participating in a 
research project and agreed to it. 

The system to be developed was a web-based 
system for handling the studies conducted by the SE 
department at Simula Research Laboratory. The 
functional requirements were described in detail to 
ensure functionally equivalent systems (this was also 
ensured through detailed acceptance tests conducted by 
the client, us). The business logic was simple and the 
requirements specification did not include specific 
requirements on the quality of the code in terms of, for 
example, maintainability or reusability. Furthermore, 
the system to be developed had no characteristics that 
would make a specific design strategy right or wrong. 
Each company chose their own development process 
and what emphasis they would place on code quality 
and maintainability.  

After finishing the development, the teams provided 
their own opinions on the quality of the code in 
interviews (see Table 1). 

 
5. Maintainability Assessment based on 
Structural Properties 

 
The structural properties of the four systems were 

measured using an adapted version of the CK-metrics. 
Two different approaches were then used to assess 
maintainability of the systems. The detailed 
measurement procedure and the rationale between the 
two approaches are described in more detail in [5].  
In the first approach, called aggregation first, all the 
measures were aggregated into summary statistics for 
the four systems. In the second approach, called 
combination first, the different measures for each class 
were combined and the classes were then categorized 

Table 1. Developers’ assessment of maintainability 
Company Opinion 
A Maintainability is acceptable. The three-

layer architecture is good, but the use of 
components could have been better. 

B Maintainability is acceptable. 
Maintainable code has been emphasized 
and extensions have been planned for. 
The database layer is easy to extend, but 
in some places the code could have been 
better. 

C It is too costly to plan for maintainability, 
but the system should be suited for simple 
extensions.   

D Maintainability has been emphasized. 
Particular care was taken to ensure a good 
three-layer architecture, although some 
trade-offs were made to keep to the 
schedule. 

 
according to assumed maintainability. The tool used to 
extract the measures from the code was the M-System 
from Fraunhofer IESE. 

The original CK set was adapted in the following 
way: 
1. LOC (Lines of code), Comments (number of 

lines of comments) and Classes (Number of 
classes) were added. 

2. The CBO measure has been shown to confound 
with size, and fan-out coupling has different 
effects than fan-in coupling. Hence, CBO was 
substituted with OMMIC (Call to methods in 
unrelated class) and OMMEC (Calls from 
methods in unrelated class). 

3. When OMMIC was included. RFC was 
considered superfluous and removed. 

4. The LCOM measure was substituted with TCC 
(Tight class cohesion), which is a normalized 
cohesion measure that has more discriminating 
power and is less influenced by size. 

 
5.1 Aggregation first 
 

Table 2 shows values for LOC, Comments and 
Classes and mean values and standard deviation for the 
other measures (the format is mean value/std). 

System C has relatively high values and large 
standard deviations for size (WMC) and coupling 
(OMMIC, OMMEC) of classes, which indicates large 
and complex classes and an uneven design. 
Furthermore, System C has zero value for the 
inheritance measures, so inheritance was not used. The  

 



Table 2. Summary statistics of CK metrics 
 A B C D 

LOC 7937 14549 7208 8293 

Comments 1484 9135 1412 2508 

Classes 63 162 24 96 

WMC 6.9/11.2 7.8/10.3 11.4/12.5 4.9/4.5 

OMMIC 7.7/15.8 5.3/11.8 8.6/25 4.7/14.1 

OMMEC 7.7/20.6 5.3/15.6 8.6/16 4.7/10.1 

NOC 0.46/2.75 0.59/2.37 0/0 0.76/3.81 

DIT 0.46/0.5 0.75/0.81 0/0 0.83/0.54 

TCC 0.26/0.37 0.17/0.31 0.20/0.23 0.11/0.22 

 
cohesion value (TCC) is high, probably much due to 
the size of the classes. The measures in Table 2 
therefore indicate that System C will be difficult to 
maintain. 

System D has a low measure for size and 
complexity and coupling, and a low standard 
deviation, but relatively high measures of inheritance. 
Despite very low cohesion, this indicates that System 
D will be easy to maintain.  

System A has large coupling values, a rather large 
standard deviation for export coupling (OMMEC) and 
relatively low inheritance depth and high cohesion, 
while System B has good mean values. Due to lower 
coupling measures, System B was assessed as being 
more maintainable than System A.  

 
5.2 Combination first 
 

The second approach was to combine the different 
measures for each class and subsequently categorize 
each class as having low, acceptable, high, or very 
high values. The limits of each category were 
calculated from the 0 to 50 percentile, 50 to 75 
percentile, 75 to 95 percentile, and above 95 percentile 
of the concatenation of all classes. The comparison 
criterion used was “The weighted sum of the criteria 
supporting the classification should be larger than the 
weighted sum opposing the classification”. Table 3 
shows the number of classes in each category for each 
of the systems. 

  
Table 3. Number of classes in each category 

 A B C D 
Low 41 87 7 58 
Acceptable 12 40 9 30 
High 8 30 6 6 
Very high 2 5 2 2 
 

Systems A, C and D had few classes with high or 
very high values, although, in the case of System C 
there is a large percentage of such classes due to the 
low total number of classes. System B has many 
classes with high and very high values, but also very 
many with low values. Considering the percentage of 
classes with high values, the ranking of the systems 
with respect to likely future maintenance effort is: D, 
A, B, C (in order of increasing effort).    

These measures may give some indications of 
which classes, and how many, are likely to be difficult 
to maintain, but it is difficult to assess the 
consequences of such classes on the maintainability of 
complete software systems. In this case, we had the 
opportunity to compare four systems and can therefore 
rank the systems according to assumed maintainability 
and draw the tentative conclusion that the system that 
exhibits the worst values will create maintainability 
problems. In the typical situation, in which there is 
only one system to assess, interpreting the values will 
be much more difficult.   

 
6. Expert Assessments 
 

The expert assessments were conducted 
individually by two very experienced Java consultants1 
who did not know the results of the assessments based 
on structural measures. The first expert had 20 years 
experience of software development, including 10 
years with Java development. The second had 10 years 
development experience, including six years with Java. 
Both were paid their normal consultancy fee for the 
work on the assessment and both delivered a report as 
the result. They assessed the code from the perspective 
of maintainers who are experienced Java programmers, 
but not familiar with details of the system. Due to there 
being few previous studies on expert assessments of 
Java software, it was decided to let the experts choose 
their own evaluation criteria on the basis of their 
experience with software development. For the same 
reason, it was decided not to ask the experts to 
quantify the assessment of each factor at this stage 
because the goal of the study was to identify a set of 
factors affecting maintainability and to obtain an 
overall assessment of the maintainability of each of the 
systems.  

                                                           
1 In the study described in [5] the results were also 
validated by two expert assessments. One of them did 
not have industrial experience with Java development, 
so in this study he was substituted by an expert with 
long industrial experience of Java development.  

 



 

Although the two experts did not communicate in 
any way, their criteria and conclusions were very 
similar. Due to the relative simplicity of the four 
systems, the experts were also asked to extrapolate 
beyond the system and attempt to predict the 
consequences of design decisions that they considered 
important for maintainability also of larger and more 
complex systems. This section describes the factors 
that were considered important by the experts and their 
assessments of the four systems according to these 
factors.   

 
6.1 Factors Affecting Maintainability and their 

Assessment 
 

An overview of the assessment is given in Table 4, 
and the opinions of the experts on each factor and its 
effect on maintainability is summarized below. 

Choice of Classes and Names - The requirements 
of a software system usually indicate a number of 
obvious objects. In what follows these are denoted 
primary objects, which should be implemented as 
classes. These classes should be easy to identify to 
facilitate the mapping from domain and requirements 
to code.  

Design - The design, including the use of design 
patterns, must be adapted to the actual project. The use 
of design patterns may make maintenance easier, 
because such patterns represent well-known solutions 
to commonly occurring problems in software 
development. However, the complexity of the system 
must justify the chosen solution, and the maintenance 
staff must be competent to implement a solution in 
accordance with the design principles. 

The comprehensibility and, hence, the utility of 
individual design patterns has been shown to depend 
on the competencies of developers [18]. Therefore, a 
good initial design may not become a good 
implementation if the developers are not sufficiently 
competent. In fact, a good, but complex design may 
cause more harm than a simple and easy to understand 
design, because complex designs are more vulnerable 
to bad implementation practices.  

Architecture - A clear separation of concerns 
between presentation, business and persistence layer is 
considered good practice. Each layer should remain 
de-coupled from the layers above it and depend only 
on more general components in the lower layers. 

Components - Classes should be organized 
according to functionality or according to the layer of 
the code on which they operate.  

Encapsulation - In Java there are three ways of 
ensuring encapsulation: 1) using public attributes, 

constants and methods, 2) using interfaces, and 3) 
using inner classes. Using public attributes, constants 
and methods is the simplest and most common way, 
but if not used consciously, public methods may 
require a specific sequence of method calls or may 
require an object structure to be established before a 
method is called.  Such dependencies may create 
maintenance problems. There are also some potential 
pitfalls with the use of interfaces; if an interface 
implements several classes, it has the same effect as 
multiple inheritances, which may lead to confusion and 
lower maintainability.  

In Java, inner classes may be used to hold internal 
structures that are not needed outside a specific class. 
Since Java methods return only one object, developers 
often create many small container classes where output 
from methods can be delivered. Using inner classes 
allows return values from methods to contain more 
than one variable. This reduces the use of these small 
classes and simplifies the design, making it more 
maintainable.  

An additional aspect of encapsulation is that texts 
that may have to be changed should be collected as 
static variables and referenced elsewhere.   

Inheritance - The impact of inheritance on 
maintainability depends on how it is used. Due to the 
small size of the systems, inheritance was not used 
extensively; there is typically only one level of 
inheritance. The maintainability in this case was 
assumed to depend on the distribution of functionality 
between the base class and subclasses. The base class 
should include enough “standard” functionality for 
example exception handling so that this must not be 
handled in each subclass. When this is satisfied, the 
class should be open to extensions, but closed to 
modifications. However, especially in the first iteration 
of a system, there is a balance between adding 
functionality to a base class or extending it, because it 
may not be obvious what generic functionality will be 
required by all or most subclasses. Furthermore, the 
use of inheritance increases the total number of classes, 
which may in itself decrease maintainability and 
should therefore be used with care.   

Libraries – In this case, the use of libraries was 
very much related to the use of inheritance. Class 
libraries may allow developers to be more efficient 
because they provide good basic operations. However, 
the use of libraries may mean a greater amount of 
code, which in itself is less maintainable. The use of 
proprietary libraries may mean lower maintainability, 
because new developers will need to familiarize 
themselves with them. Proprietary libraries may also 
be influenced by the coding style of the developers that 
created the library, something that may make the code  



Table 4. Expert Assessments 
 A B C D 
Choice of 
Classes 

Primary objects are 
implemented with 
classes that contain 
both data and logic.  

Primary objects are 
implemented as 
containers. There are also 
additional, unnecessary 
containers for these 
objects.  

Primary objects are 
mostly implemented as 
containers and most of the 
logic is separate from 
these. 

Primary objects are 
implemented as 
containers. Each has a 
corresponding class for 
communication with 
the database.   

Design A good design with 
good use of design 
patterns. 

A textbook example of a 
good design, but too 
comprehensive for this 
project. Unnecessary use 
of design patterns.  

A simple design centred 
around two classes. Other 
classes are either 
containers or very small.   
No use of design patterns.  

A comprehensive 
solution, with good use 
of design patterns.  
 

Architecture A three- layer 
architecture, but code is 
used across layers in 
some places.  

A three-layer architecture, 
but the business layer is 
not completely de-coupled 
from the presentation 
layer. 

No layered architecture, 
for example, just one 
large Java class for 
database management. 

A three-layer 
architecture, but the 
business layer mostly 
contains commands to 
the database layer.  

Components Good use of 
components in the 
database layer, but not 
so good in the business 
layer. Some 
components are trivial. 

Uses components, but not 
always successfully.  
 

No use of components. 
 

Mostly good use of 
components. Some of 
the components have 
very little content. 

Encapsulation Mostly good use of 
public methods, but too 
many methods are 
declared as public. 
Does not use interfaces 
or inner classes. 

Good use of public 
methods and uses 
interfaces. However, 
many classes implement 
several interfaces. Good 
use of inner classes. 

Does not use public 
methods very cons-
ciously. Many large 
classes means that most 
variables and methods are 
used in many places. 
Does not use interfaces or 
inner classes. 

Good use of public 
methods. Uses 
interfaces, but many of 
the interfaces do not 
have methods.  

Inheritance Mostly successful use 
of inheritance, but in 
some cases the base 
class does not contain 
all the functionality 
that is expected in a 
base class.  

Too extensive use of 
inheritance. Confusions 
regarding whether 
functionality should be in 
the base class or the sub 
class.  

No use of inheritance. Mostly successful use 
of inheritance, but in 
many cases the base 
class does not contain 
all the functionality 
that is expected in a 
base class.   

Simplicity Unused code. Many 
almost identical 
methods for checking 
user input.  

Many almost empty 
classes. 
 

Classes with several 
functionalities, repeti-
tions, inconsistencies in 
the use of SQL queries.     

Many small classes 
with very limited 
responsibilities, some 
repetition in the code.  

Naming  Some method names 
are very long.  

Class names are often 
single, generic words. 

Class names are mostly 
single, generic words. 

Class names are often 
user functions. 

Comments Mostly good, but some 
redundant comments 
due to removed code.  

Some classes lack overall 
comments. 

Few overall comments on 
the classes. Most methods 
have good comments. 
Some comments are 
trivial. 

Mostly good, but some 
comments are trivial 
and  some are missing.  

Libraries Uses only standard 
Java libraries. 

Uses a comprehensive 
proprietary library. 

Uses only standard Java 
libraries. 

Uses a proprietary 
library. 

Technical  
platform 

Standard tools Uses some non-standard 
components. 

Standard tools Uses some non-
standard components. 

 



difficult for other developers to understand. The 
growth of standard Java libraries has made proprietary 
code libraries less important. 

If a system has special needs that the library does 
not support, developers may have to alternate between 
services found in the library and making specialized 
code, something that may result in code that is more 
difficult to understand.  

Simplicity – The code should not include 
statements that are very similar to each other. The code 
smell “DuplicateCode” is, perhaps, the worst [9]. The 
presence of several classes that are almost empty is 
another sign of code that may possess low 
maintainability, because it takes longer to identify a 
specific class when there are many classes (there is 
also a code smell for this situation, “LazyClass”, a 
class that is not doing enough). Another factor related 
to simplicity is code that is commented out. This may 
be an asset because it can be included later; but it adds 
to size and complexity. System A had some unused 
code and Systems B and D had some small classes, but 
System C had long if-else statements for retrieving 
information and had statements that were almost 
identical.  

Naming - The use of standard naming conventions 
for packages, classes, methods and variables eases 
understanding. In addition, the developers should use 
names to create a consistent schema that allows the 
reader to understand the relationship between methods 
and classes. All the companies followed mostly 
standard Java naming conventions, the only exception 
being D’s use of class names.  

Comments – The amount of comments was 
measured automatically and their quality was assessed 
by the experts.  

Technical platform – An important part of systems 
maintenance is the ability to adapt to different 
environments, and many problems with systems 
maintenance are related to undocumented, implicit 
requirements that surface when a system is moved to a 
different environment. The use of a standard platform 
of tools simplifies this. A standard platform is, by 
definition, widely used; hence, it will be known by 
developers and will be supported by other companies.  
By contrast, the use of non-standard third party 
components poses a number of challenges related to 
using the components in further development. The 
developers have to put extra effort into understanding 
how to use the component. They will also have to 
understand how to replace the component in the future 
because such components may not be maintained or 
may become unavailable.  
 

According to the expert assessments, System A is 
likely to be the most maintainable system, at least as 
long as the extensions to the system are not too large. 
System D exhibited slightly more potential 
maintainability problems than did System A, especially 
as some of the code was unfinished due to ambitions 
that were not fulfilled. However, System D may be a 
good choice if the system is to be extended 
significantly. System C was considered difficult to 
maintain. It may be easy to perform small maintenance 
tasks on the system, but it is not realistic to think that it 
could be extended significantly. System B was too 
complex and comprehensive and is likely to be very 
difficult to maintain. The design solution would have 
been more appropriate for a larger system.  

The two experts agreed in their assessment of the 
individual factors for each of the systems. However, 
they disagreed slightly on the overall ranking of the 
systems. Expert 1 ranked the systems in the order A, 
D, C and B, while Expert 2 ranked Systems A and D 
together in first place and then System B before 
System C. The difference was probably due to the fact 
that Expert 1 considered size and simplicity as more 
important for maintainability, while Expert 2 
considered adherence to object-oriented principles as 
more important. 

 
6.2 Comparison of Assessments 
 

We see from Tables 2, 3 and 4 that the expert 
assessments and the assessments based on structural 
measures gave quite similar results when used to rank 
the systems.  

On the basis of structural measures, System D was 
ranked as the most maintainable and System C as the 
least maintainable system. Systems A and B had very 
similar measurement values, and in the aggregation-
first approach that considered mean and standard 
deviation of the values for the different CK-metrics, 
System B was ranked as more maintainable than 
System A because of lower (better) values on the 
coupling measures. In the combination-first approach, 
System A was ranked before System B because System 
B had a higher number of classes that, overall, had 
high or very high measurement values. These 
assessments were in agreement with the opinions of 
the teams themselves. 

The experts ranked the assumed maintainability of 
the systems slightly differently. They ranked System A 
as the most maintainable, with System D as a close 
second. They assessed both System B and System C as 
being potentially difficult to maintain, citing as reasons 
that System C did not follow basic object-oriented 
principles, while System B was too complex. 

 



Many of the factors that the experts considered 
important were also measured implicitly using the 
structural properties. In addition, good measurement 
values on the structural attributes may, in general, be 
an indication of well-qualified developers who have 
maintainability in mind. Therefore, systems with good 
measurement values are also likely to be good with 
respect to other design factors (although this was not 
seen to be the situation in this case, where relatively 
good structural measures for System B “hid” potential 
maintainability problems).  

The individual CK-metric in Table 2 that 
corresponds best with the expert assessment is the size 
measure WMC. 

The factors that the experts considered important 
for maintainability in this context for small to medium 
systems that were developed using Java but that were 
not captured by the structural measurements were as 
follows: 
• Choice of classes and names. 
• Unnecessary classes, for example in the form of 

too many interfaces per class. A high percentage 
of small classes may also be an indication of such 
a problem. 

• Division of classes into components. 
• The distribution of functionality between the base 

class and subclasses. A high percentage of small 
classes may be an indication of too little 
functionality in the base class. 

• Encapsulation and use of public methods.  
• A design that is appropriate for the complexity of 

the system. In general, bad measurement values 
may be a sign of a design that is either too simple 
or too complex for the system, although this was 
not the case in the study.  

• A good architecture where the presentation layer, 
business layer, and database layer are well 
separated. 

 
7. Scope of Results 
 

The scope of the results is Java systems. The 
structural properties were assessed using the CK-
metrics. It is possible that other metrics may be more 
suited to this type of system. For example, one factor 
that was considered important for maintainability, but 
not detected using the CK-metrics, is the appropriate 
use of public methods. The MOOD set of metrics 
contains a measure for the use of such methods[10]. 

A threat to the validity of the results is posed by the 
assessments made the experts. They were both very 
experienced and their assessments were in accord. 
However, the assessments were subjective and 

different experts may consider other factors to be 
important and/or may assess Java systems differently 
according to the same factors.  

The assessments based on the CK-metrics also 
relied on expert opinion to give an overall opinion on 
the maintainability of the systems and to rank the 
systems. There is no established way of combining the 
CK-metrics into one overall measure. Therefore, the 
results of these assessments may also be affected by 
subjective opinion. This represents a threat to the 
validity of the results, although probably to a much 
lesser extent than that posed by the expert assessments. 
 
8. Conclusion and Future Work 
 

It is important to be able to assess the 
maintainability of complete software systems, 
particularly for software clients. However, most 
research on the maintainability of software has focused 
on class-level measures and methods for identifying 
the least maintainable classes of individual software 
systems.  

Related research in the field of software estimation 
indicates that the maintainability of software systems 
can best be assessed using a combination of expert 
assessments and methods based on structural measures 
of the code.  

This paper has described the assessment of four 
functionally equivalent systems developed using Java. 
The systems were first assessed using structural 
measures and expert assessments. The results of the 
two assessments were mostly in agreement, but also 
point to some important factors related to 
maintainability that are not easily detected by 
structural measures. The results should therefore 
represent one (small) step in the direction of 
formulating a strategy for assessing the maintainability 
of complete software systems.  

The contributions of this study are twofold: 1) it 
provides insights into the factors that experienced Java 
developers consider to be important for 
maintainability, and 2) it describes and exemplifies 
strengths and weaknesses of maintainability 
assessments that are based on structural measures and 
expert assessments.  

The lessons learned from this study, from the point 
of view of software practitioners and software clients 
in particular, are that structural measures may be useful 
in assessing maintainability of software systems, but 
such measures should be used with care and should be 
combined with assessments of the factors described in 
Section 6.1.  

 



 

Future work is planned to study agreement among 
experts when assessing maintainability of Java code, 
and also to expand the set of structural measures used 
in the assessment of the systems. Furthermore, the 
consequences for actual maintainability of the different 
designs used in these four systems will be investigated. 
More work is also needed on how to best combine 
expert-based and method-based assessments of 
maintainability. 
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