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Abstract 

The ambiguity inherent in UML coupled with its support of multiple viewpoint modeling 

pose a great risk of inconsistency. Many classifications of UML inconsistencies exist in 

the literature today. Several proposals are also made for the mitigation of that risk. The 

essence of these proposals is to clear the existing ambiguity and to seek the formalization 

of UML. Unfortunately most of these proposals are not implemented in today’s UML 

CASE tools. For these tools to fulfill their promises of supporting automation and hiding 

complexity, they need to employ a consistency management framework with certain 

characteristics. This paper surveys the state of the art in UML consistency management 

and proposes a research agenda for the implementation of a successful consistency 

management framework. 
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1 Introduction 

The Unified Modeling Language (UML) has become the de-facto notation for software 

design and modeling. The main strength of UML lies in its ability to express many facets 

of design, ranging from structural (ex: class diagram) to behavioral (ex: interaction and 

state machine diagrams), using a single integrated formalism. Like any other language, 

UML comes with a set of syntactic and semantic rules that derives the understanding and 

interpretation of models written in this language. Some of the rules that are deemed 

necessary are formally expressed in the specification [1, 2] to assert the well- formedness 

of models. Others, mainly semantic rules, are informally defined in the prose of the 

specification to give more flexibility and expressive power to designs at different levels 

of abstraction, by different modeling methodologies or for different application domains 

 

Unfortunately, the power of such a generic multi-view formalism comes along with an 

unavoidable risk, namely inconsistency. The notion of consistency has been investigated 

in different domains and at various levels in the literature. The Webster’s dictionary 

definition of inconsistency is: “the relation between propositions that cannot be true at the 

same time, or the lack of harmonious uniformity among parts”. To put this definition into 

perspective, there has to be an understanding of what has to be consistent in the context 

of UML. Another point is the level of consistency that has to be enforced during every 

development cycle before breaching the practical limits or restraining the creative 

process. Additionally, there has to be an evaluation of the different mechanisms for 
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detecting, preserving and restoring consistency. Finally, a general framework for 

analyzing consistency and how it integrates with today’s UML modeling tools has to be 

studied. 

 

Talking about consistency begs a very important question: why do we need to check 

consistency in UML models? The first motivation for model consistency is correctness. 

Usually, consistency problems reveal design problems or misuse of UML. When those 

problems are discovered early in the design process, it is easier and more cost effective to 

fix than if they were discovered at a later stage. The second motivation is 

implementability, which usually involves translating a UML model into a programming 

language, a usually precise and unambiguous notation. These two motivations come into 

play during a typical iterative development process, where a model is built incrementally 

starting with requirements and ending into code. The process usually involves several 

viewpoints and a number of contributors with different skills. Without consistency 

analysis, it would be hard to evolve the model and ensure that the collaborative effort is 

coherent. 

 

The notion of consistency, or lack of, has its roots in formal methods [3, 4]. To assert that 

something is consistent, you have to declare what it is consistent with. Like any other 

language, UML has its own unique syntax and semantics. The syntactic correctness or 

well- formedness of a UML model is usually a prerequisite to any further consistency 

analysis. Syntax is what makes the model readable and hence verifiable. For example, a 

classifier having a unique fully qualified name within a model is a syntactic requirement. 
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Failing to maintain the well- formedness of a model often leads to ambiguity. Another 

source for ambiguity is the existence of incomplete semantics. While UML itself is not a 

formal language, often enough UML models need to be translated to a more formal 

notation, typically source code. Usually a UML model goes through a series of 

refinement transformations before finally getting translated into code, an inherently 

formal language. While syntax helps readability, semantics is what gives meaning to 

language constructs. For example, a classifier at the source of a generalization 

relationship with another classifier inherits all the target classifier’s structure and 

behavior. However, some semantics of UML are unspecified, like how to inherit 

attributes with the same name in the case of multiple- inheritance, which opens the door 

for multiple interpretations [10]. While consistency at the semantic level is generally a 

desired property to ensure the integrity of a UML model, it is mostly needed when 

transforming a model into a formal notation [44]. 

 

The model syntactic and semantic correctness represents the basic level of UML 

consistency. They can be further augmented by the application of UML profiles, a 

standard extension mechanism for UML. Profiles inc lude families of stereotypes that 

enrich the semantics of UML for a given domain. For example, the UML real-time 

profile [45] contains the stereotype “capsule”. Applying that stereotype to a class means 

that the class is active, i.e. it has its own thread of control. It also means that the class can 

communicate with other capsules exclusively through its public ports, a set of properties 

realizing certain protocol roles.  One way to assert consistency here is to check that the 
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messages exchanged between capsules via their ports in structure diagrams belong to the 

same protocols realized by the ports 

 

In fact, UML consistency analysis goes beyond checking the language’s own syntax and 

semantics. It is usually customized to encompass other related domains like the used 

modeling methodology, the targeted programming language, the modeled system…etc. 

[16]. Most languages, including UML, have sets of common expressions and best 

practices that guide the usage of the language through various development cycles. These 

concepts are usually artifacts of modeling methodologies that strive to put order into the 

complex domain of modeling. These methodologies usually impose more restrictions to 

constrain the use of the language and to reduce the inherent ambiguity. Other domains 

targeted by a UML model could be its modeling domain, application domain and 

implementation domain. Since UML is a universal modeling language, not all legal 

expressions of UML make sense for all these domains. For example, the notion of 

multiple- inheritance of classes is not feasible in the Java programming language, and 

therefore the use of this notion should be restricted in UML models that are to be 

translated into Java code. Another example is the restrictions imposed by some design 

patterns like the model-view-controller (MVC) pattern [35]. In that pattern, model classes 

should not depend explicitly or implicitly on controller classes. It is therefore imperative 

to further constrain the use of UML for these domains to help modelers stay on track. 

 

More UML consistency classifications are offered in the literature. According to one 

classification [3, 4, 17], consistency is either intra-model (also called horizontal), which 
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is a property of a model asserting its syntactic and semantic conformance, or inter-model 

which is between different models related together by one or more transformation 

relationships. In general, most of the work in this area tends to focus on ensuring that 

these transformations are consistency-preserving [20]. Another consistency classification 

distinguished between static and dynamic constraints [10]. A static constraint is one that 

can be verified statically without running the model, while a dynamic constraint cannot 

be verified until runtime. More classifications are discussed in section 2. 

 

Defining inconsistency is one task; detecting it is another. The keyword to look for in this 

area is formalization [3, 4]. The research in UML consistency assertion or inconsistency 

detection falls within three main categories. The first category tries to complete the UML 

meta-model to allow for easier accessibility from a model element to all its associated 

elements. As mentioned earlier, a lot of the semantics of UML is either missing or only 

informally expressed in the prose of the specification. The second category tries to 

enhance the language used for expressing constraints on the meta-model. The Object 

Constraint Language (OCL) is the native language for expressing constraints in UML. 

Research in this category either suggests enhanc ing the expressive power of OCL to 

allow for better expression of constraints, or suggest new languages or notations for 

constraints all together. The third and widest category of proposed solutions [4] accepts 

that UML is inherently ambiguous, probably for good reasons, and proposes that 

consistency analysis be only performed on UML models after translating them into a 

more formal notation that na turally supports this kind of analysis. Obviously, the process 

of translating a UML model into a formal notation involves first clearing the ambiguity 
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by agreeing on the interpretation of the UML expressions according to some semantic 

domain. What is most important about this approach though is the availability of tools 

that perform consistency analysis on models expressed in these more formal notations. 

 

Unfortunately, most of today’s UML modeling tools do not incorporate good consistency 

management frameworks (CMF). Building a good CMF is not a trivial task [44]. The 

framework has to be flexible, to allow for different configurations, and extensible, to 

allow for new constraints to be added. It should also support a batch checking mode in 

addition to an incremental on-demand mode. The framework has to be user- friendly in its 

presentation and allow for easy expression of constraints. Most importantly, the 

framework has to be efficient, which means among other things scalable to the size of the 

model, fast in completing the analysis, and accurate in reporting results. It is also 

desirable if the framework can offer consistency correction actions and design assist tips. 

 

This report surveys the state-of-the-art in the area of UML consistency management. 

Section 2 tries to answer the questions: what is meant by consistency? And what has to be 

consistent in UML? Section 3 examines the different propositions in the literature to 

detect and resolve inconsistencies in UML. Section 4 outlines the desired characteristics 

of a perfect UML consistency management framework. The last section concludes and 

gives future directions.  
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2 UML Consistency Classification 

UML is an amalgamation of several historic modeling languages and methods (Booch, 

OMT, OOSE…etc) [1]. The main objective of UML is to unify the semantics and 

notation for object-oriented modeling. However, the language has been kept intentionally 

informal to allow for different interpretations based on the target domains. UML also 

allows for the modeling of different intersecting viewpoints ranging from structural to 

behavioral. This inherently ambiguous and multi- faceted nature of UML contributes to its 

popularity and strength. Unfortunately, it also introduces a significant risk: that of 

inconsistency. Many proposals  in the literature give different classifications of 

inconsistencies in UML. In this section, all the main classifications will be outlined. The 

following table summarizes these different classifications: 

Classification Features 

Syntactic vs. Semantic Consistency rules that can be expressed by a formal 
language are syntactic, otherwise they are semantic 

Static vs. Dynamic Consistency rules that can be verified without executing 
a model are static, otherwise they are dynamic 

Intra-Model vs. Inter-Model Consistency rules within the same model are intra-
model. Those that span models are inter-model 

Multi-Level 
Consistency rules are grouped according to the semantic 
domain they target  (specifications, profiles, modeling 
processes, modeled domain …etc) 

Nature of Error Consistency rules are grouped based on the nature of the 
error (contradiction, incompleteness, ambiguity…etc) 

Table 1: UML Consistency Classifications 

2.1 Syntactic vs. Semantic Consistency 

The published work in UML consistency tends to go in different directions depending on 

the used definition of consistency. However, all of them agree that consistency generally 
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entails lack of contradiction and conformance to expectations. The language 

specifications [1] introduce two initial levels of consistency, the meta-model and the 

well- formedness rules. The meta-model is a schema that precisely defines the constructs 

and rules needed for creating models. For example, an association can have two or more 

association ends. Figure 1 depicts a subset (the class diagram) of the UML meta-model. 

 

A model is inconsistent if it does not conform to the meta-model. However, it may not be 

consistent even if it conforms to the meta-model. This is mainly due to the limited 

expressiveness of the UML meta- language, a formalism used to define the UML meta-

model. In an effort to complement the meta- language, the OMG proposed OCL [2], a 

higher order logic language for denoting well- formedness constraints in UML. OCL, a 

pure expression language, has constructs to inspect and navigate objects and their 

structure and return a true or false value but it does not change the model. Well-

formedness, as expressed by OCL constraints, is usually a prerequisite to any further 

consistency analysis in UML. The following are some examples of well- formedness rules 

as expressed in OCL [1]: 

• An element may not directly or indirectly own itself: 

not self.allOwnedElements()->includes(self) 

• Elements that must be owned must have an owner 

self.mustBeOwned() implies owner->notEmpty() 
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Figure 1 The class diagram subset of the UML meta-model [1] 

Unlike formal languages, some of the UML semantics is ambiguously defined which 

opens the door for different interpretations. For example, there is no agreement on the 

proper way to inherit attributes with the same name in multiple- inheritance. Another 

example is the lack of specification of the strategy for dequeuing events processed by a 

state machine [10]. According to [18], ambiguity is a double edged sword. On one hand, 

it gives the modeler the flexibility to express the design at a higher level of abstraction 

without prematurely committing to details. On the other hand, it complicates consistency 

analysis, which usually requires the semantics to be completely and precisely specified. 

This begs the question: can UML be formalized? Several attempts have been made to 

formalize UML, most notably by the precise UML group [29]. The general approach is to 
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draw limits on the legitimate interpretations of the UML semantics. Once the semantics 

are formalized, further consistency analysis can proceed by tailoring rules to the selected 

interpretations. 

2.2 Static vs. Dynamic Consistency 

Most languages distinguish between their static and dynamic semantics. In [10], the 

authors explain that UML is no exception to that. The static semantics, or the syntax, of 

UML is formally described in terms of its meta-model and OCL constraints, in addition 

to some descriptions in natural language like “a Constraint attached to a stereotype must 

not conflict with Constraints on any inherited Stereotype, or associated with the 

baseClass” [16]. While syntax can usually be checked by a static inspection of a model,  

dynamic semantics cannot be completely verified until runtime. For example, it may not 

be possible to statically check that a precondition to an operation is satisfied before the 

operation is called in an interaction diagram. The problem here is that UML is not an 

executable language, and therefore the dynamic constraints have to be embedded into an 

executable formalism (like code) that is translatable from UML. 

2.3 Intra-Model vs. Inter-Model Consistency 

One recurring classification of UML consistency in the literature [3, 4, 17] distinguishes 

between intra-model and inter-model consistency or between horizontal and vertical 

consistency. Intra-model or horizontal consistency is a property of a model. It indicates 

that all the elements of a model are syntactically and semantically correct. As mentioned 

earlier, UML offers multiple viewpoints for modeling the same system. They range from 
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structural (ex: class and instance diagrams) to behavioral (ex: interaction and state 

machine diagrams). These viewpoints or perspectives are usually inter-dependent. For 

example, a synchronous message in a sequence diagram has to match an operation in a 

class diagram. This intersection of viewpoints leads to a very interesting class of 

inconsistencies that is not formalized as part of the specifications. Numerous research 

attempts [5, 6, 7, 27, 28] have tried to formally define constraints to check for these 

inconsistencies. While some of these constraints are obvious, others are mainly heuristic 

in nature. The following is a sample list of constraints between the class and the object 

diagrams [27]: 

• The number of values for an attribute of a given object violates the multiplicity 
lower bound for that attribute as defined by the object’s classifier. 
self.value->size() >= self.definingFeature.lowerBound() 
 

• The attribute’s value in an object does not conform to the corresponding attribute 
type as defined by the object’s classifier. 
if self.definingFeature.type ->isEmpty() 
then true 
else 
   self.value->forAll( v:ValueSpecification |  
   v.type.conformsTo(self.definingFeature.type)) 
   endif 

 endif 
 

• The object is not classified (heuristic since it is allowed by the specifications) 
self.classifier.size() > 0 

On the other hand, inter-model consistency is a relationship between models [10]. These 

models are usually related to each other by some sort of a transformation relationship. A 

transformation describes the application of some procedures to one model to create a new 

model [20]. The new model can be another representation of the same information in the 

old model, or a modified version of the original model. In fact, the relationship between 

transformation and consistency has been elaborated further by the researchers at the 
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University of Paderborn [20]. They characterized a transformation as consistent if a 

model before the transformation is consistent with the new model after the 

transformation.  

 

Refinement is a transformation that takes a model from an abstract level to a more 

concrete or detailed level. A typical development process, like the Rational Unified 

Process (RUP) [30], is a sequence of refinement transformations on models. One 

essential characteristic of this kind of transformation is consistency preservation. Such 

consistency is also called a vertical consistency since it is between models at different 

levels of abstraction. The authors of [9, 11] presented several heuristics in the context of 

class and collaboration diagrams refinement that can be used to check and preserve 

consistency. Figure 2 shows an example of such heuristics, where a generalization 

between class A and B in the old model is refined into two generalizations in the new 

model by introducing class C in between A and B. Such a refinement transformation left 

the old and the new models consistent between each other since A is still specializing B 

in both models. 

 

Figure 2 Refinement heuristics for generalizations (left) and associations (right) [9] 
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Other vertical transformations can occur from requirements to analysis models and from 

analysis to design models. Berenbach [31] outlined sets of heuristics for creating 

verifiable analysis and design models. Keeping models consistent with these heuristics is 

claimed to be a prerequisite to the smooth application of the intended transformations. 

The first set of heuristics deal with model organization, which is a key requirement to the 

automated verification and readability of a model. On the analysis side, some heuristics 

are proposed for the organization and definition of use cases, their relationships and the 

modeling of the domain’s business objects. On the design side, other heuristics are 

defined to facilitate the tracing from analysis to design and vice-versa.  

Unfortunately, not all of these heuristic can be automated since some of them require 

human cognition to implement or check. The following is a list of example heuristics: 

• Package dependenc ies should be based on content (model organization): a 

dependency between two packages should exist if and only if there is a 

dependency between artifacts belonging to these packages. 

• A concrete use case cannot include an abstract use case (use case relationships): 

this situation leads to ambiguity since the concrete use case cannot be defined. 

• A concrete class must be instantiated in some interaction diagram (business object 

modeling): otherwise, the class is redundant and increases maintenance cost. 

• Every class in the design model should trace back to a use case in the analysis 

model (design modeling): it is important for impact analysis to understand what 

feature or detailed requirement resulted in the need for the design class. 
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2.4 Multi-Level Consistency 

Another classification of consistency is given by Sourrouille and Caplat in [16]. They 

suggest that consistency can be managed in five different levels. The first level, called the 

paradigmatic level, is based on the syntax and semantics of the UML language itself. The 

second level comes from the extensions to the UML meta-model through profiles along 

with their stereotypes and OCL constraints. For example, a stereotype <<enumeration>> 

is used to indicate that a given class represents an enumerated type. Therefore, an 

accompanying OCL constraint could assert that a class with that stereotype does not have 

any methods; its attributes have ‘public’ visibilities and no initial values. Extending the 

meta-model by the use of stereotypes is a commonly used practice in many domains, like 

in [34]. 

 

A third level of consistency is based on a modeling process. The UML specifications 

describe the language syntax and semantic but do not prescribe a process to construct 

different UML diagrams. Modeling processes fill this gap by limiting the scope of 

allowed expressions in UML and providing style guides to help choose appropriate 

representations. Constraints could be defined for every modeling process to help keep a 

model consistent with that process. A modeling process could be generic like RUP [30], 

or specific to a certain group, project, corporation or community. For example, in one 

project there could be a constraint preventing the use of nested classes. Other constraints 

on the same level come from best practices or industry standards. For example, there 

could be a constraint checking that all classes declare their constructors private and 

provide static creation operations (factory pattern) [35]. 
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A fourth level of consistency is related to the specific targeted platform or 

implementation language. No all expressions in UML have equivalents in the targeted 

platform or programming language. Therefore, constraints are usually specified to limit 

the use of expressions in UML to only those that can be translated to these domains. 

These constraints are usually needed during the process of code generation. A prominent 

example here is the Eclipse Modeling Framework (EMF) [33]. The framework allows for 

java code generation of models expressed in UML class diagrams. One feature of EMF is 

to allow for the definition of new data types whose semantics are externally expressed by 

java code by assigning to classes the pre-defined stereotype <<datatype>>. However, 

since there is no way for EMF to capture the structure and behavior of such classes, it 

introduces a constraint that makes sure such those classes cannot be further sub-classed. 

 

The last level of consistency in the same classification deals with the target domain. A 

target domain is the real world domain that is being modeled. As the authors indicate, 

constraints in this level are usually dynamic in nature and expressed in terms of the 

specific modeled domain rather than the generic UML modeling domain.  For example, 

in figure 3, the size attribute of the stack class is constrained to be more than or equal to 

zero. 
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Figure 3 Constraint attached to an attribute [1] 

2.5 Nature of Consistency Error 

Another way to classify inconsistencies in UML is according to the nature of the error.  

One kind of inconsistency is a contradiction, where two or more modeling expressions 

contradict each other. For example, if two instances of different classifiers are 

communicating, while the two classifiers are not related to each other, then it is a 

contradiction. This particular kind of inconsistency is common due to the inherent 

redundancy in UML [23]. The usage of multiple views to define the same system always 

brings with it the risk of contradiction between these views. 

 

Another kind of inconsistency is incompleteness, which arises when some information is 

missing from a model [8, 16]. A model is complete when all overlapping diagrams have 

corresponding elements. However, the specification of these corresponding elements is 

heuristic and dependent on the followed modeling methodology. For example, a 

classifier, defined in a class diagram, which does not have an instance specified in a 

sequence diagram, could be considered a case of incompleteness. Also, a sufficiently 

complex class, based for example on the frequency of participation of its instances in 

different interactions, cannot be complete without having a corresponding state machine. 

Incompleteness could also be inter-model. For example, use cases, defined in an analysis 
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model, which do not have corresponding interaction diagrams  describing them in a 

design model should be considered a case of incompleteness. There are other cases that 

exist when the relationship between the models is a refinement transformation. Elements 

in the original model that do not appear in a refined model are called leaves, while in the 

opposite situation they are called orphans. 

3 UML Consistency Detection and Resolution 

Most of the UML inconsistencies reviewed in the previous section can be detected if 

corresponding constraints are available in the model. It is well known that errors that 

occur early in the development cycle are the most expensive to correct if they remain 

undetected. Unfortunately, the majority of today’s UML modeling tools do not have 

satisfactory consistency management features. However, the topic has attracted more 

attention from the research community. Several approaches are being investigated and 

prototyped to determine their applicability for integration in UML modeling tools.  

 

If there is one thing that the different proposals dealing with UML consistency in the 

literature agree on, it is the need to reduce the ambiguity inherent in UML before 

attempting to analyze a model for consistency. The approaches that deal with UML 

consistency analysis fall in three main categories. The first category strives to remove the 

ambiguity by formalizing the meta-model. The idea here is to propose changes to the 

UML meta-model, or extensions to it, that allow for easier detection of inconsistencies. 

The second category attempts to remove the ambiguity by having better constraints. 

Some propose extensions to OCL, claiming that the available OCL primitives are not 
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sufficient enough to express all kinds of constraints. Others suggest using other constraint 

description languages like graphical consistency conditions (GCC) [15]. The last 

category, which is also the most common, proposes the translation of UML models to 

some formal notation that usually has an inherent consistency management process and a 

strong tool support. 

 

It is important to note that most of the work in this area is presented in the form of 

proposed frameworks for consistency management. There is virtually no attempt to 

quantify these frameworks or obtain metrics for their performance or effectiveness. The 

literature also lacks serious experimental comparisons of the different proposals. Except 

in few cases, there are little details about the strategies used for integrating these 

frameworks in existing commercial tools or about their scalability for real industrial 

models. The following table outlines the different categories of proposals in this area and 

summarizes their advantages and disadvantages: 

 

Approach Advantages Disadvantages 

Meta-Modeling Natural extension to the 
language 

Strict commitment to the chosen 
semantics 

Constraint Language 
Enhanced meta- language 
allowing for better constraints 

Non-trivial implementation and 
usually needs  access to some 
unavailable meta-model data 

Formal Notations 
Ease of check consistency and 
availability of consistency 
management frameworks 

Could be inefficient (not 
scalable) to implement and 
difficult to integrate with tools 

Table 2: Approached for Dealing with UML Inconsistency 
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3.1 Meta-Modeling Approaches 

The meta-modeling approaches strive to define a fully formal semantics for the UML 

meta-model. The idea here is that a more formal UML would be easier to check for 

consistency. According to one inconsistency classification given in section 2.2, any 

constraint that can be formalized is considered to be syntactic. Only those that cannot be 

formalized are considered to be semantic like for example “a Constraint attached to a 

stereotype must not conflict with Constraints on any inherited Stereotype, or associated 

with the baseClass” [16]. Therefore, it makes sense to increase the expressive power of 

the meta-language of UML, in order to reduce the number of semantic constraints that are 

not formally defined [10]. OMG [1] has defined the syntax of the UML language using 

the meta-model and the OCL well- formedness rules. However, a lot of the semant ics is 

still described in English prose. One outstanding contribution to this category of 

approaches is by the precise UML (pUML) group [29]. This group aims at identifying 

areas of ambiguity in UML and defining precise semantics for it. The objective is to 

ensure that every element in UML is complete, where completeness is defined by having 

a precise syntax, being well- formed and having a precise denotation in terms of some 

fundamental aspect of the UML core semantic model. Once an element is complete, the  

group seeks to capture that by making conservative changes to the meta-model and/or 

adding more OCL constraints. 

 

Having a complete and fully formal meta-model makes every model element have all its 

associated elements navigable from it [10]. This facilitates the writing of conditions in 

OCL [2] or any other constraint language that is dependent on the existence of clear 
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relationships between associated elements. Another prominent work in the same category 

is by the OMEGA group [36]. This group aims to select a sufficiently expressive subset 

of UML, the OMEGA-subset, that is suitable for real-time embedded applications and 

specify formal semantics for it. This leads to the so-called Omega Kernel model. Based 

on that kernel, a development methodology is defined that suggests how to develop 

embedded systems with formal techniques. The goal of the formalization here is to allow 

for automated model-checking, synthesis and use of theorem proving techniques. 

 

Another group [9] suggests the extension of the UML meta-model to better support 

model checking for software refinement. They focus on consistency checks between 

models at different levels of abstraction, which are not covered in the UML standard 

specification. They identified some consistency preserving refinement rules and captured 

those using UML stereotypes along with associated OCL constraints. Stereotypes and 

their grouping in profiles are a light weight mechanism for extending the UML meta-

model to better handle consistency. 

3.2 Constraint Language Approaches 

While the purpose of the first category of approaches to consistency in UML is to 

enhance the meta-model to make it as precise as possible, the second category’s main 

goal is to increase the expressiveness of constraint definition languages in order to 

formalize more semantic constraints. Some proposals within this category go about doing 

this by suggesting enhancements to the OCL. Constraints, like “the data value of a tagged 

value must conform to the data type specified by the ‘tag type’ attribute of the tag 
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definition”, cannot be expressed in OCL since it does have a function to convert a data 

string to a meta-type [10]. Another limitation of OCL is its inability to express 

consistency restoration rules or actions, which could be useful to implement automatic 

resolution of inconsistencies. Finally, a claim against the current syntax of OCL is that it 

hard to use especially for novice users without a modeling experience [10], although 

there is no substantiated consensus on that. It is also important to realize that OCL is also 

used at the model level, to describe semantic model constraints, as well as its classical 

use to constrain the UML meta-model. 

 

One extension to OCL is proposed by the researchers in [37] and used in [5]. They 

suggest enhancing OCL to include action clauses in the format: if <condition> to 

<targetSet> send <eventSet>. These actions could be specified for operations; and in that 

case will be executed at post condition time. They can also be specified for classifiers as 

part of their invariants. The problem with that extension is that it forces the modeler to 

commit prematurely to implementation details. An example of the use of action clauses is 

the following, which describes a credit card expiry situation: 

context: CreditCard 
inv: validFrom.isBefore(goodThru) 
action: if goodThru.isAfter(Date.now) to self send invalidate() 
 
context: CreditCard::invalidate() 
pre : none 
post: valid = false 
action: if customer.special  to customer send politeInvalidLetter() 
action: if not customer.special  to customer send invalidLetter() 
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Two more extensions to OCL are proposed in [21]. Since navigation over the models and 

meta-models is often recursive, the authors suggest adding a transitive closure operator to 

OCL to facilitate this computation. The operator would have the following syntax: 

“Given a collection e of type T and an OCL expression f(x) returning a set of elements of 
type T, the expression e->closure(x : T | f(x) ) returns the set of elements of e by the 
transitive closure of the function f” 
 

The second extension is to enhance OCL with temporal logic operators to increase the 

expressive power of the language. The authors acknowledge that temporal constraints 

could alternatively be expressed in sequence and state chart diagrams at the meta-model 

level, but according to them this requires knowledge of the UML meta-model, which is 

not always available to application designers. The proposed extension is based on 

Computational Tree Logic (CTL), a formalism which assumes that time has a tree- like 

structure and that a system can evolve towards one of possible directions. A CTL 

expression is a Boolean expression and therefore could be implemented in OCL by 

extending the propertyCall non-terminal like this: 

propertyCall ::= … 
 “Possibly” ? “Finally” block-expression 
 “Possibly” ? “Globally” block-expression 
 “Possibly” ? block-expression “until” block-expression 
 

However, the implementation of these operators is context specific and requires in most 

cases access to more meta- level information about elements. For example, the 

implementation of the operator “Globally(expression)” on a sequence diagram message 

should return true if the expression  is satisfied by every future message, which requires 

access to the collection of messages of a given interaction. 
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One example of proposals suggesting alternatives to OCL is the one given in [15, 20], 

where consistency constraints are expressed as graphical consistency conditions (GCC). 

A GCC is a typed and attributed graphical specification that specifies a negative 

application condition (NAC): a pattern that must not occur for the condition to be 

satisfied. Every GCC has a name and a context element. In most cases, a GCC specifies 

relations between model elements. Each relation has range and domain objects and could 

be characterized as one or more of the following (see Figure 4): 

• Total: all objects of the domain must participate in such a relationship 
• Onto: all objects of the range must participate in such a relationship 
• Functional: An object in the domain must participate only once in such a 

relationship 
• Inverse functional: An object in the range must participate only once in such a 

relationship 
 

 

Figure 4 Basic characteristics of relationships  as expressed by a GCC 
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According to the authors, a GCC is more intuitive in describing structural constraints than 

an OCL expression due to its graph- like notation, which resembles the meta-model. 

However, non-structural constraints (like evaluation of properties) are still better 

expressed in OCL, so the authors recommend a combination of both. What is interesting 

about a GCC is that it can be used as a left hand-side of a graphical transformation rule to 

establish consistency. The right hand-side in this case would be another graph describing 

the improved consistent post-state. Three possible actions can be described in the right 

hand-side: 

• Delete an element that violates the consistency 
• Insert a “dummy” element, to be detailed later by a user through a tool, to 

reestablish consistency. 
• Ask for user manual intervention in the decision 

 

3.3 Formal Notation Approaches 

The third category of approaches to UML consistency checking is generally based on the 

assumption that ambiguity is built- in to UML and instead of trying to formalize the meta-

model or the meta- language, it is better to represent a UML model in or translate it to an 

already formal language. The main advantage of this approach is that it leverages the 

capabilities of a well-defined and mature formal language and its tools for the purpose of 

consistency analysis. There are two general approaches within this category. The first 

approach tries to keep the model’s original representation, in terms of the UML meta-

model, intact but also have another parallel representation in the formal language. The 

obvious question mark around these approaches is one about efficiency. What are the 

costs of keeping two synchronized copies of the model in terms of memory, speed and 



Carleton Technical Report SCE-04-18 

 

30 

complexity? The other approach ignores the meta-model representation of the model and 

only keeps one copy in the formal language. The problem here is the cost and complexity 

of integration with legacy and existing tools that already represent the model in terms of 

the meta-model like Rational Rose. Obviously, the greater the difference in the syntax of 

the two formalisms the more costly the integration becomes. 

 

The process of translating from an ambiguous to a formal notation involves making some 

decisions to clear the ambiguity. These choices freeze the semantics of the ambiguous 

language. Since there is some ambiguity that needs to be clarified in the UML meta-

model, the translation process has the risk of being unsuitable for some semantic 

domains. Therefore, it is recommended to have a mechanism to customize the translation 

process to suit a given semantic domain. Another challenge facing approaches in this 

category is that of traceability.  A reported inconsistency would be detected in the formal 

notation and it would be hard to translate it back to the original language [18]. 

3.3.1 Viewpoint Unification 

One proposal in this category is to perform viewpoint unification. This means translating 

one view of UML to another. The authors in [40] describe a technique to translate a 

sequence diagram to a collaboration diagram. They also encode a sequence diagram as a 

state chart. However, according to [18] this approach cannot apply to all aspects of UML 

since there is no single notation within UML that can represent all points of view (this 

also goes against UML having several notations to start with). This approach is only 

limited to certain diagram type pairs. 
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A more generic approach would be to find common refinements of different UML 

viewpoints in a given semantic domain like the Communicating Sequential Processes 

(CSP) [18]. For example, the authors of [19] defined a mapping from a UML class and its 

state machine to two separate CSP processes. Then they defined consistency to be 

deadlock freedom of the parallel composition of these two processes. Deadlock freedom 

here means that the restrictions imposed on a class by its static properties (as defined by 

the class) and dynamic properties (as defined by the state machine) are not contradictory. 

However, it was shown in [19] that this approach will only detect contradictions but not 

other kinds of inconsistencies like incompleteness or extraneous information. Another 

attempt was done in [41] to map two different UML view using various refinement 

relationships in CSP (like trace and failures-divergences). Each refinement relationship is 

good at finding some kinds of inconsistencies. Two views are declared consistent if one 

of them is a refinement of the other. That could be verified if both of them are CSP 

refinements when mapped to the common semantic domain. 

 

A labeled transition system (LTS) is another formal framework that is proposed for 

transforming UML viewpoints and their consistency constraints. In [26], the authors view 

each model as an LTS, which is a set of states and labeled transitions between them. 

Every viewpoint of the model (like interaction or state machine views) is mapped to a 

finite state LTS (which is a subset of the model LTS) and a mode, which could have one 

of two values: must or never. Each model viewpoint defines consistency constraints as 

assertions over states or traces of the system. For example, traces not specified by a state 
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machine should never happen, where traces specified by a sequence diagram must 

happen. Two viewpoints are said to be consistent when their modes are equal or when 

their modes are different but, if restricted to their common objects, they do not intersect. 

This approach is more suited to checking the consistency of pure control aspects of 

behavior but not the data state of the system. 

3.3.2 Logical Algebra 

Moreover, there are other proposals for transforming UML views to different semantic 

domains. One of these proposals suggests using a logical algebraic formalism as a 

semantic domain [13]. Here, the authors define a mapping from UML to different notions 

in logical algebra like: Item, Signature, FormalModel, Formula and BasicModel. Then, a 

model is declared syntactically consistent if its signature is well- formed and all of its 

formulae are well- formed over this signature. Horizontal semantic consistency is 

established when the semantics of a model, a set of UML-formal systems, is not empty. 

In this case, a possible inconsistency is detected when one formula is unsatisfiable or 

when two formulae are mutually contradictory. A similar proposal along the same lines is 

given in [39] where the authors translate UML diagrams into algebraic specifications and 

VHDL. However, they did not specify how to check model consistency after the 

translation to the formal notation. 

3.3.3 N-order Logic 

Another formalism that is commonly proposed as a semantic domain is logic [14, 43]. 

Usually in these proposals, the meta-model is formulated in terms of n-order logic 

statements. The consistency constraints are also encoded as statements in the same 
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formalism. These statements usually contain predicates involving the UML elements that 

need to be consistent. Finally, a model, including its various viewpoints, is formulated as 

a knowledge base describing the various elements and their inter-relationships, expressed 

also in the same logic system.  The interesting part is that most logic systems have 

inference mechanisms which allow for reasoning about the consistency of knowledge 

bases specified in these formalisms. The reasoning is usually done by giving the 

reasoning engine a predicate to verify its truth-ness. The predicate here is usually: “the 

model is consistent”. In most cases, the engine applies a backward chaining algorithm on 

the knowledge base using the rules and finally come up with an answer. However, 

consistency analysis is only one possible reasoning here and some proposals go beyond 

that by leveraging the inference mechanisms to evaluate other types of predicates. For 

example, a predicate like “class1 is dependent on class2” can be checked. 

 

An example of proposals using logic is the one in [14]. In that proposal, the authors use 

description logic (DL), a two-variable fragment of first-order predicate logic. DL allows 

representing knowledge by defining atomic concepts (unary predicates), atomic roles 

(binary predicates) and individuals (constants). One feature of DL is its ability to reason 

about subconcept-superconcept relationships. Another feature is the use of an open-world 

semantics, which allows the specification of incomplete knowledge. The authors 

translated a subset of UML (class, sequence and state diagrams) into a DL system. UML 

meta-classes are translated into concepts. Meta-associations are translated into roles 

between these concepts. The OCL well- formedness rules are translated into logic rules. 

Finally, the model elements that exist in a user model are translated into instances of 
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these concepts and roles. For example, “class1” is represented as an instance of the 

concept “Class”. Then, the authors run the inference engine to check for consistency. 

3.3.4 Expert Systems 

One proposal [16] suggests the use of an expert system as a basis for consistency 

management and design assist in UML. Most expert systems use an n-order logic 

language to describe the set of facts and rules in their knowledge base. A procedure 

similar to what is described earlier takes place to translate the meta-model, constraints 

and use models into the representation of the expert system. One interesting feature of 

expert systems though is the ability to write rules in the format: if <expression> then 

<action>, where expression is a predicate and action is an operation to execute. 

Formulating rules in this syntax allows for the use of planning algorithms. For example, 

writing rules, where the expressions are consistency conditions and the actions are 

appropriate resolutions to them can help in finding plans to restore consistency to an 

inconsistent model. A similar pattern could be followed to find a recipe for adopting a 

particular design pattern by finding a sequence of actions that change the model in a 

particular way. The authors used Sherlock [42], an over the shelf expert system. 

 

Another proposal to use expert systems is given in [23]. In this proposal, inconsistencies 

are reported and stored in the knowledge base. This allows the user to delay the 

resolution of these inconsistencies to a later time. The proposal, prototyped in a tool 

called RIDE, also allows for incorporating user input in the resolution process. Therefore, 

several categories of expert rules are enumerated here: 
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• Rules that identify inconsistencies 
• Rules that respond to user choice of fixing 
• Rules that cleanup expired inconsistency facts 
• Rules that cleanup orphaned facts, whose expired parents have been cleaned up 

 

Another proposal that sounds close to an expert system solution is [43]. The authors here 

propose using a meta- language based on linear-time temporal logic with actions. They 

basically formulate a logical database (D, E), where D contains formulae representing the 

instance model and E contains formulae representing the meta-model. Consistency is 

established when the conjunction of the assertions of D and E is satisfiable. Using 

temporal logic, they specify how models should evolve over time by using the usual 

temporal operators like “next, last, sometime-in-the-future, always….etc”. They also 

formulate consistency rules in terms of temporal logic constraints. When an inconsistency 

is identified, one or more action rules fire. They record a history of how they handled that 

inconsistency in the past, in addition to a history of how the inconsistent data got into the 

specification. These histories will be part of the context necessary for the inconsistency 

resolution. 

4 UML Consistency Management Framework 

4.1 Managing Consistency 

As discussed in the previous sections, inconsistency can naturally occur during UML 

modeling. It can be caused by the collaboration of multiple modelers with different 

interpretations of the modeled system. It can also happen as a result of describing a 

system from several viewpoints. Another reason for inconsistency is the uncertainty 
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inherent in the modeling process, which favors leaving inconsistencies until a model is 

later refined and detailed. Finally, inconsistency can occur due to unintentional errors. 

 

The traditional way of dealing with model inconsistencies is to seek their elimination. 

However, in a lot of cases, inconsistent models do not pose a compelling problem until a 

much later time. For example, inconsistency is desired when a modeler is still evaluating 

alternative solutions to his problem without prematurely committing to any of them. 

Another example is the temporary inconsistency resulting from doing an incremental 

change to a model. For these examples and others, the objective should be to manage 

consistency rather than to remove it. This means preserving consistency when it is 

desired and remedying inconsistencies only when needed (usually before doing actions 

that are based on consistent information). This is not a simple task and definitely requires 

a change in the way of thinking. The interested reader is referred to [43] for a discussion 

of why inconsis tency is not such a “bad” thing.  

 

Traditionally, most UML modeling tools either try to prevent inconsistencies from 

happening by providing a structured modeling environment, or support the so called free-

form modeling without providing proper support to deal with inconsistencies.  While the 

first approach is more suited to a closed and relatively homogeneous modeling culture, 

the second approach works only for modeling on a small scale. With today’s increasingly 

complex software systems, different modeling approaches have to be employed. The new 

trends of distributed collaborative work, very large and complex systems, the variety of 

skill for different team members, the increasing ambiguity of requirements and the 
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expansion in scope of UML as a modeling language, require a modern UML consistency 

management framework, a set of strategies, policies and tools to cope with this 

complexity and assure consistency. In [44], the authors presented a strategy for managing 

consistency in general. A contribution of this paper, detailed in the remainder of this 

section, is a customization of this strategy from a UML modeling perspective, along with 

recommendations for the construction of a pragmatic consistency management 

framework (CMF). 

4.2 Consistency Management Challenges 

The first challenge is the ambiguity of UML as a modeling language. Without having 

exact semantics defined, it is hard to determine whether the assertions made in a model 

are consistent with each other and with the modeled system. Another problem can come  

from the nature of the inconsistency itself. Some inconsistencies are not localized but are 

distributed across diagrams, viewpoints or even models. Drilling down the related 

information in the mass of all assertions made in the model is not simple. Other 

inconsistencies are hidden or implicit and need a more careful and deeper analysis to 

figure out. There may also be many existing inconsistencies, and hence finding another 

inconsistency given the current polluted state is not trivial. Furthermore, it could be quite 

difficult sometimes to automatically decide if an inconsistency is safe or to decide on the 

course of action needed to remedy it without human cognition. 
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4.3 Consistency Management Characteristics 

Unfortunately, most of today’s UML modeling tools fall short of providing a 

comprehensive consistency management framework. Such a framework needs to have 

certain characteristics to properly deal with the complexity of consistency analysis. The 

following is an attempt to enumerate some of these characteristics. 

4.3.1 Consistency Analysis Infrastructure 

A basic requirement for a CMF is the ability to read a model, process it, reason about it 

and modify it. Models are usually represented in terms of some formalism. In the case of 

UML, the formalism is a combination of the MOF-based UML meta-model, as defined 

by the OMG [1], and OCL. However, as explained in section 3, the meta-model and OCL 

may not represent a good foundation for consistency analysis for various reasons. 

Therefore, a first step for implementing a CMF may be to consider some of the proposals 

made to enhance the representation of the UML model. Another consideration should be 

given to the method of expressing the consistency rules in order to better support the 

required features of the CMF. 

4.3.2 Consistency Analysis Coverage 

One of the basic expectations of a CMF is to deal with the syntactic and semantic 

correctness of UML models. This activity usually involves checking that a model 

conforms to its meta-model and satisfies the well- formedness rules. However, a lot of 

other semantic constraints are either informally expressed in the prose of the UML 

specification, implicitly specified or totally missing. Therefore, a more rigorous 
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inspection needs to be performed to extract or find these semantic constraints and express 

them either in OCL or in the chosen rule-based language of the CMF. 

 

In addition to the well- formedness rules, a comprehensive CMF would optionally 

package other consistency rules for commonly used heuristics in analysis, design and 

architecture of OO software. For a good coverage of these heuristics, please refer to [31]. 

Consistency rules for other common semantic domains could also be optionally provided 

in the framework. For example, consistency rules implied by familiar modeling processes 

(like RUP [30]) or targeted at popular platforms (like Eclipse) or implementation 

languages (like C++/Java) could also make sense. Another level of coverage that is 

usually sought after is inter-model consistency analysis. For example, a CMF could 

provide rules to analyze the consistency of multiple models related by one or more 

transformation relationships. One common example of such a relationship is refinement. 

4.3.3 Consistency Rules Specification 

One of the main features of any CMF is its consistency rules management. A good CMF 

would allow for an elaborate definition of a consistency rule including one or more of the 

following fields [31]: 

• A descriptive name for the inconsistency 
• A brief and detailed general description of the inconsistency 
• A contextual diagnosis message explaining the cause of the inconsistency 
• A recommendation for the repair actions of the inconsistency 
• A desired severity of the inconsistency (high/low or error/warning…etc.)  
• An expression in the CMF chosen rule-based language for the detection and the 

optional automatic repair of the inconsistency. 
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In addition to the ability to express rules using the previous scheme, a good CMF needs 

to allow users to do perform some or all of the following operations on rules: 

• The ability to dynamically enable and disable rules 
• The ability to configure and customize existing rules 
• The ability to express new rules easily using wizards 
• The ability to contribute rules dynamically through an extension point 
• The ability to check consistency or detect inconsistency between rules [23] 
• The ability to order rules by priority [23], scheme or heuristic [24] 
• The ability to classify rules into catalogs (well- formedness, methodology …etc) 
• The ability to group rules into profiles (analysis, design, modeler, tester…etc) 
• The ability to associate rules with checking levels (easy, strict …etc) 
• The ability to define a granularity for rules (user, project, model, …etc) 
• The ability to import/export rules 

4.3.4 Inconsistency Detection 

As discussed earlier, a good CMF has to have a strategy for dealing with inconsistencies. 

One strategy is to prevent inconsistencies from occurring by providing a controlled 

editing framework. In such a framework, only consistency preserving model 

transformations are allowed to happen. Alternatively, inconsistencies are allowed to 

occur but are detected and tolerated. In [15], the authors presented a strategy for 

tolerating inconsistency prototyped in the Fujaba tool suite. 

 

One of the desired features of a CMF is to allow for the manual or automatic analysis of 

inconsistency. A manual analysis, also called batch analysis, checks the model as a whole 

based on a user request. No assumptions are made apriori to the consistent state of the 

model and the analysis process is mainly iterative over the whole scope of the model. On 

the other hand, an automatic, or just- in-time, consistency analysis is a more sophisticated 

strategy that starts by assuming that the model is initially consistent. As the model gets 
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changed, the analysis process starts by identifying the rules that might have been affected 

by the change. This is only possible if the rule specifies the necessary context (in terms of 

affected model elements) for its applicability. For every such rule, only the context 

elements are analyzed for consistency. Different strategies for selecting rule could apply. 

 

Automatic detection is much more logical to have while the model is incrementally 

changing. However, the catch is that it has to be not intrusive to the user. Since 

consistency analysis could be computationally expensive, applying that process whilst a 

user is editing the model could lead to sluggishness in the editing experience. Therefore, 

a CMF needs to find a more efficient and highly scalable implementation for the 

automatic consistency analysis. On the other hand, the history of the user changes leading 

to the inconsistency could be invaluable in customizing the analysis to the correct context 

and therefore help present a more logical diagnostic feedback to the user. 

 

Another nice to have feature of a CMF is the definition of a scheme to specify which 

rules to check, when they should be checked, and whether they should be manual or 

automatic in each case. The scheme could be static, dynamically changeable by the user 

or completely self-adjusting by adopting some machine learning algorithms. The last 

point is a really interesting one since it can help change the analysis process based on 

feedback from the user and the history of his actions and decisions in the editing session. 



Carleton Technical Report SCE-04-18 

 

42 

4.3.5 Inconsistency Visualization 

Once an inconsistency is detected, it needs to be presented to the user. There are different 

strategies for accomplishing that. One way is to present the user with a generic textual 

description of the inconsistency. A slightly better way is to customize the description 

message to the actual context of the inconsistency. Although both these approaches are 

informative, it can really be hard for a user (especially a novice one) to grasp the essence 

of the inconsistency or to relate it to what he/she just did (in case of automatic analysis). 

A much nicer way is to provide a visual inconsistency feedback to the user. This 

feedback can both be contextual and localized to make it easy for the user to get it. An 

example of such feedback is to adorn the problematic element with an error or a waning 

decoration that display, when hovered over, a contextualized message of the problem. A 

more elaborate visualization strategy could be adopted in case the inconsistency spans 

multiple elements, diagrams or models. A lot of relevant research in usability could come 

into play in the point. 

4.3.6 Inconsistency Resolution 

One of the more interesting features about a CMF is its inconsistency resolution strategy. 

Most UML modeling tools, like Rational Rose, allow only a manual resolution of 

inconsistency through user intervention. However, a tool with a better CMF would allow 

for configuring the resolution strategy for every inconsistency rule to be either manual or 

automatic. In fact, a similar scheme to the detection process could be defined here to 

control when and how every inconsistency is resolved. 
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In case of automatic resolution, the possible actions are specified in the inconsistency rule 

itself [15, 16, 23]. If one action is specified, it is automatically applied. If multiple actions 

are given, either a schema for choosing which action to automatically apply is given or a 

user is polled to make a decision. Similar to the detection phase, a machine learning 

algorithm could be employed to learn why a user selects one action versus  another in 

each context and then offer this choice by default the next time. 

 

Options for the resolution of inconsistencies are many. Possible ones are to ignore the 

inconsistency, to reduce its severity, to delay handling it, to improve it or to completely 

resolve it [44]. The resolution could also be applied one inconsistency at a time or in a 

batch mode. In all cases, an efficient and scalable implementation of the resolution makes 

the CMF not intrusive to the user. Also, in a similar fashion to inconsistency detection, 

context sensitive resolution options could be presented to the user visually and close to 

the source of the problem. When the user decides to delay handling of an inconsistency, 

the CMF needs to preserve the inconsistency and maintain it by periodically checking if it 

still applies (house keeping). An example of this procedure exists in [23] 

4.3.7 Inconsistency Diagnosis and Resolution Planning 

A successful CMF would have the ability to diagnose a model and present a user with a 

summarized and a detailed consistency analysis report. The summarized version would 

report statistics about the model conformance to every consistency rule. It can also allow 

the user to establish quality metrics and report on the quality level of the model. A 

detailed analysis report on the other hand would have a listing of all the found 
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inconsistencies along with contextual information to the rationale of each problem. An 

example of such a feature exists in DesignAdvisor [31], a tool built by Siemens 

Corporation. 

 

Another role a CMF can play is that of a modeling advisor. In addition to reporting 

consistency problems, it can also help the user by giving advice on how to restore 

consistency to a model or on how to improve the quality of a model. To be able to do 

that, the CMF needs the ability to reason and to plan given a configured set of rules. 

Various reasoning and planning algorithms could be applied here if the rules were 

expressed in the proper format (for example, if <conditions> then <actions>) 

4.3.8 Consistency Framework Implementation 

As discussed in this section, designing a successful CMF is not a trivial task. A lot of 

design decisions have to be made at various points. Another level of complexity presents 

itself when such a framework is integrated into UML modeling tools. An ideal CMF 

would have a clearly defined interface for integration with such tools. Every tool would 

implement all or part of this interface to take advantage of the framework. Another 

desired feature of a CMF implementation is to have an open architecture. Such 

architecture would allow for plugging in different algorithms for various modules in the 

framework. For example, the reasoning engine could be replaced with a new one 

seamlessly. This feature would allow the CMF to easily evolve over time. 
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5 Conclusion and Future Directions 

UML consistency analysis is an important process for ensuring the quality of UML 

models. Consistency analysis goes beyond just conforming to the meta-model and the 

well- formedness rules available in the UML specifications [1, 2]. A model is consistent 

when it conforms to the semantics of all its targeted domains [16]. There are different 

ways to classify consistency presented in the literature. In every classification, various 

consistency detecting rules are defined. These classifications differ in their scope and 

locality (inter/intra model, static/dynamic…etc). 

 

The UML specification is inherently ambiguous. Formalization has been identified as the 

key to the successful implementation of UML consistency analysis. Various proposals are 

made to help formalize UML at different levels. The first group of proposals seeks to 

remove the ambiguity from the UML meta-model by attempting to complete it with all 

the missing relationships and constraints. Another group suggests enhancing the UML 

constraint language to better capture the different aspects of consistency. A third group 

proposes converting a UML model into another more formal notation and then leveraging 

that notation’s existing support for consistency analysis. A combination of these 

proposals is usually needed. 

 

Building a UML consistency management framework is not a trivial task. It involves a lot 

of design decisions at various levels. First, the UML meta-model is enhanced to facilitate 

the detection and correction of inconsistencies. The enhancement could be in the meta-
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model definition (by defining missing semantics or clearing ambiguity), implementation 

(by having reasoning capabilities for example) or both. Second, a language for expressing 

consistency rules is chosen. The language could have features to express both structural 

and non-structural constraints, operatives to apply corrective actions to restore 

consistency, and an easy notation that is understandable by the average modeler. Third, a 

strategy to manage consistency rules is defined. The strategy could allow for the addition, 

deletion, and customization of consistency rules. Fourth, different options to detect 

inconsistencies are presented. These options could range from totally automatic to 

manual, from batch to incremental and from predefined to continuously changing. Fourth, 

creative ways for the visualization of inconsistencies are designed. These ways should be 

non- intrusive and intuitive to the user. Fifth, a flexible consistency resolution strategy is 

introduced. Again, similar to the detection strategy, it can range from totally automatic to 

manual, from batch to incremental and from predefined to continuously changing. Sixth, 

an advisory role, where the framework assists the user in enhancing the quality of the 

model by presenting him with various tips and suggestions, is implemented. Last, an open 

architecture is used in designing the framework to allow it to integrate with various tools 

and to evolve over time. 

 

The current state of the art is still far from being satisfactory. An evidence of that is the 

lack of adequate support for consistency management in today’s open source and 

commercial UML CASE tools. More work is still needed in implementing various 

consistency profiles. These profiles customize the meaning of consistency to different 

targeted domains, since there is no universal agreement on the meaning of consistency.  
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Also, different strategies for detecting and resolving inconsistencies need to be quantified 

and compared in terms of their suitability for tool support. Data about speed and memory 

usage patterns of these strategies are essential for taking appropriate decisions on tool 

integration. More research is also needed in the areas of detecting, visualizing, presenting 

and correcting inconsistencies. Interesting ideas from the domains of usability and 

machine learning could also be useful here to enhance the user experience of consistency 

management. 
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