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Abstract 

Using a specific machine learning technique, this 
paper proposes a way to identify suspicious statements 
during debugging which is based on principles similar to 
Tarantula but addresses its main flaw: Its difficulty to 
deal with the presence of multiple faults as it assumes 
that failing test cases execute the same fault(s). The 
improvement we present in this paper results from the use 
of C4.5 decision trees to identify various failure 
conditions based on information regarding the test cases' 
inputs and outputs. Failing test cases executing under 
similar conditions are then assumed to fail due to the 
same fault(s). Statements are then considered suspicious 
if they are covered by a large proportion of failing test 
cases that execute under similar conditions. We report on 
a case study that demonstrates improvement over the 
original Tarantula technique in terms of statement 
ranking. Another contribution of the paper is to show that 
failure conditions as modeled by a C4.5 decision tree 
accurately predict failures and can therefore be used as 
well to help debugging. 

1. Introduction 

One of the most time consuming activities during 
software testing is debugging. Locating faults causing 
failures is a very complex endeavor [22]. Though many 
techniques exist to support this activity [22], this paper is 
re-visiting the technique that has shown to perform best 
on existing empirical studies (Tarantula). Based on a 
careful analysis of its cost-effectiveness we identify a 
significant problem affecting its applicability and propose 
a solution to improve it based on the application of a 
machine learning technique (C4.5). At a high level, 
Tarantula uses the proportion of test cases that fail when 
executing a specific statement to determine the ranking of 
statements in terms of their likelihood to contain a fault. 
One important issue is that this assumes that test cases fail 
due to the same fault(s), a situation which nearly never 
occurs in the presence of multiple faults.  

We use C4.5 (decision tree algorithm) [16] to analyze 
test executions and identify distinct conditions of failures 

in terms of properties on inputs and outputs. Note that, as 
further discussed below, a test specification is required 
(e.g., category partition [12]) as raw test case values are 
not usable for machine learning algorithms to identify 
meaningful conditions of failures. Following a strategy 
similar to Tarantula, within each specific failure condition 
identified by C4.5, we analyze which test cases matching 
that condition cover which statements and obtain a 
ranking. All the rankings of all failure conditions are then 
combined into a single statement ranking. The most 
important difference with Tarantula is that because the 
statement coverage of test cases is analyzed within each 
distinct failure condition, these test cases are then more 
likely to fail due to the same faults, an assumption that 
does not hold when analyzing all test cases at once.  

Note that, the failure conditions identified are of 
interest in their own right, independently of how they 
help statement ranking. We expect that debuggers would 
be helped a great deal if we are able to retrieve, from test 
case definitions and executions, precise conditions on 
inputs that are almost certain to trigger failures.  

Through a case study, we show that our solution has a 
practically significant, positive impact when compared to 
Tarantula. We also demonstrate that C4.5, following our 
procedure, can retrieve accurate rules predicting failures, 
thus implying that conditions triggering failures can be 
automatically and precisely characterized in terms of 
input and output properties.  

The above approach can be applied in a number of 
contexts. For example, this might suit very well the 
context of test-driven development processes where large 
test suites are developed up-front and are available during 
development. It however requires that equivalence classes 
or categories/choices be defined to specify the test cases 
or at least⎯but this is less efficient⎯to re-express test 
cases at a high level of abstraction (test specification) in 
order to feed the machine learning algorithm. Our 
approach is probably more cost-effective when test suites 
are specified using a systematic, black-box technique.  

The structure of this paper is as follows. We present an 
extensive overview of related work in Section 2. Section 
3 presents background information on the machine 
learning and testing techniques used in the paper. Section 
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4 presents the principles and rationale of our proposed 
approach. Section 5 presents an in-depth case study and 
we conclude in Section 6. 

2. Related work 

A number of techniques exist to support the systematic 
debugging of software [22]. One family of techniques 
directly relevant to our approach are used to detect 
anomalies, using Zeller's terminology [22], i.e., 
differences (e.g., in terms of coverage) between passing 
and failing executions of the program. These anomalies 
are good candidates for fault sites, hopefully narrowing 
down the amount of source code to investigate, and 
therefore reducing the time (and cost) required to locate 
faults.  

Five such techniques have been so far reported in 
literature. The simplest ones, referred to as Set Union and 
Set Intersection in [17], are based on the idea that failing 
and passing executions (likely) involve different 
statements. One can therefore look at the statements that 
are executed in a failing execution but not in passing 
executions (Set Union—set of statements executed in a 
failing execution minus the union of the sets of statements 
executed in passing executions). Alternatively, one can 
look at the statements common to passing executions but 
absent from a failing execution (Set Intersection—
intersection of the sets of statements executed in passing 
executions minus the set of statements executed in a 
failing execution).  

The Nearest Neighbor technique is also defined in 
[17]. It consists in finding a single passing execution that 
is as similar as possible (e.g., in terms of code covered) to 
a failing execution (i.e., the nearest neighbor). The 
difference between the two executions is then worth 
investigating when looking for faulty statements.  

In [3], the authors recognize that some failures are due 
to specific sequences of method calls, rather than simply 
the coverage of some statements. Their approach is 
specific to OO systems (they work at the class level), and 
in particular Java. The approach is to collect, for each 
class of the system, the sequences of calls the instances of 
the class execute at runtime. The idea is then to compare, 
for each class, the sequences triggered by a failing 
execution and the sequences triggered by the passing 
executions, and then rank the classes in such a way that 
classes whose sequence sets differ the most get the higher 
priority. (See [3] for the precise ranking mechanism.) 

These researchers tend to compare one failing 
execution (instead of several failing ones) against a 
number of passing ones, assuming different failing 
executions may be caused by different faults, which is 
something unknown beforehand. On the contrary, Jones 
et al. consider all executions together, recognizing that 
the more a statement is executed during failing 

executions, the more likely is the statement faulty [7]. The 
Tarantula technique associates a “color” (ranking) to each 
statement, accounting for all executions: the redder the 
statement, the higher the percentage of failing executions 
that execute this statement. The statement color can be 
used to rank the statements, as suggested in [6], in order 
to support the search for faults during debugging. A 
similar technique is discussed in [9]. It is limited to the 
observation of certain predicates during program 
execution (e.g., the value of a predicate is an if statement) 
as the authors collect execution data from deployed 
programs, and instrumentation is therefore limited to 
ensure a reduced impact on the user. The result is a rank 
of monitored predicates indicating the (statistical) 
likelihood of the predicate being a failing condition as 
well as being the fault location. This is expanded upon in 
[11] where the authors define a similarity function 
between predicate rankings to group executions that 
(likely) fail due to the same fault. 

As opposed to Tarantula, note that the Set Union, Set 
Intersection, and Nearest Neighbor techniques simply 
identify an initial set of suspicious statements to start the 
search from, not a ranking of statements. As suggested in 
[6], these three techniques can however be augmented to 
produce a ranking of statements, as originally suggested 
in [17] for the Nearest Neighbor technique. The ranking 
is based on a breadth first search (backward and forward 
directions) in the system dependence graph from the 
initial statements. Nodes at the same distance from initial 
statements are given the same rank. 

A number of experimental results discuss how these 
techniques compare to one another. First, since the 
technique based on method sequences ranks classes, 
instead of statements, it cannot be directly compared with 
the other three techniques [3]. The Nearest Neighbor 
technique has been shown to outperform the Set Union 
and Set Intersection techniques [17]. Tarantula has been 
compared to Set Union, Set Intersection and Nearest 
Neighbor [6]. For comparison purposes, the authors used 
the so-called Siemens suite of seven different programs 
[5]: 122 faulty versions (one fault per version) were used. 
The ranking of each technique is used to identify the rank 
of the (known) faulty statement of each faulty version. 
This rank is used to compute a score for each faulty 
version, corresponding to the percentage of the program 
(code) that does not need to be examined to find the 
faulty statement. They then compare the cumulative 
number of faulty versions, on the Y-axis, as the score 
goes from 99% (the technique pinpoints the faulty 
statement) to 0% (all the code has to be verified to find 
the faulty statement), on the X-axis. Results show that 
Tarantula outperforms the other techniques. In particular, 
in 55.7% of the faulty versions, the fault was found by 
examining less than 10% of the code. These results were 
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the main motivation for this paper to use Tarantula as a 
basis of comparison to improve upon.  

The effectiveness of Tarantula was originally reported 
in [7] on 20 faulty versions (one fault per version) of the 
Space program [19]. No ranking was used though, and 
the authors only studied the coloring of faulty and non-
faulty statements, showing that the former were always 
colored in red (i.e., suspicious) whereas the latter were 
most of the time colored in green. (A large number of the 
non-faulty statements received a reddish or yellowish 
color though.) There were two notable exceptions: for 
two faulty versions, the faulty statements received an 
average color (yellow)—they would therefore not 
necessarily appear suspicious to the tester—because they 
were executed by all or most of the test cases and roughly 
half of the test cases were failing on those versions. These 
statements were initializing global variables used by all 
test case executions. The authors also studied Tarantula 
on multiple-faults versions. They observed that the 
effectiveness of Tarantula declines (less faulty statements 
are colored red) as the number of faults increases, though 
no precise trend can be established. 

There are other debugging techniques that are not 
discussed here, as they are less relevant to our context. 
They include deduction techniques (e.g., program slicing, 
delta debugging), and observation techniques (e.g., states, 
invariants). See [22] for further details.  

Another, more recent, body of work related to our 
problem, attempts to use data mining techniques to help 
identify suspicious code areas. In [10], the authors record 
passing and failing program executions, monitoring true 
and false evaluations of predicates (e.g., if statements). 
They developed a data mining technique that relies on 
distributions of true and false evaluations in failing and 
passing executions to rank (suspicious) functions. They 
limit their analysis to statements containing predicates, 
report good results (buggy functions are ranked first) on 
the Siemens program suite (each faulty version contains 
only one fault, though), but do not report on any 
comparison with other techniques. 

Similarly, Podgurski et al. [14] use passing and failing 
execution profiles to help debugging. Profiles entail 
recorded information that is not limited to predicates but 
can contain any data that can be collected about program 
executions (e.g., a program variable value, a call stack). 
The program execution features in the profile that can 
best distinguish passing from failing executions are first 
identified using logistic regression. Because the level of 
abstraction of the collected data needs to be increased to 
help predict failure, failing profiles are then grouped 
using either a cluster analysis technique or a multivariate 
visualization technique. Those groups are then analyzed 
by the tester to understand failing execution conditions. 
The type of properties that can be uncovered using this 
approach is limited and remains to be investigated.  

A machine learning technique is used in [1] to identify 
general program properties (e.g., variables not initialized) 
that likely indicate the presence of faults in programs. As 
opposed to abovementioned approaches, it does not 
require test case executions as it only relies on program 
analysis (though, for evaluation purposes, the authors use 
“likely invariants” [4] as program properties, which 
discovery requires program executions). For a scalar 
variable x, examples of properties are: equality to a 
constant (x=a), lying in a range (e.g., a<x≤b). In the 
learning step, properties of correct and incorrect programs 
are used to build a learning model (e.g., Support Vector 
Machine) to distinguish faulty and non-faulty programs). 
In the classification step, a new program’s properties are 
used as inputs and those properties are ranked according 
to the strength of their association with faulty programs. 
Note that the approach above requires that abstract 
properties be defined beforehand, which is similar to our 
use of categories and choices.  

What we propose in this paper is different from the 
work presented above in at least one of the following 
ways: (1) We reuse black-box testing specifications 
(under the form of categories and choices) as inputs to 
identify failure conditions; (2) Failure conditions are 
formalized as logical rules, so as to provide interpretable 
inputs to support debugging; (3) These rules a generated 
using a machine learning algorithm automatically 
generating interpretable rules from transformed test cases; 
(4) Those rules are then used to also rank statements 
according to their likelihood of containing a fault.  

One motivation is to rely on inputs that should anyway 
be part of any testing plan and is of general usefulness to 
the tester beyond debugging. A second motivation is to 
provide feedback to testers in a form that can be used to 
better understand the reasons for failure. Third, we want 
our technique to handle the common case where multiple 
faults are present in the program and different executions 
fail due to different faults.  

3. Background 

In this section, we provide overviews of techniques 
involved in our proposed statement ranking strategy. We 
describe the Category-Partition (CP) black box testing 
technique and explain why we need it (Section 3.1). We 
then discuss rule induction algorithms and explain our 
choice of C4.5 decision trees (Section 3.2). 

3.1. Category-Partition for Rule Induction 

In order to obtain meaningful and accurate machine 
learning rules, we cannot simply use the test case input 
and output values. Our experience is that it typically leads 
to meaningless and inaccurate rules because the machine 
learning algorithm cannot learn what input or output 
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properties are potentially of interest but only which ones 
matter once they are defined. In other words, without 
some additional guidance, the learning algorithm is 
unlikely to find the precise conditions under which test 
cases fail. This guidance, in our context, comes under the 
form of categories and choices, as required by CP [12].  

The CP method seeks to generate test cases that cover 
function. To apply the CP method, one identifies the 
parameters of each function, the characteristics 
(categories) of each parameter and the choices of each 
category. Categories are properties of parameters that can 
have an influence on the behavior of the software under 
test (e.g., size of an array in a sorting algorithm). Choices 
(e.g., whether an array is empty) are the potential value of 
a category which stands for a certain character of the 
category. Test frames and test data are generated 
according to the categories and choices defined. 

Let’s take a simple but hopefully illustrative example: 
for the well-known Triangle program [8], the input values 
characterize the length of triangle sides. We can use CP to 
define categories on the relationships among the length of 
sides, e.g., whether they are equal or otherwise. In this 
way, the input of the Triangle program can be described 
as [compare(side1, side2), compare(side2, side3), 
compare(side3, side1)] instead of simply [side1, side2, 
side3]. Then the test cases can be expressed as tuples in 
terms of these properties and we refer to these tuples as 
abstract test cases: e.g., raw data (1, 1, 2) becomes 
(side1=side2, side2<side3, side3>side1). If we obtain 
failures when the triangle sides are of equal length, based 
on a set of abstract test cases, the learning algorithm will 
be able to determine that when all sides are of equal 
length the program fails to recognize this is an equilateral 
triangle. Therefore, if no black box testing technique has 
been used beforehand to obtain a test plan or 
specification, test suites will need to be transformed into 
abstract test suites following this above procedure before 
a rule induction using machine learning algorithms can be 
applied. An alternative would be to consider higher-order 
learning algorithms (e.g., Foil [15]) but this is not a 
practical option at this stage of maturity of the 
technology.  

The reason to use CP here is that it is more general and 
encompassing than equivalence class partitioning (which 
only partitions input value domains) and it is one of the 
most well-known black-box techniques. Though applying 
CP clearly represents an overhead, in many environments 
one would be expected to use a systematic functional 
testing approach, and reverse engineering a test 
specification (i.e., categories and choices) is in any case a 
useful investment in the context of legacy systems with 
existing test suites.  

When using the CP methodology, one is also supposed 
to define constraints and inter-dependencies between 
choices across categories. Because this is not required in 

our context, we will not refer to this aspect of the CP 
methodology.  

3.2. Rule Induction Algorithms 

There is a large number of machine learning and data 
mining techniques [20]. They differ widely in terms of 
their basic principles, their working assumptions, and 
their weaknesses and strengths. None of the techniques is 
inherently better than the other and which one is most 
appropriate tends to be context dependent. Some of these 
techniques focus on classification, which is the problem 
at hand in this paper as we want to explain and predict 
when test cases fail.  

A specific category of machine learning techniques 
focuses on generating classification rules [20]. Examples 
of such techniques include the C4.5 decision tree 
algorithm [16] or the Ripper rule induction algorithm [2]. 
In our context, the rules would look like conditions on 
test inputs and outputs being associated with probabilities 
of failures (Fail/Pass classification). The main advantage 
of these techniques is the interpretability of their models: 
certain conditions imply a certain probability of failure.  

Some techniques, like C4.5, partition the data set (e.g., 
the set of test cases) in a stepwise manner using complex 
algorithms and heuristics to avoid over-fitting the data 
with the goal of generating models that are as simple as 
possible. Others, like Ripper, are so-called covering 
algorithms that generate rules in a stepwise manner, 
removing observations that are “covered” by the rule at 
each step so that the next step works on a reduced set of 
observations. With coverage algorithms, rules are 
interdependent in the sense that they form a “decision 
list” where rules are supposed to be applicable in the 
order they were generated. Because this makes their 
interpretation more difficult, we will use a classification 
tree algorithm, namely C4.5, and use the WEKA tool [20] 
to build and assess the trees.  

Figure 1 depicts what C4.5 decision trees would look 
like in our application context, using the Triangle 
example. Each node represent a (sub)set of abstract test 
cases and is characterized by a number of conditions on 
input or output properties (categories and choices using 
CP terminology). Some nodes are terminal (e.g., 4) 
whereas others are further decomposed (e.g., 3). Edges 
represent specific choices for a selected category and a 
path from the root node of the tree to any leaf can be 
considered a rule characterizing failure or success, i.e., a 
conjunction of choices. In Figure 1, nodes are 
characterized by the relationships between triangle sides. 
Node (4), for example, captures all the (abstract) test 
cases where s1 = s2 and s3 = s1 (Equilateral triangle). It 
is a terminal node predicting failure: in this leaf, the 
number of failing test cases is higher than the number of 
passing test cases. Our goal when building the tree is to 
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obtain leaves that are as consistent as possible, i.e., which 
contain test cases that either mostly passed or failed. This 
is one of the objectives of the C4.5 algorithm. Figure 1 
depicts a rule for one of the paths where s1=s2 AND 
s3=s1 predicts failure (Fail).  

4. Statement Ranking Strategies 

In this section, we introduce several statement ranking 
strategies. We first revisit statement coloring according to 
Tarantula’s approach (Section 4.1). We then describe 
how we adjust Tarantula’s ranking based on a C4.5 
decision tree, which is itself built on an abstract test suite 
or test specification (Section 4.2), in order to account for 
the diversity of execution conditions under which 
statements are involved in failing test cases. 

4.1. Revisiting Tarantula 

In order to facilitate the precise and concise definition 
of our methodology, we need to define and formalize a 
number of basic concepts. 

The set of executable statements of the program P 
being tested and corrected is referred to as S. T is the test 
suite devised for testing program P (set of test cases). 
TF∪TP=T where TF is the set of failed test cases (TF⊆T) 
and TP is the set of passed test cases (TP⊆T): TF∩TP=∅. 
S(t) denotes the statements executed (covered) by test 
case t, where t∈T: S(t)⊆S.  

Ri denotes a specific rule learned by the C4.5 
algorithm. The set of rules is denoted by R, where Ri∈R. 
RF (resp. RP) is the subset of rules that classifies test cases 
as Fail (resp. Pass): RF∩RP=∅, RF∪RP=R. 

The set of test cases covered by rule Ri is referred to as 
T(Ri): T(Ri)⊆T. If i<>j, T(Ri)∩T(Rj)=∅. This latter 
constraint is due to the partitioning nature of the C4.5 
algorithm. Test cases in T(Ri) can pass or fail. Following 
the same notation as above, T(Ri)=TF(Ri)∪TP(Ri) where 
TF(Ri) and TP(Ri) are the failing and passing test cases 
covered by rule Ri, respectively. The set of statements 
executed by a rule Ri, i.e., executed by the test cases 
covered by Ri, is referred to as S(Ri): ( ) ( )

( )
U

iRTt
i tSRS

∈
= . 

Following the above formalism, the Tarantula color of 
any statement s in the code is Color(s) = passed(s) / 
(passed(s)+failed(s)) where passed(s) and failed(s) are 
the percentages of passing and failing test cases that 
execute statement s respectively (Color(s)∈[0,1]): 

- passed(s) = |{ t∈TP, s∈S(t)}| / |TP|, 
- failed(s) = |{ t∈TF, s∈S(t)}| / |TF|.  
A small value for Color(s) suggests s is a suspicious 

statement. When statements are not covered by any test 
case, the authors in [6, 7] states that a value of zero 
should be assigned to Color(s). (Note that this is what the 
description of Tarantula suggests [6, 7], although the 
running example used by the authors suggests that, on the 
contrary, uncovered statements are not ranked.) However, 
this makes no theoretical sense as there is no information 
to indicate that the statement is likely to be fault-prone. In 
fact, no fault causing the observed failures can possibly 
be located in uncovered statements. This situation is of 
practical importance as the presence of multiple faults 
often prevents certain statements from being executed. In 
our case study, we will discuss a stepwise debugging 
process to address this issue of uncovered statements 
(Section 5).  

The original Color(s) formula presented above can be 
re-expressed to demonstrate that the statement ranking 
only depends on the ratio |TF(s)|/|TP(s)|, where TP(s) and 
TF(s) are the set of passing and failing test cases that 
execute statement s respectively. 
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Since TP/TF is constant for a given test set and program 
version, the ranking of statements, which is ultimately 
used to focus debugging, exclusively depends on the 
proportion of test cases that fail and pass when executing 
a specific statement s. Though this makes intuitive sense, 
there are two problems with this formula: (1) Test cases 
may fail due to different faults and therefore whether a 
statement s is covered by several failing test cases is not 
relevant, (2) redundant test cases that execute the system 
in identical or similar conditions may artificially affect 
the ranking.  

Another issue is related to how Tarantula rankings 
were evaluated (Section 2). Ideally, we would like to 
assess the cost-effectiveness of rankings. In other words, 
we want to be able to compare some measure of cost and 
fault detection. To do so we use a scatterplot of 
percentages of statements verified (a surrogate measure 
for cost) versus percentages of faults contained in those 
statements (effectiveness) to compare various statement 
ranking methods in terms of cost-effectiveness. Though 
this was not done in the original studies, this will be the 
basis for our case study analysis.  

Also related to evaluation is whether each fault should 
be considered in isolation or whether all faults should be 
considered in a single program. Tarantula has originally 

equals(s1,s2)
(1)

equals(s3,s1)
(2)

equals(s2,s3)
(3)

Fail
(4)

Pass
(5)

Pass
(6)

Pass
(7)

s1=s2 s1>s2

s3=s1 s3>s1 s2=s3 s2>s3

Rule: s1=s2 and 
s3=s1

 
Figure 1 Structure of decision tree and rules
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been used on faulty program versions with a single fault 
[6, 7] and found to be effective at pinpointing faulty 
statements on such faulty programs. When used on 
multiple-fault programs, Tarantula’s effectiveness has 
shown to decrease [7], probably for the reasons we 
mentioned above. As acknowledged in [7], this deserves 
further analysis and is important as it is probably more 
realistic to perform such studies with multiple faults. This 
issue is the main focus of the current paper.  

4.2. Ranking Statements Based on C4.5 Rules 

In this section we present the rule-based statement 
ranking (RUBAR) method. We first explain the basic 
principles of using C4.5 rules for deriving a ranking and 
then explain how we select a subset of rules based on all 
the rules available in the decision tree.  

4.2.1. Heuristic Assuming we have a large abstract test 
suite, we should be able to generate a C4.5 decision tree 
where each leaf corresponds to a rule predicting either 
Pass or Fail. The data set on which to build the tree would 
then be a set of instances, each corresponding to a test 
case that is known to pass or fail. The attributes to be 
selected for the tree construction are pairs (category, 
choice) characterizing the specification of each test case. 
Each path from the root of the tree to a leaf represents a 
rule characterized by conditions on (category, choice) 
pairs. Each leaf in the tree corresponds to a partition of 
the data set of test case instances. A rule leads to a Fail 
prediction when the instances in its leaf represent a 
majority of fail test cases, and Pass otherwise. Therefore, 
a C4.5 rule classifies a set of test cases with similar input 
conditions and same test results.  

To understand the heuristic we are going to follow, let 
us first focus on Fail rules and take the example of a 
particular rule Ri∈RF. If we assume the probability of 
failure associated with Ri is very high, then what this 
means is that (nearly) all the test cases in T(Ri) fail under 
the same or similar conditions. What this suggests is that 
(nearly) all of the test cases fail due to similar reasons 
(faults). This in turn can be used to safely rank statements 
using a strategy similar to Tarantula as all test cases 
failing within a rule can be safely assumed, in most cases, 
to fail due to the same fault(s). We thus obtain a ranking 
per Fail rule that must then somehow be combined with 
the ranking of other rules to obtain a final ranking.  

Within a rule, the higher the number of failing test 
cases covering a statement, the more suspicious the 
statement. Assuming that TF(Ri)={t1, t2, t3}, the statements 
executed by these three test cases are depicted in Figure 
2. According to the above hypothesis, the statements in 
D1 (i.e., covered by all three test cases t1, t2, and t3) should 
be more suspicious than those in D2, D3, or D4. On the 
contrary, the statements in D4 should be the safest of all. 

If Ri were a Pass rule, we would obtain the opposite 
result: the statements in D1 would be the safest and those 
in D4 would be the most suspicious. This example 
illustrates how for each rule we can obtain a partial 
ordering of statements.  

4.2.2. Computing a Statement Ranking To implement 
the above heuristic, we must define a mechanism to 
combine the ranking of all rules for a given statement. 
Proceeding with this goal in mind, a statement will be 
assigned a negative (resp. positive) weight if it is covered 
by a Fail (resp. Pass) rule. A high absolute weight value 
implies that a statement is executed by most of the test 
cases in the rule. Weight absolute values are normalized 
within [0, 1] in order to give equivalent weight to all 
perfect rules, i.e., rules which contain only test cases that 
either fail or pass. However, if a rule contains test cases 
with inconsistent Pass/Fail behavior, the maximum 
absolute weight a rule can contribute will therefore be 
below 1 and determined by the percentage of test cases it 
contains in the Fail/Pass category it predicts. The fact that 
rules should contribute to the extent of the consistency of 
their test cases’ behavior should be intuitive: less 
consistent rules have less influence on the final ranking. 
We have also considered weighting the rules’ 
contributions according to their number of test cases, but 
this would make the results sensitive to redundant test 
cases, as discussed above in the case of Tarantula, and 
would make rarely executed faults difficult to find. 
Assuming that Weight(Ri,s) and Weight(s) denote the 
weight of statement s for rule Ri and the overall weight of 
statement s, respectively, we obtain1: 

Weight(Ri,s)=-|T(s)∩TF(Ri)|/|T(Ri)|, when Ri∈RF 
Weight(Ri,s)=|T(s)∩TP(Ri)|/|T(Ri)| , when Ri∈RP 

∑
∈

=
RR

i
i

sRWeightsWeight ),()(  

This can be visualized as a matrix (Table 1) where 
columns are statements and rows are rules. The matrix 
contains all the weights of each statement for each rule, 
all within [-1, 1] as defined above. The last row 
represents the sum of all rule weights for a given 
statement, which can then be used to rank statements as 

                                                                          
1 In case one needs to rank a statement that is not covered, we set its 

weight to 0: a negative weight is suspicious, a positive weight is safe, 
and for a weight of 0 we cannot conclude. 

D1

D2

D3

D4

S(t3)

S(t2)

S(t1)

Ri∈RF

 

Figure 2 Statement divisions by test cases 
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depicted in Figure 3: Statements with lower weight are 
ranked first, to follow Tarantula’s convention for 
Color(s).  

Table 1 Matrix of statement weight 
 s1 s2 s3 … so 

RP1 1 0.01 1 … 0.5 
… … … … …  
RPm 1 1 0.8 … 0.1 
RF1 -1 -1 -1 … -1 
… … … … … … 
RFn -1 -1 -0.8 … 0 
sum -22.1 -18.7 0.06 … -3.36 

4.2.3. Rule Selection. A last practical issue is to 
determine which rules to consider among all the ones 
identified in a C4.5 decision tree. In order to only account 
for accurate rules, it seems logical to select rules that are 
above a certain probability of correct classification 
(Fail/Pass). We should also consider rules that are based 
on a large enough number of instances (abstract test 
cases) in order to avoid classifications that are due to 
chance. Deciding about such selection thresholds is of 
course subjective, but it can be done so as to obtain a 
reasonable number of rules to base the ranking on and 
will be dependent on how accurate the rules are overall 
for the specific test suite under consideration. In our case 
study we select rules with a probability of correct 
classification above 0.8 and a number of instances above 
10, resulting in the selection of 35 Fail rules and 57 Pass 
rules.  

5. Case Study 

We first describe the system used as a subject and the 
settings and design of the case study (Sections 5.1 and 
5.2). We then describe the results of applying C4.5 
decision trees on our test suite (Section 5.4). Last we 
report on the relative cost-effectiveness of Tarantula and 
the method we proposed in Section 4 (Section 5.5). 

5.1. The Space program 

The Space program was originally developed by the 
European Space Agency, and first used in a software 
engineering study by Pasquini et al. [13]. It has 
subsequently been used in other experiments, and in 
particular in the initial evaluation of Tarantula [7]. Space 
allows the user to describe the configuration of an array 
of antennas using a specific array definition language 
(ADL). It reads a text file containing ADL statements, 
checks its conformance to the ADL grammar as well as 
specific consistency rules, and performs other 
computations. It is a 5905-NLOC C program. (See [21] 
for further details.) During “testing and operational use” 
of the program, 33 logical faults were identified and 
eliminated, and the details of the fault-fixing changes 

were preserved so that the faults could be selectively re-
introduced. Vokolos and Frankl [19] used the program for 
a study in which they compared the effectiveness of 
regression test selection strategies. For that study, they 
generated 10,000 test cases using a randomized input 
generation tool. Rothermel et al. [18] later added enough 
test cases to ensure that each executable Decision was 
covered by at least 30 test cases in each direction; this 
procedure added 3,585 test cases to the pool. The 
resulting test pool covers 90, 85, 85, and 80 percent of all 
Blocks, Decisions, C-Uses, and P-Uses present in the 
program, respectively. The total number of blocks, 
decisions, c-uses, and p-uses are 2995, 1191, 3733, and 
1707, respectively.  

During the course of their research, Rothermel et al. 
[18] identified and eliminated five more faults, bringing 
the total number of versions of the program to 38; 
however, they found that three of the original versions did 
not exhibit faulty behaviour, reducing the number of non-
equivalent versions to 35. We obtained the program, 
faulty versions and test pool from the Galileo Research 
Group Subject Infrastructure Repository at the University 
of Nebraska - Lincoln.  

5.2. A multi-fault version of Space 

We randomly selected 15 of the 35 original logical 
faults for our study, avoiding the versions not exhibiting 
any faulty behavior. We also left out logical faults that 
involve problems in the initialization statements. 
Tarantula has been shown to not perform very well with 
such faults and, though such faults will need to be 
investigated in the future, we wanted to compare RUBAR 
and Tarantula on types of faults targeted by the latter. We 
then built one faulty version of Space by introducing, in 
the correct version, the 15 logical faults, i.e., 33 faulty 
statements. The rationale was to simulate a realistic 
situation where a program contains more than one fault. 
At the same time, the rationale for not including all the 35 
original faults was to obtain a balanced number of failing 
and passing test cases. The failing rate of test cases on a 
faulty version including the 35 faults is 95.5%, whereas 
the rate is 47% on the faulty program containing the 15 
selected faults. Future work will investigate ways to deal 
with high failing rates and initialization faults. 

When executing the 13,585 test cases on our multi-
fault version of Space, we achieve 69.72% statement 
coverage (as reported by Coverage Validator 2 ). The 
                                                                          
2 http://www.softwareverify.com/cpp/coverage/index.html 

more suspicious less suspicious

<0 0 >0
Weight(s)

 
Figure 3 Statement Ranking using Weight(s)  
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executed statements contain 15 of the 33 faulty 
statements. Not reaching 100% statement coverage and 
not executing the 33 faulty statements is not surprising 
since we have several faults in the program. Some faults 
result in the program exiting prematurely, and therefore in 
some parts of the code (containing other faults) not being 
executed. This, however, can be considered a realistic 
situation under which to experiment.  

5.3. Case Study Process 

The case study followed an iterative process that 
aimed at emulating the actual debugging process as 
realistically as possible. In the first step only 69%, as 
discussed above, of the statements were reachable. Since 
the purpose was to identify the location of faults 
generating the observed failures, we only ranked the 
covered statements as other statements could not possibly 
contain the faults causing these failures. In the subsequent 
debugging step, we then assumed that the faults in the 
first set of ranked statements were corrected and went on 
to rank the remaining statements that were left out in the 
first step. Though our case study only shows two steps, 
there can be as many steps as necessary. We then append 
the rankings of all steps and compare the resulting final 
rankings of all program statements as determined by 
Tarantula and RUBAR. There are, of course, other ways 
we could have approached the comparison of these 
techniques. We could have assumed, for example, that 
only the faults in the first 20% most fault-prone 
statements were inspected and corrected. (Investigating 
the first 20% of the ranked statements has been shown to 
be a reasonable heuristic with Tarantula [7].) This would 
have led to two separate iterative debugging processes for 
each technique and more iteration steps. This will be 
addressed by future work.  

Another important aspect of the case study is whether 
the decision tree and rules we generate are accurate. This 
is of course a prerequisite for such rules to be used for 
statement ranking purposes but also to assess whether we 
can characterize failure conditions (Fail rules) in an 
accurate manner.  

5.4. Rule Induction Based on Category Partition 

When applying category-partition on the test inputs for 
Space, we identified 207 parameters, 83 categories, and 

582 choices. (Note that we did not identify constraints, as 
required when applying category-partition [12], since we 
did not use the technique to devise test cases, but used it 
to characterize test cases.) 

By applying the C4.5 algorithm on the initial version 
of Space containing all 15 faults, we obtained 285 rules 
(decision tree leaves). The maximum depth of the tree is 
12. That is, the longest rules generated have 12 decisions 
(conditions) involved. Overall, when performing a cross-
validation procedure [20], we obtain the confusion matrix 
in Figure 4. From the matrix, we learn that the C4.5 
algorithm misclassified 335 Fail test cases and 550 Pass 
test cases as Pass test cases and Fail test cases respec-
tively. For Fail test cases this corresponds to a 91.7% 
precision and a 94.7% recall, which is very good. Similar 
percentages are obtained for Pass test cases. What this 
means is that the rules learned by the decision tree model 
in a nearly complete and precise manner the conditions 
under which the Space program fails. This result partly 
reflects the completeness of our categories and choices.  

The Fail probability does of course vary across rules as 
well as the number of test cases they cover. Table 2 
shows examples of a few Fail rules (F) with their length 
(# of conditions), the number of test cases they covered 
(TC), and the Fail probability. The rules we show in 
Table 2 are the 33 Fail rules that involve more than 10 
test cases and achieve a fail probability of at least 80%. 
Remember that we need enough instances associated with 
rules to obtain accurate fail probability estimates. 

 Predicted  
 Fail Pass 

Fail 6045 335 Actual 
Pass 550 6655 

Figure 4 Cross validation confusion matrix 

As an example, let us look at rule F025 (Table 2). It 
has a length of five, i.e., it is made of five conditions. 667 
test cases belong to this rule. The failing probability of a 
test case satisfying the conditions is 99.55%. Without 
going into too many details about the specification of the 
Space program, or a detailed description of our 
parameters, categories, and choices (i.e., our application 
of category-partition), rule F025 indicates that if a test 
case: 
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1. defines a triangular grid of antennas (condition 1), 
2. defines a uniform amplitude and phase of the 

antennas (conditions 2 and 3), 
3. defines the triangular grid with angle coordinates or 

Cartesian coordinates, and a value is missing when 
providing the coordinates (conditions 4 and 5); 

then, the test case has a failure probability of 99.55%.  
As shown in Table 2, many other rules are highly 

accurate in predicting failure. Note that such information 
can potentially be useful to support debugging as it 
characterizes logically and precisely failure conditions. 
Since the confusion matrix in Figure 4 suggests the rules 
are very accurate, then they can be trusted by a tester 
trying to understand when and why the program fails.  

5.5. Comparing Rankings  

The cost-effectiveness of the ranking of statements 
based on Tarantula’s coloring is shown in Figure 5 when 
combining the rankings of the two steps of the debugging 
process that are required to cover all statements, 
following the iterative process described in Section 5.3. 
The first step involves all 15 faults and 33 faulty 
statements whereas the second step only includes 8 faults 

and 18 faulty statements. The X-axis is the percentage of 
statements that need to be covered to detect the 
percentage of faulty statements on the Y-axis. Each 
observation represents a statement which is assigned a 
color value and the statements are ranked on the color 
value. For example (Figure 5), by visiting the first 10% 
(resp. 20%) of the covered statements, a tester will visit 
10% (resp. 12%) of the faulty statements. Figure 6 shows 
the same curve when using RUBAR for ranking state-
ments: the pattern is visually very different from Figure 5.  

In general, it is very clear when comparing Figure 5 
and Figure 6 that Tarantula does not perform well as 
many of the faulty statements seem to be assigned a 
higher color value and are not ranked among the first 
statements to be inspected. We believe, for the reasons 
discussed previously, that this is due to the incapacity of 
Tarantula to handle multiple faults in a program. (Note 
that the rankings stop before 100% as this is also the case 
for the original test suite.) 

On the other hand, the technique we propose based on 
C4.5 rules performs much better (Figure 6). We can see a 
very sharp increase in the number of faulty statements 
covered in the higher 20% range of the ranked statements, 
which is roughly the range of practical interest in our 
situation, as discussed by Jones et al. [7]. 

6. Conclusions 

This paper describes a new strategy (RUBAR) to 
support debugging by ranking statements according to 
their likelihood of containing a fault and by identify in a 
precise manner the input conditions/properties leading to 
failure. The general idea is to analyze test case executions 
using a decision tree learning algorithm that tries to 
model which conditions lead to test case failure. 
Potentially relevant conditions/properties are predefined 
using a black-box test technique (Category-Partition). 
Each path in the tree then represents a rule modeling 
distinct conditions of failures, possibly originating from 
different faults, and leads to a distinct failure probability 
prediction. Then, in a way similar to the well-known 
Tarantula technique, this is used to perform statement 
ranking by accounting for the statement coverage of fail 

Rules length TC Fail Probability 
F109 1 30 100.00% 
F025 5 667 99.55% 
F104 2 240 98.75% 
F106 1 304 98.36% 
F105 2 158 97.47% 
F107 1 114 97.37% 
F009 12 147 97.28% 
F010 12 132 96.97% 
F003 12 37 94.59% 
F004 11 200 94.50% 
F012 11 97 93.81% 
F005 11 548 93.80% 
F070 10 271 93.73% 
F069 9 116 92.24% 
F087 9 199 91.96% 
F016 7 12 91.67% 
F086 8 700 91.57% 

Table 2 Example Fail rules with Fail 
probabilities and test case coverage 
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Figure 5 Tarantula ranking

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
au

lty
 S

ta
te

m
en

t C
ov

er
ed

0 10 20 30 40 50 60 70 80 90
% of Statement Exectued  

Figure 6 RUBAR ranking
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and pass test cases within each rule, assuming that test 
cases are likely to fail due to the same faults when 
belonging to the same rule. The rankings of all Pass and 
Fail rules is then aggregated to form a final statement 
ranking to be used by the tester to prioritize her search. 
To summarize, our main objectives are two-fold: (1) deal 
with programs containing multiple faults and (2) provide 
the testers with precise information regarding the 
conditions of failure.  

A case study was presented to demonstrate the 
improvements generated by our approach when compared 
to the original Tarantula technique. Results show that 
many faulty statements would be inspected much earlier 
when using this approach. The difference is clearly of 
practical significance. 

In addition, though it is harder to demonstrate its 
practical value in quantitative terms, the C4.5 decision 
tree is also very accurate at modeling the various 
conditions of failures, thus helping testers understand 
what could be the causes of these failures. Such 
conditions are modeled as rules characterizing the input 
and output properties of test cases.  

Future work includes additional case studies, and the 
application of similar ideas to regression testing and 
evolving software.  
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