
Carleton University, TR SCE-07-04, Version 2 April 2007

1

Using Machine Learning to Support Debugging with Tarantula

 Lionel C. Briand Yvan Labiche Xuetao Liu
Software Quality Engineering Laboratory

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

(613) 520 2600 {2471, 5583}
{briand, labiche, xtliu}@sce.carleton.ca

Abstract

Using a specific machine learning technique, this
paper proposes a way to identify suspicious statements
during debugging which is based on principles similar to
Tarantula but addresses its main flaw: Its difficulty to
deal with the presence of multiple faults as it assumes
that failing test cases execute the same fault(s). The
improvement we present in this paper results from the use
of C4.5 decision trees to identify various failure
conditions based on information regarding the test cases'
inputs and outputs. Failing test cases executing under
similar conditions are then assumed to fail due to the
same fault(s). Statements are then considered suspicious
if they are covered by a large proportion of failing test
cases that execute under similar conditions. We report on
a case study that demonstrates improvement over the
original Tarantula technique in terms of statement
ranking. Another contribution of the paper is to show that
failure conditions as modeled by a C4.5 decision tree
accurately predict failures and can therefore be used as
well to help debugging.

1. Introduction

One of the most time consuming activities during
software testing is debugging. Locating faults causing
failures is a very complex endeavor [22]. Though many
techniques exist to support this activity [22], this paper is
re-visiting the technique that has shown to perform best
on existing empirical studies (Tarantula). Based on a
careful analysis of its cost-effectiveness we identify a
significant problem affecting its applicability and propose
a solution to improve it based on the application of a
machine learning technique (C4.5). At a high level,
Tarantula uses the proportion of test cases that fail when
executing a specific statement to determine the ranking of
statements in terms of their likelihood to contain a fault.
One important issue is that this assumes that test cases fail
due to the same fault(s), a situation which nearly never
occurs in the presence of multiple faults.

We use C4.5 (decision tree algorithm) [16] to analyze
test executions and identify distinct conditions of failures

in terms of properties on inputs and outputs. Note that, as
further discussed below, a test specification is required
(e.g., category partition [12]) as raw test case values are
not usable for machine learning algorithms to identify
meaningful conditions of failures. Following a strategy
similar to Tarantula, within each specific failure condition
identified by C4.5, we analyze which test cases matching
that condition cover which statements and obtain a
ranking. All the rankings of all failure conditions are then
combined into a single statement ranking. The most
important difference with Tarantula is that because the
statement coverage of test cases is analyzed within each
distinct failure condition, these test cases are then more
likely to fail due to the same faults, an assumption that
does not hold when analyzing all test cases at once.

Note that, the failure conditions identified are of
interest in their own right, independently of how they
help statement ranking. We expect that debuggers would
be helped a great deal if we are able to retrieve, from test
case definitions and executions, precise conditions on
inputs that are almost certain to trigger failures.

Through a case study, we show that our solution has a
practically significant, positive impact when compared to
Tarantula. We also demonstrate that C4.5, following our
procedure, can retrieve accurate rules predicting failures,
thus implying that conditions triggering failures can be
automatically and precisely characterized in terms of
input and output properties.

The above approach can be applied in a number of
contexts. For example, this might suit very well the
context of test-driven development processes where large
test suites are developed up-front and are available during
development. It however requires that equivalence classes
or categories/choices be defined to specify the test cases
or at least⎯but this is less efficient⎯to re-express test
cases at a high level of abstraction (test specification) in
order to feed the machine learning algorithm. Our
approach is probably more cost-effective when test suites
are specified using a systematic, black-box technique.

The structure of this paper is as follows. We present an
extensive overview of related work in Section 2. Section
3 presents background information on the machine
learning and testing techniques used in the paper. Section

Carleton University, TR SCE-07-04, Version 2 April 2007

2

4 presents the principles and rationale of our proposed
approach. Section 5 presents an in-depth case study and
we conclude in Section 6.

2. Related work

A number of techniques exist to support the systematic
debugging of software [22]. One family of techniques
directly relevant to our approach are used to detect
anomalies, using Zeller's terminology [22], i.e.,
differences (e.g., in terms of coverage) between passing
and failing executions of the program. These anomalies
are good candidates for fault sites, hopefully narrowing
down the amount of source code to investigate, and
therefore reducing the time (and cost) required to locate
faults.

Five such techniques have been so far reported in
literature. The simplest ones, referred to as Set Union and
Set Intersection in [17], are based on the idea that failing
and passing executions (likely) involve different
statements. One can therefore look at the statements that
are executed in a failing execution but not in passing
executions (Set Union—set of statements executed in a
failing execution minus the union of the sets of statements
executed in passing executions). Alternatively, one can
look at the statements common to passing executions but
absent from a failing execution (Set Intersection—
intersection of the sets of statements executed in passing
executions minus the set of statements executed in a
failing execution).

The Nearest Neighbor technique is also defined in
[17]. It consists in finding a single passing execution that
is as similar as possible (e.g., in terms of code covered) to
a failing execution (i.e., the nearest neighbor). The
difference between the two executions is then worth
investigating when looking for faulty statements.

In [3], the authors recognize that some failures are due
to specific sequences of method calls, rather than simply
the coverage of some statements. Their approach is
specific to OO systems (they work at the class level), and
in particular Java. The approach is to collect, for each
class of the system, the sequences of calls the instances of
the class execute at runtime. The idea is then to compare,
for each class, the sequences triggered by a failing
execution and the sequences triggered by the passing
executions, and then rank the classes in such a way that
classes whose sequence sets differ the most get the higher
priority. (See [3] for the precise ranking mechanism.)

These researchers tend to compare one failing
execution (instead of several failing ones) against a
number of passing ones, assuming different failing
executions may be caused by different faults, which is
something unknown beforehand. On the contrary, Jones
et al. consider all executions together, recognizing that
the more a statement is executed during failing

executions, the more likely is the statement faulty [7]. The
Tarantula technique associates a “color” (ranking) to each
statement, accounting for all executions: the redder the
statement, the higher the percentage of failing executions
that execute this statement. The statement color can be
used to rank the statements, as suggested in [6], in order
to support the search for faults during debugging. A
similar technique is discussed in [9]. It is limited to the
observation of certain predicates during program
execution (e.g., the value of a predicate is an if statement)
as the authors collect execution data from deployed
programs, and instrumentation is therefore limited to
ensure a reduced impact on the user. The result is a rank
of monitored predicates indicating the (statistical)
likelihood of the predicate being a failing condition as
well as being the fault location. This is expanded upon in
[11] where the authors define a similarity function
between predicate rankings to group executions that
(likely) fail due to the same fault.

As opposed to Tarantula, note that the Set Union, Set
Intersection, and Nearest Neighbor techniques simply
identify an initial set of suspicious statements to start the
search from, not a ranking of statements. As suggested in
[6], these three techniques can however be augmented to
produce a ranking of statements, as originally suggested
in [17] for the Nearest Neighbor technique. The ranking
is based on a breadth first search (backward and forward
directions) in the system dependence graph from the
initial statements. Nodes at the same distance from initial
statements are given the same rank.

A number of experimental results discuss how these
techniques compare to one another. First, since the
technique based on method sequences ranks classes,
instead of statements, it cannot be directly compared with
the other three techniques [3]. The Nearest Neighbor
technique has been shown to outperform the Set Union
and Set Intersection techniques [17]. Tarantula has been
compared to Set Union, Set Intersection and Nearest
Neighbor [6]. For comparison purposes, the authors used
the so-called Siemens suite of seven different programs
[5]: 122 faulty versions (one fault per version) were used.
The ranking of each technique is used to identify the rank
of the (known) faulty statement of each faulty version.
This rank is used to compute a score for each faulty
version, corresponding to the percentage of the program
(code) that does not need to be examined to find the
faulty statement. They then compare the cumulative
number of faulty versions, on the Y-axis, as the score
goes from 99% (the technique pinpoints the faulty
statement) to 0% (all the code has to be verified to find
the faulty statement), on the X-axis. Results show that
Tarantula outperforms the other techniques. In particular,
in 55.7% of the faulty versions, the fault was found by
examining less than 10% of the code. These results were

Carleton University, TR SCE-07-04, Version 2 April 2007

3

the main motivation for this paper to use Tarantula as a
basis of comparison to improve upon.

The effectiveness of Tarantula was originally reported
in [7] on 20 faulty versions (one fault per version) of the
Space program [19]. No ranking was used though, and
the authors only studied the coloring of faulty and non-
faulty statements, showing that the former were always
colored in red (i.e., suspicious) whereas the latter were
most of the time colored in green. (A large number of the
non-faulty statements received a reddish or yellowish
color though.) There were two notable exceptions: for
two faulty versions, the faulty statements received an
average color (yellow)—they would therefore not
necessarily appear suspicious to the tester—because they
were executed by all or most of the test cases and roughly
half of the test cases were failing on those versions. These
statements were initializing global variables used by all
test case executions. The authors also studied Tarantula
on multiple-faults versions. They observed that the
effectiveness of Tarantula declines (less faulty statements
are colored red) as the number of faults increases, though
no precise trend can be established.

There are other debugging techniques that are not
discussed here, as they are less relevant to our context.
They include deduction techniques (e.g., program slicing,
delta debugging), and observation techniques (e.g., states,
invariants). See [22] for further details.

Another, more recent, body of work related to our
problem, attempts to use data mining techniques to help
identify suspicious code areas. In [10], the authors record
passing and failing program executions, monitoring true
and false evaluations of predicates (e.g., if statements).
They developed a data mining technique that relies on
distributions of true and false evaluations in failing and
passing executions to rank (suspicious) functions. They
limit their analysis to statements containing predicates,
report good results (buggy functions are ranked first) on
the Siemens program suite (each faulty version contains
only one fault, though), but do not report on any
comparison with other techniques.

Similarly, Podgurski et al. [14] use passing and failing
execution profiles to help debugging. Profiles entail
recorded information that is not limited to predicates but
can contain any data that can be collected about program
executions (e.g., a program variable value, a call stack).
The program execution features in the profile that can
best distinguish passing from failing executions are first
identified using logistic regression. Because the level of
abstraction of the collected data needs to be increased to
help predict failure, failing profiles are then grouped
using either a cluster analysis technique or a multivariate
visualization technique. Those groups are then analyzed
by the tester to understand failing execution conditions.
The type of properties that can be uncovered using this
approach is limited and remains to be investigated.

A machine learning technique is used in [1] to identify
general program properties (e.g., variables not initialized)
that likely indicate the presence of faults in programs. As
opposed to abovementioned approaches, it does not
require test case executions as it only relies on program
analysis (though, for evaluation purposes, the authors use
“likely invariants” [4] as program properties, which
discovery requires program executions). For a scalar
variable x, examples of properties are: equality to a
constant (x=a), lying in a range (e.g., a<x≤b). In the
learning step, properties of correct and incorrect programs
are used to build a learning model (e.g., Support Vector
Machine) to distinguish faulty and non-faulty programs).
In the classification step, a new program’s properties are
used as inputs and those properties are ranked according
to the strength of their association with faulty programs.
Note that the approach above requires that abstract
properties be defined beforehand, which is similar to our
use of categories and choices.

What we propose in this paper is different from the
work presented above in at least one of the following
ways: (1) We reuse black-box testing specifications
(under the form of categories and choices) as inputs to
identify failure conditions; (2) Failure conditions are
formalized as logical rules, so as to provide interpretable
inputs to support debugging; (3) These rules a generated
using a machine learning algorithm automatically
generating interpretable rules from transformed test cases;
(4) Those rules are then used to also rank statements
according to their likelihood of containing a fault.

One motivation is to rely on inputs that should anyway
be part of any testing plan and is of general usefulness to
the tester beyond debugging. A second motivation is to
provide feedback to testers in a form that can be used to
better understand the reasons for failure. Third, we want
our technique to handle the common case where multiple
faults are present in the program and different executions
fail due to different faults.

3. Background

In this section, we provide overviews of techniques
involved in our proposed statement ranking strategy. We
describe the Category-Partition (CP) black box testing
technique and explain why we need it (Section 3.1). We
then discuss rule induction algorithms and explain our
choice of C4.5 decision trees (Section 3.2).

3.1. Category-Partition for Rule Induction

In order to obtain meaningful and accurate machine
learning rules, we cannot simply use the test case input
and output values. Our experience is that it typically leads
to meaningless and inaccurate rules because the machine
learning algorithm cannot learn what input or output

Carleton University, TR SCE-07-04, Version 2 April 2007

4

properties are potentially of interest but only which ones
matter once they are defined. In other words, without
some additional guidance, the learning algorithm is
unlikely to find the precise conditions under which test
cases fail. This guidance, in our context, comes under the
form of categories and choices, as required by CP [12].

The CP method seeks to generate test cases that cover
function. To apply the CP method, one identifies the
parameters of each function, the characteristics
(categories) of each parameter and the choices of each
category. Categories are properties of parameters that can
have an influence on the behavior of the software under
test (e.g., size of an array in a sorting algorithm). Choices
(e.g., whether an array is empty) are the potential value of
a category which stands for a certain character of the
category. Test frames and test data are generated
according to the categories and choices defined.

Let’s take a simple but hopefully illustrative example:
for the well-known Triangle program [8], the input values
characterize the length of triangle sides. We can use CP to
define categories on the relationships among the length of
sides, e.g., whether they are equal or otherwise. In this
way, the input of the Triangle program can be described
as [compare(side1, side2), compare(side2, side3),
compare(side3, side1)] instead of simply [side1, side2,
side3]. Then the test cases can be expressed as tuples in
terms of these properties and we refer to these tuples as
abstract test cases: e.g., raw data (1, 1, 2) becomes
(side1=side2, side2<side3, side3>side1). If we obtain
failures when the triangle sides are of equal length, based
on a set of abstract test cases, the learning algorithm will
be able to determine that when all sides are of equal
length the program fails to recognize this is an equilateral
triangle. Therefore, if no black box testing technique has
been used beforehand to obtain a test plan or
specification, test suites will need to be transformed into
abstract test suites following this above procedure before
a rule induction using machine learning algorithms can be
applied. An alternative would be to consider higher-order
learning algorithms (e.g., Foil [15]) but this is not a
practical option at this stage of maturity of the
technology.

The reason to use CP here is that it is more general and
encompassing than equivalence class partitioning (which
only partitions input value domains) and it is one of the
most well-known black-box techniques. Though applying
CP clearly represents an overhead, in many environments
one would be expected to use a systematic functional
testing approach, and reverse engineering a test
specification (i.e., categories and choices) is in any case a
useful investment in the context of legacy systems with
existing test suites.

When using the CP methodology, one is also supposed
to define constraints and inter-dependencies between
choices across categories. Because this is not required in

our context, we will not refer to this aspect of the CP
methodology.

3.2. Rule Induction Algorithms

There is a large number of machine learning and data
mining techniques [20]. They differ widely in terms of
their basic principles, their working assumptions, and
their weaknesses and strengths. None of the techniques is
inherently better than the other and which one is most
appropriate tends to be context dependent. Some of these
techniques focus on classification, which is the problem
at hand in this paper as we want to explain and predict
when test cases fail.

A specific category of machine learning techniques
focuses on generating classification rules [20]. Examples
of such techniques include the C4.5 decision tree
algorithm [16] or the Ripper rule induction algorithm [2].
In our context, the rules would look like conditions on
test inputs and outputs being associated with probabilities
of failures (Fail/Pass classification). The main advantage
of these techniques is the interpretability of their models:
certain conditions imply a certain probability of failure.

Some techniques, like C4.5, partition the data set (e.g.,
the set of test cases) in a stepwise manner using complex
algorithms and heuristics to avoid over-fitting the data
with the goal of generating models that are as simple as
possible. Others, like Ripper, are so-called covering
algorithms that generate rules in a stepwise manner,
removing observations that are “covered” by the rule at
each step so that the next step works on a reduced set of
observations. With coverage algorithms, rules are
interdependent in the sense that they form a “decision
list” where rules are supposed to be applicable in the
order they were generated. Because this makes their
interpretation more difficult, we will use a classification
tree algorithm, namely C4.5, and use the WEKA tool [20]
to build and assess the trees.

Figure 1 depicts what C4.5 decision trees would look
like in our application context, using the Triangle
example. Each node represent a (sub)set of abstract test
cases and is characterized by a number of conditions on
input or output properties (categories and choices using
CP terminology). Some nodes are terminal (e.g., 4)
whereas others are further decomposed (e.g., 3). Edges
represent specific choices for a selected category and a
path from the root node of the tree to any leaf can be
considered a rule characterizing failure or success, i.e., a
conjunction of choices. In Figure 1, nodes are
characterized by the relationships between triangle sides.
Node (4), for example, captures all the (abstract) test
cases where s1 = s2 and s3 = s1 (Equilateral triangle). It
is a terminal node predicting failure: in this leaf, the
number of failing test cases is higher than the number of
passing test cases. Our goal when building the tree is to

Carleton University, TR SCE-07-04, Version 2 April 2007

5

obtain leaves that are as consistent as possible, i.e., which
contain test cases that either mostly passed or failed. This
is one of the objectives of the C4.5 algorithm. Figure 1
depicts a rule for one of the paths where s1=s2 AND
s3=s1 predicts failure (Fail).

4. Statement Ranking Strategies

In this section, we introduce several statement ranking
strategies. We first revisit statement coloring according to
Tarantula’s approach (Section 4.1). We then describe
how we adjust Tarantula’s ranking based on a C4.5
decision tree, which is itself built on an abstract test suite
or test specification (Section 4.2), in order to account for
the diversity of execution conditions under which
statements are involved in failing test cases.

4.1. Revisiting Tarantula

In order to facilitate the precise and concise definition
of our methodology, we need to define and formalize a
number of basic concepts.

The set of executable statements of the program P
being tested and corrected is referred to as S. T is the test
suite devised for testing program P (set of test cases).
TF∪TP=T where TF is the set of failed test cases (TF⊆T)
and TP is the set of passed test cases (TP⊆T): TF∩TP=∅.
S(t) denotes the statements executed (covered) by test
case t, where t∈T: S(t)⊆S.

Ri denotes a specific rule learned by the C4.5
algorithm. The set of rules is denoted by R, where Ri∈R.
RF (resp. RP) is the subset of rules that classifies test cases
as Fail (resp. Pass): RF∩RP=∅, RF∪RP=R.

The set of test cases covered by rule Ri is referred to as
T(Ri): T(Ri)⊆T. If i<>j, T(Ri)∩T(Rj)=∅. This latter
constraint is due to the partitioning nature of the C4.5
algorithm. Test cases in T(Ri) can pass or fail. Following
the same notation as above, T(Ri)=TF(Ri)∪TP(Ri) where
TF(Ri) and TP(Ri) are the failing and passing test cases
covered by rule Ri, respectively. The set of statements
executed by a rule Ri, i.e., executed by the test cases
covered by Ri, is referred to as S(Ri): () ()

()
U

iRTt
i tSRS

∈
= .

Following the above formalism, the Tarantula color of
any statement s in the code is Color(s) = passed(s) /
(passed(s)+failed(s)) where passed(s) and failed(s) are
the percentages of passing and failing test cases that
execute statement s respectively (Color(s)∈[0,1]):

- passed(s) = |{ t∈TP, s∈S(t)}| / |TP|,
- failed(s) = |{ t∈TF, s∈S(t)}| / |TF|.
A small value for Color(s) suggests s is a suspicious

statement. When statements are not covered by any test
case, the authors in [6, 7] states that a value of zero
should be assigned to Color(s). (Note that this is what the
description of Tarantula suggests [6, 7], although the
running example used by the authors suggests that, on the
contrary, uncovered statements are not ranked.) However,
this makes no theoretical sense as there is no information
to indicate that the statement is likely to be fault-prone. In
fact, no fault causing the observed failures can possibly
be located in uncovered statements. This situation is of
practical importance as the presence of multiple faults
often prevents certain statements from being executed. In
our case study, we will discuss a stepwise debugging
process to address this issue of uncovered statements
(Section 5).

The original Color(s) formula presented above can be
re-expressed to demonstrate that the statement ranking
only depends on the ratio |TF(s)|/|TP(s)|, where TP(s) and
TF(s) are the set of passing and failing test cases that
execute statement s respectively.

()
()

()
()
() ||

||*
||
||1

||
||*

||
||11

sT
sT

T
T

sT
T

T
sT

sColor P

F

F

P

P

P

F

F +=+=

Since TP/TF is constant for a given test set and program
version, the ranking of statements, which is ultimately
used to focus debugging, exclusively depends on the
proportion of test cases that fail and pass when executing
a specific statement s. Though this makes intuitive sense,
there are two problems with this formula: (1) Test cases
may fail due to different faults and therefore whether a
statement s is covered by several failing test cases is not
relevant, (2) redundant test cases that execute the system
in identical or similar conditions may artificially affect
the ranking.

Another issue is related to how Tarantula rankings
were evaluated (Section 2). Ideally, we would like to
assess the cost-effectiveness of rankings. In other words,
we want to be able to compare some measure of cost and
fault detection. To do so we use a scatterplot of
percentages of statements verified (a surrogate measure
for cost) versus percentages of faults contained in those
statements (effectiveness) to compare various statement
ranking methods in terms of cost-effectiveness. Though
this was not done in the original studies, this will be the
basis for our case study analysis.

Also related to evaluation is whether each fault should
be considered in isolation or whether all faults should be
considered in a single program. Tarantula has originally

equals(s1,s2)
(1)

equals(s3,s1)
(2)

equals(s2,s3)
(3)

Fail
(4)

Pass
(5)

Pass
(6)

Pass
(7)

s1=s2 s1>s2

s3=s1 s3>s1 s2=s3 s2>s3

Rule: s1=s2 and
s3=s1

Figure 1 Structure of decision tree and rules

Carleton University, TR SCE-07-04, Version 2 April 2007

6

been used on faulty program versions with a single fault
[6, 7] and found to be effective at pinpointing faulty
statements on such faulty programs. When used on
multiple-fault programs, Tarantula’s effectiveness has
shown to decrease [7], probably for the reasons we
mentioned above. As acknowledged in [7], this deserves
further analysis and is important as it is probably more
realistic to perform such studies with multiple faults. This
issue is the main focus of the current paper.

4.2. Ranking Statements Based on C4.5 Rules

In this section we present the rule-based statement
ranking (RUBAR) method. We first explain the basic
principles of using C4.5 rules for deriving a ranking and
then explain how we select a subset of rules based on all
the rules available in the decision tree.

4.2.1. Heuristic Assuming we have a large abstract test
suite, we should be able to generate a C4.5 decision tree
where each leaf corresponds to a rule predicting either
Pass or Fail. The data set on which to build the tree would
then be a set of instances, each corresponding to a test
case that is known to pass or fail. The attributes to be
selected for the tree construction are pairs (category,
choice) characterizing the specification of each test case.
Each path from the root of the tree to a leaf represents a
rule characterized by conditions on (category, choice)
pairs. Each leaf in the tree corresponds to a partition of
the data set of test case instances. A rule leads to a Fail
prediction when the instances in its leaf represent a
majority of fail test cases, and Pass otherwise. Therefore,
a C4.5 rule classifies a set of test cases with similar input
conditions and same test results.

To understand the heuristic we are going to follow, let
us first focus on Fail rules and take the example of a
particular rule Ri∈RF. If we assume the probability of
failure associated with Ri is very high, then what this
means is that (nearly) all the test cases in T(Ri) fail under
the same or similar conditions. What this suggests is that
(nearly) all of the test cases fail due to similar reasons
(faults). This in turn can be used to safely rank statements
using a strategy similar to Tarantula as all test cases
failing within a rule can be safely assumed, in most cases,
to fail due to the same fault(s). We thus obtain a ranking
per Fail rule that must then somehow be combined with
the ranking of other rules to obtain a final ranking.

Within a rule, the higher the number of failing test
cases covering a statement, the more suspicious the
statement. Assuming that TF(Ri)={t1, t2, t3}, the statements
executed by these three test cases are depicted in Figure
2. According to the above hypothesis, the statements in
D1 (i.e., covered by all three test cases t1, t2, and t3) should
be more suspicious than those in D2, D3, or D4. On the
contrary, the statements in D4 should be the safest of all.

If Ri were a Pass rule, we would obtain the opposite
result: the statements in D1 would be the safest and those
in D4 would be the most suspicious. This example
illustrates how for each rule we can obtain a partial
ordering of statements.

4.2.2. Computing a Statement Ranking To implement
the above heuristic, we must define a mechanism to
combine the ranking of all rules for a given statement.
Proceeding with this goal in mind, a statement will be
assigned a negative (resp. positive) weight if it is covered
by a Fail (resp. Pass) rule. A high absolute weight value
implies that a statement is executed by most of the test
cases in the rule. Weight absolute values are normalized
within [0, 1] in order to give equivalent weight to all
perfect rules, i.e., rules which contain only test cases that
either fail or pass. However, if a rule contains test cases
with inconsistent Pass/Fail behavior, the maximum
absolute weight a rule can contribute will therefore be
below 1 and determined by the percentage of test cases it
contains in the Fail/Pass category it predicts. The fact that
rules should contribute to the extent of the consistency of
their test cases’ behavior should be intuitive: less
consistent rules have less influence on the final ranking.
We have also considered weighting the rules’
contributions according to their number of test cases, but
this would make the results sensitive to redundant test
cases, as discussed above in the case of Tarantula, and
would make rarely executed faults difficult to find.
Assuming that Weight(Ri,s) and Weight(s) denote the
weight of statement s for rule Ri and the overall weight of
statement s, respectively, we obtain1:

Weight(Ri,s)=-|T(s)∩TF(Ri)|/|T(Ri)|, when Ri∈RF
Weight(Ri,s)=|T(s)∩TP(Ri)|/|T(Ri)| , when Ri∈RP

∑
∈

=
RR

i
i

sRWeightsWeight),()(

This can be visualized as a matrix (Table 1) where
columns are statements and rows are rules. The matrix
contains all the weights of each statement for each rule,
all within [-1, 1] as defined above. The last row
represents the sum of all rule weights for a given
statement, which can then be used to rank statements as

1 In case one needs to rank a statement that is not covered, we set its

weight to 0: a negative weight is suspicious, a positive weight is safe,
and for a weight of 0 we cannot conclude.

D1

D2

D3

D4

S(t3)

S(t2)

S(t1)

Ri∈RF

Figure 2 Statement divisions by test cases

Carleton University, TR SCE-07-04, Version 2 April 2007

7

depicted in Figure 3: Statements with lower weight are
ranked first, to follow Tarantula’s convention for
Color(s).

Table 1 Matrix of statement weight
 s1 s2 s3 … so

RP1 1 0.01 1 … 0.5
… … … … …
RPm 1 1 0.8 … 0.1
RF1 -1 -1 -1 … -1
… … … … … …
RFn -1 -1 -0.8 … 0
sum -22.1 -18.7 0.06 … -3.36

4.2.3. Rule Selection. A last practical issue is to
determine which rules to consider among all the ones
identified in a C4.5 decision tree. In order to only account
for accurate rules, it seems logical to select rules that are
above a certain probability of correct classification
(Fail/Pass). We should also consider rules that are based
on a large enough number of instances (abstract test
cases) in order to avoid classifications that are due to
chance. Deciding about such selection thresholds is of
course subjective, but it can be done so as to obtain a
reasonable number of rules to base the ranking on and
will be dependent on how accurate the rules are overall
for the specific test suite under consideration. In our case
study we select rules with a probability of correct
classification above 0.8 and a number of instances above
10, resulting in the selection of 35 Fail rules and 57 Pass
rules.

5. Case Study

We first describe the system used as a subject and the
settings and design of the case study (Sections 5.1 and
5.2). We then describe the results of applying C4.5
decision trees on our test suite (Section 5.4). Last we
report on the relative cost-effectiveness of Tarantula and
the method we proposed in Section 4 (Section 5.5).

5.1. The Space program

The Space program was originally developed by the
European Space Agency, and first used in a software
engineering study by Pasquini et al. [13]. It has
subsequently been used in other experiments, and in
particular in the initial evaluation of Tarantula [7]. Space
allows the user to describe the configuration of an array
of antennas using a specific array definition language
(ADL). It reads a text file containing ADL statements,
checks its conformance to the ADL grammar as well as
specific consistency rules, and performs other
computations. It is a 5905-NLOC C program. (See [21]
for further details.) During “testing and operational use”
of the program, 33 logical faults were identified and
eliminated, and the details of the fault-fixing changes

were preserved so that the faults could be selectively re-
introduced. Vokolos and Frankl [19] used the program for
a study in which they compared the effectiveness of
regression test selection strategies. For that study, they
generated 10,000 test cases using a randomized input
generation tool. Rothermel et al. [18] later added enough
test cases to ensure that each executable Decision was
covered by at least 30 test cases in each direction; this
procedure added 3,585 test cases to the pool. The
resulting test pool covers 90, 85, 85, and 80 percent of all
Blocks, Decisions, C-Uses, and P-Uses present in the
program, respectively. The total number of blocks,
decisions, c-uses, and p-uses are 2995, 1191, 3733, and
1707, respectively.

During the course of their research, Rothermel et al.
[18] identified and eliminated five more faults, bringing
the total number of versions of the program to 38;
however, they found that three of the original versions did
not exhibit faulty behaviour, reducing the number of non-
equivalent versions to 35. We obtained the program,
faulty versions and test pool from the Galileo Research
Group Subject Infrastructure Repository at the University
of Nebraska - Lincoln.

5.2. A multi-fault version of Space

We randomly selected 15 of the 35 original logical
faults for our study, avoiding the versions not exhibiting
any faulty behavior. We also left out logical faults that
involve problems in the initialization statements.
Tarantula has been shown to not perform very well with
such faults and, though such faults will need to be
investigated in the future, we wanted to compare RUBAR
and Tarantula on types of faults targeted by the latter. We
then built one faulty version of Space by introducing, in
the correct version, the 15 logical faults, i.e., 33 faulty
statements. The rationale was to simulate a realistic
situation where a program contains more than one fault.
At the same time, the rationale for not including all the 35
original faults was to obtain a balanced number of failing
and passing test cases. The failing rate of test cases on a
faulty version including the 35 faults is 95.5%, whereas
the rate is 47% on the faulty program containing the 15
selected faults. Future work will investigate ways to deal
with high failing rates and initialization faults.

When executing the 13,585 test cases on our multi-
fault version of Space, we achieve 69.72% statement
coverage (as reported by Coverage Validator 2). The

2 http://www.softwareverify.com/cpp/coverage/index.html

more suspicious less suspicious

<0 0 >0
Weight(s)

Figure 3 Statement Ranking using Weight(s)

Carleton University, TR SCE-07-04, Version 2 April 2007

8

executed statements contain 15 of the 33 faulty
statements. Not reaching 100% statement coverage and
not executing the 33 faulty statements is not surprising
since we have several faults in the program. Some faults
result in the program exiting prematurely, and therefore in
some parts of the code (containing other faults) not being
executed. This, however, can be considered a realistic
situation under which to experiment.

5.3. Case Study Process

The case study followed an iterative process that
aimed at emulating the actual debugging process as
realistically as possible. In the first step only 69%, as
discussed above, of the statements were reachable. Since
the purpose was to identify the location of faults
generating the observed failures, we only ranked the
covered statements as other statements could not possibly
contain the faults causing these failures. In the subsequent
debugging step, we then assumed that the faults in the
first set of ranked statements were corrected and went on
to rank the remaining statements that were left out in the
first step. Though our case study only shows two steps,
there can be as many steps as necessary. We then append
the rankings of all steps and compare the resulting final
rankings of all program statements as determined by
Tarantula and RUBAR. There are, of course, other ways
we could have approached the comparison of these
techniques. We could have assumed, for example, that
only the faults in the first 20% most fault-prone
statements were inspected and corrected. (Investigating
the first 20% of the ranked statements has been shown to
be a reasonable heuristic with Tarantula [7].) This would
have led to two separate iterative debugging processes for
each technique and more iteration steps. This will be
addressed by future work.

Another important aspect of the case study is whether
the decision tree and rules we generate are accurate. This
is of course a prerequisite for such rules to be used for
statement ranking purposes but also to assess whether we
can characterize failure conditions (Fail rules) in an
accurate manner.

5.4. Rule Induction Based on Category Partition

When applying category-partition on the test inputs for
Space, we identified 207 parameters, 83 categories, and

582 choices. (Note that we did not identify constraints, as
required when applying category-partition [12], since we
did not use the technique to devise test cases, but used it
to characterize test cases.)

By applying the C4.5 algorithm on the initial version
of Space containing all 15 faults, we obtained 285 rules
(decision tree leaves). The maximum depth of the tree is
12. That is, the longest rules generated have 12 decisions
(conditions) involved. Overall, when performing a cross-
validation procedure [20], we obtain the confusion matrix
in Figure 4. From the matrix, we learn that the C4.5
algorithm misclassified 335 Fail test cases and 550 Pass
test cases as Pass test cases and Fail test cases respec-
tively. For Fail test cases this corresponds to a 91.7%
precision and a 94.7% recall, which is very good. Similar
percentages are obtained for Pass test cases. What this
means is that the rules learned by the decision tree model
in a nearly complete and precise manner the conditions
under which the Space program fails. This result partly
reflects the completeness of our categories and choices.

The Fail probability does of course vary across rules as
well as the number of test cases they cover. Table 2
shows examples of a few Fail rules (F) with their length
(# of conditions), the number of test cases they covered
(TC), and the Fail probability. The rules we show in
Table 2 are the 33 Fail rules that involve more than 10
test cases and achieve a fail probability of at least 80%.
Remember that we need enough instances associated with
rules to obtain accurate fail probability estimates.

 Predicted
 Fail Pass

Fail 6045 335 Actual
Pass 550 6655

Figure 4 Cross validation confusion matrix

As an example, let us look at rule F025 (Table 2). It
has a length of five, i.e., it is made of five conditions. 667
test cases belong to this rule. The failing probability of a
test case satisfying the conditions is 99.55%. Without
going into too many details about the specification of the
Space program, or a detailed description of our
parameters, categories, and choices (i.e., our application
of category-partition), rule F025 indicates that if a test
case:

Carleton University, TR SCE-07-04, Version 2 April 2007

9

1. defines a triangular grid of antennas (condition 1),
2. defines a uniform amplitude and phase of the

antennas (conditions 2 and 3),
3. defines the triangular grid with angle coordinates or

Cartesian coordinates, and a value is missing when
providing the coordinates (conditions 4 and 5);

then, the test case has a failure probability of 99.55%.
As shown in Table 2, many other rules are highly

accurate in predicting failure. Note that such information
can potentially be useful to support debugging as it
characterizes logically and precisely failure conditions.
Since the confusion matrix in Figure 4 suggests the rules
are very accurate, then they can be trusted by a tester
trying to understand when and why the program fails.

5.5. Comparing Rankings

The cost-effectiveness of the ranking of statements
based on Tarantula’s coloring is shown in Figure 5 when
combining the rankings of the two steps of the debugging
process that are required to cover all statements,
following the iterative process described in Section 5.3.
The first step involves all 15 faults and 33 faulty
statements whereas the second step only includes 8 faults

and 18 faulty statements. The X-axis is the percentage of
statements that need to be covered to detect the
percentage of faulty statements on the Y-axis. Each
observation represents a statement which is assigned a
color value and the statements are ranked on the color
value. For example (Figure 5), by visiting the first 10%
(resp. 20%) of the covered statements, a tester will visit
10% (resp. 12%) of the faulty statements. Figure 6 shows
the same curve when using RUBAR for ranking state-
ments: the pattern is visually very different from Figure 5.

In general, it is very clear when comparing Figure 5
and Figure 6 that Tarantula does not perform well as
many of the faulty statements seem to be assigned a
higher color value and are not ranked among the first
statements to be inspected. We believe, for the reasons
discussed previously, that this is due to the incapacity of
Tarantula to handle multiple faults in a program. (Note
that the rankings stop before 100% as this is also the case
for the original test suite.)

On the other hand, the technique we propose based on
C4.5 rules performs much better (Figure 6). We can see a
very sharp increase in the number of faulty statements
covered in the higher 20% range of the ranked statements,
which is roughly the range of practical interest in our
situation, as discussed by Jones et al. [7].

6. Conclusions

This paper describes a new strategy (RUBAR) to
support debugging by ranking statements according to
their likelihood of containing a fault and by identify in a
precise manner the input conditions/properties leading to
failure. The general idea is to analyze test case executions
using a decision tree learning algorithm that tries to
model which conditions lead to test case failure.
Potentially relevant conditions/properties are predefined
using a black-box test technique (Category-Partition).
Each path in the tree then represents a rule modeling
distinct conditions of failures, possibly originating from
different faults, and leads to a distinct failure probability
prediction. Then, in a way similar to the well-known
Tarantula technique, this is used to perform statement
ranking by accounting for the statement coverage of fail

Rules length TC Fail Probability
F109 1 30 100.00%
F025 5 667 99.55%
F104 2 240 98.75%
F106 1 304 98.36%
F105 2 158 97.47%
F107 1 114 97.37%
F009 12 147 97.28%
F010 12 132 96.97%
F003 12 37 94.59%
F004 11 200 94.50%
F012 11 97 93.81%
F005 11 548 93.80%
F070 10 271 93.73%
F069 9 116 92.24%
F087 9 199 91.96%
F016 7 12 91.67%
F086 8 700 91.57%

Table 2 Example Fail rules with Fail
probabilities and test case coverage

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
au

lty
 S

ta
te

m
en

t C
ov

er
ed

0 10 20 30 40 50 60 70 80 90
% of Statement Exectued

Figure 5 Tarantula ranking

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
au

lty
 S

ta
te

m
en

t C
ov

er
ed

0 10 20 30 40 50 60 70 80 90
% of Statement Exectued

Figure 6 RUBAR ranking

Carleton University, TR SCE-07-04, Version 2 April 2007

10

and pass test cases within each rule, assuming that test
cases are likely to fail due to the same faults when
belonging to the same rule. The rankings of all Pass and
Fail rules is then aggregated to form a final statement
ranking to be used by the tester to prioritize her search.
To summarize, our main objectives are two-fold: (1) deal
with programs containing multiple faults and (2) provide
the testers with precise information regarding the
conditions of failure.

A case study was presented to demonstrate the
improvements generated by our approach when compared
to the original Tarantula technique. Results show that
many faulty statements would be inspected much earlier
when using this approach. The difference is clearly of
practical significance.

In addition, though it is harder to demonstrate its
practical value in quantitative terms, the C4.5 decision
tree is also very accurate at modeling the various
conditions of failures, thus helping testers understand
what could be the causes of these failures. Such
conditions are modeled as rules characterizing the input
and output properties of test cases.

Future work includes additional case studies, and the
application of similar ideas to regression testing and
evolving software.

7. Acknowledges

Thanks to all the researchers who worked on and
improved the Space program and artifacts over the years.
Lionel Briand and Yvan Labiche were further supported
by NSERC Discovery grants.

8. Reference

[1] Brun Y. and Ernst M. D., “Finding latent code errors via
machine learning over program executions,” Proc. ICSE,
pp. 480-490, 2004.

[2] Cohen W. W. and Singer Y., “Simple, Fast, and Effective
Rule Learner,” Proc. AAAI/IAAI, pp. 335-342, 1999.

[3] Dallmeier V., Lindig C. and Zeller A., “Lightweight Defect
Localization for Java,” Proc. ECOOP, pp. 528-550, 2005.

[4] Ernst M. D., Cockrell J., Griswold W. G. and Notkin D.,
“Dynamically discovering likely program invariants to sup-
port program evolution,” IEEE TSE, 27 (2), pp. 1-25, 2001.

[5] Hutchins M., Froster H., Goradia T. and Ostrand T.,
“Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria,” Proc. ICSE,
pp. 191-200, 1994.

[6] Jones J. A. and Harrold M. J., “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” Proc.
ASE, pp. 273-282, 2005.

[7] Jones J. A., Harrold M. J. and Stasko J. T., “Visualization
of Test Information to Assist Fault Localization,” Proc.
ICSE, pp. 467-477, 2002.

[8] Jorgensen P. C., Software Testing: A Craftsman's
Approach, CRC Press, 2nd Edition, 1995.

[9] Liblit B., Naik M., Zheng A. X., Aiken A. and Jordan M.
I., “Scalable Statistical Bug Isolation,” Proc. ACM
SIGPLAN PLDI, pp. 15-26, 2005.

[10] Liu C., “Mining Control Flow Abnormality for Logic Error
Isolation,” Proc. SIAM Int. Conf. on data Mining, 2006.

[11] Liu C. and Han J., “Failure Proximity: A Fault
Localization-Based Approach,” Proc. ACM SIGSOFT FSE,
pp. 46-56, 2006.

[12] Ostrand T. J. and Balcer M. J., “The Category-Partition
Method for Specifying and Generating Functional Test,”
Com. of the ACM, 31 (6), pp. 676-686, 1988.

[13] Pasquini A., Crespo A. and Matrelle P., “Sensitivity of
reliability-growth models to operational profiles errors vs
testing accuracy,” IEEE Transactions on Reliability, 45 (4),
pp. 531-540, 1996.

[14] Podgurski A., Leon D., Francis P., Masri W. and Minch
M., “Automated Support for Classifying Software Failure
Reports,” Proc. ICSE, pp. 465-475, 2003.

[15] Quinlan J. R., “Learning logical definitions from relations,”
Machine Learning, 5, pp. 239-266, 1990.

[16] Quinlan J. R., C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993.

[17] Renieris M. and Reiss S. P., “Fault Localization with
Nearest Neighbor Queries,” Proc. ASE, pp. 30-39, 2003.

[18] Rothermel G., Untch R. H., Chu C. and Harrold M. J.,
“Prioritizing test cases for regression testing,” IEEE TSE,
27 (10), pp. 929-948, 2001.

[19] Vokolos F. I. and Frankl P. G., “Empirical evaluation of
the textual differencing regression testing technique,” Proc.
ICSM, pp. 44-53, 1998.

[20] Witten I. H. and Frank E., Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufman, 2005.

[21] Wong W. E., Horgan J. R., Mathur A. P. and Pasquini A.,
“Test Set Size Minimization and Fault Detection Effective-
ness: A Case Study in a Space Application,” Software
Engineering Research Center, Report TR-173-P, 1997.

[22] Zeller A., Why Programs Fail: A guide to Systematic
Debugging, Morgan Kaufman, 2005.

