
Carleton University, TR SCE-07-02, Version 2 April 2007

1

Multi-Objective Genetic Algorithms to Support Class Responsibility
Assignment

 Michael Bowman Lionel C. Briand Yvan Labiche
Software Quality Engineering Laboratory

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

{mgbowman, briand, labiche}@sce.carleton.ca

Abstract

Class responsibility assignment is not an easy skill to
acquire. There is ample evidence that this is hard to teach
and apply. Though there are many methodologies for
assigning responsibilities to classes, they all rely on
human judgment and decision making. In this paper, our
objective is to provide decision-making help to re-assign
methods and attributes to classes in a class diagram. Our
solution is based on a multi-objective genetic algorithm
(MOGA) and uses class coupling and cohesion
measurement. Our MOGA takes as input a class diagram
to be optimized, typically produced during the analysis
phase of software development and evolution (i.e., a
domain model) in the context of Model-Driven
Development, and suggests possible improvements to the
diagram. The choice of a MOGA stems from the fact that
there are typically many evaluation criteria that cannot
be easily combined into one objective, and several
alternative solutions are acceptable for a given OO
domain model. This article presents our approach in
details, our decisions regarding the multi-objective
genetic algorithm, and reports on a case study. Our
results suggest that the MOGA can help correct
suboptimal class responsibility assignment decisions.

1. Introduction

Class responsibility assignment is often identified as
the most important learning goal in object-oriented
analysis and design (OOAD) since it “tends to be a
challenging skill to master (with many “degrees of
freedom” or alternatives), and yet is vitally important.”
[19] There is indeed evidence that this is hard to teach
and apply (e.g., [31]). Not only this is vital during initial
analysis/design phases, but also during maintenance when
new responsibilities have to be assigned to (new) classes,
or existing responsibilities have to be changed (e.g.,
moved to other classes). Though there are many
(incremental and iterative) methodologies to help assign
responsibilities to classes (e.g., [7]), they all rely on
human judgment and decision making, primarily based on
heuristics. In this paper, our objective is to provide
decision-making help for class responsibility assignment

in an analysis or early design UML class diagram. Our
work takes place in the context of Model Driven
Architecture/Development (MDD) [17], whereby class
responsibility assignment is first performed when creating
(or modifying) the Platform Independent Model (PIM)
before the PIM is automatically transformed into a
Platform Specific Model (PSM), which will eventually be
the basis for code generation. Note that in the MDD
context, software evolution consists in changing models,
not code, which is then re-generated. In this paper, we
first focus on diagrams exclusively containing domain
classes (the PIM), which are often referred to as analysis
or domain models and which are usually part of early
Analysis steps [19]. Future work will explore similar
solutions for lower-level design class diagrams.

Our work bears some similarity to refactoring.
Although most of the work in this area has considered
source code refactoring, there is a trend to also consider
refactorings at higher levels of abstraction, such as
refactorings of UML models [22]. There are however
important differences between our approach and UML
refactorings, as further discussed in Section 2.

Our approach is based on a multi-objective genetic
algorithm [32], uses class coupling and cohesion
measurement [5, 6], and aims at providing interactive
feedback to designers. The genetic algorithm (GA) takes
as input a class diagram to be optimized, specifically
information about method and attribute dependencies
which can be extracted form other UML diagrams, e.g.,
Sequence diagram, OCL contracts. It also accepts user
defined constraints on what can and cannot change in the
class diagram. It then evaluates the class diagram based
on multiple, complementary measures of coupling and
cohesion, and suggests possible improvements to the
diagram using these measures as evaluation criteria. The
GA provides alternative solutions to the user for her
perusal and may ask for feedback to get further guidance,
though the latter is not addressed in this paper. The goal
of the GA search is therefore to discover optimal
assignments of attributes and methods to classes in
regards to various aspects of coupling and cohesion, thus
leading to a more maintainable model [5], while
accounting for user defined constraints on the class
diagram.

Carleton University, TR SCE-07-02, Version 2 April 2007

2

Our main motivation for using the more complex
multi-objective GAs is practical and is based on the
recognition that it is very difficult, in our application
domain, to combine the many criteria used to assess an
analysis class diagram into one unique fitness function.
Furthermore, by allowing the user to specify some
constraints on the model, along with interacting with the
GA heuristic itself, the search will be guided towards an
optimal class diagram that will be based on both coupling
and cohesion and additional designer inputs. The
motivation is once again practical as we recognize the fact
that, no matter how complete our list of objectives and
fitness functions, there will always be additional practical
considerations that the designers will need to account for
when selecting a specific solution.

The rest of the paper is structured as follows. Section 2
describes related work. Sections 3 to 5 provide details
about our approach, specifically our measurement of class
diagram quality, our operators for changing a model, and
our use of a multi-objective GA. A case study is
described in Section 6 and conclusions are drawn in
Section 7.

2. Related Work

A wide range of possible applications of meta-
heuristic search techniques, such as GAs, to the field of
software engineering is discussed in [8], e.g., the
maintenance and re-engineering of software using
program transformations. This idea is expanded upon in
[23] where the authors use a simulated annealing
algorithm to automatically improve the structure of an
existing inheritance hierarchy. The design measures are
expressed as a sum of weighted objectives in order to
measure the designs and suggest improvements. This is
further expanded in [28], where the authors use a GA to
automatically determine potential refactorings of a
(reverse-engineered) class structure, not just an
inheritance hierarchy. The authors consider a subset of
Fowler’s refactorings [12]: moving a method from a class
to another class, moving methods/attributes up/down in
an inheritance hierarchy. Applying these refactorings is
constrained as the authors consider specific, predefined
code refactorings, thereby limiting the search space for
the assignment of class responsibilities. For instance, if a
method moves, call sites have to be updated and therefore
the caller needs to have some visibility to where the
method has been moved. Therefore, a non-static method
can only be moved from class X to class Y if there is
already a relationship (association through attribute,
dependency through parameter) between X and Y. We
will see that we do not have such constraints as we work
on analysis class diagrams instead of the source code. As
a fitness function, the paper also uses a sum of weighted
objectives that measures the coupling, cohesion,

complexity and stability of the system’s source code. The
algorithm then searches the source code for the possible
refactorings mentioned above that will improve these
objectives according to the fitness function, and finally
presents these refactorings to the designer as potential
improvements to the system. The focus is to help prevent
code decay.

The above approaches both use a sum of weighted
objectives to balance the influence of various quality
measures on the fitness function. While this is clearly
helpful, it can only take into account one possible,
predetermined tradeoff among objectives, whereas the
Pareto based multi-objective algorithm we use in this
paper [33] is able to present a number of possible
tradeoffs to the designer. We think this is very important
in our context as it is a priori difficult for any designer to
weigh different design properties based on any objective
criteria. Another difference of our paper with these
techniques is that they focus on the prevention of code
decay during an iterative development process whereas
we aim at providing decision aid and improving early
OOAD models.

Refactoring [12] and reengineering [11] are activities
usually performed during maintenance, and driven by the
need to fix the code (more recently, the need to refactor
models has also been recognized [22]) when so-called
“bad-smells” (e.g., a god class) have been identified (e.g.,
using metrics [18]). Although some refactorings [12, 22]
and reengineering patterns [11] change class
responsibility assignment, this is not the main objective of
those activities, as they are problem-driven (e.g., by
specific “bad-smells”). Instead, our approach specifically
addresses the class responsibility assignment problem,
without being driven by the search of specific anti-
patterns, and does so at the model level during early life-
cycle phases. It is therefore more general in the sense that
it will address a larger number of class responsibility
assignment problems.

Although the Strength Pareto (SPEA2) approach has
been recently introduced in [33], there are several
applications of the technique already reported [4, 16, 21,
25].

3. Quality Measurement

3.1 Basic Definitions

The information we are using to optimize the domain
model are dependencies among methods and attributes.
These dependencies need to be defined precisely as they
will constitute the basis of our coupling and cohesion
measurement in Section 3.2.

Let us first define our basic notation by defining a
number of sets. C is the set of classes in the assessed class
diagram. M() and A() refer to the sets of methods and

Carleton University, TR SCE-07-02, Version 2 April 2007

3

attributes of a class, or a set of classes (e.g., M(C) and
A(C) refer to all the methods and attributes in the
assessed class diagram, respectively). (Note that A(c)
contains attributes inherited by class c.) For a class c,
M(c) is the set of newly defined and overridden methods
in c. AR(m) refers to the set of attributes directly accessed
(read or updated) by a method m. For the set of methods
invoked by a method m, we differentiate methods that are
statically invoked from those that are polymorphically
invoked by m: denoted SIM(m) and PIM(m),
respectively, with SIM(m) ⊆ PIM(m). A method m’ in
class c’ is statically invoked by m when m invokes m’ on
an instance of type c’. In addition m’ can be invoked on
any instance of any subclass of c’ that overrides m’ and
these invocations are referred to as polymorphic. Calls
within the same class are denoted as LSIM, or local SIM1.
A “*” appended to the above set names denotes indirect
accesses, invocations, or dependencies.
Definition 1. Method–Attribute Dependency (DMA)

A direct method–attribute dependency exists between
m∈M(C) and a∈A(C) if a∈AR(m). This is denoted
DMA(m,a).

Definition 2. Method–Method Dependency (DMM)
A direct method–method dependency exists between
m1∈M(C) and m2∈M(C) if m2∈PIM(m1), and is denoted
DMM(m1,m2).
In addition to methods, attributes, and their

dependencies, we need to consider three types of
relationships that we expect to be part of a typical class
model: association, generalization, and usage dependency
relationships [19]. Note that we do not differentiate
between associations, aggregation, and composition
relationship, the two latter ones being a specialization of
the first2. Association ends will be handled like attributes,
which is not surprising as both are usually implemented
as references to instances. In other words, a bidirectional,
binary association will translate into two attributes, one in
each class at its ends. Each association end can therefore
move from one class to another during the search.
Association ends are however only accounted for in
cohesion measures (see below). We therefore need to
distinguish them from attributes: AE() refers to the set of
association ends of a class, or a set of classes; AER(m)
refers to the association ends directly accessed by method
m.
Definition 3. Local (in-) direct access (LR)

An (in-) direct local access dependency exists between
m∈M(C) and a∈A(C)∪ AE(C) if m and a are in the

1 m'∈LSIM(m) ⇔ m’∈SIM(m) ∧ ∃c∈C, m∈M(c) ∧ m’∈M(c)
2 It could be argued that a composition usually entails more coupling

than associations and aggregations, and that we fail to account for that.
However, we consider that the higher coupling entailed by a
composition will translate into more method-method and method-
attribute dependencies, and is therefore indirectly accounted for.

same class and m (in-) directly accesses a within its
class. This is denoted LR(m,a). More formally:
(a∈AR◦LSIM*(m) ∨ a∈AER◦LSIM*(m)) ∧ ∃c∈C,
m∈M(c) ∧ (a∈A(c)∪AE(c))
Generalization relationships will not change during the

GA search but are nevertheless accounted for when we
modify the class model. This complex issue is discussed
in Section 4.2. Usage dependencies among classes are
already accounted for when we consider Method-
Attribute and Method-Method dependencies as the former
normally imply the latter.

The dependency information on which we rely can be
retrieved from UML models [24], and in particular
interaction diagrams and operation contracts which can be
expressed in the Object Constraint Language (OCL).
These are typical components of an analysis or design
model expressed with the UML [7]. For example,
sequence diagrams tell us what methods can invoke other
methods at run-time, OCL operation contracts suggest
what attributes (and association ends) can be accessed by
which methods, and class diagrams tell us about the M()
and A() sets. To summarize, although our goal is to
improve class responsibility assignment, as modeled by a
class diagram, we still need to rely on information
provided by other components of a UML model.

3.2 Coupling and Cohesion Measurement

Many measures for cohesion and coupling have been
proposed in literature. Frameworks to support the
selection of appropriate measures in specific application
contexts have been proposed [5, 6]. Using these
frameworks we selected three coupling measures based
on the dependencies defined previously. Our coupling
measures are defined at the class level, though the entire
class diagram coupling is computed to assess
improvements. We first re-express dependencies as a set
of interactions between pairs of classes. (Note that we
only account for methods defined in a class, i.e., M(), the
one inherited being accounted for in the context of the
parent class.)
Definition 4. Set of Method–Attribute Interactions (MAI)

For two classes c1∈C and c2∈C, the set of Method
Attribute Interactions between c1 and c2 is defined as

U
)(

221
1

)},()(|),{(),(
cMm

amDMAcAaamccMAI
∈

∧∈=

Definition 5. Set of Method–Method Interactions (MMI)
For two classes c1∈C and c2∈C, the set of Method
Method Interactions between c1 and c2 is defined as

UU
)2()1(

)},(|),{()2,1(
cMmcMm

mmDMMmmccMMI
∈′∈

′′=

The two coupling measures below are based on the
summation of the interactions between classes which are
not in the same generalization hierarchy, i.e., the two

Carleton University, TR SCE-07-02, Version 2 April 2007

4

classes do not have any common ancestor (denoted
Others(c) for any class c).
Definition 6. Method–Attribute Coupling (MAC)

For a given class c1∈C, Method–Attribute Coupling
MAC(c1) counts all MAI from class c1 to classes that do
not have a common ancestor with c1:

∑
∈

=
)(

211
12

|),(|)(
cOthersc

ccMAIcMAC .

Definition 7. Method–Method Coupling (MMC)
For a given class c1∈C, Method–Method Coupling
MMC(c1) counts all MMI from class c1 to classes that
do not have a common ancestor with c1:

|),(|)(
)(

211
12

∑
∈

=
cOthersc

ccMMIcMMC .

When method-method and method-attribute
interactions occur within a generalization hierarchy, we
define a specific coupling measure to account for
coupling between siblings and coupling between
ancestors and descendants (but not between descendants
and ancestors since ancestors’ fields are inherited, and
such interactions therefore pertain to cohesion rather than
coupling). These classes are denoted OthersGen(c) for
any class c.
Definition 8. Method–Generalization Coupling (MGC)

For a given class c1∈C, Method–Generalization
Coupling MGC(c1) counts all MMI and MAI from class
c1 to classes that are in the same generalization as c1 but
are not ancestors of c1:

∑
∈

+=
)(

21211
12

),(),()(
cOthersGenc

ccMAIccMMIcMGC .

For the fitness value of our GA, we obtain a class
diagram coupling measure by summing coupling values
for all the classes.

Similarly, for cohesion measurement, we measure
cohesion at the class level, consider the method-based
dependencies defined above (DMA, DMM, and LR). It is
not always meaningful to expect every class member to
be directly related to another. By considering indirect
dependencies between class members, the assumption is
that, within a class, each class member must depend on all
of the other class members directly or indirectly through
other members to achieve perfect cohesion.

There are two aspects related to inheritance that should
be taken into consideration in the analysis of cohesion.
Within an inheritance hierarchy, each child class is
representing a specialized aspect of a given domain
concept. The classes in the hierarchy represent a single
abstraction, at various levels of specialization. Then, in
order to assess how cohesive a class is, both the methods
and attributes that are locally defined or inherited within
that class must be considered. Furthermore, since it is not
possible to polymorphically invoke a method or attribute
of the same class, there is no need to consider
polymorphic dependencies to measure the cohesion of a
class.

Last, we should determine how to handle accessor
methods and constructors. This is an issue, since accessor
methods can cause problems for measures which count
references to attributes [5]. The reason is that accessor
methods can artificially lower the cohesion value by
hiding a methods access to an attribute. However, because
we consider indirect dependencies, the use of accessor
methods does not hide, in our specific context, the
attribute reference. Constructors are not considered since
the analysis and early design models typically do not list
them.

The first measure we consider is based on the concept
of cohesive interactions. A cohesive interaction is defined
as a (in)direct method-attribute or method-association end
dependency in a class (LR) as it is considered to
contribute to the cohesion of that class. This measure is
normalized, as all cohesion measures should be [5], and is
computed as the percentage of cohesive interactions in a
class relative to all possible cohesive interactions in the
same class.
Definition 9. Cohesive Interaction (CI)

For a given class c∈C, the set of cohesive interactions
CI(c) is equal to the set of all indirect method-attribute
or method-association end dependencies between the
methods m∈M(c) and the attributes a∈A(c) or
association-ends a∈AE(c).

() ()U
)(

)},(|),{()(
cMm

amLRcAEcAaamcCI
∈

∧∪∈=

Assuming CImax(c) is the set of all possible cohesive
interactions in the class, accounting for (in)direct
method–attribute and method-association end
dependencies, we define the ratio of cohesive
interactions:
Definition 10. Ratio of Cohesive Interactions

The ratio of cohesive interactions (RCI) for class c∈C is
the number of cohesive interactions in class c, over the
number of possible such interactions: RCI(c) = |CI(c)| /
|CImax(c)|.
Note that when no method (or no attribute) is present

in a class, we set its RCI measure to 0. This is to penalize
data container classes (i.e., classes with only attributes)
and service classes (i.e., classes with only methods). In
order to compute the cohesion value across the entire
class diagram the RCI values for all the classes in C are
averaged.

We also use a complementary measure, tight class
cohesion [5], which is based on the concept of common
attribute (or association-end) usage. The idea is that
methods which use common attributes (association-ends)
should be together in the same class, and represent a
single abstraction. We extended this notion to also
include methods that invoke one another, in order to
account for classes without attributes, and refer to this as
common usage. Common usage occurs when two
methods of a class (in)directly use a common attribute (or

Carleton University, TR SCE-07-02, Version 2 April 2007

5

association end) of that class, or when one method
(in)directly invokes the other.
Definition 11. Common usage (cu)

The predicate cu(m1,m2) is true if m1,m2∈M(c)
(in)directly use an attribute or association end of class c,
or if m1 (in)directly invokes m2:

()
()

()
()

() ()()

()⎪⎩

⎪
⎨
⎧

∈

∅≠∪∩∩
⇔ ∪∈∪∈

1
*

2

2
*

21
*

1)2,1(
mLSIMmor

cAEcAmLRmLR
mmcu mLSIMmmmLSIMmm

UU

The tight class cohesion metric is then defined as the
percentage of pairs of methods of a class with common
usage.
Definition 12. Tight class cohesion (TCC)

Tight class cohesion (TCC) is the pairs of methods of a
class c∈C with common usage. (It is normalized.)

() () () (){ }
() ()()1

,,|,
2 21212121

−

∧≠∧∈
=

cMcM
mmcummcMmmmm

cTCC

When a class contains less than two methods, TCC is
undefined. As for RCI, to measure TCC across a class
diagram, the TCC class values are averaged over all of
the classes in the diagram.

To summarize, our GA fitness function is based on
five measures capturing different and complementary
aspects of coupling and cohesion.

4. Change Model

As stated above, the goal of our GA is to optimize an
analysis or domain model by finding an optimal
assignment of methods and attributes to classes. To
perform a search for such assignment, it is necessary to
define the search space by determining possible changes
to the model.

4.1 Methods, Attributes, and Association Ends

Since the search is based on existing class diagram
information on method-method, method-attribute, and
method-association end dependencies, this information
cannot, at this stage of our research, be subject to change.

The change model also does not include the addition
and removal of methods, attributes, or association-ends. It
would be conceivably possible to add and remove
methods, based on OCL contract information. Existing
methods and dependencies could be broken up, and new
methods added. Likewise, methods could be removed,
and their responsibility and dependencies merged into the
other methods. However, this is outside the scope of the
current paper.

The main mechanism for our search of better domain
models is therefore to move methods, attributes, and
association ends from one class to another, thus affecting
the measures of coupling and cohesion. Our
implementation also allows the user to specify that certain
class members conceptually belong together and can only

be moved together, thus representing related concepts. In
particular, the methods that simply use the “reference”
corresponding to an association end (e.g., adding, or
removing an element to the collection represented by the
association end) are grouped together with the association
end. Note that, once method-method, method-attribute,
and method-association end dependencies have been
identified (e.g., from UML documents), only the
ownership of methods and attributes matters and we do
not need to know about attribute types and method
signatures.

4.2 Classes and Relationships

Since our goal is to determine the optimal assignment
of methods, attributes, and association ends to classes, we
have to acknowledge that this may result in some new
classes being added or existing classes being removed.
More specifically, classes should be removed from the
model when they are empty, as they serve no purpose any
longer. The addition of classes is a necessity since
optimal class assignments may require classes that were
not identified in the first place. Our strategy is, when a
method, an attribute, or an association end is moved, to
allow a move to a new class. Note that finding a
meaningful name for every created class will be the
responsibility of the designer who, in the end, is presented
with the GA solution(s).

Though association ends are handled like attributes
and usage dependencies are already accounted for
through method-method and method-attribute
dependencies, generalization relationships are treated
differently in the change model. Let us first consider
moving any method that belongs to a generalization
hierarchy, including abstract methods. This would have
an important impact on the dependencies we have to
maintain. Client methods invoking a moved abstract
method would then have to invoke concrete
implementations of the abstract method in child classes.
Additionally, the class receiving the moved method
should then either provide an implementation of the
method (which would then become concrete) or have
concrete implementations of the abstract method in its
own (existing or to be created) child classes (i.e., we
would create methods). Alternatively, we could create a
new generalization hierarchy that would receive the
abstract method and all its concrete implementations in
child classes.

However, at this initial stage of the research, we
consider these changes to the class diagram too complex
and we are not sure of their impact on the search. A
simplifying assumption for this paper, that will be
addressed in future work, is that we limit modifications to
generalization hierarchies to attributes, association ends,
and concrete methods that are not overridden. Other class

Carleton University, TR SCE-07-02, Version 2 April 2007

6

elements in hierarchies cannot be moved during the
search.

4.3 Constraints

Classes cannot be empty. We also require that classes
be involved in at least one dependency, either as a client
or server. None of the classes in the domain model should
be stand alone classes.

In addition to the two constraints listed above, user
constraints must also be taken into account. These
constraints limit the changes that can be performed on the
model by preventing methods and attributes from being
moved. For instance, the user may indicate that some
methods and attributes are conceptually related (though
not necessarily dependent on each other) and should
therefore be moved together. This allows the user to
identify parts of the model that are satisfactory and should
not undergo change, thus limiting the search space for
new solutions. (We already mentioned such a constraint
in Section 4.1.)

5. Multi-Objective GA (MOGA)

The objective of our search is to optimize the coupling
and cohesion of a given class diagram based on five
distinct measures (Section 3.2). However, in order to
address those five objectives at the same time, it may be
necessary to consider tradeoffs between them to find the
best model. This type of problem is referred to as a multi-
objective problem (MOP) [32]. Although a single
objective optimization problem may have a unique
optimal solution, MOPs present a possibly large set of
solutions that, when evaluated, produces vectors whose
components represent tradeoffs in the objective space. A
decision maker is thus required to choose an acceptable
solution (or solutions) by selecting one or more of the
solution vectors.

5.1 Basic Principles

MOPs are mathematically defined in [32] as follows,
where in our context fitness functions are coupling and
cohesion measures and decision variables correspond to
set cardinalities involved in our measures:
Definition 13. Multi-objective Problem (MOP)

A MOP solution minimizes the components of a
vector of fitness functions)(xF

r , where x
r is an n-

dimensional decision variable vector),...,(1 nxxx =
r for

some universe Ω . Formally, a MOP minimizes
))(),...,(()(1 xfxfxF k
rrr

= subject to constraints
Ω∈=≤ xmixgi

rr
,,...,1,0)(.

The objectives being optimized will often conflict,
which places a partial ordering on the search space. This
makes the problem of finding a global optimum in a MOP

an NP-Complete problem. Genetic algorithms are well
suited to the task of solving MOPs, as they rely not on a
single solution but rather a population of solutions. Thus,
different individuals in the population can represent
solutions that are close to an optimum and represent
different tradeoffs among the various objectives.

Key concepts related to MOPs are Pareto optimality,
and range independence.
Definition 14. Pareto Dominance

A vector),...,(1 kuuu =
r is said to dominate),...,(1 kvvv =

r
(denoted by vu

r
p

r) if and only if u is partially less than
v, i.e., iiii vukivuki <∈∃∧≤∈∀ :},...,1{},,...,1{ .

Definition 15. Pareto Optimal Set
For a given MOP)(xF

r , the Pareto optimal set (P*) is
)}()(:|{* xFxFxxP
r

p
rrr
′Ω∈′¬∃Ω∈=

Definition 16. Pareto Front
For a given MOP)(xF

r and Pareto optimal set P*, the
Pareto optimal front (PF*) is defined as:

}|)({ ** PxxFuPF ∈==
rrr

In other words, the Pareto (optimal) front refers to
optimal solutions whose corresponding vectors are
nondominated by any other solution vector. Because a
range of individual solutions are considered in our GA
search, rather than a single solution, it is possible to find
many points in the Pareto optimal set, and thus present the
many possible tradeoffs between the various objectives.
The final decision is left with a decision maker, rather
than the optimization algorithm, with respect to which
solutions to select from the Pareto front.

There are two categories of methods for comparing
objectives in a multi-objective function: range dependent
methods and range independent methods. The effective
range of an objective function is the range of values it can
return which is determined by the objective function
itself, the possible domain of input values, and the
representation of the individual genes.

Our cohesion and coupling measures have very
different ranges: [0, 1] and [0, +∞], respectively. In such
cases, the only way to ensure that all objectives in a MOP
are treated equally by the GA is to ensure that the ranges
of the objective functions are the same, or to ensure that
the objectives are not combined or compared to one
another [3]. So the choice is to make the effective ranges
of all the objectives equal, and then use a range-
dependent method to rank solutions, or a range-
independent method must be used. Range-independent
methods are more widely applicable and range-dependent
methods tend to be more solution specific since the range
of the objective must be altered in order to make them
comparable (e.g., normalized) [3].

Certain fitness functions combine several objective
fitness values into a single fitness value and are referred
to as summation approaches. Others evaluate the fitness

Carleton University, TR SCE-07-02, Version 2 April 2007

7

as a vector of individual objective values using Pareto
dominance and are referred to as vector based
approaches. Summation approaches must rely on
weights to adjust the objectives in order to make the
fitness value meaningful. These weights are typically
subjective and problem dependent, making the
summation based approach not always easy to apply.
Vector based approaches, on the other hand, are range
independent. The objectives are compared on an
individual basis. However, the comparison process of the
individuals tends to be more complex and the search
tends not to converge on single solutions, but rather a
range of Pareto optimal solutions. In this paper, because
there is no meaningful way of normalizing or setting
weights for our various cohesion and coupling measures,
we choose to adopt a vector-based approach.

5.2 The Strength Pareto Approach

There are many vector-based approaches in literature.
VEGA [26] was the first one proposed but its
performance has been shown to be suboptimal compared
to more recent alternatives such as NSGA [30]. NSGA
itself has been shown to be outperformed by SPEA [34].
More recently, improvements to both NSGA and SPEA
have been proposed: NSGA-II [10] and SPEA2 [33],
which have been shown to produce similar results on
some MOPs [33]. The time complexity of NSGA-II is
better than SPEA2, but [33] reports that SPEA2 has
advantages over NSGA-II in higher dimensional
objective spaces (with four objectives and more). This is
why we selected this technique in the case study
presented below. SPEA2 has, however, the highest worst-
case time complexity of all techniques [33] and its
scalability will therefore need to be investigated in the
context of our problem.

The overall algorithm for SPEA2 (Figure 1) can be
briefly described as follows [33]. In Step 2, each
individual i in both the external (archive) set tP and the
population Pt is assigned a strength value S(i),
representing the number of solutions it dominates. Based
on S(i), the raw fitness R(i) is then calculated for each
individual i [33]:

∑
∪∈

=
ijPPj tt

jSiR
f,

)()(where |}|{|)(jiPPjjiS tt f∧∪∈= .

This fitness value is to be minimized: R(i) = 0 is a non-
dominated individual, whereas R(i) is high when i is
dominated by many individuals. Summing strengths
instead of simply counting dominating individuals is a
way to penalize individuals which are in high density
areas of the search space and thus preserve diversity in
the population.

When most solutions still do not dominate each other,
additional density information is needed to discriminate
between individuals with the same raw fitness values.

SPEA2 uses the kth Nearest Neighbor technique [33]. For
each individual i the distances (in the objective space) to
all individuals j in both the external set and the population
are calculated: distances are normalized using the
maximum possible values (that can be computed for the
system being analyzed, as suggested in [21]). Distances
are stored in a list sorted in increasing order, and a density
estimate is computed based on the distance to the k-th
element in the list, denoted by k

iσ , where NNk += .
The density value D(i) corresponding to individual i is
defined by: ()21)(+= k

iiD σ .
Finally, the density is added to the raw fitness value to

give the fitness F(i) for an individual i: F(i)=D(i)+R(i).
In the original SPEA, the clustering algorithm tended

to remove boundary solutions3 [34]. This has been
corrected in SPEA2 by using a clustering method during
the environmental selection (Step 3). The first step is to
copy all non-dominated individuals (F(i) < 1) from the
external set and the population to the external set of the
next generation: }1)(|{1 <∧∪∈=+ iFPPiiP ttt .

If the external set fits exactly into the archive
(NPt =+ || 1) then the environmental selection set is
complete. Otherwise, either the archive is too large
(NPt >+ || 1) or too small (NPt <+ || 1). If the archive is too
small, then the best || 1+− tPN individuals in the previous

3 Boundary solutions are solutions on the Pareto front that show extreme

values for one or more fitness functions.

Inputs: N (population size)

 N (archive size)
 T (maximum number of generations)
Output: A (non-dominated set)

Step 1⎯Initalization:
Generate an initial population P

0
, create an empty archive

(external set) ∅=0P . Set t=0.

Step 2⎯Fitness Assignment:

Calculate fitness values of individuals in P
t
 and tP .

(Described in Section 5.2 as function F())
Step 3⎯Environmental Selection:

Copy all non-dominated individuals in P
t
 and tP to 1+tP .

If size of 1+tP exceeds N then reduce 1+tP by means of

clustering, otherwise if size of 1+tP is less than N then

fill 1+tP with dominated individuals in P
t
 and tP . (See

description in Section 5.2.)
Step 4⎯Termination:
If t≥T then set A to the set of decision vectors

represented by the non-dominated individuals in 1+tP .

Stop.
Step 5⎯Mating Selection:

Perform the genetic algorithm selection operator on 1+tP

in order to fill the mating pool.
Step 6⎯Variation:
Apply recombination and mutation operators to the mating
pool and set P

t+1
 to the resulting population. Increment

generation counter (t=t+1) and go to Step 2.

Figure 1 SPEA2 overall algorithm (from [33])

Carleton University, TR SCE-07-02, Version 2 April 2007

8

archive and population are copied into the new archive. If
the new archive is too large, on the other hand, then the
clustering method needs to be applied, which iteratively
removes individuals from 1+tP until NPt =+ || 1 . At any
given point in the iteration, the individual that has a
minimal cumulative distance to all other individuals in the
archive is removed. In other words, we remove
individuals so as to preserve diversity in the archive.

5.3 Parameters of the Genetic Algorithm

We have seen above that valid changes include
moving attributes and methods between classes, as well as
adding and removing classes. The chromosome
representation must therefore track the attributes and
methods, and the class to which they belong. In order to
do so, each method or attribute in the assessed class
diagram is assigned a gene within the chromosome. The
length of the chromosome will therefore be equal to the
number of class members. Because all of the dependency
information is represented by a dependency matrix, used
for computing cohesion and coupling measures, the
chromosome representation does not need to contain this
information. Chromosomes simply consist of integer
values, where the position of the gene within the
chromosome represents the class member, and the gene’s
integer value denotes their class assignment: e.g., (10, 12,
…) denotes that the 1st class member (represented by the
first gene) belongs to the 10th class and the 2nd class
member (represented by the second gene) to the 12th
class. Using this representation, it is impossible to have
an empty class represented in the chromosome.

Determining the ideal population size for a GA is
challenging but important [2]. For traditional GAs a
variety of adequate population sizes have been suggested
[15]: some recommend a range between 30 and 80 [14],
while others suggest a smaller population size, around 20
and 30 [27]. For MOGA, authors tend to use larger
population sizes than those recommended for single
objective GAs (reported values range from 30 to 80), and
they also increase the population size proportional to the
number of objectives [20, 33]. We follow these
suggestions and use a population size of 64 individuals
per objective.

The archive size also has an important effect on the
performance of the MOGA. In [20] the authors examine
the effect of elitism on the performance of the GA:
Elitism is the extent to which the best individuals are not
only stored permanently, but also take part in the
selection of offspring. They report that strong elitism
together with a high mutation rate should be used to
achieve best performance. Elitism relates, among other
factors, to the size of the archive: If the size of the archive
is large, and then filled by individuals from the
population, then the best individuals have less chances of

being part of the selected offspring. No systematic study
of the impact of the archive size can currently be found in
the literature. Authors however report on archive sizes in
the range of [¼, 4] of the population size [21, 25, 33]. To
keep computation time within reasonable bounds, we
therefore set the archive size to half the size of the
population.

As stated previously, when using an elitism algorithm
such as SPEA2 a high mutation rate is desirable to
achieve optimum performance [20]. The authors suggest
the use of mutation rate based on the length of the
chromosome to achieve an average of approximately five
mutations per chromosome, or 5 / (length) where length is
the length of the chromosome. These findings are
consistent with [29]: mutation rates based on the
chromosome length perform significantly better than
those that are not. Based on these findings, we first used a
mutation rate of 5 / length. But, after experimenting, we
concluded that it was too high and led to unstable results.
We obtained much better results with a significantly
lower rate of 1 / length.

The crossover rate is another determining factor in the
performance of the GA. A crossover rate that is too high
will not allow desirable genes to accumulate within a
single chromosome whereas if the rate is too low, then the
search space will not be fully explored [15]. De Jong [9]
concluded that a desirable crossover rate for a traditional
GA should be about 60%. Grefenstette et al. [14] built on
De Jong’s work and found that the crossover rate should
range between 45% and 95%. Consistent with these
findings, we used a crossover rate of 70%.

In terms of selection, SPEA2 uses a binary tournament
[13] where the fitter individual is selected 90% of the
time, and 10% of the time the other individual is chosen.

We use a 1-point crossover operator [13] as this is
simple and used in both SPEA and SPEA2 where it seems
to work fine based on existing case studies [33]. In terms
of mutation operator, the most obvious mutation is to
randomly change the class that a given attribute or
method is assigned to, assuming equal probabilities for all
classes. This would be done on a gene by gene basis.
When it is determined that a gene’s method or attribute
should be moved into a different class, it is reassigned to
a different class randomly, with an equal probability to
introduce a new class as to assign it to any other existing
class.

For the case study discussed below, we implemented
SPEA2 using the Java Genetic Algorithm Package
framework [1], which is available under the LGPL and
Mozilla Public License.

6. Case Study

The goal of our case study, at a high level, is to
determine whether our GA can help improve an

Carleton University, TR SCE-07-02, Version 2 April 2007

9

analysis/domain class diagram from the point of view of
class responsibility assignments. To assess this in a
objective manner, we need to know what should be the
optimal assignment of the model being improved. This is
why instead of using an existing, imperfect domain model
as a case study, we decided to investigate whether our GA
can fix known, sub-optimal responsibility assignments of
various types and scale resulting from modifying a
known, satisfactory model. Second, in order to get
additional insights in terms of the scalability of the
approach, it is also important to know whether fixing a
complex problem is significantly more expensive (time-
wise) than fixing simpler ones. Third, we want to assess
whether our implementation of SPEA2 can return a
reasonable, manageable number of solutions to the user.
These last two aspects will tell us whether our approach
can scale up to large, significantly suboptimal models. To
the extent possible, these questions have to be answered
in a systematic, controlled, and objective manner. To do
this, we need to select a domain model which we consider
correct (or optimal) with respect to class responsibility
assignment. Then we need to devise a variety of changes,
of various complexity levels, to be applied to the optimal
domain model, thereby generating sub-optimal class
responsibility assignments. The goal of the case study is
then to evaluate whether the GA can return to the known,
original (and optimal) assignment or some other, similar
acceptable solution (there is usually no unique optimal
analysis model).

We therefore selected the ARENA system [7] since it
is designed independently from our research and its
domain model (analysis level class diagram) and other
related information (e.g., sequence diagrams to determine
method-method dependencies) are available.
Furthermore, it was designed by experts and can be
therefore considered a good (optimal) analysis model, a
reference model towards which we want to converge. The
ARENA case study is a framework for building multi-
user, web-based systems to organize and conduct
tournaments (e.g., a Tic Tac Toe tournament). Although
of modest size, the domain model is not trivial4 and
contains 14 classes and 152 class members (methods,
attributes, and association ends). Of these 152 class
members, 49 cannot be moved by our GA as they are
overridden or implemented through generalization
relationships. The 42 remaining elements are grouped in
14 groups with the association ends they manipulate. The
search space, assuming the number of classes does not
change, is therefore all the possible assignments of
movable (grouped) class members (i.e., 152-49-(42-
14)=75) to 14 classes and its size is therefore
considerably large: 1475. An analysis of this model shows

4 The analysis model was completed by adding class members for a

number of use cases that were not initially considered: e.g., we moved
from 112 class members to 152 class members.

a total of 287 dependencies, specifically 63
method−attribute dependencies, 59 method-association
end dependencies, and 165 method−method
dependencies. The coupling and cohesion measurement
values for this model, which represent the baseline on
which we want to improve, are: 99.0 (method−method
coupling), 5.0 (method−attribute coupling), 0.0 (method
generalization coupling), 0.20 (ratio of cohesive
interactions), and 0.24 (tight class cohesion).

We devised several suboptimal modifications to the
original ARENA analysis model. These modifications
were applied to the original model one at a time
(representing relatively simple sub-optimal assignments),
as well as all together to form a larger, more complex
sub-optimal assignment. They were selected to involve
attributes, association ends, and methods, and to involve
both new and existing classes. Each modified ARENA
analysis model was then optimized using our
implementation of the SPEA2 algorithm. We present
below three representative modification examples, and
their combination, and discuss them in detail. For each of
those modifications we also analyzed the number of good
analysis solutions across generations.

One practical issue, both for our experimentation and
in practice, is that MOGAs such as SPEA2 provide a
large number of alternative, non-dominated solutions. It is
therefore necessary to find a way to automatically trim
these solutions in order to obtain a reasonably sized set of
solutions for the designer to further consider. A designer
would do that by specifying a range for cohesion and
coupling measures in order to prune extreme solutions
clearly favoring a specific coupling or cohesion measure
at the expense of the others. That range would be
specified as an acceptable percentage of increase over the
starting coupling value and a similar percentage of
decrease for cohesion. This makes sense as, after all, the
goal is to improve cohesion and coupling, and not to
sacrifice one for gains in the other. For the purposes of
this case study, only solutions that had values of at most
15 for method–attribute coupling, 105 for method–
method coupling, 0 for method generalization coupling,
and at least 0.18 for ratio of cohesive interactions, and 0.2
for tight class cohesion were retained for evaluation and
are referred to as “within-range” solutions. The goal was
to avoid solutions that optimize cohesion at the expense
of large coupling increases. The goal was also to forbid
coupling within generalization hierarchies: between
ancestors and descendants (as this does not make sense)
and between siblings (as this is not common and not
present in the models to be optimized, there is no reason
to introduce any). Admittedly, this is a heuristic and many
unacceptable solutions can still be part of that selected
subset. However, the case study will allow us to evaluate
how effective this is.

Carleton University, TR SCE-07-02, Version 2 April 2007

10

Our SPEA2 implementation was run on the modified
analysis models for 200 generations for all four reported
examples. It was able to quickly recover from the
changes, and bring coupling and cohesion back to values
similar or identical to those of the original ARENA
analysis model. Running on a Pentium 4 3.0GHz
processor with 1GB of RAM, the execution time (for 200
generations) ranged from 46 to 55 minutes5.

Change 1 consists in moving three methods, without
their supporting attributes, into a new class. The negative
effect on the analysis model is twofold: it lowers the
cohesion by introducing a new class, and it raises the
coupling by moving the methods away from the attributes
they use. Change 2 involves moving two attributes from
one class to another one related by an association, which
results in a smaller change effect on the coupling and
cohesion of the system overall. Change 3 involves
moving three methods and one association from a single
class into a newly created class. Since these methods only
manipulate the reference corresponding to this
association, we also indicate to the algorithm to move
these class members as a single group as they
conceptually belong together (see Section 4.1)6. Further
details regarding the description of those three changes
and the original class diagrams are provided in Appendix.
Change 4 is to apply all three abovementioned changes
together.

6.1 Initial Results

Table 1 shows, for each change, the number of
solutions in the archive that are within-range (e.g., 7 for
Change 1 after 100 generations) and the percentage of
those solutions that are identical or equivalent to the
original solution (e.g., 14% for Change 1 after 100
generations)7.

 Number of Generations
 50 100 150 200

Change 1 12, 0% 7, 14% 10, 0% 12, 33%
Change 2 12, 50% 13, 88% 13, 100% 18, 33%
Change 3 19, 37% 17, 76% 7, 100% 4, 75%
Change 4 2, 0% 11, 27% 10, 40% 13, 15%

Table 1 # Within Range, % Equivalent Solutions
Table 1 highlights a number of interesting facts. First,

the number of within range solutions is small, suggesting
that in practice the designer could afford to spend some
time looking at them all and decide which ones are

5 We identified that this performance is mostly driven by the fitness

evaluation, specifically the time taken to determine local indirect
dependencies, which must be performed each time the cohesion
metrics are evaluated.

6 This is an example of user input that was discussed in Section 4.3.
7 Note that we tried other population sizes than 64 per objective: with a

size of 80 per objective, we obtained numbers of within range
solutions equivalent to what we report here (though at a higher cost,
time-wise); with a size of 30 per objective, we obtained too few within
range solutions to draw any useful conclusion.

interesting. Because of this small number of within range
solutions, it is not surprising to observe significant
fluctuation in terms of percentage (e.g., the percentages
for Change 1 across the four generations reported are: 0,
14, 0, and 33). Those fluctuations are due to the clustering
(Section 5.2) that removes some non-dominated solutions
to keep the archive at a specific size. Future work will
have to investigate ways to further rank and classify
alternative solutions, as well as ways to allow the user to
retain good solutions from generation to generation so
that they are not lost because of clustering (e.g., from
generation 150 to 200 for Change 4). After 100
generations, a good percentage of the within range
solutions are likely to be good alternative analysis models
in terms of class responsibility assignments. This is
important as in practice the designer would start browsing
alternative solutions and should be able to find a few
applicable ones quickly. Another interesting result is that
the GA seems to recover from Changes 2 and 3 more
easily than from changes 1 and 4 (higher percentages of
identical or equivalent solution). This is further illustrated
by Table 2 that shows, for Change 4, the number of
equivalent solutions that recover from the individual
changes at different generations: At generation 100,
among the 11 within range solutions (Table 1), only 3 and
2 contain a fix to Change 1 and 4, respectively, whereas
all of them fix Change 2.

 Number of Generations
 50 100 150 200

Change 1 0 3 5 2
Change 2 1 11 10 13
Change 3 1 10 9 13
Change 4 0 2 4 2

Table 2 Recovering from individual changes
Let us now look in more details at the evolution

process across generations.

6.2 Detailed results for Change 1

For Change 1, Table 3 shows the results of the
algorithm at 50, 100, 150 and 200 generations as well as
the original coupling and cohesion measures for the
modified model. It also indicates the time it took to reach
these generations (14 minutes for 50 generations, 55
minutes for 200 generations), and the best, worst, and
average coupling and cohesion values for the solutions
that were within-range in the archive (we do not show
those values for MGC as within range solutions all have
value 0 for this measure). From Table 3, we can see that
coupling and cohesion improve significantly up to 100
generations but the improvement tends to level off after
that (e.g., for the best solution) thus suggesting that 100
generations are enough from a practical standpoint thus
confirming the results in Table 1 with respect to coupling
and cohesion.

Carleton University, TR SCE-07-02, Version 2 April 2007

11

If we focus on the results at 100 generations, we see
that we obtain very good values for all measures, values
that are even better than those of the original class
diagram for three of the measures (MMC, RCI, TCC).
Here, the best solutions are not the original one but
equivalent ones. For instance, in the original ARENA
analysis, class Tournament is associated to class
League, which is itself associated to TournamentStyle,
and Tournament has to navigate through League to
access the style of the tournament. An equivalent (a
designer could say better) solution that the GA returns is
to have class Tournament associated to League as well
as TournamentStyle but no association between
League and TournamentStyle. This reduces method-
method coupling between Tournament and
TournamentStyle (while maintaining the coupling
between Tournament and League), and increases the
cohesion of Tournament. This illustrates that the GA can
provide good, interesting alternatives to the class
responsibility assignment problem.

Initial Model
Method - Attribute Coupling: 11.0
Method - Method Coupling: 105.0
Ratio of Cohesive Interactions: 0.17
Tight Class Cohesion 0.22
 Average Best Worst
50 Generations (14 min)
Method - Attribute Coupling: 11.16 8.00 15.00
Method - Method Coupling: 98.58 91.00 105.00
Ratio of Cohesive Interactions: 0.41 0.51 0.30
Tight Class Cohesion: 0.40 0.48 0.29
100 Generations (28 min)
Method - Attribute Coupling: 5.57 5.00 7.00
Method - Method Coupling: 101.00 94.00 105.00
Ratio of Cohesive Interactions: 0.52 0.56 0.46
Tight Class Cohesion: 0.55 0.59 0.51
150 Generations (43 min)
Method - Attribute Coupling: 9.8 5.00 15.00
Method - Method Coupling: 98.00 93.00 103.00
Ratio of Cohesive Interactions: 0.47 0.55 0.42
Tight Class Cohesion: 0.52 0.63 0.44
200 Generations (55 min)
Method - Attribute Coupling: 8.00 5.00 12.00
Method - Method Coupling: 101.25 95.00 105.00
Ratio of Cohesive Interactions: 0.51 0.60 0.40
Tight Class Cohesion: 0.58 0.64 0.51

Table 3 Summary of Change #1 Results
Figure 2 shows the number of within range solutions

returned per generation for Change 1. The number of
within range solutions in the archive first rises fairly
quickly, as the archives fills up, then plateaus at around
generation 33 (when the archive is full). Afterwards, the
number of within range solutions in the archive stabilizes
and Table 3 shows that the average metrics for the
solutions within the archive remain close to one another.
The search of within range solutions stabilizes.

0

20

40

60

80

100

120

140

160

180

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

Generation

N
um

be
r o

f S
ol

ut
io

ns

Archive Size Within Range

Figure 2 Within Range Solutions by Generation for

Change #1

6.3 Detailed results for Change 2

Table 4 shows the results for Change 2 in the same
form as for Change 1. As for the previous change, most of
the improvements are obtained before 100 generations
and the coupling and cohesion measures are better than
the original values for three of the measures. We observe
the same class responsibility assignment alternatives as
those discovered by the GA for Change 1.

Initial Model
Method - Attribute Coupling: 10.0
Method - Method Coupling: 99.0
Ratio of Cohesive Interactions: 0.18
Tight Class Cohesion 0.24
 Average Best Worst
50 Generations (11 min)
Method - Attribute Coupling: 7.66 5.00 10.00
Method - Method Coupling: 97.33 91.00 102.00
Ratio of Cohesive Interactions: 0.43 0.50 0.35
Tight Class Cohesion: 0.47 0.55 0.37
100 Generations (23 min)
Method - Attribute Coupling: 8.87 5.00 14.00
Method - Method Coupling: 97.00 89.00 104.00
Ratio of Cohesive Interactions: 0.42 0.52 0.27
Tight Class Cohesion: 0.50 0.59 0.40
150 Generations (36 min)
Method - Attribute Coupling: 10.27 5.00 14.00
Method - Method Coupling: 94.88 86.00 103.00
Ratio of Cohesive Interactions: 0.42 0.56 0.27
Tight Class Cohesion: 0.49 0.59 0.39
200 Generations (48 min)
Method - Attribute Coupling: 9.58 5.00 15.00
Method - Method Coupling: 95.91 91.00 104.00
Ratio of Cohesive Interactions: 0.44 0.55 0.28
Tight Class Cohesion: 0.49 0.58 0.39

Table 4 Summary Change #2 Results
Figure 2 shows a pattern similar to Figure 3 and for the

same reasons. One difference though is that at generations
9 – 10, the number of solutions in the archive reaches a
peak and then drops in generation 11. (This also
happened in Figure 2, although to a lesser extent, around
generation 20.) This drastic drop is due to a specific
individual, which is better than a large number of archive
individuals, that is discovered by the GA and therefore
results in these individuals being removed from the
archive as they become dominated.

Carleton University, TR SCE-07-02, Version 2 April 2007

12

0

20

40

60

80

100

120

140

160

180
1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Generation

Nu
m

be
r

of
 S

ol
ut

io
ns

Archive Size Within Range

Figure 3 Within Range Solutions by Generation for

Change #2

6.4 Detailed results for Change 3

Table 5 shows the results for the third change, in the
same format as the previous two changes, and Figure 4
shows the number of within range solutions by generation
for this change. The conclusions we can draw are similar
to what we observed for the two previous changes.

Initial Model
Method - Attribute Coupling: 8.0
Method - Method Coupling: 104.0
Ratio of Cohesive Interactions: 0.25
Tight Class Cohesion: 0.30
 Average Best Worst
50 Generations (11 min)
Method - Attribute Coupling: 7.78 5.00 12.00
Method - Method Coupling: 97.05 90.00 102.00
Ratio of Cohesive Interactions: 0.46 0.51 0.35
Tight Class Cohesion: 0.51 0.59 0.41
100 Generations (23 min)
Method - Attribute Coupling: 7.17 5.00 15.00
Method - Method Coupling: 99.52 87.00 105.00
Ratio of Cohesive Interactions: 0.49 0.56 0.35
Tight Class Cohesion: 0.56 0.60 0.47
150 Generations (36 min)
Method - Attribute Coupling: 7.00 6.00 9.00
Method - Method Coupling: 99.28 92.00 105.00
Ratio of Cohesive Interactions: 0.47 0.56 0.38
Tight Class Cohesion: 0.51 0.58 0.46
200 Generations (48 min)
Method - Attribute Coupling: 10.00 6.00 15.000
Method - Method Coupling: 98.75 94.00 102.00
Ratio of Cohesive Interactions: 0.44 0.50 0.41
Tight Class Cohesion: 0.55 0.58 0.49

Table 5 Summary of Change #3 Results

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Generation

N
um

be
r o

f S
ol

ut
io

ns

Archive Size Within Range

Figure 4 Within Range Solutions by Generation for

Change #3

6.5 Detailed results for Change 4 (all three
changes together)

Table 6 shows the results for the fourth change, where
the first three changes are used together, in the same form
as the previous three changes, and Figure 5 shows the
number of within range solutions per generation for this
change. The conclusions we can draw are similar to what
we observed for the previous changes. One difference
though is that, as expected, it takes more generations
(approximately 80 versus 20) than for the first three
changes for the GA to converge towards a stable plateau
of within range solutions in the archive. However, the
same within range solutions are eventually returned to the
user.

Initial Model
Method - Attribute Coupling: 19.0
Method - Method Coupling: 110.0
Ratio of Cohesive Interactions: 0.21
Tight Class Cohesion: 0.27
 Average Best Worst
50 Generations (10 min)
Method - Attribute Coupling: 13.00 12.00 14.00
Method - Method Coupling: 101.00 100.00 102.00
Ratio of Cohesive Interactions: 0.39 0.41 0.36
Tight Class Cohesion: 0.42 0.44 0.40
100 Generations (21min)
Method - Attribute Coupling: 11.18 7.00 15.00
Method - Method Coupling: 98.90 93.00 104.00
Ratio of Cohesive Interactions: 0.49 0.54 0.40
Tight Class Cohesion: 0.49 0.59 0.39
150 Generations (34min)
Method - Attribute Coupling: 9.60 6.00 12.00
Method - Method Coupling: 99.10 92.00 104.00
Ratio of Cohesive Interactions: 0.48 0.59 0.39
Tight Class Cohesion: 0.53 0.59 0.48
200 Generations (46min)
Method - Attribute Coupling: 9.92 6.00 13.00
Method - Method Coupling: 96.46 91.00 104.00
Ratio of Cohesive Interactions: 0.45 0.56 0.37
Tight Class Cohesion: 0.47 0.56 0.37

Table 6 Summary of Change #4 Results

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Generation

N
um

be
r o

f S
ol

ut
io

ns

Archive Size Within Range

Figure 5 Within Range Solutions by Generation for

Change #4
As a basis of comparison, we attempted to fix Change

4 by using a random search. We run the search ten times,
using the same number of generations as in our GA, and
thus leading to the generation of 640,000 solutions. None
of these solutions contained a fix to Change 4. If there

Carleton University, TR SCE-07-02, Version 2 April 2007

13

was any doubt given the size of the search space, we can
therefore safely conclude that our search problem is not
trivial and cannot be simply addressed by a random
search.

6.6 Discussion

We have seen above that similar patterns emerged for
the four changes regarding the number of within range
solutions returned per generation and the change in
coupling and cohesion across generations. As more non-
dominated solutions are found, these solutions are added
to the archive. Once the archive is full, then the non-
dominated solutions begin to be truncated out using the
clustering method. This method favors boundary
individuals, so it works to maintain a wide spread of
solutions across the search space to maintain diversity.
This however has a cost as some (perhaps good) solutions
are discarded. Then, by restricting the range of values for
the returned solutions, we only sample a small section of
the overall search space thus sometimes resulting in a
decrease of within range solutions after reaching a
maximum.

Many of the solutions obtained after 100 generations,
while containing the original assignment for the class
members that were moved, also included other changes to
the original class diagram resulting into better coupling
and cohesion values for three of the measures: recall the
discussion regarding classes Tournament, League, and
TournamentStyle. Our approach can therefore recover
from changes of varying spread and magnitude (three
simple changes and one larger one), and can also suggest
good alternatives to the original model. In our case study
running 100 generations takes between 21 and 34
minutes, which is reasonable from a practical standpoint,
and that the number of within range solutions is
manageable (between 7 and 17), allowing a designer to
consider them all. Last, optimizing a domain model that is
far from being optimal (Change 4) takes more generation
to converge towards a set of acceptable solutions but
eventually returns the same set of solutions as for models
that are closer to the optimal one (Changes 1 to 3). This
suggests our GA can cope with complex fixes though it
will take more generations to find them.

7. Conclusion

This paper presents an approach to aid with class
responsibility assignment in object-oriented analysis /
domain models, a skill that has been shown to be difficult
to teach and acquire in practice. It is based both on
carefully selected coupling and cohesion measures but
also makes use of a multi-objective Genetic Algorithm
(GA). Cohesion and coupling form the building blocks of
the fitness function used by the GA. Because there is in

our context no meaningful way to combine the selected
measurements characterizing the quality of a model, we
resorted to recent proposals for dealing with multiple
objectives in the context of GAs. Based on a careful
analysis of alternatives, we selected the SPEA2 algorithm
which yields an archive set of domain models
representing optimal trade-offs. The user is then in a
position to select an appropriate solution among the
alternatives SPEA2 puts forward.

Our case study has shown that, when mistakes of
varying spread and magnitude were introduced in a
correct domain model, they could be corrected and a
variety of acceptable solutions could be obtained within a
reasonable number of generations and time. This
demonstrates that the GA is able to fix a variety of
artificially seeded class assignment problems, which is a
significant step towards validating our approach. One
open issue though is to help prioritize or select the
alternative solutions proposed by the GA in a cost
effective manner. The current solution is to define an
acceptable value range for coupling and cohesion
measurement which seems, on our case study, to be
constraining enough to limit the number of solutions
proposed to the user. A significant number of these
solutions then turn out to be equivalent to the target
optimal model.

Ideally, the next validation step is to apply our strategy
in the context of a real and imperfect domain model. The
difficulty with such a validation approach is that we
would not have any objective basis of comparison as the
optimal model would be undetermined at the time of the
experiment and assessing the improvements proposed by
the GA would then be very subjective. A second
important research topic is related to how to handle
inheritance hierarchies as we made the simplifying
assumption that overridden class members were not
considered movable in our study. Yet another topic of
interest is to devise ways for the designer to efficiently
interact with the GA. Last, we want to investigate ways to
avoid the loss of possibly good solutions when the
archive is truncated during clustering.

8. Acknowledgments
This research was supported by CITO (Ontario) and

IBM Rational. M. Bowman received an Ontario Graduate
Scholarship.

9. References

[1] JGAP: Java Genetic Algorithms Package, 2006.
http://jgap.sourceforge.net/.

[2] Atallah M. J., Algorithms and Theory of Computation
Handbook, CRC Press, 1999.

[3] Bentley P. J. and Wakefield J. P., “Finding acceptable
solutions in the Pareto optimal range using multi-objective

Carleton University, TR SCE-07-02, Version 2 April 2007

14

genetic algorithms,” Proc. Soft Computing in Engineering
Design and Manufacturing, pp. 231-240, 1997.

[4] Bleuler S., Braek M., Thiele L. and Zitzler E.,
“Multiobjective Genetic Programming: Reducing Bloat
Using SPEA2,” Proc. IEEE Congress on Evolutionary
Computation, 1, pp. 536-543, 2001.

[5] Briand L. C., Daly J. and Wuest J., “A Unified Framework
for Cohesion Measurement in Object-Oriented Systems,”
Empirical Software Engineering - An International Journal,
vol. 3 (1), pp. 65-117, 1998.

[6] Briand L. C., Daly J. and Wuest J., “A Unified Framework
for Coupling Measurement in Object-Oriented Systems,”
IEEE TSE, vol. 25 (1), pp. 91-121, 1999.

[7] Bruegge B. and Dutoit A. H., Object-Oriented Software
Engineering, Prentice Hall, 2nd Edition, 2004.

[8] Clarke J., Dolado J. J., Harman M., Hierons R., Jones B. F.,
Lumkin M., Mitchell B. S., Mancoridis S., Rees K., Roper
M. and Shepperd M., “Reformulating software engineering
as a search problem,” Journal of IEE Proc. - Software,
2003.

[9] De Jong K. A., “Learning with Genetic Algorithms: An
Overview,” Machine Learning, 3 (3), pp. 121-138, 1988.

[10] Deb K., Agrawal S., Pratap A. and Meyarivan T., “A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II,” Proc. Parallel Problem
Solving from Nature, pp. 849-858, 2000.

[11] Demeyer S., Ducasse S. and Nierstrasz O., Object-Oriented
Reengineering Patterns, Morgan Kaufmann, 2003.

[12] Fowler M., Refactoring - Improving the Design of Existing
Code, Addison Wesley, 1999.

[13] Goldberg D. E., Genetic Algorithms in Search,
Optimization & Machine Learning, Addison Wesley, 1989.

[14] Grefenstette J. J. and Cobb H. G., “Genetic Algorithms for
Tracking Changing Environments,” Proc. International
Conference on Genetic Algorithms, pp. 523-530, 1993.

[15] Haupt R. L. and Haupt S. E., Practical Genetic Algorithms,
Wiley-Interscience, 1998.

[16] Hiroyasu T., Nakayama S. and Miki M., “Comparison
Study of SPEA2+, SPEA2 and NSGA-II in Diesel Engine
Emissions and Fuel Economy Problem,” Proc. IEEE Con-
gress on Evolutionary Computation, 1, pp. 236-242, 2005.

[17] Kleppe A., Warmer J. and Bast W., MDA Explained,
Addison-Wesley, 2003.

[18] Lanza M. and Marinescu R., Object-Oriented Metrics in
Practice, Springer, 2006.

[19] Larman C., Applying UML and Patterns, Prentice-Hall, 3rd
Edition, 2004.

[20] Laumanns M., Zitzler E. and Thiele L., “On The Effects of
Archiving, Elitism, an Density Based Selection in Evolu-
tionary Multi-objective Optimization,” Proc. Int. Conf. on
Evolutionary Multi-Criterion Optimization, 2001.

[21] López-Ibáñez M., Prasad T. D. and Paechter B., “Multi-
Objective Optimization of the Pump Scheduling Problem
using SPEA2,” Proc. IEEE Congress on Evolutionary
Computation, 1, pp. 435-442, 2005.

[22] Mens T. and Tourwe T., “A Survey of Software
refactoring,” IEEE TSE, 30 (2), pp. 126-139, 2004.

[23] O'Keeffe M. and O Cinneide M., “Towards automated
design improvement through combinatorial optimization,”
Proc. Workshop on Directions in Software Engineering
Environments, 2004.

[24] Pender T., UML Bible, Wiley, 2003.
[25] Rivas-Dávalos F. and Irving M. R., “An Approach Based

on the Strength Pareto Evolutionary Algorithm 2 for Power
Distribution System Planning,” Proc. Evolutionary Multi-
criterion Optimization, 2005.

[26] Schaffer J. D., “Multiple Objective Optimization with
Vector Evaluated Genetic Algorithms,” Proc. Int. Conf. on
Genetic Algorithms and their Applications, 1988.

[27] Schaffer J. D., Caruna R. A., Eshelman L. J. and Das R., “A
study of control parameters affecting online performance of
genetic algorithms for function optimization,” Proc. Int.
Conf. on Genetic Algorithms and Their Applications, 1989.

[28] Seng I., Stammel J. and Burkhard D., “Search-based
determination of refactorings for improving the class
structure of object-oriented systems,” Proc. Conf. on
Genetic and Evolutionary Computation, 2006.

[29] Smith J. E. and Fogarty T. C., “Adaptively Parameterized
Evolutionary Systems: Self Adaptive Recombination and
Mutation in a Genetic Algorithm,” in Voigt, Ebeling,
Rechenberg, and Schwefel, Eds., Parallel Problem Solving
From Nature 4, pp. 441-450, 1996.

[30] Srinivas N. and Deb K., “Multiobjective optimization using
nondominated sorting in genetic algorithms,” Journal of
Evolutionary Computation, 2 (3), pp. 221-248, 1995.

[31] Svetinovic D., Berry D. M. and Godfrey M., “Concept
identification in object-oriented domain analysis: Why
some students just don't get it,” Proc. Int. Conf. on
Requirements Engineering, 2005.

[32] Van Veldhuizen D. A. and Lamont G. B., “Multiobjective
Evolutionary Algorithms: Analyzing the State-of-the-Art,”
Evolutionary Computation, 8 (2), pp. 125-147, 2000.

[33] Zitzler E., Laumanss M. and Thiele L., “SPEA2: Improving
the Strength Pareto Evolutionary Algorithm,” Swiss Federal
Institute of Technology, Computer Engineering and
Networks Laboratory, Technical Report 103, 2001.

[34] Zitzler E. and Thiele L., “Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach,” IEEE Trans. on Evolutionary
Computation, 3 (4), 1999.

Carleton University, TR SCE-07-02, Version 2 April 2007

15

10. APPENDIX: CASE STUDY

The following section presents the ARENA case study,
along with the three representative changes made to the
original system, in more detail. The results obtained from
each of the changes are presented in sections 10.1, 10.2,
and 10.3, respectively. A class diagram of the original
ARENA system is provided in Figure 6.

10.1 First representative change

For the first change, three class members of the Match
class were moved from the Match class over to a new
class, called MatchState. This change is shown in
Figure 7. The effect that this change has on the system is
twofold. The coupling is increased, as the three class
members were moved away from their supporting
attributes, and the cohesion was lowered because a non-
cohesive class was added into the system.

Figure 7 Change #1 to ARENA Design

Figure 6 Original ARENA System (class User appears twice for layout purposes)

Carleton University, TR SCE-07-02, Version 2 April 2007

16

10.2 Second representative change

For the second change, attributes of the Round class
were moved from Round to the Match class. The Round
and Match classes are closely related, and the attributes
are used by both classes. The effect of the moved class
members on the metrics of the system was not as
profound as it was in the first change. A diagram
illustrating the change is shown in Figure 8.

Figure 8 Change #2 to ARENA Design

10.3 Third representative change

The third change involved moving a group of three
methods and an association out of the Tournament class
and into a new class called TournamentPlayers. These
three methods and the association were grouped into a
single group, in order to prevent the algorithm from
breaking them up. These four class members are related,
so the newly added class is perfectly cohesive, with
coupling between the members. Figure 9 shows the
change to the original ARENA design.

Figure 9 Change #3 to ARENA Design

