
Carleton University, TR SCE-07-02, Version 2 April 2007 

1 

Multi-Objective Genetic Algorithms to Support Class Responsibility 
Assignment 

 Michael Bowman Lionel C. Briand Yvan Labiche 
Software Quality Engineering Laboratory 

Department of Systems and Computer Engineering 
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada 

{mgbowman, briand, labiche}@sce.carleton.ca 
 

Abstract 

Class responsibility assignment is not an easy skill to 
acquire. There is ample evidence that this is hard to teach 
and apply. Though there are many methodologies for 
assigning responsibilities to classes, they all rely on 
human judgment and decision making. In this paper, our 
objective is to provide decision-making help to re-assign 
methods and attributes to classes in a class diagram. Our 
solution is based on a multi-objective genetic algorithm 
(MOGA) and uses class coupling and cohesion 
measurement. Our MOGA takes as input a class diagram 
to be optimized, typically produced during the analysis 
phase of software development and evolution (i.e., a 
domain model) in the context of Model-Driven 
Development, and suggests possible improvements to the 
diagram. The choice of a MOGA stems from the fact that 
there are typically many evaluation criteria that cannot 
be easily combined into one objective, and several 
alternative solutions are acceptable for a given OO 
domain model. This article presents our approach in 
details, our decisions regarding the multi-objective 
genetic algorithm, and reports on a case study. Our 
results suggest that the MOGA can help correct 
suboptimal class responsibility assignment decisions.  

1. Introduction 

Class responsibility assignment is often identified as 
the most important learning goal in object-oriented 
analysis and design (OOAD) since it “tends to be a 
challenging skill to master (with many “degrees of 
freedom” or alternatives), and yet is vitally important.” 
[19] There is indeed evidence that this is hard to teach 
and apply (e.g., [31]). Not only this is vital during initial 
analysis/design phases, but also during maintenance when 
new responsibilities have to be assigned to (new) classes, 
or existing responsibilities have to be changed (e.g., 
moved to other classes). Though there are many 
(incremental and iterative) methodologies to help assign 
responsibilities to classes (e.g., [7]), they all rely on 
human judgment and decision making, primarily based on 
heuristics. In this paper, our objective is to provide 
decision-making help for class responsibility assignment 

in an analysis or early design UML class diagram. Our 
work takes place in the context of Model Driven 
Architecture/Development (MDD) [17], whereby class 
responsibility assignment is first performed when creating 
(or modifying) the Platform Independent Model (PIM) 
before the PIM is automatically transformed into a 
Platform Specific Model (PSM), which will eventually be 
the basis for code generation. Note that in the MDD 
context, software evolution consists in changing models, 
not code, which is then re-generated. In this paper, we 
first focus on diagrams exclusively containing domain 
classes (the PIM), which are often referred to as analysis 
or domain models and which are usually part of early 
Analysis steps [19]. Future work will explore similar 
solutions for lower-level design class diagrams.  

Our work bears some similarity to refactoring. 
Although most of the work in this area has considered 
source code refactoring, there is a trend to also consider 
refactorings at higher levels of abstraction, such as 
refactorings of UML models [22]. There are however 
important differences between our approach and UML 
refactorings, as further discussed in Section 2. 

Our approach is based on a multi-objective genetic 
algorithm [32], uses class coupling and cohesion 
measurement [5, 6], and aims at providing interactive 
feedback to designers. The genetic algorithm (GA) takes 
as input a class diagram to be optimized, specifically 
information about method and attribute dependencies 
which can be extracted form other UML diagrams, e.g., 
Sequence diagram, OCL contracts. It also accepts user 
defined constraints on what can and cannot change in the 
class diagram. It then evaluates the class diagram based 
on multiple, complementary measures of coupling and 
cohesion, and suggests possible improvements to the 
diagram using these measures as evaluation criteria. The 
GA provides alternative solutions to the user for her 
perusal and may ask for feedback to get further guidance, 
though the latter is not addressed in this paper. The goal 
of the GA search is therefore to discover optimal 
assignments of attributes and methods to classes in 
regards to various aspects of coupling and cohesion, thus 
leading to a more maintainable model [5], while 
accounting for user defined constraints on the class 
diagram.  
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Our main motivation for using the more complex 
multi-objective GAs is practical and is based on the 
recognition that it is very difficult, in our application 
domain, to combine the many criteria used to assess an 
analysis class diagram into one unique fitness function. 
Furthermore, by allowing the user to specify some 
constraints on the model, along with interacting with the 
GA heuristic itself, the search will be guided towards an 
optimal class diagram that will be based on both coupling 
and cohesion and additional designer inputs. The 
motivation is once again practical as we recognize the fact 
that, no matter how complete our list of objectives and 
fitness functions, there will always be additional practical 
considerations that the designers will need to account for 
when selecting a specific solution.  

The rest of the paper is structured as follows. Section 2 
describes related work. Sections 3 to 5 provide details 
about our approach, specifically our measurement of class 
diagram quality, our operators for changing a model, and 
our use of a multi-objective GA. A case study is 
described in Section 6 and conclusions are drawn in 
Section 7. 

2. Related Work 

A wide range of possible applications of meta-
heuristic search techniques, such as GAs, to the field of 
software engineering is discussed in [8], e.g., the 
maintenance and re-engineering of software using 
program transformations. This idea is expanded upon in 
[23] where the authors use a simulated annealing 
algorithm to automatically improve the structure of an 
existing inheritance hierarchy. The design measures are 
expressed as a sum of weighted objectives in order to 
measure the designs and suggest improvements. This is 
further expanded in [28], where the authors use a GA to 
automatically determine potential refactorings of a 
(reverse-engineered) class structure, not just an 
inheritance hierarchy. The authors consider a subset of 
Fowler’s refactorings [12]: moving a method from a class 
to another class, moving methods/attributes up/down in 
an inheritance hierarchy. Applying these refactorings is 
constrained as the authors consider specific, predefined 
code refactorings, thereby limiting the search space for 
the assignment of class responsibilities. For instance, if a 
method moves, call sites have to be updated and therefore 
the caller needs to have some visibility to where the 
method has been moved. Therefore, a non-static method 
can only be moved from class X to class Y if there is 
already a relationship (association through attribute, 
dependency through parameter) between X and Y. We 
will see that we do not have such constraints as we work 
on analysis class diagrams instead of the source code. As 
a fitness function, the paper also uses a sum of weighted 
objectives that measures the coupling, cohesion, 

complexity and stability of the system’s source code. The 
algorithm then searches the source code for the possible 
refactorings mentioned above that will improve these 
objectives according to the fitness function, and finally 
presents these refactorings to the designer as potential 
improvements to the system. The focus is to help prevent 
code decay. 

The above approaches both use a sum of weighted 
objectives to balance the influence of various quality 
measures on the fitness function. While this is clearly 
helpful, it can only take into account one possible, 
predetermined tradeoff among objectives, whereas the 
Pareto based multi-objective algorithm we use in this 
paper [33] is able to present a number of possible 
tradeoffs to the designer. We think this is very important 
in our context as it is a priori difficult for any designer to 
weigh different design properties based on any objective 
criteria. Another difference of our paper with these 
techniques is that they focus on the prevention of code 
decay during an iterative development process whereas 
we aim at providing decision aid and improving early 
OOAD models. 

Refactoring [12] and reengineering [11] are activities 
usually performed during maintenance, and driven by the 
need to fix the code (more recently, the need to refactor 
models has also been recognized [22]) when so-called 
“bad-smells” (e.g., a god class) have been identified (e.g., 
using metrics [18]). Although some refactorings [12, 22] 
and reengineering patterns [11] change class 
responsibility assignment, this is not the main objective of 
those activities, as they are problem-driven (e.g., by 
specific “bad-smells”). Instead, our approach specifically 
addresses the class responsibility assignment problem, 
without being driven by the search of specific anti-
patterns, and does so at the model level during early life-
cycle phases. It is therefore more general in the sense that 
it will address a larger number of class responsibility 
assignment problems. 

Although the Strength Pareto (SPEA2) approach has 
been recently introduced in [33], there are several 
applications of the technique already reported [4, 16, 21, 
25].  

3. Quality Measurement 

3.1 Basic Definitions 

The information we are using to optimize the domain 
model are dependencies among methods and attributes. 
These dependencies need to be defined precisely as they 
will constitute the basis of our coupling and cohesion 
measurement in Section 3.2.  

Let us first define our basic notation by defining a 
number of sets. C is the set of classes in the assessed class 
diagram. M() and A() refer to the sets of methods and 
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attributes of a class, or a set of classes (e.g., M(C) and 
A(C) refer to all the methods and attributes in the 
assessed class diagram, respectively). (Note that A(c) 
contains attributes inherited by class c.) For a class c, 
M(c) is the set of newly defined and overridden methods 
in c. AR(m) refers to the set of attributes directly accessed 
(read or updated) by a method m. For the set of methods 
invoked by a method m, we differentiate methods that are 
statically invoked from those that are polymorphically 
invoked by m: denoted SIM(m) and PIM(m), 
respectively, with SIM(m) ⊆ PIM(m). A method m’ in 
class c’ is statically invoked by m when m invokes m’ on 
an instance of type c’. In addition m’ can be invoked on 
any instance of any subclass of c’ that overrides m’ and 
these invocations are referred to as polymorphic. Calls 
within the same class are denoted as LSIM, or local SIM1. 
A “*” appended to the above set names denotes indirect 
accesses, invocations, or dependencies.  
Definition 1. Method–Attribute Dependency (DMA) 

A direct method–attribute dependency exists between 
m∈M(C) and a∈A(C) if a∈AR(m). This is denoted 
DMA(m,a).  

Definition 2. Method–Method Dependency (DMM) 
A direct method–method dependency exists between 
m1∈M(C) and m2∈M(C) if m2∈PIM(m1), and is denoted 
DMM(m1,m2).  
In addition to methods, attributes, and their 

dependencies, we need to consider three types of 
relationships that we expect to be part of a typical class 
model: association, generalization, and usage dependency 
relationships [19]. Note that we do not differentiate 
between associations, aggregation, and composition 
relationship, the two latter ones being a specialization of 
the first2. Association ends will be handled like attributes, 
which is not surprising as both are usually implemented 
as references to instances. In other words, a bidirectional, 
binary association will translate into two attributes, one in 
each class at its ends. Each association end can therefore 
move from one class to another during the search. 
Association ends are however only accounted for in 
cohesion measures (see below). We therefore need to 
distinguish them from attributes: AE() refers to the set of 
association ends of a class, or a set of classes; AER(m) 
refers to the association ends directly accessed by method 
m. 
Definition 3. Local (in-) direct access (LR) 

An (in-) direct local access dependency exists between 
m∈M(C) and a∈A(C)∪ AE(C) if m and a are in the 

                                                                          
1 m'∈LSIM(m) ⇔ m’∈SIM(m) ∧ ∃c∈C, m∈M(c) ∧ m’∈M(c)  
2 It could be argued that a composition usually entails more coupling 

than associations and aggregations, and that we fail to account for that. 
However, we consider that the higher coupling entailed by a 
composition will translate into more method-method and method-
attribute dependencies, and is therefore indirectly accounted for. 

same class and m (in-) directly accesses a within its 
class. This is denoted LR(m,a). More formally: 
(a∈AR◦LSIM*(m) ∨ a∈AER◦LSIM*(m)) ∧ ∃c∈C, 
m∈M(c) ∧ (a∈A(c)∪AE(c)) 
Generalization relationships will not change during the 

GA search but are nevertheless accounted for when we 
modify the class model. This complex issue is discussed 
in Section 4.2. Usage dependencies among classes are 
already accounted for when we consider Method-
Attribute and Method-Method dependencies as the former 
normally imply the latter.   

The dependency information on which we rely can be 
retrieved from UML models [24], and in particular 
interaction diagrams and operation contracts which can be 
expressed in the Object Constraint Language (OCL). 
These are typical components of an analysis or design 
model expressed with the UML [7]. For example, 
sequence diagrams tell us what methods can invoke other 
methods at run-time, OCL operation contracts suggest 
what attributes (and association ends) can be accessed by 
which methods, and class diagrams tell us about the M() 
and A() sets. To summarize, although our goal is to 
improve class responsibility assignment, as modeled by a 
class diagram, we still need to rely on information 
provided by other components of a UML model. 

3.2 Coupling and Cohesion Measurement 

Many measures for cohesion and coupling have been 
proposed in literature. Frameworks to support the 
selection of appropriate measures in specific application 
contexts have been proposed [5, 6]. Using these 
frameworks we selected three coupling measures based 
on the dependencies defined previously. Our coupling 
measures are defined at the class level, though the entire 
class diagram coupling is computed to assess 
improvements. We first re-express dependencies as a set 
of interactions between pairs of classes. (Note that we 
only account for methods defined in a class, i.e., M(), the 
one inherited being accounted for in the context of the 
parent class.) 
Definition 4. Set of Method–Attribute Interactions (MAI) 

For two classes c1∈C and c2∈C, the set of Method 
Attribute Interactions between c1 and c2 is defined as 

U
)(

221
1

)},()(|),{(),(
cMm

amDMAcAaamccMAI
∈

∧∈=  

Definition 5. Set of Method–Method Interactions (MMI) 
For two classes c1∈C and c2∈C, the set of Method 
Method Interactions between c1 and c2 is defined as 

UU
)2()1(

)},(|),{()2,1(
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∈′∈

′′=  

The two coupling measures below are based on the 
summation of the interactions between classes which are 
not in the same generalization hierarchy, i.e., the two 
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classes do not have any common ancestor (denoted 
Others(c) for any class c). 
Definition 6. Method–Attribute Coupling (MAC) 

For a given class c1∈C, Method–Attribute Coupling 
MAC(c1) counts all MAI from class c1 to classes that do 
not have a common ancestor with c1:  

∑
∈

=
)(

211
12

|),(|)(
cOthersc

ccMAIcMAC . 

Definition 7. Method–Method Coupling (MMC) 
For a given class c1∈C, Method–Method Coupling 
MMC(c1) counts all MMI from class c1 to classes that 
do not have a common ancestor with c1:  

|),(|)(
)(

211
12

∑
∈

=
cOthersc

ccMMIcMMC . 

When method-method and method-attribute 
interactions occur within a generalization hierarchy, we 
define a specific coupling measure to account for 
coupling between siblings and coupling between 
ancestors and descendants (but not between descendants 
and ancestors since ancestors’ fields are inherited, and 
such interactions therefore pertain to cohesion rather than 
coupling). These classes are denoted OthersGen(c) for 
any class c. 
Definition 8. Method–Generalization Coupling (MGC) 

For a given class c1∈C, Method–Generalization 
Coupling MGC(c1) counts all MMI and MAI from class 
c1 to classes that are in the same generalization as c1 but 
are not ancestors of c1:  

∑
∈

+=
)(

21211
12

),(),()(
cOthersGenc

ccMAIccMMIcMGC . 

For the fitness value of our GA, we obtain a class 
diagram coupling measure by summing coupling values 
for all the classes. 

Similarly, for cohesion measurement, we measure 
cohesion at the class level, consider the method-based 
dependencies defined above (DMA, DMM, and LR). It is 
not always meaningful to expect every class member to 
be directly related to another. By considering indirect 
dependencies between class members, the assumption is 
that, within a class, each class member must depend on all 
of the other class members directly or indirectly through 
other members to achieve perfect cohesion.  

There are two aspects related to inheritance that should 
be taken into consideration in the analysis of cohesion. 
Within an inheritance hierarchy, each child class is 
representing a specialized aspect of a given domain 
concept. The classes in the hierarchy represent a single 
abstraction, at various levels of specialization. Then, in 
order to assess how cohesive a class is, both the methods 
and attributes that are locally defined or inherited within 
that class must be considered. Furthermore, since it is not 
possible to polymorphically invoke a method or attribute 
of the same class, there is no need to consider 
polymorphic dependencies to measure the cohesion of a 
class. 

Last, we should determine how to handle accessor 
methods and constructors. This is an issue, since accessor 
methods can cause problems for measures which count 
references to attributes [5]. The reason is that accessor 
methods can artificially lower the cohesion value by 
hiding a methods access to an attribute. However, because 
we consider indirect dependencies, the use of accessor 
methods does not hide, in our specific context, the 
attribute reference. Constructors are not considered since 
the analysis and early design models typically do not list 
them. 

The first measure we consider is based on the concept 
of cohesive interactions. A cohesive interaction is defined 
as a (in)direct method-attribute or method-association end 
dependency in a class (LR) as it is considered to 
contribute to the cohesion of that class. This measure is 
normalized, as all cohesion measures should be [5], and is 
computed as the percentage of cohesive interactions in a 
class relative to all possible cohesive interactions in the 
same class.  
Definition 9. Cohesive Interaction (CI) 

For a given class c∈C, the set of cohesive interactions 
CI(c) is equal to the set of all indirect method-attribute 
or method-association end dependencies between the 
methods m∈M(c) and the attributes a∈A(c) or 
association-ends a∈AE(c). 

( ) ( )U
)(

)},(|),{()(
cMm

amLRcAEcAaamcCI
∈

∧∪∈=  

Assuming CImax(c) is the set of all possible cohesive 
interactions in the class, accounting for (in)direct 
method–attribute and method-association end 
dependencies, we define the ratio of cohesive 
interactions: 
Definition 10. Ratio of Cohesive Interactions 

The ratio of cohesive interactions (RCI) for class c∈C is 
the number of cohesive interactions in class c, over the 
number of possible such interactions: RCI(c) = |CI(c)| / 
|CImax(c)|. 
Note that when no method (or no attribute) is present 

in a class, we set its RCI measure to 0. This is to penalize 
data container classes (i.e., classes with only attributes) 
and service classes (i.e., classes with only methods). In 
order to compute the cohesion value across the entire 
class diagram the RCI values for all the classes in C are 
averaged. 

We also use a complementary measure, tight class 
cohesion [5], which is based on the concept of common 
attribute (or association-end) usage. The idea is that 
methods which use common attributes (association-ends) 
should be together in the same class, and represent a 
single abstraction. We extended this notion to also 
include methods that invoke one another, in order to 
account for classes without attributes, and refer to this as 
common usage. Common usage occurs when two 
methods of a class (in)directly use a common attribute (or 
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association end) of that class, or when one method 
(in)directly invokes the other. 
Definition 11. Common usage (cu) 

The predicate cu(m1,m2) is true if m1,m2∈M(c) 
(in)directly use an attribute or association end of class c, 
or if m1 (in)directly invokes m2: 

( )
( )

( )
( )

( ) ( )( )

( )⎪⎩

⎪
⎨
⎧

∈

∅≠∪∩∩
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1
*

2

2
*

21
*

1)2,1(
mLSIMmor

cAEcAmLRmLR
mmcu mLSIMmmmLSIMmm

UU  

The tight class cohesion metric is then defined as the 
percentage of pairs of methods of a class with common 
usage. 
Definition 12. Tight class cohesion (TCC) 

Tight class cohesion (TCC) is the pairs of methods of a 
class c∈C with common usage. (It is normalized.) 

( ) ( ) ( ) ( ){ }
( ) ( )( )1

,,|,
2 21212121

−

∧≠∧∈
=

cMcM
mmcummcMmmmm

cTCC  

When a class contains less than two methods, TCC is 
undefined. As for RCI, to measure TCC across a class 
diagram, the TCC class values are averaged over all of 
the classes in the diagram. 

To summarize, our GA fitness function is based on 
five measures capturing different and complementary 
aspects of coupling and cohesion.  

4. Change Model 

As stated above, the goal of our GA is to optimize an 
analysis or domain model by finding an optimal 
assignment of methods and attributes to classes. To 
perform a search for such assignment, it is necessary to 
define the search space by determining possible changes 
to the model.  

4.1 Methods, Attributes, and Association Ends 

Since the search is based on existing class diagram 
information on method-method, method-attribute, and 
method-association end dependencies, this information 
cannot, at this stage of our research, be subject to change.  

The change model also does not include the addition 
and removal of methods, attributes, or association-ends. It 
would be conceivably possible to add and remove 
methods, based on OCL contract information. Existing 
methods and dependencies could be broken up, and new 
methods added. Likewise, methods could be removed, 
and their responsibility and dependencies merged into the 
other methods. However, this is outside the scope of the 
current paper.  

The main mechanism for our search of better domain 
models is therefore to move methods, attributes, and 
association ends from one class to another, thus affecting 
the measures of coupling and cohesion. Our 
implementation also allows the user to specify that certain 
class members conceptually belong together and can only 

be moved together, thus representing related concepts. In 
particular, the methods that simply use the “reference” 
corresponding to an association end (e.g., adding, or 
removing an element to the collection represented by the 
association end) are grouped together with the association 
end. Note that, once method-method, method-attribute, 
and method-association end dependencies have been 
identified (e.g., from UML documents), only the 
ownership of methods and attributes matters and we do 
not need to know about attribute types and method 
signatures. 

4.2 Classes and Relationships 

Since our goal is to determine the optimal assignment 
of methods, attributes, and association ends to classes, we 
have to acknowledge that this may result in some new 
classes being added or existing classes being removed. 
More specifically, classes should be removed from the 
model when they are empty, as they serve no purpose any 
longer. The addition of classes is a necessity since 
optimal class assignments may require classes that were 
not identified in the first place. Our strategy is, when a 
method, an attribute, or an association end is moved, to 
allow a move to a new class. Note that finding a 
meaningful name for every created class will be the 
responsibility of the designer who, in the end, is presented 
with the GA solution(s). 

Though association ends are handled like attributes 
and usage dependencies are already accounted for 
through method-method and method-attribute 
dependencies, generalization relationships are treated 
differently in the change model. Let us first consider 
moving any method that belongs to a generalization 
hierarchy, including abstract methods. This would have 
an important impact on the dependencies we have to 
maintain. Client methods invoking a moved abstract 
method would then have to invoke concrete 
implementations of the abstract method in child classes. 
Additionally, the class receiving the moved method 
should then either provide an implementation of the 
method (which would then become concrete) or have 
concrete implementations of the abstract method in its 
own (existing or to be created) child classes (i.e., we 
would create methods). Alternatively, we could create a 
new generalization hierarchy that would receive the 
abstract method and all its concrete implementations in 
child classes. 

However, at this initial stage of the research, we 
consider these changes to the class diagram too complex 
and we are not sure of their impact on the search. A 
simplifying assumption for this paper, that will be 
addressed in future work, is that we limit modifications to 
generalization hierarchies to attributes, association ends, 
and concrete methods that are not overridden. Other class 
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elements in hierarchies cannot be moved during the 
search.  

4.3 Constraints 

Classes cannot be empty. We also require that classes 
be involved in at least one dependency, either as a client 
or server. None of the classes in the domain model should 
be stand alone classes.  

In addition to the two constraints listed above, user 
constraints must also be taken into account. These 
constraints limit the changes that can be performed on the 
model by preventing methods and attributes from being 
moved. For instance, the user may indicate that some 
methods and attributes are conceptually related (though 
not necessarily dependent on each other) and should 
therefore be moved together. This allows the user to 
identify parts of the model that are satisfactory and should 
not undergo change, thus limiting the search space for 
new solutions. (We already mentioned such a constraint 
in Section 4.1.) 

5. Multi-Objective GA (MOGA) 

The objective of our search is to optimize the coupling 
and cohesion of a given class diagram based on five 
distinct measures (Section 3.2). However, in order to 
address those five objectives at the same time, it may be 
necessary to consider tradeoffs between them to find the 
best model. This type of problem is referred to as a multi-
objective problem (MOP) [32]. Although a single 
objective optimization problem may have a unique 
optimal solution, MOPs present a possibly large set of 
solutions that, when evaluated, produces vectors whose 
components represent tradeoffs in the objective space. A 
decision maker is thus required to choose an acceptable 
solution (or solutions) by selecting one or more of the 
solution vectors.  

5.1 Basic Principles 

MOPs are mathematically defined in [32] as follows, 
where in our context fitness functions are coupling and 
cohesion measures and decision variables correspond to 
set cardinalities involved in our measures:  
Definition 13. Multi-objective Problem (MOP) 

A MOP solution minimizes the components of a 
vector of fitness functions )(xF

r , where x
r  is an n-

dimensional decision variable vector ),...,( 1 nxxx =
r  for 

some universe Ω . Formally, a MOP minimizes 
))(),...,(()( 1 xfxfxF k
rrr

=  subject to constraints 
Ω∈=≤ xmixgi

rr
,,...,1,0)( .  

The objectives being optimized will often conflict, 
which places a partial ordering on the search space. This 
makes the problem of finding a global optimum in a MOP 

an NP-Complete problem. Genetic algorithms are well 
suited to the task of solving MOPs, as they rely not on a 
single solution but rather a population of solutions. Thus, 
different individuals in the population can represent 
solutions that are close to an optimum and represent 
different tradeoffs among the various objectives. 

Key concepts related to MOPs are Pareto optimality, 
and range independence. 
Definition 14. Pareto Dominance 

A vector ),...,( 1 kuuu =
r  is said to dominate ),...,( 1 kvvv =

r  
(denoted by vu

r
p

r ) if and only if u is partially less than 
v, i.e., iiii vukivuki <∈∃∧≤∈∀ :},...,1{},,...,1{ . 

Definition 15. Pareto Optimal Set 
For a given MOP )(xF

r , the Pareto optimal set (P*) is 
)}()(:|{* xFxFxxP
r

p
rrr
′Ω∈′¬∃Ω∈=  

Definition 16. Pareto Front 
For a given MOP )(xF

r  and Pareto optimal set P*, the 
Pareto optimal front (PF*) is defined as: 

}|)({ ** PxxFuPF ∈==
rrr  

In other words, the Pareto (optimal) front refers to 
optimal solutions whose corresponding vectors are 
nondominated by any other solution vector. Because a 
range of individual solutions are considered in our GA 
search, rather than a single solution, it is possible to find 
many points in the Pareto optimal set, and thus present the 
many possible tradeoffs between the various objectives. 
The final decision is left with a decision maker, rather 
than the optimization algorithm, with respect to which 
solutions to select from the Pareto front. 

There are two categories of methods for comparing 
objectives in a multi-objective function: range dependent 
methods and range independent methods. The effective 
range of an objective function is the range of values it can 
return which is determined by the objective function 
itself, the possible domain of input values, and the 
representation of the individual genes.  

Our cohesion and coupling measures have very 
different ranges: [0, 1] and [0, +∞], respectively. In such 
cases, the only way to ensure that all objectives in a MOP 
are treated equally by the GA is to ensure that the ranges 
of the objective functions are the same, or to ensure that 
the objectives are not combined or compared to one 
another [3]. So the choice is to make the effective ranges 
of all the objectives equal, and then use a range-
dependent method to rank solutions, or a range-
independent method must be used. Range-independent 
methods are more widely applicable and range-dependent 
methods tend to be more solution specific since the range 
of the objective must be altered in order to make them 
comparable (e.g., normalized) [3]. 

Certain fitness functions combine several objective 
fitness values into a single fitness value and are referred 
to as summation approaches. Others evaluate the fitness 
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as a vector of individual objective values using Pareto 
dominance and are referred to as vector based 
approaches. Summation approaches must rely on 
weights to adjust the objectives in order to make the 
fitness value meaningful. These weights are typically 
subjective and problem dependent, making the 
summation based approach not always easy to apply. 
Vector based approaches, on the other hand, are range 
independent. The objectives are compared on an 
individual basis. However, the comparison process of the 
individuals tends to be more complex and the search 
tends not to converge on single solutions, but rather a 
range of Pareto optimal solutions. In this paper, because 
there is no meaningful way of normalizing or setting 
weights for our various cohesion and coupling measures, 
we choose to adopt a vector-based approach.  

5.2 The Strength Pareto Approach 

There are many vector-based approaches in literature. 
VEGA [26] was the first one proposed but its 
performance has been shown to be suboptimal compared 
to more recent alternatives such as NSGA [30]. NSGA 
itself has been shown to be outperformed by SPEA [34]. 
More recently, improvements to both NSGA and SPEA 
have been proposed: NSGA-II [10] and SPEA2 [33], 
which have been shown to produce similar results on 
some MOPs [33]. The time complexity of NSGA-II is 
better than SPEA2, but [33] reports that SPEA2 has 
advantages over NSGA-II in higher dimensional 
objective spaces (with four objectives and more). This is 
why we selected this technique in the case study 
presented below. SPEA2 has, however, the highest worst-
case time complexity of all techniques [33] and its 
scalability will therefore need to be investigated in the 
context of our problem.  

The overall algorithm for SPEA2 (Figure 1) can be 
briefly described as follows [33]. In Step 2, each 
individual i in both the external (archive) set tP  and the 
population Pt is assigned a strength value S(i), 
representing the number of solutions it dominates. Based 
on S(i), the raw fitness R(i) is then calculated for each 
individual i [33]: 

∑
∪∈

=
ijPPj tt

jSiR
f,

)()(  where |}|{|)( jiPPjjiS tt f∧∪∈= . 

This fitness value is to be minimized: R(i) = 0 is a non-
dominated individual, whereas R(i) is high when i is 
dominated by many individuals. Summing strengths 
instead of simply counting dominating individuals is a 
way to penalize individuals which are in high density 
areas of the search space and thus preserve diversity in 
the population.  

When most solutions still do not dominate each other, 
additional density information is needed to discriminate 
between individuals with the same raw fitness values. 

SPEA2 uses the kth Nearest Neighbor technique [33]. For 
each individual i the distances (in the objective space) to 
all individuals j in both the external set and the population 
are calculated: distances are normalized using the 
maximum possible values (that can be computed for the 
system being analyzed, as suggested in [21]). Distances 
are stored in a list sorted in increasing order, and a density 
estimate is computed based on the distance to the k-th 
element in the list, denoted by k

iσ , where NNk += . 
The density value D(i) corresponding to individual i is 
defined by: ( )21)( += k

iiD σ . 
Finally, the density is added to the raw fitness value to 

give the fitness F(i) for an individual i: F(i)=D(i)+R(i). 
In the original SPEA, the clustering algorithm tended 

to remove boundary solutions3  [34]. This has been 
corrected in SPEA2 by using a clustering method during 
the environmental selection (Step 3). The first step is to 
copy all non-dominated individuals (F(i) < 1) from the 
external set and the population to the external set of the 
next generation: }1)(|{1 <∧∪∈=+ iFPPiiP ttt . 

If the external set fits exactly into the archive 
( NPt =+ || 1 ) then the environmental selection set is 
complete. Otherwise, either the archive is too large 
( NPt >+ || 1 ) or too small ( NPt <+ || 1 ). If the archive is too 
small, then the best || 1+− tPN  individuals in the previous 
                                                                          
3 Boundary solutions are solutions on the Pareto front that show extreme 

values for one or more fitness functions.  

Inputs: N (population size) 

 N  (archive size) 
 T (maximum number of generations) 
Output: A (non-dominated set) 
 
Step 1⎯Initalization: 
Generate an initial population P

0
, create an empty archive 

(external set) ∅=0P . Set t=0. 

Step 2⎯Fitness Assignment:  

Calculate fitness values of individuals in P
t
 and tP . 

(Described in Section 5.2 as function F()) 
Step 3⎯Environmental Selection:  

Copy all non-dominated individuals in P
t
 and tP  to 1+tP . 

If size of 1+tP  exceeds N  then reduce 1+tP  by means of 

clustering, otherwise if size of 1+tP  is less than N  then 

fill 1+tP  with dominated individuals in P
t
 and tP . (See 

description in Section 5.2.) 
Step 4⎯Termination:  
If t≥T then set A to the set of decision vectors 

represented by the non-dominated individuals in 1+tP . 

Stop. 
Step 5⎯Mating Selection:  

Perform the genetic algorithm selection operator on 1+tP  

in order to fill the mating pool. 
Step 6⎯Variation:  
Apply recombination and mutation operators to the mating 
pool and set P

t+1
 to the resulting population. Increment 

generation counter (t=t+1) and go to Step 2. 

Figure 1 SPEA2 overall algorithm (from [33]) 



Carleton University, TR SCE-07-02, Version 2 April 2007 

8 

archive and population are copied into the new archive. If 
the new archive is too large, on the other hand, then the 
clustering method needs to be applied, which iteratively 
removes individuals from 1+tP  until NPt =+ || 1 . At any 
given point in the iteration, the individual that has a 
minimal cumulative distance to all other individuals in the 
archive is removed. In other words, we remove 
individuals so as to preserve diversity in the archive.  

5.3 Parameters of the Genetic Algorithm 

We have seen above that valid changes include 
moving attributes and methods between classes, as well as 
adding and removing classes. The chromosome 
representation must therefore track the attributes and 
methods, and the class to which they belong. In order to 
do so, each method or attribute in the assessed class 
diagram is assigned a gene within the chromosome. The 
length of the chromosome will therefore be equal to the 
number of class members. Because all of the dependency 
information is represented by a dependency matrix, used 
for computing cohesion and coupling measures, the 
chromosome representation does not need to contain this 
information. Chromosomes simply consist of integer 
values, where the position of the gene within the 
chromosome represents the class member, and the gene’s 
integer value denotes their class assignment: e.g., (10, 12, 
…) denotes that the 1st class member (represented by the 
first gene) belongs to the 10th class and the 2nd class 
member (represented by the second gene) to the 12th 
class. Using this representation, it is impossible to have 
an empty class represented in the chromosome. 

Determining the ideal population size for a GA is 
challenging but important [2]. For traditional GAs a 
variety of adequate population sizes have been suggested 
[15]: some recommend a range between 30 and 80 [14], 
while others suggest a smaller population size, around 20 
and 30 [27]. For MOGA, authors tend to use larger 
population sizes than those recommended for single 
objective GAs (reported values range from 30 to 80), and 
they also increase the population size proportional to the 
number of objectives [20, 33]. We follow these 
suggestions and use a population size of 64 individuals 
per objective.  

The archive size also has an important effect on the 
performance of the MOGA. In [20] the authors examine 
the effect of elitism on the performance of the GA: 
Elitism is the extent to which the best individuals are not 
only stored permanently, but also take part in the 
selection of offspring. They report that strong elitism 
together with a high mutation rate should be used to 
achieve best performance. Elitism relates, among other 
factors, to the size of the archive: If the size of the archive 
is large, and then filled by individuals from the 
population, then the best individuals have less chances of 

being part of the selected offspring. No systematic study 
of the impact of the archive size can currently be found in 
the literature. Authors however report on archive sizes in 
the range of [¼, 4] of the population size [21, 25, 33]. To 
keep computation time within reasonable bounds, we 
therefore set the archive size to half the size of the 
population.  

As stated previously, when using an elitism algorithm 
such as SPEA2 a high mutation rate is desirable to 
achieve optimum performance [20]. The authors suggest 
the use of mutation rate based on the length of the 
chromosome to achieve an average of approximately five 
mutations per chromosome, or 5 / (length) where length is 
the length of the chromosome. These findings are 
consistent with [29]: mutation rates based on the 
chromosome length perform significantly better than 
those that are not. Based on these findings, we first used a 
mutation rate of 5 / length. But, after experimenting, we 
concluded that it was too high and led to unstable results. 
We obtained much better results with a significantly 
lower rate of 1 / length. 

The crossover rate is another determining factor in the 
performance of the GA. A crossover rate that is too high 
will not allow desirable genes to accumulate within a 
single chromosome whereas if the rate is too low, then the 
search space will not be fully explored [15]. De Jong [9] 
concluded that a desirable crossover rate for a traditional 
GA should be about 60%. Grefenstette et al. [14] built on 
De Jong’s work and found that the crossover rate should 
range between 45% and 95%. Consistent with these 
findings, we used a crossover rate of 70%. 

In terms of selection, SPEA2 uses a binary tournament 
[13] where the fitter individual is selected 90% of the 
time, and 10% of the time the other individual is chosen.  

We use a 1-point crossover operator [13] as this is 
simple and used in both SPEA and SPEA2 where it seems 
to work fine based on existing case studies [33]. In terms 
of mutation operator, the most obvious mutation is to 
randomly change the class that a given attribute or 
method is assigned to, assuming equal probabilities for all 
classes. This would be done on a gene by gene basis. 
When it is determined that a gene’s method or attribute 
should be moved into a different class, it is reassigned to 
a different class randomly, with an equal probability to 
introduce a new class as to assign it to any other existing 
class. 

For the case study discussed below, we implemented 
SPEA2 using the Java Genetic Algorithm Package 
framework [1], which is available under the LGPL and 
Mozilla Public License. 

6. Case Study 

The goal of our case study, at a high level, is to 
determine whether our GA can help improve an 
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analysis/domain class diagram from the point of view of 
class responsibility assignments. To assess this in a 
objective manner, we need to know what should be the 
optimal assignment of the model being improved. This is 
why instead of using an existing, imperfect domain model 
as a case study, we decided to investigate whether our GA 
can fix known, sub-optimal responsibility assignments of 
various types and scale resulting from modifying a 
known, satisfactory model. Second, in order to get 
additional insights in terms of the scalability of the 
approach, it is also important to know whether fixing a 
complex problem is significantly more expensive (time-
wise) than fixing simpler ones. Third, we want to assess 
whether our implementation of SPEA2 can return a 
reasonable, manageable number of solutions to the user. 
These last two aspects will tell us whether our approach 
can scale up to large, significantly suboptimal models. To 
the extent possible, these questions have to be answered 
in a systematic, controlled, and objective manner. To do 
this, we need to select a domain model which we consider 
correct (or optimal) with respect to class responsibility 
assignment. Then we need to devise a variety of changes, 
of various complexity levels, to be applied to the optimal 
domain model, thereby generating sub-optimal class 
responsibility assignments. The goal of the case study is 
then to evaluate whether the GA can return to the known, 
original (and optimal) assignment or some other, similar 
acceptable solution (there is usually no unique optimal 
analysis model). 

We therefore selected the ARENA system [7] since it 
is designed independently from our research and its 
domain model (analysis level class diagram) and other 
related information (e.g., sequence diagrams to determine 
method-method dependencies) are available. 
Furthermore, it was designed by experts and can be 
therefore considered a good (optimal) analysis model, a 
reference model towards which we want to converge. The 
ARENA case study is a framework for building multi-
user, web-based systems to organize and conduct 
tournaments (e.g., a Tic Tac Toe tournament). Although 
of modest size, the domain model is not trivial4 and 
contains 14 classes and 152 class members (methods, 
attributes, and association ends). Of these 152 class 
members, 49 cannot be moved by our GA as they are 
overridden or implemented through generalization 
relationships. The 42 remaining elements are grouped in 
14 groups with the association ends they manipulate. The 
search space, assuming the number of classes does not 
change, is therefore all the possible assignments of 
movable (grouped) class members (i.e., 152-49-(42-
14)=75) to 14 classes and its size is therefore 
considerably large: 1475. An analysis of this model shows 
                                                                          
4 The analysis model was completed by adding class members for a 

number of use cases that were not initially considered: e.g., we moved 
from 112 class members to 152 class members. 

a total of 287 dependencies, specifically 63 
method−attribute dependencies, 59 method-association 
end dependencies, and 165 method−method 
dependencies. The coupling and cohesion measurement 
values for this model, which represent the baseline on 
which we want to improve, are: 99.0 (method−method 
coupling), 5.0 (method−attribute coupling), 0.0 (method 
generalization coupling), 0.20 (ratio of cohesive 
interactions), and 0.24 (tight class cohesion). 

We devised several suboptimal modifications to the 
original ARENA analysis model. These modifications 
were applied to the original model one at a time 
(representing relatively simple sub-optimal assignments), 
as well as all together to form a larger, more complex 
sub-optimal assignment. They were selected to involve 
attributes, association ends, and methods, and to involve 
both new and existing classes. Each modified ARENA 
analysis model was then optimized using our 
implementation of the SPEA2 algorithm. We present 
below three representative modification examples, and 
their combination, and discuss them in detail. For each of 
those modifications we also analyzed the number of good 
analysis solutions across generations.  

One practical issue, both for our experimentation and 
in practice, is that MOGAs such as SPEA2 provide a 
large number of alternative, non-dominated solutions. It is 
therefore necessary to find a way to automatically trim 
these solutions in order to obtain a reasonably sized set of 
solutions for the designer to further consider. A designer 
would do that by specifying a range for cohesion and 
coupling measures in order to prune extreme solutions 
clearly favoring a specific coupling or cohesion measure 
at the expense of the others. That range would be 
specified as an acceptable percentage of increase over the 
starting coupling value and a similar percentage of 
decrease for cohesion. This makes sense as, after all, the 
goal is to improve cohesion and coupling, and not to 
sacrifice one for gains in the other. For the purposes of 
this case study, only solutions that had values of at most 
15 for method–attribute coupling, 105 for method–
method coupling, 0 for method generalization coupling, 
and at least 0.18 for ratio of cohesive interactions, and 0.2 
for tight class cohesion were retained for evaluation and 
are referred to as “within-range” solutions. The goal was 
to avoid solutions that optimize cohesion at the expense 
of large coupling increases. The goal was also to forbid 
coupling within generalization hierarchies: between 
ancestors and descendants (as this does not make sense) 
and between siblings (as this is not common and not 
present in the models to be optimized, there is no reason 
to introduce any). Admittedly, this is a heuristic and many 
unacceptable solutions can still be part of that selected 
subset. However, the case study will allow us to evaluate 
how effective this is.  
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Our SPEA2 implementation was run on the modified 
analysis models for 200 generations for all four reported 
examples. It was able to quickly recover from the 
changes, and bring coupling and cohesion back to values 
similar or identical to those of the original ARENA 
analysis model. Running on a Pentium 4 3.0GHz 
processor with 1GB of RAM, the execution time (for 200 
generations) ranged from 46 to 55 minutes5.  

Change 1 consists in moving three methods, without 
their supporting attributes, into a new class. The negative 
effect on the analysis model is twofold: it lowers the 
cohesion by introducing a new class, and it raises the 
coupling by moving the methods away from the attributes 
they use. Change 2 involves moving two attributes from 
one class to another one related by an association, which 
results in a smaller change effect on the coupling and 
cohesion of the system overall. Change 3 involves 
moving three methods and one association from a single 
class into a newly created class. Since these methods only 
manipulate the reference corresponding to this 
association, we also indicate to the algorithm to move 
these class members as a single group as they 
conceptually belong together (see Section 4.1)6. Further 
details regarding the description of those three changes 
and the original class diagrams are provided in Appendix. 
Change 4 is to apply all three abovementioned changes 
together. 

6.1 Initial Results 

Table 1 shows, for each change, the number of 
solutions in the archive that are within-range (e.g., 7 for 
Change 1 after 100 generations) and the percentage of 
those solutions that are identical or equivalent to the 
original solution (e.g., 14% for Change 1 after 100 
generations)7.  

 Number of Generations 
 50 100 150 200 

Change 1 12, 0% 7, 14% 10, 0% 12, 33% 
Change 2 12, 50% 13, 88% 13, 100% 18, 33% 
Change 3 19, 37% 17, 76% 7, 100% 4, 75% 
Change 4 2, 0% 11, 27% 10, 40% 13, 15% 

Table 1 # Within Range, % Equivalent Solutions 
Table 1 highlights a number of interesting facts. First, 

the number of within range solutions is small, suggesting 
that in practice the designer could afford to spend some 
time looking at them all and decide which ones are 
                                                                          
5 We identified that this performance is mostly driven by the fitness 

evaluation, specifically the time taken to determine local indirect 
dependencies, which must be performed each time the cohesion 
metrics are evaluated.  

6 This is an example of user input that was discussed in Section 4.3. 
7 Note that we tried other population sizes than 64 per objective: with a 

size of 80 per objective, we obtained numbers of within range 
solutions equivalent to what we report here (though at a higher cost, 
time-wise); with a size of 30 per objective, we obtained too few within 
range solutions to draw any useful conclusion.  

interesting. Because of this small number of within range 
solutions, it is not surprising to observe significant 
fluctuation in terms of percentage (e.g., the percentages 
for Change 1 across the four generations reported are: 0, 
14, 0, and 33). Those fluctuations are due to the clustering 
(Section 5.2) that removes some non-dominated solutions 
to keep the archive at a specific size. Future work will 
have to investigate ways to further rank and classify 
alternative solutions, as well as ways to allow the user to 
retain good solutions from generation to generation so 
that they are not lost because of clustering (e.g., from 
generation 150 to 200 for Change 4). After 100 
generations, a good percentage of the within range 
solutions are likely to be good alternative analysis models 
in terms of class responsibility assignments. This is 
important as in practice the designer would start browsing 
alternative solutions and should be able to find a few 
applicable ones quickly. Another interesting result is that 
the GA seems to recover from Changes 2 and 3 more 
easily than from changes 1 and 4 (higher percentages of 
identical or equivalent solution). This is further illustrated 
by Table 2 that shows, for Change 4, the number of 
equivalent solutions that recover from the individual 
changes at different generations: At generation 100, 
among the 11 within range solutions (Table 1), only 3 and 
2 contain a fix to Change 1 and 4, respectively, whereas 
all of them fix Change 2.  

 Number of Generations 
 50 100 150 200 

Change 1 0 3 5 2 
Change 2 1 11 10 13 
Change 3 1 10 9 13 
Change 4 0 2 4 2 

Table 2 Recovering from individual changes 
Let us now look in more details at the evolution 

process across generations.  

6.2 Detailed results for Change 1 

For Change 1, Table 3 shows the results of the 
algorithm at 50, 100, 150 and 200 generations as well as 
the original coupling and cohesion measures for the 
modified model. It also indicates the time it took to reach 
these generations (14 minutes for 50 generations, 55 
minutes for 200 generations), and the best, worst, and 
average coupling and cohesion values for the solutions 
that were within-range in the archive (we do not show 
those values for MGC as within range solutions all have 
value 0 for this measure). From Table 3, we can see that 
coupling and cohesion improve significantly up to 100 
generations but the improvement tends to level off after 
that (e.g., for the best solution) thus suggesting that 100 
generations are enough from a practical standpoint thus 
confirming the results in Table 1 with respect to coupling 
and cohesion.  
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If we focus on the results at 100 generations, we see 
that we obtain very good values for all measures, values 
that are even better than those of the original class 
diagram for three of the measures (MMC, RCI, TCC). 
Here, the best solutions are not the original one but 
equivalent ones. For instance, in the original ARENA 
analysis, class Tournament is associated to class 
League, which is itself associated to TournamentStyle, 
and Tournament has to navigate through League to 
access the style of the tournament. An equivalent (a 
designer could say better) solution that the GA returns is 
to have class Tournament associated to League as well 
as TournamentStyle but no association between 
League and TournamentStyle. This reduces method-
method coupling between Tournament and 
TournamentStyle (while maintaining the coupling 
between Tournament and League), and increases the 
cohesion of Tournament. This illustrates that the GA can 
provide good, interesting alternatives to the class 
responsibility assignment problem. 

Initial Model    
Method - Attribute Coupling: 11.0   
Method - Method Coupling: 105.0   
Ratio of Cohesive Interactions: 0.17   
Tight Class Cohesion 0.22   
 Average Best Worst 
50 Generations (14 min)    
Method - Attribute Coupling: 11.16 8.00 15.00 
Method - Method Coupling: 98.58 91.00 105.00 
Ratio of Cohesive Interactions: 0.41 0.51 0.30 
Tight Class Cohesion: 0.40 0.48 0.29 
100 Generations (28 min)    
Method - Attribute Coupling: 5.57 5.00 7.00 
Method - Method Coupling: 101.00 94.00 105.00 
Ratio of Cohesive Interactions: 0.52 0.56 0.46 
Tight Class Cohesion: 0.55 0.59 0.51 
150 Generations (43 min)    
Method - Attribute Coupling: 9.8 5.00 15.00 
Method - Method Coupling: 98.00 93.00 103.00 
Ratio of Cohesive Interactions: 0.47 0.55 0.42 
Tight Class Cohesion: 0.52 0.63 0.44 
200 Generations (55 min)    
Method - Attribute Coupling: 8.00 5.00 12.00 
Method - Method Coupling: 101.25 95.00 105.00 
Ratio of Cohesive Interactions: 0.51 0.60 0.40 
Tight Class Cohesion: 0.58 0.64 0.51 

Table 3 Summary of Change #1 Results 
Figure 2 shows the number of within range solutions 

returned per generation for Change 1. The number of 
within range solutions in the archive first rises fairly 
quickly, as the archives fills up, then plateaus at around 
generation 33 (when the archive is full). Afterwards, the 
number of within range solutions in the archive stabilizes 
and Table 3 shows that the average metrics for the 
solutions within the archive remain close to one another. 
The search of within range solutions stabilizes. 
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Figure 2 Within Range Solutions by Generation for 

Change #1 

6.3 Detailed results for Change 2 

Table 4 shows the results for Change 2 in the same 
form as for Change 1. As for the previous change, most of 
the improvements are obtained before 100 generations 
and the coupling and cohesion measures are better than 
the original values for three of the measures. We observe 
the same class responsibility assignment alternatives as 
those discovered by the GA for Change 1. 

Initial Model    
Method - Attribute Coupling: 10.0   
Method - Method Coupling: 99.0   
Ratio of Cohesive Interactions: 0.18   
Tight Class Cohesion 0.24   
 Average Best Worst 
50 Generations (11 min)    
Method - Attribute Coupling: 7.66 5.00 10.00 
Method - Method Coupling: 97.33 91.00 102.00 
Ratio of Cohesive Interactions: 0.43 0.50 0.35 
Tight Class Cohesion: 0.47 0.55 0.37 
100 Generations (23 min)    
Method - Attribute Coupling: 8.87 5.00 14.00 
Method - Method Coupling: 97.00 89.00 104.00 
Ratio of Cohesive Interactions: 0.42 0.52 0.27 
Tight Class Cohesion: 0.50 0.59 0.40 
150 Generations (36 min)    
Method - Attribute Coupling: 10.27 5.00 14.00 
Method - Method Coupling: 94.88 86.00 103.00 
Ratio of Cohesive Interactions: 0.42 0.56 0.27 
Tight Class Cohesion: 0.49 0.59 0.39 
200 Generations (48 min)    
Method - Attribute Coupling: 9.58 5.00 15.00 
Method - Method Coupling: 95.91 91.00 104.00 
Ratio of Cohesive Interactions: 0.44 0.55 0.28 
Tight Class Cohesion: 0.49 0.58 0.39 

Table 4 Summary Change #2 Results 
Figure 2 shows a pattern similar to Figure 3 and for the 

same reasons. One difference though is that at generations 
9 – 10, the number of solutions in the archive reaches a 
peak and then drops in generation 11. (This also 
happened in Figure 2, although to a lesser extent, around 
generation 20.) This drastic drop is due to a specific 
individual, which is better than a large number of archive 
individuals, that is discovered by the GA and therefore 
results in these individuals being removed from the 
archive as they become dominated. 
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Figure 3 Within Range Solutions by Generation for 

Change #2 

6.4 Detailed results for Change 3 

Table 5 shows the results for the third change, in the 
same format as the previous two changes, and Figure 4 
shows the number of within range solutions by generation 
for this change. The conclusions we can draw are similar 
to what we observed for the two previous changes.  

Initial Model    
Method - Attribute Coupling: 8.0   
Method - Method Coupling: 104.0   
Ratio of Cohesive Interactions: 0.25   
Tight Class Cohesion: 0.30   
 Average Best Worst 
50 Generations (11 min)    
Method - Attribute Coupling: 7.78 5.00 12.00 
Method - Method Coupling: 97.05 90.00 102.00 
Ratio of Cohesive Interactions: 0.46 0.51 0.35 
Tight Class Cohesion: 0.51 0.59 0.41 
100 Generations (23 min)    
Method - Attribute Coupling: 7.17 5.00 15.00 
Method - Method Coupling: 99.52 87.00 105.00 
Ratio of Cohesive Interactions: 0.49 0.56 0.35 
Tight Class Cohesion: 0.56 0.60 0.47 
150 Generations (36 min)    
Method - Attribute Coupling: 7.00 6.00 9.00 
Method - Method Coupling: 99.28 92.00 105.00 
Ratio of Cohesive Interactions: 0.47 0.56 0.38 
Tight Class Cohesion: 0.51 0.58 0.46 
200 Generations (48 min)    
Method - Attribute Coupling: 10.00 6.00 15.000 
Method - Method Coupling: 98.75 94.00 102.00 
Ratio of Cohesive Interactions: 0.44 0.50 0.41 
Tight Class Cohesion: 0.55 0.58 0.49 

Table 5 Summary of Change #3 Results 
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Figure 4 Within Range Solutions by Generation for 

Change #3 

6.5 Detailed results for Change 4 (all three 
changes together) 

Table 6 shows the results for the fourth change, where 
the first three changes are used together, in the same form 
as the previous three changes, and Figure 5 shows the 
number of within range solutions per generation for this 
change. The conclusions we can draw are similar to what 
we observed for the previous changes. One difference 
though is that, as expected, it takes more generations 
(approximately 80 versus 20) than for the first three 
changes for the GA to converge towards a stable plateau 
of within range solutions in the archive. However, the 
same within range solutions are eventually returned to the 
user.  

Initial Model    
Method - Attribute Coupling: 19.0   
Method - Method Coupling: 110.0   
Ratio of Cohesive Interactions: 0.21   
Tight Class Cohesion: 0.27   
 Average Best Worst 
50 Generations (10 min)    
Method - Attribute Coupling: 13.00 12.00 14.00 
Method - Method Coupling: 101.00 100.00 102.00 
Ratio of Cohesive Interactions: 0.39 0.41 0.36 
Tight Class Cohesion: 0.42 0.44 0.40 
100 Generations (21min)    
Method - Attribute Coupling: 11.18 7.00 15.00 
Method - Method Coupling: 98.90 93.00 104.00 
Ratio of Cohesive Interactions: 0.49 0.54 0.40 
Tight Class Cohesion: 0.49 0.59 0.39 
150 Generations (34min)    
Method - Attribute Coupling: 9.60 6.00 12.00 
Method - Method Coupling: 99.10 92.00 104.00 
Ratio of Cohesive Interactions: 0.48 0.59 0.39 
Tight Class Cohesion: 0.53 0.59 0.48 
200 Generations (46min)    
Method - Attribute Coupling: 9.92 6.00 13.00 
Method - Method Coupling: 96.46 91.00 104.00 
Ratio of Cohesive Interactions: 0.45 0.56 0.37 
Tight Class Cohesion: 0.47 0.56 0.37 

Table 6 Summary of Change #4 Results 

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Generation

N
um

be
r o

f S
ol

ut
io

ns

Archive Size Within Range

 
Figure 5 Within Range Solutions by Generation for 

Change #4 
As a basis of comparison, we attempted to fix Change 

4 by using a random search. We run the search ten times, 
using the same number of generations as in our GA, and 
thus leading to the generation of 640,000 solutions. None 
of these solutions contained a fix to Change 4. If there 
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was any doubt given the size of the search space, we can 
therefore safely conclude that our search problem is not 
trivial and cannot be simply addressed by a random 
search.  

6.6 Discussion 

We have seen above that similar patterns emerged for 
the four changes regarding the number of within range 
solutions returned per generation and the change in 
coupling and cohesion across generations. As more non-
dominated solutions are found, these solutions are added 
to the archive. Once the archive is full, then the non-
dominated solutions begin to be truncated out using the 
clustering method. This method favors boundary 
individuals, so it works to maintain a wide spread of 
solutions across the search space to maintain diversity. 
This however has a cost as some (perhaps good) solutions 
are discarded. Then, by restricting the range of values for 
the returned solutions, we only sample a small section of 
the overall search space thus sometimes resulting in a 
decrease of within range solutions after reaching a 
maximum.  

Many of the solutions obtained after 100 generations, 
while containing the original assignment for the class 
members that were moved, also included other changes to 
the original class diagram resulting into better coupling 
and cohesion values for three of the measures: recall the 
discussion regarding classes Tournament, League, and 
TournamentStyle. Our approach can therefore recover 
from changes of varying spread and magnitude (three 
simple changes and one larger one), and can also suggest 
good alternatives to the original model. In our case study 
running 100 generations takes between 21 and 34 
minutes, which is reasonable from a practical standpoint, 
and that the number of within range solutions is 
manageable (between 7 and 17), allowing a designer to 
consider them all. Last, optimizing a domain model that is 
far from being optimal (Change 4) takes more generation 
to converge towards a set of acceptable solutions but 
eventually returns the same set of solutions as for models 
that are closer to the optimal one (Changes 1 to 3). This 
suggests our GA can cope with complex fixes though it 
will take more generations to find them.  

7. Conclusion 

This paper presents an approach to aid with class 
responsibility assignment in object-oriented analysis / 
domain models, a skill that has been shown to be difficult 
to teach and acquire in practice. It is based both on 
carefully selected coupling and cohesion measures but 
also makes use of a multi-objective Genetic Algorithm 
(GA). Cohesion and coupling form the building blocks of 
the fitness function used by the GA. Because there is in 

our context no meaningful way to combine the selected 
measurements characterizing the quality of a model, we 
resorted to recent proposals for dealing with multiple 
objectives in the context of GAs. Based on a careful 
analysis of alternatives, we selected the SPEA2 algorithm 
which yields an archive set of domain models 
representing optimal trade-offs. The user is then in a 
position to select an appropriate solution among the 
alternatives SPEA2 puts forward.  

Our case study has shown that, when mistakes of 
varying spread and magnitude were introduced in a 
correct domain model, they could be corrected and a 
variety of acceptable solutions could be obtained within a 
reasonable number of generations and time. This 
demonstrates that the GA is able to fix a variety of 
artificially seeded class assignment problems, which is a 
significant step towards validating our approach. One 
open issue though is to help prioritize or select the 
alternative solutions proposed by the GA in a cost 
effective manner. The current solution is to define an 
acceptable value range for coupling and cohesion 
measurement which seems, on our case study, to be 
constraining enough to limit the number of solutions 
proposed to the user. A significant number of these 
solutions then turn out to be equivalent to the target 
optimal model.  

Ideally, the next validation step is to apply our strategy 
in the context of a real and imperfect domain model. The 
difficulty with such a validation approach is that we 
would not have any objective basis of comparison as the 
optimal model would be undetermined at the time of the 
experiment and assessing the improvements proposed by 
the GA would then be very subjective. A second 
important research topic is related to how to handle 
inheritance hierarchies as we made the simplifying 
assumption that overridden class members were not 
considered movable in our study. Yet another topic of 
interest is to devise ways for the designer to efficiently 
interact with the GA. Last, we want to investigate ways to 
avoid the loss of possibly good solutions when the 
archive is truncated during clustering. 
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10. APPENDIX: CASE STUDY 

The following section presents the ARENA case study, 
along with the three representative changes made to the 
original system, in more detail. The results obtained from 
each of the changes are presented in sections 10.1, 10.2, 
and 10.3, respectively. A class diagram of the original 
ARENA system is provided in Figure 6. 

10.1 First representative change 

For the first change, three class members of the Match 
class were moved from the Match class over to a new 
class, called MatchState. This change is shown in 
Figure 7. The effect that this change has on the system is 
twofold. The coupling is increased, as the three class 
members were moved away from their supporting 
attributes, and the cohesion was lowered because a non-
cohesive class was added into the system.  

 
Figure 7 Change #1 to ARENA Design 

Figure 6 Original ARENA System (class User appears twice for layout purposes) 
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10.2 Second representative change 

For the second change, attributes of the Round class 
were moved from Round to the Match class. The Round 
and Match classes are closely related, and the attributes 
are used by both classes. The effect of the moved class 
members on the metrics of the system was not as 
profound as it was in the first change. A diagram 
illustrating the change is shown in Figure 8. 

 
Figure 8 Change #2 to ARENA Design 

10.3 Third representative change 

The third change involved moving a group of three 
methods and an association out of the Tournament class 
and into a new class called TournamentPlayers. These 
three methods and the association were grouped into a 
single group, in order to prevent the algorithm from 
breaking them up. These four class members are related, 
so the newly added class is perfectly cohesive, with 
coupling between the members. Figure 9 shows the 
change to the original ARENA design. 

 

 
Figure 9 Change #3 to ARENA Design 

 
 

 


