Software Engineering and Management @

Testing a radiotherapy support
system with QuickCheck

Aiko Fallas Yamashita IT University
Andreas Bergqvist of Goteborg

CHALMERS | GOTEBORG UNIVE
Goteborg, Sweden 2007 _
Master Thesis Report

REPORT NO. 2007/62

Testing a radiotherapy support system with
QuickCheck

Master Thesis Report

AIKO FALLAS YAMASHITA

ANDREAS BERGQVIST

Department of Applied Information Technology
IT UNIVERSITY OF GOTEBORG
GOTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2007

Testing a radiotherapy support system with QuickCheck
Master Thesis Report

AIKO FALLAS YAMASHITA

ANDREAS BERGQVIST

© AIKO FALLAS YAMASHITA, 2007
© ANDREAS BERGQVIST, 2007

Report no 2007:62

ISSN: 1651-4769

Department of Applied Information Technology

IT University of Goteborg

Goteborg University and Chalmers University of Technology
P O Box 8718

SE — 402 75 Gobteborg

Sweden

Telephone + 46 (0)31-772 4895

Goteborg, Sweden 2007

The current document presents the results from the Masters Thesis work carried out

during the Spring Term 2007 in the Software Engineering and Management Program.

Title: Testing a radiotherapy support system with QuickCheck
Aiko Fallas Yamashita

Andreas Bergqvist

Department of Applied Information Technology

IT University of Goteborg

Goteborg University and Chalmers University of Technology

Supervisor: Thomas Arts

SUMMARY

In this report we present a case study on usirg-ligeight formal methods for testing an
implementation of a medical device. The device iea-time organ position tracking
system used in radiotherapy. The system propettiebe tested were modeled and
verified through automated test cases generated QuyckCheck. QuickCheck

demonstrated to be beneficial tool for reducingdbenplexity inherent to testing medical
devices by detecting faults at system level, supppl better type of regression testing
and supporting the detection of abnormal cases ¢batd be analyzed and fixed
afterwards in the system.

Keywords: Light-weight formal methods, medical devices, software verification, software
testing.

Table of Contents

R 1 Yo [T £ o SRR 6
2. Verifying MediCal HEVICESuuuuuiiii i et s e e e e e e e e e e e e e e e e eeaeeeeeeaaaenns 7
2.1. Position tracking deVICE........ccooiii i 7
N @ 11 o3 1 O o =T o GO PUOTRSPPPPIN 9
3. Research methodolOgyu i 11
3.1. Roles of the researcher within the project............cccocevvviiiiiiiiiieee, 11
3.2. RESEAICN PrOCESS. .. it i i i ittt 12
R - 1S T 11 [0 | U PPPUPPSRRP 13
4.1 TESHNG SEIUPD .uuuiuiiitiiiiiiieie ettt e e e e e e e e e e e e s s e bbbt e e e e e e e e e e aessannnneeeeenes 13
4.2 SYMMELTY PrOPEITY oo et ena e 15
4.3 IMPIEMENTALION ...t e e e e e e e e e 15
5. ReSUIS @Nd ANAIYSIS....cccceiiiie ettt s e e e e e e e e e e e e e e e e e et e e eeareeeeaeaara s 16
o N I oS O =S R 16
5.2. Perceived DENETILSuiiiiiiiiii e e 17
5.3 Interesting findings regarding the SYSteml...........cccuveiiiiiiiiiiiiieeeeee 18
5.4, General FeMArKSuuuiiiiiiiiiiiane e e e e e e e e s e e areeees 19
5.5 Planned features for QUICKChECKooeeiiiiiiiiiiii s 19
T @0 o 11] o] o PR 20
] (=] (=] o= RSP 21
(€101 T oSSR 22
Appendix: QuickCheck Code used for the TeStNG....cc....cccvvveeieiiiiiiee e 23

1. Introduction

Failures in medical devices can have dramatic apresgces by putting peoples’ health or
even life at risk. With the increase of softwaree us these devices, there are high
demands on software verification and analysis m itiedical domain. In many cases
formal methods are used to model medical devicgsnjédical protocols [3], or even
complete systems [13]. No matter how well one tasélly proved correctness of a
model of a medical device, its implementation si#leds to be tested. Testing medical
devices is normally done very thoroughly [11] asndaeded by organizations like the
FDA and its European counterpart, MDD.

In this article we present a case study on usgig-veight formal methods for testing an
implementation of a medical device. The device iea-time organ position tracking
system used in radiotherapy, i.e., a tumor is et in real-time in order to be able to
accurately deliver a dose of radiation. The degceonstructed by Micropos Medical, a
Swedish start-up company.

The positioning system has a clear mathematicalelmatiz., a three dimensional space
with an additional time axis. Tumor and radiatioenters are two of a hand full of
important points in this space. The distance betwibe estimated position and actual
position of the tumor must lie in a range of 2 mkters. The system was tested by using
QuickCheck [6] provided by the company Quviqg. Q@bleck is a testing tool that
randomly generates test cases from a given modelscifying a model of the
coordinate system we were able to effectively usekZheck to generate thousands of
tests. By doing so, we have identified some faducaused by incongruence in the
hardware drivers specification, misinterpretatiofshe pseudo-code (i.e. declaration of
global variables and static values interpretecbaalland dynamic variables), inadequate
handling of floating point operations, wrong typ@neersion, which have been
successfully fixed. It was possible to identifyrfra set of prototypes of the underlying
mathematical model, the ones which provided unaebégp accuracy and it was possible
to discern which ones provided the best accuracy.

The rest of the report is organized as follows:tS2aéntroduces the context on medical
device verification, bringing up the need of intgrg test tools and formal methods in
the medical industry, presenting also an overvigwthe 4DRT system and how
QuickCheck was used in order to test it. Sect. Qviges a brief description of the
research methodology used in this study. Sectodigies a more in-depth description of
the case study, indicating the testing setup, tiopgsties tested in the system and the
implementation process. Sect. 5 describes thetsesmd analysis derived from this
study, finalizing with Sect. 6, which presents tloeclusions for this study.

2. Verifying medical devices

The process of delivering medical devices encongzasginly two approaches: process
centered verification and artifact centered veatiien [12]. Process centered verification
is often described by standards that suggest assef practices for the medical
practitioners to base the development of the safietigal software products on [21], [5].
However, there is a visible need for more artifaattered approaches as medical devices
turn more and more sophisticated, complex and wadging; and general guidelines are
proving to be insufficient for delivering a safeoguct [12], [10]. Moreover, regulations
from medical authorities as the FDA or MDD are tiatgr to move from process based
certification to prove based certification [16].

The application of formal methods in medical desicipports this line of action and
could add significant confidence in the system éyealing errors in both the system’s
model and its implementation [4]. There are mangceas stories of using formal
methods in the medical domain, which ranges frordioa protocols [3], [15] to medical
equipment controllers [9], [13] and medical devi¢és Studies point out the need of
well established processes that include formal odthn order to ensure safety systems
[19].

Despite the numerous advantages of formal methbdse is still a need for testing the
actual implementation given the differences thatl¢@xist between the model and the
implementation. Furthermore, a testing process ismast” in current certification
processes regulated by medical authorities [11], [B}]. The development of testing
frameworks/tools and techniques which support aatedy formal methods in the pursuit
of safe systems is still an open problem. One eflilygest challenges pointed out by
[16] will be the incorporation of modeling techn&giand practical formal methods to the
design of software-based medical systems in thedut

As the need of practical cases to support the ustfggmal methods in medical systems
increases, it is possible to learn from other dorsaiexperiences in the use of
technologies and approaches in practical situativvis looked at a novel successful
approach in the telecommunications domain with veafe verification through a
combination of formal methods and testing [2].

2.1. Position tracking device

ADRT (Four Dimension Radio Therapy) is a real-tiorgan position tracking system
optimized for the human body. It can give the posibf the organ in four dimensions, a
three dimensional space and time. This enablestororg of the position of tumors in

cancer patients and thereby helps to improve thmuracy of the radiation during

radiotherapy treatments.

The system is based on radio frequency transmis$tom measurement of the position is
done through an implantable device in the orgaméarby), which acts as a transmitter.
The transmitter emits a radio frequency which isteeed by multiple receiving antennas

or receivers, typically arranged in a plate on tifeatment table under the patient (See
Fig. 1). The signal captured by the receivers g t®the core system where it is used to
calculate the position of the organ.

Patient plate / recelvers

Fig. 1. View of 4DRT system in a treatment environmenerints such as the Linear Accelerator, the impideta
device, the patient plate and the 4DTR system epécted.

Both transmitter and receivers are connected tohdrdware controller, which is here
treated as a black box for both hardware contral signal processing. The hardware
controller contains an analog-digital converter tthaill continuously send a
predetermined set of decimal values (representiagrteasured signal) to the core system
through a USB port. The core system is the softwareponent in the 4DRT system that
performs the position computation by mapping theirdal values received from the
hardware controller to a specific coordinate positin the real world. This coordinate
position is given in the 4DRT coordinate systemahkhihave a predetermined range for
each axis (X, Y, Z) and the angles (Vy, Vz), imtation over y and z axes. The core
system also handles the interaction with exterystiesns and the user interface.

A mathematical model is used to calculate (basedhenreceived radio signals) an
estimated position. This model should guarantee @ahaestimated position corresponds
close enough to the real position. This positidisudation is the main feature to be tested
and the main topic of this paper. We want to make shat the positions calculated by
the system are within a radial distance of 2mm ftbm actual position (this to ensure
that the tumor receives radiation and not the hgdlssue around it). This needs to be
done extensively with thousands of different posi$, since it is far from enough to
measure only once and let that represent the agcofdhe system. Of course, it is rather

easy to randomly generate positions that we watasio We used the tool QuickCheck to
do this and in addition it executed the test anskoked whether the measured value was
indeed within the demanded range. The advanta@rimkCheck over other tools here is
that the input is very close to the mathematicat#ation that one would expect (hence
easy to inspect that the right aspect of the sys$tasnbeen tested). Another advantage is
the automatic simplification of failing test cagkat QuickCheck provides, which will be
explained in more detail later.

Note that we propose a kind of system test frombibginning. Given the simplicity of
the property that we want to test and the depenydehthe whole system to correctly
pass a large number of tests, we estimate thatamecatch all failures that otherwise
would be caught by unit testing. Thus, this seentase where starting with system
testing and leaving out unit testing is cheapen thesigning dedicated tests for each unit.
The lab setting used during testing consisted ain3mitter, Receiver, Hardware
Controller, Core System and Auto Setup (a mechandewxice able to move the
transmitter to specified coordinates X, Y, Z, Vydavz).

QuickCheck generated coordinates which were in thege supported by the
mathematical model. The coordinates were then wsecbntrol the Auto Setup into
moving the transmitter to the corresponding positibhe position estimator calculated
the position of the transmitter and “sent” the X, %, Vy, Vz coordinates back to
QuickCheck. QuickCheck then determined the radiatadce (in Euclidean space)
between the generated position and the measuretibpdsy using Formula (1). A test
fails if this distance is more than 2mm.

o =% F+ v, - F +(z,-2.F) @

2.2. QuickCheck

QuickCheck is a tool that combines random test igdiom, with a flexible language for
specifying generators and the use of propertiesdjodge success [6]. In our case study
we used the commercial QuickCheck tool provided Quviq that offers automatic
simplification of the test cases when a failure hasn detected, i.e., the property was
refuted. This simplification is handy when removitng inevitable “noise” that random
testing brings.

For example, a property to test whether receivedtdinates are within a margin would
look as follows in the QuickCheck specification daage (which is actually the
functional programming language Erlang [1] :

prop_within_margin(Margin) ->
?FORALL(Coordinate, antenna_coordinate(),
begi n
move_antenna_to(Coordinate),
Position = read_position(),

radial_distance(Position, Coordinate) = < Margin
end).
radial_distance({XP,YP,ZP},{XC,YC,ZC}) ->
math:sqrt(
math:pow(XP-XC,2)+math:pow(YP-YC,2)+math:pow(ZP-ZC,2)).
In this exampleantenna_coordinate() is a function that generates a random triple

of X, y and z coordinates and a fourth value, wigcthe angle of the antenna relative to
the specific surface. The result of generationaana to the variabl€€oordinate
QuickCheck generates by default hundred testsdon such property, thus hundred tests
are generated which each their own randomly geeerabordinates. Each test case
consists of three steps. First the antenna is mbavedcertain position (see Sec. 4.1 for
details on our test set-up). The function caltedve_antenna_to(Coordinate)

returns a value when the antenna has reached giedigoint. After that the most
recently read position is fetched from the syst@&his position is then compared to the
actual coordinates.

Whenever a test fails, i.e., any of the actionts far the result of the last inequality is
falsg then QuickCheck will automatically search fomaadler counter example.

10

3. Research methodology

For this study, Action Research (AR) [18] was uasdhe research methodology. Action
Research is research through a practical collalbordéetween researchers and industry
practitioners, in order to solve a problem andvstg to improve their strategies,
practices, and accumulate knowledge of the envisstisnin which they practice.

The immediate problem for Micropos is to createullyffunctional medical product
ready for release. The existing system is a prpwgnd the process necessary to certify
and launch a commercial version of the system gpaued by testing and formal
methods. The company learns about the importancaedfuate testing to ensure high
guality, novel tools and methods and state-of-tthd@raresearch, whereas at the same
time, the researcher learns about the problem Hreatate-of-the-art in industry and the
difficulties in applying techniques in a practis#tuation.

Our research interest of trying QuickCheck withire tmedical domain can be feasibly
combined within the context and needs of Micropdisthe same time this enables a
better understanding of the role of formal modetsl gestware within the medical
software development. Furthermore, working in d-ve&ld company provides valuable
insights on how a certain technique/tool can belusa given domain and the adequacy
of such a technique to the domain. This is diffidal achieve within a solely academic
environment.

Avison points out the need of system analysts ttetstand the organizations in terms of
people’s conflicting objectives, perceptions anitiades and adds that failure to include
human factors may explain some of the dissatigfactvith conventional information
systems development methodologies; they do noteaddreal organizations [23]. By
using Action research we will try to bring up tesdission the relevance and impact of
our study in the industry.

3.1. Roles of theresearcher within the project
The main roles carried out as researcher duringrbject were:

Planner/Leaderin terms of the development and testing of theesgsthe planning and
execution of the activities is the primarily role.

Designer, Developer and Testdrhe researcher must work as an analyst, devebomer
tester the in the project

Observer/ReporterThis role is necessary in order to collect andudoent the outcomes
and knowledge acquired from the practice, as siatdte Action Research framework.

In most Action Research situations, a researcheis consists mainly in facilitating
dialogue and promoting reflective analysis amorg ghrticipants, providing them with
periodic reports, and writing a final report whée tresearcher’s involvement has ended
[24].

11

3.2. Resear ch Process

The Action Research model proposed by Kemis wad userder to perform the study
(see Figure 1).

The study was based on a previous study (Reseatsise) where software architecture
for the system was developed. This can be visuhlazethe first cycle of the research
where the results where assessed and a new addéionvas proposed in coordination
with the industry and research interests of théigpants. The main outcomes from the
first cycle were the understanding of the sociduecal environment, a clear picture of
the main challenges and needs of Micropos and thtermal for continuing with the
second cycle.

CYCLE 1

CYCLE 2

Fig. 2. Action Research Model proposed by Kemmis [25]

12

4. Casestudy

This case study strives to perform testing of 4ADRUt how can QuickCheck support
this process? From a Risk Based Analysis poinief/ywe determined that verifying the
accurate position calculation is the key importafice assuring a safety treatment
delivery. A QuickCheck property was formulated ml@r to enable a formal model that
can be corroborated through execution.

In terms of testing coverage, it is clear that dmehe nature of the software we are
testing, the process of requesting only one simgisition calculation will cover the
critical path of the modules. Thus, if we move ttansmitter to {0,0,0,0,0} and then we
request the position, we would have full coveragthaut revealing any failure in the
system. Therefore we need many data points to @sickCheck could provide an
enough varied set of cases that can reveal emdreisoftware.

From a Black Box testing view, in this specific t®m, the testing has a relatively simple
functional testing specification. The problem is time amount of variation of the
parameters, making the testing space very big ifcansider that the testing space is in
mm and we have five independent parameters in plages given reasonable finite
floating point accuracy, the number of total telapoints will ascend to billions).
QuickCheck provides random testing which constgdefeasible option for reasonably
covering the testing space.

4.1 Testing setup

When starting the project, a prototype of the ystem had already been produced in
LabView and it had been tested by a semi-autonmagéithod, i.e., manually specifying a
list of points the transmitter should move to ahent comparing this with the values the
core system produced. It was required to implentemtcore system in C# on the .NET
framework platform, based on the LabView versiomd aafterwards test the
implementation.

Given the kind of the code we were going to develbye requirements to be tested
(Table 1), the simple underlying formula for cotrezss (Formula 1 in Sect 2.1), the ease
with which this formula can be expressed in Quick€ly and the kind of errors we can
expect (typical for floating point handling), weailded to use system testing as the only
way of testing. Nevertheless, some unit testing wasvoidable in the form of
“experimenting” while migrating LabView to .NET.

We used a hardware setup in which the antenna eandved to a specific point in a
three dimensional space and in which it can be whowean angle around the Y and Z
axes. When acknowledged that the antenna had actertain position, the system test
was performed and the estimated position was medsWe made sure that this was all
within the timing requirements of the “fourth dinséon”, i.e., the fact that the system
should be able to track the antenna in real-tinme Jet-up is depicted and summarized in
Fig. 3.

13

Table 1: Description of the functional requirement (and @srrespondent non-functional
requirement) tested in the system

Functional requirement The software component shoalculate the
5D positioning of the transmitter (X, Y, Z,
Vy, and Vz, where Vy is rotation around Y
axis and Vz is rotation around Z axis)

Non-functional requirement The system should ach& difference or
radial accuracy of 2 £1 mm

Each test was randomly generated by QuickCheck &@uaickCheck property similar to
the one presented in Sect. 2.2. Typically, integdues specifying millimeters were used
to move the antenna to a given position (the hardwaoving the antenna supported
+1mm precision). For example, QuickCheck could gateefrom the property a test in
which the antenna is steered to position: X=58, X%12=94, Vy=0, Vz=0, after which
the estimated position: X=58.15106462, Y=126.91471&=94.82734652, Vy=-
2.582979671, Vz=-3.070729491 is registered. Thiewée to the real value is computed:
0.84533759 and since it is less than 2mm, thepasstes successfully

QuickCheck uses a uniform distribution in its ramdgeneration of coordinates. For the
purpose of testing the software, we are satisfiethbt. The non-functional requirement

in Table 1 does indicate, however, to use a noynuaditributed set of sample points and
to generate a normally distributed sample from th&mce patient data is unavailable at
this point, we decided to be stricter than that asel a uniform distribution, requiring an

accuracy of 2mm, without leaving space for poimsone standard deviation. We

analyzed the few failing tests (i.e., those witldistance larger than 2mm) to see how
much they were off.

g “Move to N

SR - X,Y,z,vy, Vz
T T e ~A/ AutoSetup
Operation/Data ™, + Move to. Controller AutoSetup
y

Conf .msg
Conf.msg Hardware
Controller
EPO§ItI0n Constantly sending
stimator Digital signal...

Fig. 3. Activity flow diagram describing the interactiontbeen the QuickCheck module
and the C# software components

Estimated
position
Estimated position

QuickCheck communicated via TCP/IP with a sort efguest broker that we
implemented in C#. This broker (called Test Senar,depicted in Fig. 3) receives
requests from QuickCheck and calls components m @ore System which are
implemented in C#.

!t is important to point out that the Vy and Vz areyornsidered for performing the position calculation,
but not for computing the radial distance. Hence the rdistdnce shown in the example only
contemplates X, Y and Z.

14

4.2 Symmetry Property

As the testing process evolved, we found the neetesting one additional property, not
presented in the requirements, but an importantnagson about the software that was
orally communicated to us.

The system works under the assumption that the enattical model is symmetric,
which means that one coordinate gives a similaruraoy on its correspondent
extrapolated value (i.e. {36,41,73} gives similasults in accuracy as {134,139,171}).
An example of code is presented in propefdy_symmetric()

prop_symmetric(Margin)->
?FORALL(Coordinate,antenna_coordinate (),
begin
Extrapolated = extrapolate(Coordinate),
move_antenna_to(Coordinate),
Posl = read_position(),
move_antenna_to(Extrapolated),
Pos2 = read_position(),
Distancel = radial_distance(Coordinate, Pos1),
Distance2 = radial_distance(Extrapolated, Pos2),
abs(Distancel — Distance2) =< 1

end).
extrapolate(Coordinate)->
X = upper_x - abs(lists:nth(1,Coordinate)-lower _X),
Y = upper_y - abs(lists:nth(2,Coordinate)- lowe ry),
Z = upper_z - abs(lists:nth(3,Coordinate)- lowe r_z),

X, Y, Z.

In the above code, we verify that the accuracyadist between a given coordinate value
and its correspondent extrapolated coordinatess tean 1mm. We used 1mm as the
delimitation value for practical reasons, which vexperimentally determined by a test
simplification where we could find the biggest diste between accuracies of
extrapolated values in the system.

4.3 Implementation

In order to perform the migration of the softwarmenh LabView to .NET/C#, a bottom-up

development process was followed by developingstheller pieces of the code (i.e. the
modules that handle the hardware drivers) and btattling upon those. Pseudo-code
documentation describing the algorithms used, dsasanternal documentation and the
source code of the prototype in LabView were usedugportive material for performing

the migration.

The core system contains approximately 3000 line<# code divided amongst 8

components. It has 5 concurrent processes whidiorpetasks such as monitoring the
hardware and retrieving the values of the measta@io signals.

The different components handle the communicatidtin Wwardware drivers; perform

mathematical computation (i.e. matrix, vector anolypomial operations), system

logging, file access, network communication, etbeTPosition Estimator component
contains all the high level algorithms and calls ¢ther components in order to perform
the position calculation.

15

5. Resultsand Analysis

In the project, we spent officially 4 days in tegti without counting additional time for
fixing bugs, writing changes in the properties, atiter tasks. (We have to mention that
during the project, use of the equipment was tigstricted). In this section, results from
the testing process, system specific results, paddenefits and possible improvements
are presented and discussed.

5.1 Test results

Most of the failures were detected in the first sses QuickCheck produced from the
main property described in Sect. 2.2. In all cagegas possible to trace the failures back
to the code so adequate corrections could be peefibr Typical problems that involved
floating point operations, type conversion, and w$ewrong types in the drivers’
interfaces were found. For instance, we found bat the hardware driver of the Auto
Setup did not accept decimal points as paramatesse of the interfaces. This problem
was identified when using QuickCheck for sending ¢bordinates to the Auto Setup and
it was observed that the latter did not move thedmitter as expected. We could trace
this problem back to a division operation perfornpetbr to sending the coordinates to
the hardware driver. This division produced decinalies occasionally instead of just
integers. So the Auto Setup only moved when thaltieg division was a whole number.

Another problem was the use of incorrect castingrafons (i.e. truncating decimals
instead of rounding) which was detected while olisgra set of failed test cases which
showed a very similar radial distance. We found that conversion in LabView is
implicitly managed, in contrast of C#, which re@qsira specific conversion method.

Also, errors due to misinterpretations of the psecdde (i.e. declaration of global

variables and static values interpreted as locdldymamic variables) could be detected
by observing failed test cases that showed a vigrydalial distance. A similar error was

found in the same test cases, where we used arreot@onstant value for one of the
algorithms (due to the fact that we were using adated version of LabView code for a
specific module).

The already mentioned issues are typical when panfig migration from two different

platforms (in this case from LabView to C#), wheseme assumptions (i.e. typing,
management of decimal values, etc) in the old @latfare not longer valid in the new
platform. They are also related to a typical sitwatin the medical domain when
specifications regarding interfaces for hardwarevedls as well as software COTS
(components off the shelf) are not so clear [2@]icRCheck facilitates code refinement
and simplifies the task of detecting those erron®dgily within a couple of property
executions).

Note that we found all these errors by specifyung} pne property and generating random
test cases from them. Therewith, the work in cnegtést cases is dramatically simplified
in contrast to more traditional testing approaches.

It was also possible to determine which mathemhaticadels support a given radial
accuracy. Whenever a new model is introduced, posssible to test it with QuickCheck

16

and its adequacy would be visible almost immedyatEbr instance, one day we had
introduced a model which was stated to have batteuracy than the previous one; we
ran QuickCheck on it and found a coordinate withuaacceptable accuracy. It turned out
that even in the prototype implementation with tiesver model, the estimated point had
unacceptable distance to the position. Hence, tbhdeimwas further improved before

introduced again.

Issues in the communication protocol between Quigd® and C# were also detected
with QuickCheck. For instance, a problem due toaherwriting of instructions into the
hardware driver was detected while running the @riyp(this overwriting issue resulted
in a series of incomplete test executions). We dotlvat the driver we were using for the
hardware demands a lapse of 40ms in order to psames instruction and read the next
one. Although the communication with QuickCheck &#lis not part of the system, this
last example gives us an insight of how QuickChemkld support integration testing as
well, where the communication between software aomepts needs to be verified.

5.2. Perceived benefits

From this case study we could identify several lkegefits of using QuickCheck in the testing of
medical devices. These are described in the foligwubsections.

5.2.1. Better than Regression testing

We perceived that it was possible to introduce gkann other parts of the system (i.e.
hardware, since this product is evolving constantigking devices smaller, faster, etc)
and afterwards use QuickCheck to perform high leesting. This enabled us to detect
any incongruence or errors that might result asnsequence from those changes.

The same situation can be applied to code enhamtsrtteat we performed in order to
improve performance (some algorithms in LabViewIddoe implemented in C# in a
more efficient way), and we could always run Quibk€k and make sure that these
enhancements in the code give the same resulteeasriginal algorithms written in
LabView. Furthermore, the coverage of the sideetdfeof changes introduced in the
software (or hardware) is greater with QuickChelrices it generates new random test
cases each time. In that sense, QuickCheck camstiougood asset for a system that is
constantly evolving, (a scenario very typical indieal device development [17]) by
providing better support than regression tests wikmncentrate on the same tests over
and over.

5.2.2. Improving the system quality

An example of how QuickCheck helped in improving thuality of the software was
when we tried different mathematical models to wiéch ones gave better results (as
explained previously in Sect. 5.1). Furthermoreyitg a formal specification of the
system that can actually be run and corroboratedtitates a significant advantage for
certification processes (as pointed out by [16] em@htioned in Sect. 2).

17

5.2.3. Cost effectiveness

Faults related to testing the mathematical moda&duacy checking) were detected after

12.85 test cases on average, and abnormal casedetected after 78 tests on average.
It is very unlikely that one would manually writest cases with the same averages, but it
shows that several cases would have to be writtea fjood test suite, whereas here we
only write one property once.

Each time a test case is run, the transmitter raespositioned before performing the
measurement, and this is a rather expensive taskdt supported by an automated tool.
In our case, it took in around 5-7 seconds per &zgticase, depending of the position the
Auto Setup was moved to. QuickCheck requires radbtiless amount of effort, and
supports repetitiveness and generation of new sauery time, so it was very useful for
the type of testing performed.

5.3 Interesting findingsregarding the system

While performing the testing of the system, sontergsting facts regarding the system
were found. Due to the explorative nature of thisdyg, it is possible to encounter a
diverse set of unplanned findings. Some of them pmesented in the following
subsections.

5.3.1. Coverage-range of mathematical model

The mathematical model establishes a limit (covenamge) for providing acceptable
measurements. Through QuickCheck we could confinat these borders are non-
inclusive (which means that if at least one of &xes of the coordinate system touches
the limit border, it won't provide the accuracy veégd). In most of the cases we found
that once that the transmitter reaches at leastobmige limits of the coverage-range in
any of the axes, the radial distance will alwayseexl 2mm. The generator in
QuickCheck was modified to be non-inclusive, raaglin successful executions of 100
test cases each with an accuracy of 2mm.

5.3.2. Symmetry of the mathematical model

The system works under the assumption that the emathcal model is symmetric,
which means that in one coordinate, the system sgidestance similar to its
corresponding extrapolated coordinate. This wagirtoed by using QuickCheck with a
new property, as described previously in Sect. 4.2.

5.3.3. Detection of abnormal cases

Sometimes you want to run the property for a longeriod and use atypical test
parameters in order to find abnormal cases. By nelidg the margin tolerance
(increasing the radial accuracy limit), we coulded¢ abnormal cases related to the
transmitter angles (angles very close to the negaii positive borders gave significantly
big radial distances). For instance, we ran th@gnty with radial accuracy of 6mm. An
apparently normal position (in the sense of thatas within the coverage-range) resulted
in a radial distance of almost 6mm. After some mtasts we found out that the
mathematical model we were using in testing wasitea to strongly angled positions
(in terms of Vy and Vz), this finding lead to adimgnts in the mathematical model in

18

order to improve its robustness against angling. st mention that the parameters
used for performing this type of testing exceeds limits of what could be called a
normal scenario (i.e. test parameters derived freah patient data) and abnormal cases
rarely occur when actually using the system. Evéh these considerations, the use of
atypical parameters is still useful for improvirgetoverall quality of the software, and
this is a good example of such a case.

5.4. General remarks

Additionally to the information provided by Quick€tk, the logs in the Test Server side
were useful to analyze all the test cases genefaye@QuickCheck (failed tests and

successful tests) and observe the test cases fsahn behavior as well as the radial
distance from each of the measurements.

Within the given coverage range, the system previeleen better accuracy than that
specified by the non-functional requirement. Ongdasample of generated tests had a
mean of 1.528505mm for the radial distance, witstandard deviation of +0.477921,
where 87% of test cases passed and 13% failed; therfailed test cases, 2% had
between 2.4mm and 3.4mm of radial distance and ldf6een 2mm and 2.4mm. Others
were even more accurate and displayed 2% of fadstcases with a radial distance of
2.02mm to 2.04mm. The set of test cases provedhbkaystem had better accuracy than
the requirement, and we felt very satisfied conandethe results above.

An interesting finding is that QuickCheck performsme local searching even if not
explicitly defined in the test case simplificatiprocedure. In one occasion, QuickCheck
checked twice at the same coordinate position, #ued system gave two different
measurements. Of course, this kind of situation rhappen when radio signaling
technologies are involved. The important lessoe liethat regardless of the fact that two
parameters give different results, the system ptpshould be upheld (small differences
in the radial distance are disregarded, insteagustenake sure that the radial distance is
always less than 2mm).

5.5 Planned featuresfor QuickCheck

Throughout this study, we have observed a potefatiaDuickCheck to support statistical
functionalities. Some planned features for futaleases include control or specification
of number of test cases, and generation of tegtschg sampling from a defined set of
data (i.e. real patient data). Improving the loggoapabilities for QuickCheck could
notably expand the potential of using QuickCheaktést results analysis. One possible
improvement is to log not only the failing testesdut also the successful test cases.

19

6. Conclusion

We have described a case study in testing a mediesate by using a formal model as
basis for automatic generation of test cases with tbol QuickCheck. We found a
number of errors in the code we developed and vedle to spot inaccuracies in
prototype models. Early detection and correctiotheke errors has lead to a high quality
product being developed by the medical companyhatiwthe case study was performed.
This case study assembles some adequate condiionsing formal models. The model
is simple, clear and based on a mathematical fanugrifying medical devices may not
always be like this case, and there may be a needcdre complex modeling for the
system behavior. Nevertheless we think that thénelogy is worth trying on more
medical equipment.

We also identified some limitations in our casedgtuOne limitation for the testing was

that the Auto Setup could only move with a precisod 1mm. This limits the test cases,
and does not allow the testing of points betwedhmaters. In addition, this case study
does not cover the necessity of having a givenribigion (in this case a normal

distribution) and usage of sample data from pagient

When a test fails, we want to obtain the coordmdteat give the highest possible
measurement fault, in other words, for which thetatice to the position is largest.

This is not possible to perform automatically witte current version of QuickCheck.

QuickCheck provides simplification of input datait lcannot yet connect it to the result
of the actual test.

It is worth mentioning that one of the limitations working in a lab is the presence of
sporadic radio transmission noise due to researthitees in nearby companies. This
also enforces a sufficient number of tests in otdeassure the robustness of the system
in less than ideal situations. We can store thecteses sequence in QuickCheck and redo
the property execution in order to see any behathat can be influenced by the
environment and signal fluctuations. This would gerticularly good if we want to
improve the robustness of the system to externaenavhich is very common in an
environment like a hospital.

The most remarkable aspects of this study focussereral positive results: First,
property-based testing proved to be beneficialfaadible within this domain in contrast
to the normal tendency of using test suites. QumddR provided good support for
combining cost-effective regression testing anangdr specification. This combination

will hold a proof-based certification process foedical devices which are typically
systems in continuous evolution. Regarding to tlast point, the capacities of
QuickCheck for performing high level testing can fegarded as a potential tool that
could facilitate the process of integration andteys testing within highly complex

systems like medical devices.

20

References

1. J. L. Armstrong, M. Williams, R. Virding, and. @ilkstrom. ERLANG for Concurrent Programming. Rtiee-
Hall, 1993.

2. T. Arts, J. Hughes, J. Johansson, and U. Wigesting telecoms software with Quvig QuickChdekoceedings of
the 2006 ACM SIGPLAN Worksh&eptember 16, 2006.

3. J.W. Brakel. Formal Verification of a Medid&lotocol. ISIS Technical Report, University of Twuer2005.

4. J.P. Bowen and V. Stavridou. Formal methods softivare safetySafety of Computer Control Systems 1992

(SAFECOMP'92)pp. 93-98, Pergamon Press, 1992.

5. J. Bowen and V. Stavridou. Safety-criticaltsyss, formal methods and standa®isftware Engineering Journal
volume 8, issue 4, pp. 189-209, 1993.

6. K. Claessen and J. Hughes. QuickCheck: a ligigwt tool for random testing of Haskell programsoceedings of
the Fifth ACM SIGPLAN international Conference ameEtional Programming (ICFP '00ACM Press, pp. 268—
279, 2000.

7. J. L. Cyrus, J. Daren and P. D. Harry. FormaécHication and Structured Design in Software Depment.
Hewlett-Packard Journal, 1991.

8. Food and Drug Administration (FDA). Generalriples of Software Validation: Final Guidance fodustry and
FDA Staff, FDA, 2002.

9. J. Jacky, J. Unger, M. Patrick, D. Reid andRisler. Experience with Z developing a control peog for a
radiation therapy machin®roceedings of the 10th International Conferenc& dfsers LNCS, Springer-Verlag,
pp. 317-328, 1996.

10. R. Jetley and S. P. lyer. Enabling Certificatibrough an Integrated Comprehension Approéatigh Confidence
Medical Device Software and Systems (HCMDSS) Wapk&thiladelphia, USA, June 2005.

11. R. Jetley, P. lyer and P. Jones. A Formal Maghispproach to Medical Device Revigdomputer volume 39, no.
4, pp. 61-67, 2006.

12. P. Jones. Assurance and Certification of Sa#waArtifacts for High-Confidence Medical Devicebligh
Confidence Medical Device Software and Systems (BI€ES) Workshag@Philadelphia, USA, June 2005.

13. V. Kasurinen and K. Sere. Integrating actiostesys and Z in a medical system specificatfiME'96: Industrial
Benefit and Advances in Formal MethpHdBICS 1051, Springer-Verlag, pp. 105-19, 1996.

14. Medical Device Directory (MDD). “Council diréee 93/42/EEC of 14 June 1993 concerning medicaices”,
Medical Device Directory, 2003.

15. M. Marcos, M. Balser, A. ten Teije and F. vaaridelen. From informal knowledge to formal logiaealistic case
study in medical protocolsProceedings of 13th Int. Conf. on Knowledge Enginge and Knowledge
ManagementLNCS, Springer-Verlag, pp. 49-64, 2002.

16. 1. Lee, G. J. Pappas, R. Cleaveland, J. HatBli H. Krogh, P. Lee, H. Rubin and L. Sha. HiGbnfidence
Medical Device Software and Syster@@mputey volume 39, no. 4, pp. 33—-38, 2006.

17. M. Poonawala, S. Subramanian, W. Tsai, R. Mdjd&hsh and L. Elliott. Testing Safety-Critical &ms - A
Reuse-Oriented ApproactRroceedings of 9th Int. Conf. Software Eng. and wadge Eng. (SEKE 97),
Knowledge Systems Institute, pp. 271-278, 1997.

18. P. Reason and H. Bradbury. Handbook of Actiesdrch. Thousand Oaks, Sage Publications, 2001.

19. J. Rushby. Formal Methods and the CertificatanCritical Systems. Computer Science Laborat@Rl
International, Menlo Park, CA. Number SRI-CSL-939&cember 1993.

20. G. Sharp and N. Kandasamy. A Dependable SyAtemitecture for Safety-Critical Respiratory-GatRddiation
Therapy.Proceedings of the international Conference on Delpble Systems and Networks (Dsn'@®)ume 00,
DSN, IEEE Computer Society, June 2006.

21. D.R. Wallace, D.R. Kuhn and L.M. Ippolito. Anaysis of selected software safety standdPdsceedings of the
Seventh Annual Conference on Computer AssurancMPASS '92)pp. 123-136, June 1992.

22. A. Benincasa. “Feasibility study for image gddkidney surgery: assessment of required intraabpe surface
for accurate physical to image space registratiMsS. thesis, Vanderbilt University, USA, 2006.

23. D. Avison, F. Lau, M. Myers , P. Nielsen. Actiresearch. Commun ACM 42, pp. 94-97, 1999.

24. T. Gilmore, J. Krantz and R. Ramirez. Actions8a Modes of Inquiry and the Host-Researcher Reistiip.
Consultation 5.3: 161, 1986.

25. S. Kemmis, & R. McTaggart. The Action Resedrelader. 3rd edition. Geelong: Deakin UniversitysBrd 988

21

Glossary

Term
Coordinates

Dose Planning System

Lineal accelerator

Plate

Receiver

Tolerance margin

Transmitter

Treatment table

Treatment table coordinate system

Definition

A set of numbers that identify imaginary pants
a reference system. Coordinates describe position
in two or three dimensions.

Also known as Treatment Plannstgray
consists of a system which is used for the planning
and evaluation of a radiotherapy dosage to treat
malignant tumors

A machine that creates high-energy radiation to
treat cancers, using electricity to form a stream of
fast-moving subatomic particles.

It consists of a device in the form of a tray where
the receivers are placed along with the circuit
elements that will send the signal data to the
signal processing module of the system.

Device for capturing radio frequency signals.

It is the maximum offset allowed from theepat
isocenter in a given direction in order to assure a
safe treatment.

Consists of an electronic device which with the
aid of an antenna propagates an electromagnetic
signal.

The table that the patient lies on during tesdtm

Consists of a coordinaéarsyaich is
stationary with respect to the treatment table.

22

Appendix: QuickCheck Code used for the Testing

-module(position_eqc).

-export([antenna_coordinate_specific/1, upper_corne
stringList_to_floatList/1, prop_position/2, antenna
stop_test/1]).

-define(Portln, 5678).

-define(PortOut, 5679).

-compile(export_all).

-include("C:/Program Files/erl5.5.3/lib/eqc-1.07/in
-include("C:/Program Files/erl5.5.3/lib/eqc-1.07/in

start_test()->
IpAddress = "localhost",

Portin = 5678,
Portout = 5679, %Check the port description
{ok, RSock} = gen_tcp:connect(lpAddress, Porto
ok = gen_tcp:send(RSock, "Connect"),
{ok, LSock} = gen_tcp:listen(Portin, [binary,
{ok, Sock} = gen_tcp:accept(LSock),
{ok, <<"Accept">>} = gen_tcp:recv(Sock, 0),
gen_tcp:close(Sock),
{RSock, LSock}.

stop_test({RSock, LSock})->
{gen_tcp:close(RSock), gen_tcp:close(LSock)}.

prop_position(Margin, {RSock, LSock}) ->
?FORALL(Coordinate,antenna_coordinate_borders(),
eqc:collect(Coordinate,
begin
Message = send_coordinates(Coordinate)
ok = gen_tcp:send(RSock, Message),
{ok, Sock1} = gen_tcp:accept(LSock),
{ok, <<"AS_Moved_To_Position">>} = gen

ok = gen_tcp:send(RSock, "Request_Answer"),

{ok, Sock2} = gen_tcp:accept(LSock),

{ok, Bin} = gen_tcp:recv(Sock2, 0),

Position = binary_to_list(Bin),

inside_margin(Position, Coordinate, Ma
end)).

prop_find_working_margin (Margin, {RSock, LSock}) -
?FORALL(Coordinate,antenna_coordinate(),
begin

Message = send_coordinates(Coordinate),

ok = gen_tcp:send(RSock, Message),
{ok, Sock1} = gen_tcp:accept(LSock),

{ok, <<"AS_Moved_To_Position">>} = gen_tcp
ok = gen_tcp:send(RSock, "Request_Answer"),

{ok, Sock2} = gen_tcp:accept(LSock),
{ok, Bin} = gen_tcp:recv(Sock2, 0),
Position = binary_to_list(Bin),

not inside_margin(Position, Coordinate,
end).

extrapolated_coordinate(Coordinate)->
X =135 - abs(lists:nth(1,Coordinate)-35),
Y = 140 - abs(lists:nth(2,Coordinate)-40),
Z =172 - abs(lists:nth(3,Coordinate)-72),
[X,Y, Z, lists:nth(4,Coordinate), lists:nth(5,

r_coordinate/1,
_coordinate/0, start_test/0,

clude/eqc.hrl").

clude/eqc_statem.hrl").

ut, [binary, {packet, 0}]),

{packet, 0}, {active, false}]),

_tepirecv(Sockl, 0),

rgin)

recv(Sockl, 0),

Margin)

Coordinate)].

23

prop_symmetric(Margin)->
?FORALL(Coordinate,antenna_coordinate (),
begi n
Extrapolated = extrapolated_coordinate(Coordinate),
Message = send_coordinates(Coordinate),
ok = gen_tcp:send(RSock, Message),
{ok, Sock1} = gen_tcp:accept(LSock),
{ok, <<"AS_Moved_To_Position">>} = gen_tcp recv(Sockl, 0),
ok = gen_tcp:send(RSock, "Request_Answer"),
{ok, Sock2} = gen_tcp:accept(LSock),
{ok, Bin} = gen_tcp:recv(Sock2, 0),
Position = binary_to_list(Bin),

Message?2 = send_coordinates(Extrapolated),
ok = gen_tcp:send(RSock, Message?2),
{ok, Sock11} = gen_tcp:accept(LSock),
{ok, <<"AS_Moved_To_Position">>} = gen_tcp recv(Sock11, 0),
ok = gen_tcp:send(RSock, "Request_Answer"),
{ok, Sock22} = gen_tcp:accept(LSock),
{ok, Bin2} = gen_tcp:recv(Sock22, 0),
Position2 = binary_to_list(Bin2),
Distancel = radial_distance(Position, Coordinate) ,
Distance2 = radial_distance(Position2, Extrapolat ed),
abs(Distancel — Distance2) =< 1
end).

send_coordinates(Coordinates) ->

"Send_Coordinates:"++lists:map(fun(X) -> intege r_to_list(X)++"," end, Coordinates).

inside_margin(Position, Coordinate, Margin)->
Distance = radial_distance(Position, Coordinate),
Distance =< Margin.

radial_distance(Position, Coordinate)->

Position_List = stringList_to_floatList(Positio n),

Distance = math:sqgrt(math:pow((lists:nth(1,Posi tion_List)-lists:nth(1,Coordinate)),
2)+ math:pow((lists:nth(2,Position_List)-lists:nth(2,Coordinate)), 2)+
math:pow((lists:nth(3,Position_List)-lists:nth(3,Co ordinate)), 2)), Distance.

antenna_coordinate() ->
[choose(35,135),choose(40,140),choose(72, 172), choose(-20, 20), choose(-20, 20)].

24

Acknowledgements

We would like to thank our Supervisor Thomas Ads liis valuable coaching through
the project. Your advice and support made thisgatagq unigue and rich experience.

Special thanks to Tomas Gustafsson, CEO of Micrpofjosan Linder for his coaching,
and all the staff at Micropos for their support.anks to you it was possible to perform
this study.

To the Ministry of Science and Technology of CoRiea for supporting the studies of
Aiko Fallas Yamashita through the&cience and Technology incentive program

We would also like to thank our ex-Program Manadé&omas Lundqvist, for his
feedback and critical spirit towards our work.

25

