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Abstract 

 
This paper criticizes current practice regarding the 

measurement and interpretation of the accuracy of 
software development effort estimation. The 
shortcomings we discuss are related to: 1) the meaning 
of ‘effort estimate’, 2) the meaning of ‘estimation 
accuracy’, 3) estimation of moving targets, and 4)  
assessment of the estimation process, and not only the 
discrepancy between the estimated and the actual 
effort, to evaluate estimation skill. It is possible to 
correct several of the discussed shortcomings by better 
practice. However, there are also inherent problems 
related to both laboratory and field analyses of the 
accuracy of software development effort estimation. It 
is essential that both software researchers and 
professionals are aware of these problems and their 
implications for the analysis of the measurement of 
effort estimation accuracy. 
 
1. Introduction 
 

As early as 1980, Boehm and Wolverton [1] wrote 
about the “need to develop a set of well-defined, 
agreed-on criteria for the 'goodness' of a software cost 
model; the need to evaluate existing and future models 
with respect to these criteria; and the need to 
emphasize 'constructive' models which relate their cost 
estimates to actual software phenomenology and 
project dynamics”. We here claim that there are 
essential unsolved problems related to the accuracy of 
effort estimation measurements and that some of these 
problems are not due to lack of maturity or training, 
but to inherent problems that may be impossible to 
solve. 

 
1.1 Problems with MMRE and PRED 

The typical current practice when comparing 
estimation models or evaluating the estimation 
performance of software organizations in field settings 

is to apply the accuracy measures Mean Magnitude of 
Relative Error (MMRE) and PRED or similar 
measures. MMRE and PRED seem to be have been 
introduced to the software community by Conte, 
Dunshmore and Shen in 1985 [2] and are defined as 
follows: 
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, where k is the number of projects in 

a set with n projects whose MRE <= r. 
The MRE-based accuracy measures have been 

criticized by several researchers in software 
engineering, e.g., [3-5]. Several alternative measures 
have been proposed, e.g., Mean Balanced Relative 
Error (MBRE) [6], Weighted Mean of Quartiles of 
relative errors (WMQ) [7] and Mean Variation from 
Estimate (MVFE) [8]. Especially illuminating of the 
problems related to an interpretation of MMRE and 
PRED as accuracy measures is the paper by 
Kitchenham et al. [4]. That paper proposes that 
MMRE and PRED should not be interpreted as 
accuracy measures at all, but instead spread and the 
kurtosis of the distribution of the estimation accuracy 
variable z, where z=estimated effort/actual effort. 

Conte, Dunshmore and Shen [2] refer to the 
accuracy measure as mean MRE (MMRE). This is 
surprising, given that MAPE (Mean Absolute 
Percentage Error) and MARE (Mean Absolute 
Relative Error) are the common terms for the same 
accuracy measure in most other disciplines involving 
quantitative forecasting. We are not aware of any other 
community that applies the term MMRE for this 
accuracy measure. This choice of non-standard 
terminology is unfortunate. It may have contributed to 
a surprising lack of references in software engineering 
papers on how to measure and analyze effort 
estimation accuracy to the large amount of relevant 



forecasting, prediction and estimation research papers 
outside the software engineering community in [9]. 

Conte, Dunshmore and Shen are also frequently 
referred to as sources for the claim that effort 
estimation models should have a MMRE <= 0.2 and a 
PRED(0.25) >= 0.75. We examined their paper on this 
topic [2] and found no reference to studies or 
argumentation providing evidence for these values. 
Instead we found undocumented claims such as these: 
“Most researchers have concluded that an acceptable 
criterion for an effort prediction model is PRED(0.25) 
>= 0.75”. Many researchers have applied these 
arbitrarily set criterion values to evaluate estimation 
accuracy of estimation models. We believe that this 
has reduced the quality of their studies and should be 
avoided in future studies. The acceptable accuracy of a 
specific model of processes of judgment depends on 
many factors, e.g., the accuracy of alternative ways of 
providing effort estimates in a particular context. 

Although there are strong limitations in the 
accuracy measures themselves, as illustrated by 
previous papers and our own discussion of MMRE and 
PRED, it is our opinion that the most severe problems 
are more basic and, to a large extent, not mentioned in 
textbooks and papers on software effort estimation. 
Such problems include those related to what we mean 
by ‘effort estimate’ and ‘more accurate than’, the effect 
of issues of system dynamics on the meaningfulness of 
accuracy measurement, and problems related to the 
outcome-focus of the measurement, i.e., the fact that 
we are only evaluating the outcome of an estimation 
process and not the estimation process itself. Neglect 
of these topics by the software engineering research 
community and the software industry motivate this 
paper. 
 
2. What is an ‘effort estimate’? 
 

To date, the software development community does 
not have a precise, agreed upon definition of its most 
central term, ‘effort estimate’ [10]. The term ‘effort 
estimate’ is sometimes used to mean “planned effort”, 
sometimes the “budgeted effort”, sometimes the “most 
likely use of effort” (modal value), and sometimes the 
“the effort with a 50% probability of not exceeding” 
(median value). Sometimes it is not even possible to 
identify an unambiguous meaning. This confusion may 
be worst in judgment-based effort estimation (expert 
estimation), where we have observed that software 
professionals frequently communicate their effort 
estimates without stating, or sometimes even being 
aware of, which interpretation they have used. One 
consequence of the lack of clear definitions of the term 

‘effort estimate’ is that surveys on the accuracy of 
software development effort estimation are inherently 
difficult to interpret; see [11] for an overview. While a 
30% effort overrun is likely to result in significant 
problems of management when the effort estimate was 
meant to be the planned or budgeted effort, such 
problems might not arise if it was meant to be the most 
likely use of effort and the manager added sufficiently 
large contingency buffers. We seriously doubt the 
usefulness of surveys where the core concept under 
investigation, i.e., ‘effort estimate’, is not precisely 
defined, inconsistently interpreted, and where there is 
no information about the degree to which 
interpretation is inconsistent among the respondents. 
Unfortunately, this may be the case in most surveys, 
including our own. 

Even in highly controlled situations, e.g., when 
comparing the estimates of estimation models in 
laboratory settings, it is frequently not clear what is 
meant by an effort estimate. For example, it is not clear 
that the effort estimates derived from analogy-based 
effort estimation models are of the same type as those 
derived from regression-based effort estimation 
models. They have different “loss functions” 
(optimization functions) and one type of model may, 
for example, systematically provide higher estimates 
than others. As a result, an assessment that one 
estimation model performs better than another may be 
to the consequence of different interpretations of 
‘effort estimate’1. However, problems related to the 
interpretation of the term ‘effort estimate’ are less 
severe with estimation models than with the more 
intuition-based expert judgment models because their 
estimation processes are more explicit.  

A reasonable precise interpretation of the term 
‘effort estimate’ is an obvious prerequisite for 
meaningful measures of estimation accuracy. Without 
this, it will frequently be difficult to determine whether 
differences or trends in estimation accuracy result from 
differences or trends in estimation performance or 

                                                           
1 Assume, for example, a comparison between analogy and 
regression-based effort estimation models. The regression-model, 
due to the least square optimization, will tend to emphasize the 
historical projects that spent unusually much or little effort compared 
with the other projects. By contrast, an analogy-based model may 
assign the same weight to all similar projects when calculating the 
effort estimate. If the high-impact projects in the data set used for the 
regression-based estimation models tend to be the projects with 
unusually high usage of effort, as is frequently the case in software 
development, the consequence is that the estimates of the regression-
based model tend to be higher than those of the analogy-based 
models. The MRE measures punish over-estimation more than under-
estimation. This may mean that the difference in the type of estimates 
may give the regression model a slight advantage over analogy-based 
models when applying MRE-based measures. 



from different interpretations of ‘effort estimate’. As 
an illustration, estimations of agile projects tend to be 
based on “how much work can we put into an 
increment?” rather than the “how much effort will a 
project require?” of more traditional projects. This 
means that effort estimates probably play a different 
role and, possibly, have a different interpretation in 
agile projects. Thus, comparing estimation accuracy of 
agile projects with those of traditional projects may be 
misleading. 

 
3. A moving target 
 

Software development effort estimation is different 
from many other types of forecasting, e.g., weather or 
stock price forecasting. While, for example, a weather 
forecast has no impact on the actual weather and there 
is typically little doubt what the forecast refers to, the 
same is not the case in software development projects. 
In software development projects the target (the 
required software product) is typically not well-
defined, the requirements may change during the 
project’s life-time, and, the estimate itself may impact 
the process of reaching the target [12]  

As an illustration of the implications for the 
measurement of estimation accuracy, assume that a 
software provider’s estimate of a project is 1000 work-
hours and that the price is based on that estimate. Once 
the project has begun, it soon becomes evident that the 
estimate of 1000 work-hours was far too low. Hence, 
the provider either has to face the prospect of huge 
financial losses or act opportunistically2 to avoid 
losses. If the provider acts opportunistically, he might 
spend less effort on maintainability, usability and 
robustness properties of the software. As a 
consequence, the measured estimation accuracy will 

                                                           
2 Opportunistic behaviour (sometimes termed “moral hazard”) is a 
term commonly used in economics. It occurs in software 
development projects when the provider takes advantage of his 
superior knowledge about the development processes and software 
product properties to deliver a product of lower quality than is 
expected by the client. This would occur, for example, if a provider 
delivers software products with problems regaridng quality that are 
not likely to be discovered by the client. The likelihood of 
opportunistic behaviour increases as the following increase: the 
degree of information asymmetry between the client and the 
provider, incentives to deviate from acting in accordance with the 
clients’ goals, and clients’ lack of ability to specify and monitor the 
development process and product. There are controversies regarding 
to what degree and when opportunistic behaviour will be neutralized 
by so-called “altruistic behaviour” (the opposite of egoistic 
behaviour) and “work ethics”, but there is no doubt that it is the 
phenomenon occurs frequently in both software development and 
other disciplines. 
 

improve, due to the provider’s ability and willingness 
to adjust the work to fit the initial estimate. 
Consequently, it is not clear to what extent the 
measured estimation accuracy measures properties of 
the estimate or the project’s ability to fit the work to 
the estimate.  

The system dynamics of software effort estimation 
is also important for understanding why it does not 
necessarily help to ‘add 30% to every effort estimate’ 
to remove the bias towards optimism in effort 
estimation. For example, if a project leader knows that 
30% will be added, he may: i) remove 30% from his 
estimate in advance to get the effort estimate he 
believes in, or ii) adjust the delivered product to be 
larger or better. The latter is frequently possible 
because the effort estimate to some extent defines, as 
well as reflects, the requirement specifications. 
Rewarding accurate effort estimates does not work 
well for similar reasons. For example, we know one 
company that rewarded those project leaders who had 
the most accurate effort estimates. The immediate 
effect was that effort estimates increased and 
productivity fell. The reason was simply that the 
project leaders discovered that a simple strategy, 
rational for them but not necessarily for the company, 
to achieve accurate effort estimates was to provide 
higher effort estimates and spend any remaining effort 
on improving the product (‘gold-plating’). 

In [13] we suggest several methods for measuring 
estimation accuracy when the target is moving. 
Unfortunately, it seems that several of the problems 
involved are inherent and not easy to adjust for. The 
methods, such as adjusting effort for differences 
between the specified and actual product, may alleviate 
problems, but are seldom able to eliminate them 
completely.  

The problems with the measurement of the accuracy 
of software estimation that result from the target’s 
moving constantly apply mainly in field settings. In 
laboratory settings, the estimation models are 
developed from historical data about the completed 
products and the estimates are derived from those 
models. In that case, the actual products are used to 
both develop the model and to evaluate the accuracy of 
the estimates; hence, there is no moving target 
problem. However, as soon as we apply and evaluate 
the models in real-life settings, the problems with 
respect to measuring estimation accuracy that are 
induced by the fact that the target may move begin to 
appear. These problems may strongly restrict the 
relation of measures of estimation accuracy to 
properties of the estimates, as opposed to the 
development process, regardless of the type of 
accuracy measure chosen. 



 
4. What is the meaning of ‘more accurate 
than’? 
 

Preferably, a measure of estimation accuracy should 
reflect its users’ intuitive understanding of important 
relationships that pertain to accuracy, such as the 
relationship ‘more accurate than’. Otherwise, it may be 
difficult to find the measure meaningful and to 
communicate the results. If, for example, most people 
would agree that the effort estimate X is more accurate 
than the effort estimate, but our accuracy measure tells 
us the opposite, there may be problems related to 
communication and willingness to adopt the accuracy 
measure. 

From discussion with software professionals, we 
have found that their understanding of ‘more accurate 
than’ deviates substantially from that implied by 
common accuracy measures. The main reason for this 
is related to the systems dynamics of software 
development, i.e., the types of reason discussed in 
Section 3. For example, we have encountered the 
opinion from a project manager who overestimated a 
project by 20% that his effort estimate was much more 
accurate than that of a project that was underestimated 
by 20%. The reason for the project manager’s holding 
that his estimate was the more accurate is that he knew 
perfectly well how easily he could have expended 
exactly as much effort as was estimated, while this 
option was not available for the project that was 
underestimated. It is evident that software 
professionals do not necessarily have a strictly 
quantitative interpretation of ‘more accurate than’. 

The lack of a precise and commonly accepted 
understanding of what we mean by ‘more accurate 
than’ may have been a major reason for the acceptance 
of measures like the MMRE. As an illustration, when 
we accept that MMRE is a meaningful measure for 
comparing the estimation accuracy of different 
estimation methods, we implicitly accept that an effort 
estimate where the actual effort is 300% of the 
estimate (MRE = 0.67) is more accurate than an effort 
estimate where the actual effort is 59% of the estimate 
(MRE = 0.69). This entails, for example, that if we 
estimate the effort to be 1000 work-hours and it turns 
out to be 3000 work-hours, an acceptance of the 
MMRE measure means that we should agree that we 
have estimated more accurately than if the actual effort 
turns out to be 590 work-hours. However, the opposite 
would probably be the case in practice, we believe. 

Other accuracy measures corresponding better to 
common interpretations of “more accuracy than” and 
other accuracy relations will hardly ever solve this 

problem. Even if researchers managed to agree on an 
‘empirical relational system’, i.e., a set of relations and 
definition sufficiently precise for the purpose of 
estimation accuracy measurement, it is not reasonable 
to assume that the software industry will share this 
‘empirical relational system’. The software industry’s 
loss functions and measurement goals vary a lot, 
depending on such factors as application domain, 
person roles, and type of client and project.  

We recommend that the estimation accuracy 
measures be tailored to the situation at hand and, even 
more importantly, based on a clear understanding of 
the purpose of the measurement. This may, in several 
particular situations, lead to precise and meaningful 
interpretations of relationships that pertain to accuracy, 
such as ‘more accurate than’. Assume, for example, 
that an organization wants to monitor the proportion of 
projects that have large estimation overruns to 
determine whether this proportion increases or 
decreases over time. The organization must then define 
precisely what it means by ‘large estimation overrun’. 
They may decide that, for their measurement purposes, 
situations with ‘large estimation overruns’ can 
meaningfully be defined as situations in which the 
actual effort is more than 30% and more than 500 
work-hours higher than the estimated effort, after 
adjusting the actual effort for differences between 
planned and actually delivered functionality and 
quality. By taking these steps, the organization 
introduces an ordinal scale of estimation overrun 
measurement, where estimates are categorized and 
ordered into the categories ‘no large effort overrun’ 
and ‘large effort overrun’. 

If the purpose of the measurement is not only to 
monitor, but to understand the reasons behind, 
estimation overruns, several other steps have to be 
taken, e.g., the steps suggested in [13]. Otherwise, it 
will not be possible to determine whether a decrease in 
estimation accuracy within a company is a result of 
increased estimation skill, change in interpretation of 
‘effort estimate’, less complex projects, or better 
project management. 

 
 
5. Focus on the outcome of accuracy 
measurement 
 

The two main strategies when evaluating the 
accuracy of judgments are: i) determining coherence 
with a normative process (the coherence-based 
strategy) and ii) determining correspondence with the 
real world (the correspondence-based strategy) [14]. 
While many studies on human judgment are based on 



coherence with a normative strategy, software 
development effort estimation accuracy evaluations 
are, as far as we know, based solely on correspondence 
with the actual effort. A possible reason for this strong 
reliance on correspondence is that it is frequently not 
obvious what a normative effort estimation process 
should look like. However, the disadvantage of this 
reliance on correspondence is that an effort estimate 
may be accurate for the wrong reasons. 

We are currently analyzing the judgmental 
processes of 28 software professionals who estimate 
the effort of software projects and maintenance tasks 
(work-in-progress). Frequently, we observed, the effort 
estimation strategies deviated from what we consider 
to be normative responses, e.g., the response that best 
reflects the historical data. Sometimes, however, the 
less defensible estimates were more accurate than 
those based on normative estimation strategies. Figure 
1 displays one such situation.  
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Figure 1: Estimation of programming productivity  
 

In Figure 1, PCl1 denotes the productivity of the 
closest analogy (the project most similar to the one to 
be estimated), while MPJava denotes the mean 
productivity of all previous tasks of same type (five 
Java tasks). In this estimation situation, the only 
information about the new task was its estimated size 
and development platform. This was introduced to 
force the software professionals to base their estimates 
on the historical data, so that we could analyze their 
use of these data.  

It is evident from Figure 1 that most software 
professionals estimated effort values that implied a 
productivity of the estimated task close to PCl1, 
MPJava or a combination of these two values. 
However, there were a few estimates of more than 
2000 LOC/man-month. These estimates were difficult 
to defend on the basis of the historical data received by 
the software developers. These non-normative 
estimates may have been caused by: i) calculation 

error, ii) assumption of organizational learning (not 
supported by the data), or iii) assumption of much 
higher productivity of smaller tasks (not supported by 
the data). 

The actual productivity of the task was 2333 
LOC/man-month. Hence, those who followed the 
seemingly least normative estimation strategies had the 
least discrepancy between estimated and actual effort. 
This illustrates that if we want to use estimation 
accuracy as a measure of estimation skill, or predict 
the future estimation accuracy of a software developer, 
a strong reliance on outcome without considering the 
normativeness of the estimation strategy may lead to 
poor interpretations. 

In order to improve the interpretation of estimation 
accuracy measurement, we recommend that the 
normativeness of the estimation strategy be evaluated. 
Elements of an evaluation of the normativeness of an 
estimation process should include: 
• Including variables that historically have affected 

the use of effort. 
• Excluding variables that have had no or very 

limited impact on the effort. 
• Basing the evaluation on a defensible strategy, 

e.g., similarity to other projects. 
• Regressing towards the mean effort or 

productivity of a larger group of similar tasks with 
higher uncertainty levels. 

• Not assuming substantial learning from 
experience, i.e., better performance than on 
previous projects, unless a strong argument for 
this is provided. 

We acknowledge that it is typically very difficult to 
evaluate the degree of normativeness of judgment-
based estimation strategies. There may, for example, 
be an essential difference between a software 
professional’s claim that he has not been affected by 
irrelevant variables and the actual effect [15]. 
 
6. Final reflections 
 

Common measures of the accuracy of software 
development effort have, we believe, shortcomings 
that have a severe impact on their communication, 
interpretation and meaningful use. Several of these 
shortcomings have, as far as we are aware, received 
little attention from the software development 
communities. We believe that researchers and 
organizations that apply these effort estimation 
accuracy measures will benefit from greater awareness 
of these shortcomings.  

We also believe that a necessary precondition for 
the sustainable improvement of effort estimation is that 



the evaluation of judgmental strategies and formal 
estimation models has a solid foundation. We find that 
this is currently not the case, and that there is a strong 
need for more mature analyses and studies on this 
topic. If we are not able to evaluate and compare 
estimation models and processes properly, any 
measure of change may be a result of shortcomings 
with respect to how we measure, rather than an actual 
change in estimation performance. 
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