
A Critique of How We Measure and Interpret the Accuracy of Software
Development Effort Estimation

Magne Jørgensen
Simula Research Laboratory

magnej@simula.no

Abstract

This paper criticizes current practice regarding the

measurement and interpretation of the accuracy of
software development effort estimation. The
shortcomings we discuss are related to: 1) the meaning
of ‘effort estimate’, 2) the meaning of ‘estimation
accuracy’, 3) estimation of moving targets, and 4)
assessment of the estimation process, and not only the
discrepancy between the estimated and the actual
effort, to evaluate estimation skill. It is possible to
correct several of the discussed shortcomings by better
practice. However, there are also inherent problems
related to both laboratory and field analyses of the
accuracy of software development effort estimation. It
is essential that both software researchers and
professionals are aware of these problems and their
implications for the analysis of the measurement of
effort estimation accuracy.

1. Introduction

As early as 1980, Boehm and Wolverton [1] wrote
about the “need to develop a set of well-defined,
agreed-on criteria for the 'goodness' of a software cost
model; the need to evaluate existing and future models
with respect to these criteria; and the need to
emphasize 'constructive' models which relate their cost
estimates to actual software phenomenology and
project dynamics”. We here claim that there are
essential unsolved problems related to the accuracy of
effort estimation measurements and that some of these
problems are not due to lack of maturity or training,
but to inherent problems that may be impossible to
solve.

1.1 Problems with MMRE and PRED

The typical current practice when comparing
estimation models or evaluating the estimation
performance of software organizations in field settings

is to apply the accuracy measures Mean Magnitude of
Relative Error (MMRE) and PRED or similar
measures. MMRE and PRED seem to be have been
introduced to the software community by Conte,
Dunshmore and Shen in 1985 [2] and are defined as
follows:

MMRE = mean MRE = ∑
=

−n

i i

ii

Act
ActEst

n 1
|)(|1

PRED(r) =
n
k

, where k is the number of projects in

a set with n projects whose MRE <= r.
The MRE-based accuracy measures have been

criticized by several researchers in software
engineering, e.g., [3-5]. Several alternative measures
have been proposed, e.g., Mean Balanced Relative
Error (MBRE) [6], Weighted Mean of Quartiles of
relative errors (WMQ) [7] and Mean Variation from
Estimate (MVFE) [8]. Especially illuminating of the
problems related to an interpretation of MMRE and
PRED as accuracy measures is the paper by
Kitchenham et al. [4]. That paper proposes that
MMRE and PRED should not be interpreted as
accuracy measures at all, but instead spread and the
kurtosis of the distribution of the estimation accuracy
variable z, where z=estimated effort/actual effort.

Conte, Dunshmore and Shen [2] refer to the
accuracy measure as mean MRE (MMRE). This is
surprising, given that MAPE (Mean Absolute
Percentage Error) and MARE (Mean Absolute
Relative Error) are the common terms for the same
accuracy measure in most other disciplines involving
quantitative forecasting. We are not aware of any other
community that applies the term MMRE for this
accuracy measure. This choice of non-standard
terminology is unfortunate. It may have contributed to
a surprising lack of references in software engineering
papers on how to measure and analyze effort
estimation accuracy to the large amount of relevant

forecasting, prediction and estimation research papers
outside the software engineering community in [9].

Conte, Dunshmore and Shen are also frequently
referred to as sources for the claim that effort
estimation models should have a MMRE <= 0.2 and a
PRED(0.25) >= 0.75. We examined their paper on this
topic [2] and found no reference to studies or
argumentation providing evidence for these values.
Instead we found undocumented claims such as these:
“Most researchers have concluded that an acceptable
criterion for an effort prediction model is PRED(0.25)
>= 0.75”. Many researchers have applied these
arbitrarily set criterion values to evaluate estimation
accuracy of estimation models. We believe that this
has reduced the quality of their studies and should be
avoided in future studies. The acceptable accuracy of a
specific model of processes of judgment depends on
many factors, e.g., the accuracy of alternative ways of
providing effort estimates in a particular context.

Although there are strong limitations in the
accuracy measures themselves, as illustrated by
previous papers and our own discussion of MMRE and
PRED, it is our opinion that the most severe problems
are more basic and, to a large extent, not mentioned in
textbooks and papers on software effort estimation.
Such problems include those related to what we mean
by ‘effort estimate’ and ‘more accurate than’, the effect
of issues of system dynamics on the meaningfulness of
accuracy measurement, and problems related to the
outcome-focus of the measurement, i.e., the fact that
we are only evaluating the outcome of an estimation
process and not the estimation process itself. Neglect
of these topics by the software engineering research
community and the software industry motivate this
paper.

2. What is an ‘effort estimate’?

To date, the software development community does
not have a precise, agreed upon definition of its most
central term, ‘effort estimate’ [10]. The term ‘effort
estimate’ is sometimes used to mean “planned effort”,
sometimes the “budgeted effort”, sometimes the “most
likely use of effort” (modal value), and sometimes the
“the effort with a 50% probability of not exceeding”
(median value). Sometimes it is not even possible to
identify an unambiguous meaning. This confusion may
be worst in judgment-based effort estimation (expert
estimation), where we have observed that software
professionals frequently communicate their effort
estimates without stating, or sometimes even being
aware of, which interpretation they have used. One
consequence of the lack of clear definitions of the term

‘effort estimate’ is that surveys on the accuracy of
software development effort estimation are inherently
difficult to interpret; see [11] for an overview. While a
30% effort overrun is likely to result in significant
problems of management when the effort estimate was
meant to be the planned or budgeted effort, such
problems might not arise if it was meant to be the most
likely use of effort and the manager added sufficiently
large contingency buffers. We seriously doubt the
usefulness of surveys where the core concept under
investigation, i.e., ‘effort estimate’, is not precisely
defined, inconsistently interpreted, and where there is
no information about the degree to which
interpretation is inconsistent among the respondents.
Unfortunately, this may be the case in most surveys,
including our own.

Even in highly controlled situations, e.g., when
comparing the estimates of estimation models in
laboratory settings, it is frequently not clear what is
meant by an effort estimate. For example, it is not clear
that the effort estimates derived from analogy-based
effort estimation models are of the same type as those
derived from regression-based effort estimation
models. They have different “loss functions”
(optimization functions) and one type of model may,
for example, systematically provide higher estimates
than others. As a result, an assessment that one
estimation model performs better than another may be
to the consequence of different interpretations of
‘effort estimate’1. However, problems related to the
interpretation of the term ‘effort estimate’ are less
severe with estimation models than with the more
intuition-based expert judgment models because their
estimation processes are more explicit.

A reasonable precise interpretation of the term
‘effort estimate’ is an obvious prerequisite for
meaningful measures of estimation accuracy. Without
this, it will frequently be difficult to determine whether
differences or trends in estimation accuracy result from
differences or trends in estimation performance or

1 Assume, for example, a comparison between analogy and
regression-based effort estimation models. The regression-model,
due to the least square optimization, will tend to emphasize the
historical projects that spent unusually much or little effort compared
with the other projects. By contrast, an analogy-based model may
assign the same weight to all similar projects when calculating the
effort estimate. If the high-impact projects in the data set used for the
regression-based estimation models tend to be the projects with
unusually high usage of effort, as is frequently the case in software
development, the consequence is that the estimates of the regression-
based model tend to be higher than those of the analogy-based
models. The MRE measures punish over-estimation more than under-
estimation. This may mean that the difference in the type of estimates
may give the regression model a slight advantage over analogy-based
models when applying MRE-based measures.

from different interpretations of ‘effort estimate’. As
an illustration, estimations of agile projects tend to be
based on “how much work can we put into an
increment?” rather than the “how much effort will a
project require?” of more traditional projects. This
means that effort estimates probably play a different
role and, possibly, have a different interpretation in
agile projects. Thus, comparing estimation accuracy of
agile projects with those of traditional projects may be
misleading.

3. A moving target

Software development effort estimation is different
from many other types of forecasting, e.g., weather or
stock price forecasting. While, for example, a weather
forecast has no impact on the actual weather and there
is typically little doubt what the forecast refers to, the
same is not the case in software development projects.
In software development projects the target (the
required software product) is typically not well-
defined, the requirements may change during the
project’s life-time, and, the estimate itself may impact
the process of reaching the target [12]

As an illustration of the implications for the
measurement of estimation accuracy, assume that a
software provider’s estimate of a project is 1000 work-
hours and that the price is based on that estimate. Once
the project has begun, it soon becomes evident that the
estimate of 1000 work-hours was far too low. Hence,
the provider either has to face the prospect of huge
financial losses or act opportunistically2 to avoid
losses. If the provider acts opportunistically, he might
spend less effort on maintainability, usability and
robustness properties of the software. As a
consequence, the measured estimation accuracy will

2 Opportunistic behaviour (sometimes termed “moral hazard”) is a
term commonly used in economics. It occurs in software
development projects when the provider takes advantage of his
superior knowledge about the development processes and software
product properties to deliver a product of lower quality than is
expected by the client. This would occur, for example, if a provider
delivers software products with problems regaridng quality that are
not likely to be discovered by the client. The likelihood of
opportunistic behaviour increases as the following increase: the
degree of information asymmetry between the client and the
provider, incentives to deviate from acting in accordance with the
clients’ goals, and clients’ lack of ability to specify and monitor the
development process and product. There are controversies regarding
to what degree and when opportunistic behaviour will be neutralized
by so-called “altruistic behaviour” (the opposite of egoistic
behaviour) and “work ethics”, but there is no doubt that it is the
phenomenon occurs frequently in both software development and
other disciplines.

improve, due to the provider’s ability and willingness
to adjust the work to fit the initial estimate.
Consequently, it is not clear to what extent the
measured estimation accuracy measures properties of
the estimate or the project’s ability to fit the work to
the estimate.

The system dynamics of software effort estimation
is also important for understanding why it does not
necessarily help to ‘add 30% to every effort estimate’
to remove the bias towards optimism in effort
estimation. For example, if a project leader knows that
30% will be added, he may: i) remove 30% from his
estimate in advance to get the effort estimate he
believes in, or ii) adjust the delivered product to be
larger or better. The latter is frequently possible
because the effort estimate to some extent defines, as
well as reflects, the requirement specifications.
Rewarding accurate effort estimates does not work
well for similar reasons. For example, we know one
company that rewarded those project leaders who had
the most accurate effort estimates. The immediate
effect was that effort estimates increased and
productivity fell. The reason was simply that the
project leaders discovered that a simple strategy,
rational for them but not necessarily for the company,
to achieve accurate effort estimates was to provide
higher effort estimates and spend any remaining effort
on improving the product (‘gold-plating’).

In [13] we suggest several methods for measuring
estimation accuracy when the target is moving.
Unfortunately, it seems that several of the problems
involved are inherent and not easy to adjust for. The
methods, such as adjusting effort for differences
between the specified and actual product, may alleviate
problems, but are seldom able to eliminate them
completely.

The problems with the measurement of the accuracy
of software estimation that result from the target’s
moving constantly apply mainly in field settings. In
laboratory settings, the estimation models are
developed from historical data about the completed
products and the estimates are derived from those
models. In that case, the actual products are used to
both develop the model and to evaluate the accuracy of
the estimates; hence, there is no moving target
problem. However, as soon as we apply and evaluate
the models in real-life settings, the problems with
respect to measuring estimation accuracy that are
induced by the fact that the target may move begin to
appear. These problems may strongly restrict the
relation of measures of estimation accuracy to
properties of the estimates, as opposed to the
development process, regardless of the type of
accuracy measure chosen.

4. What is the meaning of ‘more accurate
than’?

Preferably, a measure of estimation accuracy should
reflect its users’ intuitive understanding of important
relationships that pertain to accuracy, such as the
relationship ‘more accurate than’. Otherwise, it may be
difficult to find the measure meaningful and to
communicate the results. If, for example, most people
would agree that the effort estimate X is more accurate
than the effort estimate, but our accuracy measure tells
us the opposite, there may be problems related to
communication and willingness to adopt the accuracy
measure.

From discussion with software professionals, we
have found that their understanding of ‘more accurate
than’ deviates substantially from that implied by
common accuracy measures. The main reason for this
is related to the systems dynamics of software
development, i.e., the types of reason discussed in
Section 3. For example, we have encountered the
opinion from a project manager who overestimated a
project by 20% that his effort estimate was much more
accurate than that of a project that was underestimated
by 20%. The reason for the project manager’s holding
that his estimate was the more accurate is that he knew
perfectly well how easily he could have expended
exactly as much effort as was estimated, while this
option was not available for the project that was
underestimated. It is evident that software
professionals do not necessarily have a strictly
quantitative interpretation of ‘more accurate than’.

The lack of a precise and commonly accepted
understanding of what we mean by ‘more accurate
than’ may have been a major reason for the acceptance
of measures like the MMRE. As an illustration, when
we accept that MMRE is a meaningful measure for
comparing the estimation accuracy of different
estimation methods, we implicitly accept that an effort
estimate where the actual effort is 300% of the
estimate (MRE = 0.67) is more accurate than an effort
estimate where the actual effort is 59% of the estimate
(MRE = 0.69). This entails, for example, that if we
estimate the effort to be 1000 work-hours and it turns
out to be 3000 work-hours, an acceptance of the
MMRE measure means that we should agree that we
have estimated more accurately than if the actual effort
turns out to be 590 work-hours. However, the opposite
would probably be the case in practice, we believe.

Other accuracy measures corresponding better to
common interpretations of “more accuracy than” and
other accuracy relations will hardly ever solve this

problem. Even if researchers managed to agree on an
‘empirical relational system’, i.e., a set of relations and
definition sufficiently precise for the purpose of
estimation accuracy measurement, it is not reasonable
to assume that the software industry will share this
‘empirical relational system’. The software industry’s
loss functions and measurement goals vary a lot,
depending on such factors as application domain,
person roles, and type of client and project.

We recommend that the estimation accuracy
measures be tailored to the situation at hand and, even
more importantly, based on a clear understanding of
the purpose of the measurement. This may, in several
particular situations, lead to precise and meaningful
interpretations of relationships that pertain to accuracy,
such as ‘more accurate than’. Assume, for example,
that an organization wants to monitor the proportion of
projects that have large estimation overruns to
determine whether this proportion increases or
decreases over time. The organization must then define
precisely what it means by ‘large estimation overrun’.
They may decide that, for their measurement purposes,
situations with ‘large estimation overruns’ can
meaningfully be defined as situations in which the
actual effort is more than 30% and more than 500
work-hours higher than the estimated effort, after
adjusting the actual effort for differences between
planned and actually delivered functionality and
quality. By taking these steps, the organization
introduces an ordinal scale of estimation overrun
measurement, where estimates are categorized and
ordered into the categories ‘no large effort overrun’
and ‘large effort overrun’.

If the purpose of the measurement is not only to
monitor, but to understand the reasons behind,
estimation overruns, several other steps have to be
taken, e.g., the steps suggested in [13]. Otherwise, it
will not be possible to determine whether a decrease in
estimation accuracy within a company is a result of
increased estimation skill, change in interpretation of
‘effort estimate’, less complex projects, or better
project management.

5. Focus on the outcome of accuracy
measurement

The two main strategies when evaluating the
accuracy of judgments are: i) determining coherence
with a normative process (the coherence-based
strategy) and ii) determining correspondence with the
real world (the correspondence-based strategy) [14].
While many studies on human judgment are based on

coherence with a normative strategy, software
development effort estimation accuracy evaluations
are, as far as we know, based solely on correspondence
with the actual effort. A possible reason for this strong
reliance on correspondence is that it is frequently not
obvious what a normative effort estimation process
should look like. However, the disadvantage of this
reliance on correspondence is that an effort estimate
may be accurate for the wrong reasons.

We are currently analyzing the judgmental
processes of 28 software professionals who estimate
the effort of software projects and maintenance tasks
(work-in-progress). Frequently, we observed, the effort
estimation strategies deviated from what we consider
to be normative responses, e.g., the response that best
reflects the historical data. Sometimes, however, the
less defensible estimates were more accurate than
those based on normative estimation strategies. Figure
1 displays one such situation.

2500200015001000

9

8

7

6

5

4

3

2

1

0

Estimated Productivity (LOC/man-month)

Fr
eq

ue
nc

y

 MPJavaPCl1

Figure 1: Estimation of programming productivity

In Figure 1, PCl1 denotes the productivity of the
closest analogy (the project most similar to the one to
be estimated), while MPJava denotes the mean
productivity of all previous tasks of same type (five
Java tasks). In this estimation situation, the only
information about the new task was its estimated size
and development platform. This was introduced to
force the software professionals to base their estimates
on the historical data, so that we could analyze their
use of these data.

It is evident from Figure 1 that most software
professionals estimated effort values that implied a
productivity of the estimated task close to PCl1,
MPJava or a combination of these two values.
However, there were a few estimates of more than
2000 LOC/man-month. These estimates were difficult
to defend on the basis of the historical data received by
the software developers. These non-normative
estimates may have been caused by: i) calculation

error, ii) assumption of organizational learning (not
supported by the data), or iii) assumption of much
higher productivity of smaller tasks (not supported by
the data).

The actual productivity of the task was 2333
LOC/man-month. Hence, those who followed the
seemingly least normative estimation strategies had the
least discrepancy between estimated and actual effort.
This illustrates that if we want to use estimation
accuracy as a measure of estimation skill, or predict
the future estimation accuracy of a software developer,
a strong reliance on outcome without considering the
normativeness of the estimation strategy may lead to
poor interpretations.

In order to improve the interpretation of estimation
accuracy measurement, we recommend that the
normativeness of the estimation strategy be evaluated.
Elements of an evaluation of the normativeness of an
estimation process should include:
• Including variables that historically have affected

the use of effort.
• Excluding variables that have had no or very

limited impact on the effort.
• Basing the evaluation on a defensible strategy,

e.g., similarity to other projects.
• Regressing towards the mean effort or

productivity of a larger group of similar tasks with
higher uncertainty levels.

• Not assuming substantial learning from
experience, i.e., better performance than on
previous projects, unless a strong argument for
this is provided.

We acknowledge that it is typically very difficult to
evaluate the degree of normativeness of judgment-
based estimation strategies. There may, for example,
be an essential difference between a software
professional’s claim that he has not been affected by
irrelevant variables and the actual effect [15].

6. Final reflections

Common measures of the accuracy of software
development effort have, we believe, shortcomings
that have a severe impact on their communication,
interpretation and meaningful use. Several of these
shortcomings have, as far as we are aware, received
little attention from the software development
communities. We believe that researchers and
organizations that apply these effort estimation
accuracy measures will benefit from greater awareness
of these shortcomings.

We also believe that a necessary precondition for
the sustainable improvement of effort estimation is that

the evaluation of judgmental strategies and formal
estimation models has a solid foundation. We find that
this is currently not the case, and that there is a strong
need for more mature analyses and studies on this
topic. If we are not able to evaluate and compare
estimation models and processes properly, any
measure of change may be a result of shortcomings
with respect to how we measure, rather than an actual
change in estimation performance.

7. References

1. Boehm, B.W. and R.W. Wolverton, Software

cost modeling: Some lessons learned. Journal
of Systems and Software, 1980. 1: p. 195-
201.

2. Conte, S.D., H.E. Dunsmore, and V.Y. Shen,
Software effort estimation and productivity.
Advances in Computers, 1985. 24: p. 1-60.

3. Shepperd, M., M. Cartwright, and G. Kadoda,
On building prediction systems for software
engineers. Empirical Software Engineering,
2000. 5(3): p. 175-182.

4. Kitchenham, B.A., et al., What accuracy
statistics really measure. IEE Proceedings
Software, 2001. 148(3): p. 81-85.

5. Foss, T., et al., A simulation study of the
model evaluation criterion MMRE. IEEE
Transactions on Software Engineering, 2003.
29(11): p. 985-995.

6. Miyazaki, Y., et al., Robust regression for
developing software estimation models.
Journal of Systems and Software, 1994.
27(1): p. 3-16.

7. Lo, -.B.-W.-N. and Xiangzhu-Gao, Assessing
software cost estimation models: criteria for
accuracy, consistency and regression.
Australian Journal of Information Systems,
1997. 5(1): p. 30-44.

8. Hughes, R.T., A. Cunliffe, and F. Young-
Martos, Evaluating software development
effort model-building techniques for
application in a real-time telecommunications
environment. IEE Proceedings Software,
1998. 145(1): p. 29-33.

9. Jørgensen, M. and M. Shepperd, A systematic
review of software cost estimation studies.
IEEE Transactions on Software Engineering,
2007. 33(1): p. 33-53.

10. Grimstad, S., M. Jørgensen, and K.
Moløkken-Østvold, Software Effort
Estimation Terminology: The Tower of Babel.

Information and Software Technology, 2006.
48(4): p. 302-310.

11. Moløkken, K. and M. Jørgensen. A review of
software surveys on software effort
estimation, in International Symposium on
Empirical Software Engineering. 2003.
Rome, Italy: Simula Res. Lab. Lysaker
Norway.

12. Jørgensen, M. and D.I.K. Sjøberg, Impact of
effort estimates on software project work.
Information and Software Technology, 2001.
43(15): p. 939-948.

13. Grimstad, S. and M. Jørgensen. A Framework
for the Analysis of Software Cost Estimation
Accuracy. in ISESE. 2006. Rio de Janeiro:
ACM Press.

14. Hammond, K.R., Human judgement and
social policy: Irreducible uncertainty,
inevitable error, unavoidable injustice. 1996,
New York: Oxford University Press.

15. Jørgensen, M., A review of studies on expert
estimation of software development effort.
Journal of Systems and Software, 2004. 70(1-
2): p. 37-60.

