Seminar: Software Development Effort Estimation

Making Waves, Oslo, 8 November, 2007

Magne Jørgensen Simula Research Laboratory

Purpose of seminar

- Be able to use a precise estimation terminology
- Know important factors that impact the estimation accuracy and/or lead to overoptimism
- Know how to use checklists to improve the effort estimation
- Improve the ability to assess the uncertainty of effort estimates
- Know how to use the agile, group-based estimation technique Planning Poker

Supporting material

- "Software effort estimation terminology: The tower of Babel"
- "A Framework for Analysis of Software Cost Estimation Accuracy"
- "Reasons for Software Effort Estimation Error: Impact of Respondent Role, Information Collection Approach and Data Analysis Method"
- "A Checklist for Software Cost Estimation"
- "Practical Guidelines for Expert-Judgment-Based Software Effort Estimation"
- All material:
 - Available on-line: www.simula.no\best

3

BASIC ESTIMATION KNOWLEDGE

Estimation error

- Average estimation overrun in IT-projects seems to be about 30%
 - The overrun seems to be the same as in similar engineering disciplines
 - No substantial changes in average estimation error from 1970 until today.
 - The Standish Group's Chaos Report claims that average overrun was 189% in 1994, reduced to 45% in 2000, but is not believable:
 - www.simula.no/departments/engineering/publications/Jorgensen.2006.4
- BUT, what is the meaning of "estimate" and "overrun"?
 - www.simula.no/departments/engineering/publications/Grimstad.2006.1

5

What is an "estimate"?

ESTIMATE = Most likely effort, 50% estimate, most optimistic effort, ideal effort, 70% estimate, planned effort, budgeted effort, priced effort, or, ...?

7

S-curve: Work Effort

Estimation Error (Overrun)

- Measure of difference between actual and estimated effort
 - Be precise and consistent with respect to what you mean and try to communicate by an effort estimate
- Estimates are seldom "correct"
 - A 50% estimate will be exceeded 50% of the time.
 - Even when estimates are based on good estimation processes and extensive historical data we should expect estimation errors.
 - What we want to avoid are:
 - Systematic under or over-estimation
 - Overconfidence in accuracy of estimate (underestimation of risk) → poor planning and budgeting

9

Recommendation

- Use different terms for different concepts/purposes:
 - Most likely use of effort. Purpose: Realism, and just that.
 - Planned use of effort (e.g., 70%-estimate). Purpose:
 Control of project. May include contingency buffers.
 - Budget (e.g., based on 80%-estimate). Purpose:
 Financial control of project portfolio.
 - Price (e.g., based on 40%-estimate). Purpose: Long or short term win/loss considerations.
- Different purposes should lead to different processes. Realism and market considerations (e.g., winning a bidding round) at the same time, means that realism will suffer.

Reasons for Estimation Error

Estimation accuracy is impacted by (1)

- 1) Estimation ability
 - Relevance of earlier experience
 - Ability to select appropriate estimation strategy
 - Ability to use estimation model or method correctly

Estimation accuracy is impacted by (2)

2) How difficult it is to estimate

- Project management ability
- Development skill of team members
- Relation to client
- The clients' ability to do their part of the project
- Completeness and correctness of information (e.g., the requirement specification)
- Inherent completion complexity
- Project priorities (cost, time-to-market, quality, ...)
- Flexibility of product and process

13

Estimation accuracy is impacted by (3)

3) How you measure

- What actual effort is compared with
 - Estimate = most likely effort, planned effort, budget, 80%-estimate
- Quality of actual effort data
 - Over-time included?
- Difference between planned and actual product and/or process

Results from a study

- "Reasons for Software Effort Estimation Error: Impact of Respondent Role, Information Collection Approach and Data Analysis Method", IEEE Transactions on Software Engineering
- Main message is that it is difficult to analyze reasons for estimation error:
 - Direct reasons are typically emphasized
 - Indirect reasons are forgotten
 - "Systemic" reasons are seldom analyzed
- Reasons that are emphasized by software professionals depend very much on how you ask, whether the project has been a success or not, and how you analyze.

15

Recommendation

- Accept inaccurate 50%-estimates if:
 - The estimation work process is of high quality
 - The estimation complexity is high
 - The estimation uncertainty is well communicated
 - The plans and budgets are based on a realistic view on the risks
- Reward realistic uncertainty assessments
 - The opposite happnes most of the time, indirectly
 - Accept that risk cannot always be managed, but must be accepted.
 Flexibility in product, process and budget should be present.
- Analyse reasons for overruns, but do not forget to analyse reasons to accurate estiamtes:
 - Be realistic about what you can learn about reasons for overruns
 - Ask "why" five times
 - Apply "Root cause analysis"

Why are we over-optimistic again and again?

17

If you need a realist, look for slightly depressive people.

Overconfidence (under-estimation of risk) is normal

19

We need optimists – but not necessarily as estimators

Over-confidence: This boat cannot sink

21

Reasons for this over-optimism

- Evolution/biology
- Culture
- Motivation
- Cognition
- Bidding round process

Biology

- Evolution rewards over-confidence and over-optimism (Girls: You are to blame. You select the most over-confident boys.)
- Some (weak) indications that optimism improves coping ability.
- There are contexts where over-optimism is a more optimal strategy than realism. Particularly, when you know little about the probability of different outcomes, and more about the consequences of them.

23

Culture

- There are cultural differences in level of optimism, but the findings are confusing.
 - Asian people (collective oriented) seem to be more over-optimistic than Western people (individal oriented)
 - Studies on "self-efficacy" found that Western people where more over-optimistic than Asian people.
 - A study on the "planning fallacy" found no difference in degree of over-optimism.
- Culture may be less important than many people believe in explaining over-optimism.

Motivation

- Strong connection between high motivation for low use of effort and overoptimism
- Optimism kan have a positive impact on performance, BUT
 - Only for a short period of time.
 - It's easy to over-evaluate this.

25

Motivation (cognitive dissonance)

- A good self-evaluation is beneficial
 - For yourself
 - Because it's used an performance indicator by othersDerfor bør ikke et prosjekt ta lang tid, det bør ikke oppstå problemer man ikke kan løse, ...
- Low effort estimates = high performance = better (but less realistic) self-evaluation.
 - Otherwise, we have a cognitice dissonance, i.e., a difference between what we estimate and who we want to be.

Cognitive processes

- Planning (scenarios of the future) makes us more optimistic than looking back (use of historical data).
- Illusion of control sometimes very strong
 - Perhaps the most important reason for overoptimism?

27

Cognitive processes

- Selective memory
- Cause-effect analysis may lead to better understanding, but also to over-estimation of how much better the understanding really is
- · Hindsight bias

Bidding round process

- The winner's curse
- · Bidding anchors
- Wishful thinking (future opportunities)

29

Recommendations to reduce overoptimism

- Educate a "cost engineer" that will be evaluated wrt realism of estimates and not him/herself be a part of the projects estimated.
- 2. Use separate processes (and people?) for estimation, planning and bidding.
- 3. Avoid irrelevant information (prepare information material before given to the estimators)
- 4. Use historical data
- Ask for estimation justification based on historical data. Require very good arguments if the estimates are based on assumption of much less effort compared to similar projects.
- 6. Do not assume that you have learned very much from previous projects.
- 7. When there are no relevant historical data available, try to find experts with relevant experience and historical data outside the organizations.
- Do not let the most skilled estimators estimate the effort of junior developers. Use instead medium skilled developers.
- If a person benefits from low effort estimates (really wants to start the project etc.), find another person to estimate the effort.
- Combine estimates from different sources. Use a Delphi-like process (e.g., Planning Poker) to combine these estimates.

Checklists

Checklists

- Based on: "A Checklist for Software Cost Estimation"
- The checklist should be tailored to the organization using it (and not be too long)
- Addition to existing estimation process
- Updated as an experience database

Part 1: Estimation Preparation

- 1. Understand the estimation problem
 - Identify the purpose and the accuracy requirements
 - Identify stake holders and political issues
- 2. Ensure agreement on purpose and essential assumptions
 - Identify relevant decisions and assumptions that can have a significant impact on the estimation work
 - Decide whether it is meaningful to estimate or not
 - Identify level of flexibility in process and product and project priorities

33

Part 1: Estimation Preparation

- 3. Collect relevant information
 - Remove irrelevant information
 - Identify the main cost drivers
 - Ensure that the information sources are neutral
- 4. Select estimation process
 - Base the estimation process on success on similar, previously completed projects

Part 2: Estimation Phase

- 5. Start with the estimation of most likely effort
 - Structure the estimation process with checklists, pre-defined templates for workbreak-down structures, etc.
 - Describe all essential assumptions you make
 - Describe your use of historical data
- 6. Assess the uncertainty of the estimate of most likely effort
 - More on this later.

35

Part 2: Estimation Phase

- 7. Review the estimation process and the effort estimate
 - Use independent experts for this
 - Develop a review checklist

Part 3: Application of the estimates of most likely effort

• 8. Bidding

 Estimates of most likely effort and data from the uncertainty assessment will show the likelihood of profit for a given bid. Use this to decide whether a participation in the bidding round is worthwhile.

9. Planning

- Decide, based on historical data, on the need for a buffer for unexpected events.
- Plan re-estimation

3

Part 3: Application of the estimates of most likely effort

- 10. Communicate estimates, bids, plans and uncertainty
 - Adapt the information (e.g., about uncertainty) to the maturity of the receiver

11. Control the costs

- Monitor the development and re-estimate
- Keep the monitoring processes as simple as possible

Part 4: Learning from experience

- 12. Learning
 - Try to understand the deeper (indirect) reasons for estimation problems
 - Update the check list (the experience data base), the estimation process and the templates on basis of experience (a job for a cost engineer?)
 - Try to avoid learning fallacies

39

Make your own check list

- Start with the most central issues, i.e., those that have the larges potential for improvement in your organizations.
 - Interview 5-10 central project leaders and base the first version on their opinions/experience
- Keep the checklist simple and "maintainable"
- Make it mandatory to tick off the issues described on the check list
 - not relevant" should be possible, with a brief argumentation

Effort estimation uncertainty analysis

Estimation uncertainty

- We find that when project managers claim:
 - Almost certainty, this mean about 60% certain
 - "60% certain" = "75% certain" = "90% certain = "99% certain"
- The realism of the uncertainty assessment depends strongly on how you ask:
 - Don't ask like this:
 - What is the maximum/minimum effort?
 - Ask rather like this:
 - How large proportion of similar project have been overrun with more then X (where X for example is 50%)
 - Require documentation, if realism is essential.
 - The improvement in realism may be surprising large.

The process

- 1. Estimate most likely use of effort
- 2. Identify (if necessary from memory) earlier projects with similar estimation complexity (do not need to be very similar, it's more important that there is at least 10-20 projects included).
- 3. Make a distribution of estimation error for these projects (see next slide).
- 4. Use this distribution to decide on, e.g., a budget based on a p70% estimate.

4

Example from another organization ...

 Table 2. Distribution of Estimation Error of Similar Projects

Teams (Group B only)										
Estimation	11	12	13	14	15	16	17	18	19	Mean
Error Category										value
>100% overrun	45	18	10	10	10	5	10	0	18	14
50-100%	20	40	35	20	10	5	20	5	25	20
overrun										
25-49% overrun	15	22	25	30	30	35	40	20	30	27
10-24% overrun	10	15	25	20	30	45	20	40	15	24
+/- 10% of error	7	4	0	5	10	10	10	20	12	10
10-25% too high	3	1	0	10	5	0	0	10	0	3
estimates										
24-50% too high	0	0	0	0	5	0	0	5	0	1
estimates										
>50% too high	0	0	0	0	0	0	0	0	0	0
estimates										

What would be the p70% estimate of Team 17?

Group estimation

Experiment: individual vs group estimation [*]

- Twenty software professionals with different backgrounds provided individual effort estimates of a software development project.
 - Real-world project that had been completed
- Then they formed five estimation groups. Each group agreed on a project effort estimate
 - Through discussion and combination of knowledge.

^[*] Moløkken-Østvold and Jørgensen (2003): Software Effort Estimation: Unstructured Group Discussion as a Method to Reduce Individual Biases. In The 15th Annual Workshop of the Psychology of Programming Interest Group

Results

- The group discussion-based estimates were closer to the effort used by the actual project than the average of the individual experts
 - Possible explanation: the groups' ability to identify more project activities
 - Possible explanation: justification increase realism
- Similar results obtained in experiments on uncertainty intervals [*]
 - Group discussion lead to more realistic uncertainty intervals

[*] Combination of software development effort prediction intervals: Why, when and how? Jørgensen and Moløkken, SEKE 2002

Research on group estimation

- Few studies in a software cost estimation context
 - ...but many relevant studies in other research fields (psychology, business forecasting, etc)
- Findings
 - Combination of estimates improve the estimation (especially when the estimators have different background)
 - Structure can improve the estimation (e.g. remove the impact of irrelevant information)
 - "More heads remember more"
- Disadvantages
 - Resource demanding (expensive) compared to individual estimation
 - "Group think" can occur (e.g. everybody agrees with the leader)
 - "Group polarization" can occur (e.g. the group is more optimistic than the average of the individuals)

Structured group estimation's impact on perceived estimation accuracy (JavaZone 2007)

- 50% believed that their estimation accuracy was improved
- 30% believed that their estimation accuracy was unchanged
- 10% believed that their estimation accuracy was worsened
- 10% did not know

Structured group-based estimation methods

- Planning Poker
- Wide-band Delphi

51

Planning Poker

- Agile estimation technique
- Described by Grenning [1] and Cohn [2]
- 1. Customer explains story
- 2. Team discusses work involved
- 3. Each estimator picks a card representing estimate
- 4. Everybody reveals estimate simultaneously
- 5. Lowest and highest estimator justifies
- 6. Team discusses the estimates
- 7. Repeat from 3. until estimates converge
- 8. Team decides on collective estimate

[1] J. W. Grenning, *Planning Poker*, 2002 [2] M. Cohn, *Agile Estimating and Planning*, 2005

When to use Planning Poker?

- Release planning
 - customer picks features for next release
 - estimates basis for prioritising features and staffing
 - planning poker quickly provides realistic estimates and reveals unclear requirements
- Detailed planning (iteration) and design
 - breaking features into tasks and assigning responsibility
 - estimating with planning poker reveals unclear requirements
 - planning poker can facilitate design discussion

What should we estimate?

- Estimate size, not duration
 - Easier to discuss
 - Aim for consistency
- Alternative units for size
 - Story points
 - Ideal days
- Derive duration when planning
 - Measure project velocity and apply "yesterdays weather"
 - Project velocity = sum of estimation points for user stories completed in iteration

Should we use fixed or flexible sizes?

- Fixed sizes easier and more effective
 - Experiments with flexible sizes indicates that the group tends to standardise anyway
 - Less options speeds up the process
 - Fibonacci-sequence is effective: 1, 2, 3, 5, 8, split
- Remember: these are estimates
 - We don't need the added precision flexible estimates might give us
 - A few hours give or take is usually of minor importance

Should we seek consensus or go with the average?

- Justify estimates after first round of planning poker
 - Reveals what people take into account in their estimate
 - Important for revealing further details
- Recommendation
 - Always do at least two rounds of planning poker
 - Continue doing rounds as long as individual differences in estimates are big
 - Average or go with majority when differences in estimates are small

5

Things to watch out for when doing planning poker

- Over-timing it and getting into too much detail
 - Don't discuss too long before doing first round of planning poker
 - After a certain point further discussion adds less value
 - Use timer if long discussions become a problem
 - Remember these are estimates
- Not getting different viewpoints
 - A lot of questions will pop up during discussions
 - Beneficial to have multiple points of view present when making assumptions

Why does planning poker (supposedly) work?

- · Simultaneous display of estimates reduces bias
 - The first estimate suggested will usually create an anchor
 - Some people have more influence
- · More questions asked and more information shared
 - More people bring more knowledge to the table
 - Different people consider different aspects
- · Broader range of developers provide estimates
 - Research has shown that combining estimates reduces over-optimism
 - · Different people employ different estimation strategies
- Estimates better reflect team's average ability to solve task
 - Expert estimates tend to be based on expert abilities
 - · You do not know who on the team will actually end up doing the task

5

Industrial studies

	Planning poker vs. unstructured group	Planning poker vs. individual expert		
Planning scale	Release planning (2-3 months)	Sprint planning (2 weeks)		
Team	8-12 developers	4-6 developers		
Automated acceptance tests	Yes	No		
Pair programming	Yes	No		
Progress visibility	Story cards on wall	Jira		
Customer view in session	Business analyst	Developers		

Common for both studies

- Fun! Both teams carried on using it
- More efficient estimation process
- Increased ownership of estimates
- Increased responsibility for the project progress
- How did it affect estimation accuracy?

Wideband Delphi (example)

- 1. Preparation of estimation process
 - Create estimation material
 - Select estimation personell including moderator
- 2. Kick-off meeting
 - Moderator presents the estimation problem, the estimation material, the estimation process, the estimation units, etc
 - The group discuss selection of experts, estimation material, etc
- 3. Individual estimation
 - · Identify activities and estimate
 - External experts can be consulted
- 4. Estimation meeting
 - Moderator present summary of all estimates and activities
 - Experts discuss the results (focus on anonymity)
- Summary
 - Often done by moderator and project leader

Final words

Implications for you?

- What should you change?
 - More precise use of estimation terminology?
 - Estimation process support? (Cost engineer?)
 - Improvement of check lists?
 - More use of group based effort estimation (e.g., Planning Poker)?
 - Better and more systematic learning from experience?
 - Uncertainty assessment based on historical data?
 - Other issues?