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Abstract

Testing is an expensive activity in the development process of any software system. Measuring and assessing the testability of software would

help in planning testing activities and allocating required resources. More importantly, measuring software testability early in the development

process, during analysis or design stages, can yield the highest payoff as design refactoring can be used to improve testability before the

implementation starts.

This paper presents a generic and extensible measurement framework for object-oriented software testability, which is based on a theory

expressed as a set of operational hypotheses. We identify design attributes that have an impact on testability directly or indirectly, by having an

impact on testing activities and sub-activities. We also describe the cause-effect relationships between these attributes and software testability

based on thorough review of the literature and our own testing experience. Following the scientific method, we express them as operational

hypotheses to be further tested. For each attribute, we provide a set of possible measures whose applicability largely depends on the level of details

of the design documents and the testing techniques to be applied. The goal of this framework is twofold: (1) to provide structured guidance for

practitioners trying to measure design testability, (2) to provide a theoretical framework for facilitating empirical research on testability.

q 2005 Elsevier B.V. All rights reserved.
1. Introduction

As software applications grow more complex and become a

necessity in almost everyday activities, more emphasis has

been placed on software quality and reliability. Effective

testing is therefore required to achieve adequate levels of

software quality and reliability. However, we are facing a

dilemma: software systems are growing in complexity and

testing resources are by definition limited. To maximize the

impact of testing, we need to design systems so that their

testability is optimal. Software testability is an external

software attribute that evaluates the complexity and the effort

required for software testing.

Software testability has been defined and described in

literature from different point of views. The IEEE standard

glossary defines testability as the degree to which a system or

component facilitates the establishment of test criteria and

performance of tests to determine whether those criteria have

been met [25]. ISO defines it in a similar way: ‘attributes of

software that bear on the effort needed to validate the software

product’ [26]. Binder [5] relates software testability to two

properties of the software under test: controllability
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and observability. To test a component, one must be able to

control its input (and internal state) and observe its output (and

internal state). Voas et al. define software testability based on

software sensitivity to faults [37]. Software sensitivity

represents the probability that a module will fail on its next

execution during testing, provided it contains a fault. Briand

and Labiche define in [13] the testability of a model as the

degree to which the model has sufficient information to allow

automatic generation of test cases.

In this study, we abide by the IEEE [25] and ISO [26]

definitions. Our goal is twofold: (1) to provide a comprehensive

framework to help measuring and assessing testability in a

practical manner, with a focus on the analysis and design stages

of object-oriented development, (2) to define a theory and its

associated hypotheses to guide future empirical research on

testability. Our main, practical motivation is that it is during the

analysis and design stages that testability analysis can yield the

highest payoff: design decisions can be made to improve

testability before implementation starts. The review of the

state-of the art in Section 2 is used to justify the motivations for

this research as well as our objectives for defining and building

a measurement framework for software testability at the

analysis and design level (Section 3). In Section 4, based in part

on our review of related works, we list a number of attributes

that may potentially have an impact on software testability. We

classify these attributes based on their relation to testing

activities and identify known mechanisms through which they

influence testability. We provide in Section 5 a list of measures
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for all testability attributes: some of them have already been

defined and validated by other researchers; others are newly

defined in this article. We then suggest possible applications of

our testability measurement framework to support decision

making (Section 6). Conclusions are drawn in Section 7.

2. Related works

Binder defines software testability as the relative ease and

expense of revealing software faults, i.e. the software

sensitivity to faults [5]: A more testable system provides

increased reliability for a fixed testing budget. He claims that

software testability is a result of six high-level factors: (1)

characteristics of the representation, which include specifica-

tion and requirements, (2) characteristics of the implemen-

tation, (3) built-in test capabilities, (4) the test suite, (5) the test

support environment, and (6) the software development

process. Binder lists a number of simple metrics to assess

testability, including: lack of cohesion in methods (LCOM),

percentage of non-overloaded calls (OVR), percentage of

dynamic calls (DYN), and depth of inheritance tree (DIT). He

also mentions that using stubs and drivers, as well as assertions,

can improve testability as they increase controllability and

observability, respectively. He, however, does not provide any

empirical evidence that there is a correlation between the

suggested metrics and testability. Also, the factors are only

described at a high level of abstraction, which leads to no clear

relationship with the metrics, which are based on design

artifacts and the implementation.

Voas and Miller in [37] relate software testability to the

‘probability that a piece of software will fail on its next

execution during testing [.] if the software includes a fault’.

They suggest evaluating testability through a sensitivity

analysis that entails repeatedly executing the software and

mutant versions of it, and estimating the likelihood that those

mutants (i.e. seeded faults) be detected. A low likelihood then

tells the tester where to concentrate testing effort as this

indicates locations in the code where faults could easily hide.

This technique has some drawbacks as its success depends

heavily on (1) the testing technique used when deriving the test

cases to execute on the original program and mutants versions,

and (2) the mutation testing process for fault seeding procedure

can result in a very large number of executions (high cost) if

every possible location for fault seeding is considered.

Bache and Mullerburg [2] relate testability to the effort needed

for testing, and measure it as the minimum number of test cases

required to achieve full coverage of a given coverage criterion,

assuming full coverage is possible. They focus on control-flow

based coverage criteria and rely on the Fenton–Whitty theory (see

[2] for details) for the definition of testability measures from

control-flow graphs. The approach is, however, limited to

control-flow based testing strategies, although, as acknowledged

by the authors, testability evaluation should account for data flow,

among other things. Such testability measurement is also

dependent on the selected coverage criterion.

Baudry et al. [4] also relate testability to the testing effort

and focus on class interactions in class diagrams: Basically,
there is a class interaction between two classes A and B in a

class diagram whenever we can find a path in the class

dependency graph (i.e. the class diagram) between A and B.

The authors identify patterns of class interactions that

potentially lead to increased testing effort. A typical example

of interaction pattern discussed in [4] is: whenever two distinct

paths exist between the same two classes, a test case should be

devised and executed. There are however, two problems with

that definition: (1) the objective of such testing is not clearly

stated, (2) it assumes that multiple paths between classes are

redundant, from a semantic viewpoint. In addition to be

expensive to develop, ensuring that the system state remains

coherent in the presence of redundant paths is expensive to test

as more test cases are needed to ensure that navigating

redundant paths leads to consistent data retrieval. Baudry et al.

provide a model to capture class interactions and define one

metric (accounting for inheritance and dynamic binding) to

measure their cost in terms of number of test cases to be

defined. Although it is shown on two examples that the metric

is adequate to measure the testability of class interactions, the

cause-effect relationship between that metric and testability

remains unclear. In particular, the model used to capture class

interactions is only based on the topology of the class

dependency graph and does not account for the semantics of

class relationships.

Briand et al. [13] describe an approach where instrumented

contracts (operation pre and post conditions and class

invariants) are used to increase testability: instrumented

contracts increase the probability that a fault be detected

when test cases are executed (observability) and help locating

faults when failures are revealed (diagnosability). A case study

showed that contract assertions detect a large percentage of

failures depending on the level of precision of the contract

definitions, thus the use of contracts improves system

observability. The use of contracts also improves diagnosa-

bility, regardless of the level of precision of contracts. Contract

assertions reduce the number of methods and source code

statements one has to look at to locate faults when failures are

detected.

Bruntink and van Deursen relate the testability of a system

to the number of test cases required to test it and to the effort

required to develop each individual test case [18]. Using two

case studies, they found a correlation between class level

metrics such as Number of Methods, and test level metrics such

as the number of test cases and the number of lines of code per

test class. The study showed, however, no correlation between

inheritance-related metrics (e.g. depth of inheritance tree) and

the proposed testability metrics. This is perhaps because the

tests they conducted were at the class level; the inheritance

metrics would probably have a significant influence on the

testability at integration or system levels, as polymorphism and

dynamic binding increase the complexity of a system and the

number of required test cases, then resulting in a decrease of

testability. Note that such results are strongly dependent on the

testing strategy applied in the case studies (e.g. a specific

testing or coverage criterion). Unfortunately, in this particular
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case, test suites were reused from open source development

and there was no knowledge of the employed test techniques.

Jungmayr [27] relates testability to dependencies between

components (e.g. classes) as the more dependencies, the more

tests required to exercise their interfaces. One factor impacting

testability with respect to such dependencies is the presence of

cycles [29]. The author defines dependency related metrics to

measure the impact of dependencies on testability: e.g. the

average number of components a component depends on

directly or transitively. Such a metric can then be used to

identify the component dependency that impacts the most

testability. This information can then help designers decide

where the component dependencies have to be refactored to

improved testability. One issue is that the impact of each

dependency is evaluated separately from other dependencies

without taking into consideration their interaction effects and

the combined impact of sets of dependencies. Although the

correlation between each pair of testability metrics is measured

in [27] and [18], it would be important to develop and to

evaluate a multivariate model for quantifying the impact of the

different metrics on direct or surrogate measures of testability.
3. Motivations and objectives

Software testability has been the focus of a number of

studies, as described in the previous section. Our review of the

state of the art brought up a number of issues:

(a) Rather than addressing the issue of testability at the design

level, most of the studies measure testability, or more

precisely the attributes that have impact on testability, at the

source code level. While measuring testability at the source

code level provides a good indicator of the effort required for

testing, this information may arrive too late in the

development process. A decision to change the design in

order to improve testability after coding has started can be

very expensive and error-prone. On the other hand, if

testability is evaluated earlier in the development process,

i.e. before coding starts, we expect a reduction of testing

costs. One particularly appropriate time to evaluate

testability is during the analysis and design stage1. By

providing immediate feedback to designers on system and

component testability, the designers would have the

possibility to improve their designs to increase system

testability before entering the implementation stage, during

which changing the design using refactoring methods

becomes highly expensive and error-prone. We therefore,

need to look at testability from a design perspective that is

investigating how to measure it based on design artifacts.

For practical reasons, our focus in this paper is on designs

modeled using the Unified Modeling Language (UML) [35].

(b) Different metrics have been proposed to measure software

testability. With the exception of Binder [5], all research
1 In OO developemnt, design is only a continuation of analysis, using

identical notations, e.g. UML diagrams. From this point below, for the sake of

simplicity, we will only refer to design.
work on this subject [4,13,18,27,37] discussed testability

from a very specific point of view and therefore considered a

limited number of software attributes that have direct or

indirect impact on testability. However, it would be

important to define a measurement framework that

integrates existing work and provide a comprehensive

picture of all aspects of testability at the design stage.

(c) For many of the proposed metrics, the relationship to

testability is not clearly and precisely justified. No precise

hypothesis is provided. To the maximum extent possible,

our measurement framework must determine plausible

relationships between testing activities and testability

attributes in precise terms. Some of those relationships

need to be further investigated through empirical means and

our framework can be used as a starting point to elaborate an

empirical research agenda on testability.

The aim of the current paper is to address the issues listed

above and it intends to do so by providing a comprehensive,

structured theory of testability for object-oriented software

designs. Such a theory purports to provide operational

hypotheses to be further tested—thus guiding empirical

testability research—and a set of measurement guidelines for

software testability during the design stage. More precisely we

intend to:

(a) define design attributes that have an impact on testability

for each testing activity;

(b) clearly describe, as hypotheses described in operation

terms, under which conditions and how the attribute can

relate to testability so that the framework can be tailored

to various design and testing methodologies;

(c) for each attribute, identify a set of potential measures and

define them precisely;

(d) identify the model elements in UML design models that

are necessary to evaluate the measures;

(e) provide guidelines on how testability measures can be

used to provide software engineers with feedback and

suggestions on how to change the design to improve

testability.
4. Software testability attributes

In this section, we first provide an overview of the structure

of our framework (Section 4.1) and then we describe in detail

the attributes that are part of the framework and the hypotheses

establishing their relationship to testability (Section 4.2).

4.1. Overview and method

We first define the different levels of testing we will refer to

in the remainder of this text.

† Unit testing: A unit represents a class, a cluster of classes or

a subsystem. The unit is tested in isolation using drivers and

stubs.

† Integration testing: A set of units is being integrated,

preferably in a stepwise manner, and testing focuses on
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exercising interfaces between units. Note there are multiple

levels of integration (e.g. classes, subsystems), hence our

definition of unit. As for unit testing, both drivers and stubs

are needed, though the number of stubs may be minimized

by an optimal integration order [11,14].

† System testing: The system is tested as a whole. Though

drivers are needed, stubs are only required for external

devices and systems.

Regression testing ensures that when modifying a software

system, no side effects are introduced that would result in the

failure of unchanged, previously working functionality. Since,

regression testing may be applied at different levels of testing

(unit, integration, or system testing), testability attributes that

affect each of these testing activities affect regression testing as

well. We assume then that covering testability attributes for

unit, integration and system testing addresses the attributes for

regression testing as well.

Though we realize there exists some variation regarding

how the levels of testing are defined and implemented in

practice, the above definitions are the most common ones.

By addressing each testing activity and their sub-activities

separately, we aim at having an exhaustive coverage of all

design attributes that have an impact on testability. Note,

however that aspects related to distribution, concurrency, and

real-time are left out of the current framework and will thus not

be discussed in this article. However, they will be considered in

future extensions of the framework. We focus our work on the

following effort-intensive testing sub-activities:

† Specifying test cases: this activity consists of all tasks that

aim at defining the specification of test cases based on

software artifacts such as specifications, design, or code.

† Developing drivers: this activity consists of writing the

required code to execute test cases.

† Developing stubs: this activity consists of developing stubs

emulating the behavior of components required to execute

test cases but not yet available.

† Developing oracles: this consists in writing the code

required to assess whether a test case execution is
successful. It usually involves checking object states and

test outputs.

For each activity and sub-activity we identify design

attributes that have an impact on testability. Each attribute

is then decomposed into lower-level attributes, and this

decomposition stops when we identify attributes with

precise definitions and for which operational measures

can be defined. A hypothesis, then describes the cause-

effect relationship between attributes and testability. It

thus, clearly explains the mechanisms that must be present

for such a relationship to exist. In each specific context, it

must then be decided whether such mechanisms are

present or plausible, as discussed in Section 6. Identifying

attributes and deriving the hypotheses is based on a

thorough and systematic review of the literature and our

own experience in performing testing experiments [10,13,

14]. We provide, for each attribute and each measure the

main references that are pertaining to it. All hypotheses

are described systematically by listing the impacted testing

activities and sub-activities and the reasons for the impact.

Recall that our goal is to devise a comprehensive theory of

testability for OO software based on existing experience

and results. Such a theory is aimed at providing a

structured framework for testability research that must

include hypotheses expressed in operational terms. It is

then expected that, following the scientific method [36],

these hypotheses will be further tested and the theory

refined over time.

The main concepts are illustrated in Fig. 1 where testability

attributes that are refined are called composite attributes and

attributes for which there exists an operational measure are

called leaf attributes. Fig. 1 also shows one branch of the tree

decomposition as a simple example: activity unit testing has

sub-activity specifying test cases which is impacted (in terms

of testability) by attribute unit size (a composite attribute),

decomposed into attribute local features (another composite

attribute), that is locally defined operations and attributes (two

leaf attributes). The hypothesis that drives this branch of the
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decomposition is that the larger the number of locally defined

features in a unit, the higher the effort required for specifying

test cases for unit testing that unit.

We then provide a number of potential measures for those

leaf attributes. In order for our framework to be useful within

the context of modern analysis and design practices, we assume

our measures must be collected from the information available

in UML use case, class, statechart, and interaction (sequence,

collaboration) diagrams [35]. Additionally we intend to

consider the complementary information provided by data

dictionaries, under the form of contracts expressed in

the Object Constraint Language (OCL) for example [34].

Note that it is expected that UML artifacts produced at varying

stages of the development process will be used for testability

evaluation for different testing activities. For instance,

testability for unit testing is concerned with low-level design

artifacts, whereas testability for integration testing is concerned

with high-level design artifacts. On the other hand, analysis

artifacts are used to evaluate testability during system testing

activities. In a typical object-oriented development, though

UML is used at all stages, the level of detail of the models and

their content vary [17]. Note that our framework is generic; it is

not limited to a specific development process or a system

structure. Data can be gathered from UML documents at any

time during the analysis and design phases of any development

process (i.e. RUP, incremental.). For a specific system

structure, or development process, users may choose relevant

attributes from the set of testability attributes identified in our

framework, as well as a subset of measures for the selected

attributes depending on the level of details provided in the

UML documents.

One important observation is that an attribute can impact the

testability of several testing activities. Moreover, attributes

(e.g. size) can be decomposed in different ways according to

the (sub-) activities they impact. It results that the measure of a

given testability attribute may vary according to the activity

being considered. For instance, ‘unit coupling’ is a testability

attribute that has an impact on both ‘unit testing’ and

‘integration testing’. Coupling in the context of unit testing

measures the strength of dependencies between the unit under

test and the units it depends on. High coupling decreases

testability during unit testing as this increases the cost related to

developing stubs (see Section 4.2 for more details). But, it is

also relevant in the context of integration testing where the

attribute unit coupling represents the coupling between all units

being integrated. It has once again an impact on the sub-

activity of developing stubs, but this time in the context of

integration testing when following a stepwise integration order.

4.2. Attributes and hypotheses

In this section, we identify (composite) attributes impacting

software testability when the testing (sub-) activities are

performed, each time providing the hypotheses as to why and

how the attributes impact testability. As discussed previously,

attributes may impact the testability of more than one (sub-)

activity, in which case we mention the attribute only once.
The discussion is summarized in Table 1, which lists the

testability attributes we have identified, the UML design

artifacts that would be used to measure them, and the articles

where these attributes are discussed, if any. In Table 1, we use

the following acronyms to represent the different UML design

artifacts: class diagram (CD), use case diagram and use case

descriptions (UD), sequence diagram (SD), Statechart Diagram

(StD), and Data Dictionary (DD). Then, Table 2 below

summarizes the impact of each testability attribute on the

testing sub-activities as described in the hypotheses presented

below. The table also makes it explicit, which attributes apply

to which testing activity. In Table 2, for a better readability, we

denote unit testing as ‘U’, integration testing as ‘I’ and System

testing as ‘S’. A ‘C’ (respectively, ‘K’) in a cell

corresponding to an attribute and a testing sub-activity means

that the attribute is likely to increase (respectively, decrease)

the effort required for the sub-activity. To improve legibility

hypotheses are numbered both in the text and in Table 2.

1. Unit size: Unit size is related to the size of its features. A

class unit has two types of features: attributes, and

operations. The unit size attribute can be decomposed

into two sub-attributes:

(a) Local features: Locally declared or implemented

features.

Hypothesis 1. : Increasing the number of local features to be

tested increases the cost of unit testing as more test cases are

likely to be required and oracles may increase in complexity if

they need to account for additional attributes.

(b) Inherited features: Ancestor classes’ features that are

not overridden.

Hypothesis 2. : Inherited features that are not overridden may

need to be tested again in subclasses; this is mainly caused by

interaction between inherited features and new or overridden

features [23]. Thus, when the size of inherited features

increases, the cost of unit testing may increase as well because

more effort and time may be required to build and execute test

cases that cover the inherited features in the subclass scope.

Oracles may need to be modified to account for overridden

methods outputs.

2. Inheritance design properties: Certain properties of inheri-

tance hierarchies affect testability.

(a) Compliance with LSP: In a well designed system,

classes involved in an inheritance hierarchy should

comply with the Liskov Substitution Principle (LSP)

[31]. A full compliance to LSP implies a superclass can

be substituted with one of its subclasses and, as a result,

superclass test cases can be reused on subclass

instances. There are three rules to be checked to verify

compliance with the LSP:

(i) Signature rule: The subtypes must have all the

operations of the supertype, and the signatures of the

subtypes’ operations must be compatible with the

signatures of the corresponding supertype’s operations.

Note that most programming languages compilers

enforce this rule and this is usually not an issue.



Table 2

Impact of testability attributes on testing sub–activities

Specifying test

cases

Developing a

driver

Developing a stub Developing an

oracle

U Unit size

Local features (1) C C C

Inherited features (2) C C C

Unit cohesion (6) K K K
Operations sequential constraints complexity (9) C

State behavior complexity

Paths complexity (10) C C C

Guard condition complexity (11) C C
State invariant complexity (12) C

Action complexity (13) C

Inheritance design properties

Compliance with LSP (3) K K K
Inherited and overridden features interaction (4) C C C

U, I Unit coupling (7) C

U, I, S Contracts complexity (8) C C C C
I Inheritance design properties

Size of inheritance hierarchies (5) C C C

Structure complexity

Dependency paths (14) C C C
Dependency cycles (15) C

Redundant paths (16) C C C

S Use case complexity

Scenario path complexity (17) C C C
Scenario condition complexity (18) C

Use cases sequential constraints complexity (19) C C

System interface complexity (20) C C C C

Table 1

Testability attributes

Testing activity Testability attribute Design artifacts Related

papers

Unit testing Unit size Local features CD [18]

Inherited features CD [18]

Inheritance design properties Compliance with LSP Signature rule CD, DD

Method rule CD, DD

Properties rule CD, DD

Inherited and overridden

features interaction

CD, SD [23]

Unit Cohesion CD, SD [7]

Unit Coupling CD, SD [8]

Operations sequential con-

straints complexity

DD [19]

Contracts complexity DD [13, 32]

State behavior complexity Paths complexity StD [6]

Guard conditions complexity StD

State invariant complexity StD, DD

Action complexity StD, CD

Integration testing Unit Coupling CD, SD [8]

Inheritance design properties Size of inheritance hierarchies CD

Structure complexity Dependency cycles CD [27]

Redundant paths CD [4]

Dependency paths CD

Contracts complexity DD [13, 32]

System testing Use case complexity Scenario condition complexity SD

Scenario path complexity SD

Use cases sequential con-

straints complexity

UD

System interface complexity UD, SD, CD

Contracts complexity DD

S. Mouchawrab et al. / Information and Software Technology 47 (2005) 979–997984



Fig. 2. Simple model example.
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(ii) Operation rule2: Calls on subtype operations must

behave like calls to the corresponding supertype

operations. In formal terms, this means that an

overridden operation’s precondition can only remain

the same or be weakened (i.e. handle additional

situations). Similarly, the postcondition can only

remain the same or be strengthened (i.e. specify

additional changes and outputs).

(iii) Property rule: The subtype must preserve (i.e. imply)

the invariant of the supertype.

Hypothesis 3. : If the Operation rule is not adhered to, then test

cases and drivers from the superclass may not be reusable on

subclass instances (preconditions may be violated). Further-

more, the corresponding oracles may need to be modified to

reflect the subclass postconditions. If there is no compliance

with the property rule then we may need, once again, to modify

oracles to reflect the fact that the superclass invariant may not

be satisfied.

Fig. 2 shows a simple model with examples of compliant

and non-compliant rules. The property rule between classes A

and B is satisfied as:
2 This is originally called ‘Method rule’. In our discussion, as we are

interested only in design and not code, we refer to this rule as ‘Operation rule’.
invB : nO5 and rR70n CrO120n CrR10 ðinvAÞ;

but the property rule between B and D is not satisfied; while an

instance d of D can have attributes values:nZ4, rZ5 (nCrZ
9!10); this instance cannot substitute an instance of B or A in

a test case built for B or A as the oracle that checks the instance

invariant would evaluate to false even though the invariant of D

is satisfied. Thus, new test cases should be specified and oracles

should be modified to account for the invariant of D.

The operation rule is not satisfied for operation m2

overridden in B. As a precondition for B::m2, r should be

equal to eight, but in the context of A::m2, r may take values

less than eight. This implies that reusing a test case from the

unit testing of A that invokes m2 while rZ6 would not execute

m2 if applied in the context of B. A new test case should be

specified to test m2 in the context of B.

(b) Inherited and overridden features interaction: Feature

interaction is a behavior or side effect produced when two

or more features are used together [23]. A call from an

operation to another is an example of interaction between

operations. Different types of interaction among super-

classes and their subclasses can be identified. For instance,

a subclass may override an operation m1 inherited from its

parent class and does not override another operation m2; a

call for m1 in m2 implies an interaction between two

operations: one inherited and the other one overridden.
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Hypothesis 4. : More interactions between inherited and

overridden features imply that additional, specific test cases

should be specified and executed to exercise such interactions.

To some extent, oracles may be reused but they may need to be

modified to account for the additional state modifications and

outputs resulting from the overridden methods.

Class C in the example of Fig. 2 inherits operation m1 and

overrides operation m2 from its parent class A. The sequence

diagram in the same figure shows that operations m1 and m2

have an interaction (m1 calls m2); thus, even though m1 is not

overridden in C, it should be retested in the context of C to

ensure that its interaction with the overridden operation m2

yields correct results.

(c) Size of inheritance hierarchies: This attribute captures

how wide and deep are inheritance hierarchies.

Hypothesis 5. : In a client-server class relationship, the higher

the size of the inheritance hierarchy rooted by the server class,

the more expensive it is to test due to dynamic dependences

between the client class (and possibly its child classes) and the

server’s child classes. In other words, testing the interface

between the client and server classes may be more expensive as

a result of inheritance: additional test cases and modifications

of oracles for each server subclass.

(3) Unit cohesion: strong cohesion results when all parts of a

unit support a common goal. Weak cohesion results when

the parts of a unit serve several unrelated goals, or have a

vague or ambiguous reason for inclusion [6].

Hypothesis 6. : Many unit testing strategies are based on

exercising different sequences of public operations [3], for

example based on sequential constraints [19]. Encapsulating

unrelated operations will then not only lead to low cohesion but

also to an increased number of test cases and a more complex

driver. The cost of defining and writing oracles also increases

as one has to account for a large number of (often unrelated)

attributes when checking the concrete state of instances.

(4) Unit coupling: This attribute represents the strength of

dependencies between units. It is important to note the

difference between static and dynamic coupling between

units. Static coupling is determined by the frequency of

connections between units as well as the types of these

connections. Two units are coupled statically if they have a

direct connection or indirect connection through transitive

closure of dependencies in the dependency graph3.

Dynamic coupling [1] is the coupling at run-time between

all communicating classes and it differs from static

coupling when the server or the client has subclasses. If

class A and class B are statically coupled, children of both

A and B can exhibit various levels of dynamic coupling

depending on which subclass instances are being linked at

run time.
3 A dependency graph is a directed graph where nodes are units (e.g. classes,

packages) and arcs are unit interactions (e.g. associations, usage dependencies).
Hypothesis 7. : Stubbing is required at unit testing and

integration testing whenever the unit to be tested or integrated

is dependent on other units that are not yet tested or even

coded. Coupling between such units will drive the stubbing

effort as increasing coupling will likely lead to additional

features in the stubs.

(5) Contracts: complexity are defined in terms of: operations

preconditions and postconditions, and class invariants

[32]. Their complexity is a function of the navigation,

logical, and computational expressions (e.g. in OCL) they

include.

Hypothesis 8. : The complexity of preconditions increases the

cost of specifying test cases and writing drivers as it becomes

more complex to satisfy preconditions while executing test

cases during unit, integration, and system testing (for system

level operations). An increased complexity of postconditions

and class invariants increases the cost of coding oracles (e.g.

contract assertions [13]). More complex postconditions also

increase the complexity of specifying test cases as sequential

constraints between operations are more difficult to determine

[19]. Last, when operations must be stubbed (e.g. integration

testing), complex postconditions lead to complex stubs.

The example in Fig. 2 shows a number of contracts

(invariants, preconditions and postconditions) with varying

complexities. It is clear that a contract like the precondition of

A::m1 is much less complex than the precondition of D::m5, as

the latter implies the need for navigation through the model to

identify the collection of instances of F that are associated with

the current instance of D, as well as the call of the operation

size on the resulting collection.

(6) operations sequential constraints complexity: A sequential

constraint between operations is defined as a triplet (o1, o2,

C) where operation o2 can be executed after operation o1

under condition C. These constraints are derived from

operation preconditions and postconditions and their

complexity is a function of the navigation, logical, and

computational expressions they include. Note that

complex contracts do not necessarily lead to complex

sequential constraints.

Hypothesis 9. : Executing a sequence of two operations can be

identified to be always valid, always invalid, or can be valid

under some condition [19]. Identifying the validity condition of

a sequence of operations based on sequential constraints can

require an important effort on the tester’s part. Complex

constraints, therefore lead to a more expensive specification of

test cases. The more operations, associations, and attributes

involved in sequential constraints expressions, the more

difficult they are to analyze and understand.

In the context of Fig. 2, to invoke the operations A::m1 and

A::m2 sequentially in a test case, the following condition

resulting from the postcondition of m1 and the precondition of

m2 should be satisfied: (nZn@preC5) implies (r%8 and nO
10); Note that in the context of m1, n@pre!4, which means that



4 An increase in the number of cycles does not necessarily lead to an increase

in the number of stubs as two cycles may be broken with only one stub. This is

the case where two cycles share common units and dependencies.
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after the execution of m1, n would be no more than nine (n!9);

the sequential constraint condition can then simplify to r%8.

In another case, like a sequence of D::m2, and D::m5, the

resulting sequential condition would be more complex than the

precondition of D::m5 or the postcondition of D::m2; this

implies that more effort would be required to create the driver

that invoke these two operations in a sequence than to invoke

only one of the operations.

(7) State behavior complexity: The behavior of modal units is

defined by their state machines. The complexity of state

behavior is related to the following:

a Path complexity: A path covers a sequence of transitions

in a state chart; a transition is defined as a triplet (state1,

[guard] event, state2) where the guard condition is

optional; thus, a path can be represented as a chain of

states and events and possibly guard conditions associated

with events: state1, [guard1] event1, state2, [guard2]

event2, state2.,staten-1[guardn-1] eventn-1, staten. The

path complexity of a statechart is a function of the

number and length of paths.

Hypothesis 10. : More paths will lead to more test cases to

specify, and longer paths will lead to more complex drivers,

and more oracles to implement.

b. Guard condition complexity: A guard condition evaluates

to true when an event is received in order to fire the

corresponding transition. The complexity of a guard

condition is a function of its navigation, logical, and

computational expressions.

Hypothesis 11. : Event parameters and the initial concrete state

of the unit to be tested should be set up in the test driver to

satisfy the guard conditions involved in the tested paths.

Devising proper test cases and coding test drivers is therefore,

more expensive for complex guard conditions.

c. State invariant complexity: The complexity of a state

invariant is a function of its navigation, logical, and

computational expressions.

Hypothesis 12. : Whenever triggering a sequence of transitions

in a test case, state invariants are often checked by the test

oracle to determine whether correct transitions have occurred.

Therefore, more complex state invariants may lead to oracles

that are more expensive to implement.

d. Action complexity: This attribute captures the number and

complexity of actions that are triggered as the result of

executing a path.

Hypothesis 13. : The more actions and the more complex their

postconditions are, and the more effort is required for

implementing the oracles.

(8) Structure complexity: We refer here to the structure of

class/package diagrams structure. Its complexity is a

function of its topology. The following is a list of sub-

attributes that contribute to structure complexity:

a. Dependency paths: A dependency path from node C0 to

node Ck in a dependency graph is a sequence of arcs C0C1,

C1C2,., CkK1Ck, where C0, C1,., Ck are all distinct and
the tail of each arc is the head of the preceding arc in the

path. Note that dependency paths account for implicit

associations (i.e. inherited).

Hypothesis 14. : During unit testing or integration testing,

dependent units that are not yet developed or tested have to be

replaced by stubs. Not only directly dependent units may need

to be stubbed, but also indirectly dependent units through

dependency paths. Thus, dependency paths have a direct

impact on the stubbing effort involved in both unit and

integration testing [29]. Also, part of the class/package diagram

will have to be instantiated by the driver and, therefore, the

more path, the more complex the instantiation. During

integration testing, the oracles may also need to check whether

certain links have been created, deleted, and updated. The more

paths, the more links to be checked.

b. Dependency cycles: A dependency cycle in a dependency

graph is a dependency path such that the first node of the

path is the last one. A dependency cycle implies that no

class in the cycle can be first integrated before integrating

any other class from the cycle. Thus, the existence of a

cycle implies that at least one class from the cycle should

be stubbed in order to integrate the other classes in a

stepwise manner (i.e. avoid big-bang integration) and

minimize the number of stubs.

Hypothesis 15. : Because big-bang integration is not

considered efficient, different algorithms and methods have

been proposed to select the units to be stubbed to break cycles

in order to minimize the stubbing effort [14]. An increase in the

number of dependency cycles may lead to an increase in the

number of stubs4, thus increasing stubbing effort during unit or

integration testing [27].

Fig. 3 shows a class diagram and its corresponding

dependency graph. A number of cycles can be identified in

the graph (e.g. AFIJA), which implies the need to break cycles

in order to integrate the classes in a stepwise manner. Applying

an algorithm [14] to identify the least number of stubs required

to break cycles we can conclude that only one stub is needed in

this case, which is for class A. Moreover, two associations

would be broken (J–A and B–A) and would result in one or two

stubs being developed. The integration order would be: G, H, J,

I, B, C, D, E, F, A.

c. Redundant paths: If there are two or more dependency

paths from a node A to another node B, we say that there

are redundant paths between A and B when these paths are

meant to be semantically equivalent. Redundant paths

should preserve coherent states of class instances. The

research work in [4] discusses the issue of redundant paths

and its impact on testability.

Hypothesis 16. : Whenever two distinct paths have been

designed to be semantically equivalent, test cases should be
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devised and executed to ensure that navigating redundant paths

leads to consistent data retrieval. Furthermore, test cases must

demonstrate that state changes always maintain consistency

between redundant paths. Redundant paths thus lead to more

test cases and more complex drivers and oracles.

(9) Use case complexity: This attribute refers to the structure of

use case model and associated diagrams (e.g. sequence

diagrams). It is decomposed into the following sub-

attributes:

a. Scenario path complexity: Use cases describe the different

functionalities of a system, which are themselves further

described by sequence diagrams, modeling possible

execution scenarios as object interactions. The complexity

of scenarios depends on the number of possible paths, their

length, and the number of messages, instances and classes

involved in interactions.

Hypothesis 17. : The larger the number of messages and paths,

the larger the number of test cases to specify. The larger the

number of instances and classes, the more complex are the

drivers which must instantiate them. The complexity of oracles

also increases as more instances and state changes have to be

checked.

b. Scenario condition complexity: In a sequence diagram that

models scenarios of use case executions, a number of

alternative paths may be possible and a condition can be

associated with each message. A path condition for a

specific scenario in a sequence diagram is a sequence of

conditions corresponding to the different message con-

ditions in that scenario. To follow a specific path in a

sequence diagram, the condition associated with each

message in the path should be satisfied at the time of

sending the message. Path condition complexity is a

function of its navigation, logical, and computational

expressions.

Hypothesis 18. : The effort required to set the necessary

conditions (initial state of instances, input parameters) to

execute a path in a driver increases with the complexity of this

path’s conditions.

c. Use Cases sequential constraints complexity: This

attribute refers to the sequential constraints between use
cases, that is the conditions under which use cases can be

executed in a sequence. These constraints determine

possible use case execution sequences and are due to the

business logic and the functionality of the system [12].

Hypothesis 19. : Identifying use case sequences to be tested

and the validity condition (e.g. regarding use case parameters)

of a use case sequence based on sequential constraints can

require an important effort on the tester’s part. The complexity

of sequential constraints, therefore has an impact on the effort

of specifying system test cases, the number of test cases, and

therefore, the complexity of drivers.

Sequential dependencies between use cases can be represented

by means of an activity diagram for each actor in the system, as

suggested in [12]: see the partial example for a library system in

Fig. 4. Such a representation can facilitate the identification and

visualization of these dependencies by application domain

experts, as activity diagrams are easy to interpret.

In such a diagram, the vertices are use cases and the edges

are sequential dependencies between the use cases: An edge

between two use cases (from a tail use case to a head use case)

specifies that the tail use case must be executed in order for the

head use case to be executed, but the tail use case may be

executed without any execution of the head use case. In

addition, specific situations require that several use cases be

executed independently (without any sequential dependencies

between them) for another use case to be executed, or after the

execution of this other use case. This is modeled by join and

fork synchronization bars in the activity diagram, respectively.

To be more precise, the vertices of our activity diagram are

extended use cases, as described in [6]. Whether explicitly

specified or not, use cases have parameters that determine the

behavior they can exhibit, as well as output values (results of

their execution). Extended use cases require formal use case

parameters to be defined by providing their type (either basic

UML type or user-defined type) and kind, i.e. whether they are

in, out, or inout, like for operations. Furthermore, actual use

case parameters are represented in the activity diagram by

simply listing them between brackets: e.g. uid stands for user

ID. The reason to have actual parameters in this context is to

show the dependencies between parameters during the

execution of a path in the activity diagram, e.g. an out
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parameter from one use case being an in parameter of a

subsequent use case.

From Fig. 4, we can see a number of loops and alternative

paths between BorrowLoanCopy and ReturnLoanCopy. This

results into a large number of use case execution sequences that

need to be tested. As an example, one condition for executing

the main scenario of use case RemoveTitle(isbn) is:

self.titleControl.title -Oexists(t:Title j t.isbnZisbn)

and (self.loancopy-Oselect(loancopyStatusZonloan)-O
sizeZ0 and self.title.titleReservationCounterZ0)

Therefore, when executing this particular use case scenario,

the test driver must beforehand ensure that the above condition

is met: in order to successfully remove a title, there must be no

reservation or loan of any copy of the title.

(10)System interface complexity: This attribute relates to the

complexity of interactions between the system and its

external devices, collaborating systems, and human users

(UML actors).

Hypothesis 20. : The more actors, messages, and system

operations, the more expensive the system testing. More system

operations and messages will lead to more test cases (and their

oracles) and therefore, to more complex drivers. More actors will

lead to the development of more stubs to emulate their behavior.

For example, though an ATM system would typically

interact with a bank card reader, a keyboard, and a display
screen; such devices would typically not be used during system

testing and would be replaced with stubs either emulating their

corresponding inputs or logging outputs. Such stubs are

necessary in order to fully automate system testing and lower

its cost.

Though all the testability attributes described and discussed

above may have an impact on testability; this impact is not always

controllable or avoidable. For instance, because of its intrinsic

properties, a unit may not be decomposable into smaller units; thus,

the unit size attribute is non-controllable. An example of a

controllable attribute is the dependency cycles attribute; a design

may be refactored to eliminate unnecessary dependency cycles

leading to lower stubbing effort. We have included in our research

both types of attributes, controllable and non-controllable, for two

reasons: (1) to includeall attributes thatmayhelpestimate thecostof

testing, and (2) to be exhaustive in considering all aspects affecting

software testability.
5. Testability measures

This section provides, for each attribute, a set of potential

measures. We do not claim this list is in any way exhaustive but

the list contains all the measures, which, at this point, we

consider potentially useful. All measures are listed in Table 6,

which provides, for each attribute, an overview of all the

measures along with relevant remarks and related references.

In the next sub-sections, we will define and discuss in a precise



Table 3

Invariants example complexity measurement values
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manner only the measures that are not straightforward, are not

already documented somewhere else, and require justifications.
LoopExpCS Operation-

CallExpCS

Navigation-

CallExpCS

Attribute-

CallExpCS

Inv 1 1 2 2 1

Inv 2 2 3 3 1

Table 4

AddTitle scenario (Fig. 5) condition complexity measurement values

LoopExpCS Operation-

CallExpCS

Navigation-

CallExpCS

Attribute-

CallExpCS

Condition 1 1 1 1 1

Condition 2 1 2 1 1

AddTitle

scenario

condition

2 3 2 2
5.1. OCL Expression complexity

We have seen in the previous section that many attributes

depend on the complexity of constraint expressions (OCL),

which play an important role in several UML diagrams and test

activities. An OCL expression can be represented as an abstract

syntax tree (AST) after parsing the expression based on the OCL

2.0 grammar [38]. ASTs are convenient as they simplify the

definition of measures as counts of specific nodes in ASTs. These

nodes are labeled with the name of their corresponding non-

terminal symbol in the OCL grammar. Below are the counts that

we think are most relevant to our situation and why it is so.

– Number of ‘LoopExpCS’ nodes: These nodes correspond to

iterative OCL collection operations (e.g. select).

† Contracts: The more nodes, the more iterative expressions

and statements to manipulate collection elements in

corresponding code assertions, if used as oracles.

† Guard conditions: The more nodes, the more iterative

expressions and statements to manipulate collection

elements in corresponding conditions to be satisfied by

the driver to fire a state transition.

† Path conditions: The more nodes, the more iterative

expressions and statements to manipulate collection

elements in corresponding conditions to be satisfied by

the driver to send a message.

† Operation sequential constraints: The more nodes, the more

iterative expressions and statements to manipulate collec-

tion elements in corresponding conditions to be satisfied by

the driver to execute a sequence of two operations.

† Use case sequential constraints: The more nodes, the more

iterative expressions and statements to manipulate collec-

tion elements in corresponding conditions to be satisfied by

the driver to execute a sequence of two use case scenarios.

– Number of ‘OperationCallExpCS’ nodes: These nodes

represent non-iterative OCL collection operation (size) or

model (query) operation calls.

† Contracts: The more nodes, the more method calls in

corresponding code assertions, if used as oracles.

† Guard conditions: The more nodes, the more method calls

in corresponding conditions to be satisfied by the driver to

fire a state transition.

† Path conditions: The more nodes, the more method calls in

corresponding conditions to be satisfied by the driver to

send a message.

† Operation sequential constraints: The more nodes, the more

method calls in corresponding conditions to be satisfied by

the driver to execute a sequence of two operations.

† Use case sequential constraints: The more nodes, the more

method calls in corresponding conditions to be satisfied by

the driver to execute a sequence of two use case scenarios.

– Number of ‘NavigationCallExpCS’ nodes: These nodes

represent navigations through associations and usage

dependencies.
† Contracts: The more nodes, the more reference accesses/-

method calls in corresponding code assertions, if used as

oracles.

† Guard conditions: The more nodes, the more complex the

conditions to be satisfied by the driver to fire a state

transition.

† Path conditions: The more nodes, the more complex the

conditions to be satisfied by the driver to send a message.

† Operation sequential constraints: The more nodes, the more

complex the conditions to be satisfied by the driver to

execute a sequence of two operations.

† Use case sequential constraints: The more nodes, the more

complex the conditions to be satisfied by the driver to

execute a sequence of two use case scenarios.

– Number of ‘AttributeCallExpCS’ nodes: These nodes

represent accesses to attribute values. Those nodes are

relevant to testability for reasons identical to

‘NavigationCallExpCS’.

Based on our justifications, it should be clear that the counts

above are presented in decreasing order of impact on testing

effort. Let us now look at an example based on the example

model in [38]. We have two invariants presented below. The

second one is clearly a refinement of the first one. The

corresponding ASTs are not shown here due to size constraints

but can be found in [33].

context ProgramPartner (Inv 1)

inv: deliveredServices.transactions -O collect(points) -O
sum()!10,000

context ProgramPartner (Inv 2)

inv: deliveredServices.transactions -O select(isOclType

(Burning)) -O collect(points) -O sum() ! 10000

The corresponding node counts reflect the variation in

complexity and are as in Table 3.

When assessing the complexity of OCL expressions for an

entire unit, we can simply sum all complexity values for all

conditions in the unit. For example, we can compute the guard

condition complexity over an entire statechart by adding

individual complexity values for each guard condition.
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Similarly, we can sum up all complexity values for all

contracts, sequential constraints, or action postconditions

(Table 4).
5.2. Use case model and system interface complexity

Based on Fig. 4, we can attempt to quantify use case

execution sequences as this will certainly affect the number of

system test cases. However, numbering sequences requires that

we handle sequence interleaving and loops, otherwise, the

number of sequences is either very large or infinite. We can, as

heuristic, consider one possible interleaving for a pair of

independent (sub-) sequences and take every loop at most once.

For a subset of use cases, we provide example measure-

ments of the measures we propose in Table 6:

Use case complexity—Scenario condition complexity:

† Sum of complexity values of path conditions in a scenario

path: following the principles of Section 5.1, we measure

the cumulative OCL expression complexity of all message

conditions for all scenarios. In our example, if we only

consider use case AddTitle, there are two message

conditions (see measurement in Table 4):

Condition 1: self.title-Oexists(t:Title j t.isbn Z isbn)

Condition 2: Not self.title-Oexists(t:Title j t.isbn Z isbn)

Use case complexity—Scenario path complexity:

† Number of scenarios in sequence diagrams: For use case

AddTitle, the sequence diagram in Fig. 5 shows two

scenarios.

† Number of messages in sequence diagrams: For use case

AddTitle, the sequence diagram in Fig. 5 shows 10

messages.

† Number of classifiers in sequence diagrams: For use case

AddTitle, the sequence diagram in Fig. 5 shows three

classifiers.

Use case complexity—Use case sequential constraint

complexity:

† Number of ‘simple’ sequences of use case executions:

Based on the activity diagram in Fig. 4, and using the

heuristics stated above to number use case execution

sequences, we obtain four possible sequences. We refer to

the sequences we obtain this way as ‘simple’ sequences.

When choosing one possible interleaving, we obtain the

following four sequences:

I.A.G. D.F. C.H.K.J

I.A.G. D.B.F. C.H.K.J

I.A.G. D.E.F. C.H.K.J

I.A.G. D.B.E.E.B.F. C.H.K.J

† Complexity of sequential constraint conditions: Referring

again to our example in Section 4.2, for the main scenario

of use case RemoveTitle (Section 4.2,9c), the OCL

expression complexity measurement is shown in Table 5.

This is only a partial example as the overall complexity

for all use cases and all scenarios should be computed

(Table 6).



Table 5

RemoveTitle sequential constraint complexity measurement values

LoopExpCS Operation-

CallExpCS

Navigation-

CallExpCS

Attribute-

CallExpCS

Remove title

sequential

constraint

2 4 4 3
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System interface complexity:

† Number of use cases: The use case diagram of the Library

system [12] consists of 17 use cases.

† Number of system level operations: From the sequence

diagram in Fig. 5, we can see two system level operations:

requestAddTitle(), exit()

† Number of actor-system messages in sequence diagrams:

From Fig. 5, we see that AddTitle shows four actor-system

messages. In practice, it is of course possible to have several

actors and in this case all messages to all actors should be

added.
5.3. Interactions between inherited and overridden features

An interaction between two operations m() and n() (i.e. m()

calls n()), tested in the context of a parent class, has to be

retested in the context of a child class when either m() or n() is

overridden [23]. For instance, if m() is inherited and n() is

overridden, one can expect, for the unit test of the child class, to

be able to reuse functional test cases derived for m() during the

unit test of the parent class. However, new structural test cases

are required to exercise the interaction between inherited

operation m() and the new implementation of n(). Similarly, if

inherited method m() uses overridden attribute a, this

interaction has to be tested in the context of the child class,

although it has already been tested in the context of the parent

class. The following are thus relevant measures to assess the

impact of inheritance on testability and are based on counting

pairs of class members that interact.

– Pairs of Inherited and Overridden Operations that interact

– Pairs of Overridden Operations and Inherited Attribute that

interact

– Pairs of Inherited Operations and Redefined Attribute that

interact
6. Applications

From a scientific perspective, each hypothesis in Section 4.2

needs to be empirically investigated. For some of them there

already exists a body of evidence, as indicated by the

references in Tables 1 and 6. However, for most of them the

evidence is rather scant. In turn, such investigations will help

further refine the hypotheses we propose and improve our

testability framework, thus following the scientific method

where hypotheses are defined based on observations and then

subsequently tested, investigated, and refined [36].
From an engineering perspective, our framework can be

used as guidelines for testability measurement and assessment.

But we need to determine how to evaluate testability in such a

way that it helps decision making, e.g. change the design or

increase the planned testing effort. We propose a tentative

procedure to do so which is summarized in Fig. 6 and described

below.

The first step is to decide on the testing activity that is being

evaluated. Assessing the testability of, say, integration testing

involves different attributes than unit testing. The second step

consists in selecting the attributes that have an impact on the

selected testing activity, considering the specifics of the

software development process used (e.g. design and test

strategies). Because, we provide a tentative list of attributes

that may have an impact on testability, it is up to the analyst to

decide, given the specific development process she is involved

in, what attributes are likely in her environment to matter in

terms of testability. For instance, if the design process enforces

the application of the Liskov substitution principle, then the

‘compliance with LSP’ attribute (Section 4.2) is not relevant as

measures associated to this attribute will not exhibit variations.

The selection depends also on the testing activity. For instance,

if contract assertions are used to help debugging, then attribute

‘contract complexity’ is relevant as it will have an impact on

the cost of implementing an oracle, i.e. while instrumenting

contracts into the source code. The next step is, for each

selected attribute to identify measures that can be applied to the

specific development artifacts produced in the analyst’s

environment: The applicability of a measure depends on the

level of details of the UML diagrams, which may vary a great

deal from one development environment to another. Though

we have proposed a number of measures, some of them may

need to be simplified or modified to be tailored to the specifics

of the context of application.

Once data is collected on a number of testability measures,

how do we use it to support decision making? One common

way is to build, over time, a benchmark based on data collected

on past projects. That is, for each relevant testability measure, a

typical range or distribution can be determined. For a new

project, testability data can then be compared to the benchmark

using, for example, a Kiviat diagram [28]. A Kiviat diagram

(see a fictitious example in Fig. 7) is a pie-like diagram that

contains radially extending lines that each represents a quality

measure (in our case a testability measure) and two concentric

circles that represent the acceptable bounds for the measure.

These bounds can be the minimum and maximum values

observed in previous projects or represent quantiles (e.g. 90%

quantiles). The value for each measure is shown as a point on

the corresponding line, and it is considered acceptable if it falls

within bounds. Note also that quality measures can be simple

measures (e.g. LCOM for measuring the lack of cohesion) or

aggregated measures. In the later case, there exist techniques to

aggregate simple measures in a weighted linear function, e.g.

principal component analysis or analytical hierarchy process,

which are based on data analysis and expert opinion,

respectively [22]. Fig. 7 shows that for the new project of

interest, the measurement is out of bounds on the LSP



Table 6

Testability measures

Attribute Measure Remarks Ref

Unit size—local features Number of declared operations

Number of declared attributes

Number of implemented operations

The significance of these different size

measures will vary according to the test

strategies adopted.

[18]

Number of new association relationships

Number of new dependencies relationships

Number of public operations

Number of overloaded operations

Unit size—inherited features Number of inherited operations

Number of inherited attributes

Number of inherited association relationships

Number of inherited dependency relationships

Number of inherited interfaces

Inheritance design properties—com-

pliance with LSP—method rule

Number of non-compliant preconditions

Number of non-compliant postconditions

Ratio of non-compliant preconditions Over all preconditions of a unit

Ratio of non-compliant postconditions Over all postconditions of a unit

Inheritance design properties—com-

pliance with LSP—property rule

Number of non-compliant invariants

Ratio of non-compliant invariants Overall all classes in a unit

Inheritance design properties—inher-

ited and overridden features interaction

Pairs of inherited and overridden operations inter-

actions

Pairs of overridden operations and inherited attribute

interactions

Apply to classes in an inheritance

hierarchy. See Section 5.3 for more

information.

Pairs of inherited operations and redefined attribute

interactions

Unit cohesion Lack of cohesion measurea This measure was chosen as it accounts

for shared attributes, method invoca-

tions and indirect connections. At a

cluster or subsystem level, this measure

can be modified to account for all

shared attributes and methods through

the cluster or subsystem

[7,18,24]

Ratio of cohesive interactions measures (RCI, NRCI,

PRCI, OCRI)

These measures were chosen as they

account for type and attribute common

usage, and indirect connections. They

have been shown to have desirable

mathematical properties.

[7,15,16]

Unit coupling—static couplingb
Coupling between objects (CBO, CBO 0) CBO(c) counts classes used by c,

CBO0(c) does not count ancestors. At

the integration testing level, these

measures can be modified to count only

used classes that are in the set of units

to be integrated.

[8]

Response for classc (RFC, RFC 0) RFC(c) counts operations called

directly from O(c) (set of operations of

c); RFC 0(c) accounts also for indirect

calls. At the integration testing level,

these measures can be modified to

count only operations called that are

members of the units to be integrated.

[8,18,20,

21]

Method–method interaction (AMMIC, OMMIC,

DMMEC, OMMEC)

Class–method interaction (ACMIC, OCMIC, DCMEC,

OCMEC)

Class–attribute interaction (ACAIC, OCAIC, DCAEC,

OCAEC)

For a class at the unit testing level. At

the integration testing level, these

measures can be modified to count only

interactions among classes of the units

to be integrated.

[8,9]

Unit coupling—dynamic coupling Dynamic messages coupling (IC_OD, EC_OD, IC_CD,

EC_CD)

These measures differentiate import vs.

export coupling, and Object vs. Class

coupling. At the integration testing

level, these measures can be modified

to count only operations called that are

members of the units to be integrated.

[1]

(continued on next page)
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Table 6 (continued)

Attribute Measure Remarks Ref

Distinct methods coupling (IC_OM, EC_OM, IC_CM,

EC_CM)

Distinct classes coupling (IC_OC, EC_OC, IC_CC,

EC_CC)

Contract complexity OCL Expression Complexity for contracts (precondi-

tion, postcondition, invariant)

All these measures are based on counts

of non-terminal symbols in Abstract

Syntax Trees. See Section 5.1 for

details Complexity values of a set of

conditions in a unit can be summed to

obtain the overall complexity of this

unit.

Operations sequential constraint com-

plexity

OCL expression complexity for condition that deter-

mines whether one operation can execute after another.

State behavior complexity—guard

condition complexity

OCL expression complexity for condition that deter-

mines whether a transition can fire.

State behavior complexity—state

invariant complexity

OCL expression complexity for condition that deter-

mines whether an object is in a legal state.

State behavior complexity—action

complexity

OCL expression complexity for an action’s postcondi-

tion that defines what its side-effects are.

State behavior complexity—path com-

plexity

Number of round-tripd paths in a statechart.

Cumulative length (in transitions) of all round-trip

paths.

Other strategies to derive test paths

could be considered. Round-trip paths

are used here as a representative

example.

Inheritance design properties—inheri-

tance hierarchies size

Depth of inheritance hierarchy

Width of inheritance hierarchy

[18]

Number of leaf classes in an inheritance hierarchy

Total number of classes in an inheritance hierarchy

Structure complexity—dependency

paths

Number of direct (or by transitive closure) dependent

classes, with or without accounting for child classes.

Structure complexity—dependency

cycles

Number of elementary cycles

Number of feedback dependenciese

[14]

The goal is to find a minimal set of

feedback dependencies. However, this

is a NP-hard problem and we have to

resort to heuristics. The number of

feedback dependencies therefore

depends on the heuristic used and

should be specified.

[27]

Structure complexity—Redundant

paths

Number of pairs of redundant paths

Total length of redundant paths

The longer the length, the more

complexity and effort in maintaining

and testing consistency of redundant

paths.

Use case structure—scenario condition

complexity

Sum of complexity values of path conditions in a

scenario path.

The more complex the conditions, the

more complex the driver as specific

parameters and initial states will need

to be ensured to execute scenarios.

Use case structure—scenario path

complexity

Number of scenarios in sequence diagrams

Number of messages in sequence diagrams

Number of classifiers (instances or classes) in sequence

diagrams

These measures are computed for the

sequence diagrams of all use cases in a

system.

Use case structure—use case sequential

constraint complexity

Number of ‘simple’ sequences of use case executions Those sequences can be computed

based, for example, on an activity

diagram modeling all sequential con-

straints. The concept of ‘simple’

sequences is defined in Section 5.2.

[12]

Complexity of sequential constraint conditions for all

pairs of use cases.

Such constraints are rarely formalized,

like for contracts, in a constraint

language (e.g., OCL). If constraints

expressed in OCL, then Section 5.1 is

relevant.

(continued on next page)
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Table 6 (continued)

Attribute Measure Remarks Ref

System interface complexity Number of use cases Use cases can be weighted according to

their number of parameters, or the

complexity of their sequence diagrams.

[6]

Number of actors

Number of system level operations System level operations are public

operations in boundary classes of the

system.

Number of actor-system messages in system sequence

diagram

In system sequence diagrams [30], the

system is a black box and only actor-

system messages are shown.

a Lack of cohesion measure (LCOM) [24], defined operationally in [7] under the name LCOM4. It accounts for indirect connections between operations of a class.

It is recommended not to consider constructors in this measure as they artificially increase cohesion by creating indirect connections between operations.
b We selected a number of measures that have been widely studied and that capture coupling at different levels of granularity.
c We suggest change the definition of RFC and RFC 0 as provided in [20,21] to remove the count of any operation of c from the calculation of RFC and RFC 0 to

allow a null value in case c has no outer connection.
d A round-trip path is transition sequence that begins and ends with the same state (with no repetitions of state other than the sequence start/end state) or a simple

path (contains no loop interaction) from the initial to the final state of the state model [6].
e A set of dependencies which, when removed, makes the graph acyclic, is called feedback dependency set. Each dependency in the set is called a feedback

dependency.
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dimension. This would be interpreted as the project to be

significantly different from the benchmark with respect to a

LSP measure. After investigation, this could be found to result

from a large use of implementation inheritance. The designer

could then decide to refactor some parts of the system and rely

on delegation instead of implementation inheritance to reduce

the lack of compliance to the LSP, and fall within bounds.

Though Kiviat diagrams have been commonly used to assess

software products [22], they can only be used to identify

unusual cases with respect to certain measurement dimensions.

Interpreting why this is the case and what to do about it remains

the most difficult task. Kiviat diagrams, however help as

measures cannot usually be interpreted independently and

visualizing project measurement and benchmarks on multiple

dimensions definitely helps decision making.

Another way to use testability measurement is to help predict

the cost of testing. For that purpose, since, usually the number of

past projects one can rely on is small, a solution is to use

a technology such as Case-Based Reasoning (CBR) [39]. CBR is

a general-purpose technology that solves problems by matching

them against past cases in a case base. Cases similar to the

problem at hand are identified and, if they fit the new context,
1: Select testing

2: Select relevant

3: Select mea
(what can be reliably

4: Develop a benchmark base
determine typical ranges/distributio

5: Using Kiviat diagrams, graphically compare 
project measures with the benchmark

6

Fig. 6. Summary of decisi
they are used to suggest a solution. If necessary, the solution is

modified to fit its new context. Finally, the problem at hand and

the final solution are retained as part of a new case to update the

case base. In our context the problem is to estimate the cost of

testing based on testability measurement. Retrieving past

systems with similar testability measurement can provide a

basis on which to form an estimate for a new system to be

developed. This is due to the fact that humans are better at

estimating relative to a comparison baseline than in absolute

terms. There are of course a number of issues that are involved in

using CBR, such as defining an appropriate similarity measure

based on testability measurement. This is however, out of the

scope of this paper as CBR is now a mature technology. The

reader is referred to the many books on the subject such as [39].
7. Conclusion

Testability has always been an elusive concept and its

measurement or evaluation a difficult exercise. One reason is

that there are many potential factors that can affect testability.

Furthermore, existing works on the topic either take a very

specific viewpoint or remain at a very general level. The state
 activity

 attributes

sures 
 measured?) 

d on past project data to 
ns for testability measures 

: Case-Based Reasoning for predicting test costs

on-making procedure.



Dynamic Import Coupling

Dynamic Export 
Coupling

Static Coupling

Lack of cohesion

Lack of compliance 
to the LSP

1

10

12
27

5

17

2
10

7

16

Benchmark

New Project

Range of values from 
previous projects

Fig. 7. Kiviat diagram example conclusion.

S. Mouchawrab et al. / Information and Software Technology 47 (2005) 979–997996
of the art is therefore scattered and practitioners who want to

evaluate and analyze the testability of, say, their designs lack

operational guidelines on how to proceed in a systematic and

structured manner.

What is needed is a measurement framework that attempts to

determine relevant attributes and possible ways to measure

them. Because there is substantial variation in the way people

design and test systems, it is clear that not all attributes and

measures are relevant and applicable in all contexts. Such a

framework, therefore needs to enable the definition of a tailored

evaluation procedure. This paper provides such a framework for

assessing the testability of designs with a particular focus on the

Unified Modeling Language (UML), as this is now the de-facto

standard for modeling object-oriented designs.

For each attribute we provide a set of hypotheses that

precisely explain its expected relationship with testability.

This is important as an explicit hypothesis can help decide, in a

specific context (e.g. design and testing strategies), whether or

not this attribute is relevant. We then provide a set of measures

for each attribute which is by no means exhaustive but which

provides a starting point based on our current understanding.

To summarize, the framework presented in this paper provides

practical and operational guidelines to help assess the

testability of designs modeled with the UML. These guidelines

are presented in such a way that the evaluation procedure can

be tailored to the specific design and test strategies employed in

a specific environment.

From a research viewpoint, this paper presents a number

of precise hypotheses that can be investigated through

empirical means. In other words, it presents a starting-

point theory that can be verified and refined by experimental

means. Though much work remains to be done in the area of

testability measurement and evaluation, such a framework

should help focus research efforts and motivate precise

research questions.
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