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Abstract—The Object Constraint Language (OCL) was introduced as part of the Unified Modeling Language (UML). Its main purpose

is to make UML models more precise and unambiguous by providing a constraint language describing constraints that the UML

diagrams alone do not convey, including class invariants, operation contracts, and statechart guard conditions. There is an ongoing

debate regarding the usefulness of using OCL in UML-based development, questioning whether the additional effort and formality is

worth the benefit. It is argued that natural language may be sufficient, and using OCL may not bring any tangible benefits. This debate

is in fact similar to the discussion about the effectiveness of formal methods in software engineering, but in a much more specific

context. This paper presents the results of two controlled experiments that investigate the impact of using OCL on three software

engineering activities using UML analysis models: detection of model defects through inspections, comprehension of the system logic

and functionality, and impact analysis of changes. The results show that, once past an initial learning curve, significant benefits can be

obtained by using OCL in combination with UML analysis diagrams to form a precise UML analysis model. But, this result is however

conditioned on providing substantial, thorough training to the experiment participants.

Index Terms—Comprehension of software models, software engineering experimentation, UML, OCL.
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1 INTRODUCTION

THE Object Constraint Language (OCL) [28] was pro-
posed as a way to bring additional precision to system

analysis and/or design models described using the Unified
Modeling Language (UML) [4]. OCL is currently part of the
UML standard [20]. However, a number of authors
recommend against using OCL [12], [18]1 or leave it out
of their proposed methodologies [13]. Some recommend
using OCL only during low-level design [8]. Furthermore,
very few organizations using UML make use of OCL.

Though it is clear that OCL brings precision to UML

models and offers a number of potential benefits [7], [10],

[17], the question comes down to assessing whether the

additional effort and formality associated with OCL bring

any tangible benefits in practice. This question is akin to the

old, on-going debate in software engineering regarding the

degree of formality required in the early phases of software

development to develop high-quality software.

There is anecdotal evidence that using some kind of
formal approach in the early phases of software development
brings benefits [14] (e.g., less overall effort, fewer faults
produced), but there are few rigorous empirical evaluations
of those benefits and the factors that influence them.
However, three empirical studies have been reported which
are of particular interest in our context. In the first one,
Pfleeger and Hatton performed a case study on the use of
Finite State Machines, VDM and Communicating Sequential
Processes [25]. The main results suggest that using formal
specifications can lead to code that is relatively simple and
easy to test. The authors, however, also report that their
results are far from conclusive due to a lack of control and
incomplete data as the study is a postmortem analysis. Sobel
and Clarkson performed a quasi experiment2 on the use of a
formal method based on first-order logic [27]. The main
conclusion is that the use of formal analysis (pre and
postconditions in first-order logic) during software develop-
ment produces better, less erroneous programs. However, in
[3], it is pointed out that this experiment presents severe
threats to validity (e.g., lack of randomization, lack of control)
and therefore needs to be replicated with a different design.
In particular, the experiment did not exclude the possibility
that the benefits may be due simply to the nature of the
people who volunteered to learn the formal treatment. In the
third study, Satpathy et al. [26] performed an industrial case
study aiming to compare the use of UML and B for the
specification of a real-time event driven system. One of their
conclusions is that the specification task benefits from both
UML and the additional formality brought by B, and they
even suggest combining the two by adding B statements to
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1. “Unless there is a compelling practical reason to require people to
learn and use the OCL, keep things simple and use natural language,” see
[18]. “Unless you have readers [e.g., designers] who are comfortable with
predicate calculus, I’d suggest using natural language,” see [12].

2. A quasi-experiment is an experiment which is unable to control
potential factors that may influence the results, for instance, because of a
lack of randomization [29].
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express certain properties that cannot be readily expressed in
UML. They also mention that the use of OCL should be
investigated in future work.

This paper reports on a series of two controlled
experiments performed in a university setting. Their
purpose was to understand whether the OCL has an impact
on three software engineering activities, that is, 1) the
detection of defects in UML models, 2) the comprehension
of a system’s functionality, behavior, and structure based on
UML models, and 3) the maintenance of UML documents,
with a particular focus on change impact analysis. The
subjects are fourth year computer and software engineering
students who have been carefully trained in UML-based
software development over several courses. As further
discussed below, the choice of performing a controlled
experiment was made to control other extraneous factors
which could have affected the results (e.g., students’ ability)
and to ensure that the subjects were all adequately trained
(i.e., have sufficient knowledge of UML analysis and OCL).

Though effort was a constant here—each student spent
roughly the same time to perform the activities—our goal
was to determine whether OCL would make a practically
significant difference. Results showed that the use of OCL,
combined with UML, offers significant benefits, in terms of
defect detection, comprehension, and maintenance of UML
analysis documents. However, the significant benefits are
obtained only after a certain learning curve is overcome.

This paper is structured as follows: Section 2 provides
details of the design of the experiment, including the
experiment definition, context selection, hypotheses for-
mulation and instrumentation. Section 3 reports on the
results and provides plausible interpretations. Section 4
discusses threats to validity. Conclusions in terms of
practical significance of the results and future work are
reported in Section 5.

2 EXPERIMENT PLANNING

Two experiment trials have successively been conducted and
are referred to as Experiment I and Experiment II, respectively,
intherestof thispaper.Sections2.1 to2.7describeExperiment I,
following the template provided in [29], a well-known
textbook on software engineering experimentation. Experi-
ment II is a replicationofExperiment I.Although somechanges
in the design of the experiment are performed, most of the
descriptions in Sections 2.1 to 2.7 apply also to Experiment II,
and differences between Experiment I and Experiment II are
contrasted in Section 2.8.

2.1 Experiment Definition

The purpose of the experiment is to evaluate the impact of
using OCL during object-oriented analysis [8] (i.e., when
class diagrams, statecharts, sequence diagrams, etc., are first
produced), on the effectiveness of three typical software
engineering activities:3

1. Understanding the analysis document. Different
people have to understand analysis models at
different stages of software development: During
the analysis phase, different analysts have to
produce a common, coherent, set of UML diagrams.
During system design, once analysis has been
completed [8], designers (likely to be different from
the analysts) have to work from the analysis
document. If OCL expressions help engineers to
understand the analysis, then using OCL may save
the effort required to clarify issues with analysts.
Furthermore, errors discovered during analysis,
and/or misunderstanding of the analysis during
the design phase (possibly leading to wrong design
choices), may be very expensive if these are not
caught at an early stage of development.

2. Modifying the analysis document. During software
development, it is common for system requirements
to change and for faults to be corrected. Each type of
change may require that the UML model be changed
and a small change may lead to many other related
changes. For example, a change in a class may lead
to changing the state definitions of this class and
other classes or the pre/postconditions of opera-
tions. If the presence of OCL expressions helps to
point out the impact of a change4 easily, correctly,
and quickly, then the effort of devising OCL
expressions would be more justified.

3. Detecting defects in the analysis document. De-
fects are likely to exist in a UML model. They could
be due for instance to a misunderstanding of the
system requirements or miscommunication among
team members. Usually, models are subject to
inspection, to improve their correctness and com-
pleteness. If the OCL expressions were shown to
help engineers to detect more defects in the models
before they are being used in subsequent steps, the
effort of defining OCL expressions during analysis
would be further justified.

According to standard experiment design terminology
[29], our experiment has one independent variable or factor,
denoted as Method, with two treatments: OCL and no_OCL,
corresponding to whether OCL expressions are used in
UML analysis models. The experiment has three dependent
variables, namely, Comprehension (C), Maintainability (M),
and Defect Detection (D), which are defined to measure the
effectiveness of the three above-mentioned software en-
gineering activities. Determining the effect of the factor
Method on these three dependent variables is the objective of
the experiments reported here.

2.2 Context Selection

The context of the experiment is a fourth year Computer and
Software Engineering course at Carleton University, Ottawa,
Canada. The students have all been trained in UML-based
object-oriented software development in at least three
previous courses, with an increasing focus on software
modeling. The focus of this last course is to make them use
whatwas learnt in the context of awell-defined development
process, including analysis and design phases [8].
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3. Many other software engineering activities could have been
considered. But those three were selected as they correspond to typical
expectations from people using UML models. The higher level of
abstraction of models should help them understand a system, modify it,
and the model should help avoid introducing defects in early stages of
development. 4. Both in the UML diagrams and the code.



Experimental tasks are performed on two system
analysis documents, related to two real-world applications,
namely, a Cab Distribution (CD) system and a Video Store
(VS) system. Each system was selected because it has an
adequate level of complexity and represents a familiar
application domain.5 Each analysis document (CD or VS) is
approximately 40 pages long, and they are somewhat
comparable in terms of complexity and size. Each analysis
document entails: a partial use case diagram along with use
case descriptions following standard templates [8], se-
quence diagrams for a subset of the use cases in the use
case diagram, a couple of statecharts along with a textual
description of their states and transitions, a class diagram
including every model element (e.g., operation) used in
sequence diagrams and statecharts, and a data dictionary
reporting on classes, attributes, operations, and class
associations. For the versions of the analysis documents
containing OCL constraints, OCL was used to document the
following aspects of the models, which are typically
documented in natural language: operation preconditions
and postconditions and class invariants (in the data
dictionary), guard conditions in statecharts, and path
conditions in sequence diagrams. Fig. 1 shows an example
of operation described using both natural language and
OCL preconditions and postconditions. More details on
each analysis document are reported in [5].

Since our objective is to assess the impact of OCL, it is
particularly important to note that both OCL and non-OCL
documents contain all the information needed to perform
any of the Defect Detection, Comprehension, or Maintenance
tasks. Where present, the OCL contracts will provide details
that may otherwise be spread throughout the diagrams.
They also provide additional precision, thus avoiding
ambiguities such as the ones that are inherent to textual
descriptions. For example, the OCL precondition and
postcondition in Fig. 1 show exactly the meaning, in terms
of class attributes, of the phrases “no copy is rented or held”
and “all copies for the title are available for sale.” Similarly, the
OCL expression fills the precision gap between the phrase
“if the title is not reserved” and the fact that a title is
considered reserved when there is at least one pending or

outstanding reservation for it (i.e., second and third lines of
the precondition). It is worth noting that a subject working
on documents with no OCL expressions can infer the same
information from other parts of the document (e.g., other
parts of the data dictionary, statecharts).

2.3 Hypothesis Formulation

The following null hypothesis (H0) is formulated for testing
the effect of Method on each dependent variable: There is no
difference in the subjects’ Comprehension (C), Maintenance

(M), and Defect Detection (D) effectiveness while working on
UML analysis documents using or not using OCL. The
alternative hypothesis (Ha) is that using OCL improves
effectiveness for all three dependent variables. The formal
definitions are provided in Table 1: The rows present the
three dependent variables; the columns summarize the
corresponding null and the alternative hypotheses.

2.4 Selection of Subjects

The subjects are the students registered in the last, most
advanced software engineering course in their four-year
Bachelor program, as it is desired that the subjects possess a
reasonable level of technical maturity and knowledge for
UML-based, object-oriented software development. The
students are familiar with concepts such as pre and
postconditions, state invariants, and class invariants. There
is no need to screen students as variations in ability are also
present in industrial settings and all levels of ability should
therefore be represented. As most of these students will
become professionally registered engineers, they are a
representative sample of the population of new graduates
entering the software engineering profession.

The experiment was part of a series of compulsory
laboratory exercises. As students are concurrently attending
lectures and doing assignments as they go through the labs,
we expect some level of learning effects that will have to be
accounted for in our analysis. The students were told that
they were not graded on performance but that they were
expected to perform their tasks individually in a profes-
sional manner to obtain the points assigned to the
laboratory. They were aware of the pedagogical purpose
of the exercises—that is to experience modeling tasks in the
presence or absence of OCL—but did not know the exact
hypotheses tested.
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5. Note that these models have little or no inheritance. The role of
inheritance in this context will need investigation. However, our conjecture
is that inheritance will increase even further the need for using OCL
contracts, for instance, to check the conformance of hierarchies to the Liskov
Substitution Principle [19].

Fig. 1. Example of operation described using a textual description and OCL contracts.



2.5 Experiment Design

This section carefully presents the design choices we made
to optimize the validity of the experiment. Section 2.5.1
defines the tasks performed and time allocated. Section 2.5.2
discusses other undesirable factors, whose effects may
confound with the effect of using OCL. Section 2.5.3
describes the experiment design and how the extraneous
factors are controlled.

2.5.1 Experimental Tasks and Time Allocation

Three tasks are defined to study the dependent variables.
The Defect Detection task is formulated to study dependent
variable Defect Detection: Thirty defects are seeded in each
analysis document, and the subjects are asked to find them
all during a period of 150 minutes without a priori knowing
the number of seeded defects. The subjects’ performance for
this task is measured as the percentage of seeded defects
detected. The Comprehension task is formulated to study
dependent variable Comprehension: The subjects have to
answer to 20 multiple choice questions for each system,
during a period of 90 minutes. The subjects’ performance
for this task is measured as the percentage of correctly
answered comprehension questions. TheMaintenance task is
formulated to study dependent variable Maintenance: A list
of system changes is prescribed for each system, affecting 71
and 60 model elements in the CD and VS systems,
respectively. The subjects are asked to identify all the
model elements affected by the system changes during a
period of 60 minutes, without knowing how many model
elements are indeed affected. The subjects’ performance for
this task is measured as the percentage of affected model
elements correctly identified. A complementary measure
that was considered but not presented here due to space
constraints is the total number of wrongly identified model
elements: We did not observe significant differences. Note
that the experiment does not deal with the efficiency or
cost-effectiveness of the tasks as time was rather con-
strained and we were expecting a ceiling effect in terms of
effort spent on each task.

As the subjects perform the three tasks on the same
system, Defect Detection has to be performed first: The
subjects are first given an erroneous document to perform
the Defect Detection task, and then a correct document to
answer comprehension and maintenance questions. More-
over, since the Comprehension task is believed to be simpler
than the Maintenance task6 (the latter task also requires
understanding the systems), Comprehension is performed
before Maintenance. Due to time limitations imposed on
each laboratory, the Defect Detection task is completed in one

laboratory, while the Comprehension and Maintenance tasks
are completed in a subsequent laboratory, with the
Comprehension task being performed before the Maintenance
task. More time is allocated to the Comprehension task
(90 minutes) than to the Maintenance task (60 minutes), as it
is assumed that a thorough understanding of each system
would help the subjects in performing the subsequent
Maintenance task.

2.5.2 Other Factors to Be Controlled

Method is the only factor of interest in this experiment.
However, other factors may also impact the subjects’
performance in an undesirable way and their effect may
be confounded with Method’s effect. Extraneous factors
need to be controlled so that only the effect due to Method, if
there is any, is discernable.

1. Academic background. Some subjects may come
from a program, such as electrical engineering,
where the software development training received
may not have been as intensive compared to that
received by subjects coming from a software/
computer engineering program. On the other hand,
students in the software engineering program might
be more receptive to the tasks than students in the
other two programs.

2. OCL experience. Some subjects may have learned
OCL prior to this course, while others may not have.

3. Ability. The subjects may have different levels of
understanding of UML, OCL, and object-oriented
system analysis.

4. Order of Method. As indicated below, subjects
apply one treatment (OCL, no-OCL) for a system
and then the other treatment for the other system
(e.g., CD with OCL and then VS without OCL). The
order in which the subjects are exposed to OCL may
impact the observable effect of OCL as learning
effects may be confounded with Method.

5. System. The subjects’ performance may depend on
their comprehension of the application domain of
each system. Further, system complexity may also
have a confounding effect with Method. For example,
the effect of OCL may be more or less discernable in
a more complex system.

2.5.3 Experiment Design

Students were assigned to one of four groups and the tasks
they performed over four laboratories (three hours each), as
well as the order of the tasks, are summarized in Table 2.
The rows represent the four subsequent labs students went
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Experiment Hypotheses

6. Results (Section 3) confirm this intuition.



through (each lab being a week apart) and the three tasks
they performed, whereas the columns are the four groups of
students. The table cells show, for each group and lab,
which system the students worked on and whether they
had OCL constraints for it.

This experiment involves only one factor whose effect is
of interest to us: whether or not OCL is used in Analysis
documents. We could have used a simple, completely
randomized one-factor design, but we wanted to account
for individual differences in such a way as to increase the
statistical power of our analysis and ensure the design
would not create any systematic bias in our results [15]. One
way to achieve these goals is to adopt a randomized block
design [29] and to account for subjects’ ability during data
analysis (Section 2.7). Another advantage of proceeding this
way is that we can study the interaction between subjects’
ability and OCL.

Students were therefore grouped into two blocks (hereby
referred to as High Ability and Low Ability) according to
whether or not they had obtained a minimum grade of B- in
the previous course on UML and OCL. Admittedly, other
ways to capture ability and form blocks could have been
considered, but our focus here was on their UML modeling
capability and, as instructors of their previous courses on
this topic, we felt it was the best alternative. Subjects were
grouped also according to whether they learned OCL in a
prerequisite course or in the course (the material and
number of hours of lectures used were the same), and
according to the undergraduate engineering program they
were registered in. Each of the four student groups was
then randomly assigned subjects from blocks in nearly
identical proportions. It was also important for us, in order
to facilitate the data analysis, that each of the four groups be
of approximately the same size (9 or 10 in this case, for a
total of 38 students—see [5] for the exact figures).

For each task, each subject worked individually on each
of the two systems, using UML+OCL in one case and only
UML in the other. Students were also prevented from
collaborating and individual work could easily be mon-
itored as tasks were performed in a laboratory setting.

According to the design shown in Table 2, students
performed each task twice, each time on a different system
andwith a different treatment (OCL or no_OCL). For the sake
of brievity in our discussions, the first time a task is
performed (Lab 1 forDefect Detection, Lab 2 forComprehension

andMaintenance) will be referred to as the first attempt, while
the second time (Lab 3 for Defect Detection, Lab 4 for
Comprehension and Maintenance) as the second attempt.

The rationale for making subjects work on both systems
was 1) to maximize the number of data points (observa-
tions) so as to increase statistical power, 2) to ensure that the
differences in systems’ complexity would not bias the
results (though we tried to select systems of “similar”
complexity), and 3) to give the opportunity to every student
to learn the same material. However, when asking experi-
mental subjects to perform several times similar tasks (e.g.,
Defect Detection) and use the same techniques (e.g., OCL
contracts), we are subject to learning or fatigue effects [15]
and we need to ensure they do not confuse the results. This
was done in two ways:

1. First, two of the groups used OCL the first time they
performed the task whereas the other two groups
did so the second time around, thus ensuring
learning effects (regarding the tasks, UML, and
OCL) would not be confounded with OCL effects.
As described in Section 2.7, our data analysis
procedure will however account for learning effects
and quantify them.

2. Second, we used four groups of participants instead
of two in order to avoid ordering effects (e.g.,
learning or fatigue effects) being confounded with
system effects. For example, if all participants in
group A would have used first the VS system with
OCL (and then the CD system without OCL) while
all participants in group B would have started with
non-OCL documents on the CD system (and then VS
with OCL), we could have observed that OCL helps
more on the VS system as people in group B had
more time to further mature their knowledge of
UML and OCL. We would have then been unable to
assess learning effects or system effects as they
would be entirely confounded.

Another result of our design choices is that each group
uses each of the two systems twice in a row, sometimes
using OCL first or second. One may therefore ask whether
this is a threat to the validity of the results. First, it is
important to observe that, when a system is used twice in a
row, it is to perform different tasks and the data collected
will be part of separate analyses (i.e., for different
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dependent variables). So, if there is a system learning effect,
say for Group 1 from Lab 1 to Lab 2, this learning will result
in a better Comprehension and Maintenance performance.
However, that learning effect will affect all four groups and
we can still pool together the four groups’ data for analysis
purposes within each of the labs. Furthermore, we expect
that system learning effect to be weak as labs take place a
week apart and students do not have access to documents
between labs. Therefore, we also do not expect them to
remember OCL expressions from one week to the other,
and certainly not the level of detail where the performance
of non-OCL groups would get closer to that of OCL groups.
However unlikely, even in the situation where people
would remember OCL expressions from one week to the
other (e.g., Group 1 from Lab 1 to Lab 2), this would result
in decreasing the impact of OCL but could not create an
inflated difference between OCL and non-OCL perfor-
mance scores.

All the students were monitored by the experimenters as
the tasks are performed. They were aware that our goal was
to evaluate the impact of using OCL as well as to improve
their practical training in UML and OCL, but they were not
aware of the exact hypotheses tested or what particular
dependent variables were of interest (Section 2.4). The
subjects were not allowed to communicate with each other
during the laboratories, and were required to hand in all
experimental materials at the end of each laboratory.

Two additional, related issues that can be raised from the
chosen experiment design are the possible exchange of
information among students between labs and the possibi-
lity they might have kept working on the tasks outside the
laboratory environment, thus invalidating our assumption
that the effort spent on the tasks is nearly constant. This
behavior was prevented in several ways. Students were not
aware of the detailed plan for the labs and, therefore, did
not know they would have to perform the same tasks as
their fellow students from other groups at a later point.
Second, as mentioned above, students did not have access
to the lab material between labs, whether the system
descriptions or questionnaires. As a result any collaboration
or continuation of the work between labs was unlikely and
difficult.

2.6 Instrumentation

The materials used in this experiment comprise: UML
analysis documents with or without OCL constraints, and
with orwithout seeded defects (Section 2.6.1), questionnaires
for the Comprehension and Maintenance tasks (Section 2.6.2),
and a postlab survey questionnaire (Section 2.6.3). Addition-
ally, to verify if the blocks are appropriate (Section 2.5.3), a
prelab survey questionnaire is administered to obtain
information about the background of the subjects, e.g., their
previous UML experience, the undergraduate program to
which they belong [5].

Each seeded defect, comprehension question, and main-
tenance question was carefully selected according to a
number of criteria: It had to cover different aspects/parts of
the systems, to the largest extent possible, however
excluding implementation details; it should not be trivial
or nearly impossible to answer based on the available
information; and it could be answered with or without

OCL. In other words, each OCL and non-OCL document
contains, in different ways, relevant information to answer
questions. If we had introduced question that could be
answered only with OCL expressions, then the experiment
would have no point as the results would then become
obvious. Such questions are, anyway, difficult to find, and
are expected to be rare in practice. Last but not least, the
questions had to be relevant, that is had to concern
information of interest. In other words, we had to be
convinced that those would be questions that software
engineers could ask about the system. For example,
maintenance changes had to be plausible changes. Standard
techniques of phrasing subjective questions and designing
survey questionnaires were followed [23], so as to avoid
bias and to increase reliability of responses.

2.6.1 The UML Analysis Documents

Two systems are used in this experiment: the Cab
Distribution system (CD), and the Video Store system
(VS). There are four versions of each of the system
documents: with or without OCL expressions, and with or
without defects. Each document was carefully reviewed by
the authors. Though smaller than industrial analysis/
specification documents, each analysis document is far
from being trivial.

To perform the Defect Detection task, 30 defects were
seeded in the correct UML document versions, containing
or not containing OCL expressions. The subjects were asked
to identify all the seeded defects and submit the findings via
e-mail. To make the measurement objective and repeatable,
the subjects’ performance is measured as the percentage of
seeded defects correctly identified. Defects, typically en-
countered in UML documents, were seeded in class
diagrams, data dictionaries, sequence diagrams, and sta-
techarts. Example of these defects are missing/wrong
associations in class diagrams, inconsistencies between
diagrams and data dictionary, missing/wrong sequences
in sequence diagrams, missing/wrong states, transitions
guard conditions, or actions in statecharts. The distribution
of the seeded defects is similar in the two systems [5].

2.6.2 Questionnaires for the Comprehension and the

Maintenance Tasks

During the Comprehension and the Maintenance tasks, the
correct analysis documents with or without OCL are
provided to the subjects, and Comprehension and Mainte-
nance questionnaires are distributed.

The Comprehension questionnaire contains 20 multiple-
choice questions, each one having a unique correct answer.
Its purpose is to quickly evaluate, in a repeatable and
objective way, the extent to which a subject understands the
system internal logic and functionality, which is measured
as the percentage of all questions correctly answered. Fig. 2
shows an example of a multiple choice question used for the
VS system. Note how the OCL postcondition in Fig. 1
provides an answer to the comprehension question in Fig. 2.
When a Title is set for sale, its state transitions to the state
OnSale, and the same happens to all copies of that Title
(i.e., “B” is the correct answer). This, however, does not
require changing the SalePrice attribute of class Title
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since that attribute has already been set when a Title was
created (to specify fees for lost copies). To answer the same
question without OCL, it is necessary, in addition to
reading relevant text descriptions, to analyze the textual
descriptions of Copy and Title attributes in the data
dictionary. We can then determine that SalePrice is
initialized when the corresponding Title instance is
created. In general, it may also be needed to look at the
description of class statecharts and interactions of relevant
objects in sequence diagrams.

To investigate on how OCL could have helped main-
tainers, we identified six and five prescribed changes for
CD and VS, respectively, and the Maintenance question-
naires focus on impact analysis of these changes. Seventy-
one (respectively, 60) model elements are impacted in the
CD (respectively, VS) system by the changes. The subjects
are asked to list model elements that would have to
undergo change, and their performance is measured as
the percentage of the total number of affected model
elements that have been correctly identified. Fig. 2 shows
an example of such a question for the VS system.

2.6.3 Postlab Surveys

In addition, because we wanted to gain enough insight to
strengthen and explain our results, survey questionnaires

were distributed after the execution of each Defect Detec-
tion, Comprehension, and Maintainability task. We asked each
student whether he or she had enough time to perform the
task, how easy the task was to perform, whether he or she
understood the system’s functionalities, or whether the lab
instructions were clear and easy to follow. Moreover, for
each student using OCL, questions were asked about the
amount of time used to read OCL expressions, how easy
they were to understand, and how helpful they were
perceived to be. Most questions are answered on a Likert
scales from 1 (Strongly agree) to 5 (Strongly disagree),
following recommended templates [23]. An example
questionnaire for the Defect Detection task with OCL is
shown in Fig. 3.

The questionnaires are not part of the experiment proper,
but rather gather information about the experiment. The
output from the survey questionnaires is just meant to
support and/or explain the quantitative results by provid-
ing qualitative insight.

2.7 Analysis Procedure

A two-step data analysis is performed on subjects’
performance data. The first step accounts for all the
observations of both attempts at the tasks (across two labs)
for each dependent variable. However, it is also necessary
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to consider possible ordering effects, which cannot be
avoided, and to determine whether they interfere with the
overall analysis (e.g., learning effect). In other words, we
want to test whether the difference between UML+OCL and
UML-Only measurements can be explained by whether
OCL is used during the first or the second attempt at a task.
If this is the case, the data regarding each laboratory may
have to be analyzed independently as we can expect
different results. Thus, a second analysis step is performed
for each dependent variable for each laboratory. In general,
our statistical analysis will assume a level of significance
� ¼ 0:05. Assumptions that have to be satisfied by the
various analysis techniques we employ will be discussed in
the next sections.

2.7.1 Step 1: Analyzing Data of Both Attempts at a Task

All observations analysis. As each subject performs each
task twice, using and not using OCL, on each system, the
one-tailed paired t-test for independent samples [11] is
performed for each task, using all available observations
for that task. If the derived p-value � ¼ 0:05, it can be
concluded that using OCL has a significant positive effect
on the corresponding dependent variable. Note that we
have systematically performed a nonparametric statistical
test as well for every hypothesis to be tested. The
Wilcoxon test was used as an alternative to the t-test, as
the Wilcoxon test is resilient to strong departures from the
t-test assumptions. However, Wilcoxon test results are not
reported (they can be found in [5]), since they are
consistent with those of the t-test.

Testing effect of Order of Method. Half of the subjects
apply the no OCL treatment first and then the OCL
treatment (referred to as order N O), while the other half
applies these treatments in the reverse order (referred to as
order O N). If there is a significant effect of Order of Method,
it will then be necessary to study separately the effects of
Method for each attempt at the tasks. To study the effect of
Order of Method, the measurement differences between
observations of the subjects when using and not using OCL
are calculated, as follows:

Diffx ¼ observationxðOCLÞ � observationxðno OCLÞ;

where x denotes a particular subject. DiffðN OÞ denotes the
performance difference (Diff) of the subjects who work on
the system documents in the order N O, while DiffðO NÞ
denotes the performance difference of the subjects whowork
on the system documents in the order O N . We also use the
symbol � to denote averages of task performance or
differences. A one-tailed t-test for independent samples [11]
is performed to test whether DiffðN OÞ is larger than
DiffðO NÞ. DiffðN OÞ is expected to be larger than
DiffðO NÞ, as the subjects’ ability to use OCL may improve
through lectures and training received between laboratories.
Therefore, H0 : DiffðN OÞ ¼ DiffðO NÞ, Ha : DiffðN OÞ >
DiffðO NÞ. A p-value below � ¼ 0:05 would indicate that
using OCL during the second attempt brings significantly
larger performance differences when using and not using
OCL than during the first attempt.

Performance comparison between the first and the

second attempt at a task across Ability levels. In order to

further understand the effect of Order of Method and
learning effects, the one-tailed paired t-test is also performed
to compare low and high-ability subjects’ performance
between the first and the second attempt for each specific
task. If the subjects’ performance improves over time, we
want to determine whether there is a difference between
low-ability and high-ability subjects. A p-value below � ¼
0:05 for a particular Ability level would indicate that each
subject performs significantly better during the second
attempt than during the first.

2.7.2 Step 2: Data Analysis per Laboratory

When significant ordering effects take place, it is
necessary to look into the data one laboratory at a time.
To study the effect of Method in each laboratory, a one-
tailed t-test for independent samples [11] for the Method
factor would suffice. However, we expect student ability
to have a strong effect on the task results. Further, Method
may have a different effect (interaction) at different levels
of subjects’ ability. Though we control for Ability in our
design, in order to refine our data analysis, we can thus
use a two-way Analysis of Variance (ANOVA) [11], [16]
using Ability as a factor as well. Likewise, though we try
to minimize its effect by using comparable systems, a
three-way ANOVA that includes the System variable could
be considered as well. Unfortunately, in the first experi-
ment trial, the available sample size does not permit three-
way ANOVA. Instead, two-way ANOVA is performed for
Method and Ability, and Method and System, respectively. A
three-way ANOVA is performed for Method, Ability, and
System in the second experiment trial, as the sample size
is this time significantly larger.

The reason why two/three way ANOVA is better is two-
fold [11]. First, ANOVA allows us to investigate interaction
effects between Ability and the use of OCL (Method).
Perhaps OCL has a different effect on students with
different ability. Second, by introducing Ability, the varia-
tion it explains in the data is removed and the analysis of
the effect of OCL becomes as a result statistically more
powerful, e.g., we are more likely to see any significant
effect if there is one.

When looking at ANOVA result tables, we want to
determine whether sample means in the groups formed by
Ability and Method categories (levels) are significantly
different, i.e., that the independent variables have a
significant impact on the dependent variables (Defect
Detection, Comprehension, and Maintainability) and that the
variations in means could not have been expected by chance
alone. This is typically captured by the results of an F-test
[11] that is yielding a p-value which captures the prob-
ability that we could obtain the results we observe if the
populations from which the group samples are drawn had
equal means (e.g., in terms of Defect Detection). Another
standard statistic measures the strength of the relationship
between each of the independent variables and the
dependent variable. It is denoted as E2, is referred to as
the correlation ratio, and computes the relative improve-
ment in our ability to predict the value of the dependent
variable when we know what group an observation belongs
to [16]—it is in many ways similar to R2 in regression
analysis. Correlation ratios are reported in Section 3.2 for
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significant results. Note that, because our goal is not
prediction, E2 values need not be high for the results to
be interesting. Their main purpose is to compare indepen-
dent variables and their interaction in terms of explaining
variation in the data.

The ANOVA procedure is based on a number of
assumptions. Each combination of factor levels (e.g., OCL
and high-ability) has to be assigned subjects in a random
fashion (possibly using blocking as a constraint, as
described in Section 2.5.3) and should also have an equal
number of observations (subjects). The dependent variable
should be, for each level combination, normally distributed
and the variance should be equal. Obviously, the last two
assumptions are usually not met in practice but ANOVA is
known to be very robust to departures from these
assumptions [16], especially when the samples sizes are
equal or similar for each level combination. If the differ-
ences are not too large, unequal sample sizes do not prevent
the use of ANOVA, it just makes it more complex to
interpret its results: The results may depend on the order in
which factors are included in the model. Without further
expanding on this, in our experiments the differences in
sample sizes exist but are rather small [5]. As expected,
departure from normality and equal variance assumptions
exist, but a detailed analysis shows that differences in
variance are not statistically significant [5] and the
dependent variable distributions do not show extreme
outliers or multimodal distributions, thus exhibiting only
mild departures from normality. Moreover, we are in a
situation where we are interested only in the effect of one
variable (OCL) and the other factors are merely used to
refine the analysis. In that case it is recommended to include
the important variable last in the model, i.e., the factors are
included in the model in order of increasing importance. In
our case,Method is therefore the last variable to be included.
In other words, we test to which extent OCL explains the
remaining variation after the effects of Ability and System
have been accounted for. Though the differences in sample
sizes are very small in our case, we will follow this
procedure to be on the safe side.

In order to help further the interpretation of results,
Descriptive statistics tables and Graph of means diagrams are
also provided either in the main text or [5] in addition to the
ANOVA tables. They help assess and visualize the effects of
factors and their interactions.

2.7.3 Analyzing the Survey Data

Survey questionnaires are used to detect differences
between groups using UML+OCL and UML only (e.g., in
terms of their perception of the usefulness of OCL). Such
data are used to better explain and support our quantitative
results. A simple t-test [11] for independent samples is used
to compare groups. This test is one-tailed as we expect OCL
to have an effect in a specific direction (e.g., questions are
easier to answer and, therefore, exhibit better scores with
OCL). When comparing differences in the central tenden-
cies of questionnaire data between subsequent labs, our
goal is to monitor for learning effects and explain
differences in results that may be observed. Since groups
of students are identical when comparing subsequent labs,
we use a statistical test for paired samples, the paired t-test

[11]. This test is also one-tailed as we expect a learning effect

over subsequent laboratories and, therefore, a performance

improvement in terms of questionnaire scores.

2.8 Replicated Experiment Trial (Experiment II)

A second experiment trial, referred to as Experiment II, is

conducted, repeating the steps of the first experiment trial

as an attempt to confirm its results (Table 2). The number of

subjects is twice that of Experiment I (84 instead of 38),

which enables a three-way ANOVA for the Method, Ability,

and System factors. Due to classroom space constraints, each

group has to be further divided into two subgroups, with

each subgroup attending laboratories every two weeks [5].

Experiment II covers a time period of eight weeks (instead

of four weeks for Experiment I).
More training was administered before the second

experiment trial than in the first trial. This was motivated

by our observation during the first trial that subjects needed

to be better prepared, despite the courses they had already

taken and passed so as to minimize the learning effects we

had observed during the first experiment. More examples

were given to the subjects to familiarize themselves with

UML system analysis documents, OCL expressions, and the

tasks at hand. It was also observed in Experiment I that,

overall, the subjects did not use all the time allocated to

perform the Comprehension task (90 minutes), while the

subjects needed more time to perform the Maintenance task

(60 minutes). Thus, 75 minutes are allocated to each of the

two tasks in Experiment II.
Overall, the grade distributions are similar across the

two experiment trials and the same blocking strategy was

used for Experiment II [5]. However, the differences

between Experiment I and Experiment II introduce new

threats to internal validity that are discussed in Section 4.1.

3 DISCUSSION OF RESULTS

This section discusses the analysis of the results for both

experiment trials, according to the two-step analysis

(Section 2.7). We will focus our discussion on factor Method

as this is the main factor of interest in this article. More

detailed results can be found in [5]. Section 3.1 reports on

the first step of the analysis where we account for all the

observations of both attempts at the tasks for each

dependent variable. Section 3.2 focuses on the second step

where we analyze each dependent variable for each

laboratory. Section 3.3 summarizes the main observations.
In order to simplify the presentation of the tasks

performed during the different laboratories in the differ-

ent experiment trials, the following convention is used:

<Task>-<Lab>-<Experiment Trial>. For example, Compre-

hension-2-I (or simply C-2-I) refers to the Comprehension

task performed during Lab 2 in Experiment I. Also, in

order to simplify the characterization of the subjects, a

number of acronyms is used, as shown in Table 3.
We also use the symbol � to denote averages of task

performance or differences. Last, any p-value below the

significant level � ¼ 0:05 in printed in bold face when

reporting results.
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3.1 Analyzing Data of Both Attempts at Tasks

Table 4 summarizes the effects of using OCL. The rows
represent the tasks performed in each experiment trial.
There are two attempts for each task. The results of both

attempts analysis and each attempt (per Lab) analysis are
provided. The columns �ðOCLÞ and �ðno OCLÞ present the
mean values of the subjects’ performance using and not
using OCL, respectively. The p-value columns report on the
statistical significance of differences. In Experiment II,
second attempt, when subjects were given more training
and had the most experience, we see that the effect of OCL
ð�ðOCLÞ � �ðno OCLÞ in Table 4) is roughly of 5, 7, and
6 percent, for Defect Detection, Comprehension, and Main-

tenance, respectively.
We can also observe that the percentages (scores) of

correctly detected defects and correctly answered questions

are rather low (Defect Detection: < 12 percent; Comprehension:

< 50 percent; Maintenance: < 50 percent), and that

Comprehension appears to be simpler than Maintenance and

Maintenance appears to be simpler than Defect Detection. The

low performance may be due to a lack of experience with

the tasks or with their inherent complexity. Even after

having gone through thorough UML analysis and design

training, fourth year engineering students may not be

comfortable with handling relatively large system analysis

models and documents of such complexity. This clearly tells

us these are difficult tasks that should perhaps be

performed by teams, not individuals. In particular, these

results suggest that there are perhaps significant gains in

better supporting the inspection of models for defect

detection and impact analysis in UML models [6].
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In Experiment I, when considering data from both
attempts at the tasks together, using OCL has a significant
positive effect only for the Comprehension task, but not for
the Defect Detection or the Maintenance tasks. This difference
may be explained by the fact that the Comprehension task is
easier and requires less skills (as visible from performance
scores). When considering data from each attempt, how-
ever, using OCL has positive effects for both Comprehension
and Maintenance tasks only for the second attempt. This is
interpreted as resulting from a learning effect taking place
between laboratories, as people are more familiar with the
tasks, UML and OCL during their second attempt at a task.
Although using OCL does not have any significant positive
effect on the Defect Detection task, it has significant
interaction effects with ability in the second attempt as
further discussed below.

On the other hand, in Experiment II, using OCL has
significant positive effects for each task, whether taking all
observations into account, or considering data from each
attempt, except for the first attempt at the Defect Detection
task (the first task of the experiment). Further analysis
shows that, in the second attempt at the Defect Detection
task, using OCL also has significant interaction effects with
ability as further discussed below. Therefore, given a
context where software engineers are adequately trained,
there is strong evidence to suggest that using OCL results in
statistically significant benefits in terms of Defect Detection,
Comprehension, and Maintenance. In terms of practical
significance, the differences between percentages of correct
answers are not substantial (5-7 percent) but it is important
to realize that those benefits accumulate and that there are
probably many other tasks in which OCL can help besides
the ones we experimented with. Furthermore, with even
more training, experience, and better tool support, the
positive effect of OCL could keep increasing. The case of
defect detection is the most complex, as benefits depend on
system characteristics, subjects’ ability, and possibly other
factors. Recall that the subjects of Experiment II received a
more thorough prior training in OCL and UML than those
of Experiment I. This may have resulted in weaker learning
effects in Experiment II and probably explain why Method

had significant main effects only for the last two tasks of
Experiment I whereas these effects are significant for most
of the tasks in Experiment II. The results indicate that using
OCL can bring significant benefits but that the required

training in using OCL and UML may be substantial and,
therefore, expensive.

In order to further look into learning effects, Fig. 4
illustrates differences from the first attempt at a task to the
second, for each experiment trial. In Experiment I, we
observe strong learning effects, as performance improve-
ments are observed for all but one task, regardless of the
order in which OCL is used. In Experiment II, performance

improvements are observed only when OCL is used in the
second attempt (N_O), but not in the first attempt (O_N). In
Experiment II milder learning effects tend to cancel out
OCL effects in the O_N cases whereas the two effects add
up in the N_O case. In Experiment I, the learning effects are
stronger and override the OCL effects to such an extent that
some slight improvements are even observed in the O_N

cases for Defect Detection and Maintenance. There is also
evidence of learning effect in the survey data of each
experiment trial, indicating for examples that the subjects
are significantly more confident in the types of defects to
look for in Lab 3 than in Lab 1 (p-value = 0.03 in each trial).

Note that the only significant performance improvement
is experienced by those subjects who use OCL in the (N_O)
order as shown in Table 5. This table also shows that using

OCL seems to benefit high-ability subjects in some instances
and low-ability subjects in other instances. This indicates
complex interactions between OCL usage and modeling
ability, which can be investigated only via ANOVA as
discussed below.

3.2 Data Analysis per Laboratory

Table 6 summarizes the ANOVA results for the three
factors: Method, Ability, and System, for each laboratory of
each experiment trial. Rows present main and interaction

effects and columns present tasks. For each task, if an effect
is significant, the correlation ratio (E2) is reported in the
corresponding cell.
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First, ANOVA confirms that Method has significant
main effects in C-4-I, M-4-I, D-3-II, C-2-II, C-4-II, M-2-II,
and M-4-II. It also shows that Ability plays an important
role: Ability has significant main effect in D-1-I, D-3-I,
C-4-I, M-4-I, D-1-II, D-3-II, and C-4-II. In those labora-
tories, high-ability subjects perform better than low-ability
subjects, irrespective of the methods used. An indivi-
dual’s ability thus appears to be key to such software
engineering tasks. The survey results explain the existence
of a significant effect of Ability. In D-1-II for instance,
compared to low-ability subjects, high-ability subjects
have less problems to find defects and they know better
what to look for in finding defects. System also appears to
have a significant main effect (in D-3-I, C-4-I, M-2-I,
M-4-I, C-1-II, C-4-II, M-2-II, M-4-II) and more particularly
so for Maintenance tasks. Subjects consistently perform
better for the CD system than for the VS system in those
laboratories.

Method has significant interaction effects with Ability in
D-3-I, D-3-II, and M-2-II. There are inconsistencies in the
interactions between Method and Ability for Defect Detection
(Fig. 5): Using OCL hinders high-ability subjects in D-3-I,
but helps them in D-3-II, while OCL helps low-ability
subjects in D-3-I but does not have any significant effect in
D-3-II �ðOCLÞ ¼ 8:6, �ðno OCLÞ ¼ 6:83). However, based

on survey results, high-ability subjects perceived OCL to be
useful more than low-ability subjects in both D-3-I and
D-3-II (for example in D-3-II: �ðHighÞ¼ 2:56, �ðLowÞ ¼ 3:05,
p-value ¼ 0:047). A possible interpretation is that when they
are not sufficiently familiar with OCL, high-ability subjects
do not benefit from OCL to find defects, as their insight and
intuition with respect to UML system analysis is sufficient.
Reading and analyzing OCL expressions therefore results
in a time overhead without real advantage. On the other
hand, low-ability subjects tend to rely on OCL expressions
and use them in a systematic way to detect inconsistencies
in UML system analysis documents. Once more, experience
is gained in using OCL and UML system analysis, high-
ability subjects eventually benefit from using OCL and
perhaps to a greater extent than low-ability students as they
learn faster. In any case, it is clear that the interactions
among learning effects, ability, and the use of OCL must be
further investigated as we see that complex phenomena are
taking place.

In M-2-II, using OCL seems to have a much greater
positive effect on low-ability subjects than on high-ability
subjects (DiffðHighÞ ¼ 7 percent, DiffðLowÞ ¼ 13 percent):
Fig. 6. Similar to D-3-I, this may be due to high-ability
subjects being able to rely more on their intuitive under-
standing of the UML model, then benefiting less from using
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OCL than low-ability subjects for the Maintenance task.
However, this interaction between Method and Ability is not
visible in M-4-II. It is possible that learning effects with
respect to UML system analysis and the Maintenance task
help low-ability subjects catch up with high-ability subjects,
thus resulting in similar OCL effects for high-ability
subjects and for low-ability subjects.

Method also has significant interaction effects with System
in D-3-II and M-2-II: Fig. 7. In D-3-II, using OCL results in a
larger performance improvements for the VS system than for
the CD system (Diff(VS) = 10 percent, Diff(CD) = 0.6 percent).
This suggests that using OCL may have a larger impact on
Defect Detection for more complex system models (such as
VS) as this is in the context of such complexity that formality
pays off. This is visible only in the context of Experiment II as
such benefits may be obtained only if subjects have been
providedwith enough training. On the other hand, inM-2-II,
using OCL results in a larger performance improvement for
the CD system than for the VS system (Diff(CD) = 17 percent,
Diff(VS) = 3.9 percent). This suggests that using OCL may
have larger impact on Maintenance for simpler system
models. However, this interaction is not visible in M-4-II.
The interaction effect between Method and System on

different software engineering activities, such as detecting
defects and maintenance, needs to be investigated further in

future experiments.

3.3 Discussion

The results of this study show that OCL, as a constraint

language complementary to UML, is potentially useful in
helping understand system models, facilitate change, and

detect defects in such models. Though the effects are

modest (5 to 7 percent increase, as described in Table 4) in
each task, these benefits are cumulative and it is expected

that 1) other tasks would benefit from OCL and 2) benefits
will grow overtime as people acquire more UML and OCL

expertise. However, the interaction effects of subjects’

modeling ability and system complexity with the usage
of OCL need to be further studied and understood.

Furthermore, the benefits of using OCL may be observable

only if subjects have substantial training and experience in
UML and OCL. We believe that such phenomena are likely

to be encountered when using any formal method and

given their complexity, it is then perhaps not surprising
that the benefits of using formal methods has been so

controversial [3], [25], [27].
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4 THREATS TO VALIDITY

This section further discusses the different types of
threats to the validity of our experiments, in order of
decreasing priority: internal, external, construct, and con-
clusion validity [9], [29].

4.1 Internal Validity

One possible issue related to internal validity, is due to the
experiment design and concerns the possible information
exchange among the subjects between the laboratories. This
is prevented in several ways, as discussed in Section 2.5.3
(e.g., subjects were not allowed to communicate with each
other during laboratories, and were required to hand in all
experimental material at the end of each laboratory).
Another concern relates to the fact that the subjects perform
two distinct tasks on the same system document in two
subsequent laboratories. If the subjects remember the OCL
expressions from the first laboratory, it may help them to
perform better in the following laboratory. After consider-
ing other alternatives, we concluded the final design
selected was the least problematic as it was unlikely that
the subjects would remember the OCL expressions from the
first laboratory: the laboratories are one week apart in
Experiment I, and two weeks apart in Experiment II.
Finally, the subjects do not know what task to expect in the
next laboratory and have no access to lab material between
the laboratories.

Another issue relating to internal validity is that the
absence or presence of the subjects cannot be fully
controlled: Students may drop out of the course, or simply
not show up for laboratories. Fortunately, this happened
only rarely and did not significantly affect the grade
distributions in the groups.

Finally, new threats to internal validity are introduced
with Experiment II. Since the subjects have to be divided
into two subgroups and perform the same tasks in two
subsequent laboratories, it is possible that the subjects from
the second subgroup may hear from the first subgroup
about the tasks and the analyzed systems. Problems were
actually observed in a few cases, as the students were
monitored, and the corresponding data were discarded.
Further, when comparing the performance of the subgroup
pairs, no significant differences were observed.

4.2 External Validity

The main threats to validity in this experiment relate to
external validity. Like any academic experiment, the issue
of whether the subjects are representative of software
professionals arises. Recall that—and it is unusual for
student experiments—the fourth year engineering students
involved in this experiment are probably better trained at
software modeling with the UML and OCL than most
software professionals. So, if there is an issue, it is not the
lack of knowledge and experience of our subjects, but rather
that they represent the ideal, unusual case of subjects
having been through thorough UML training, but without
having practiced their knowledge in an industrial environ-
ment. However, an increasing number of software en-
gineering graduates with such modeling skills are now
integrating the software industry and should therefore
become, slowly but surely, the norm. Moreover, the
difference between students and professionals is not always
clear cut, as reported in a recent experiment [1]: The
performance of undergraduate and graduate students
(whose expertise is similar to the one of our students) at
maintaining a UML design was not found to be very
different from the performance of junior and intermediate
professional consultants.

Another external validity issue, which is unfortunately
inherent to controlled experiments, is the size and complex-
ity of the system models. The question is then whether OCL
would have an equal, weaker, or stronger impact had the
system models been vastly more complex. We cannot
answer that question and we see controlled experiment
such as the one presented here as a first step before
assessing whether actual case studies in industry settings
should be even considered. Our intuition though is that
OCL would be even more needed on increasingly complex
systems as there would be more room for ambiguity, larger
teams would be involved in developing the models, and it
would be increasingly more difficult for software engineers
to rely on intuition.

4.3 Construct Validity

Construct validity relates to the measurement instruments,
including the defects seeded, the Comprehension and
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Maintenance questionnaires, and the survey questionnaires.
The seeded defects were selected to achieve a balance:
They have to be complex enough so as not to be obvious at
a first sight; they also have to be detectable with or without
OCL so as not to bias the results in favor of using OCL. The
survey questionnaire [5] indicated that this point was
addressed, i.e., defects did not appear to be trivial, and
were not impossible to be found. The Maintenance and
Comprehension questions were also selected to be of certain
level of complexity [5] and to cover as many parts of the
models as possible, while being answerable within the time
available. Questions also had to be answerable with or
without OCL so as not to bias the results in favor of using
OCL. Questions were phrased so as to be answered either
as multiple choices questions (Comprehension) or by
providing a list of model elements (Maintenance), thus both
leading to an easy measurement of the subjects’ perfor-
mance. The fact that tasks can be performed with or
without OCL is however a conservative decision as
questions that require OCL to be answered may actually
occur in practice. Seeded defects and questionnaires were
produced by one of the authors, who was not involved in
the modeling of the two systems.

The survey questionnaires focus on capturing the
perception of the subjects on their tasks. They are not
meant to statistically show the impact of the independent
variable (Method) on our dependent variables but, rather,
our objective is to support and explain our quantitative
results by providing qualitative insight from the question-
naire data. We followed standard ways of designing survey
questionnaires [23] and phrase subjective questions so as to
avoid bias and increase reliability of answers. However, a
possible bias could have been the following: When asked
about their perception of the usefulness of OCL, students
could have answered what they thought was expected by
the experimenters. Evidence shows this was, however, not
the case [5].

4.4 Conclusion Validity

Conclusion validity relates to subject selection, data collec-
tion, measurement reliability, and the validity of the
statistical tests. These issues have been addressed in the
design of the experiment through a careful design of
questionnaires and fault selection, and appropriate analysis
techniques (Section 2.5).

5 CONCLUSIONS AND WORK-IN-PROGRESS

This paper investigates an important methodological
aspect of the use of the Unified Modeling Language
(UML) [4] for Object-Oriented Analysis and Design:
whether or not the Object Constraint Language (OCL)
[28], which is part of the UML standard, should be used to
augment the precision and rigor of system analysis
modeling. This implies, at a minimum, to use OCL to
specify class invariants, operation preconditions and
postconditions. Conditions in other diagrams can also be
defined using OCL, as in the current study. In the specific
context of UML, this question is very much akin to the
ongoing debate about the use of formal methods in
software development [2], [25]. It is an important, practical

question as there is a debate about the level of formality by
which UML should be used [12], [18], [28].

In order to investigate the impact of OCL in UML
development, we designed, performed, and replicated a
controlled experiment. It involved fourth year software/
computer engineering students who received substantial
training in UML and OCL. We investigated the impact of
using OCL on three important software engineering
activities: 1) understanding the functionality and internal
logic of modeled systems, 2) performing a change impact
analysis based on UML models, and 3) detecting defects
through model inspections. It was important to ensure that
the controlled experiment would yield valid results by
making sure the trends we observe are due to the use of
OCL and not other extraneous factors. To this end, a careful
experiment design was devised to prevent confounding
effects, such as a widely varying modeling ability among
students and differing system model properties. In order to
yield conservative results, each task is designed such that
questions can be answered, and defects can be detected,
with or without OCL. Further, not only the effect of using
OCL was examined, but also its interactions with others
factors were carefully analyzed.

The results of the experiments show that using OCL has
the potential to significantly improve an engineers’ ability
to understand, inspect, and modify a system modeled with
UML. However, the benefits for each task are modest and
become practically significant only when taken all together.
Furthermore, such benefits are strongly dependent on the
ability, experience, and training of software engineers. This
is not entirely surprising as it has been often observed that
new methodologies or technologies take substantial time to
assimilate before they start paying off [24]. From a practical
perspective, this means that it is unlikely that software
engineers will benefit from using OCL in UML models
unless they are properly trained and mentored. Based on
our experience, this requires that the level of training be
much more substantial than what is typically observed
across the software industry. But, this is also likely to
become increasingly easier as new software engineering
graduates, who have received substantial UML and OCL
training, permeate software development organizations and
as the UML standard attains a firmer penetration. In light of
those conclusions, it is then not surprising that popular
textbooks [12], [18] recommend against using OCL as it is
probably the best thing to do in most environments where
the expertise is inadequate and no sufficient training is
available. To come back to the original, more general issue
of using formal methods, if what we have observed here
can be generalized to other notations and techniques, it is
also not then surprising that existing results appear
inconclusive [14], [25]: So many factors are affecting the
outcome of formal methods that we have to expect widely
varying benefits depending on contextual factors such as
training, experience, and tools. Because, like many other
formal specification methods, OCL is based on first-order
logic and set theory, we further believe that the results of
our experiments have no reason to be specific to OCL and
would very likely be observed regardless of the specific
language used.
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Although the presence of OCL in UML models has the

positive effects reported in this paper, future experiments

should determine whether the benefits of devising OCL

expressions justify their cost. There are, however, other

considerations which need to be taken into account, such as

how to measure cost, the quality of implementation, and the

correctness and completeness of UML models. Further-

more, the cost and benefit of using OCL constraints also

depends on tool support to verify the correctness, com-

pleteness, and consistency of OCL expressions. As such

tools emerge, the cost-benefit of defining precise UML

models with OCL constraints should be re-evaluated.
When the experiments reported above were performed,

UML 2.0 [22] and OCL 2.0 [21] were not released yet as

standards and were in a rough draft state when we started

designing the material. We do not expect, however, that the

changes in the standards would have a dramatic impact on

the results for the case studies that were used, especially

regarding OCL that has retained most of its earlier features.

Further experiments may nevertheless be warranted that

would use these newly released standards.
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