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Abstract--Inaccurate estimates of software development effort is a frequently reported cause of IT-project failures. We 

report results from a study that investigated the effect of introducing lessons learned sessions on estimation accuracy and 

the assessment of uncertainty. Twenty software professionals were randomly allocated to a Learning group or a Control 

group and instructed to estimate and complete the same five development tasks. Those in the Learning group, but not 

those in the Control group, were instructed to spend at least 30 minutes on identifying, analyzing, and summarizing their 

effort estimation and uncertainty assessment experience after completing each task. We found that the estimation 

accuracy and the realism of the uncertainty assessment were not better in the Learning group than in the Control group. 

A follow-up study with 83 software professionals was completed to better understand this lack of improvement from 

lessons-learned sessions. The follow-up study found that receiving feedback about other software professionals’ 

estimation performance led to more realistic uncertainty assessments than receiving the same feedback of one’s own 

estimates. Lessons-learned sessions, we argue, have to be carefully designed to avoid wasting resources on learning 

processes that stimulate rather than reduce learning biases related to assessment of own estimation performance. 

 

Index Terms— cost estimation, process implementation and change, review and evaluation, software psychology 

I. MOTIVATION 

A recent questionnaire-based survey of more than 1,000 IT professionals [1] reports that two out of the three 

most important causes of IT-project failure are perceived to be related to poor effort estimation.  This perception is 

supported by empirical studies of software development effort overruns and over-confidence. The typical effort 

overrun seems to be about 30% [2] and 90% confidence (or “almost sure”) that the actual effort will be included in a 

minimum-maximum effort interval typically corresponds to a 60-70% interval hit rate [3]. Over-confidence in the 

accuracy of effort estimates typically means that the project plan is not reflecting the underlying uncertainties 

related to the use of effort. Clearly, both software vendors and clients would benefit from more accurate effort 

estimates and more realistic assessments of the uncertainty of these estimates. One possible way of achieving higher 

accuracy and more realistic uncertainty assessments is to develop and adopt better learning processes. One 
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candidate for improved learning is the use of individual lessons-learned sessions, i.e., structured reviews of own 

estimation experience. The learning effect of such lessons-learned sessions is the topic of this paper. 

Judging by the number of scientific studies, it seems that software engineering researchers believe that estimation 

learning processes should focus on improving formal estimation models. This has been the main approach to 

learning and improvement among software researchers since at least the 1960s [4]. This strong focus on the 

improvement of formal estimation models can hardly be defended by its success. Even the use of unstructured and 

unsupported judgment-based effort estimation (“expert estimation”) seems, on average, to yield effort estimates that 

are just as accurate as those generated by the use of sophisticated formal estimation models, see our review in [5]. In 

addition, formal effort estimation models are not much used by the software industry [6]. The use of the Personal 

Software Process (PSP) [7] provides, in our opinion, an illustration of the limitations of an estimation learning 

process that is based mainly on the improvement of formal effort estimation models. Independent studies with 

control groups report a surprising lack of improvement in estimation accuracy when applying the PSP process [8, 

9]. Note that, irrespective of these results, we believe that the PSP is based on many sound learning principles and 

may be useful for several purposes. In fact, the PSP and the lessons-learned sessions that we introduce in our study 

share many of the same learning principles, e.g., the tracking and feedback of estimates and actual effort, the 

tracking of estimation problems, and emphasis on reflections on how to avoid the problems in the future. 

There has been much work on learning from experience in software organizations, e.g., work on experience 

databases [10-13] and work on project experience reviews [14, 15]. However, none of these studies report results on 

how the use of different types of lessons-learned processes improves judgment-based effort estimation and few of 

them compare the learning effect with on-the-job learning. The comparison with on-the-job learning is, we believe, 

essential if we are to avoid attributing to the introduced change in learning processes learning that would have 

happened without it. Therefore, in our study, we decided to compare the improvement in learning that followed 

lessons-learned sessions with that of a control group that represented on-the-job learning. 

The study reported in [16] compares the accuracy of the estimation of software development effort of those that 

receive explicit feedback that compares the estimated and the actual effort (feedback on outcome), with that of a 

non-feedback group. The results from that study suggest that estimators that received feedback on outcome 

produced estimates that were no more accurate than those that did not receive such feedback. Studies on human 

judgment from other domains support this disappointing lack of improvement in estimation accuracy as a result of 

feedback on outcome; see, for example [17-19]. The unsatisfactory effect of feedback on outcome motivated us to 

emphasize lessons-learned sessions, i.e., a process that includes more analysis than examination of the outcome 

feedback alone. The structure we imposed on these lessons-learned sessions (see Section II) is based on the finding 

that information on how different events and variables are related to effort over-runs are reported to be required for 

improved judgment accuracy in several domains [17-20]. 

Lessons-learned sessions should be designed to solve problems pertaining to learning from experience that are 

typically part of on-the-job-learning, such as those reported in [21]: 

• High time pressure. The next task should be started as soon as possible. 

• Low reflection on mistakes. 
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• Lack of objective feedback. 

• Lack of knowledge about how to summarize lessons learned. 

• Perception of the task as unique and not relevant to learn from. 

The lessons-learned sessions we introduce in Section II address at least three of these problems. They remove the 

high time pressure, force the software professionals to reflect on mistakes, and provide some relevant objective 

feedback. It is however possible that the two remaining problems, i.e., the lack of knowledge about how to 

summarize lessons learned and the perception of the task as unique and not relevant to learn from, are not addressed 

sufficiently. If these two problems are essential to achieve positive effect from lessons-learned sessions, if there is 

insufficient objective feedback, or if there are other learning problems that are not addressed by lessons-learned 

sessions, we may observe no or even negative learning from our lessons-learned sessions. 

The remainder of this paper is organized as follows: Section II describes the design of the study, including the 

format of the lessons-learned sessions. Section III describes the results of the study. Section IV discusses limitations 

of the study and tries to explain the findings. That section includes a description of a follow-up study that was 

intended to shed more light on the findings. Section V concludes. 

II. DESIGN 

A. Main Research Question 

The main research question addressed in this study is the following:  

 

To what extent do lessons-learned sessions (of the type implemented in this study) lead to improved accuracy of 

effort estimation and improved realism of uncertainty assessment in comparison to on-the-job learning? 

B. Structure of Lessons-Learned Sessions 

The lessons-learned sessions evaluated in this study contain the following elements, provided immediately after 

the completion of each development task: 

• Feedback on the estimated effort, the actual effort, and the estimation error of the task just completed. 

• Feedback on the mean estimation error of all preceding tasks. 

• Feedback on the realism of the uncertainty assessments (the format of this feedback is described in Figure 1 and 

described in more detail in Section II.C). 

• A required 30-minute learning session in which the following information should be provided by the software 

professional: 

o Perceived reasons for good/poor estimation performance. 

o Perceived realism of confidence in estimation accuracy. 

o Perceived reasons for realism/lack of realism of confidence in estimation accuracy. 

o Suggested lessons learned that are relevant for estimation and uncertainty assessment. 
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o Suggestions on how the lessons learned should affect the estimation and uncertainty assessment of 

future task(s). 

 

Figure 1: The Format of the Lessons Learned Session 
Task X Comments

1) Reasons for good/poor estimation performance on the last task.
Estimated effort Hour : Min

0 : 0
0 Reasons for inaccurate/accurate effort estimate:

Actual effort Hour : Min
:

0

Estimation error 

Your estimated likelihood of A  inside the [ , ] 2) Evaluation of the uncertainty of effort estimates (Interval 1, Interval 2, Interval 3) 
90-120% interval (Interval 1): % a) How realistic do you think your probabilities on Interval 1, 2 and 3 were on the task?
A  actually inside 90-110% (yes/no)

Your estimated likelihood of A  inside the [ , ]
60-150% interval. (Interval 2): %
A  actually inside 60-150% (yes/no)

b) What were important reasons for realism/lack of realism?
Your estimated likelihood of A inside [ , ]
50-200% interval. (Interval 3): %
A  actually inside 50-200% (yes/no)

3) Learning from previous experience
a) What have you learned, relevant for estimation and uncertainty assessment, from the 

Average estimation error:

 b) How should this impact the estimation and uncertainty assessment of the next task(s)?

If you considered your effort estimate on the just completed task to be inaccurate, provide 
reasons for the estimation error. If, on the other hand, you considered your effort estimate 

Write comments here

Write comments here

Write comments here

Write comments here

Write comments here

 

Notice that our lessons-learned session raises the same type of questions as in common industrial project review 

meetings. The post-mortem reviews at Microsoft, for example, raise the questions: “What worked well in the last 

project, what went wrong, and what should the group do to improve in the next project?” [22]. An essential 

difference from many other types of project review is that we focus solely on individual learning in our study, while 

most other project reviews focus on individual learning, group-based learning, and experience sharing. Our focus on 

individual learning is similar to that of the PSP. 

It can be argued that reflecting on and learning from one’s own work is the basis of many learning processes. If 

individual learning is not present, there is frequently not much experience of value to share either. However, the 

focus on individual learning in this study also means that the potential improvement in estimation accuracy that may 

result from group-based learning and experience sharing in lessons-learned sessions is not evaluated. 

C. Measures 

The measures used to evaluate estimation accuracy are the following: 
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Magnitude of Relative Error = MRE = |actual effort – estimated effort|/actual effort 

Relative Error = RE = (actual effort – estimated effort)/actual effort 

 

 

The median MRE is our main measure of estimation accuracy. The lower the median MRE, the better is the 

estimation accuracy. We use the median RE as our main measure of estimation bias. A positive median RE indicates 

a tendency towards over-optimism, a negative median RE a tendency towards over-pessimism, and a RE close to 

zero unbiased estimates. From previous experience, we expected that there would be a few MRE and RE-values 

(outliers) with a strong impact on the mean MRE and mean RE, i.e., that the mean MRE and RE would be 

misleading as the central value of a set of observations. That motivates our use of the more outlier-robust median 

MRE and RE. 

The MRE and RE have their limitations and a lot of alternative accuracy measures have been proposed. For an 

overview and discussion, see [23]. We tested different variants of these accuracy measures on the data collected in 

this study, e.g., more symmetric accuracy measures, but found that they did not change the main results. We 

therefore decided to use the measures that are best known by the software engineering community, i.e., MRE and 

RE. 

We measure the assessed uncertainty of an effort estimate by means of an effort prediction interval. An effort 

prediction interval is the combination of a stated confidence level (CL) and an effort minimum-maximum interval 

(EI). For example, a software developer may estimate that the most likely effort of a development task is 100 work-

hours and that it is 80% probable that the actual effort will be between 50% (50 work-hours) and 200% (200 work-

hours) of the estimated most likely effort. Then, the minimum-maximum interval [50; 200] work-hours is the 80% 

confidence, prediction interval of the developer’s effort estimate of 100 work-hours. In order to ease the analysis in 

our study, we standardized on the following three effort minimum-maximum intervals: 

 

 

EI-1 = [90% * estimated effort; 110% * estimated effort] 

EI-2 = [60% * estimated effort; 150% * estimated effort] 

EI-3 = [50% * estimated effort; 200% * estimated effort] 

 

 

These three effort minimum-maximum intervals were selected to reflect what we believed were typical narrow, 

medium-wide, and wide minimum-maximum effort intervals. For each task, we asked the developers to assess how 

confident he was, i.e., how probable he thought it was that the actual effort would fall inside each of these three 

minimum-maximum intervals. If, as in the previous example, a software developer estimated that the most likely 

effort was 100 work-hours, he would be asked to provide the (subjective) probabilities that the actual effort would 
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fall inside the intervals [90; 110] work-hours (E1-1), [60; 150] work-hours (EI-2), and [50; 200] work-hours (EI-3). 

The developer may, for example, believe that it is 50% probable that the actual effort will be inside EI-1, 70% 

probable that it will be inside EI-2, and, 95% probable that it will be inside EI-3. The confidence level (CL) of EI-1 

is consequently 50%, the CL of EL-2 is 70% and the CL of EL-3 is 95%. 

The frequency of including the actual effort in an effort minimum-maximum interval is termed the “hit rate”. On 

the long run, i.e., when estimating and assessing the uncertainty of many tasks, a developer who has realistic 

uncertainty assessments will have a mean confidence level that is similar to his hit rate. If his mean confidence level 

is higher than his hit rate, we describe the developer’s uncertainty assessments as over-confident. If it is lower than 

the hit rate, we describe the developer’s uncertainty assessments as under-confident. In earlier studies, e.g., [3], we 

have documented a strong tendency towards over-confidence in the accuracy of the effort estimates.  

We measure the level of over-confidence of an effort minimum-maximum interval, e.g., EI-1, and a set of tasks 

as follows: 

 

 

OverConfidence = (mean confidence level – “hit rate”)/”hit rate” 

 

 

An OverConfidence value close to zero indicates that the uncertainty assessments, on average, are realistic, a 

negative value that they are under-confident, and a positive value that they are over-confident. Assume, for 

example, that a developer has provided the confidence levels (subjective probabilities) 80%, 60%, 90%, 90%, and 

80% related to the E1-1 effort interval, for the estimates of the tasks T1…T5, respectively. The mean confidence 

level of the developer’s estimates related to E1-1 and T1...T5 is then (80%+60%+90%+90%+80%)/5 = 80%. If the 

developer’s uncertainty assessments are realistic, we would expect a hit rate of 80%, i.e., that four out of the five 

estimates lay inside the E1-1 minimum-maximum effort intervals. If the EI-1 minimum-maximum effort intervals, 

for example, included only one out of the five actual effort values, i.e., if we observed a hit rate of only 20%, his 

level of over-confidence would be (80% - 20%)/20% = 3.0 and would suggest a high level of over-confidence in the 

accuracy of his estimates. Notice that our measure of over-confidence may not work well as an indicator of over-

confidence for as small a set of tasks as in the above example. Consequently, we will only use this measure as an 

indicator of differences in levels of confidence between groups that include the uncertainty assessments of larger 

sets of tasks. 

The defined measure of over-confidence only indicates the ability of developers to assess the mean level of 

estimation uncertainty of a set of tasks. Also relevant is the ability to distinguish between high and low uncertainty 

effort estimates in a set of tasks. For example, it is possible that the developers are strongly overconfident about the 

uncertainty of their effort estimates but are nevertheless able to distinguish between high and low uncertainty effort 

estimates. To assess the ability to distinguish between high and low uncertainty effort estimates, we apply the rank 

order correlation (Spearman rank order correlation) between confidence level and the estimation accuracy (MRE) 

for a minimum-maximum interval, e.g., EI-1, and a set of tasks: 
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CorrConfAcc = rank order correlation between confidence level and MRE 

 

 

This measure uses the level of confidence as the uncertainty of an estimate as perceived  by the software 

professional and the MRE-value as a substitute of the actual uncertainty of the effort estimate; i.e., the measure is 

based on the reasonable assumption that the higher the actual uncertainty of an effort estimate, the higher the typical 

estimation error will be. If a developer is able to rank his estimates in relation to the degree of uncertainty perfectly, 

we would expect a correlation of -1. Positive or low correlations would suggest that for the evaluated set of tasks, 

the developer is not good at separating effort estimates with high and low uncertainty. 

D. Research Hypotheses 

We designed the study to test the following four hypotheses: 

 

 

Hypothesis 1: Lessons-learned sessions improve estimation accuracy in comparison with on-the-job learning 

(lower median MRE). 

  

Hypothesis 2: Lessons-learned sessions reduce estimation bias in comparison with on-the-job learning (median 

RE closer to 0). 

 

Hypothesis 3: Lessons-learned sessions improve the realism of uncertainty estimation in comparison with on-the-

job learning (OverConfidence closer to 0). 

 

Hypothesis 4: Lessons-learned sessions improve the ability to separate low and high uncertainty estimates in 

comparison with on-the-job learning (CorrConfAcc closer to -1). 

 

E. The Research Design 

1) Subjects 

The subjects were recruited via a request for consultants that was sent to Norwegian consulting companies. The 

request specified a flexible range of time for which the consultants would be needed, along with the required 

education and expertise. Companies replied with curricula vitae of potential candidates and these were then 

screened to verify that they complied with the requirements. The subjects were required to at least have a Bachelor’s 
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degree in informatics (or equivalent) and familiarity with the technology (UML, Struts, JSP, Java, HTML, the 

Eclipse IDE, and MySQL) of the system on which they were supposed to complete development tasks. 

In total, 20 software professionals (all male) were selected. The software professionals were paid close to 

ordinary fees for their work and asked to treat the development work as ordinary consultancy work. The software 

professionals did not know that developers other than themselves were asked to complete the tasks. 

2) Tasks 

The experiment was conducted on the BESTweb system [4]. The BESTweb system is a web-based system 

developed in Java using the Struts framework. The system supports the research on software cost and effort 

estimation through a database front-end client that gives access to information about journal and conference papers 

on software effort estimation. An essential part of the system’s functionality is the identification of relevant papers 

through the use of categories related to, for example, type of estimation methods. As an illustration of the size of the 

software, the BESTweb software consists of about 50 classes and 3000 lines of Java code. The BESTweb system 

can be accessed at www.simula.no/BESTweb. 

All software professionals were instructed to estimate and complete the same five tasks in the same sequence. 

Below is a brief description of the development tasks: 

• Task 1: Requires the addition of functionality to save a user’s search query to persistent memory. In addition, 

the user’s last search query must be displayed and re-executed automatically when they next log on to the 

system. 

• Tasks 2: Requires that the system be extended to handle an additional piece of data from an input file (in XML 

format) used to update the publications in the BESTweb system. The system already partially handles the data: 

if it encounters the presence of the data in the file it warns the user that that data is not supported. The 

developer is asked to add support for this data by extending the domain model, the GUI, and the search 

functionality.  

• Task 3: Requires the developer to add functionality to the system that extends the manner in which cost and 

effort estimation metadata associated with each publication are dealt with, specifically, the ability to add 

publication categories and corresponding codes.  

• Task 4: Requires the developer to add caching logic to the system so that if statistics for all the publications in 

the system are requested, the cached results are used (so as to decrease the computational load on the system). 

• Task 5: The developers are asked to add functionality such that the users could delete existing publication 

codes from the system. 

3) Experiment Process 

The software professionals were allocated randomly, by the toss of a coin, to the Control or Learning group. The 

groups were the same size, 10 software professionals in each group. Following their allocation to one of the groups, 

the software professionals followed these steps: 

1. They received a description of the work process to be followed.  
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3. They completed an initial questionnaire that captured professional background and experience. 

4. They received a task specification, starting with Task 1. 

5. They estimated the most likely effort needed to complete the specified task and the assessment of the perceived 

uncertainty of that effort estimate, i.e., the subjective probabilities (confidence levels) of including the actual 

effort in the minimum-maximum intervals EI-1, EI-2 and EI-3. 

6. They described, in brief, the strategy for the estimation and the assessment of uncertainty that they used. 

7. They performed the task (design, programming, testing, and documentation). 

8. Upon completion of the task, it was sent in for acceptance testing. The system was then tested using a pre-

defined system acceptance test plan: 

a. If the test fails, the software professional is told the problem and asked to fix it and to submit the 

solution again. 

b. If the test passes and the software professional belongs to the Learning group, he receives the feedback 

on estimation accuracy and spends about 30 minutes on lessons learned. Then, he receives the next 

task, i.e., repeats the process from Step 4. 

c. If the test passes and the software professional belongs to the Control group, he receives the next task, 

i.e., repeats the process from Step 4. 

9. Upon completion of all five tasks, the developers were debriefed about the experiment and provided tape-

recorded responses to questions about estimation strategies and learning processes used. 

III. RESULTS 

A. Descriptive Characteristics 

A random allocation of as few as 20 subjects into two groups of the same size does not guarantee that the groups 

are similar with respect to estimation-relevant background and skill. Fortunately, we observed no essential 

differences, as illustrated in Table 1. 
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Table 1: Comparison of the Subjects’ Backgrounds 

Variable Group Mean Lower 

Quartile 

Median Upper 

Quartile 

Control 7,2 5,0 6,0 8,0 Experience total 

(years) Learning 7,0 4,0 5,5 10,3 

Control 1,6 1,0 2,0 2,0 Degree (1= Bachelors, 

2= Masters) Learning 1,9 2,0 2,0 2,0 

Control 2,0 1,7 2,0 2,4 Average grade in 

computer science 

courses 

Learning 2,0 1,9 2,1 2,5 

Control 3,2 3,0 3,0 3,0 Self-assessed 

estimation competence 

(1=much worse than 

average, 5=much 

better than average) 

Learning 2,9 3,0 3,0 3,0 

Control 28% 19% 20% 43% Self-assessed average 

estimation error on 

previous tasks 

Learning 25% 10% 23% 35% 

Control 

 

3,3 3,0 3,0 4,0 Self-assessed 

programming skill 

(1=much worse than 

average, 5=much 

better than average) 

Learning 3,2 3,0 3,0 4,0 

 

Table 2 extends the analysis of potential differences between the groups by comparing the performance on Task 

1, i.e., the performance before the first exposure to the lessons-learned session.  
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Table 2: Comparison of Effort, Quality, Estimation Accuracy and Bias of Task 1 

Variable Group Mean Lower 

Quartile 

Median Upper 

Quartile 

Control 5,8 4,1 5,8 7,4 Effort (work-hours) 

Learning 6,0 4,1 4,8 9,1 

Control 1,4 0,8 1,0 2,3 Programming quality 

(mean number of 

corrections) 

Learning 1,5 0,0 1,0 3,0 

Control 1.4 0,4 0,6 1,9 Estimation accuracy  

(MRE) Learning 0,8 0,3 0,7 1,2 

Control 0,11 -0,3 0,2 0,4 Estimation bias (RE)  

Learning 0,05 -0,4 0,2 0,4 

 

It seems to be safe to claim, on the basis of Table 2, that both the effort and quality indicators of Task 1 were 

similar, which indicates that there were no large differences in programming skill. If anything, the lower median 

effort of the Learning group on Task 1 may suggest that those in that group were slightly more efficient 

programmers. The difference is, however, not large and statistically non-significant. The higher mean MRE of the 

Control group is due mainly to one outlier and the small difference in median values is probably more representative 

for the difference in estimation accuracy between the two groups. 

A comparison of the uncertainty assessment related values for IE-1, IE-2 and IE-3 for Task 1, see Table 3, shows 

that there were no large difference here, either. 

 

Table 3: Comparison of Uncertainty Assessment Values of Task 1 

Variable Group Mean Confidence 

Level 

Mean Hit Rate OverConfidence 

Control 52% 20% 1,6 Over-confidence IE-1 

Learning 57% 20% 1,9 

Control 77% 50% 0,5 Over-confidence IE-2 

Learning 80% 50% 0,6 

Control 96% 90% 0,7 Over-confidence IE-3 

Learning 96% 90% 0,7 

 

An informal analysis of the described strategies for estimating and for assessing uncertainty (Step 6 of the 

experiment process) used for Task 1 showed no essential differences. All of the developers relied on expert 

judgment supported by a separation of the task into sub-activities, i.e., a bottom-up strategy. The processes used to 

assess uncertainty were poorly described and difficult to evaluate. This may indicate that the software professionals 
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had no explicit strategy for uncertainty assessments, i.e., that the process was based more or less on expert 

judgement. 

B. Estimation Accuracy and Bias 

1) Hypothesis 1 

Our first hypothesis states that the Learning group will improve the accuracy of their estimates more than the 

Control group, which will be indicated by the median MRE of the estimates being lower for Tasks 2 to 5 (the tasks 

following the first lessons learned session). Table 4 and Figure 2 show that this was hardly the case. The median 

MRE of the Learning and the Control group across Tasks 2 to 5 are about the same (0,50 vs 0,49). A Kruskal-

Wallis test on difference in median MRE of the two groups for Tasks 2 to 5 gives p=0,88.  

Table 4 and Figure 2 also show that the MRE decreases over time for both groups. In the absence of a proper 

control group, as is the case in typical field settings and poorly designed experiments, the observed improvement in 

MRE may falsely have been credited to the lessons-learned sessions. This supports our emphasis on introducing 

proper control groups in effect studies of this type. Notice also that a control group, as we use it here, enables much 

stronger cause-effect analyses than the introduction of a so-called baseline typically recommended for field studies, 

see for example [7]. While baseline data are typically collected before the process change take place, our control 

group assumes a random allocation of process change and the parallel use of old and new processes. This means 

that any improvement that is measured in comparison to the baseline data must be able to isolate the effect of the 

process change from all other changes that took place in the relevant period. In our experience, this is a very 

difficult analysis. 

As can be seen in Figure 2 the variation of MRE is not systematically lower in the Learning group. This result 

differs from the findings reported in [9], where the use of the Personal Software Process on students did lead to 

lower variance in estimation error (although not lower mean estimation error). This difference in results from those 

reported in [9] may have been caused by the use of formal effort estimation models when applying the Personal 

Software Process, as opposed to the use of judgment-based effort estimation processes that was the case in our 

study. As pointed out in our review comparing models and expert judgment (see [5]), estimation models sometimes 

reduce the number of very large estimation errors and consequently the variance in estimation error. An increased 

level of consistency is also expected from the use of formal estimation models. 
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Table 4: MRE (Tasks 2-5) 

Task Group Lower 

Quartile 

Median Upper 

Quartile 

Control 0,4 0,6 1,9 2 

Learning 0,3 0,7 1,2 

Control 0,3 0,6 0,6 3 

Learning 0,3 0,5 0,7 

Control 0,06 0,2 0,3 4 

Learning 0,2 0,4 0,8 

Control 0,08 0,3 0,6 5 

Learning 0,2 0,3 0,5 

 

Figure 2: Boxplot of MRE (All Tasks Included) 
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2) Hypothesis 2 

Our second hypothesis states that the Learning group’s estimates would be less biased, which would be indicated 

by the RE of the estimates provided by those in the Learning group being closer to zero than those in the Control 

group for Tasks 2 to 5. Table 5 and Figure 3 show that this was not the case. The median RE of the Learning and 

the Control group turned out to be almost the same (-0,01 vs 0,00), which shows that the median effort estimate was 

unbiased in both groups. Unbiased effort estimates are not untypical when the tasks to be performed are small and 
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payment is made on a per work-hour basis [6], as was the case in our study. A Kruskal-Wallis test on difference in 

median RE of the two groups for Tasks 2 to 5 gives p=1,0. 

Notice the zigzag pattern of the RE in Figure 3. This pattern suggests that over-optimism on one task (e.g., Tasks 

1) is easily followed by over-pessimism on the next task (e.g., Tasks 2). If this suggestion is correct, it may be that 

there is a tendency to over-react to the experience of the task immediately before the one to be estimated. 

 

Table 5: RE (Tasks 2-5) 

Task Group Lower 

Quartile 

Median Upper 

Quartile 

Control -1,9 -0,6 -0,3 2 

Learning -1,2 -0,7 -0,4 

Control 0,3 0,6 0,6 3 

Learning 0,3 0,5 0,7 

Control -0,08 0,08 0,3 4 

Learning -0,5 0,04 0,5 

Control 0,05 0,3 0,6 5 

Learning 0,1 0,3 0,5 

 

Figure 3: Boxplot of RE (All Tasks Included) 
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C. Uncertainty Assessment 

1) Hypothesis 3 

Our third hypothesis states that the Learning group would improve the realism in their uncertainty assessment, 

which would be indicated by the OverConfidence of those in the Learning group being closer to zero than that of 

the Control group. We considered the number of observations to be too low for meaningful use of the 

OverConfidence measure on individual tasks; see the discussion in Section II.C. That being so, the values presented 

are based on the distribution of OverConfidence of the developers on the combined set of Tasks 2 to 5. 

Table 6 and Figure 4 illustrate that the Learning group did not make more realistic uncertainty assessments than 

the Control group. Both groups were strongly over-confident. A Kruskal-Wallis test of difference in median 

OverConfidence values for IE-1, IE-2 and IE-3 gives the p-values 0,6, 0,1 and 0,9, respectively. In other words, the 

only difference in over-confidence between the groups with a low p-value, i.e., IE-2, is in favour of the Control 

group. If anything, the lessons-learned sessions seem to have resulted in an increase, rather than reduction, in the 

level of the participants’ over-confidence in the accuracy of their estimates. 

 

Table 6: Over-confidence (Tasks 2 to 5) 

Variable Group Mean Lower 

Quartile 

Median Upper 

Quartile 

Control 0,4 0,12 0,5 0,7 OverConfidence EI-1 

Learning 0,4 0,14 0,4 0,6 

Control 0,3 0,08 0,2 0,6 OverConfidence EI-2 

Learning 0,4 0,3 0,4 0,6 

Control 0,3 0,2 0,2 0,5 OverConfidence EI-3 

Learning 0,3 0,08 0,2 0,5 
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Figure 4: Boxplots of OverConfidence (Tasks 2 to 5)  
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2) Hypothesis 4 

Our fourth hypothesis states that the Learning group would be better able to separate low and high uncertainty 

estimates than the Control group. We measure this ability through the Spearman rank order correlation for each 

developer and each type of minimum-maximum interval, i.e., three correlations per developer. The first relative 

uncertainty evaluation is on Task 2, where the confidence in the accuracy of Task 2 is compared with the 

confidence in the accuracy of Task 1. Given that the first relative uncertainty assessment is on Task 2, but involves 

Task 1, we include all five tasks in the correlation analysis. The presented median correlation of each group’s 

minimum-maximum interval, e.g., the EI-1 interval, is consequently based on 10 individual correlation coefficients. 

Descriptive statistics for the rank order correlations are displayed in Table 7. We ranked the MRE and confidence 

values so that the highest values get the highest ranks. This means, as described earlier, that we should expect strong 

negative correlations if the developers are good at separating high and low uncertainty tasks, i.e., when a high 

confidence in the accuracy of an estimate correlates with a low estimation error (MRE). A perfect correlation 

between confidence and estimation error gives the value -1. 
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Table 7: Rank Order Correlation between Confidence and MRE 

Correlation between 

MRE and … 

Group Mean Lower 

Quartile 

Median Upper 

Quartile 

Control -0,3 -0,7 -0,3 -0,1 … confidence in EI-1 

Learning 0,12 -0,3 0,4 0,5 

Control 0,2 -0,3 0,3 0,7 … confidence in EI-2 

Learning -0,04 -0,3 0,09 0,3 

Control 0,09 -0,4 -0,05 0,7 … confidence in EI-3 

Learning 0,16 -0,3 0,18 0,7 
 

An analysis of the median values suggests that the Learning group are somewhat worse than the Control group 

for EI-1 and EI-3, but better for EI-2. However, the general conclusion is that the software professionals, regardless 

of group, are in general not very good at separating high and low uncertainty effort estimates. If anything, the 

Control group participants were slightly better. This lack of ability to separate high and low uncertainty effort 

estimates is not only a result of low ability, but also a result of the similarity of the tasks. If we had introduced less 

homogenous tasks, it is likely that the ability to separate high and low uncertainty tasks would improve 

substantially; see, for example, [3]. 

IV. DISCUSSION 

Our results show that the introduced lessons-learned session did not improve the learning in comparison with on-

the-job learning. While our study may be the first on lessons-learned-based improvement of judgment-based effort 

estimation and uncertainty assessment, there are several other studies that report a similar lack of positive effects 

from lessons-learned sessions in other software project contexts, e.g., [24-26], and other project domain contexts, 

e.g., [27]. Shortcomings of software professionals’ analyses of reasons for errors of estimation, such as the tendency 

to neglect indirect and contributing reasons and the tendency towards a biased attribution of causes (such as the 

tendency to claim that success factors are controlled by oneself, while failures are due to external events [28]), may 

contribute to this lack of learning from lessons learned sessions.  

Our results and those of previous studies on the use of lessons-learned sessions should, of course, not be used to 

claim that lessons learned sessions will never result in improved estimation accuracy or more realistic assessment of 

uncertainty. There are many ways of designing lessons-learned sessions. It may well be that imposing other 

structures, other types of feedback, better training in advance of the lessons-learned sessions, or other measures, will 

yield different results. To understand how to improve lessons-learned sessions and other learning processes, it may 

be useful to look at possible reasons for the observed lack of improved learning from the lessons-learned session in 

our study. After all, to give up on learning from previous experience of estimation is not an attractive option. 

To structure this discussion, we will analyse the following three types of possible reasons for the observed lack of 

improved learning: 

• Limitation of the chosen study design. (Section IV.A) 
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• Limitations of the lessons learned process studied. (Section IV.B) 

• Observed problems related to learning from experience of the estimation of software development effort and 

the assessment of uncertainty. (Section IV.C) 

We will apply the qualitative data that we collected as part of our study to support this analysis. We collected this 

data (see description in Section II) immediately after each estimate (where all the software professionals described 

their estimation processes) and as part of the lessons-learned sessions (where the software professionals in the 

Learning group summarized their reasons for estimation errors and what they had learned). In addition, we will 

describe and apply the results from a follow-up experiment. In this experiment, other software professionals were 

asked to assess the uncertainty of the estimates provided in the main study. The purpose of the experiment was to 

examine whether there is a difference in realism between assessing the accuracy of one’s own and estimates and 

those of others, which would enable us to determine whether some of the observed problems with learning were due 

to the learning from one’s own estimation performance as opposed to that of others. 

A. Limitations of the Study Design 

We assess that the major limitations of our study design are as follows: 

• Individual learning: The software developers worked and learned individually, not as part of a development 

team. For example, two of the developers remarked in the debriefing session that in an ordinary work context 

they would have asked for some support by a colleague on at least one of the problems. Instead, they had to 

spend time to figure out the problem by themselves. This means that our results may mainly be representative 

for individual learning and working, not so much for team learning. However, as argued earlier in this paper, 

individual learning is an essential component of group learning and consequently of relevance, too.  

• Pseudo-realistic context: The software professionals were paid close to their ordinary fees, instructed to behave 

as close to normal as possible, and did not know that several others were completing the same tasks. However, 

the extensive logging (data about themselves, estimation strategy used, detailed time logging, etc.), the lessons-

learned sessions (for the Learning group), and the fact that we as researchers were the clients meant that the 

situation was hardly perceived to be the same as in ordinary software development work. The software 

professionals expressed different opinions about the effect of the unusual process elements in the debriefing 

session. Our main impression from observing the work and analysing the debriefing interviews is that, in spite 

of the unusual process elements, the estimation and programming work had the same challenges as ordinary 

programming work and hence that the differences from ordinary work situations had only small, if any, effects 

on the learning processes. 

• Representativeness: The high cost of hiring software professionals placed restrictions on the number of tasks 

that we could assign and the number of subjects that we could use. This means that we should be careful when 

extrapolating the results to tasks and situations that are different from those we have studied. 

Notice that many of the unusual process elements of the study may have led to a stronger focus on learning than 

in typical field situations. Thus, we find it difficult to see how individual, lessons-learned session-based learning 

would lead to improvements in typical field situations similar to the one we studied if it did not succeed here. Of 
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course, this belief assumes that the software professionals were motivated to learn. We find that this assumption is 

likely to be true, judging from our observation of their behaviour and the documents that were produced in the 

lessons-learned sessions. As an illustration, the software professionals wrote, on average, about 1,000 words each 

when describing lessons learned (about 200 words per lessons-learned session). The amount of lessons-learned 

work was impressive. It was also of good quality (more on this in the next section). Consequently, despite the 

limitations of the study, we interpret the findings of the study as describing a situation in which those in the 

Learning group really tried to use the learning sessions to learn, but nevertheless did not improve effort estimation 

accuracy more than the Control group, and were just as overconfident in the accuracy of their effort estimates. 

B. Limitations of the Learning Process 

To examine what actually took place in the lessons-learned session we examined the provided: 

• Reasons for good/poor estimation performance and uncertainty assessment. (IV.B.1) 

• Lessons learned relevant for estimation and uncertainty assessment and how the lessons learned may affect the 

estimation and uncertainty assessment of future tasks (IV.B.2) 

1) Reasons for Accuracy/Inaccurate Estimates and Realistic/Unrealistic Uncertainty Assessments 

The reasons described by the developers were as expected from previous studies on this topic; see [28] for an 

overview of typically provided reasons. The most common responses related to reasons for inaccurate estimates in 

the current study were: 

• Spent too little time on effort estimation and uncertainty assessment work 

• Too little knowledge about the problem or the technology 

• Unexpected events or problems 

• Forgotten/strongly underestimated activities (such as documentation) 

• Fewer and less severe problems than expected (led to over-estimation) 

• More complex task than expected 

• Task specification unclear or misunderstood the specification 

• Error corrections needed 

• Poor impact analysis of consequences of code changes 

• Design errors made 

• Incorrect assumptions about the code 

 

Typical responses related to reasons for accurate estimates were: 

• Good impact analysis of consequences of code changes 

• Task similar to the one previously completed (on the same system) 

• Good understanding 

• Luck 
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• Simple task and no problems 

When we asked for reasons for realistic/unrealistic uncertainty assessments, we expected to be provided with 

reasons that were directly related to the uncertainty, such as insufficient risk analysis and lack of learning from the 

actual uncertainty of the previous effort estimates. Instead of these types of reason, the reasons for 

realistic/unrealistic uncertainty assessments provided by the developers were, almost without exception, related to 

the accuracy/inaccuracy of the effort estimate. This suggests that they believed that the dominant means to improve 

the realism of the uncertainty assessment was to improve estimation accuracy. The alternative, which would have 

been to change their level of confidence in the effort estimates, was hardly considered. An analysis of the 

confidence levels supports this suggestion. The analysis indicated that the software professionals changed their 

levels of confidence only a little in response to feedback about the accuracy of their previous estimate. 

2) Lessons Learned 

The main estimation accuracy related lessons learned provided by those in the Learning group were the 

following: 

• Spend more time on estimation work (including a more detailed impact analysis). 

• Add more time for unknown events. 

• Add more time for debugging, testing and error correction. 

• Add more time for documentation. 

• Assess more carefully the ripple effects of a change. 

• Add more time when the task involves changes many different places in the code (“distributed” task) 

• Read the requirement specification and system documentation more carefully and check the assumptions made. 

• Pay special attention to the parts where the knowledge and experience is low. 

• Trust one’s instincts more. 

• Expect unexpected problems. 

• Control the use of effort better (do not do more than that which is required by the task specification). 

 

All these lessons learned were reasonable and have the potential to improve estimation accuracy. In that sense, 

our lessons-learned session process was a success in relation to the estimation of the most likely effort. The same 

cannot be said in relation to the lessons learned regarding the assessment of uncertainty. In spite of a direct 

instruction to summarize the lessons learned that were related to uncertainty assessment, we found, as noted in 

Section IV.B.1, no lessons learned that could be interpreted as practical changes in the process of assessing 

uncertainty. 

We find it especially strange that the software professionals did not update their levels of confidence in response 

to feedback strongly suggesting over-confidence. Consider the following example. One software developer had 

assessed the probability of including the actual effort in the minimum-maximum interval IE-1 ([90% of estimate; 

110% of estimate] to be about 50% of all the first three tasks. The developer then received feedback that told him 
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that none of the IE-1 intervals had included the actual effort. A proper lesson learned would then be for him to 

admit that he had a tendency toward overconfidence and that he had to be less confident that he would include the 

actual effort in IE-1 of future estimates. Instead, we observed that he typically responded with no or only a minor 

small adjustment and a strong emphasis on what he needed to do to achieve more accurate effort estimates. We 

discuss possible reasons for this unwillingness to update confidence levels in spite of accurate, relevant, and timely 

data on estimation error in [29, 30]. Possible reasons include: i) the software professionals do not have proper, 

probabilistic mental models to enable proper learning and, ii) there is a conflict between the developers’ self-images 

of being predictable and skilled developers and providing realistic uncertainty assessments that suggest the opposite 

(the so-called “cognitive dissonance” effect.) We discuss these two reasons in more detail in Section IV.C. 

Given the intuitively meaningful lessons learned that were provided by the developers in relation to the 

estimation of most likely effort, why did the accuracy of their estimates not improve more than that of the estimates 

of those in the Control group? Possible reasons for this include: (i) the software developers did not translate the 

lessons learned into practical actions, (ii) the Control group developers made similar progress in learning without 

the lessons-learned session, or (iii) there were negative consequences of the lessons learned that cancelled out the 

positive ones. 

It is not easy to assess the importance of these possible reasons in isolation. The estimation strategy descriptions 

provided by the software professionals did not contain as much valuable information about the practical use of the 

lessons learned in the estimation work as we had hoped for.  Nevertheless, it was clear that at least a few of the 

software professionals actually applied the lessons learned. As an illustration, when a developer stated that he 

needed to spend more time on the effort estimation work, we observed that he typically did so. 

We counted the number of references to previous experience in the software professionals’ description of the 

processes that they used for estimating and assessing uncertainty (Step 6 in the experiment process) and found no 

large differences in the number and/or types of references. This similarity in the amount of use of experience, 

together with the observed similarity in the improvement in the estimates of the Control and the Learning group, do 

provide some support for reason (ii) above. Those in the Control group seemed to learn quite a lot from experience 

without spending time on lessons-learned sessions. 

We also found some evidence in support of reason (iii), namely that the software professionals in the Learning 

group may have over-reacted more strongly to the experience of the previous task. While the median absolute 

difference in RE between two tasks for those in the Control group was 0,6, the corresponding value of those in the 

Learning group was 0,8. A high difference in median RE is, for example, a result of going from strong under-

estimation to a strong over-estimation of effort. This observation provides (weak) support of that lessons learned 

may lead, not only to positive effects, but also to stronger over-reactions to previous experience. More studies are 

needed to examine whether, and if so the extent to which, this is a typical effect of lessons-learned sessions or an 

effect that is caused by the particular context in our study. As reported in Section I, however, our study is not the 

only one to observe possible negative effects of lessons-learned sessions. 
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C. Learning Problems 

Learning from experience is documented to be difficult, both in software development [31] and other contexts. 

Hammond [32, p. 278] summarizes the situation: “Yet in nearly every study of experts carried out within the 

judgment and decision-making approach, experience has been shown to be unrelated to the empirical accuracy of 

expert judgments”.  

Reason for the learning problems includes the following: 

• The “hindsight bias”, e.g., the tendency to interpret a cause-effect relationship as more obvious after it has 

happened than before [33, 34]. 

• The tendency to confirm rules and disregard conflicting evidence, as illustrated in studies on human judgment 

[35, 36]. 

• The tendency to apply a “deterministic” instead of a “probabilistic” learning model. This ability to think in 

probability-based terms can, according to [37] hardly be derived from experience alone, but must be taught. 

Hammond [32] suggests that the ability to understand relationships in terms of probabilities instead of purely 

deterministic connections is important for correct learning in situations in which the level of uncertainty is high. 

When assessing the uncertainty of effort estimates, probabilistic thinking and learning models are essential. The 

observed problems with proper learning from feedback on uncertainty assessment in our study may be caused 

by a lack of training in the use of proper probabilistic learning models. 

• The high amount of complexly interconnected reasons for high or low estimation accuracy. In practice, we may 

need to include both system dynamics and game theory to understand the network of reasons for high or low 

estimation accuracy. 

In many situations in which human judgment is used that have high uncertainty and unstable task relations, there 

are indications that even feedback of high quality, e.g., high-quality task-relation-oriented feedback, is not sufficient 

for learning [20, 38]. The underlying reason is that it is frequently difficult to transfer experience from one context 

to another. For this reason, it is important to recognize when there is nothing to learn from experience, as reported in 

the software estimation studies [31, 39]. 

On the basis of our previous experience, reported in [40], we believed that one essential reason for the sustained 

strong tendency towards overconfident uncertainty assessments could be related to the difference between assessing 

the uncertainty of one’s own and others’ effort estimates. When assessing one’s own estimate of one’s own work 

there may for example be, as pointed out earlier, learning problems related to the cognitive dissonance effect. This 

effect is, for example, present when the software professional tries to avoid a conflict between his image of himself 

as a skilled and predictable developer and historical data that suggests that the opposite is the case. A possible way 

to avoid this conflict is, for each new task, to assume either that one has learned much from previous experience or 

that the feedback about previous performance was, in some way, not relevant for the future. To test whether the 

problem of uncertainty assessment learning was related to this effect, we conducted a follow-up experiment at a 

seminar on effort estimation with software professionals as participants. If the assessment of other software 

professionals estimates, applying the same feedback and information, improves the learning, this may be used to 
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improve the lessons-learned sessions. Alternatively, if the learning problems remain, this supports the belief that the 

lack of proper probabilistic learning models is the main obstacle to uncertainty assessment learning, and, that better 

training in probability and statistics are needed. 

1) The Follow-Up Experiment 

Participants: Eighty-three software professionals who attended an estimation seminar at Simula Research 

Laboratory. These software professionals were similar to those in the main experiment with respect to 

length of experience and background. 

Hypothesis: Assessment of the uncertainty of other developers’ effort estimates based on feedback about the 

estimation error of previous estimates will be more realistic than the assessment of the uncertainty of effort 

estimates of one’s own work. (The realism of the uncertainty assessment will, as before, be indicated by 

the OverConfidence measure. The hypothesis implies that the participants in the follow-up experiment 

achieve an OverConfidence closer to zero than that of those in the main experiment.) 

Process: Each of the 83 software professionals: 

1. Was randomly allocated to the estimates and feedback related to one of the 20 developers who participated 

in the main experiment. 

2. Read the description of what he was supposed to do, i.e., that he was to evaluate the uncertainty of effort 

estimates produced by a software developer on real software maintenance tasks. 

3. Read the description of the BESTweb-system. (A short version of the description given to the developers 

in the main experiment). 

4. Read the instruction on how to assess the uncertainty of the effort estimates. This instruction was the same 

as the one in the main experiment. 

5. Received a database with information about the estimation and uncertainty assessment of Tasks 1-3 as 

completed by the allocated developer in the main experiment. This database contained the task 

descriptions, the estimates of most likely effort, the actual use of effort values, and the estimation errors of 

all the three tasks. 

6. Received a description of Task 4 and the allocated developer’s effort estimate of that task. 

7. Assessed the probability that the actual effort of the allocated developer would fall within IE-1 

([90%;110%] of the estimate), IE-2 ([60%;150%] of the estimate), and IE-3 ([50%;200%] of the estimate) 

for Task 4. 

8. Received the allocated developer’s actual use of effort of Task 4. 

9. Received an updated version of the database, now including information about the first four tasks. 

10. Received a description of Task 5 and the allocated developer’s effort estimate of that task.  

11. Assessed the probability that the actual effort would fall within IE-1 ([90%;110%] of the estimate), IE-2 

([60%;150%] of the estimate), and IE-3 ([50%;200%] of the estimate) for Task 5. 
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Table 8 compares the mean OverConfidence of the developers’ assessment of the uncertainty of others (data from 

the follow-up experiment) and their own (data from the main experiment) estimates. As can be seen in Table 8, the 

uncertainty assessments of other developers’ effort estimates, when supported by the same feedback of previous 

performance, are much more realistic (OverConfidence closer to zero) and less biased (both negative and positive 

OverConfidence values). While the uncertainty assessments in the main experiment, which were based on the 

developers’ assessment of the accuracy of their own estimates, were strongly biased towards overconfidence, the 

assessments in the follow-up experiment, which were based on other developers’ estimates, were more realistic and 

even tended towards underconfidence for one of the tasks (Task 4). 

 

Table 8: Mean OverConfidence of Others (Follow-up Experiment Data) vs Own (Main Experiment Data) 

Estimates 

Task Assessmen

t Type 

IE-1 IE-2 IE-3 

Others  -0,14 -0,21 -0,10 4 

Own  0,79 0,25 0,15 

Others 0,71 0,39 0,09 5 

Own 1,75 0,98 0,28 

 

Figure 5 displays the distributions of confidence levels together with the Hit rate of both Tasks 4 and 5 and all 

three uncertainty intervals. As before, the closer the confidence level to the Hit rate, the more realistic are the 

confidence levels. Figure 5 suggests that not only does the realism increase, but the variance decreases, as well. 
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Figure 5: Boxplot of IE-1, IE-2 and IE-3 Confidence Levels and Hit Rates of Tasks 4 and 5 
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The results from the follow-up experiment suggest that the uncertainty assessment learning problems observed in 

the main experiment is not so much related to lack of proper probabilistic mental models, but more to psychological 

biases related to evaluation of own estimation accuracy performance.  

V. CONCLUSIONS 

Lessons-learned-based processes, such as post-mortem analyses and project reviews, are frequently suggested for 

the purposes of improving processes [14, 41, 42]. Our results suggest that the type of individual lessons-learned 

processes examined in this study may have no, or even a negative, effect on the accuracy of estimates and the 

realism of assessments of the uncertainty of effort estimates in comparison with on-the-job learning due to, for 

example, learning biases related to the assessment of own estimation performance. Without better lessons-learned 

processes, there may be a substantial risk of wasting a lot of resources with no, or even a negative, effect in 

comparison with pure on-the-job-learning. We recommend that there be a shift from the current tendency to propose 

lessons-learned processes that assume that it is sufficient to ask of the type “what can you learn from this” towards 

evidence-based learning processes that take into account, for example, the learning biases related to interpretation of 

own estimation performance. 
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