
University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 1 

GENSIM 2.0: A Customizable Process Simulation 
Model for Software Process Evaluation 

 
Keyvan Khosrovian1, Dietmar Pfahl1, 2, 3, Vahid Garousi1 

1Schulich School of Engineering, University of Calgary, Canada 
2Simula Research Laboratory, Lysaker, Norway, 

3Department of Informatics, University of Oslo, Norway 
{kkhosrov, dpfahl, vgarousi}@ucalgary.ca 

 

 

Abstract Software process analysis and improvement relies heavily on empirical research. Empirical research 
requires measurement, experimentation, and modeling. However, whatever evidence is gained via empirical 
research is strongly context dependent. Thus, it is hard to combine results and capitalize upon them in order to 
improve software development processes in evolving development environments. The process simulation model 
GENSIM 2.0 addresses the challenge mentioned above. Compared to existing process simulation models in the 
literature, the novelty of GENSIM 2.0 is twofold: (1) Model structure is customizable to organization-specific 
processes. This is achieved by using a limited set of generic structures (macro-patterns). (2) Model parameters can be 
easily calibrated to available empirical data and ex-pert knowledge. This is achieved by making the internal model 
structures explicit and by providing guidance on how to calibrate model parameters. This technical report explains 
the overall structure of GENSIM 2.0, its internal mechanisms, and its parameters. 

 

Keywords Software process simulation, System dynamics, Customizable process simulation model 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 2 

TABLE OF CONTENTS 
 

1 INTRODUCTION ................................................................................................................................3 
2 BACKGROUND.................................................................................................................................5 

2.1 Constructs of SD models ...................................................................................................................... 5 
3 RELATED WORK..............................................................................................................................6 
4 OVERVIEW OF GENSIM 2.0.............................................................................................................9 

4.1 Generic Process Structures (Macro-Patterns)....................................................................................... 9 
4.2 The V-Model Development process .................................................................................................... 11 

5 GENSIM 2.0 IMPLEMENTATION .....................................................................................................14 
5.1 Model Parameters............................................................................................................................... 14 
5.2 Views .................................................................................................................................................. 17 

5.2.1 Development/Verification Views ........................................................................................................................ 17 
5.2.2 Validation Views (Key Assumption/levels/rates/variables) ................................................................................ 23 

5.3 Subscripts ........................................................................................................................................... 26 
5.4 Workforce Allocation Algorithm ........................................................................................................... 28 

6 CONCLUSION AND FUTURE WORK ...................................................................................................29 
REFERENCES ...................................................................................................................................29 
APPENDIX A- GENSIM 2.0 EQUATIONS ............................................................................................32 
APPENDIX B- SOURCE CODE OF THE GENSIM 2.0 WORKFORCE ALLOCATION FUNCTION.................136 
APPENDIX C- LIST OF ACRONYMS...................................................................................................136 
 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 3 

1 INTRODUCTION 
 
Software industry has always been confronted with problems of overdue deadlines and cost overruns as 
well as with poor product quality delivered by software development organizations. Meanwhile, 
increasing demand for 'better, faster, cheaper' along with increasing complexity of software systems have 
urged software developers to bring discipline to the development of software systems and to improve its 
performance [1]. Two major factors affect software project performance [2]. Firstly there are technological 
issues, e.g., languages, tools, hardware, etc. Despite of the considerable improvements achieved in these 
areas, it has been seen that the extent to which these factors could impact project performance is limited. 
Secondly there are the managerial issues, e.g., planning, resource allocations, workforce training, etc that 
have a significant impact on project performance. However, advances in these areas are made with more 
difficulty due to the complex human-based nature of software development environments.  

Empirical research is essential for developing theories of software development, transforming the art of 
software development into an engineering discipline and hence improving overall performance of 
software development activities. Engineering disciplines on the other hand, require provision of evidence 
on the efficiency and effectiveness of tools and techniques in varying application contexts. In the software 
engineering domain, the number of tools and techniques is constantly growing, and ever more contexts 
emerge in which a tool or technique might be applied. The application context of a tool or technique is 
defined, firstly, by organizational aspects such as process organization, resource allocation, developer 
team size and skill sets, management policies, etc., and, secondly, by the set of all other tools and 
techniques applied in a development project.  

Since most activities in software development are strongly human-based, the actual efficiency and 
effectiveness of a tool or technique can only be determined through real-world experiments. Controlled 
experiments are a means for assessing local efficiency and effectiveness of tools or techniques. Local 
efficiency and effectiveness of a tool or technique refers to the efficiency and effectiveness of the tool or 
technique when applied in isolation without considering its application context, for example, the typical 
defect detection effectiveness of an inspection or test technique applied to a specific type of development 
artifact, by a typical class of developers (with adequate training and experience levels) regardless of the 
other techniques and entities involved in a development process. Global efficiency and effectiveness of a 
tool or technique on the other hand, relates to its impact on the overall development project performance, 
i.e., total project duration, total project effort consumption (or cost), and quality of the end product 
delivered to the customers while considering all other entities involved in the development process and 
their mutual influences . Typically, global efficiency and effectiveness are evaluated through case studies.  

Controlled experiments and case studies are expensive in terms of effort and time consumption. 
Therefore it is not possible to experiment with all alternatives in real projects. Nevertheless, support for 
deciding which experiments and case studies are more worthwhile to spend effort and time on would be 
helpful. Currently, these decisions are made purely expert-based, mostly relying on experience and 
intuition. This way of decision-making has two drawbacks. Firstly, due to the multitude of mutual 
influences between entities involved in a process, it is hard to estimate for an expert to what extent a 
locally efficient and effective tool or technique positively complements another locally efficient and 
effective tool or technique applied in another activity of the chosen development process. Secondly, for 
the same reasons as in point one, it is hard to estimate for an expert how sensitive overall project 
performance (total duration, total effort consumption, end product quality) will react to variations in local 
efficiency or effectiveness of a single tool or technique. The second point is particularly important if a 
decision has to be made whether hypothetical improvements are worthwhile to be empirically 
investigated within various contexts.  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 4 

In order to assist decision makers in situations described above and help minimize the drawbacks of the 
current decision making approaches, one can provide experts with a software process simulation system 
that generates estimates of the impact of local process changes on overall project performance. For 
example, if derived from case studies or laboratory experiments with the tool or technique, or from what 
the vendors of the tool claim, the defect detection effectiveness of unit testing technique A is assumed to 
be locally 10% better than that of unit testing technique B in a given context, through simulation we may 
find out that using technique B instead of technique B yields an overall positive impact of 2% on end 
product quality (plus effects on project duration and effort) or we may find out the change yields an 
overall positive impact of 20%. If simulations indicate that it has only 2% overall impact or less, it might 
not be worthwhile to run additional experiments to explore the actual advantage of technique A over 
technique B (in a specific context).  

With the help of the simulation models, even more complex situations could be investigated as well. For 
example, one could assess the overall effectiveness and efficiency of different combinations of 
development, verification, and validation techniques. As an example, it is trivial that carrying out the best 
development activities and all the possible verification and validation techniques using highly skilled 
developers will result in good quality of the final product, but in a specific development context with 
specific resource constraints and deadlines, that may not be possible and the management would have to 
leave out some activities or invest on more critical activities more than others. In such a situation, the 
simulation model could be used to generate estimates of all project performance dimensions for all 
possible combinations of available development, verification and validation activities and help the 
management to gain a better understanding of the 'big picture' of the development project.  

Another example of the complex situations where the model could be helpful is a situation where 
management wants to investigate how much workforce should be allocated to development, verification 
and validation activities in order to achieve predefined performance goals, i.e., time, cost and quality 
goals. Obviously, in general, hiring a large workforce dedicated to carrying out any of the activities 
within the development process will result in better project performance regarding time, but in a specific 
context, the management might not be able to do so due to specific budget and resource constraints. In 
such a situation, the simulation model could help the management in assessing different options of 
allocating workforce in order to stay within the time limits while not running out of available resources. 
More specifically, the simulation model enables management to get a better understanding of the overall 
development process with regards to different activities that are under process at different points in time, 
and how workforce with skills in carrying out multiple activities could be used to meet the deadline 
while not running out of resources. 

One can even go one step further and use process simulators to analyze how more highly skilled 
developers improve different project performance dimensions. It is obvious that allocating workforce 
with high levels of experience with the tools and techniques that are used within the development context 
or investing in training the available workforce will generally result in better project performance, but 
again, because of specific constraints, management might not always be able to do so. In a situation like 
this, a process simulator could be used to analyze the impact of skill level of different groups of 
workforce on the overall project performance by taking into account all specifics of the entire 
development project and assess whether and to what extent investments to increase workforce skills 
actually pay off.  

A well-known issue related to process simulators is the question of their high development and 
maintenance costs. This report offers a solution to this issue. A core element of the proposed solution is 
the simulation framework GENSIM 2.0 (GENeric SIMulator, Version 2.0), which is a substantially 
enhanced version of an older research prototype (GENSIM [3]). Inspired by the idea of frameworks in 
software engineering, GENSIM 2.0 consists of a small set of generic reusable components which can be 
ideally put together to model a wide range of different software development processes.  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 5 

These components capture key attributes of different building blocks of different development processes. 
More specifically, they capture product/process structure, quality and resource specific attributes of 
these building blocks. Generally, product/process structure attributes relate mostly to the time 
dimension, quality attributes relate mostly to the quality dimension and resource attributes relate mostly 
to the effort dimension of project performance. However what makes the model results interesting and 
hard to precisely predict are the numerous complex relationships and influences between each pair of 
these groups of attributes. GENSIM 2.0 currently assembles reusable building blocks, denominated 
macro-patterns and simulates an instance of the well-known V-Model software development process, 
consisting of three development phases (requirements specification, design and code) each comprising an 
artifact development activity and related verification activity (inspection) carried out on the developed 
artifact, and three validation (testing) activities, consisting of unit, integration and system test. 

This technical report is structured as follows: Sections 1 and 2 motivate the research conducted and 
provide related background information about the System Dynamics (SD) simulation modeling 
technique. Section 3 discusses related work and how the research presented in this paper differs from 
existing research. Section 4 presents an overview of the structure of GENSIM 2.0 and its reusable process 
structure components. Section 5 describes details of GENSIM 2.0, more specifically how its reusable and 
easily adaptable model structure reflects generic software process structures, what model parameters are 
used for input, output, and model calibration, and how the model is implemented. Finally, Section 6 
provides conclusions about the current state of research and suggests further steps. 

2 BACKGROUND 
 
System Dynamics (SD) modeling was originally developed at MIT to solve socio-economic and socio-
technical problems [4]. In its essence are the ideas of systems thinking [5]. In systems thinking, socio-
economic or socio-technical systems are represented as feedback structures whose complex behaviors are 
a result of interactions of many (possibly non-linear) feedback loops over time [6]. During the past nearly 
20 years, SD modeling has entered the software domain and has been used to analyze and tackle a wide 
range of issues regarding managerial aspects of software development projects [7], [8], [9], [10], [11]. 
Examples of its application in software engineering are evaluating different process variations, project 
planning, control and improvement. In the next sub sections the process of building SD models and the 
constructs used in SD models are described.  

2.1 CONSTRUCTS OF SD MODELS 
 
The basic constructs used in SD modeling are levels, flows, sources/sinks, auxiliaries, constants and 
information links or connectors. Figure 1 depicts an example of a schematic representation of all these 
elements in a simple SD model implemented with Vensim®, a popular commercial tool used for SD 
modeling. 
 
Level variables, also known as state variables capture the state of the system by representing 
accumulations of entities. In the software engineering domain, level variables are used to represent 
accumulation of entities like software artifacts, defects and workforce. 

Rate variables are always used together with level variables. They represent the flow of entities to or from 
the level variables. Example usages of rate variables in the software engineering domain are artifact 
development, defect generation and allocation of personnel. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 6 

 
Figure 1: Schematic notation of a Rate and Level System 

Equation 1 shows how the value of a level variable is calculated at time tt Δ+ using its value at time t . 
Level variables are in fact integrations of their input rates (inflows to the level) and output rates (outflows 
from the level) over time. 

 

ttRateOutputtRateInputtLevelttLevel
inputsallover outputsallover

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=Δ+ ∑ ∑ )()()()(  

Equation 1: Mathematical representation of a Rate and Level system 

Sources and Sinks represent the system borders. Typically entities leaving the system are sent to sinks, 
e.g., software artifacts delivered to the customer and entities from outside the boundaries of the system 
enter the system from sources, e.g., newly hired personnel. 

Auxiliaries are variables that are used for intermediate calculations, e.g., the portion of a software artifact 
that needs to be reworked due to defects detected during unit test. 

Constants are used to represent factors that determine the modeled system. In other words, they are 
means for calibrating the simulation model to its context. Constants keep their initial value during the 
simulation. The average number of errors that developers commit while developing a kind of software 
artifact is an example of a constant. 

Information Links or connectors represent flow of information. When one variable is connected to 
another, this means that the value of the former has an influence on the value of the latter. For example, 
in Figure 1, the values of the Auxiliary and the Constant are used to calculate the value of the Rate. 

 

3 RELATED WORK 
 
The idea of using software process simulators for predicting project performance or evaluating processes 
is not new. Beginning with pioneers like Abdel-Hamid [7], Bandinelli [12], Gruhn [13], Kellner [14], 
Scacchi [15], and many others1, dozens of process simulation models have been developed for various 
purposes. However, all known models have at least one of the following shortcomings:  
 

                                                           
1 For an overview of software process simulation works done in the past 15 to 20 years refer to [16]. Currently, a 
systematic review is being conducted that will offer a more comprehensive overview of work done in the field of 
software process simulation [17]. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 7 

1. The model is too simplistic or its scope is so limited to actually capture the full complexity of real-
world industrial development processes. 

 
2. The model structure and calibration is not completely published and thus cannot be independently 

adapted and used by others.  
 

3. The model captures a specific real-world development process with sufficient detail but fails to offer 
mechanisms to represent detailed product and resource models. This has typically been an issue for 
models using SD modeling environments.  

 
4. The model structure captures a specific real-world development process (and associated products 

and resources) in sufficient detail, but is not easily adaptable to new application contexts due to lack 
of design for reuse and lack of guidance for re-calibration.  

 
GENSIM [3], a predecessor of GENSIM 2.0, is an example of a model having the first shortcoming 
mentioned above. GENSIM is a software development process simulation model intended to be used for 
purely educational purposes. It models a basic waterfall-like development process with three phases of 
design, implementation and test, and mostly focuses on managerial dimensions related to the 
performance of the overall software development project. Even though GENSIM is a good learning aid to 
familiarize software engineering students with managerial concepts and issues of software development 
projects, it has a simplified and limited scope which makes it unsuitable for more comprehensive analysis 
of development processes in real-world environments where modeling and analyzing technical aspects of 
development as well as individual development phases and multiple project influences are critical. 
 
An example of models with the second shortcoming mentioned above is reported in [18]. The goal of 
building the model described in [18] is to facilitate quantitative assessment of financial benefits when 
applying Independent Verification and Validation (IV&V) techniques in software development projects 
and figuring out the optimal alternatives regarding those benefits. IV&V techniques are verification and 
validation techniques performed by one or more groups that are completely independent from the 
developers of a system and can be applied during all phases of the development. In this research, one 
NASA project using the IEEE 12207 software development process with multiple possible IV&V 
configurations is modeled. The model is then used to answer multiple questions regarding application of 
IV&V activities in software development project. Examples of these questions are: What would be the 
costs and benefits associated with implementing a given IV&V technique on a selected software project? 
How would employment of a particular combination of IV&V techniques affects the development phase 
of the project? Usefulness of the model is demonstrated using three different use cases. However, despite 
providing descriptions and snapshots of the overall structure, the implementation source of the model 
has not been made available to public and therefore it cannot be reused by others. This fact even limits 
the contributions of the published experimental results, because the internal model mechanisms that 
generate the results cannot be evaluated by others. 
 
In [19] Pfahl and Lebsanft report experience with a model having the fourth shortcoming mentioned 
above. The development and application of a process simulator called PSIM (Project SIMulator) was a 
pilot project conducted by Siemens Corporate Research within a Siemens business unit. Its purpose was 
to assess the feasibility of System Dynamics modeling and its benefits in planning, controlling and 
improving software development processes in a real-world environment. It modeled a development 
process comprising the high level design, low level design, implementation, unit test, and system test 
phases. Different available information sources were used to come up with the model structure and to 
calibrate the model parameters. 
 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 8 

While the third shortcoming mentioned above can easily be resolved by fully exploiting the modeling 
constructs offered by commercial process simulation environments such as Extend® [20] and Vensim® 
[21], the fourth issue has not yet been satisfactory resolved, neither by researchers proposing proprietary 
process simulation modeling environments (e.g., Little-Jil [22]) nor by researchers using commercial 
process simulation environments.  
 
A first attempt to define a set of core structures of process simulation models which can be seen as a set of 
basic building blocks of any process simulator was made by Peter Senge in the early 1990s [5]. He 
identified ten “Systems Archetypes”, i.e., generic process structures which embody typical recurring 
behavioral patterns of individuals and organizations. “Limits to growth” is an example of these archetypes 
which he explains as “A reinforcing (amplifying) process is set in motion to produce a desired result. It 
creates a spiral of success but also creates inadvertent secondary effects...which eventually slow down the 
success”. For example growth in sales demand in a certain production organization leads to a growth in 
its production while growth in its production leads to growth in its sales demand as well. This simple 
mutual effect could be considered as a “spiral of success”. However, on the other hand, growth in 
production requires hiring and training new workforce and more material. In this situation, availability 
of new workforce and excessive material time leads are among the factors that  
“slow down the success”. Although these archetypes are certainly a good tool for understanding 
individual and organizational behavior modes, they are too generic and qualitative as to be directly 
applicable for the modeling of software development processes.  
 
More recently, following the approach taken by Senge but having software development processes in 
mind, Raymond Madachy suggested a core set of reusable model structures and behavior patterns [23]. 
His proposed set comprises several very specific micro-patterns (and their implementations) suited for 
System Dynamics process simulation models. The object-oriented framework concept has been used for 
organizing these structures in a class hierarchy with inheritance relationships in which as you move 
down the hierarchy the structures become bigger and more complex. At the root of the hierarchy are the 
Elements which are the smallest individual pieces in a System Dynamics model. Below Elements are the 
Generic flow processes which are small microstructures consisting of only a few Elements. Underneath 
Generic flow processes are the infrastructures that are comprised of several microstructures producing more 
complex behaviors and finally are the flow chains that are infrastructures that include a series of Elements 
that usually form a basic “backbone” of a model portion. These set of reusable structures or “plug and 
play” components can be put together to build System Dynamics models for software development 
processes of varying complexity. 
 
Madachy’s micro-patterns are well-thought reusable process structures, with very specific purpose and 
focused scope. They can be interpreted as a bottom-up approach to support reusability of process 
simulation structure. However, there exist no guidelines that help modelers combine individual micro-
patterns to capture more complex, software development specific process structures.  
 
Emerging from suggestions made several years ago [24], the work presented in this paper complements 
Madachy’s micro-patterns by a top-down approach that provides a set of reusable and adaptable macro-
patterns of software development processes. The suggested macro-patterns are described in more detail 
by giving an implementation example of the research prototype GENSIM 2.0. Besides capturing 
important structural and behavioral aspects of software development processes, GENSIM 2.0 provides a 
blueprint on how to integrate detailed product and resource models. In GENSIM 2.0, each instance of a 
process artifact type and resource type, i.e., roles involved in software development, is modeled 
individually. GENSIM 2.0 is the core element of a long-term research program supporting the integration 
of results from empirical software engineering research conducted worldwide. 
 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 9 

4 OVERVIEW OF GENSIM 2.0 
 
Inspired by the idea of frameworks in software engineering, customizable software process simulation 
models and frameworks can be constructed using generic and reusable structures ([25], [16], [26]) referred 
to as macro-patterns. GENSIM 2.0 is an example of a process simulation model constructed from macro-
patterns. This section describes the macro-patterns of software development processes as employed in 
GENSIM 2.0. The design of the macro-patterns used for constructing GENSIM 2.0 is derived from generic 
process structures that are common in software development. 

4.1 GENERIC PROCESS STRUCTURES (MACRO-PATTERNS) 
 
The left-hand side of Figure 2 illustrates the macro-pattern that GENSIM 2.0 employs for development 
activities (comprising initial development and rework) and its associated verification activities. As shown 
in the figure, it is assumed that software artifacts are verified (e.g., inspected) right after they are 
developed. However, since not in all software development projects all artifacts are verified, this activity 
is optional.  
 

 
Figure 2: Macro-pattern for development/verification activity pairs (with state-transition charts) 

Associated with activities are input/output products and resources. It is assumed that every 
development activity has some input artifacts and cannot be started if those artifacts are not ready. For 
example, the code development activity may not be started without the related design artifacts in place. 
Outputs of the development activities which are software artifacts are then the input for the verification 
activities. Output of the verification activities are defects logs which are fed back to the development 
activities for reworking of the software artifacts.  

In addition, each artifact, activity, and resource is characterized by attributes representing states. Learning 
is an example attribute related to resources such as workforce. For example, the number of times an 
activity has been carried out may be used to determine the learning state. Other states may represent the 
maturity of activities. The right-hand side of Fig. 2 shows state-transition diagrams determining the 
maturity states of development (top) and verification (bottom) activities.  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 10

In the state transition diagram of the development (initial development or rework) activity it can be seen 
that as soon as the target size of the artifact that has to be developed becomes greater than zero, i.e., input 
artifacts of the development activity are ready and development can be started, the development activity 
transitions into the In Progress state. After development of an artifact is finished, if verification has to be 
carried out, the artifact is handed to the verification team and the development activity transitions into 
the Complete state. The same transition happens when rework of artifacts is finished and they are handed 
to validation teams for testing activities. Hence, in the diagram state transitions of the development 
activity is specified using the Total V&V status which represents the state of all V&V (Verification and 
Validation) activities together. After the verification activity is finished the development activity 
transitions into the In Progress state again as the artifact has to be reworked. This transition happens 
similarly in the situation where validation activities are finished and artifacts have to be reworked as a 
result. Whenever the development activity of an artifact is finished and no more verification and 
validation has to be carried out the development activity of the artifact is finalized. 

In the state transition diagram of the verification activity it can be seen that the verification activity 
transitions into the In Progress state as soon as the development activity of an artifact is finished. 
Whenever the verification activity is finished, depending on the number of detected defects, it is either 
finalized or goes into the Complete but to be repeated state. If the number of defects that is detected is below 
a certain threshold, the verification activity is finalized; otherwise it goes into the Complete but to be 
repeated state to indicate that due to great number of detected defects the artifact has to be verified once 
more. However, since this policy, which implies the enforcement of quality thresholds, might not be 
followed in all organizations, it is optional. If thresholds are not used, every verification activity is carried 
out at most once. 

The Left-hand side of figure 3 illustrates the macro-pattern applied for validation phases of the 
development process. In the figure it can be seen that it is assumed that certain artifacts, i.e., software 
code or specification artifacts depending on management policies, are input to any test case development 
activity. The test case development activity cannot begin if these artifacts are not in place. Output of the 
test case development activity is a collection of test cases in the form of a test suite. If test case verification 
activity has to be modeled , the test case development activity can be extended to include both the test 
case development and verification activities using the development/verification macro-pattern explained 
above. The developed test suite along with other necessary artifacts, i.e., software code artifacts is the 
input to the validation activity. The output of the validation activity is a log of all detected defects which 
is fed back to the development activity for rework. Test case development and validation activities, like 
any other activity, use resources.  

The right-hand side of figure 3 shows the state transition diagrams specifying the maturity states of the 
test case development (top) and validation (bottom) activities. It can be seen that the test case 
development activity transitions into the In Progress state whenever software code or specification 
artifacts are available. Determining whether or not test cases can be derived directly from the 
specification artifacts before the code artifacts are ready, i.e., Specification artifact is greater than zero while 
Code to validate is still zero, depends on managerial policies and the nature of the specific testing activity 
itself. Whenever there are no more test cases to develop in order to test the code artifacts the test case 
development activity is finalized. 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 11

 
Figure 3: Test case development/Validation macro-pattern 

The code artifact validation activity transitions into the In Progress state whenever code artifacts that have 
to be validated are available and the required test cases are developed. Whenever all of the code artifacts 
are tested, depending on the number of detected defects, the validation activity is either finalized or 
transitions into the Completed but to be repeated state. If the number of detected defects is lower than a 
certain threshold, the activity is finalized. If it is greater than the threshold, it transitions into the 
Completed but to be repeated state showing that the artifacts have to be re-tested. From the Completed but to 
be repeated state, the validation activity transitions into the In Progress state as soon as reworking of the 
artifacts is finished and they become available for validation. 

4.2 THE V-MODEL DEVELOPMENT PROCESS 
 
For the current implementation of GENSIM 2.0, the macro-patterns shown in Figure 2 and 3 are 
employed to represent an instance of the well-known V-Model software development process shown in 
Figure 4. As described in the development/verification macro-pattern discussed above every 
development activity is immediately followed by a verification activity. In the figure this is shown using 
the loops from the development phases to themselves. In GENSIM 2.0, different software artifacts are 
captured as instances of different software artifacts types. For example, a specific design artifact of a 
subsystem is an instance of the artifact type design artifact. Software artifacts types are associated with one 
of three granularity or refinement levels of software development as follows: 

• System Level includes activities carried out on artifacts representing the whole system. It currently 
consists of the requirements specification development and verification (e.g., requirements 
specification inspection) pair and the system testing activities. 

• Subsystem Level includes activities carried out on artifacts representing individual subsystems. It 
currently consists of design development and verification (e.g., design inspection) pair and the 
integration testing activities. 

• Module Level includes activities carried out on artifacts representing individual modules. It 
currently consists of code development and verification (e.g., code inspection) pair and the unit 
testing activities. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 12

On each level, one or more artifacts are developed, verified, and validated. If a new refinement level is 
required, e.g., design shall be split into high-level design and low-level design, existing views can easily 
be reused to define separate high-level and low-level design levels replacing the current subsystem level.  

Only development activities are mandatory. Depending on the organizational policies, verification and 
validation (V&V) activities might not be performed. Therefore, all V&V activities are made optional. If 
defects are detected during verification or validation, rework has to be done. On code level, rework is 
assumed to be mandatory no matter by which activity defects are found, while rework of design and 
requirements artifacts is optional for defects found by verification and validation activities of subsequent 
phases. 

In order to capture the main dimensions of project performance, i.e., project duration, project effort, and 
product quality, and to explicitly represent the states of activities, the software development process 
shown in Fig. 4 is implemented in separate views, each view representing one of the following four 
dimensions of each development/rework & verification macro-pattern and each validation macro-
pattern:  

1. Product Flow View models the specifics of how software artifacts are processed (developed, 
reworked, verified and validated) and sent back and forth during and between different activities of 
the development project. 

2. Defect Flow View models the specifics of how defects are moved around (generated, propagated, 
detected and corrected) as different software artifact are processed (as modeled in the product flow 
view). In other words, it is a co-flow of the product flow and captures the changes in the quality of 
different software artifacts as they are processed in different activities. 

3. Resource Flow View models the specifics of how different resources (developers, techniques/tools) 
are allocated to different activities of the development project. 

4. State Flow View models the specifics of how the states of different entities as explained in Section 4.1 
change during the development project. 

As mentioned earlier, different software artifacts types are associated with refinement levels of the 
software development process, i.e., system, subsystem, and module. In the implementation of GENSIM 
2.0 the subscripting mechanism provided by Vensim® has been used to model individual software 
artifacts. Therefore if one system consists of several sub-systems, and each sub-system of several 
modules, then each of the individual software artifacts belonging to any of the subsystems or modules is 
identifiable using the subsystem’s or module’s subscript value.  

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 13

Requirements

Design

Code Unit Test

System Test

Integration Test

Real -World ProcessesSimulation Model

View D-P
View D-Q
View D-W
View D-S

View R-P
View R-Q
View R-W
View R-S

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View D-P
View D-Q
View D-W
View D-S

View R-P
View R-Q
View R-W
View R-S

Subscripting

Requirements

Design

Code Unit Test

System Test

Integration Test

Real -World ProcessesSimulation Model

View D-P
View D-Q
View D-W
View D-S

View D -P
View D-Q
View D-W
View D-S

View C-P

View R-P
View R-Q
View R-W
View R-S

View R- P
View R-Q
View R-W
View R-S

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View 1: Product Flow
View 2: Defect Flow
View 3: Resource Flow
View 4: State Flow

View D-P
View D-Q
View D-W
View D-S

View D -P
View D -D
View D -R
View D -S

View R-P
View R-Q
View R-W
View R-S

View R -P
View R -D
View R -R
View R -S

Subscripting

[1 system]

[s sub
systems]

[m modules]
View C-D
View C-R
View C-S

View C-P
View C-D
View C-R
View C-S

 
Figure 4: Application of macro-patterns to simulate the V-Model in GENSIM 2.0 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 14

5 GENSIM 2.0 IMPLEMENTATION 
 
GENSIM 2.0 is implemented using the System Dynamics (SD) simulation modeling tool Vensim®, a 
mature commercial tool widely used by SD modelers. Vensim® offers three features in support of reuse 
and interoperability: views, subscripts, and the capability of working with external Dynamic Linked 
Libraries (DLL). 

The capability of Vensim® to have multiple views is used to capture the main dimensions of project 
performance (i.e. project duration, project effort, and product quality), as well as the states of the software 
development process shown in Fig. 4. Having multiple views adds to the understandability and hence 
reusability of the model, while enabling the modeler to focus on one specific aspect at a time. Views are 
discussed in more detail in Section 5.2. 

The subscripting mechanism provided by Vensim® is used to model individual software artifacts. This 
again adds to the reusability of the model because the model can be easily reused to simulate different 
numbers of individual products in different projects. For example, if the model is used to simulate a 
development project for a software product consisting of five subsystems, the model can be easily reused 
to simulate a project for a software product that has six subsystems by simply changing the Subsystem 
subscript range from five to six. Besides reusability, application of subscripts adds to the level of detail 
that the model can capture since it can capture individual entities. Subscripts and their usage in GENSIM 
2.0 are discussed in more detail in Section 5.3. 

The capability of Vensim® to work with external DLLs is used to extract organization-specific heuristics 
from the SD model and incorporating them into external DLL libraries where they can be modified easily 
without affecting the model structure. An example of such a heuristic is the workforce allocation 
algorithm or policy. The possibility to extract computation intensive heuristics from the process 
simulation adds to the customizability and reusability of GENSIM 2.0, since different organizations 
potentially have different policies to allocate their available workforce to different tasks. A process 
simulation model that hard-wires one specific allocation algorithm has to be modified extensively in 
order to be reused in another organization. These issues are discussed in more detail in Section 5.4. 

5.1 MODEL PARAMETERS 
 
GENSIM 2.0 has a large number of parameters. Input and calibration parameters are typically 
represented by model constants, while output parameters can be any type of variable, i.e., levels, rates or 
auxiliaries.  Generally, since the macro-pattern described in Section 4.1 is employed in modeling all the 
three development phases, a similar set of parameters has been defined in all of them. As an example, in 
the code phase model, the level variable Code to do size is used to represent the amount of code artifact 
that is waiting to be developed. Meanwhile, a level variable called Design to do size is defined in the 
design phase model to specify the amount of a design artifact that is waiting to be developed. The same 
rule applies for the group of parameters used in modeling different validation phases. This mechanism, 
adds to the understandability and hence reusability of the model. 
 
Parameters can represent model inputs and outputs, or they are used to calibrate the model to expert 
knowledge and empirical data specific to an organization, process, technique or tool. Table 1 shows a 
subset of the parameters used in the implementation of the code phase (comprising activities code 
development and verification). Corresponding parameters exist for the requirements specification and 
design related sub-processes. These parameters and the influences between them are discussed in more 
detail in Section 5.2. For a complete description and all details of all the parameters and equations please 
refer to Appendix A.  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 15

Input parameters represent project specific information such as estimated product sizes and developer 
skills, as well as project specific policies that define which verification and validation activities should be 
performed and whether requirements and design artifacts should be reworked if defects are found in 
code by CI (code inspection), UT (unit test), IT (Integration test), or ST (system test) that actually originate 
from design or requirements defects. 

Calibration parameters represent organization specific information that typically is retrieved from 
measurement programs and empirical studies. For a detailed description of how GENSIM 2.0 calibration 
is done, refer to [27]. 

Output parameters represent values that are calculated by the simulation engine based on the dynamic 
cause-effect relationships between input and calibration parameters. Which output values are in the focus 
of interest depends on the simulation goal. Typically, project performance variables such as product 
quality (e.g., in terms of total number of defects or defect density), project duration (e.g., in terms of 
calendar days), end effort (e.g., in terms of person-days) are of interest.  

Besides their usage in the simulation model, i.e., input, calibration and output, the parameters within 
GENSIM 2.0 can also be categorized according to the entity which they represent an attribute of. In 
GENSIM 2.0 it is assumed that different parameters can be an attribute of four different entities namely 
process, product, resource and project. 

Attributes of the process category define the structure of the development process or the specifics of how 
different activities are carried out, e.g., verify code or not. The verify code or not parameter is a boolean 
constant that specifies if the code verification activity is carried out or not which directly affects the 
process structure.  

Attributes of the product category define the specifics of the software product that is being developed 
e.g., number of modules per subsystem, which specifies the number of modules within different subsystems 
of the software product. 

Attributes of the resource category capture the specifics of the available resources for the project 
including tools/techniques and the workforce e.g., Developers’ skill level for code dev and Maximum code ver 
effectiveness. The Developers’ skill level for code dev parameter is a constant that defines the skill level of the 
available workforce in developing code artifacts. The Maximum code ver effectiveness parameter is a 
constant that defines the effectiveness of the code verification tool/technique in detecting code faults in 
the code artifacts.  

The last group of parameters is the one that relates to attributes of the overall project. It mostly captures 
the software development context and managerial policies. For example, Required skill level for code dev is a 
constant that represents the management policy regarding the skill level of the workforce that can be 
allocated to carry out code development tasks. 

The parameters of GENSIM 2.0 can also be classified according to the view that they are associated with. 
Which type of view, i.e., product, defect, resource or state flow view a parameter is associated with 
depends on the primary effect of the attribute it represents.  For example, Required skill level for code dev is 
a parameter representing a managerial policy that primarily affects the resource flow of the code 
development activity. 

Table 1: A subset of Parameters used in modeling the code phase 

 Parameter Name Type Attribute View 

1 Verify code or not Input Process C-P 

2 # of modules per subsystem Input Product C-P 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 16

3 Developers’ skill levels for code dev Input Resource C-R 

4 Developers’ skill levels for code ver Input Resource C-R 

5 Code doc quality threshold per size unit Input Project C-S 

6 Required skill level for code dev Input Project C-R 

7 Required skill level for code ver Input Project C-R 

8 Code rework effort for code faults detected in CI Calibrated Process C-D 

9 Code rework effort for code faults detected in UT Calibrated Process C-D 

10 Code rework effort for code faults detected in IT Calibrated Process C-D 

11 Code rework effort for code faults detected in ST Calibrated Process C-D 

12 Average design to code conversion factor Calibrated  Product C-P 

13 Average # of UT test cases per code size unit Calibrated Product C-P 

14 Average design to code fault multiplier Calibrated Product C-D 

15 Maximum code ver. effectiveness Calibrated Resource C-D 

16 Maximum code ver. rate per person per day Calibrated Resource C-P 

17 Initial code dev. rate per person per day Calibrated Resource C-R 

18 Minimum code fault injection rate per size unit Calibrated Resource C-D 

19 Code to rework  Output Process C-P 

20 Code development activity  Output Process C-P 

21 Code verification activity  Output Process C-P 

22 Code development effort  Output Process C-R 

23 Code verification effort  Output Process C-R 

24 Code faults undetected Output Product C-D 

25 Code faults detected Output Product C-D 

26 Code faults corrected Output Product C-D 

27 Code doc size  Output Product C-P 

   

Table 2 shows a subset of the parameters used in the implementation of the system test phase. 
Corresponding parameters exist for the unit and integration test phases. These parameters and the 
influences between them are discussed in more detail in Section 5.2. For a complete description and all 
details of all the parameters and equations refer to Appendix A. 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 17

Table 2: Important parameters used in modeling the system test phase 

 Parameter Name Type Attribute View 

1 System test or not Input Process S-P 

2 Postpone TC dev until code is ready in ST or not input Process   S-P 

3 Developers’ skill levels for ST Input Resource S-R 

4 Quality threshold in ST Input Project S-S 

5 Required skill level for system test Input Project S-R 

6 Maximum ST effectiveness Calibrated Resource S-D 

7 Maximum ST productivity per person per day Calibrated Resource S-P 

8 Maximum # of ST test cases developed per person per day Calibrated Resource S-P 

9 Maximum # of ST test cases executed per person per day Calibrated Resource S-P 

10 Number of test cases for ST Calibrated Product S-P 

11 Code returned for rework from ST Output Process S-P 

12 ST rate Output Process S-P 

13 Incoming code to ST rate Output Process S-P 

14 System testing effort Output Process S-P 

15 Code ready for ST Output Product S-P 

16 ST test cases Output Product S-P 

17 Actual code faults detected in ST Output Product S-D 

 

5.2 VIEWS 
 
In this section the implementation of the four views mentioned above and their underlying assumptions 
and internal mechanisms are described for both the development phases (development/verification 
activities) and validation phases in more detail. 

5.2.1 Development/Verification Views  

In this section, underlying assumptions and mechanisms, levels, rates, and auxiliary variables 
implemented in the four different views of the development phases of the development project, i.e., 
requirements specification, design and code as illustrated in Figure 4 are discussed in more detail. Since 
the macro-pattern discussed in Section 4.1 is applied to product flow views of all the three development 
phases (i.e. requirements specification, design and code), all the four views are similar for all of them 
except for few minor differences related to the specific nature of the development phase. For example, in 
the code phase product flow view, three rate variables are defined to represent the outflow of code 
artifacts to other phases, i.e., the three validation phases. However, in the design phase product flow view 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 18

only one rate variable is defined to represent the outflow of design artifacts to other phases, i.e., the code 
phase. Therefore, in the following only the code phase is explained in full detail. 

5.2.1.1 Code Phase Product Flow View 

The code phase product flow view captures the specifics of how code artifacts are developed, reworked 
and verified and sent back and forth during and between the code phase and validation phases of the 
development project. Figure 5 is a simplified snapshot of the code phase product flow view with many of 
its auxiliary variables hidden to improve readability and understandability of the graph. 

 

 

 
Figure 5: Code Phase Product Flow View 

Software artifacts that flow through this part of the model are code artifacts of different modules of the 
system. It is assumed that code development for a module can only begin when the design artifacts for 
the subsystem that the module belongs to is completed. This is specified in the model with the 
information link from the Design to CM (Configuration Management), which is itself a rate variable in the 
design development/verification product flow view, to the Code to develop rate. Variables in the form of 
<…> define the interface of this view to other views. Code to develop rate is a variable which specifies the 
incoming flow of code artifacts that has to be developed. These artifacts are stored and wait in the Code to 
do size level variable before they can be developed. As soon as Code dev productivity becomes greater than 
zero, i.e., developers become available to carry out the code development task, waiting code artifacts are 
developed and then stored in the Code doc size level variable. 

Whenever the development activity for a module’s code artifact is finished, it is either verified or not 
according to state variables discussed in Section 5.2.1.4. If the code artifacts have to be verified they have 
to wait in the Code doc size level variable until the Code ver productivity becomes greater than zero, i.e. 
verifiers become available and can carry out the verification task. While the Code verification activity is 
greater than zero, i.e. the code verification activity is under process, the Code doc verified level variable is 
used to keep track of the amount of code that has been verified at any moment. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 19

As code is verified and code faults are detected in the code artifact, the code artifact is sent back for 
rework using the Code to rework rate variable. This rate is also used to specify the amount of code artifact 
returned for rework from the validation phases (i.e. unit, integration and system test). 

If at the end of the development activity the code artifact doesn’t need to be verified, it flows to the Code 
doc ready size level variable using the Code not to verify rate variable. The Code not to rework rate variable is 
needed, because in some situations only parts of the code artifact have to be sent for rework. These 
situations are the times when few, i.e., less than a certain a threshold code faults are detected and 
reworking the entire code artifact is not necessary. The parts that do not need rework flow to the Code doc 
ready size level variable using the Code not to rework variable. 

When all parts of a module’s code artifact arrive in the Code doc ready size level variable they are stored in 
the Code doc stored size level variable using the Code to CM rate variable. The Code doc stored size 
corresponds to the configuration managements system. Code to UT flush, Code to IT flush and Code to ST 
flush rate variables are used for sending the code artifact to different validation phases. 

5.2.1.2 Code Phase Defect Flow View 

This view captures the specifics of how defects are moved around i.e. generated, propagated, detected 
and corrected as code artifacts are processed (as modeled in the code phase product flow view). In other 
words, it is a co-flow of the code phase product flow and captures the changes in the quality of code 
artifacts as they are processed in the code phase. Figure 6 shows a simplified snapshot of this view with 
many of its auxiliary variables hidden to improve readability and understandability of the graph.  

 

 
Figure 6: Code Phase Defect Flow View 

Entities that flow through this view are code faults that exist in the code. It is assumed that code faults are 
injected in the code artifact for two reasons. Firstly, there are the faults that are injected in the code 
artifact due to design faults in the design artifact that have not been detected and hence have propagated 
into the coding phase. These faults are specified using the Design to code fault propagation variable. These 
faults will not be injected into the code unless the code development activity begins. Therefore, they are 
stored in the Design to code fault waiting level variable and wait there until the Code development activity 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 20

becomes greater than zero and hence causing these faults to be actually injected into the code artifact 
using the Code fault generation due to propagation rate variable. The Design to code faults propagated level 
variable is used to keep track of the number of faults that has been committed in the code artifact because 
of the propagation.  

The second group of faults that are injected into the code are the ones due to mistakes made by the 
developers. These faults are specified using the information link from the Code development activity to the 
Code fault generation rate variable. Code fault generation specifies the sum of faults committed with both of 
the sources.  

The generated faults are stored in the Code faults undetected in coding level variable and wait until some of 
them are detected due to verification and validation activities. The final remaining undetected faults will 
be the ones that will remain in the code after shipment of the product. The Code fault detection rate 
variable specifies the sum of code faults detected in various V&V activities. The code faults detected level 
variable is used to keep track of the number of code faults that are detected. 

After code faults are detected, they are stored in the Code faults pending level variable where they wait 
until they are fixed. It is currently assumed that all of them are corrected during rework. The Code faults 
correction rate specifies the number of code faults that are corrected per time unit. The rate depends on the 
headcount of workforce that are reworking the code artifact and the amount of effort that has to be spent 
to fix each of the faults. The Code faults corrected level variable is used to keep track of the number of code 
faults that have been fixed during the reworking of the code artifacts. 

5.2.1.3 Code Phase Resource Flow View 

This view captures various attributes related to resources, i.e., developers (workforce) and 
techniques/tools that are used to perform the code phase activities of the development project. Figure 7 
depicts a simplified snapshot of this view with some of its auxiliary variables hidden to improve 
readability and understandability of the graph. 

The Actual Allocation is an important auxiliary variable that uses the external DLL library of GENSIM 2.0. 
In essence, it is a matrix consisting of one row for any of the activities within the project and two columns. 
The first column represents the headcount of the workforce allocated to the activities. The second column 
represents the average skill level of the team allocated to the activity. As can be seen in Figure 6, it is used 
to determine the headcount of developers assigned to code development and verification and their skill 
level average. Details on exactly how Actual Allocation works is discussed in Section 5.4. 

It is assumed that the skill level of a developer is specified by a real number between 0 and 1, where 0 
means “not able to carry out the activity” and 1 means “optimally skilled”. If such exact information can 
not be specified, but the data can be given on an ordinal scale a mapping from the ordinal scale onto [1,0] 
could resolve the issue (Details are discussed in [27]). 

Code ver effectiveness is a constant used to represent the effectiveness of the code verification technique in 
detecting the code faults in the code artifact, if used by ”optimally skilled” personnel. It has a value 
between 0 and 1. If for example effectiveness of a certain code verification technique is 0.7, it means that 
when using the technique 70% of the faults in the code will be detected. If the skill level average of 
developers is less than “optimally skilled”, the value of this variable decreases proportionately. This 
constant has to be calibrated based on information about the training and experience of the developers. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 21

 
Figure 7: Code Phase Resource Flow View 

Minimum code fault injection per size unit is a constant used to represent the number of faults that 
”optimally skilled” developers commit in the code artifact. If the skill level average of developers is less 
than “optimally skilled”, the value of this variable increases proportionately. This constant has to be 
calibrated based on data collected over multiple projects with the development team. 

Code ver productivity is a variable used to represent the amount of code that can be verified per time unit 
(e.g., day). As can be seen in figure 6 it depends on the headcount of the workforce allocated to carry out 
the verification activity, the number of code artifacts that have to be verified i.e. the number of modules 
that their code artifact has to be verified (determined by Number of document being processed per activity), 
skill level average of the verification team and Maximum code ver rate per person per day. Maximum code ver 
rate per person per day is the amount of code that “optimally skilled” developers can verify everyday. 

Code dev productivity is a variable used to represent the amount of code that can be developed (initially 
developed or reworked) per time unit (e.g., day). Its value depends on the value of Maximum code dev rate 
per day and the average skill level of the development team. As the average skill level of developers 
increases this productivity increases proportionately. Maximum code dev rate per day is the amount of code 
that ”optimally skilled” developers develop every day. Its value is calculated differently for initial 
development and rework. In both cases it depends of the Code learning status and the headcount of the 
allocated developers. However, besides these variables, for initial development its value depends on 
Initial code dev rate per person per day and if rework its value depends on the number of code faults 
detected in the code and the amount of effort required for the correction of the faults. Initial code dev rate 
per person per day specifies the amount of code that each ”optimally skilled” developer develops every 
day. 

Code dev effort and Code ver effort are level variables used for keeping track of the amount of effort spent 
for code development and code verification activities respectively. However, since the time step used for 
simulation is a day and it might happen that a developer is allocated to a task that takes less than a day, 
these variables are not accurate indications of the amount of effort that were actually spent on the 
activities. Actual code rework effort and Actual initial code dev effort are level variables used to address this 
issue. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 22

5.2.1.4 Code Phase State Flow View 

This view captures the specifics of how the states of different entities as explained in Section 4.1 change 
during the code phase of the development project. Figure 8 illustrates a simplified snapshot of this view 
with many of its variables hidden to improve readability and understandability of the graph. 

Code doc dev status level variable is used to represent the state of the development activity (both initial 
development and rework). This level variable can have three different values. If its value is 0 it means 
that the development activity has not been started yet. As soon as some code artifact arrives for 
development (specified using the information link from Code to do size to Code doc dev status change), its 
value changes to 1 meaning it is under process. Whenever code development is finished, value of this 
level variable is changed to 2. 

Code doc ver status is used to represent the state of the verification activity. This level variable can have 
four different values. A value of 0 means that the activity has not been started yet. Whenever Code doc dev 
status becomes 2, i.e., code development is finished (specified using the information link from Code doc dev 
status to Code doc ver status change), its value changes to 1 meaning it is under process. Whenever the 
verification activity finishes its value changes depending on the number of detected code faults (specified 
using the Code doc quality) auxiliary variable. 

 
Figure 8: Code Phase State Flow View 

If Code doc quality (the number of code faults detected during the verification activity) is greater than a 
threshold specified using the Code doc quality limit per size unit constant, the value of the Code doc quality 
flag is set to 1 and the value of the Code doc ver status changes to 2, which means that the verification 
activity is finished but it has to be repeated once again due to bad quality. In this situation the value of 
Code doc dev status is set from 2 back to 1 (specified using the information link from the Code dov dev status 
to Code doc dev status change). If Code doc quality is smaller than the Code doc quality limit per size unit 
constant, the value of Code doc ver status is set from 1 to 3, which means that it is complete and does not 
have to be repeated.  

The Verify code or not constant is used to specify whether the code verification activity has to be carried 
out or not. If set to 1, the verification activity is carried out and the states of development/verification 
activities changes as described above. If set to 0, the verification activity is not carried out and the state of 
the verification activity maintains its initial value which is 0. 

Code learning status level variable is essentially used to keep track of the number of times that the code 
artifact has been processed (specified by the information links from Code development activity and Code 
verification activity to Code learning status change rate variable). By processed it is meant developed, 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 23

reworked and verified. Every time the code artifact is processed, 1 is added to the value of this level. Code 
productivity learning status specifies the effect Code learning status on the productivity of developers. 

5.2.2 Validation Views (Key Assumption/levels/rates/variables) 

In this section, key underlying assumptions and mechanisms, levels, rates, and auxiliary variables 
implemented in the validation phases i.e. unit, integration and system testing of the process illustrated in 
Figure 4 are discussed in more detail. Since the second macro-pattern explained in Section 4.1 is applied 
to product flow views of all the three validation phases (i.e. unit, integration and system testing), all the 
four views are quite similar for all validation phases. Therefore, here views related to only one of them, 
i.e., system testing is presented and explained. 

5.2.2.1 System Testing Product Flow View 

This view captures the specifics of how code artifacts are validated and sent back and forth between 
system testing validation and code phases of the development project. Figure 9 shows a simplified 
snapshot of the system testing product flow view with many of its auxiliary variables hidden to improve 
readability and understandability of the graph. 

 
Figure 9: System test Product Flow View 

It is assumed that code artifacts of all modules of the system have to be ready for system testing before 
the system can go under system testing. Incoming code to ST rate is the rate variable used to represent the 
code artifacts that become ready for system testing and are sent to the system testing phase. Code ready for 
ST is the level variable used for keeping track of the code artifacts that are ready for system testing. The 
Code ready for ST is emptied and all code artifacts are moved to Code to be tested in ST (Using the Code ready 
for ST flush rate variable) whenever code artifacts of all modules of the system arrive in the system testing 
phase (represented by using the information link between Sum actual code size to develop per system to the 
Code ready to ST flush rate). When stored in the Code to be tested in ST level variable, system (i.e. code 
artifacts of the system) are waiting to be system tested.  

ST test case data available or not is a constant flag used to indicate if empirical data about system test case 
development (e.g., productivity of test case development, number of test cases that need to be developed 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 24

for system testing of the system, productivity of system test case execution, etc) is available for calibration 
or not. If available, this variable should be set to 1, otherwise 0.  

If system testing test case calibration data is not available, system testing test case development and 
execution activities are combined together and considered as one system testing activity. In this situation 
system testing begins whenever workforce becomes available for system testing and the Average ST 
productivity and hence the ST rate becomes greater than zero. If system testing test case calibration data is 
available, system testing begins whenever workforce becomes available for it and the number of 
developed test cases (represented using the ST test cases level variable) reaches the number of required 
system test cases for the system (represented using the Number of test cases for ST variable). It is assumed 
all test cases for the system have to be developed before system testing can begin. In this situation the ST 
rate i.e. the amount of code system tested everyday is determined by the value of Average number of ST test 
cases executed per day. 

As the system testing is carried out, the amount of code artifacts that is tested is stored in the Tested code 
in ST level variable. After system testing is finished, the whole system is sent back to the code phase for 
rework using the Code returned for rework from ST rate variable. 

5.2.2.2 System Testing Defect Flow View 

This view captures the specifics of how code faults are moved around i.e. propagated, detected and 
reported to and from the system testing phase. Figure 10 shows a simplified snapshot of this view with 
many of its auxiliary variables hidden to improve readability and understandability of the graph. 

 

 
Figure 10: System testing Defect Flow View 

Incoming code faults to ST rate is used to propagate all the code faults existing in the system code artifacts 
(represented by the Code faults undetected in coding) to the system testing phase as the system becomes 
ready for system testing (represented using the Code ready for ST flush). Code faults propagated to the 
system testing phase are stored in the Undetected code faults in ST level variable where they wait for the 
system testing to begin. When system testing begins (represented using the information link from ST rate 
to the Code fault detection rate in ST) a portion of the code faults in the system are detected. This portion is 
determined using the Average ST effectiveness. Detected code faults in ST level variable is used to keep track 
of the number of code faults detected during the system testing. Whenever system testing is finished, the 
detected code faults are reported to the code phase and the Detected code faults in ST level variable is 
emptied using the Detected code faults in ST flush rate variable. When system testing is finished, the 
Undetected code faults in ST level variable is reset as well using the Undetected code faults in ST flush. This is 
done so that this level is empty when system testing is carried out another time. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 25

5.2.2.3 System testing Resource Flow View  

This view captures the specifics of various attributes of different resources, i.e., developers and 
techniques/tools, used in the system test phase of the development project. Figure 11 illustrates a 
simplified snapshot of this view with some of its auxiliary variables hidden to improve readability and 
understandability of the graph. 

Similar to code phase resource flow view, Actual allocation is used to specify the headcount and skill level 
average of the workforce allocated to system test case development and system test case execution. If 
system test case calibration data is not available, nobody is ever allocated to system test case development 
and the workforce allocated to system test case execution will carry out the system testing activity. System 
testing TC dev effort and System testing execution effort are level variables used to keep track the amount of 
effort spent on system test case development and system test case execution respectively. 

If system test case calibration data is available, it is assumed that the average skill level of the workforce 
who develops the system test cases effect the effectiveness of the system testing activity in detecting 
defects. System testing TC dev team skill level average stored is used to keep track of the skill level of different 
teams of workforce who work on test case development for system testing. System testing TC dev working 
time level variable keeps track of the time that different teams work on system test case development. Skill 
level average average of TC developers for ST is the auxiliary variable used to calculate the average of average 
skill level of different teams who worked on system test case development. The defect detection 
effectiveness of the system testing technique is changed proportionate to this average. If system test case 
calibration data is not available, the effectiveness of the system testing activity is changed proportionate 
to the average skill level of the system test execution team. 

 
Figure 11: System Test Resource Flow View 

If system test case calibration data is available, the productivity of system testing, i.e., the amount of code 
artifact that is system tested per day is derived from the Average ST productivity per person per day constant 
and the System testing execution workforce variable. The Average ST productivity per person per day is among 
the constant variables that have to be calibrated to empirical data. If system testing case calibration data is 
available, Average number of ST test cases developed per day is determined by the headcount of the workforce 
allocated to system test case development, the number of system test cases developed everyday by an 
“optimally skilled” developer (Maximum number of test cases developed per person per day) and the average 
skill level of the allocated team. It is assumed that average skill level of the system test execution team has 
no effect on their system test case execution productivity (represented by the Average number of ST test 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 26

cases executed per day) since the test case execution activity is rather an automated procedure of running 
the test cases and reporting the results.  

5.2.2.4 System testing State Flow View 

This view captures the specifics of how the states of different entities as explained in Section 4.1 change 
during the system test phase of the development project. Figure 12 illustrates a simplified snapshot of this 
view with many auxiliary variables hidden to improve readability and understandability of the graph. 

If system test case calibration data is available, System under TC dev in ST is used to represent the state of 
the test case development. If system test cases are being developed value of this auxiliary variable is set to 
1, otherwise it is set to 0. System waiting for TC dev for ST is a flag used to specify if system test cases can be 
developed. Postpone TC dev until code is ready in ST or not is a constant used to represent the project's 
management decision about the time to develop test cases. If value of this constant is set to 1, system test 
case development begins only when all the code artifacts of the system are ready and if set to 0, system 
test case development can begin as soon as the requirements specification artifacts of the system are 
completed and verified. 

 

 
Figure 12: System Test State Flow View 

The System test status level variable is used to represent the state of the system testing activity. If system 
test case calibration data is available, it represents the state of the system test case execution activity. This 
level variable can have four different values. A value of 0 means that system testing has not been started 
yet. Whenever system testing begins, its value changes to 1 meaning it is under process. Whenever 
system testing finishes its value changes depending on the number of detected code faults (specified 
using the Module Code doc quality) auxiliary variable. 

If Code doc quality, i.e., the number of code faults detected during system testing divided by the size of the 
system is greater than a threshold specified using the Quality threshold in ST constant, the value of the 
Quality flag in ST is set to 1 and the value of the System test status changes to 2 which means that the 
system testing activity is finished but it has to be repeated once again due to bad quality. If Code doc 
quality is smaller than the Quality threshold in ST constant, the value of System test status is set from 1 to 3 
meaning it is complete and it does not have to be repeated.  

5.3 SUBSCRIPTS 
Subscription mechanism provided by Vensim® has been exploited in the implementation of GENSIM 2.0 
to add to its reusability and to capture individual entities involved in the development project. The 
subscription mechanism in Vensim® is a feature that facilitates to have variables that calculate and hold 
multiple values for multiple entities simultaneously.  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 27

A subscript is an ordered set of entities in which each entity has a distinct identifier called subscript 
value. When a subscript is associated with a variable (using the subscript's name), the variable (variable's 
equation) is calculated for every entity in the subscript. The value of the variable for any individual entity 
is accessible using it subscript value. 

For example, if a model user wants to capture the sizes of various modules of the system in one array, the 
model user can define a subscript named module and a variable called module's size. Assuming the system 
has three modules, the model user can define the module subscript values as MOD1 for the first module, 
MOD2 for the second module and MOD3 for the third module. After associating module's size with 
module, module's size[MOD1] will specify the size of the first module, module's size[MOD2] will specify the 
size of the second module and module's size[MOD3] will specify the size of the third module.  

The subscription mechanism adds much to the reusability of the model, because subscripted variables 
can be instantiated with different subscripts. In the example above, if the number of modules in the 
system changes from three to four modules, there is no need to change the module's size variable. The only 
necessary change is to modify the module subscript and adding a fourth module with MOD4 subscript 
value. Following is a list of subscripts used in GENSIM 2.0 along with their descriptions and current 
values. 

Module is a subscript used to model individual modules of the system. Its subscript values are currently 
specified as 100,,2,1 MODMODMOD K  to represent 100 modules within the system. However, it 
could easily be modified to represent different number of modules in the system. 

Subsystem is a subscript used to model different subsystems within the system. Its subscript values are 
currently defined as 5,,2,1 SUBSUBSUB K  to model 5 different subsystems in the system. Like the 
Module subscript, it could be easily modified to model a system with a different number of subsystems. 

It is assumed that every module in the system belongs to a distinct subsystem. This is achieved by 
specifying a mapping between the Module and the Subsystem subscripts. 

Phase is a subscript used to capture individual phases of the development project. Its subscript values are 
currently specified as RE, DE, CO, UT, IT and ST representing requirements specification, design, code, 
unit test, integration test and system test respectively.   

Origin is a subscript used to identify different origins that defects might have. By a defect origin it is 
meant the phase in which the fault was actually committed. Its subscript values are currently specified as 
requ, design and code representing requirements specification, design and code phases respectively. It is 
generally associated with variables used to model faults of software artifacts. 

Factor is a subscript used to identify different aspects of software quality that faults have an effect on. By 
aspects of software quality it is meant software quality characteristics as identified in the ISO 9126 
standard. This subscript enables analyzing both functional and non-functional aspects of software 
quality. Its current values are defined as RLB, USB and FUN representing reliability, usability and 
functionality respectively. It is assumed that faults in the software artifacts could be characterized and 
differentiated by the quality aspect that they have the most effect on. Like the Origin subscript, it is 
generally associated with variables that model faults of software artifacts and can be modified easily to 
enable evaluation of even more different aspects of quality. 

Developer is a subscript used to capture individual workforce available for the project. Its subscript 
values are currently specified as 40,,2,1 DEVDEVDEV K  to represent 40 developers available for the 
development project. However, it can be changed simply to model projects with different number of 
developers. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 28

Activity is a subscript used to model single activities within the development project.  Its subscript values 
are currently set as RED, REV, DED, DEV, COD, COV, UTTC, UTV, ITTC, ITV, STTC and STV to 
represent requirements specification development, requirements specification verification, design 
development, design verification, code development, code verification, unit test case development, unit 
test execution, integration test case development, integration test execution, system test case development 
and system test case execution. 

5.4 WORKFORCE ALLOCATION ALGORITHM 
The ability of Vensim® to work with external DLLs has been exploited in GENSIM 2.0 to extract 
organization-specific heuristics from the SD model and incorporating them into external DLL libraries 
where they can be changed easily without affecting the model structure. The algorithm that allocates 
developers to development, verification, and validation activities is an example of an organization-
specific heuristic that was implemented in a DLL library. The main allocation function takes as input 
headcount and skill levels of the available workforce, workload of different activities and the minimum 
skill level required for developers in order to be assigned to different activities. 

Skill levels of the available workforce are represented by an n × m matrix S, as shown in equation 1, in 
which n is the headcount of the available workforce, m is the number of activities which are carried out 
during the development life-cycle, and sij represents the skill level of the ith developer in carrying out the 
jth activity. As can be seen in the equation it is assumed that skill levels are given on a 0 to 1 continuous 
scale. If such accurate data does not exist within an organization, and the available data is on an ordinal 
scale, a simple mapping could resolve the issue. 

 

[ ]1,0,

1

111

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=× ij

nmn

m

mn s
ss

ss
S

L

MOM

L

 

Equation 2: Skill level Matrix S 

 
Workloads of different activities are represented by an m-dimensional vector w, in which m is the number of 
activities and wj represents the amount of work which is waiting to be done for the jth activity. The value for wj is 
determined by the number of artifacts, e.g., code modules which are waiting to be processed. 

Minimum required skill levels of different activities are represented by an m-dimensional vector R, in 
which m is the number of activities and rj specifies the minimum required skill level for the jth activity. 

To prepare the allocation of developers to tasks, using S and R, a new n × m matrix C is constructed, in 
which cij is set to 1, if sij ≥ rj, and set to 0, sij < rj. The entry cij determines whether the ith developer can be 
assigned to carry out the jth activity having at least the activity’s required skill level.  

To each activity j ∈ {1, …, k} with wj > 0, developers are assigned using the following algorithm: 
• Step 1: assign to activity j all developers that can only carry out the jth activity 
• Step 2: assign to activity j a portion of the developers which can carry out the jth activity and exactly 

one of the other activities for which wj > 0 
• Step 3: assign to activity j a portion of the developers which can carry out the jth activity and exactly 2 

of the other activities for which wj > 0 
• M  
• Step k: assign to activity j a portion of the developers which can carry out the jth activity and exactly 

k-1 of the other activities for which wj > 0 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 29

Each step t must be performed 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1
1

t
k  times to account for all the possible permutations. The portion of 

developers which will be assigned to the jth activity in the tth step for any of the possible permutations is 
determined using the formula shown in Equation 2. As the following calculations may result in floating 
point numbers, results are rounded if necessary. 

{ }jthanotheractivitiestiand
ww

w
P

i
ij

j
j 1−∈

+
=

∑
 

Equation 3: Portion of developers assigned to activity j in step t 

 

6 CONCLUSION AND FUTURE WORK 
GENSIM 2.0 is a complex publicly available customizable software process simulation model. Different to 
most SD software process simulation models, GENSIM 2.0 allows for detailed modeling of work 
products, activities, developers, techniques, tools, defects and other entities by exploiting the subscription 
mechanisms of Vensim. Moreover, the possibility to use external DLL libraries gives the opportunity to 
extract potentially time-consuming algorithms from the SD model and thus speed up model execution.  

Future work on GENSIM 2.0 will address some of its current limitations. Currently it is not possible to 
represent incremental software development processes easily. Mechanisms will be added to the model 
that allow for concurrent execution of development cycles following the generic process shown in Fig. 4. 
Another present limitation of GENSIM 2.0 is that it assumes that the available workforce for the project is 
constant throughout the entire project. Future works on GENSIM 2.0 will address this issue and 
implement mechanisms for dealing with changeable workforce profiles. The possibility to analyze the 
impact of the intensity level of V&V activities on project performance dimensions is also among the 
features that will be added to GENSIM 2.0 in future. 

GENSIM 2.0 is part of a long-term research program that aims at combining results from empirical 
studies and company-specific measurement programs with process simulation. Currently, GENSIM 2.0 is 
calibrated to data received from a German research institute and its industrial partners. The calibrated 
model will be used to explore which combination of V&V activities and techniques is most suitable to 
achieve certain product quality goals defined according to standard ISO 9126, under given resource and 
time constraints. 

REFERENCES 
 

[1] M. I. Kellner, R. J. Madachy, and D. M. Raffo, " Software process simulation modeling: Why? 
What? How?," Journal of Systems and Software, vol. 46, pp. 91-105, 1999. 

[2] H. Waeselynck and D. Pfahl, "System Dynamics Applied To The Modeling Of Software Projects," 
Software Concepts and Tools, vol. 15, pp. 162-176, 1994. 

[3] D. Pfahl, M. Klemm, and G. Ruhe, " A CBT module with integrated simulation component for 
software project management education and training," Journal of Systems and Software, vol. 59, pp. 
283-298, 2001. 

[4] J. W. Forrester, Industrial Dynamics: M.I.T Press, 1961. 

[5] P. Senge, The fifth Discipline. New York: Currency Doubleday, 1990. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 30

[6] G. P. Richardson, Feedback Thought in Social Science and Systems Theory: University of Pennsylvania 
Press, 1990. 

[7] T. Abdel-Hamid and S. E. Madnick, Software project dynamics: an integrated approach: Prentice-Hall, 
Inc., 1991. 

[8] C. Y. Lin, T. Abdel-Hamid, and J. S. Sherif, "Software Engineering Process Simulation Model 
(SEPS)," Journal of Systems and Software, vol. 38, pp. 263-277, 1997. 

[9] R. J. Madachy, "A software project dynamics model for process cost, schedule and risk 
assessment," University of Southern California, 1994, p. 127. 

[10] A. Powell and K. Mander, "Strategies for lifecycle concurrency and iteration: A system dynamics 
approach," Journal of Systems and Software, vol. 46, pp. 151-162, 1999. 

[11] T. John Douglas, "An extensible model for evaluating the impact of process improvements on 
software development cycle time," Arizona State University, 1996, p. 386. 

[12] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. P. Picco, "Modeling and improving an 
industrial software process," Software Engineering, IEEE Transactions on, vol. 21, pp. 440-454, 1995. 

[13] G. Volker and S. Armin, "Software Process Validation Based on FUNSOFT Nets," in Proceedings of 
the Second European Workshop on Software Process Technology: Springer-Verlag, 1992. 

[14] M. I. Kellner and G. A. Hansen, "Software process modeling: a case study," in System Sciences, 
1989. Vol.II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference 
on, 1989, pp. 175-188 vol.2. 

[15] P. Mi and W. Scacchi, "A knowledge-based environment for modeling and simulating software 
engineering processes," Knowledge and Data Engineering, IEEE Transactions on, vol. 2, pp. 283-289, 
1990. 

[16] M. Muller and D. Pfahl, "Simulation Methods," in Guide to Advanced Empirical Software 
Engineering: Springer London, 2008, pp. 117-152. 

[17] Z. He, K. Barbara, and P. Dietmar, "Reflections on 10 Years of Software Process Simulation 
Modeling: A Systematic Review," in ICSP Leipzig, Germany, 2008. 

[18] D. M. Raffo, U. Nayak, S. Setamanit, P. Sullivan, and W. Wakeland, "Using software process 
simulation to assess the impact of IV&V activities," IEE Seminar Digests, vol. 2004, pp. 197-205, 
2004. 

[19] D. Pfahl and K. Lebsanft, "Knowledge Acquisition and Process Guidance for Building System 
Dynamics Simulation Models. An Experience Report from Software Industry," International 
Journal of Software Engineering and Knowledge Engineering, vol. 10, pp. 487-510, 2000. 

[20] ExtendSim, "http://www.imaginethatinc.com/", March 2008. 

[21] Vensim, "http://www.vensim.com/", Feb. 2008. 

[22] A. Wise, "Little-JIL 1.5 Language Report," Department of Computer Science, University of 
Massachusetts, Amherst UM-CS-2006-51, 2006. 

[23] R. Madachy, "Reusable Model Structures and Behaviors for Software Processes," in Software 
Process Change. vol. 3966/2006: Springer Berlin / Heidelberg, pp. 222-233. 

[24] N. Angkasaputra and D. Pfahl, "Making Software Process Simulation Modeling Agile and 
Pattern-based," in ProSim 2004, 2004, pp. 222-227. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 31

[25] O. Armbrust, T. Berlage, T. Hanne, P. Lang, J. Mأ¼nch, H. Neu, S. Nickel, I. Rus, A. Sarishvili, S. 
v. Stockum, and A. Wirsen, "Simulation-based software process modeling and evaluation," in 
Handbook of Software Engineering & Knowledge Engineering. vol. 3, 2005, pp. 333-364. 

[26] D. Raffo, G. Spehar, and U. Nayak, "Generalized Process Simulation: What, Why and How?," in 
ProSim '03 Workshop, 2003. 

[27] K. Khosrovian, D. Pfahl, and V. Garousi, "Calibrating a Customizable System Dynamics 
Simulation Model of Generic Software Development Processes," Schulich School of Engineering, 
University of Calgary SERG-2007-08, 2008. 

 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 32

APPENDIX A- GENSIM 2.0 EQUATIONS  
This appendix includes the complete set of all GENSIM 2.0 parameters along with their equations. Due to 
application of macro-patterns in the modeling of development/verification phases, analogous sets of 
parameters have been used for implementing each of these phases. Hence, the descriptions are provided 
for only one of them, i.e., requirements specification and analogous descriptions could be defined for 
analogous parameters in the other phases. In cases of any exceptions, i.e., parameters used in the 
implementation of the design or code phases do not have corresponding parameters in the requirements 
specification phase, descriptions are provided individually. The same rule applies for validation phases 
and the descriptions are given only for the unit test phase. 

******************************************************** 

 .Requirement Specification Process 

******************************************************** 

Requ doc stored flush due to code rework= 

 Actual requ size to specify*SUM(Portion of code reworked to actual system code size per 
subsystem\ 

  [subsystem!]) 

 ~ Page/Day 

 ~ This variable shows the number of pages of the requirements specification \ 

  document which has to be reworked per day because of code defects detected \ 

  during code verification or unit/integration/system test which originate \ 

  in requirement specification. 

 | 

 

Requ late rework incoming rate= 

 IF THEN ELSE(Portion of requ spec to rework*TIME STEP>Requ doc stored size,Portion of requ 
spec to rework\ 

  ,0) 

 ~ Page/Day 

 ~ Because sometimes a page of the requirements document has to reworked \ 

  because of some detected defects but it is already being reworked because \ 

  of some other defect detected in an upstream phase, this rate is used to \ 

  specify incoming rate of the amount of this kind of rework. 

 | 

 

Requ late rework outgoing rate= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 33

 IF THEN ELSE(Portion of requ spec to rework*TIME STEP<Requ doc stored size,MIN(Requ to be 
reworked later\ 

  /TIME STEP,Requ doc stored size/TIME STEP-Portion of requ spec to rework),0) 

 ~ Page/Day 

 ~ This rate is used to send back the number of pages of the requirements \ 

  specification document which are waiting to be sent for rework in the \ 

  'Requ to be reworked later' level for rework as soon as they are stored in \ 

  the 'Requ doc stored size' level. 

 | 

 

Requ doc stored flush= 

 IF THEN ELSE(Rework requ spec or not=1:AND:Portion of requ spec to rework*TIME STEP<\ 

  Requ doc stored size,Portion of requ spec to rework 

 ,0) 

 ~ Page/Day 

 ~ This rate specifies the number of pages of the requirements specification \ 

  document which is sent back for rework everyday. 

 | 

 

Amount of requ spec reworked= INTEG ( 

 Requ spec to rework, 

  0) 

 ~ Page 

 ~ This level variable keeps track of the number of requirements \ 

  specification document which are reworked. Everytime a page is reworked, \ 

  one page is added to this variable. 

 | 

 

Portion of requ spec to rework= 

 Requ doc stored flush due to code rework+Requ doc stored flush due to design verification 

 ~ Page/Day 

 ~ This variable shows the total number of pages of the requirements \ 

  specification document which has to be reworked everyday. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 34

 

Requ to be reworked later= INTEG ( 

 Requ late rework incoming rate-Requ late rework outgoing rate, 

  0) 

 ~ Page 

 ~ This level variable is used to keep track of the number of pages of the \ 

  requirements specification that has to be reworked due to some detected \ 

  defect but is already being reworked. 

 | 

 

Requ doc stored flush due to design verification= 

 IF THEN ELSE(SUM(Actual design size to develop[subsystem!])>0,Actual requ size to specify\ 

  *Design to rework due to verification/SUM(Actual design size to develop[subsystem!]\ 

  ),0) 

 ~ Page/Day 

 ~ This variable shows the number of pages of the requirements specification \ 

  document which has to be reworked per day because of design defects \ 

  detected during design verification which originate in requirement \ 

  specification. 

 | 

 

Requ doc stored late flush= 

 Rework requ spec or not*Requ late rework outgoing rate 

 ~ Page/Day 

 ~ This rate is equal to the 'Requ late rework outgoing rate' if the \ 

  requirements specification document has to be reworked. 

 | 

 

Rework requ spec or not= 

 1 

 ~ Dmnl 

 ~ This constant is used to switch on/off reworking the requirements \ 

  specification document due to design/code defects detected with \ 

  requirement specification origin during downstream V&V activities. while \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 35

  set to 1 the requirement specification document will be reworked and while \ 

  set to 0 it will not be reworked. 

 | 

 

Requ to CM= 

 IF THEN ELSE(Requ doc ready size>Average requ size in pages-0.001:AND:Total design doc dev 
status\ 

  =0,Requ doc ready size/TIME STEP 

 ,IF THEN ELSE(Total design doc dev status>0,Requ doc ready size/TIME STEP,0)) 

 ~ Page/Day 

 ~ This rate specifies the number of pages of the requirements specification \ 

  document that are ready to be stored in the configuration management \ 

  system everyday 

 | 

 

Requ spec not to verify= 

 IF THEN ELSE(Requ spec ver status>=3,Requ spec size/TIME STEP,IF THEN ELSE(Requ spec 
ver status\ 

  =3:AND:Requ spec status=2, Requ spec size/TIME STEP 

 ,IF THEN ELSE(Verify requ spec or not=0,Requ spec size/TIME STEP,0))) 

 ~ Page/Day 

 ~ This rate specifies the number of pages of the requirements specification \ 

  document which do not need to be verified everyday. 

 | 

 

Requ spec verified flush= 

 IF THEN ELSE(Requ spec status=1,Requ spec verified/TIME STEP,0) 

 ~ Page/Day 

 ~ This rate is used to reset the 'Requ spec verified' level variable at the \ 

  end of the verification activity. 

 | 

 

Requ specification activity= 

 IF THEN ELSE(Requ spec status=1,MIN(Requ spec to do size/TIME STEP,Average requ spec 
dev rate per day\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 36

  ),0) 

 ~ Page/Day 

 ~ This rate shows the number of pages of the requirements specification \ 

  document which are worked on every day. 

 | 

 

Maximum requ spec rate per day= 

 IF THEN ELSE( Requ spec learning status>1:AND:Sum requ spec faults pending>0,Requ spec to 
do size\ 

  *Sum requ spec fault correction rate/Sum requ spec faults pending, Initial max requ spec 
rate per person and day\ 

  *Requ dev workforce) 

 ~ Page/Day 

 ~ This variable specifies the maximum number of pages of the requirements \ 

  specification document that developers can develop/rework everyday. By \ 

  maximum it is meant that developers that their average skill level is 1 \ 

  will develop/rework this number of pages everyday. 

 | 

 

Average requ spec dev rate per day= 

 Maximum requ spec rate per day*Requ dev team skill level average 

 ~ Page/Day 

 ~ This variable specifies the number of pages of the requirements \ 

  specification document that developers can develop/rework everyday. 

 | 

 

Requ spec to rework= 

 IF THEN ELSE(Requ spec doc quality ratio>0,Requ spec verification activity*MIN(1,Requ spec 
doc quality ratio\ 

  )+Requ doc stored flush+Requ doc stored late flush 

 ,Requ spec verification activity+Requ doc stored flush+Requ doc stored late flush) 

 ~ Page/Day 

 ~ This rate shows the incoming rate of the requirements specification \ 

  document for rework. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 37

 

Requ doc stored size= INTEG ( 

 Requ to CM-Requ doc stored flush-Requ doc stored late flush, 

  0) 

 ~ Page 

 ~ This level variable shows the number of pages of the requirements document \ 

  that are stored in the configuration management system. 

 | 

 

Average requ spec ver rate= 

 Requ ver workforce*Maximum requ spec ver rate per peson and day*Requ ver team skill level 
average 

 ~ Page/Day 

 ~ This variable specifies the number of pages of the requirements \ 

  specification document that developers can verify everyday. 

 | 

 

Requ spec verification activity= 

 IF THEN ELSE(Requ spec ver status=1:OR:(Requ spec ver status=2:AND:Requ spec status=\ 

  2),MIN(Requ spec size/TIME STEP, Average requ spec ver rate 

 ),0) 

 ~ Page/Day 

 ~ This rate specifies the number of pages of the requirements specification \ 

  document which are verified everyday. 

 | 

 

Number of test cases for ST= 

 Actual requ size to specify*Average number of test cases per requ spec size unit 

 ~ Testcase 

 ~ This variable is used to calculate the number of test cases which need to \ 

  be developed to the test the whole system against the whole requirements \ 

  specification document 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 38

Requ to specify= 

 IF THEN ELSE(Time=0,Average requ size in pages/TIME STEP,0) 

 ~ Page/Day 

 ~ This rate specifies the incoming rate of the requirements specification \ 

  document which has to be worked on for the first time. 

 | 

 

Actual requ size to specify= INTEG ( 

 Requ to specify, 

  0) 

 ~ Page 

 ~ This level variable is used to keep the total number of the requirements \ 

  specification document pages since the 'Requ spec to do size' fills and \ 

  empties constantly. 

 | 

 

Average number of test cases per requ spec size unit= 

 5 

 ~ Testcase/Page 

 ~ This constant specifies the average number of system test cases that need \ 

  to be developed for testing the whole system against every page of the \ 

  requirements specification document. 

 | 

 

Requ spec productivity learning amplifier= 

 1 

 ~ Dmnl 

 ~ This constant is used to adjust the effect of 'Requ spec productivity \ 

  learning status' on per defect fixing effort for requirements \ 

  specification defects. 

 | 

 

Requ spec verified= INTEG ( 

 Requ spec verification activity-Requ spec verified flush, 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 39

  0) 

 ~ Page 

 ~ This level shows the number of pages of the requirements specification \ 

  document which has been verified during the verification activity. 

 | 

 

Requ spec doc quality ratio= 

 IF THEN ELSE(Requ spec verification activity>0:AND:Requ spec quality limit>0,Sum requ spec 
fault detection\ 

  /(Requ spec quality limit*Requ spec verification activity),0) 

 ~ Dmnl 

 ~ This ratio specifies the portion of the requirements specification \ 

  document that has to be reworked considering the quality threshold set for \ 

  this document. 

 | 

 

Requ spec not to rework= 

 MAX(Requ spec verification activity-Requ spec to rework,0) 

 ~ Page/Day 

 ~ This rate specifies the number of pages of the requirements specification \ 

  document that does not need to be reworked considering the quality \ 

  threshold set for this document. 

 | 

 

Maximum requ spec ver rate per peson and day= 

 8 

 ~ Page/(Person*Day) 

 ~ This constant specifies the maximum number of pages of the requirements \ 

  specification document that developers can verify everyday. By maximum it \ 

  is meant that developers that their average skill level is 1 will verify \ 

  this number of pages everyday. 

 | 

 

Requ spec to do size= INTEG ( 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 40

 Requ spec to rework+Requ to specify-Requ specification activity, 

  0) 

 ~ Page 

 ~ This level variable keeps track of the number of requirements \ 

  specification document which are waiting to be worked on. 

 | 

 

Requ doc ready size= INTEG ( 

 Requ spec not to rework+Requ spec not to verify-Requ to CM, 

  0) 

 ~ Page 

 ~ This level variable keeps track of the number of pages of the requirements \ 

  specification document that are ready to be stored in the configuration \ 

  managament system. 

 | 

 

Requ spec size= INTEG ( 

 Requ specification activity-Requ spec not to verify-Requ spec verification activity, 

  0) 

 ~ Page 

 ~ This level variable shows the number of requirements specification \ 

  document which has been worked on. 

 | 

 

Average requ size in pages= 

 50 

 ~ Page 

 ~ This constant specifies the size of the requirements specification document 

 | 

 

******************************************************** 

 .Requirement Specification Quality 

********************************************************~ 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 41

 

Requ spec faults detected flush[origin,factor]= 

 IF THEN ELSE(Requ spec ver status>1, Requ spec faults detected[origin,factor]/TIME STEP\ 

  , 0) 

 ~ Defect/Day 

 ~ This rate is used to reset the 'Requ spec faults detected' level variable \ 

  at the end of the verification acitvity. 

 | 

 

Requ spec faults corrected flush[origin,factor]= 

 IF THEN ELSE(Requ spec status=2 ,Requ spec faults corrected[origin,factor]/TIME STEP\ 

  , 0) 

 ~ Defect/Day 

 ~ This rate is used to reset the 'Requ spec faults corrected' level variable \ 

  at the end of rework activity. 

 | 

 

Maximum requ spec ver effectiveness[requ,factor]= 

 Requ spec ver effectiveness constant ~~| 

Maximum requ spec ver effectiveness[design,factor]= 

 0,0,0 ~~| 

Maximum requ spec ver effectiveness[code,factor]= 

 0,0,0 

 ~ Dmnl 

 ~ This constant specifies the maximum effectiveness of the requirements \ 

  specification verification technique in finding undetected requirements \ 

  specification defects. By maximum it is meant that developers that their \ 

  average skill level is 1 will be able to detect this portion of the \ 

  undetected requirements specification defects. 

 | 

 

Requ spec fault correction rate[origin,factor]= 

 IF THEN ELSE(Requ dev workforce>0,Rework requ spec or not*MIN(Requ dev 
workforce/(Requ spec rework effort per fault\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 42

  *3),Requ spec faults pending[origin,factor]/TIME STEP),0) 

 ~ Defect/Day 

 ~ This rate specifies the number of requirements specification defects which \ 

  are fixed everyday. 

 | 

 

requ spec fault detection rate[requ,factor]= 

 IF THEN ELSE(Requ spec verification activity>0,MIN(Requ spec faults undetected[requ,\ 

  factor]/TIME STEP,Average requ spec ver effectiveness 

 [requ,factor]* 

 Requ spec verification activity*(Requ spec faults undetected[requ,factor]+Requ spec faults 
detected\ 

  [requ,factor])/(Requ spec size 

 +Requ spec verified)),SUM(Code fault detection[requ,factor,module!])/9+Sum design fault 
detection due to verification\ 

  [requ 

 ,factor]/3) ~~| 

requ spec fault detection rate[design,factor]= 

 0,0,0 ~~| 

requ spec fault detection rate[code,factor]= 

 0,0,0 

 ~ Defect/Day 

 ~ This rate specifies the number of defects which are detected everyday \ 

  during verification of the requirements specification document. 

 | 

 

Requ spec fault generation[origin,factor]= 

 Requ specification activity*Average requ spec fault injection rate per size unit[origin\ 

  ,factor]/MAX(1,Requ spec learning status 

 ^Learning amplifier for requ fault injection) 

 ~ Defect/Day 

 ~ This rate specifies the number of defects that developers inject in the \ 

  requirements specification document during development and rework per day. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 43

Average requ spec fault injection rate per size unit[origin,factor]= 

 Minimum requ spec fault injection rate per size unit[origin,factor]+Minimum requ spec fault 
injection rate per size unit\ 

  [origin,factor]*(1-Requ dev team skill level average) 

 ~ Defect/Page 

 ~ This variable specifies the number of defects that developrs inject in \ 

  every page of the requirements specification document. 

 | 

 

Actual requ spec faults corrected[origin,factor]= INTEG ( 

 Requ spec fault correction rate[origin,factor], 

  0) 

 ~ Defect 

 ~ This level is used to store the overall number of defects which are \ 

  corrected because the 'Requ spec faults corrected' level is reset at the \ 

  end of rework activities. 

 | 

 

Actual requ spec faults detected[origin,factor]= INTEG ( 

 requ spec fault detection rate[origin,factor], 

  0) 

 ~ Defect 

 ~ This level variable is used to store the number of requirements \ 

  specification defects detected because the 'Requ spec faults detected' \ 

  level variable is reset at the end of the verification. 

 | 

 

Learning amplifier for requ fault detection= 

 3 

 ~ Dmnl 

 ~ This constant is used to adjust the effect of learning on detection of \ 

  defects during requirements specification re-verification. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 44

Requ spec fault generation copy[origin,factor]= 

 Requ spec fault generation[origin,factor] 

 ~ Defect/Day 

 ~  | 

 

Requ spec faults corrected[origin,factor]= INTEG ( 

 Requ spec fault correction rate[origin,factor]-Requ spec faults corrected flush[origin\ 

  ,factor], 

  0) 

 ~ Defect 

 ~ This level variable is used to keep track of the number of requirements \ 

  specification defects that have been fixed during rework. 

 | 

 

Requ spec faults detected[origin,factor]= INTEG ( 

 requ spec fault detection rate[origin,factor]-Requ spec faults detected flush[origin\ 

  ,factor], 

  0) 

 ~ Defect 

 ~ This level variable is used to keep track of the number of defects which \ 

  are detected during requirements specification verification. 

 | 

 

Requ spec faults pending[origin,factor]= INTEG ( 

 requ spec fault detection rate[origin,factor]-Requ spec fault correction rate[origin\ 

  ,factor], 

  0) 

 ~ Defect 

 ~ This level variable is used to keep track of the number of requirement \ 

  specification defects which are pending to be fixed. 

 | 

 

Requ spec faults undetected[origin,factor]= INTEG ( 

 Requ spec fault generation copy[origin,factor]-requ spec fault detection rate[origin\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 45

  ,factor], 

  0) 

 ~ Defect 

 ~ This level is used to keep track of the number of defects which have been \ 

  left undetected in the requirements specification document. 

 | 

 

Minimum requ spec fault injection rate per size unit[requ,factor]= 

 13.38,13.38,13.38 ~~| 

Minimum requ spec fault injection rate per size unit[design,factor]= 

 0,0,0 ~~| 

Minimum requ spec fault injection rate per size unit[code,factor]= 

 0,0,0 

 ~ Defect/Page 

 ~ This constant specifies the minimum number of defects that developrs \ 

  inject in every page of the requirements specification document. By \ 

  minimum it is meant that developers that their average skill level is 1 \ 

  will inject this number of defects in every page of the requiements \ 

  specification document. 

 | 

 

Requ spec faults generated[origin,factor]= INTEG ( 

 Requ spec fault generation[origin,factor], 

  0) 

 ~ Defect 

 ~ This level variable is used to store the total number of defects that are \ 

  injected in the requirements specification document by the developers \ 

  during development and rework. 

 | 

 

Sum requ spec fault detection= 

 SUM(requ spec fault detection rate[origin!,factor!]) 

 ~ Defect/Day 

 ~ This variable is used to show the sum of requirements specification \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 46

  defects detected over all origins and quality factors. 

 | 

 

******************************************************** 

 .Requirement Specification Status 

********************************************************~ 

 | 

 

Requ spec ver change= 

 IF THEN ELSE((Requ spec ver status=0):AND:(Requ spec status>1):AND:Verify requ spec or 
not\ 

  =1,1,IF THEN ELSE 

 ((Requ spec ver status=1):AND:(Requ spec size<=0):AND:(Requ spec quality flag>0):AND:\ 

  Verify requ spec or not=1,1,IF THEN ELSE 

 ((Requ spec ver status=2 

 ):AND:(Requ spec size>0):AND:(Requ spec status<>1):AND:Verify requ spec or not=1,-1,\ 

  IF THEN ELSE((Requ spec ver status= 

 1):AND:(Requ spec size<=0):AND: 

 (Requ spec quality flag<1):AND:Verify requ spec or not=1,2,IF THEN ELSE(Verify requ spec or 
not\ 

  =0:AND:Requ spec ver status=0,0,0))))) 

 ~ Dmnl/Day 

 ~ This rate is used to specify the rate of change in the 'Requ spec ver \ 

  status' level variable. 

 | 

 

Requ spec learning change= 

 IF THEN ELSE(Actual requ size to specify>0,(Requ specification activity+Requ spec verification 
activity\ 

  )/Actual requ size to specify,0) 

 ~ Dmnl/Day 

 ~ This rate is used to specify the changes in the learning status of the \ 

  requirements specification document. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 47

Requ spec quality= 

 IF THEN ELSE(Requ spec verified>0,Sum requ spec faults pending/Requ spec verified, 0\ 

  ) 

 ~ Defect/Page 

 ~ This variable is used to specify the number of requirements specification \ 

  defects detected and not yet fixed in every page of the requirements \ 

  specification document. 

 | 

 

Requ spec quality flag= 

 IF THEN ELSE(Requ spec quality limit>0:AND:Requ spec quality>Requ spec quality limit\ 

  ,1,IF THEN ELSE(Requ spec quality limit =0,0,0)) 

 ~ Dmnl 

 ~ This flag is used to show the current quality of the requirements \ 

  specification document is acceptable according to the 'Requ spec quality \ 

  limit' and 'Requ spec quality'. 

 | 

 

Requ spec learning status= INTEG ( 

 Requ spec learning change, 

  0) 

 ~ Dmnl 

 ~ This level is used to specify the learning status of the requirements \ 

  specification document. Everytime this document is \ 

  developed/verified/reworked one is added to this value. 

 | 

 

Requ spec status change= 

 IF THEN ELSE((Requ spec status=0):AND:(Requ spec to do size>0),1,IF THEN ELSE 

 ((Requ spec status=1):AND: 

 (Requ spec to do size<=0),1,IF THEN ELSE((Requ spec status=2):AND:(Requ spec to do size\ 

  >0):AND:(Requ spec ver status<>1),-1,0))) 

 ~ Dmnl/Day 

 ~ This rate is used to spefiy the changes in the 'Requ spec status' level \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 48

  variable. 

 | 

 

Requ spec quality limit= 

 0 

 ~ Defect/Page 

 ~ This constant is used to specify the acceptable number of defects that can \ 

  be detected and fixed in every page of the requirements specification \ 

  document. 

 | 

 

Requ spec status= INTEG ( 

 Requ spec status change, 

  0) 

 ~ Dmnl 

 ~ This level variable is used to specify the status of the requirements \ 

  specification development/rework status. It can have 3 values: 0,1,2. 0 \ 

  means it is non-existant. 1 means it is active. 2 means it is active. 

 | 

 

Requ spec ver status= INTEG ( 

 Requ spec ver change, 

  0) 

 ~ Dmnl 

 ~ This level variable is used to specify the status of the requirements \ 

  specification activity. It can have 4 values: 0,1,2,3. 0 means that it is \ 

  non-existant. 1 means that it is active. 2 means it is complete but it has \ 

  to be repeated. 3 means it is complete. 

 | 

 

Sum requ spec faults pending= 

 SUM(Requ spec faults pending[origin!,factor!]) 

 ~ Defect 

 ~ This variable is used to specify the sum of pending requirements \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 49

  specification defects over all origins and factors. 

 | 

******************************************************** 

 .Requirement Specification Workforce 

********************************************************~ 

 | 

 

Actual requ dev effort rate= 

 IF THEN ELSE( Requ spec learning status<=1,Requ dev workforce,0) 

 ~ Person 

 ~ This rate is used to specify the number of developers which are assigned \ 

  to requirements specification development activity 

 | 

 

Actual requ spec effort= 

 Actual requ dev effort+Sum actual requ spec rework effort 

 ~ Person*Day 

 ~ This variable specifies the amount of actual effort spent on requirements \ 

  specification development/rework. 

 | 

 

Sum actual requ spec rework effort= 

 SUM(Actual requ spec rework effort[origin!,factor!]) 

 ~ Person*Day 

 ~ This variable is used to sum the actual number effort spent on fixing \ 

  defects detected in the requirements specification document over all \ 

  origins and quality factors. 

 | 

 

Actual requ spec rework effort[origin,factor]= INTEG ( 

 Actual requ spec rework effort rate[origin,factor], 

  0) 

 ~ Person*Day 

 ~ This level is used to store the actual rework effort which has been spent \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 50

  on fixing defects detected in the requirements specification document. 

 | 

 

Actual requ spec rework effort rate[origin,factor]= 

 Requ spec rework effort per fault*Requ spec fault correction rate[origin,factor] 

 ~ Person 

 ~ This rate is used to specify the actual rework effort that is spent on \ 

  fixing defects detected in the requirements specification everyday. It is \ 

  defined because sometimes developers are assigned to rework some part of \ 

  the document within a whole day, but the actual work requires less effort. \ 

  This happens because time step is defined as a day and development \ 

  assignments are done everyday. 

 | 

 

Actual requ dev effort= INTEG ( 

 Actual requ dev effort rate, 

  0) 

 ~ Day*Person 

 ~ This level variable is used to store the amount of effort spent of \ 

  requirements specification development activity. 

 | 

 

Initial max requ spec rate per person and day= 

 0.07 

 ~ Page/(Person*Day) 

 ~ This constant specifies the number of pages that developer initially \ 

  develop the requirements specification document everyday. 

 | 

 

Requ dev effort= INTEG ( 

 Requ dev workforce, 

  0) 

 ~ Person*Day 

 ~ This level variable is used to keep track of the effort spent of the \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 51

  requirements specification development/rework acitivity. 

 | 

 

Requ ver effort= INTEG ( 

 Requ ver workforce, 

  0) 

 ~ Person*Day 

 ~ This level variable is used to keep track of the effort spent of the \ 

  requirements specification verification acitivity. 

 | 

 

Requ effort= 

 Requ dev effort+Requ ver effort 

 ~ Day*Person 

 ~ This variable is used to show the total effort spent on the requirements \ 

  specification document. 

 | 

 

Requ ver team skill level average= 

 Actual allocation[REV,SKLL] 

 ~ Dmnl 

 ~ This variable is used to specify the skill level average of the developers \ 

  assigned to requirements specification verification activity on a 0 to 1 \ 

  basis. 

 | 

 

Requ ver workforce= 

 Actual allocation[REV,NMBR] 

 ~ Person 

 ~ This variable is used to specify the number of developers which are \ 

  assigned to requirements specification verification activity. 

 | 

 

Requ dev team skill level average= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 52

 Actual allocation[RED,SKLL] 

 ~ Dmnl 

 ~ This variable is used to specify the skill level average of the developers \ 

  assigned to requirements specification development/rework activity on a 0 \ 

  to 1 basis. 

 | 

 

Requ dev workforce= 

 Actual allocation[RED,NMBR] 

 ~ Person 

 ~ This variable is used to specify the number of developers that are \ 

  assigned to requirements specification development/rework activity. 

 | 

 

******************************************************** 

 .Design Process 

********************************************************~ 

 | 

 

Maximum design dev rate per day[subsystem]= 

 IF THEN ELSE(Design learning status[subsystem]>1:AND:Sum design faults pending per 
subsystem\ 

  [subsystem]>0:AND:Design to do size[subsystem]>0,Design to do size[subsystem]*Sum 
design fault correction per subsystem\ 

  [subsystem]/Sum design faults pending per subsystem[subsystem],Initial design dev 
rate per person per day\ 

  [subsystem]*Design dev workforce per subsystem[subsystem]) 

 ~ Page/Day 

 ~  | 

 

Design dev productivity[subsystem]= 

 Maximum design dev rate per day[subsystem]*Design dev team skill level average 

 ~ Page/Day 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 53

Design ver productivity= 

 IF THEN ELSE(Number of subsystems being verified in design>0,(Design ver 
workforce/Number of documents being processed per activity 

 [DEV] 

 )*Maximum design ver rate per person per day*Design ver team skill level average,0) 

 ~ Page/Day 

 ~  | 

 

Design to rework due to verification= 

 SUM(Design to rework due to verification or not[subsystem!]) 

 ~ Page/Day 

 ~ This variable sums the 'Design to rework due to verification or not' \ 

  overall subsystems. 

 | 

 

Design to rework due to verification or not[subsystem]= 

 IF THEN ELSE(Design to rework[subsystem]>0:AND:Design verification activity[subsystem\ 

  ]>0,Design to rework[subsystem],0) 

 ~ Page/Day 

 ~ This variable specifies per subsystem the amount of design rework which is \ 

  being done due to defects detected during verification activity. 

 | 

 

Design to CM[subsystem]= 

 IF THEN ELSE(Design doc ready size[subsystem]>Average design size in pages[subsystem\ 

  ]-0.1:AND:Total code doc dev status per subsystem 

 [subsystem]=0,Design doc ready size[subsystem]/TIME STEP,IF THEN ELSE(Total code doc dev 
status per subsystem\ 

  [subsystem]>0,Design doc ready size 

 [subsystem]/TIME STEP,0)) 

 ~ Page/Day 

 ~  | 

 

Design verification activity[subsystem]= 

 IF THEN ELSE(Design doc ver status[subsystem]=1:OR:(Design doc ver status[subsystem]\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 54

  =2:AND:Design doc dev status[subsystem 

 ]=2),MIN(Design doc size[subsystem]/TIME STEP,Design ver productivity),0) 

 ~ Page/Day 

 ~  | 

 

Design not to verify[subsystem]= 

 IF THEN ELSE(Design doc ver status[subsystem]>=3,Design doc size[subsystem]/TIME STEP\ 

  ,IF THEN ELSE(Design doc dev status[subsystem 

 ]=2:AND:Design doc ver status[subsystem]=3, Design doc size[subsystem]/TIME STEP,IF THEN 
ELSE\ 

  (Verify design or not=0,Design doc size 

 [subsystem]/TIME STEP,0))) 

 ~ Page/Day 

 ~  | 

 

Design development activity[subsystem]= 

 IF THEN ELSE(Design doc dev status[subsystem]=1,MIN(Design to do size[subsystem]/TIME 
STEP\ 

  ,Design dev productivity[subsystem]),0) 

 ~ Page/Day 

 ~  | 

 

Design to rework[subsystem]= 

 IF THEN ELSE(Design doc quality ratio[subsystem]>0,Design verification activity[subsystem\ 

  ]*MIN(1,Design doc quality ratio 

 [subsystem])+Design doc stored flush[subsystem]+Design doc stored late flush[subsystem\ 

  ],Design verification activity[subsystem]+Design doc stored flush[subsystem]+Design 
doc stored late flush\ 

  [subsystem]) 

 ~ Page/Day 

 ~  | 

 

Design doc stored size[subsystem]= INTEG ( 

 Design to CM[subsystem]-Design doc stored flush[subsystem]-Design doc stored late flush\ 

  [subsystem], 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 55

  0) 

 ~ Page 

 ~  | 

 

Design to develop[subsystem]= 

 IF THEN ELSE(Requ to CM>0:AND:Total design doc dev status=0, Average design size in 
pages\ 

  [subsystem]/TIME STEP, 0) 

 ~ Page/Day 

 ~  | 

 

Design doc quality ratio[subsystem]= 

 IF THEN ELSE(Design verification activity[subsystem]>0:AND:Design doc quality limit per size 
unit\ 

  >0, Sum design fault detection 

 [subsystem]/(Design doc quality limit per size unit*Design verification activity[subsystem\ 

  ]), 0) 

 ~ Dmnl 

 ~  | 

 

Number of subsystems per product= 

 ELMCOUNT(subsystem) 

 ~ Dmnl 

 ~ This constant specifies the number of subsystems existing within the \ 

  system. 

 | 

 

Average design size in pages[subsystem]= 

 (Average requ size in pages/Number of subsystems per product)*Average requ to design 
conversion factor per subsystem\ 

  [subsystem] 

 ~ Page 

 ~ This variable specifies the size of the design document for every \ 

  subsystem. It assumes that each subsystem corresponds to equal number of \ 

  pages of the requirements specification document. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 56

 | 

 

Actual design size to develop[subsystem]= INTEG ( 

 Design to develop[subsystem], 

  0) 

 ~ Page 

 ~  | 

 

Average requ to design conversion factor per subsystem[subsystem]= 

 30,28,35,22,40 

 ~ Dmnl 

 ~ This constant specifies each page of the requirements specification \ 

  document convert to how many pages of design document for every subsystem. 

 | 

 

Design doc ready size[subsystem]= INTEG ( 

 Design not to rework[subsystem]+Design not to verify[subsystem]-Design to CM[subsystem\ 

  ], 

  0) 

 ~ Page 

 ~  | 

 

Design doc size[subsystem]= INTEG ( 

 Design development activity[subsystem]-Design verification activity[subsystem]-Design not to 
verify\ 

  [subsystem], 

  0) 

 ~ Page 

 ~  | 

 

Design not to rework[subsystem]= 

 MAX(Design verification activity[subsystem]-Design to rework[subsystem],0) 

 ~ Page/Day 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 57

 

Design to do size[subsystem]= INTEG ( 

 Design to develop[subsystem]-Design development activity[subsystem]+Design to rework\ 

  [subsystem], 

  0) 

 ~ Page 

 ~  | 

 

Productivity design learning amplifier= 

 1 

 ~ Dmnl 

 ~  | 

 

******************************************************** 

 .Design Quality 

********************************************************~ 

 | 

 

Design ver effectiveness constant= 

 0.76 

 ~ Dmnl 

 ~  | 

 

Average design ver effectiveness[origin,factor]= 

 Design ver effectiveness[origin,factor]*Design ver team skill level average 

 ~ Dmnl 

 ~  | 

 

Detected design faults flush[origin,factor,subsystem]= 

 IF THEN ELSE( Design doc ver status[subsystem]>1, Design faults detected[origin,factor\ 

  ,subsystem]/TIME STEP, 0) 

 ~ Defect/Day 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 58

Corrected design faults flush[origin,factor,subsystem]= 

 IF THEN ELSE( Design doc dev status[subsystem]=2 , Design faults corrected[origin,factor\ 

  ,subsystem]/TIME STEP, 0) 

 ~ Defect/Day 

 ~  | 

 

Requ to design faults waiting[origin,factor,subsystem]= INTEG ( 

 Requ to design fault propagation[origin,factor]-Design fault generation due to propagation\ 

  [origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~ This level variable is used to hold the design faults which will be \ 

  injected in the design document due to defect propagation from the \ 

  requirements specification phase. 

 | 

 

Requ to design fault propagation[origin,factor]= 

 IF THEN ELSE(Requ to CM>0:AND:Total design doc dev status=0,Requ spec faults undetected\ 

  [origin,factor]*Average requ to design fault multiplier 

 [origin]/Number of subsystems per product/TIME STEP,0) 

 ~ Defect/Day 

 ~ This variable specifies the number of defects which will be injected in \ 

  the design document because of faults in the requirements specification \ 

  document. 

 | 

 

Design ver effectiveness[requ,factor]= 

 Design ver effectiveness constant ~~| 

Design ver effectiveness[design,factor]= 

 Design ver effectiveness constant ~~| 

Design ver effectiveness[code,factor]= 

 0,0,0 

 ~ Dmnl 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 59

 

Design fault detection[requ,factor,subsystem]= 

 IF THEN ELSE( Design verification activity[subsystem]>0, MIN(Design faults undetected\ 

  [requ,factor,subsystem]/TIME STEP 

 ,Average design ver effectiveness[requ,factor]*Design verification activity[subsystem\ 

  ]*(Design faults undetected[requ,factor 

 ,subsystem]+Design faults detected[requ,factor,subsystem])/(Design doc size[subsystem\ 

  ]+Design doc verified[subsystem])) 

 ,Code fault detection per subsystem[requ,factor,subsystem]/3) ~~| 

Design fault detection[design,factor,subsystem]= 

 IF THEN ELSE( Design verification activity[subsystem]>0, MIN(Design faults undetected\ 

  [design,factor,subsystem]/TIME STEP 

 ,Average design ver effectiveness[design,factor]*Design verification activity[subsystem\ 

  ]*(Design faults undetected 

 [design,factor,subsystem]+Design faults detected[design,factor,subsystem] 

 )/(Design doc size[subsystem]+Design doc verified[subsystem])),Code fault detection per 
subsystem\ 

  [design,factor,subsystem]/3) ~~| 

Design fault detection[code,factor,subsystem]= 

 0 

 ~ Defect/Day 

 ~  | 

 

Design fault correction[origin,factor,subsystem]= 

 IF THEN ELSE(Design dev workforce per subsystem[subsystem]>0:AND:Design doc dev status\ 

  [subsystem]<3, MIN(Design dev workforce per subsystem[subsystem]/Design rework 
effort per fault\ 

  [subsystem],Design faults pending[origin,factor,subsystem]/TIME STEP),IF THEN 
ELSE(\ 

  Design dev workforce per subsystem[subsystem]>0:AND:Design doc dev 
status[subsystem\ 

  ]>=3, MIN(Design dev workforce per subsystem[subsystem]/Design rework effort per 
fault\ 

  [subsystem],Design faults pending[origin,factor,subsystem]/TIME STEP)*Rework design 
or not\ 

  ,0)) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 60

 ~ Defect/Day 

 ~  | 

 

Design fault generation[origin,factor,subsystem]= 

 Design fault generation due to propagation[origin,factor,subsystem]+Design development 
activity\ 

  [subsystem]*Average design fault injection per size unit 

 [origin,factor]*(1/MAX(1,Design learning status[subsystem]^Learning amplifier for design fault 
injection\ 

  )) 

 ~ Defect/Day 

 ~  | 

 

Average design fault injection per size unit[origin,factor]= 

 Minimum design fault injection per size unit[origin,factor]+(1-Design dev team skill level 
average\ 

  )*Minimum design fault injection per size unit[origin,factor] 

 ~ Defect/Page 

 ~  | 

 

Requ to design faults propagated[origin,factor,subsystem]= INTEG ( 

 Design fault generation due to propagation[origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~ This level variable specifies the number of faults which were injected in \ 

  the design document because of defects propagated from the requirements \ 

  specification phase. 

 | 

 

Design fault generation due to propagation[origin,factor,subsystem]= 

 IF THEN ELSE(Actual design size to develop[subsystem]>0:AND:Requ to design faults waiting\ 

  [origin,factor,subsystem]>0, MIN(Requ to design faults waiting[origin,factor,subsystem\ 

  ]/TIME STEP, (Requ to design faults waiting[origin,factor,subsystem]+Requ to design 
faults propagated\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 61

  [origin,factor,subsystem])*Design development activity[subsystem]/Actual design size 
to develop\ 

  [subsystem]), 0) 

 ~ Defect/Day 

 ~ This rate is used to inject design faults due to defect propagation from \ 

  the requirements specification phase in the design document as design \ 

  development happens. It specifies the number of design faults which will \ 

  be injected in the design document because of propagated requirements \ 

  specification defects everyday. 

 | 

 

Average requ to design fault multiplier[origin]= 

 3,0,0 

 ~ Dmnl 

 ~ This constant specifies the number of design faults which will be injected \ 

  in the design document, because of one fault in the requirements \ 

  specification document. 

 | 

 

Sum design fault detection[subsystem]= 

 SUM(Design fault detection[origin!,factor!,subsystem]) 

 ~ Defect/Day 

 ~  | 

 

Actual design faults detected[origin,factor,subsystem]= INTEG ( 

 Design fault detection[origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Design faults detected[origin,factor,subsystem]= INTEG ( 

 Design fault detection[origin,factor,subsystem]-Detected design faults flush[origin,\ 

  factor,subsystem], 

  0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 62

 ~ Defect 

 ~  | 

 

Design faults generated[origin,factor,subsystem]= INTEG ( 

 Design fault generation[origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Minimum design fault injection per size unit[requ,factor]= 

 0,0,0 ~~| 

Minimum design fault injection per size unit[design,factor]= 

 0.454,0.454,0.454 ~~| 

Minimum design fault injection per size unit[code,factor]= 

 0,0,0 

 ~ Defect/Page 

 ~  | 

 

Actual design faults corrected[origin,factor,subsystem]= INTEG ( 

 Design fault correction[origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Design faults corrected[origin,factor,subsystem]= INTEG ( 

 Design fault correction[origin,factor,subsystem]-Corrected design faults flush[origin\ 

  ,factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Design faults pending[origin,factor,subsystem]= INTEG ( 

 Design fault detection[origin,factor,subsystem]-Design fault correction[origin,factor\ 

  ,subsystem], 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 63

  0) 

 ~ Defect 

 ~  | 

 

Design faults undetected[origin,factor,subsystem]= INTEG ( 

 Design fault generation copy[origin,factor,subsystem]-Design fault detection[origin,\ 

  factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Design fault generation copy[origin,factor,subsystem]= 

 Design fault generation[origin,factor,subsystem] 

 ~ Defect/Day 

 ~  | 

 

Learning amplifier for design fault detection= 

 2 

 ~ Dmnl 

 ~  | 

 

******************************************************** 

 .Design Status 

********************************************************~ 

 | 

 

Design learning status change[subsystem]= 

 IF THEN ELSE(Actual design size to develop[subsystem]>0, (Design development activity\ 

  [subsystem]+Design verification activity[subsystem])/Actual design size to develop 

 [subsystem], 0) 

 ~ Dmnl/Day 

 ~  | 

 

Design doc ver status change[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 64

 IF THEN ELSE(Design doc ver status[subsystem]=0:AND:Design doc dev status[subsystem]\ 

  >1:AND:Verify design or not=1,1,IF THEN ELSE 

 (Design doc ver status[subsystem]=1:AND:Design doc size[subsystem]<=0:AND:Design doc 
quality flag\ 

  [subsystem]>0:AND:Verify design or not=1,1,IF THEN ELSE(Design doc ver 
status[subsystem\ 

  ]=2:AND:Design doc size[subsystem]>0:AND:Design doc dev 
status[subsystem]<>1:AND:Verify design or not\ 

  =1,-1,IF THEN ELSE(Design doc ver status[subsystem]=1:AND:Design doc 
size[subsystem\ 

  ]<=0:AND:Design doc quality flag[subsystem]<1:AND:Verify design or not=1,2,IF THEN 
ELSE\ 

  (Design doc ver status[subsystem]=0:AND:Verify design or not=0:AND:Design doc dev 
status\ 

  [subsystem]>0,0,0))))) 

 ~ Dmnl/Day 

 ~  | 

 

Design doc quality flag[subsystem]= 

 IF THEN ELSE(Design doc quality limit per size unit>0:AND:Design doc quality[subsystem\ 

  ]>Design doc quality limit per size unit,1,IF THEN ELSE(Design doc quality limit per 
size unit\ 

  =0,0,0)) 

 ~ Dmnl 

 ~  | 

 

Design learning status[subsystem]= INTEG ( 

 Design learning status change[subsystem], 

  0) 

 ~ Dmnl 

 ~  | 

 

Design doc dev status change[subsystem]= 

 IF THEN ELSE((Design doc dev status[subsystem]=0):AND:(Design to do size[subsystem]>\ 

  0),1,IF THEN ELSE 

 ((Design doc dev status[subsystem]=1):AND: 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 65

 (Design to do size[subsystem]<=0),1,IF THEN ELSE((Design doc dev status[subsystem]=2\ 

  ):AND:(Design to do size[subsystem]>0):AND:(Design doc ver status[subsystem]<>1),-
1\ 

  ,0))) 

 ~ Dmnl/Day 

 ~  | 

 

Design doc ver status[subsystem]= INTEG ( 

 Design doc ver status change[subsystem], 

  0) 

 ~ Dmnl 

 ~ status 0 : non_exist 

  status 1: incomplete 

  status 2: complete_repeat 

  status 3: complete_final 

 | 

 

Design doc dev status[subsystem]= INTEG ( 

 Design doc dev status change[subsystem], 

  0) 

 ~ Dmnl 

 ~ status 0 : non_exist 

  status 1: incomplete 

  status 2: complete 

 | 

 

Design doc quality limit per size unit= 

 0 

 ~ Defect/Page 

 ~  | 

 

******************************************************** 

 .Design Workforce 

********************************************************~ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 66

 | 

 

Actual design rework effort rate[origin,factor,subsystem]= 

 Design fault correction[origin,factor,subsystem]*Design rework effort per fault[subsystem\ 

  ] 

 ~ Person 

 ~  | 

 

Actual design dev effort[subsystem]= INTEG ( 

 Actual design dev effort rate[subsystem], 

  0) 

 ~ Day*Person 

 ~  | 

 

Actual design dev effort rate[subsystem]= 

 IF THEN ELSE(Design learning status[subsystem]<1,Design dev workforce per subsystem[\ 

  subsystem],0) 

 ~ Person 

 ~  | 

 

Actual design effort= 

 Sum actual design dev effort+Sum actual design rework effort 

 ~ Day*Person 

 ~ This variable specifies the amount of actual effort spent on design \ 

  development/rework activities. 

 | 

 

Actual design rework effort[origin,factor,subsystem]= INTEG ( 

 Actual design rework effort rate[origin,factor,subsystem], 

  0) 

 ~ Day*Person 

 ~  | 

 

Sum actual design dev effort= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 67

 SUM(Actual design dev effort[subsystem!]) 

 ~ Day*Person 

 ~ This variable sums the actual effort spent on developement of all \ 

  subsystems. 

 | 

 

Sum actual design rework effort= 

 SUM(Actual design rework effort[origin!,factor!,subsystem!]) 

 ~ Day*Person 

 ~  | 

 

Design dev workforce per subsystem[subsystem]= 

 IF THEN ELSE(Number of documents being processed per activity[DED]>0:AND:Design doc 
dev status\ 

  [subsystem]=1,Design dev workforce/Number of documents being processed per 
activity 

 [DED],0) 

 ~ Person 

 ~ This variable specifies how many developers are working on every subsystem. 

 | 

 

Design dev effort= INTEG ( 

 Design dev effort rate, 

  0) 

 ~ Day*Person 

 ~  | 

 

Design dev effort rate= 

 Design dev workforce 

 ~ Person 

 ~  | 

 

Design ver effort= INTEG ( 

 Design ver effort rate, 

  0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 68

 ~ Day*Person 

 ~ This level variable is used to keep track of the effort spent of the \ 

  design verification acitivity. 

 | 

 

Design ver effort rate= 

 Design ver workforce 

 ~ Person 

 ~  | 

 

Initial design dev rate per person per day[subsystem]= 

 0.8287 

 ~ Page/(Day*Person) 

 ~  | 

 

Design effort= 

 Design dev effort+Design ver effort 

 ~ Day*Person 

 ~ This variable is used to show the total effort spent on the design \ 

  document. 

 | 

 

Design dev team skill level average= 

 Actual allocation[DED,SKLL] 

 ~ Dmnl 

 ~  | 

 

Design ver workforce= 

 Actual allocation[DEV,NMBR] 

 ~ Person 

 ~  | 

 

Design ver team skill level average= 

 Actual allocation[DEV,SKLL] 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 69

 ~ Dmnl 

 ~  | 

 

Maximum design ver rate per person per day= 

 30 

 ~ Page/(Day*Person) 

 ~  | 

 

Design dev workforce= 

 Actual allocation[DED,NMBR] 

 ~ Person 

 ~  | 

 

******************************************************** 

 .IT Workforce 

********************************************************~ 

 | 

 

IT effort per module[module]= 

 IF THEN ELSE(Number of modules per subsystem[subsystem]>0:AND:Sum code to be tested in 
IT per subsystem\ 

  [subsystem]> 

 0,IT effort per subsystem[subsystem]*(Code to be tested in IT[module]/Sum code to be tested in 
IT per subsystem\ 

  [subsystem]),0) 

 ~ Day*Person 

 ~ This variable specifies the amount of effort that has to be spent for \ 

  integration testing for a module. 

 ~ :SUPPLEMENTARY  

 | 

 

Integration testing effort= 

 SUM(IT execution effort per module[module!])+SUM(Integration testing TC dev effort per 
subsystem\ 

  [subsystem!]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 70

 ~ Day*Person 

 ~ This variable is used to show the total effort spent for integration \ 

  testing. 

 | 

 

IT execution effort rate per module[module]= 

 IF THEN ELSE(IT rate[module]>0,IT workforce per module[module],0) 

 ~ Person 

 ~ This rate specifies the number of developers that work on integration \ 

  testing execution of a module everyday. 

 | 

 

IT execution effort per module[module]= INTEG ( 

 IT execution effort rate per module[module], 

  0) 

 ~ Day*Person 

 ~ This level variable specifies the amount of effort that is spent on \ 

  integration testing execution activity for a module. 

 | 

 

Integration testing effort rate per subsystem= 

 Integration testing execution workforce 

 ~ Person 

 ~  | 

 

IT workforce per module[module]= 

 IF THEN ELSE(Number of documents being processed per activity[ITV]>0,Integration testing 
execution workforce\ 

  /(Number of documents being processed per activity[ITV]*Number of modules per 
subsystem\ 

  [subsystem]),0) 

 ~ Person 

 ~  | 

 

IT effort per subsystem[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 71

 Sum code to be tested in IT per subsystem[subsystem]/Average IT productivity per person per 
day 

 ~ Day*Person 

 ~ This variable specifies the amount of effort that has to be spent for \ 

  integration testing for a subsystem. 

 | 

 

Integration testing execution effort per subsystem= INTEG ( 

 Integration testing effort rate per subsystem, 

  0) 

 ~ Day*Person 

 ~  | 

 

Integration testing TC dev effort per subsystem[subsystem]= INTEG ( 

 Integration testing TC dev effort rate per subsystem[subsystem], 

  0) 

 ~ Day*Person 

 ~  | 

 

Integration testing TC dev effort rate per subsystem[subsystem]= 

 IF THEN ELSE(Subsystem under TC dev in IT[subsystem]>0,Integration testing TC dev 
workforce\ 

  /Number of subsystems under TC dev in IT,0) 

 ~ Person 

 ~  | 

 

Integration testing execution team skill level average= 

 Actual allocation[ITV,SKLL] 

 ~ Dmnl 

 ~  | 

 

Integration testing TC dev team skill level average= 

 Actual allocation[ITTC,SKLL] 

 ~ Dmnl 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 72

 

Integration testing TC dev workforce= 

 Actual allocation[ITTC,NMBR] 

 ~ Person 

 ~  | 

 

Integration testing execution workforce= 

 Actual allocation[ITV,NMBR] 

 ~ Person 

 ~  | 

 

Maximum number of IT test cases developed per person per day= 

 5 

 ~ Testcase/(Day*Person) 

 ~  | 

 

Average number of IT test cases executed per person per day= 

 20 

 ~ Testcase/(Day*Person) 

 ~  | 

 

******************************************************** 

 .ST Workforce 

********************************************************~ 

 | 

 

Skill level average average of TC developers for ST= 

 IF THEN ELSE(ST TC dev done or not=1,System testing TC dev team skill level average stored\ 

  /System testing TC dev working time*TIME STEP,0) 

 ~ Dmnl 

 ~  | 

 

System testing TC dev skill level average rate= 

 System testing TC dev team skill level average/TIME STEP 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 73

 ~ Dmnl/Day 

 ~  | 

 

System testing effort= 

 System testing execution effort+System testing TC dev effort 

 ~ Day*Person 

 ~ This variable is used to show the total effort spent for system testing. 

 | 

 

System testing execution effort= INTEG ( 

 System testing execution workforce, 

  0) 

 ~ Day*Person 

 ~  | 

 

System testing TC dev effort= INTEG ( 

 System testing TC dev workforce, 

  0) 

 ~ Day*Person 

 ~  | 

 

Average ST productivity per person per day= 

 0.1546 

 ~ KLOC/(Day*Person) 

 ~  | 

 

System testing TC dev workforce= 

 Actual allocation[STTC,NMBR] 

 ~ Person 

 ~  | 

 

System testing execution workforce= 

 Actual allocation[STV,NMBR] 

 ~ Person 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 74

 ~  | 

 

System testing execution team skill level average= 

 Actual allocation[STV,SKLL] 

 ~ Dmnl 

 ~  | 

 

System testing TC dev team skill level average= 

 Actual allocation[STTC,SKLL] 

 ~ Dmnl 

 ~  | 

 

System testing TC dev team skill level average stored= INTEG ( 

 System testing TC dev skill level average rate, 

  0) 

 ~ Dmnl 

 ~  | 

 

System testing TC dev working time= INTEG ( 

 System testing TC dev working time rate, 

  0) 

 ~ Day 

 ~  | 

 

System testing TC dev working time rate= 

 IF THEN ELSE(System testing TC dev team skill level average>0,1,0) 

 ~ Dmnl 

 ~  | 

 

Average number of test cases executed per person per day= 

 20 

 ~ Testcase/(Day*Person) 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 75

******************************************************** 

 .Code Process 

********************************************************~ 

 | 

 

Maximum code dev rate per day[module]= 

 IF THEN ELSE(Code learning status[module]>=1:AND:Sum code faults pending per module[\ 

  module]>0,Code to do size[module]*Sum code fault correction per module 

 [module]/Sum code faults pending per module[module], Initial code dev rate per person per 
day\ 

  *Code dev workforce per module 

 [module]) 

 ~ KLOC/Day 

 ~  | 

 

Code dev productivity[module]= 

 Maximum code dev rate per day[module]*Code dev team skill level average 

 ~ KLOC/Day 

 ~  | 

 

Code ver productivity= 

 IF THEN ELSE(Number of documents being processed per activity[COV]>0,(Code ver 
workforce\ 

  /Number of documents being processed per activity 

 [COV])*Maximum code ver rate per person per day*Code ver team skill level average,0) 

 ~ KLOC/Day 

 ~  | 

 

Portion of code reworked to actual system code size per subsystem[subsystem]= 

 Portion of code reworked to actual subsystem code size per subsystem[subsystem]/Number of 
subsystems per product\ 

  /TIME STEP 

 ~ Dmnl/Day 

 ~ This variable is used to specify the portion of code reworked to actual \ 

  system code size per subsystem 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 76

 | 

 

Verified code flush[module]= 

 IF THEN ELSE(Code doc dev status[module]=1, Code doc verified[module]/TIME STEP, 0) 

 ~ KLOC/Day 

 ~  | 

 

Code not to verify[module]= 

 IF THEN ELSE(Code doc dev status[module]=2:AND:Code doc ver status[module]=3, Code doc 
size\ 

  [module]/TIME STEP,IF THEN ELSE(Verify code or not 

 =0,Code doc size[module]/TIME STEP,0)) 

 ~ KLOC/Day 

 ~  | 

 

Code to develop[module]= 

 IF THEN ELSE(Design to CM[subsystem]>0:AND:Total code doc dev status per 
subsystem[subsystem\ 

  ]=0, Random average code size in KLOC 

 [module]/TIME STEP,0) 

 ~ KLOC/Day 

 ~  | 

 

Code to CM[module]= 

 IF THEN ELSE(Code doc ready size[module]>Actual code size to develop per module[module\ 

  ]*0.999, Code doc ready size[module 

 ]/TIME STEP,0) 

 ~ KLOC/Day 

 ~  | 

 

Code development activity[module]= 

 IF THEN ELSE(Code doc dev status[module]=1,MIN(Code to do size[module]/TIME STEP,Code 
dev productivity\ 

  [module]),0) 

 ~ KLOC/Day 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 77

 ~  | 

 

Random average code size in KLOC[module]= 

 Code randomizing multipliers[module]*Average code size in KLOC[module] 

 ~ KLOC 

 ~ This variable specifies the size of different modules. 

 | 

 

Number of test cases for UT[module]= 

 Average number of UT test cases per code size unit*Actual code size to develop per module\ 

  [module] 

 ~ Testcase 

 ~  | 

 

Code to IT flush[module]= 

 IF THEN ELSE(Integration test or not=1:AND:Unit test or not=1:AND:Integration test status\ 

  [module]<3:AND:Unit test status[module]>=3, Code to CM[module 

 ],IF THEN ELSE(Integration test or not=1:AND:Unit test or not=0:AND:Integration test status\ 

  [module]<3,Code to CM[module],0)) 

 ~ KLOC/Day 

 ~ This rate is used to send a moduls's code document for integration testing. 

 | 

 

Code to ST flush[module]= 

 IF THEN ELSE(System test or not=1:AND:Integration test or not=1:AND:Integration test status\ 

  [module]>=3:AND:System test status[module]<=2, Code to CM 

 [module],IF THEN ELSE(System test or not=1:AND:Integration test or not=0:AND:System test 
status\ 

  [module]<=2,Code to CM[module],0)) 

 ~ KLOC/Day 

 ~ This rate is used to send a moduls's code document for system testing. 

 | 

 

Code to UT flush[module]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 78

 IF THEN ELSE(Unit test status[module]<3:AND:Unit test or not=1, Code to CM[module], \ 

  0) 

 ~ KLOC/Day 

 ~ This rate is used to send a moduls's code document for unit testing. 

 | 

 

Code doc stored size[module]= INTEG ( 

 Code to CM[module]-Code to IT flush[module]-Code to ST flush[module]-Code to UT flush\ 

  [module], 

  0) 

 ~ KLOC 

 ~  | 

 

Code verification activity[module]= 

 IF THEN ELSE(Code doc ver status[module]=1:OR:(Code doc ver status[module]=2:AND:Code 
doc dev status\ 

  [module]=2),MIN(Code doc size 

 [module]/TIME STEP, Code ver productivity),0) 

 ~ KLOC/Day 

 ~  | 

 

Code to rework[module]= 

 IF THEN ELSE(Code doc quality ratio[module]>0,Code verification activity[module]*MIN\ 

  (1,Code doc quality ratio[module])+Code returned for rework rate from 
UT[module]+Code returned for rework from IT\ 

  [module]+Code returned for rework from ST[module],Code verification 
activity[module\ 

  ]+Code returned for rework rate from UT[module]+Code returned for rework from 
IT[module\ 

  ]+Code returned for rework from ST[module]) 

 ~ KLOC/Day 

 ~  | 

 

Code not to rework[module]= 

 MAX(Code verification activity[module]-Code to rework[module],0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 79

 ~ KLOC/Day 

 ~  | 

 

Number of modules per subsystem[SUB1]= 

 ELMCOUNT(mod sub1) ~~| 

Number of modules per subsystem[SUB2]= 

 ELMCOUNT(mod sub2) ~~| 

Number of modules per subsystem[SUB3]= 

 ELMCOUNT(mod sub3) ~~| 

Number of modules per subsystem[SUB4]= 

 ELMCOUNT(mod sub4) ~~| 

Number of modules per subsystem[SUB5]= 

 ELMCOUNT(mod sub5) 

 ~ Dmnl 

 ~ This variable specifies the number of modules in every subsystem of the \ 

  product. 

 | 

 

Average code size in KLOC[module]= 

 Average design to code conversion factor per subsystem[subsystem]*Average design size in 
pages\ 

  [subsystem]/Number of modules per subsystem[subsystem] 

 ~ KLOC 

 ~ This variable specifies the average size of modules according to size of \ 

  their subsystem's design document and the number of modules in their \ 

  subsystem. It assumes that all modules within a subsystem correspond to \ 

  equal portions of their subsystem's design document size. 

 | 

 

Code doc verified[module]= INTEG ( 

 Code verification activity[module]-Verified code flush[module], 

  0) 

 ~ KLOC 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 80

 

Code doc quality ratio[module]= 

 IF THEN ELSE(Code verification activity[module]>0:AND:Code doc quality limit per size unit\ 

  >0, Sum code fault detection per module[module]/(Code doc quality limit per size unit\ 

  *Code verification activity[module]), 0) 

 ~ Dmnl 

 ~  | 

 

Actual code size to develop per module[module]= INTEG ( 

 Code to develop[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Code doc ready size[module]= INTEG ( 

 Code not to rework[module]+Code not to verify[module]-Code to CM[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Average design to code conversion factor per subsystem[subsystem]= 

 0.2,0.14,0.18,0.25,0.2 

 ~ KLOC/Page 

 ~  | 

 

Code to do size[module]= INTEG ( 

 Code to develop[module]-Code development activity[module]+Code to rework[module], 

  0) 

 ~ KLOC 

 ~  | 

 

******************************************************** 

 .Code Quality 

********************************************************~ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 81

 | 

 

Code ver effectiveness constant= 

 0.53 

 ~ Dmnl 

 ~  | 

 

Average code ver effectiveness[origin,factor]= 

 Code ver effectiveness[origin,factor]*Code ver team skill level average 

 ~ Dmnl 

 ~  | 

 

Code fault detection[origin,factor,module]= 

 IF THEN ELSE( Actual code size to develop per module[module]>0:AND:Code verification 
activity\ 

  [module]>0, MIN(Code faults undetected in coding 

 [origin,factor,module]/TIME STEP, Average code ver effectiveness[origin,factor]*Code 
verification activity\ 

  [module]*(Code faults undetected in coding 

 [origin 

 ,factor,module]*(Code doc size[module]+Code doc verified[module])/Actual code size to 
develop per module\ 

  [module]+Code faults detected 

 [origin,factor,module])/(Code doc size[module]+Code doc verified[module])),Code fault 
detection rate in UT\ 

  [origin,factor 

 ,module]+Code fault detection rate in IT[origin,factor,module]+Code fault detection rate in ST\ 

  [origin,factor,module]) 

 ~ Defect/Day 

 ~  | 

 

Design to code fault propagation[origin,factor,subsystem]= 

 IF THEN ELSE(Design to CM[subsystem]>0:AND:Total code doc dev status per 
subsystem[subsystem\ 

  ]=0,(Design faults undetected 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 82

 [origin,factor,subsystem]*Average design to code fault multiplier[origin])/Number of modules 
per subsystem\ 

  [subsystem]/TIME STEP,  

 0) 

 ~ Defect/Day 

 ~  | 

 

Code fault generation due to propagation[origin,factor,module]= 

 IF THEN ELSE(Actual code size to develop per module[module]>0:AND:Design to code faults 
waiting\ 

  [origin,factor,module]>0 

 , MIN(Design to code faults waiting[origin,factor,module]/TIME STEP, (Design to code faults 
waiting\ 

  [origin,factor,module]+Design to code faults propagated 

 [origin,factor,module])*Code development activity[module]/Actual code size to develop per 
module\ 

  [module]), 0) 

 ~ Defect/Day 

 ~  | 

 

Corrected code faults flush[origin,factor,module]= 

 IF THEN ELSE( Code doc dev status[module]=2 , Code faults corrected[origin,factor,module\ 

  ]/TIME STEP, 0) 

 ~ Defect/Day 

 ~  | 

 

Detected code faults flush[origin,factor,module]= 

 IF THEN ELSE( Code doc ver status[module]>1, Code faults detected[origin,factor,module\ 

  ]/TIME STEP, 0) 

 ~ Defect/Day 

 ~  | 

 

Code ver effectiveness[requ,factor]= 

 Code ver effectiveness constant ~~| 

Code ver effectiveness[design,factor]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 83

 Code ver effectiveness constant ~~| 

Code ver effectiveness[code,factor]= 

 Code ver effectiveness constant 

 ~ Dmnl 

 ~  | 

 

Code fault correction[origin,factor,module]= 

 IF THEN ELSE(Code dev workforce per module[module]>0:AND:Code faults pending[origin,\ 

  factor,module]>0,MIN(Code dev workforce per module[module]/(Code rework effort 
per fault\ 

  [module]*9),Code faults pending[origin,factor,module]/TIME STEP),0) 

 ~ Defect/Day 

 ~  | 

 

code fault generation[origin,factor,module]= 

 Code fault generation due to propagation[origin,factor,module]+Code development activity 

 [module]*Average code fault injection per size unit 

 [origin,factor]/MAX(1,Code learning status[module]^(Learning amplifier for code fault 
injection\ 

  )) 

 ~ Defect/Day 

 ~  | 

 

Average code fault injection per size unit[origin,factor]= 

 Minimum code fault injection per size unit[origin,factor]+(1-Code dev team skill level average\ 

  )*Minimum code fault injection per size unit[origin,factor] 

 ~ Defect/KLOC 

 ~  | 

 

Code faults pending[origin,factor,module]= INTEG ( 

 Code fault detection[origin,factor,module]-Code fault correction[origin,factor,module\ 

  ], 

  0) 

 ~ Defect 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 84

 

Code fault generation copy[origin,factor,module]= 

 code fault generation[origin,factor,module] 

 ~ Defect/Day 

 ~  | 

 

Design to code faults waiting[origin,factor,module]= INTEG ( 

 Design to code fault propagation[origin,factor,subsystem]-Code fault generation due to 
propagation\ 

  [origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Design to code faults propagated[origin,factor,module]= INTEG ( 

 Code fault generation due to propagation[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Sum code fault detection per module[module]= 

 SUM(Code fault detection[origin!,factor!,module]) 

 ~ Defect/Day 

 ~  | 

 

Average design to code fault multiplier[origin]= 

 3,3,0 

 ~ Dmnl 

 ~  | 

 

Code faults detected[origin,factor,module]= INTEG ( 

 Code fault detection[origin,factor,module]-Detected code faults flush[origin,factor,\ 

  module], 

  0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 85

 ~ Defect 

 ~  | 

 

Actual code faults corrected[origin,factor,module]= INTEG ( 

 Code fault correction[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Actual code faults detected[origin,factor,module]= INTEG ( 

 Code fault detection[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Code faults corrected[origin,factor,module]= INTEG ( 

 Code fault correction[origin,factor,module]-Corrected code faults flush[origin,factor\ 

  ,module], 

  0) 

 ~ Defect 

 ~  | 

 

Code faults undetected in coding[origin,factor,module]= INTEG ( 

 Code fault generation copy[origin,factor,module]-Code fault detection[origin,factor,\ 

  module], 

  0) 

 ~ Defect 

 ~  | 

 

Minimum code fault injection per size unit[requ,factor]= 

 0,0,0 ~~| 

Minimum code fault injection per size unit[design,factor]= 

 0,0,0 ~~| 

Minimum code fault injection per size unit[code,factor]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 86

 4.84,4.84,4.84 

 ~ Defect/KLOC 

 ~  | 

 

Learning amplifier for code fault detection= 

 2 

 ~ Dmnl 

 ~  | 

 

Code faults generated[origin,factor,module]= INTEG ( 

 code fault generation[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

******************************************************** 

 .Code Status 

********************************************************~ 

 | 

 

Code doc ver status change[module]= 

 IF THEN ELSE((Code doc ver status[module]=0):AND:(Code doc dev status[module]>1):AND:\ 

  Verify code or not=1,1,IF THEN ELSE 

 ((Code doc ver status[module]=1):AND:(Code doc size[module]<=0):AND:(Code doc quality 
flag\ 

  [module]>0):AND:Verify code or not=1,1,IF THEN ELSE((Code doc ver status 

 [module]=2):AND:(Code doc size[module]>0):AND:(Code doc dev status[module] 

 <>1):AND:Verify code or not=1,-1,IF THEN ELSE((Code doc ver status[module]=1):AND:(Code 
doc size\ 

  [module]<=0):AND:(Code doc quality flag[module]<1):AND:Verify code or not=1,2,IF 
THEN ELSE\ 

  (Code doc ver status[module]=0:AND:Verify code or not=0:AND:Code doc dev 
status[module\ 

  ]>0,0,0))))) 

 ~ Dmnl/Day 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 87

 ~  | 

 

Code doc quality[module]= 

 IF THEN ELSE(Code doc verified[module]>0, Sum code faults pending per module[module]\ 

  /Code doc verified[module], 0) 

 ~ Defect/KLOC 

 ~  | 

 

Code doc quality flag[module]= 

 IF THEN ELSE(Code doc quality limit per size unit>0:AND:Code doc quality[module]>Code doc 
quality limit per size unit\ 

  ,1,IF THEN ELSE(Code doc quality limit per size unit=0,0,0)) 

 ~ Dmnl 

 ~  | 

 

Code learning status change[module]= 

 IF THEN ELSE(Actual code size to develop per module[module]>0, (Code development activity\ 

  [module]+Code verification activity[module])/Actual code size to develop per module\ 

  [module], 0) 

 ~ Dmnl/Day 

 ~  | 

 

Code doc dev status change[module]= 

 IF THEN ELSE((Code doc dev status[module]=0):AND:(Code to do size[module]>0),1,IF THEN 
ELSE 

 ((Code doc dev status[module]=1):AND: 

 (Code to do size[module]<=0),1,IF THEN ELSE((Code doc dev status[module]=2):AND:(Code to 
do size\ 

  [module]>0):AND:(Code doc ver status[module]<>1),-1,0)) 

 ) 

 ~ Dmnl/Day 

 ~  | 

 

Code doc dev status[module]= INTEG ( 

 Code doc dev status change[module], 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 88

  0) 

 ~ Dmnl 

 ~ status 0 : non_exist 

  status 1: incomplete 

  status 2: complete 

 | 

 

Code doc ver status[module]= INTEG ( 

 Code doc ver status change[module], 

  0) 

 ~ Dmnl 

 ~ status 0 : non_exist 

  status 1: incomplete 

  status 2: complete_repeat 

  status 3: complete_final 

 | 

 

Code learning status[module]= INTEG ( 

 Code learning status change[module], 

  0) 

 ~ Dmnl 

 ~  | 

 

Code doc quality limit per size unit= 

 0 

 ~ Defect/KLOC 

 ~  | 

 

******************************************************** 

 .Code Workforce 

********************************************************~ 

 | 

 

Actual code dev effort per system= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 89

 SUM(Actual code dev effort[module!]) 

 ~ Day*Person 

 ~  | 

 

Actual code dev effort rate[module]= 

 IF THEN ELSE(Code learning status[module]<1,Code dev workforce per module[module],0) 

 ~ Person 

 ~  | 

 

Actual code dev effort[module]= INTEG ( 

 Actual code dev effort rate[module], 

  0) 

 ~ Day*Person 

 ~  | 

 

Code dev workforce per module[module]= 

 IF THEN ELSE(Number of documents being processed per activity[COD]>0:AND:Code doc dev 
status\ 

  [module]=1,Code dev workforce 

 /Number of documents being processed per activity 

 [COD],0) 

 ~ Person 

 ~  | 

 

Actual code effort= 

 Actual code dev effort per system+Sum actual code rework effort per system 

 ~ Day*Person 

 ~ This variable specifies the amount of actual effort spent on code \ 

  development/rework. 

 | 

 

Actual code rework effort[origin,factor,module]= INTEG ( 

 Actual code rework effort rate[origin,factor,module], 

  0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 90

 ~ Day*Person 

 ~  | 

 

Actual code rework effort rate[origin,factor,module]= 

 Code fault correction[origin,factor,module]*Code rework effort per fault[module] 

 ~ Person 

 ~  | 

 

Sum actual code rework effort per system= 

 SUM(Actual code rework effort[origin!,factor!,module!]) 

 ~ Day*Person 

 ~  | 

 

Initial code dev rate per person per day= 

 0.048 

 ~ KLOC/(Person*Day) 

 ~  | 

 

Code ver team skill level average= 

 Actual allocation[COV,SKLL] 

 ~ Dmnl 

 ~  | 

 

Code ver workforce= 

 Actual allocation[COV,NMBR] 

 ~ Person 

 ~  | 

 

Code dev team skill level average= 

 Actual allocation[COD,SKLL] 

 ~ Dmnl 

 ~  | 

 

Maximum code ver rate per person per day= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 91

 0.6 

 ~ KLOC/(Day*Person) 

 ~  | 

 

Code dev workforce= 

 Actual allocation[COD,NMBR] 

 ~ Person 

 ~  | 

 

******************************************************** 

 .IT Process 

********************************************************~ 

 | 

 

Average IT productivity[module]= 

 IF THEN ELSE(IT effort per module[module]>0,Code to be tested in IT[module]*IT workforce 
per module\ 

  [module]/IT effort per module[module],0) 

 ~ KLOC/Day 

 ~ This rate specifies the number of KLOCs of code document that is \ 

  integration tested everyday. 

 | 

 

Average IT productivity per person per day= 

 0.1856 

 ~ KLOC/(Person*Day) 

 ~ This constant specifies the number of KLOCs of code document that each \ 

  developer integration tests everyday 

 | 

 

Average number of IT test cases developed per day= 

 Maximum number of IT test cases developed per person per day*Integration testing TC dev 
workforce\ 

  *Integration testing TC dev team skill level average 

 ~ Testcase/Day 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 92

 ~  | 

 

IT test case dev rate[subsystem]= 

 IF THEN ELSE(Subsystem waiting for TC dev for IT[subsystem]=1:AND:Average number of IT 
test cases developed per day\ 

  >0:AND: 

 IT test cases[subsystem]<Number of test cases for IT 

 [subsystem]:AND:IT test cases[subsystem]/TIME STEP+Average number of IT test cases 
developed per day\ 

  <=Number of test cases for IT 

 [subsystem]/TIME STEP,Average number of IT test cases developed per day,IF THEN ELSE\ 

  (Subsystem waiting for TC dev for IT[subsystem 

 ]:AND:Average number of IT test cases developed per day 

 >0:AND:IT test cases[subsystem]<Number of test cases for IT[subsystem]:AND:IT test cases\ 

  [subsystem]/TIME STEP+Average number of IT test cases developed per day 

 >Number of test cases for IT[subsystem]/TIME STEP,(Number of test cases for IT[subsystem\ 

  ]-IT test cases[subsystem])/TIME STEP,0)) 

 ~ Testcase/Day 

 ~  | 

 

Code returned for rework from IT[module]= 

 IF THEN ELSE(Integration test status[module]>1,Tested code in IT[module]/TIME STEP,0\ 

  ) 

 ~ KLOC/Day 

 ~  | 

 

Code ready for IT flush[module]= 

 IF THEN ELSE(Code ready for IT for a module's subsystem[module]<(Actual code size of a 
module's subsystem\ 

  [module]+0.1):AND: 

 Code ready for IT for a module's subsystem[module]>(Actual code size of a module's 
subsystem\ 

  [module]-0.1),Code ready for IT 

 [module]/TIME STEP,0) 

 ~ KLOC/Day 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 93

 ~ This rate is used to send all modules of a subsystem for integration \ 

  testing to begin. It does that when all modules of a subsystem are ready \ 

  for integration testing. 

 | 

 

IT rate[module]= 

 IF THEN ELSE(IT test case data available or not=1,IF THEN ELSE(Code to be tested in IT\ 

  [module]>0:AND:IT test cases[subsystem 

 ]>Number of test cases for IT[subsystem]-0.0001 

 :AND:Average number of IT test cases executed per day>0,MIN(Code to be tested in IT[\ 

  module]/TIME STEP,Actual code size to develop per module 

 [module]/(Number of test cases for IT[subsystem 

 ]/Average number of IT test cases executed per day)),0),IF THEN ELSE(Code to be tested in IT\ 

  [module]>0:AND:Average IT productivity 

 [module] 

 >0,MIN(Code to be tested in IT[module]/TIME STEP,Average IT productivity[module]),0)\ 

  ) 

 ~ KLOC/Day 

 ~  | 

 

Incoming code to IT[module]= 

 Code to IT flush[module] 

 ~ KLOC/Day 

 ~  | 

 

Sum code ready for IT per subsystem[subsystem]= 

 CUSTOMSUMONED(Code ready for IT[MOD1], Subsystem's first module 
number[subsystem],Number of modules per subsystem\ 

  [subsystem]) 

 ~ KLOC 

 ~ This variable specifies the amount of subsystem's code that is ready for \ 

  integration testing 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 94

Average number of IT test cases executed per day= 

 Average number of IT test cases executed per person per day*Integration testing execution 
workforce 

 ~ Testcase/Day 

 ~  | 

 

Code ready for IT for a module's subsystem[module]= 

 Sum code ready for IT per subsystem[subsystem]+Sum code ready for ST per 
subsystem[subsystem\ 

  ] 

 ~ KLOC 

 ~ This variable specifies the number of KLOCs of code that is ready for \ 

  integration testing for a module's subsystem. for example, for the first \ 

  module its the amount of code from the first subsystem which is ready for \ 

  integration testing.'Sum code ready for ST per subsystem' is added because \ 

  even when some of a subsystem's code passes integration testing it is \ 

  needed for integration testing of the rest on the code of the subsystem. 

 | 

 

Incoming code ready for IT rate[module]= 

 Code ready for IT flush[module] 

 ~ KLOC/Day 

 ~  | 

 

Code to be tested in IT[module]= INTEG ( 

 Incoming code ready for IT rate[module]-IT rate[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Actual code size of a module's subsystem[module]= 

 Sum actual code size to develop per subsystem[subsystem] 

 ~ KLOC 

 ~ This variable specifies the code size of a module's subsystem (the \ 

  subsystem that the module belongs to). 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 95

 | 

 

Code ready for IT[module]= INTEG ( 

 Incoming code to IT[module]-Code ready for IT flush[module], 

  0) 

 ~ KLOC 

 ~ This level variable specifies the amount of a module's code that is ready \ 

  for integration testing. 

 | 

 

Tested code in IT[module]= INTEG ( 

 IT rate[module]-Code returned for rework from IT[module], 

  0) 

 ~ KLOC 

 ~  | 

 

******************************************************** 

 .IT Quality 

********************************************************~ 

 | 

 

Integration testing TC dev team skill level average per subsystem[subsystem]= 

 IF THEN ELSE(Subsystem under TC dev in IT[subsystem]=1,Integration testing TC dev team 
skill level average\ 

  /TIME STEP,0) 

 ~ Dmnl/Day 

 ~  | 

 

IT TC dev team skill level average average[subsystem]= 

 IF THEN ELSE(IT TC dev done or not[subsystem]=1,IT TC dev team skill level average stored\ 

  [subsystem]/IT TC dev team working time 

 [subsystem]*TIME STEP,0) 

 ~ Dmnl 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 96

 

Average IT effectiveness[origin,factor,subsystem]= 

 IF THEN ELSE(IT test case data available or not=1,IT effectiveness[origin,factor]*IT TC dev team 
skill level average average 

 [subsystem],IT effectiveness[origin,factor]*Integration testing execution team skill level average\ 

  ) 

 ~ Dmnl 

 ~  | 

 

IT TC dev team skill level average stored[subsystem]= INTEG ( 

 IT TC dev team skill level average rate[subsystem], 

  0) 

 ~ Dmnl 

 ~  | 

 

IT TC dev team working time[subsystem]= INTEG ( 

 IT TC dev team working rate[subsystem], 

  0) 

 ~ Day 

 ~  | 

 

IT TC dev team skill level average rate[subsystem]= 

 Integration testing TC dev team skill level average per subsystem[subsystem] 

 ~ Dmnl/Day 

 ~  | 

 

IT TC dev team working rate[subsystem]= 

 IF THEN ELSE(Integration testing TC dev team skill level average per subsystem[subsystem\ 

  ]>0,1,0) 

 ~ Dmnl 

 ~  | 

 

Code fault detection rate in IT[origin,factor,module]= 

 IF THEN ELSE(IT rate[module]>0, MIN(Undetected code faults in IT[origin,factor,module\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 97

  ]/TIME STEP,Average IT effectiveness[origin, 

 factor,subsystem] 

 * 

 IT rate[module]*(Undetected code faults in IT[origin,factor,module]+Detected code faults in IT\ 

  [origin,factor,module])/( 

 Code to be tested in IT[module]+Tested code in IT[module])),0) 

 ~ Defect/Day 

 ~  | 

 

Undetected code faults in IT flush[origin,factor,module]= 

 IF THEN ELSE(Integration test status[module]>1,Undetected code faults in IT[origin,factor\ 

  ,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Incoming code faults to IT rate[origin,factor,module]= 

 IF THEN ELSE(Code ready for IT flush[module]>0,Code faults undetected in coding[origin\ 

  ,factor,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Detected code faults in IT flush[origin,factor,module]= 

 IF THEN ELSE(Integration test status[module]>1,Detected code faults in IT[origin,factor\ 

  ,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Detected code faults in IT[origin,factor,module]= INTEG ( 

 Code fault detection rate in IT[origin,factor,module]-Detected code faults in IT flush\ 

  [origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 98

Undetected code faults in IT[origin,factor,module]= INTEG ( 

 Incoming code faults to IT rate[origin,factor,module]-Code fault detection rate in IT\ 

  [origin,factor,module]-Undetected code faults in IT flush[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Actual code faults detected in IT[origin,factor,module]= INTEG ( 

 Actual code faults detected in IT rate[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Actual code faults detected in IT rate[origin,factor,module]= 

 Code fault detection rate in IT[origin,factor,module] 

 ~ Defect/Day 

 ~  | 

 

IT effectiveness[requ,factor]= 

 0.69,0.69,0.69 ~~| 

IT effectiveness[design,factor]= 

 0.69,0.69,0.69 ~~| 

IT effectiveness[code,factor]= 

 0.69,0.69,0.69 

 ~ Dmnl 

 ~  | 

 

******************************************************** 

 .IT Status 

********************************************************~ 

 | 

 

Ready for IT exec flag for subsystems[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 99

 IF THEN ELSE(CUSTOMSUMONED(Ready for IT exec flag for modules[MOD1],Subsystem's 
first module number\ 

  [subsystem],Number of modules per subsystem[subsystem])>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a subsystem is ready for integration testing \ 

  execution. 

 | 

 

Code ready for IT TC dev flag for subsystems[subsystem]= 

 IF THEN ELSE(CUSTOMSUMONED(Code ready for IT TC dev flag for 
modules[MOD1],Subsystem's first module number\ 

  [subsystem],Number of modules per subsystem[subsystem])>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a subsystem is ready for integration testing \ 

  test case development. 

 | 

 

Number of modules being integration tested= 

 SUM(Ready for IT exec flag for modules[module!]) 

 ~ Dmnl 

 ~  | 

 

Module under IT execution[module]= 

 IF THEN ELSE(Integration test status[module]=1,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a module is under integration testing execution. 

 | 

 

Subsystem under IT execution[subsystem]= 

 IF THEN ELSE(Sum IT rate per subsystem[subsystem]>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a subsystem is under integration testing \ 

  execution. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 100

Number of subsystems being integration tested= 

 SUM(Subsystem under IT execution[subsystem!]) 

 ~ Dmnl 

 ~ This variable specifies the number of subsystems that are under \ 

  integration testing execution. 

 | 

 

Ready for IT exec flag for modules[module]= 

 IF THEN ELSE(IT test case data available or not=1:AND:Code to be tested in IT[module\ 

  ]>0:AND:IT test cases[subsystem]>Number of test cases for IT[subsystem]-0.001,1,IF 
THEN ELSE\ 

  (IT test case data available or not=0:AND:Code to be tested in IT[module]>0,1,0)) 

 ~ Dmnl 

 ~ This variable specifies if a module is ready for integration testing \ 

  execution. 

 | 

 

Subsystem waiting for TC dev for IT[subsystem]= 

 IF THEN ELSE(IT test case data available or not=1,IF THEN ELSE(Design doc stored flag\ 

  [subsystem]=1:AND:IT test cases[subsystem]<Number of test cases for IT[subsystem]-
0.0001 

 :AND:Postpone TC dev till code is ready in IT or not=0,1,IF THEN ELSE(Postpone TC dev till 
code is ready in IT or not\ 

  =1 

 :AND:Code ready for IT TC dev flag for subsystems[subsystem]=1:AND:IT test 
cases[subsystem\ 

  ]<Number of test cases for IT[ 

 subsystem]-0.0001,1,0)),0) 

 ~ Dmnl 

 ~ This variable specifies if a subsystem is waiting for integration testing \ 

  test case development. 

 | 

 

Number of subsystems under TC dev in IT= 

 SUM(Subsystem under TC dev in IT[subsystem!]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 101

 ~ Dmnl 

 ~  | 

 

Subsystem under TC dev in IT[subsystem]= 

 IF THEN ELSE(IT test case dev rate[subsystem]>0,1,0) 

 ~ Dmnl 

 ~  | 

 

IT TC dev done or not[subsystem]= 

 IF THEN ELSE(Number of test cases for IT[subsystem]>0:AND:IT test cases[subsystem]>Number 
of test cases for IT\ 

  [subsystem]-0.001,1,0) 

 ~ Dmnl 

 ~  | 

 

Code ready for IT TC dev flag for modules[module]= 

 IF THEN ELSE(Code to be tested in IT[module]>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a module is ready for integration testing test \ 

  case development. 

 | 

 

Postpone TC dev till code is ready in IT or not= 

 1 

 ~ Dmnl 

 ~ This variable specifies if integration test case development can be done \ 

  right after design development & verification is finished or we can \ 

  develop integration test cases only when the code document of the whole \ 

  subsystem is ready. If set to 1, integration test case development is done \ 

  after all subsystem code is ready and if set to 0, right after design \ 

  development & verification is finished. 

 | 

 

Design doc stored flag[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 102

 IF THEN ELSE(Design doc stored size[subsystem]>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a subsystem design is stored in the \ 

  configuration management. 

 | 

 

Number of subsystems waiting for TC dev in IT= 

 SUM(Subsystem waiting for TC dev for IT[subsystem!]) 

 ~ Dmnl 

 ~  | 

 

Number of subsystems waiting for integration testing= 

 SUM(Ready for IT exec flag for subsystems[subsystem!]) 

 ~ Dmnl 

 ~  | 

 

Total integration test status= 

 SUM(Integration test status[module!])/(3*SUM(Number of modules per subsystem[subsystem\ 

  !])) 

 ~ Dmnl 

 ~  | 

 

Module quality in IT[module]= 

 IF THEN ELSE(IT rate[module]=0:AND:Tested code in IT[module]>0,Sum detected code faults in 
IT\ 

  [module]/Tested code in IT[module],0) 

 ~ Defect/KLOC 

 ~  | 

 

Integration test quality threshold= 

 0 

 ~ Defect/KLOC 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 103

Sum detected code faults in IT[module]= 

 SUM(Detected code faults in IT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Integration test status change rate[module]= 

 IF THEN ELSE(IT rate[module]>0:AND:Integration test status[module]=0,1,IF THEN ELSE(\ 

  Integration test status[module]=1:AND:IT rate[module]=0:AND:Quality flag in 
IT[module\ 

  ]=1,1,IF THEN ELSE(Integration test status[module]=1:AND:IT 
rate[module]=0:AND:Quality flag in IT\ 

  [module]=0,2,IF THEN ELSE(Integration test status[module]=2:AND:IT rate[module]>0,-
\ 

  1,0)))) 

 ~ Dmnl/Day 

 ~  | 

 

Integration test status[module]= INTEG ( 

 Integration test status change rate[module], 

  0) 

 ~ Dmnl 

 ~  | 

 

Quality flag in IT[module]= 

 IF THEN ELSE(Integration test quality threshold>0:AND:Module quality in 
IT[module]>Integration test quality threshold\ 

  ,1,IF THEN ELSE(Integration test quality threshold=0,0,0)) 

 ~ Dmnl/Day 

 ~  | 

 

******************************************************** 

 .Requirement Specificatin Status 

********************************************************~ 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 104

Verify requ spec or not= 

 1 

 ~ Dmnl 

 ~ This switch is used to turn on/off the requirements specification \ 

  verification activity. 

 | 

 

******************************************************** 

 .UT Status 

********************************************************~ 

 | 

 

Unit test waiting flag[module]= 

 IF THEN ELSE(UT Test case data availble or not=1:AND:Code to be tested in UT[module]\ 

  >0:AND:UT test cases[module]>Number of test cases for UT[module]-0.001,1,IF THEN 
ELSE\ 

  (UT Test case data availble or not=0:AND:Code to be tested in UT[module]>0,1,0)) 

 ~ Dmnl 

 ~ This flag specifies if a module is ready for unit test execution. 

 | 

 

Module waiting for TC dev for UT[module]= 

 IF THEN ELSE(UT Test case data availble or not=1:AND:Code to be tested in UT[module]\ 

  >0:AND:UT test cases[module]<Number of test cases for UT[module]-0.001,1,0) 

 ~ Dmnl 

 ~ This flag specifies is a module is waiting for unit test case development \ 

  or not. If set to 1 it is waiting for unit test case development and if \ 

  set to 0, it is not. 

 | 

 

Sum module under TC dev in UT= 

 SUM(Module under TC dev in UT[module!]) 

 ~ Dmnl 

 ~ This variable specifies the sum of 'Module under TC dev in UT' over all \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 105

  modules. 

 | 

 

Module under TC dev in UT[module]= 

 IF THEN ELSE(UT test case dev rate[module]>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies if a module is under unit test case development. 

 | 

 

UT TC dev done or not[module]= 

 IF THEN ELSE(Number of test cases for UT[module]>0:AND:UT test cases[module]>Number of 
test cases for UT\ 

  [module]-0.001,1,0) 

 ~ Dmnl 

 ~ This variable specifies if unit test case development for a module is \ 

  finished or not. If set to 1 it is finished and if set to 0 it is not. 

 | 

 

Number of modules waiting for TC dev in UT= 

 SUM(Module waiting for TC dev for UT[module!]) 

 ~ Dmnl 

 ~ This variable specifies the number of modules that are waiting for unit \ 

  test case development. 

 | 

 

Number of modules waiting to be unit tested= 

 SUM(Unit test waiting flag[module!]) 

 ~ Dmnl 

 ~ This variable specifies the number of modules that are waiting for unit \ 

  test execution. 

 | 

 

Total unit test status= 

 SUM(Unit test status[module!])/(3*SUM(Number of modules per subsystem[subsystem!])) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 106

 ~ Dmnl 

 ~ This variable specifies the status of unit testing of the whole system \ 

  (all modules) on a 0 to 1 basis. 

 | 

 

Unit test status change rate[module]= 

 IF THEN ELSE(Unit testing rate[module]>0:AND:Unit test status[module]=0,1,IF THEN ELSE\ 

  (Unit test status[module]=1:AND:Unit testing rate 

 [module]=0:AND:Quality flag in UT[module]=1,1,IF THEN ELSE(Unit test status[module]=\ 

  1:AND:Unit testing rate[module]=0:AND:Quality flag in UT 

 [module]=0,2,IF THEN ELSE(Unit test status[module]=2:AND:Unit testing rate[module]>0\ 

  ,-1,0)))) 

 ~ Dmnl/Day 

 ~ This rate specifies the change in value of the 'Unit test status' everyday. 

 | 

 

Module quality in UT[module]= 

 IF THEN ELSE(Unit testing rate[module]=0:AND:Tested code in UT[module]>0,Sum detected 
code faults in UT per module\ 

  [module]/Tested code in UT 

 [module] 

 ,0) 

 ~ Defect/KLOC 

 ~ This variable specifies the quality of a module code document during the \ 

  unit testing activity 

 | 

 

Quality flag in UT[module]= 

 IF THEN ELSE(Unit test quality threshold[module]>0:AND:Module quality in UT[module]>\ 

  Unit test quality threshold[module],1,IF THEN ELSE(Unit test quality 
threshold[module\ 

  ]=0,0,0)) 

 ~ Dmnl 

 ~ This flag shows if the module has an acceptable quality considering the \ 

  unit test qualit threshold. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 107

 | 

 

Unit test quality threshold[module]= 

 0 

 ~ Defect/KLOC 

 ~ This variable specifies the acceptable quality for a module after unit \ 

  test. 

 | 

 

Unit test status[module]= INTEG ( 

 Unit test status change rate[module], 

  0) 

 ~ Dmnl 

 ~ This level variable shows the status of the unit test activity.                             
\ 

  status 0 : non_exist 

  status 1: incomplete 

  status 2: complete_repeat 

  status 3: complete_final 

 | 

 

******************************************************** 

 .ST Process 

********************************************************~ 

 | 

 

Average ST productivity= 

 System testing execution workforce*Average ST productivity per person per day 

 ~ KLOC/Day 

 ~  | 

 

Code returned for rework from ST[module]= 

 IF THEN ELSE(Tested code in ST[module]>0:AND:System test status[module]>1,Tested code in 
ST\ 

  [module]/TIME STEP,0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 108

 ~ KLOC/Day 

 ~  | 

 

ST rate[module]= 

 IF THEN ELSE(ST test case data available or not=1,IF THEN ELSE(Code to be tested in ST\ 

  [module]>0:AND:ST test cases>Number of test cases for ST 

 -0.0001:AND:Average number of ST test cases executed per day 

 >0,MIN(Code to be tested in ST 

 [module]/TIME STEP,Actual code size to develop per module[module]/(Number of test cases 
for ST\ 

  /Average number of ST test cases executed per day 

 )),0),IF THEN ELSE(Code to be tested in ST[module]>0:AND:Average ST productivity>0,MIN\ 

  (Code to be tested in ST[module]/TIME STEP, 

 Actual code size to develop per module[module]/(Sum actual code size to develop per system\ 

  /Average ST productivity)),0)) 

 ~ KLOC/Day 

 ~  | 

 

Code ready for ST flush[module]= 

 IF THEN ELSE(Sum code ready for ST<(Sum actual code size to develop per system+0.1):AND:\ 

  Sum code ready for ST>(Sum actual code size to develop per system 

 -0.1):AND:VMIN(Code doc dev status[module!])>0,Code ready for ST[module]/TIME STEP,0\ 

  ) 

 ~ KLOC/Day 

 ~  | 

 

Sum code ready for ST per subsystem[subsystem]= 

 CUSTOMSUMONED(Code ready for ST[MOD1],Subsystem's first module 
number[subsystem],Number of modules per subsystem\ 

  [subsystem]) 

 ~ KLOC 

 ~ This variable specifies the amount of a subsystem's code that is ready for \ 

  system test. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 109

Average number of ST test cases executed per day= 

 Average number of test cases executed per person per day*System testing execution workforce 

 ~ Testcase/Day 

 ~  | 

 

Sum code ready for ST= 

 SUM(Sum code ready for ST per subsystem[subsystem!])+Sum code doc stored size per system 

 ~ KLOC 

 ~  | 

 

Code to be tested in ST[module]= INTEG ( 

 Code ready for ST flush[module]-ST rate[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Tested code in ST[module]= INTEG ( 

 ST rate[module]-Code returned for rework from ST[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Incoming code to ST rate[module]= 

 Code to ST flush[module] 

 ~ KLOC/Day 

 ~  | 

 

Code ready for ST[module]= INTEG ( 

 Incoming code to ST rate[module]-Code ready for ST flush[module], 

  0) 

 ~ KLOC 

 ~  | 

 

******************************************************** 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 110

 .ST Quality 

********************************************************~ 

 | 

 

Average ST effectiveness[origin,factor]= 

 IF THEN ELSE(ST test case data available or not=1,ST effectiveness[origin,factor]*Skill level 
average average of TC developers for ST 

 ,System testing execution team skill level average*ST effectiveness[origin,factor]) 

 ~ Dmnl 

 ~  | 

 

Average number of ST test cases developed per day= 

 Maximum number of test cases developed per person per day*System testing TC dev workforce\ 

  *System testing TC dev team skill level average 

 ~ Testcase/Day 

 ~  | 

 

Maximum number of test cases developed per person per day= 

 5 

 ~ Testcase/(Day*Person) 

 ~  | 

 

Code fault detection rate in ST[origin,factor,module]= 

 IF THEN ELSE(ST rate[module]>0, MIN(Undetected code faults in ST[origin,factor,module\ 

  ]/TIME STEP, Average ST effectiveness[origin 

 ,factor] 

 * 

 ST rate[module]*(Undetected code faults in ST[origin,factor,module]+Detected code faults in ST\ 

  [origin,factor,module])/( 

 Code to be tested in ST[module]+Tested code in ST[module])),0) 

 ~ Defect/Day 

 ~  | 

 

Undetected code faults in ST flush[origin,factor,module]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 111

 IF THEN ELSE(System test status[module]>1,Undetected code faults in ST[origin,factor\ 

  ,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Incoming code faults to ST rate[origin,factor,module]= 

 IF THEN ELSE(Code ready for ST flush[module]>0,Code faults undetected in coding[origin\ 

  ,factor,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Detected code faults in ST flush[origin,factor,module]= 

 IF THEN ELSE(System test status[module]>1,Detected code faults in ST[origin,factor,module\ 

  ]/TIME STEP,0) 

 ~ Defect/Day 

 ~  | 

 

Undetected code faults in ST[origin,factor,module]= INTEG ( 

 Incoming code faults to ST rate[origin,factor,module]-Code fault detection rate in ST\ 

  [origin,factor,module]-Undetected code faults in ST flush[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Actual code faults detected in ST[origin,factor,module]= INTEG ( 

 Actual code faults detected in ST rate[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Actual code faults detected in ST rate[origin,factor,module]= 

 Code fault detection rate in ST[origin,factor,module] 

 ~ Defect/Day 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 112

 

ST effectiveness[requ,factor]= 

 0.93,0.93,0.93 ~~| 

ST effectiveness[design,factor]= 

 0.93,0.93,0.93 ~~| 

ST effectiveness[code,factor]= 

 0.93,0.93,0.93 

 ~ Dmnl 

 ~  | 

 

Detected code faults in ST[origin,factor,module]= INTEG ( 

 Code fault detection rate in ST[origin,factor,module]-Detected code faults in ST flush\ 

  [origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

******************************************************** 

 .ST status 

********************************************************~ 

 | 

 

System test flag[module]= 

 IF THEN ELSE(ST test case data available or not=1:AND:Code to be tested in ST[module\ 

  ]>0:AND:ST test cases>Number of test cases for ST-0.0001,1,IF THEN ELSE(ST test case 
data available or not\ 

  =0:AND:Code to be tested in ST[module]>0,1,0)) 

 ~ Dmnl 

 ~  | 

 

System waiting for TC dev for ST= 

 IF THEN ELSE(ST test case data available or not=1,IF THEN ELSE(Postpone TC dev until code is 
ready in ST or not\ 

  =0:AND:Requ doc stored size>0:AND:ST test cases<Number of test cases for ST 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 113

 -0.0001,1,IF THEN ELSE(Postpone TC dev until code is ready in ST or not=1:AND:SUM(Code to 
be tested in ST\ 

  [module!])>0:AND: 

 ST test cases<Number of test cases for ST 

 -0.0001,1,0)),0) 

 ~ Dmnl 

 ~  | 

 

System under TC dev in ST= 

 IF THEN ELSE(ST test case dev rate>0,1,0) 

 ~ Dmnl 

 ~  | 

 

ST TC dev done or not= 

 IF THEN ELSE(Number of test cases for ST>0:AND:ST test cases>Number of test cases for ST\ 

  -0.001,1,0) 

 ~ Dmnl 

 ~  | 

 

Postpone TC dev until code is ready in ST or not= 

 0 

 ~ Dmnl 

 ~ This variable specifies it system test case development can be done right \ 

  after requirement specification development & verification is finished or \ 

  we can develop system test cases only when the code document of the whole \ 

  system is ready. If set to 1, system test case development is done after \ 

  all system code is ready and if set to 0, right after requirements \ 

  specification development & verification is finished. 

 | 

 

Number of systems waiting to be system tested= 

 IF THEN ELSE(SUM(System test flag[module!])>0,1,0) 

 ~ Dmnl 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 114

 

Quality flag in ST[module]= 

 IF THEN ELSE(Quality threshold in ST>0:AND:Module quality in ST[module]>Quality threshold 
in ST\ 

  ,1,IF THEN ELSE(Quality threshold in ST=0,0,0)) 

 ~ Dmnl 

 ~  | 

 

System test status change rate[module]= 

 IF THEN ELSE(ST rate[module]>0:AND:System test status[module]=0,1,IF THEN ELSE(System 
test status\ 

  [module]=1:AND:ST rate[module]=0:AND:Quality flag in ST[module]=1,1,IF THEN 
ELSE(System test status\ 

  [module]=1:AND:ST rate[module]=0:AND:Quality flag in ST[module]=0,2,IF THEN 
ELSE(System test status\ 

  [module]=2:AND:ST rate[module]>0,-1,0)))) 

 ~ Dmnl/Day 

 ~  | 

 

Sum detected code faults in ST[module]= 

 SUM(Detected code faults in ST[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Module quality in ST[module]= 

 IF THEN ELSE(ST rate[module]=0:AND:Tested code in ST[module]>0,Sum detected code faults 
in ST\ 

  [module]/Tested code in ST[module],0) 

 ~ Defect/KLOC 

 ~  | 

 

System test status[module]= INTEG ( 

 System test status change rate[module], 

  0) 

 ~ Dmnl 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 115

 ~  | 

 

Quality threshold in ST= 

 0 

 ~ Defect/KLOC 

 ~  | 

 

******************************************************** 

 .UT Process 

********************************************************~ 

 | 

 

Average UT productivity= 

 IF THEN ELSE(Number of documents being processed per activity[UTV],Unit testing TC 
execution workforce\ 

  *Average UT productivity per person per day/Number of documents being processed 
per activity\ 

  [UTV],0) 

 ~ KLOC/Day 

 ~ This variable specifies the number of KLOCs of code document unit tested \ 

  everyday. 

 | 

 

Average number of UT test cases developed per day= 

 Unit testing TC dev workforce*Maximum number of UT test cases developed per person per 
day\ 

  *Unit testing TC dev skill level average 

 ~ Testcase/Day 

 ~ This variable specifies the number of unit test cases that are developed \ 

  everyday. 

 | 

 

Unit testing rate[module]= 

 IF THEN ELSE(UT Test case data availble or not=1,IF THEN ELSE(Code to be tested in UT\ 

  [module]>0:AND:UT test cases[module 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 116

 ]>Number of test cases for UT[module]-0.0001:AND: 

 Average number of UT test cases executed per day>0,MIN(Code to be tested in UT[module\ 

  ]/TIME STEP,Actual code size to develop per module 

 [module]/(Number of test cases for UT[module]/Average number of UT test cases executed per 
day\ 

  )),0),IF THEN ELSE(Code to be tested in UT 

 [module]>0,MIN(Code to be tested in UT[module]/TIME STEP,Average UT productivity),0)\ 

  ) 

 ~ KLOC/Day 

 ~ This rate specifies the number of KLOCs of code document that are unit \ 

  tested everyday. 

 | 

 

Code returned for rework rate from UT[module]= 

 IF THEN ELSE(Unit test status[module]>1,Tested code in UT[module]/TIME STEP,0) 

 ~ KLOC/Day 

 ~ This rate specifies the number of KLOCs of code document that are sent \ 

  back to coding phase for rework. 

 | 

 

Average number of UT test cases executed per day= 

 Average number of UT test cases executed per person per day*Unit testing TC execution 
workforce 

 ~ Testcase/Day 

 ~ This variable specifies the number of unit test cases that are executed \ 

  everyday. 

 | 

 

Code to unit test rate[module]= 

 Code to UT flush[module] 

 ~ KLOC/Day 

 ~ This rate variable specifies the number of KLOCs of code document which \ 

  become ready for unit test everyday. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 117

Tested code in UT[module]= INTEG ( 

 Unit testing rate[module]-Code returned for rework rate from UT[module], 

  0) 

 ~ KLOC 

 ~ This level variable specifies the number of KLOCs of code document that \ 

  are tested during the unit testing activity. 

 | 

 

Code to be tested in UT[module]= INTEG ( 

 Code to unit test rate[module]-Unit testing rate[module], 

  0) 

 ~ KLOC 

 ~ This level variable specifies the number of KLOCs of code document that \ 

  are waiting to be unit tested. 

 | 

 

******************************************************** 

 .UT Quality 

********************************************************~ 

 | 

 

UT TC dev team skill level average average[module]= 

 IF THEN ELSE(UT TC dev done or not[module]=1,UT TC dev team skill level average stored\ 

  [module]/UT TC dev team working time[module]*TIME STEP,0) 

 ~ Dmnl 

 ~ This variable specifies the average of average skill level of developers \ 

  who developed unit test cases. This variable is used because within \ 

  different days different teams of developers with different average skill \ 

  levels develop the unit test cases. 

 | 

 

UT TC dev team skill level average per module[module]= 

 IF THEN ELSE(Module under TC dev in UT[module]=1,Unit testing TC dev skill level average\ 

  /TIME STEP,0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 118

 ~ Dmnl/Day 

 ~ This variable specifies the average skill level of developers that develop \ 

  unit test cases everyday. 

 | 

 

Average unit testing effectiveness[origin,factor,module]= 

 IF THEN ELSE(UT Test case data availble or not=1,Unit testing effectiveness[origin,factor\ 

  ]*UT TC dev team skill level average average 

 [module],Unit testing effectiveness[origin,factor]*Unit testing execution team skill level average\ 

  ) 

 ~ Dmnl 

 ~ This variable specifies the effectiveness of the unit testing technique in \ 

  detecting undetected defects in code 

 | 

 

UT TC dev team skill level average rate[module]= 

 UT TC dev team skill level average per module[module] 

 ~ Dmnl/Day 

 ~  | 

 

UT TC dev team skill level average stored[module]= INTEG ( 

 UT TC dev team skill level average rate[module], 

  0) 

 ~ Dmnl 

 ~ This level variable stores the average skill level of unit test case \ 

  developers that developed the unit test cases. 

 | 

 

UT TC dev team working time[module]= INTEG ( 

 UT TC dev team working rate[module], 

  0) 

 ~ Day 

 ~ This level variable stores the number of days that took to develop unit \ 

  test cases for a module. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 119

 | 

 

UT TC dev team working rate[module]= 

 IF THEN ELSE(UT TC dev team skill level average per module[module]>0,1,0) 

 ~ Dmnl 

 ~  | 

 

Detected code faults in UT flush[origin,factor,module]= 

 IF THEN ELSE(Unit test status[module]>1,Detected code faults in UT[origin,factor,module\ 

  ]/TIME STEP,0) 

 ~ Defect/Day 

 ~ This rate variable is used to reset the 'Detected code faults in UT' level \ 

  variable at the end of the unit testing process. 

 | 

 

Incoming code faults to UT rate[origin,factor,module]= 

 IF THEN ELSE(Code to UT flush[module]>0,Code faults undetected in coding[origin,factor\ 

  ,module]/TIME STEP,0) 

 ~ Defect/Day 

 ~ This rate specifies the number of code defects that exist in the code \ 

  document before unit testing begins. 

 | 

 

Code fault detection rate in UT[origin,factor,module]= 

 IF THEN ELSE(Unit testing rate[module]>0, MIN(Undetected code faults in UT[origin,factor\ 

  ,module]/TIME STEP, Average unit testing effectiveness 

 [origin,factor,module]*Unit testing rate 

 [module]*(Undetected code faults in UT[origin,factor,module]+Detected code faults in UT\ 

  [origin,factor,module])/(Code to be tested in UT 

 [module]+Tested code in UT[module])),0) 

 ~ Defect/Day 

 ~  | 

 

Undetected code faults in UT flush[origin,factor,module]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 120

 IF THEN ELSE(Unit test status[module]>1,Undetected code faults in UT[origin,factor,module\ 

  ]/TIME STEP,0) 

 ~ Defect/Day 

 ~ This rate variable is used to reset the 'Undetected code faults in UT' \ 

  level variable at the end of the unit testing process. 

 | 

 

Undetected code faults in UT[origin,factor,module]= INTEG ( 

 Incoming code faults to UT rate[origin,factor,module]-Code fault detection rate in UT\ 

  [origin,factor,module]-Undetected code faults in UT flush[origin,factor,module], 

  0) 

 ~ Defect 

 ~ This level variable specifies the number of defects that remain undetected \ 

  in the code document during the unit test. 

 | 

 

Actual code faults detected in UT rate[origin,factor,module]= 

 Code fault detection rate in UT[origin,factor,module] 

 ~ Defect/Day 

 ~  | 

 

Actual code faults detected in UT[origin,factor,module]= INTEG ( 

 Actual code faults detected in UT rate[origin,factor,module], 

  0) 

 ~ Defect 

 ~ This level variable is used to store the number of defects that are \ 

  detected because of the unit testing activity because the 'Detected code \ 

  faults in UT' is reset at the end of any unit testing process. 

 | 

 

Detected code faults in UT[origin,factor,module]= INTEG ( 

 Code fault detection rate in UT[origin,factor,module]-Detected code faults in UT flush\ 

  [origin,factor,module], 

  0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 121

 ~ Defect 

 ~ This rate specifies the number of code defects that are detected in the \ 

  code document during the unit test process. 

 | 

 

Unit testing effectiveness[requ,factor]= 

 0.66,0.66,0.66 ~~| 

Unit testing effectiveness[design,factor]= 

 0.66,0.66,0.66 ~~| 

Unit testing effectiveness[code,factor]= 

 0.66,0.66,0.66 

 ~ Dmnl 

 ~ This constant specifies the maximum effectiveness of the unit testing \ 

  technique in detecting undetected defects in code. By maximum it is meant \ 

  that a developer with skill level of 1 will detect this percentage of \ 

  defects using this unit testing technique. 

 | 

 

******************************************************** 

 .UT Workforce 

********************************************************~ 

 | 

 

Unit test effort= 

 Unit test TC dev effort+Unit test TC execution effort 

 ~ Day*Person 

 ~ This variable is used to show the total effort spent for unit testing. 

 | 

 

Unit test TC execution effort= INTEG ( 

 Unit testing TC execution workforce, 

  0) 

 ~ Day*Person 

 ~ This level variable specifies the amount of effort spent on unit test \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 122

  execution. 

 | 

 

Unit test TC dev effort= INTEG ( 

 Unit testing TC dev workforce, 

  0) 

 ~ Day*Person 

 ~ This level variable specifies the amount of effort spent on developing \ 

  unit test cases. 

 | 

 

Average UT productivity per person per day= 

 0.3093 

 ~ KLOC/(Person*Day) 

 ~ This constant specifies the number of KLOCs of code document that every \ 

  developer unit test everyday. 

 | 

 

Unit testing TC dev skill level average= 

 Actual allocation[UTTC,SKLL] 

 ~ Dmnl 

 ~ This variable specifies the skill level average of developers assigned to \ 

  develop unit test cases. 

 | 

 

Unit testing TC dev workforce= 

 Actual allocation[UTTC,NMBR] 

 ~ Person 

 ~ This variable specifies the number of developers assigned to develop unit \ 

  test cases. 

 | 

 

Unit testing execution team skill level average= 

 Actual allocation[UTV,SKLL] 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 123

 ~ Dmnl 

 ~ This variable specifies the skill level average of the developers assigned \ 

  to execute unit test cases. 

 | 

 

Maximum number of UT test cases developed per person per day= 

 1 

 ~ Testcase/(Day*Person) 

 ~ This constant specifies the number of unit test cases that each developer \ 

  develops everyday. 

 | 

 

Average number of UT test cases executed per person per day= 

 4 

 ~ Testcase/(Day*Person) 

 ~ This constant the number of unit test cases that each developer executes \ 

  everyday. 

 | 

 

Unit testing TC execution workforce= 

 Actual allocation[UTV,NMBR] 

 ~ Person 

 ~ This variable specifies the number of developers assigned to execute unit \ 

  test cases. 

 | 

******************************************************** 

average number of IT test cases per design size unit= 

 5 

 ~ Testcase/Page 

 ~ This constant specifies the average number of integration testing test \ 

  cases that are developed for every page of the design document. 

 | 

 

Number of test cases for IT[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 124

 Actual design size to develop[subsystem]*average number of IT test cases per design size unit 

 ~ Testcase 

 ~  | 

 

ST test case dev rate= 

 IF THEN ELSE(System waiting for TC dev for ST=1:AND:Average number of ST test cases 
developed per day\ 

  >0:AND:ST test cases/TIME STEP 

 +Average number of ST test cases developed per day<=Number of test cases for ST/TIME STEP\ 

  ,Average number of ST test cases developed per day 

 ,IF THEN ELSE(System waiting for TC dev for ST=1:AND:Average number of ST test cases 
developed per day\ 

  >0:AND:ST test cases/TIME STEP 

 +Average number of ST test cases developed per day>Number of test cases for ST/TIME STEP\ 

  ,(Number of test cases for ST-ST test cases)/TIME STEP 

 ,0)) 

 ~ Testcase/Day 

 ~  | 

 

UT test case dev rate[module]= 

 IF THEN ELSE(Module waiting for TC dev for UT[module]=1:AND:Average number of UT test 
cases developed per day\ 

  >0:AND:UT test cases 

 [module]<Number of test cases for UT[module]-0.001:AND:UT test cases[module]/TIME STEP\ 

  +Average number of UT test cases developed per day 

 <=Number of test cases for UT[module]/TIME STEP,Average number of UT test cases developed 
per day\ 

  ,IF THEN ELSE(Module waiting for TC dev for UT 

 [module]:AND:Average number of UT test cases developed per day 

 >0:AND:UT test cases[module]<Number of test cases for UT[module]-0.001:AND:UT test cases\ 

  [module]/TIME STEP+Average number of UT test cases developed per day 

 >Number of test cases for UT[module]/TIME STEP,(Number of test cases for UT[module]-\ 

  UT test cases[module])/TIME STEP,0)) 

 ~ Testcase/Day 

 ~ This rate specifies the number of unit test cases that are developed \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 125

  everyday. 

 | 

 

Portion of code reworked to actual subsystem code size per subsystem[subsystem]= 

 IF THEN ELSE(CUSTOMSUMONED(Code to rework[MOD1],Subsystem's first module 
number[subsystem\ 

  ],Number of modules per subsystem 

 [subsystem])>0,CUSTOMSUMONED(Code to rework[MOD1],Subsystem's first module 
number[subsystem\ 

  ],Number of modules per subsystem 

 [subsystem])/Sum actual code size to develop per subsystem[subsystem]/TIME STEP,0) 

 ~ Dmnl 

 ~ This variable is used to specify the portion of code reworked to actual \ 

  subsystem code size per subsystem 

 | 

 

Design doc stored late flush[subsystem]= 

 Design late rework outgoing rate[subsystem] 

 ~ Page/Day 

 ~  | 

 

Design doc stored flush[subsystem]= 

 IF THEN ELSE(Rework design or not=1:AND:Portion of design to rework[subsystem]<(Design 
doc stored size\ 

  [subsystem]/TIME STEP),Portion of design to rework[subsystem],0) 

 ~ Page/Day 

 ~  | 

 

Portion of design to rework[subsystem]= 

 Actual design size to develop[subsystem]*Portion of code reworked to actual subsystem code 
size per subsystem\ 

  [subsystem]/TIME STEP 

 ~ Page/Day 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 126

Actual design defects detected during design verification[origin,factor,subsystem]= INTEG\ 

   ( 

 Design fault detection due to verification[origin,factor,subsystem], 

  0) 

 ~ Defect 

 ~  | 

 

Design late rework outgoing rate[subsystem]= 

 IF THEN ELSE(Portion of design to rework[subsystem]<(Design doc stored size[subsystem\ 

  ]/TIME STEP),MIN(Design to be reworked later[subsystem]/TIME STEP,(Design doc 
stored size\ 

  [subsystem]/TIME STEP)-Portion of design to rework[subsystem]),0) 

 ~ Page/Day 

 ~  | 

 

Design late rework incoming rate[subsystem]= 

 IF THEN ELSE((Design doc stored size[subsystem]/TIME STEP)<Portion of design to rework\ 

  [subsystem],Portion of design to rework[subsystem],0) 

 ~ Page/Day 

 ~  | 

 

Design doc verified flush[subsystem]= 

 IF THEN ELSE(Design doc dev status[subsystem]=1,Design doc verified[subsystem]/TIME 
STEP\ 

  ,0) 

 ~ Page/Day 

 ~  | 

 

Code fault detection per subsystem[origin,factor,subsystem]= 

 CUSTOMSUMTHREED(Code fault detection[requ,RLB,MOD1],Subsystem's first module 
number[\ 

  SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect/Day 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 127

Total code doc dev status per subsystem[subsystem]= 

 CUSTOMSUMONED(Code doc dev status[MOD1],Subsystem's first module 
number[subsystem],Number of modules per subsystem\ 

  [subsystem])/(2*Number of modules per subsystem[subsystem]) 

 ~ Dmnl 

 ~ This variable specifies the status of code document development/rework for \ 

  every subsystem on a 0 to 1 status. 

 | 

 

Sum design to code faults propagated per subsystem[subsystem]= 

 CUSTOMSUMONED(Sum design to code faults propagated per module[MOD1],Subsystem's 
first module number\ 

  [subsystem],Number of modules per subsystem[subsystem]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per quality factor per subsystem[factor,subsystem]= 

 CUSTOMSUMTWOD(Sum undetected code faults in IT per quality factor per 
module[RLB,MOD1\ 

  ], Subsystem's first module number[SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Design to code faults propagated per origin[origin,module]= 

 SUM(Design to code faults propagated[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per quality factor per subsystem[factor,subsystem]= 

 CUSTOMSUMTWOD(Sum detected code faults in IT per quality factor per module[RLB,MOD1]\ 

  , Subsystem's first module number[SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per origin per subsystem[origin,subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 128

 CUSTOMSUMTWOD(Sum detected code faults in IT per origin per module[requ,MOD1], 
Subsystem's first module number\ 

  [SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum design to code faults propagated per origin per subsystem[origin,subsystem]= 

 CUSTOMSUMTWOD(Design to code faults propagated per origin[requ,MOD1],Subsystem's first 
module number\ 

  [SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per origin per subsystem[origin,subsystem]= 

 CUSTOMSUMTWOD(Sum undetected code faults in IT per origin per module[requ,MOD1], 
Subsystem's first module number\ 

  [SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per quality factor per subsystem[factor,subsystem\ 

  ]= 

 CUSTOMSUMTWOD(Sum actual code faults detected in IT per quality factor per module[RLB\ 

  ,MOD1],Subsystem's first module number[SUB1],Number of modules per 
subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per origin per subsystem[origin,subsystem]= 

 CUSTOMSUMTWOD(Sum actual code faults detected in IT per origin per module[requ,MOD1]\ 

  , Subsystem's first module number[SUB1],Number of modules per subsystem[SUB1]) 

 ~ Defect 

 ~  | 

 

Sum code to be tested in IT per subsystem[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 129

 CUSTOMSUMONED(Code to be tested in IT[MOD1],Subsystem's first module 
number[subsystem\ 

  ], Number of modules per subsystem[subsystem]) 

 ~ KLOC 

 ~  | 

 

Sum detected code faults in IT per subsystem[subsystem]= 

 CUSTOMSUMONED(Sum detected code faults in IT per module[MOD1],Subsystem's first 
module number\ 

  [subsystem],Number of modules per subsystem[subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per subsystem[subsystem]= 

 CUSTOMSUMONED(Sum actual code faults detected in IT per module[MOD1],Subsystem's first 
module number\ 

  [subsystem],Number of modules per subsystem[subsystem]) 

 ~ Defect 

 ~  | 

 

Sum tested code in IT per subsystem[subsystem]= 

 CUSTOMSUMONED(Tested code in IT[MOD1],Subsystem's first module number[subsystem], 
Number of modules per subsystem\ 

  [subsystem]) 

 ~ KLOC 

 ~  | 

 

Sum IT rate per subsystem[subsystem]= 

 CUSTOMSUMONED(IT rate[MOD1],Subsystem's first module number[subsystem],Number of 
modules per subsystem\ 

  [subsystem]) 

 ~ KLOC/Day 

 ~  | 

 

Sum undetected code faults in IT per subsystem[subsystem]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 130

 CUSTOMSUMONED(Sum undetected code faults in IT per module[MOD1],Subsystem's first 
module number\ 

  [subsystem],Number of modules per subsystem[subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual code size to develop per subsystem[subsystem]= 

 CUSTOMSUMONED(Actual code size to develop per module[MOD1],Subsystem's first module 
number\ 

  [subsystem],Number of modules per subsystem[subsystem]) 

 ~ KLOC 

 ~  | 

 

Subsystem's first module number[subsystem]= 

 0,20,50,62,84 

 ~ Dmnl 

 ~ This constant specifies the index of the first module in a subsystem on a \ 

  zero basis indexing for modules. for example if the first module in the \ 

  second subsystem is the 21st module, then this value for the second \ 

  subsystem will be 20.. 

 | 

 

UT end time= 

 Phase end time[UT] 

 ~ Day 

 ~ This variable specifies the last day that the unit test phase is active. 

 | 

 

Total requ spec effort= 

 Actual phase effort[RE] 

 ~ Day*Person 

 ~ This variable specifies the amount of effort on requirements specification \ 

  development/verification/rework activities. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 131

Phase end time[phase]= 

 SAMPLE IF TRUE(Phase status[phase]=1,Time,0) 

 ~ Day 

 ~ This variable specifies the last day that a phase is active. 

 | 

 

IT duration= 

 Phase Duration[IT] 

 ~ Day 

 ~ This variable specifies the number of days that the integration test phase \ 

  is active. 

 | 

 

ST duration= 

 Phase Duration[ST] 

 ~ Day 

 ~ This variable specifies the number of days that the system test phase is \ 

  active. 

 | 

 

ST end time= 

 Phase end time[ST] 

 ~ Day 

 ~ This variable specifies the last day that the system test phase is active. 

 | 

 

Design duration= 

 Phase Duration[DE] 

 ~ Day 

 ~ This variable specifies the number of days that design phase is active. 

 | 

 

Project end time= 

 VMAX(Phase end time[phase!]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 132

 ~ Day 

 ~ This variable specifies the last day that the project. 

 | 

 

Design end time= 

 Phase end time[DE] 

 ~ Day 

 ~ This variable specifies the last day that the design phase is active(some \ 

  work is being done on the design document). 

 | 

 

Total design effort= 

 Actual phase effort[DE] 

 ~ Day*Person 

 ~ This variable specifies the amount of effort on design \ 

  development/verification/rework activities. 

 | 

 

Requ end time= 

 Phase end time[RE] 

 ~ Day 

 ~ This variable specifies the last day that the requiremens specification \ 

  phase is active(some work is being done on the requirements specification \ 

  document). 

 | 

 

Requ duration= 

 Phase Duration[RE] 

 ~ Day 

 ~ This variable specifies the number of days that the requirements \ 

  specification phase is active. 

 | 

 

Code end time= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 133

 Phase end time[CO] 

 ~ Day 

 ~ This variable specifies the last day that the code phase is active(some \ 

  work is being done on the code document). 

 | 

 

IT end time= 

 Phase end time[IT] 

 ~ Day 

 ~ This variable specifies the last day that the integration test phase is \ 

  active. 

 | 

 

Code duration= 

 Phase Duration[CO] 

 ~ Day 

 ~ This variable specifies the number of days that the code phase is active. 

 | 

 

UT duration= 

 Phase Duration[UT] 

 ~ Day 

 ~ This variable specifies the number of days that the unit test phase is \ 

  active. 

 | 

 

Requ spec ver effectiveness constant= 

 0.75 

 ~ Dmnl 

 ~ This variable is used to enable changing the value of 'Maximum requ spec \ 

  ver effectiveness' automatically for all three subscripts (in case of \ 

  using a 'Sensitivity Analysis'. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 134

Total code effort= 

 Actual phase effort[CO] 

 ~ Day*Person 

 ~ This variable specifies the amount of effort on code \ 

  development/verification/rework activities. 

 | 

 

code fault detection during code verification[origin,factor,module]= 

 IF THEN ELSE(Code verification activity[module]>0,Code fault detection[origin,factor\ 

  ,module],0) 

 ~ Defect/Day 

 ~  | 

 

Requ defects detected during CI= 

 SUM(Sum actual code faults detected during code verification per system[requ,factor!\ 

  ])/(Average design to code fault multiplier[requ]*Average requ to design fault 
multiplier\ 

  [requ]) 

 ~ Defect 

 ~  | 

 

Requ defects detected during DI= 

 SUM(Sum actual design defects detected during design verification[requ,factor!])/Average requ 
to design fault multiplier\ 

  [requ] 

 ~ Defect 

 ~  | 

 

Requ defects detected during IT= 

 Sum actual code faults detected in IT per origin per system[requ]/(Average design to code fault 
multiplier\ 

  [requ]*Average requ to design fault multiplier[requ]) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 135

Requ defects detected during RI= 

 SUM(Actual requ spec faults detected during requ verification[requ,factor!]) 

 ~ Defect 

 ~  | 

 

Requ defects detected during ST= 

 Sum actual code faults detected in ST per origin per system[requ]/(Average design to code fault 
multiplier\ 

  [requ]*Average requ to design fault multiplier[requ]) 

 ~ Defect 

 ~  | 

 

Actual code faults detected during code verification[origin,factor,module]= INTEG ( 

 code fault detection during code verification[origin,factor,module], 

  0) 

 ~ Defect 

 ~  | 

 

Design defects detected during CI= 

 (SUM(Sum actual code faults detected during code verification per system[design,factor\ 

  !])+SUM(Sum actual code faults detected during code verification per 
system[requ,factor\ 

  !]))/Average design to code fault multiplier[design] 

 ~ Defect 

 ~  | 

 

Design defects detected during DI= 

 SUM(Sum actual design defects detected during design verification[origin!,factor!]) 

 ~ Defect 

 ~  | 

 

Design defects detected during UT= 

 (Sum actual code faults detected in UT per origin per system[design]+Sum actual code faults 
detected in UT per origin per system\ 

  [requ])/Average design to code fault multiplier[design] 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 136

 ~ Defect 

 ~  | 

 

Code defects detected during code verification= 

 SUM(Sum actual code faults detected during code verification per system[origin!,factor\ 

  !]) 

 ~ Defect 

 ~  | 

 

Actual requ spec faults detected during requ verification[origin,factor]= INTEG ( 

 Actual requ spec faults detected during requ verification rate[origin,factor], 

  0) 

 ~ Defect 

 ~ This level variable specifies the number of requirements specification \ 

  faults which were detected during the requirements specificaiton \ 

  verification activity. 

 | 

 

Total number of design defects detected= 

 Design defects detected during CI+Design defects detected during DI+Design defects detected 
during IT\ 

  +Design defects detected during ST+Design defects detected during UT 

 ~ Defect 

 ~  | 

 

Total number of detected defects= 

 Code defects detected during code verification+Code defects detected during IT+Code defects 
detected during ST\ 

  +Code defects detected during UT 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected during code verification per system[origin,factor]= 

 SUM(Actual code faults detected during code verification[origin,factor,module!]) 

 ~ Defect 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 137

 ~  | 

 

Sum actual design defects detected during design verification[origin,factor]= 

 SUM(Actual design defects detected during design verification[origin,factor,subsystem\ 

  !]) 

 ~ Defect 

 ~ This variable sums the number of design defects detected during the design \ 

  verification activity over  all subsystems. 

 | 

 

Total number of detected defects in requ= 

 Requ defects detected during CI+Requ defects detected during DI+Requ defects detected during 
IT\ 

  +Requ defects detected during RI+Requ defects detected during ST+Requ defects 
detected during UT 

 ~ Defect 

 ~  | 

 

Code defects detected during UT= 

 SUM(Sum actual code faults detected in UT per origin per system[origin!]) 

 ~ Defect 

 ~  | 

 

Code defects detected during ST= 

 SUM(Sum actual code faults detected in ST per origin per system[origin!]) 

 ~ Defect 

 ~  | 

 

Actual requ spec faults detected during requ verification rate[origin,factor]= 

 IF THEN ELSE(Requ spec verification activity>0,requ spec fault detection rate[origin\ 

  ,factor],0) 

 ~ Defect/Day 

 ~ This rate specifies the number of requirements specification faults which \ 

  are detected everyday during the requirements specification verification \ 

  activity. 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 138

 | 

 

Design defects detected during ST= 

 (Sum actual code faults detected in ST per origin per system[design]+Sum actual code faults 
detected in ST per origin per system\ 

  [requ])/Average design to code fault multiplier[design] 

 ~ Defect 

 ~  | 

 

Requ defects detected during UT= 

 Sum actual code faults detected in UT per origin per system[requ]/(Average design to code fault 
multiplier\ 

  [requ]*Average requ to design fault multiplier 

 [requ]) 

 ~ Defect 

 ~  | 

 

Design defects detected during IT= 

 (Sum actual code faults detected in IT per origin per system[design]+Sum actual code faults 
detected in IT per origin per system\ 

  [requ])/Average design to code fault multiplier[design] 

 ~ Defect 

 ~  | 

 

Code defects detected during IT= 

 SUM(Sum actual code faults detected in IT per origin per system[origin!]) 

 ~ Defect 

 ~  | 

 

Project Duration= INTEG ( 

 Project status, 

  0) 

 ~ Day 

 ~ This variable specifies the number of days that the project is active. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 139

 

Total project effort= 

 SUM(Actual phase effort[phase!]) 

 ~ Day*Person 

 ~ This variable specifies the total amount of effort spent on all project \ 

  activities. 

 | 

 

Times a module has been verified in code rate[module]= 

 IF THEN ELSE(Code verification activity[module]>0,Code verification activity[module]\ 

  /Actual code size to develop per module[module],0) 

 ~ Dmnl/Day 

 ~ This rate specifies the rate with which the number of times a module has \ 

  been verified in code increases. 

 | 

 

Times a module has been verified in code[module]= INTEG ( 

 Times a module has been verified in code rate[module], 

  0) 

 ~ Dmnl 

 ~ This level variable specifies the number of times a module has been \ 

  verified in the code phase. 

 | 

 

Code rework effort per fault[module]= 

 IF THEN ELSE(Times a module has been tested in ST[module]>0,Code rework effort for ST\ 

  ,IF THEN ELSE(Times a module has been tested in IT[module]>0:AND:Times a module 
has been tested in ST\ 

  [module]=0,Code rework effort for IT,IF THEN ELSE(Times a module has been tested in 
UT\ 

  [module]>0:AND:(Times a module has been tested in IT[module]+Times a module has 
been tested in ST\ 

  [module])=0,Code rework effort for UT,IF THEN ELSE(Times a module has been verified 
in code\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 140

  [module]>0:AND:(Times a module has been tested in UT[module]+Times a module has 
been tested in IT\ 

  [module]+Times a module has been tested in ST[module])=0,Code rework effort for code 
inspection\ 

  ,0)))) 

 ~ Day*Person/Defect 

 ~  | 

 

Actual phase effort[RE]= 

 Actual requ spec effort+Requ ver effort ~~| 

Actual phase effort[DE]= 

 Actual design effort+Design ver effort ~~| 

Actual phase effort[CO]= 

 Actual code effort+Code ver effort ~~| 

Actual phase effort[UT]= 

 Unit test effort ~~| 

Actual phase effort[IT]= 

 Integration testing effort ~~| 

Actual phase effort[ST]= 

 System testing effort 

 ~ Day*Person 

 ~  | 

 

Code rework effort for IT= 

 1.08125 

 ~ Day*Person/Defect 

 ~  | 

 

Sum code fault correction per module[module]= 

 SUM(Code fault correction[origin!,factor!,module]) 

 ~ Defect/Day 

 ~  | 

 

Code rework effort for code inspection= 

 0.3387 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 141

 ~ Day*Person/Defect 

 ~  | 

 

Code rework effort for ST= 

 5.6225 

 ~ Day*Person/Defect 

 ~  | 

 

Code rework effort for UT= 

 0.4325 

 ~ Day*Person/Defect 

 ~  | 

 

Sum design fault correction per subsystem[subsystem]= 

 SUM(Design fault correction[origin!,factor!,subsystem]) 

 ~ Defect/Day 

 ~  | 

 

Design rework effort per fault[subsystem]= 

 IF THEN ELSE(Design productivity learning switch=1,Initial design rework effort per fault\ 

  *MAX(1,Design productivity learning status[subsystem]^Productivity design learning 
amplifier\ 

  ),Initial design rework effort per fault) 

 ~ Day*Person/Defect 

 ~  | 

 

Initial design rework effort per fault= 

 0.29 

 ~ Day*Person/Defect 

 ~  | 

 

Requ spec rework effort per fault= 

 IF THEN ELSE(Requ productivity learning switch=0,Initial requ spec rework effort per fault\ 

  ,Initial requ spec rework effort per fault*MAX(1,Requ spec productivity learning status\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 142

  ^Requ spec productivity learning amplifier)) 

 ~ (Person*Day)/Defect 

 ~ This variable specifies the amount of effort that has to be spent to fix a \ 

  requirements specification defect. 

 | 

 

Initial requ spec rework effort per fault= 

 0.125 

 ~ (Person*Day)/Defect 

 ~ This constant specifies the amount of effort that has to be spent to fix a \ 

  requirements specification defect initially. 

 | 

 

Sum requ spec fault correction rate= 

 SUM(Requ spec fault correction rate[origin!,factor!]) 

 ~ Defect/Day 

 ~ This variable is used to show the sum of requirements specification \ 

  defects fixed over all origins and quality factors everyday. 

 | 

 

Code dev effort= INTEG ( 

 Code dev effort rate, 

  0) 

 ~ Day*Person 

 ~  | 

 

Code dev effort rate= 

 Code dev workforce 

 ~ Person 

 ~  | 

 

Code ver effort rate= 

 Code ver workforce 

 ~ Person 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 143

 ~  | 

 

Code effort= 

 Code dev effort+Code ver effort 

 ~ Day*Person 

 ~ This variable is used to show the total effort spent on the code document. 

 | 

 

Code ver effort= INTEG ( 

 Code ver effort rate, 

  0) 

 ~ Day*Person 

 ~ This level variable is used to keep track of the effort spent of the code \ 

  verification acitivity. 

 | 

 

Sum design fault detection due to verification[origin,factor]= 

 SUM(Design fault detection due to verification[origin,factor,subsystem!]) 

 ~ Defect/Day 

 ~ This variable sums number of design faults detected during design \ 

  verification over all subsystems. 

 | 

 

Design fault detection due to verification[origin,factor,subsystem]= 

 IF THEN ELSE(Design verification activity[subsystem]>0,Design fault detection[origin\ 

  ,factor,subsystem],0) 

 ~ Defect/Day 

 ~  | 

 

Phase effort[RE]= 

 Requ effort ~~| 

Phase effort[DE]= 

 Design effort ~~| 

Phase effort[CO]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 144

 Code effort ~~| 

Phase effort[UT]= 

 Unit test effort ~~| 

Phase effort[IT]= 

 Integration testing effort ~~| 

Phase effort[ST]= 

 System testing effort 

 ~ Day*Person 

 ~  | 

 

Amount of design reworked per subsystem[subsystem]= INTEG ( 

 Design to rework[subsystem], 

  0) 

 ~ Page 

 ~  | 

 

Amount of code reworked per module[module]= INTEG ( 

 Code to rework[module], 

  0) 

 ~ KLOC 

 ~  | 

 

Amount of design reworked per system= 

 SUM(Amount of design reworked per subsystem[subsystem!]) 

 ~ Page 

 ~  | 

 

Code randomizing multipliers[module]= 

 GET XLS CONSTANTS('Workforce.xls','Sheet2','A1') 

 ~ Dmnl 

 ~ This constant specifies a random number between 0.5 and 1.5 generated from \ 

  a uniform distribution using excel for every module and is used to \ 

  differentiate size of different modules randomly. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 145

 

Phase Duration[phase]= INTEG ( 

 Phase status[phase], 

  0) 

 ~ Day 

 ~ This variable specifies the number of days that a phase is active. 

 | 

 

Design to be reworked later[subsystem]= INTEG ( 

 Design late rework incoming rate[subsystem]-Design late rework outgoing rate[subsystem\ 

  ], 

  0) 

 ~ Page 

 ~  | 

 

Learning amplifier for code fault injection= 

 6 

 ~ Dmnl 

 ~  | 

 

Learning amplifier for design fault injection= 

 2 

 ~ Dmnl 

 ~  | 

 

Learning amplifier for requ fault injection= 

 3 

 ~ Dmnl 

 ~ This constant is used to adjust the effect of learning on injection of \ 

  defects in the requirements specification document. 

 | 

 

Design productivity learning status[subsystem]= 

 IF THEN ELSE(Design learning status[subsystem]<1,1,1+(0.5*Design learning status[subsystem\ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 146

  ])) 

 ~ Dmnl 

 ~  | 

 

Requ spec productivity learning status= 

 IF THEN ELSE(Requ spec learning status<1,1,1+(0.6*Requ spec learning status)) 

 ~ Dmnl 

 ~ This variable is used to adjust the effect of 'Requ spec learning status' \ 

  on the productivity of the requirements specification development/rework. 

 | 

 

Code productivity learning status[module]= 

 1+(Code learning status[module]-1)*0 

 ~ Dmnl 

 ~  | 

 

Design productivity learning switch= 

 0 

 ~ Dmnl 

 ~  | 

 

Requ productivity learning switch= 

 0 

 ~ Dmnl 

 ~ This swirch is used to switch on/off the effect of learning on per defect \ 

  fixing effort for every pending requirements specification defect. 

 | 

 

IT test case data available or not= 

 0 

 ~ Dmnl 

 ~  | 

 

ST test case data available or not= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 147

 0 

 ~ Dmnl 

 ~  | 

 

Average number of UT test cases per code size unit= 

 10 

 ~ Testcase/KLOC 

 ~  | 

 

UT Test case data availble or not= 

 0 

 ~ Dmnl 

 ~ This constant specifies if data is available for calibration of parameters \ 

  related to development/execution of unit test cases. If set to 1 unit test \ 

  case development is done and test cases are stored in the 'UT test cases' \ 

  level variable and the unit testing rate is calculated according to unit \ 

  test case execution data and if set to 0, unit test case development is \ 

  not done and unit testing rate is calculated according to 'Average UT \ 

  productivity' variable. 

 | 

 

Actual allocation[activity,allocation]= 

 GETALLOCATIONX(Developer Capabilities[DEV1,RED],Required skill level per activity[RED 

 ],Weighed work[RED],12,Total number of developers in the team) 

 ~  

 ~ This variable specifies the number and skill level average of developers \ 

  which are assigned to different activities. The NMBR index of the \ 

  allocation subscript specifies the number of the assigned developers and \ 

  the SKLL index specifies the skill level average of the assigned \ 

  developers. 

 | 

 

Phase status[RE]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 148

 IF THEN ELSE(Total requ spec ver status>0:AND:(Total requ spec status+Total requ spec ver 
status\ 

  )/2>0:AND:(Total requ spec status 

 +Total requ spec ver status 

 )/2<1,1,IF THEN ELSE(Total requ spec ver status=0:AND:Total requ spec status>0:AND:Total 
requ spec status\ 

  <1,1,0)) ~~| 

Phase status[DE]= 

 IF THEN ELSE(Total design doc ver status>0:AND:(Total design doc dev status+Total design doc 
ver status\ 

  )/2>0:AND:(Total design doc dev status 

+Total design doc ver status 

 )/2<1,1,IF THEN ELSE(Total design doc ver status=0:AND:Total design doc dev status>0\ 

  :AND:Total design doc dev status<1, 

1,0)) ~~| 

Phase status[CO]= 

 IF THEN ELSE(Total code doc ver status>0:AND:(Total code doc dev status+Total code doc ver 
status\ 

  )/2>0:AND:(Total code doc dev status 

+Total code doc ver status 

 )/2<1,1,IF THEN ELSE(Total code doc ver status=0:AND:Total code doc dev status>0:AND:\ 

  Total code doc dev status<1,1,0)) ~~| 

Phase status[UT]= 

 IF THEN ELSE(Sum module under TC dev in UT>0,1,IF THEN ELSE(Total unit test status>0\ 

  :AND:Total unit test status<1,1,0)) ~~| 

Phase status[IT]= 

 IF THEN ELSE(Number of subsystems under TC dev in IT>0,1,IF THEN ELSE(Total integration 
test status\ 

  >0:AND:Total integration test status<1,1,0)) ~~| 

Phase status[ST]= 

 IF THEN ELSE(System under TC dev in ST>0,1,IF THEN ELSE(Total system test status>0:AND:\ 

  Total system test status<1,1,0)) 

 ~ Dmnl 

 ~ This variable specifies the status of a phase within the development \ 

  project. It is 1 if some work is being done on some document in some \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 149

  activity of that phase and is 0 if otherwise. 

 | 

 

Number of documents being processed per activity[RED]= 

 IF THEN ELSE(Requ spec flag=1,1,0) ~~| 

Number of documents being processed per activity[REV]= 

 IF THEN ELSE(Requ spec ver flag=1,1,0) ~~| 

Number of documents being processed per activity[DED]= 

 Number of subsystems being developed in design ~~| 

Number of documents being processed per activity[DEV]= 

 Number of subsystems being verified in design ~~| 

Number of documents being processed per activity[COD]= 

 Number of modules being developed in code ~~| 

Number of documents being processed per activity[COV]= 

 Number of modules being verified in code ~~| 

Number of documents being processed per activity[UTV]= 

 Number of modules waiting to be unit tested ~~| 

Number of documents being processed per activity[ITV]= 

 Number of subsystems waiting for integration testing ~~| 

Number of documents being processed per activity[STV]= 

 Number of systems waiting to be system tested ~~| 

Number of documents being processed per activity[ITTC]= 

 Number of subsystems waiting for TC dev in IT ~~| 

Number of documents being processed per activity[STTC]= 

 IF THEN ELSE(System waiting for TC dev for ST=1,1,0) ~~| 

Number of documents being processed per activity[UTTC]= 

 Number of modules waiting for TC dev in UT 

 ~ Dmnl 

 ~ This variable specifies the number of documents which are waiting to be \ 

  worked on in every activity. The requirements specification document is \ 

  counted as 1 document. A subsystem's design document is counted as 1 \ 

  document. A module's code document is count as 1 document. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 150

UT test cases[module]= INTEG ( 

 UT test case dev rate[module], 

  0) 

 ~ Testcase 

 ~ This level variable specifies the number of test cases developed for unit \ 

  test. 

 | 

 

Sum allocated personnel= 

 SUM(Actual allocation[activity!,NMBR]) 

 ~ Dmnl 

 ~ This variable specifies the total number of developers that are assigned \ 

  to all activites within the development process. 

 | 

 

Average requ spec ver effectiveness[origin,factor]= 

 Maximum requ spec ver effectiveness[origin,factor]*Requ ver team skill level average 

 ~ Dmnl 

 ~ This variable specifies the effectiveness of the requirements \ 

  specification verification technique in detecting undetected requirements \ 

  specification defects. 

 | 

 

ST test cases= INTEG ( 

 ST test case dev rate, 

  0) 

 ~ Testcase 

 ~  | 

 

allocation: 

 NMBR,SKLL 

 ~  

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 151

IT test cases[subsystem]= INTEG ( 

 IT test case dev rate[subsystem], 

  0) 

 ~ Testcase 

 ~  | 

 

Times a module has been tested in UT rate[module]= 

 IF THEN ELSE(Code returned for rework rate from UT[module]>0,1,0) 

 ~ Dmnl/Day 

 ~ This rate specifies the value of times a module has been tested in UT that \ 

  is added everyday. 

 | 

 

Times a module has been tested in UT[module]= INTEG ( 

 Times a module has been tested in UT rate[module], 

  0) 

 ~ Dmnl 

 ~ This level variable specifies the number of times a module has been tested \ 

  in UT. 

 | 

 

Times a module has been tested in IT rate[module]= 

 IF THEN ELSE(Code returned for rework from IT[module]>0,1,0) 

 ~ Dmnl/Day 

 ~  | 

 

Times a module has been tested in IT[module]= INTEG ( 

 Times a module has been tested in IT rate[module], 

  0) 

 ~ Dmnl 

 ~  | 

 

Times a module has been tested in ST[module]= INTEG ( 

 Times a module has been tested in ST rate[module], 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 152

  0) 

 ~ Dmnl 

 ~  | 

 

Times a module has been tested in ST rate[module]= 

 IF THEN ELSE(Code returned for rework from ST[module]>0,1,0) 

 ~ Dmnl/Day 

 ~  | 

 

Required skill level per activity[activity]= 

 0,0.8,0,0,0,0,0,0,0,0,0,0 

 ~ Dmnl 

 ~ This constant specifies the skill level which is required for developers \ 

  in order to be assigned to an activity. 

 | 

 

Code weigh for dev= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a module's code document while its \ 

  waiting to be developed/reworked. 

 | 

 

Project status= 

 IF THEN ELSE(SUM(Phase status[phase!])>0,1,0) 

 ~ Dmnl 

 ~ This variable specifies the status of the project. It is 1 if some phase \ 

  is active and 0 if otherwise. 

 | 

 

Code weigh for ver= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a module's code document while its \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 153

  waiting to be verified. 

 | 

 

Document type weighs[RED]= 

 Requ spec weigh for dev ~~| 

Document type weighs[REV]= 

 Requ spec weigh for ver ~~| 

Document type weighs[DED]= 

 Design weigh for dev ~~| 

Document type weighs[DEV]= 

 Design weigh for ver ~~| 

Document type weighs[COD]= 

 Code weigh for dev ~~| 

Document type weighs[COV]= 

 Code weigh for ver ~~| 

Document type weighs[UTV]= 

 Code weigh for ut ~~| 

Document type weighs[ITV]= 

 Design weigh for it ~~| 

Document type weighs[STV]= 

 Requ spec weigh for st ~~| 

Document type weighs[ITTC]= 

 Design weigh for it ~~| 

Document type weighs[STTC]= 

 Requ spec weigh for st ~~| 

Document type weighs[UTTC]= 

 Code weigh for ut 

 ~ Dmnl 

 ~ Since the allocation algorithm uses the number of documents which are \ 

  waiting to be worked on, this variable is used to weigh different document \ 

  types so that for example the requirements specification is considered \ 

  equal to a couple of modules' code document. 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 154

Requ spec weigh for st= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a module's code document while its \ 

  waiting to be system tested. 

 | 

 

Design weigh for dev= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a subsystem's design document while \ 

  its waiting to be developed/reworked. 

 | 

 

Design weigh for it= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a module's code document while its \ 

  waiting to be integration tested. 

 | 

 

Requ spec weigh for dev= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of the requirements specification \ 

  document while its waiting to be developed/reworked. 

 | 

 

Requ spec weigh for ver= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of the requirements specification \ 

  document while its waiting to be verified. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 155

 

Design weigh for ver= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a subsystem's design document while \ 

  its waiting to be verified. 

 | 

 

Code weigh for ut= 

 1 

 ~ Dmnl 

 ~ This variable specifies the weight of a module's code document while its \ 

  waiting to be unit tested. 

 | 

 

Weighed work[activity]= 

 Document type weighs[activity]*Number of documents being processed per activity[activity\ 

  ] 

 ~ Dmnl 

 ~ This variable specifies the weighed number of documents that are waiting \ 

  to be processed in every activity. 

 | 

 

activity: 

 RED,REV,DED,DEV,COD,COV,UTTC,UTV,ITTC,ITV,STTC,STV 

 ~  

 ~  | 

 

co activities: 

 COD,COV 

 ~  

 ~  | 

 

it activities: 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 156

 ITV,ITTC 

 ~  

 ~  | 

 

st activities: 

 STTC,STV 

 ~  

 ~  | 

 

ut activities: 

 UTTC,UTV 

 ~  

 ~  | 

 

de activities: 

 DED,DEV 

 ~  

 ~  | 

 

re activities: 

 RED,REV 

 ~  

 ~  | 

 

developer: 

 (DEV1-DEV40) 

 ~  

 ~  | 

 

Developer Capabilities[developer,activity]= 

 GET XLS CONSTANTS('Workforce.xls','Sheet1','A1') 

 ~ Dmnl 

 ~ This constant is in the form of a matrix with one row for every developer \ 

  and one column for every activity. The cell at the ith row and jth column \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 157

  specifies the skill level of developer i in carrying out the activity j on \ 

  a 0 to 1 basis. 

 | 

 

Normalized requ spec quality measures per system per quality factor[factor]= 

 IF THEN ELSE(Sum requ spec faults undetected per quality factor[factor]>0,Sum actual requ 
spec faults corrected per quality factor\ 

  [factor]/(Sum actual requ spec faults detected per quality factor[factor]+Sum requ spec 
faults undetected per quality factor 

 [factor]),0) 

 ~ Dmnl 

 ~  | 

 

Normalized code quality measures per system per quality factor[factor]= 

 IF THEN ELSE(Sum code faults undetected in coding per quality factor per system[factor\ 

  ]>0,Sum actual code faults corrected per quality factor per system 

 [factor]/(Sum actual code faults detected per quality factor per system[factor]+Sum code faults 
undetected in coding per quality factor per system 

 [factor]),0) 

 ~ Dmnl 

 ~  | 

 

Normalized design measure per system= 

 IF THEN ELSE((Sum actual design faults detected per system+Sum design faults undetected per 
system\ 

  )>0,Sum actual design faults corrected per system 

 /(Sum actual design faults detected per system+Sum design faults undetected per system\ 

  ),0) 

 ~ Dmnl 

 ~  | 

 

Normalized code quality measure per system= 

 IF THEN ELSE((Sum actual code faults detected per system+Sum code faults undetected per 
system\ 

  )>0,Sum actual code faults corrected per system 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 158

 /(Sum actual code faults detected per system+Sum code faults undetected per system),\ 

  0) 

 ~ Dmnl 

 ~  | 

 

Normalized design quality measures for system per quality factor[factor]= 

 IF THEN ELSE(Sum design faults undetected per quality factor per system[factor]>0,Sum actual 
design faults corrected per quality factor per system\ 

  [factor]/(Sum actual design faults detected per quality factor per system[factor]+Sum 
design faults undetected per quality factor per system 

 [factor]),0) 

 ~ Dmnl 

 ~  | 

 

Verify design or not= 

 1 

 ~ Dmnl 

 ~  | 

 

Verify code or not= 

 1 

 ~ Dmnl 

 ~  | 

 

System test or not= 

 1 

 ~ Dmnl 

 ~ This variable is used as a switch to turn on/off the system test activity. \ 

  While set to 1 system test is done and while set to 0 its not. 

 | 

 

Integration test or not= 

 1 

 ~ Dmnl 

 ~ This variable is used as a switch to turn on/off the integration test \ 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 159

  activity. While set to 1 integration test is done and while set to 0 its \ 

  not. 

 | 

 

Unit test or not= 

 1 

 ~ Dmnl 

 ~ This variable is used as a switch to turn on/off the unit test activity. \ 

  While set to 1 unit test is done and while set to 0 its not. 

 | 

 

Design doc quality[subsystem]= 

 IF THEN ELSE(Design doc verified[subsystem]>0,Sum design faults pending per subsystem\ 

  [subsystem]/Design doc verified[subsystem], 0) 

 ~ Defect/Page 

 ~  | 

 

Design doc verified[subsystem]= INTEG ( 

 Design verification activity[subsystem]-Design doc verified flush[subsystem], 

  0) 

 ~ Page 

 ~  | 

 

Sum design to code faults propagated per module[module]= 

 SUM(Design to code faults propagated[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Code dev flag[module]= 

 IF THEN ELSE(Code doc dev status[module]=1,1,0) 

 ~ Dmnl 

 ~  | 

 

Number of subsystems being verified in design= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 160

 SUM(Design ver flag[subsystem!]) 

 ~ Dmnl 

 ~ This variable specifies the number of subsystems being verified at any \ 

  point in time. 

 | 

 

Code ver flag[module]= 

 IF THEN ELSE(Code doc ver status[module]=1,1,0) 

 ~ Dmnl 

 ~  | 

 

Design dev flag[subsystem]= 

 IF THEN ELSE(Design doc dev status[subsystem]=1,1,0) 

 ~ Dmnl 

 ~  | 

 

Design ver flag[subsystem]= 

 IF THEN ELSE(Design doc ver status[subsystem]=1,1,0) 

 ~ Dmnl 

 ~  | 

 

Total number of developers in the team= 

 40 

 ~ Person 

 ~ This constant specifies the total number of developers that are available \ 

  for the project. 

 | 

 

Requ spec flag= 

 IF THEN ELSE(Requ spec status=1,1,0) 

 ~ Dmnl 

 ~ This flag is used to specify when the requirements specification \ 

  development/rework activity is active. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 161

 

Requ spec ver flag= 

 IF THEN ELSE(Requ spec ver status=1,1,0) 

 ~ Dmnl 

 ~ This flag is used to specify when the requirements specification \ 

  verification is active. 

 | 

 

Number of subsystems being developed in design= 

 SUM(Design dev flag[subsystem!]) 

 ~ Dmnl 

 ~ This variable specifies the number of subsystems being developed/reworked \ 

  at any point in time. 

 | 

 

Number of modules being developed in code= 

 SUM(Code dev flag[module!]) 

 ~ Dmnl 

 ~  | 

 

Number of modules being verified in code= 

 SUM(Code ver flag[module!]) 

 ~ Dmnl 

 ~  | 

 

"V&V status"[RE]= 

 IF THEN ELSE(Total requ spec ver status>0:AND:Total requ spec ver status<1,1,0) ~~| 

"V&V status"[DE]= 

 IF THEN ELSE(Total design doc ver status>0:AND:Total design doc ver status<1,1,0) ~~| 

"V&V status"[CO]= 

 IF THEN ELSE(Total code doc ver status>0:AND:Total code doc ver status<1,1,0) ~~| 

"V&V status"[UT]= 

 IF THEN ELSE(Total unit test status>0:AND:Total unit test status<1,1,0) ~~| 

"V&V status"[IT]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 162

 IF THEN ELSE(Total integration test status>0:AND:Total integration test status<1,1,0\ 

  ) ~~| 

"V&V status"[ST]= 

 IF THEN ELSE(Total system test status>0:AND:Total system test status<1,1,0) 

 ~ Dmnl 

 ~ This variable specifies the status of the verification and validation \ 

  activites within the project. It is 1 if some V&V activity is active and 0 \ 

  if otherwise. 

 | 

 

Total code doc ver status per subsystem[subsystem]= 

 CUSTOMSUMONED(Code doc ver status[MOD1],Subsystem's first module 
number[subsystem],Number of modules per subsystem\ 

  [subsystem])/(3*Number of modules per subsystem[subsystem]) 

 ~ Dmnl 

 ~ This variable specifies the status of code document verification for every \ 

  subsystem on a 0 to 1 status. 

 | 

 

Dev status[RE]= 

 IF THEN ELSE(Total requ spec status>0:AND:Total requ spec status<1,1,0) ~~| 

Dev status[DE]= 

 IF THEN ELSE(Total design doc dev status>0:AND:Total design doc dev status<1,1,0) ~~| 

Dev status[CO]= 

 IF THEN ELSE(Total code doc dev status>0:AND:Total code doc dev status<1,1,0) 

 ~ Dmnl 

 ~ This variable specifies the status of the development/rework activities \ 

  within the project. It is 1 if some development/rework activity is active \ 

  and 0 if otherwise. 

 | 

 

phase: 

 RE,DE,CO,UT,IT,ST -> (activity:re activities,de activities,co activities,ut activities\ 

  ,it activities,st activities) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 163

 ~  

 ~  | 

 

Total code doc dev status= 

 SUM(Code doc dev status[module!])/(2*SUM(Number of modules per subsystem[subsystem!]\ 

  )) 

 ~ Dmnl 

 ~  | 

 

Total design doc dev status= 

 SUM(Design doc dev status[subsystem!])/(2*Number of subsystems per product) 

 ~ Dmnl 

 ~ This variable specifies the overall status of the design \ 

  development/rework activity on a 0 to 1 basis. 

 | 

 

Total requ spec ver status= 

 Requ spec ver status/3 

 ~ Dmnl 

 ~ This variable is used to specify the status of the requirements \ 

  specification activity on a 0 to 1 basis. 

 | 

 

Total requ spec status= 

 Requ spec status/2 

 ~ Dmnl 

 ~ This variable shows the status of the requirements specification \ 

  development/rework activity on a 0 to 1 basis. 

 | 

 

Total system test status= 

 SUM(System test status[module!])/(3*SUM(Number of modules per subsystem[subsystem!])\ 

  ) 

 ~ Dmnl 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 164

 ~  | 

 

Rework design or not= 

 1 

 ~ Dmnl 

 ~  | 

 

Total design doc ver status= 

 SUM(Design doc ver status[subsystem!])/(3*Number of subsystems per product) 

 ~ Dmnl 

 ~ This variable specifies the overall status of the design verification \ 

  activity on a 0 to 1 basis. 

 | 

 

Total code doc ver status= 

 SUM(Code doc ver status[module!])/(3*SUM(Number of modules per subsystem[subsystem!]\ 

  )) 

 ~ Dmnl 

 ~  | 

 

Sum requ spec faults pending per origin[origin]= 

 SUM(Requ spec faults pending[origin,factor!]) 

 ~ Defect 

 ~  | 

 

Sum requ spec faults pending per quality factor[factor]= 

 SUM(Requ spec faults pending[origin!,factor]) 

 ~ Defect 

 ~  | 

 

Sum actual requ spec faults corrected per system= 

 SUM(Sum actual requ spec faults corrected per origin[origin!]) 

 ~ Defect 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 165

 

Sum requ spec faults generated per system= 

 SUM(Sum requ spec faults generated per origin[origin!]) 

 ~ Defect 

 ~  | 

 

Sum requ spec faults undetected per system= 

 SUM(Sum requ spec faults undetected per origin[origin!]) 

 ~ Defect 

 ~ This variable the overall number of defects that remain undetected in the \ 

  requirements specification document. 

 | 

 

Sum actual requ spec faults detected per system= 

 SUM(Sum actual requ spec faults detected per origin[origin!]) 

 ~ Defect 

 ~ This variable specifies the total number of defects which were detected in \ 

  the requirements specification document. 

 | 

 

Sum requ spec faults pending per system= 

 SUM(Sum requ spec faults pending per origin[origin!]) 

 ~ Defect 

 ~  | 

 

Sum requ spec faults generated per origin[origin]= 

 SUM(Requ spec faults generated[origin,factor!]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults detected per quality factor per system[factor]= 

 SUM(Sum actual design faults detected per quality factor per subsystem[factor,subsystem\ 

  !]) 

 ~ Defect 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 166

 ~  | 

 

Sum requ spec faults generated per quality factor[factor]= 

 SUM(Requ spec faults generated[origin!,factor]) 

 ~ Defect 

 ~  | 

 

Sum requ spec faults undetected per origin[origin]= 

 SUM(Requ spec faults undetected[origin,factor!]) 

 ~ Defect 

 ~  | 

 

Sum requ spec faults undetected per quality factor[factor]= 

 SUM(Requ spec faults undetected[origin!,factor]) 

 ~ Defect 

 ~  | 

 

Sum actual requ spec faults detected per quality factor[factor]= 

 SUM(Actual requ spec faults detected[origin!,factor]) 

 ~ Defect 

 ~  | 

 

Sum design faults pending per quality factor per system[factor]= 

 SUM(Sum design faults pending per quality factor per subsystem[factor,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum design faults pending per origin per system[origin]= 

 SUM(Sum design faults pending per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum actual requ spec faults corrected per origin[origin]= 

 SUM(Actual requ spec faults corrected[origin,factor!]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 167

 ~ Defect 

 ~  | 

 

Sum actual requ spec faults detected per origin[origin]= 

 SUM(Actual requ spec faults detected[origin,factor!]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults detected per origin per system[origin]= 

 SUM(Sum actual design faults detected per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum actual requ spec faults corrected per quality factor[factor]= 

 SUM(Actual requ spec faults corrected[origin!,factor]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per origin per system[origin]= 

 SUM(Sum design faults undetected per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per quality factor per subsystem[factor,subsystem]= 

 SUM(Design faults undetected[origin!,factor,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per quality factor per system[factor]= 

 SUM(Sum design faults undetected per quality factor per subsystem[factor,subsystem!]\ 

  ) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 168

Sum code faults generated per quality factor per system[factor]= 

 SUM(Sum code faults generated per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults corrected per origin per system[origin]= 

 SUM(Sum actual design faults corrected per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults corrected per quality factor per subsystem[factor,subsystem]\ 

  = 

 SUM(Actual design faults corrected[origin!,factor,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults corrected per quality factor per system[factor]= 

 SUM(Sum actual design faults corrected per quality factor per subsystem[factor,subsystem\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum code faults pending per quality factor per system[factor]= 

 SUM(Sum code faults pending per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected per quality factor per system[factor]= 

 SUM(Sum actual code faults detected per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum code faults pernding per origin per system[origin]= 

 SUM(Sum code faults pending per origin per module[origin,module!]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 169

 ~ Defect 

 ~  | 

 

Sum actual design faults detected per quality factor per subsystem[factor,subsystem]= 

 SUM(Actual design faults detected[origin!,factor,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum code faults undetected in coding per origin per system[origin]= 

 SUM(Sum code faults undetected in coding per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults corrected per origin per system[origin]= 

 SUM(Sum actual code faults corrected per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults corrected per quality factor per module[factor,module]= 

 SUM(Actual code faults corrected[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum design faults generated per origin per system[origin]= 

 SUM(Sum design faults generated per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum design faults generated per quality factor per subsystem[factor,subsystem]= 

 SUM(Design faults generated[origin!,factor,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum design faults generated per quality factor per system[factor]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 170

 SUM(Sum design faults generated per quality factor per subsystem[factor,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum code faults generated per quality factor per module[factor,module]= 

 SUM(Code faults generated[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected per origin per system[origin]= 

 SUM(Sum actual code faults detected per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected per quality factor per module[factor,module]= 

 SUM(Actual code faults detected[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum design faults pending per quality factor per subsystem[factor,subsystem]= 

 SUM(Design faults pending[origin!,factor,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum code faults generated per origin per system[origin]= 

 SUM(Sum code faults generated per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum code faults undetected in coding per quality factor per module[factor,module]= 

 SUM(Code faults undetected in coding[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 171

Sum code faults undetected in coding per quality factor per system[factor]= 

 SUM(Sum code faults undetected in coding per quality factor per module[factor,module\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults corrected per quality factor per system[factor]= 

 SUM(Sum actual code faults corrected per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum code faults pending per quality factor per module[factor,module]= 

 SUM(Code faults pending[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in ST per origin per module[origin,module]= 

 SUM(Actual code faults detected in ST[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per module[module]= 

 SUM(Actual code faults detected in IT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per origin per module[origin,module]= 

 SUM(Actual code faults detected in IT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per origin per system[origin]= 

 SUM(Sum actual code faults detected in IT per origin per subsystem[origin,subsystem!\ 

  ]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 172

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per quality factor per module[factor,module]= 

 SUM(Actual code faults detected in IT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per quality factor per system[factor]= 

 SUM(Sum actual code faults detected in IT per quality factor per subsystem[factor,subsystem\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in IT per system= 

 SUM(Sum actual code faults detected in IT per subsystem[subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per origin per system[origin]= 

 SUM(Sum undetected code faults in UT per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in ST per origin per system[origin]= 

 SUM(Sum actual code faults detected in ST per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in ST per quality factor per module[factor,module]= 

 SUM(Actual code faults detected in ST[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 173

Sum actual code faults detected in ST per quality factor per system[factor]= 

 SUM(Sum actual code faults detected in ST per quality factor per module[factor,module\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in ST per system= 

 SUM(Sum actual code faults detected in ST per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in ST per origin per system[origin]= 

 SUM(Sum undetected code faults in ST per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in ST per quality factor pe rmodule[factor,module]= 

 SUM(Undetected code faults in ST[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in UT per origin per system[origin]= 

 SUM(Sum actual code faults detected in UT per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in ST per system= 

 SUM(Sum undetected code faults in ST per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in UT per quality factor per system[factor]= 

 SUM(Sum actual code faults detected in UT per quality factor per module[factor,module\ 

  !]) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 174

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per system= 

 SUM(Sum detected code faults in IT per subsystem[subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per quality factor per module[factor,module]= 

 SUM(Undetected code faults in IT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in ST per module[module]= 

 SUM(Detected code faults in ST[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per quality factor per system[factor]= 

 SUM(Sum undetected code faults in UT per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per origin per module[origin,module]= 

 SUM(Detected code faults in IT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per origin per system[origin]= 

 SUM(Sum detected code faults in IT per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per quality factor per module[factor,module]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 175

 SUM(Detected code faults in IT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per quality factor per system[factor]= 

 SUM(Sum detected code faults in IT per quality factor per subsystem[factor,subsystem\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum tested code in ST per system= 

 SUM(Tested code in ST[module!]) 

 ~ KLOC 

 ~  | 

 

Sum undetected code faults in IT per origin per system[origin]= 

 SUM(Sum undetected code faults in IT per origin per subsystem[origin,subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in ST per quality factor per system[factor]= 

 SUM(Sum detected code faults in ST per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in ST per system= 

 SUM(Sum detected code faults in ST per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in ST per module per origin[origin,module]= 

 SUM(Detected code faults in ST[origin,factor!,module]) 

 ~ Defect 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 176

 

Sum detected code faults in ST per origin per system[origin]= 

 SUM(Sum detected code faults in ST per module per origin[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in ST per quality factor per module[factor,module]= 

 SUM(Detected code faults in ST[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum code to be tested in ST per system= 

 SUM(Code to be tested in ST[module!]) 

 ~ KLOC 

 ~  | 

 

Sum undetected code faults in ST per origin per module[origin,module]= 

 SUM(Undetected code faults in ST[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per qualit factor per system[factor]= 

 SUM(Sum detected code faults in UT per quality factor per module[factor,module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per origin per system[origin]= 

 SUM(Sum detected code faults in UT per origin per module[origin,module!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in ST per quality factor per system[factor]= 

 SUM(Sum undetected code faults in ST per quality factor pe rmodule[factor,module!]) 

 ~ Defect 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 177

 ~  | 

 

Sum undetected code faults in IT per system= 

 SUM(Sum undetected code faults in IT per subsystem[subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per quality factor per system[factor]= 

 SUM(Sum undetected code faults in IT per quality factor per subsystem[factor,subsystem\ 

  !]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per origin per module[origin,module]= 

 SUM(Undetected code faults in IT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per quality factor per module[factor,module]= 

 SUM(Detected code faults in UT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per system= 

 SUM(Sum undetected code faults in UT per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per system= 

 SUM(Sum detected code faults in UT per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per module[module]= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 178

 SUM(Detected code faults in UT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in UT per origin per module[origin,module]= 

 SUM(Detected code faults in UT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per module[module]= 

 SUM(Undetected code faults in UT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per quality factor per module[factor,module]= 

 SUM(Undetected code faults in UT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in UT per origin per module[origin,module]= 

 SUM(Undetected code faults in UT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in UT per quality factor per module[factor,module]= 

 SUM(Actual code faults detected in UT[origin!,factor,module]) 

 ~ Defect 

 ~  | 

 

factor: 

 RLB,USB,FUN 

 ~  

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 179

Sum actual code faults detected in ST per module[module]= 

 SUM(Actual code faults detected in ST[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in IT per module[module]= 

 SUM(Undetected code faults in IT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum detected code faults in IT per module[module]= 

 SUM(Detected code faults in IT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum undetected code faults in ST per module[module]= 

 SUM(Undetected code faults in ST[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum tested code in IT per system= 

 SUM(Tested code in IT[module!]) 

 ~ KLOC 

 ~  | 

 

Sum code to be tested in IT per system= 

 SUM(Code to be tested in IT[module!]) 

 ~ KLOC 

 ~  | 

 

Sum actual code size to develop per system= 

 SUM(Actual code size to develop per module[module!]) 

 ~ KLOC 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 180

 

Sum tested code in UT per system= 

 SUM(Tested code in UT[module!]) 

 ~ KLOC 

 ~  | 

 

Sum code to be tested in UT per system= 

 SUM(Code to be tested in UT[module!]) 

 ~ KLOC 

 ~  | 

 

Sum actual code faults detected in UT per module[module]= 

 SUM(Actual code faults detected in UT[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in UT per origin per module[origin,module]= 

 SUM(Actual code faults detected in UT[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected in UT per system= 

 SUM(Sum actual code faults detected in UT per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum code faults generated per system= 

 SUM(Sum code faults generated per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum code faults generated per origin per module[origin,module]= 

 SUM(Code faults generated[origin,factor!,module]) 

 ~ Defect 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 181

 ~  | 

 

Sum design faults generated per origin per subsystem[origin,subsystem]= 

 SUM(Design faults generated[origin,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults corrected per system= 

 SUM(Sum actual code faults corrected per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults corrected per origin per module[origin,module]= 

 SUM(Actual code faults corrected[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults corrected per origin per subsystem[origin,subsystem]= 

 SUM(Actual design faults corrected[origin,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual code faults detected per system= 

 SUM(Sum actual code faults detected per module[module!]) 

 ~ Defect 

 ~ This variable specifies the total number of defects which were detected in \ 

  the code document. 

 | 

 

Sum actual code faults detected per origin per module[origin,module]= 

 SUM(Actual code faults detected[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 182

Sum actual design faults detected per origin per subsystem[origin,subsystem]= 

 SUM(Actual design faults detected[origin,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum code faults pending per origin per module[origin,module]= 

 SUM(Code faults pending[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum design faults pending per origin per subsystem[origin,subsystem]= 

 SUM(Design faults pending[origin,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per origin per subsystem[origin,subsystem]= 

 SUM(Design faults undetected[origin,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum code faults undetected in coding per origin per module[origin,module]= 

 SUM(Code faults undetected in coding[origin,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum design doc stored size per system= 

 SUM(Design doc stored size[subsystem!]) 

 ~ Page 

 ~  | 

 

Sum code to do size per system= 

 SUM(Code to do size[module!]) 

 ~ KLOC 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 183

 

Sum design doc ready size per system= 

 SUM(Design doc ready size[subsystem!]) 

 ~ Page 

 ~  | 

 

Sum design doc size per system= 

 SUM(Design doc size[subsystem!]) 

 ~ Page 

 ~  | 

 

Sum actual design faults detected per system= 

 SUM(Sum actual design faults detected per subsystem[subsystem!]) 

 ~ Defect 

 ~ This variable specifies the total number of defects which were detected in \ 

  the design document. 

 | 

 

Sum code doc ready size per system= 

 SUM(Code doc ready size[module!]) 

 ~ KLOC 

 ~  | 

 

Sum code doc stored size per system= 

 SUM(Code doc stored size[module!]) 

 ~ KLOC 

 ~  | 

 

Sum actual code faults detected per module[module]= 

 SUM(Actual code faults detected[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum code faults undetected per system= 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 184

 SUM(Sum code faults undetected per module[module!]) 

 ~ Defect 

 ~ This variable the overall number of defects that remain undetected in the \ 

  code document. 

 | 

 

Sum actual code faults corrected per module[module]= 

 SUM(Actual code faults corrected[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum code faults pending per system= 

 SUM(Sum code faults pending per module[module!]) 

 ~ Defect 

 ~  | 

 

Sum design to do size per system= 

 SUM(Design to do size[subsystem!]) 

 ~ Page 

 ~  | 

 

Sum design faults pending per system= 

 SUM(Sum design faults pending per subsystem[subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum code faults generated per module[module]= 

 SUM(Code faults generated[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum design faults generated per system= 

 SUM(Sum design faults generated per subsystem[subsystem!]) 

 ~ Defect 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 185

 ~  | 

 

Sum code doc size per system= 

 SUM(Code doc size[module!]) 

 ~ KLOC 

 ~  | 

 

Sum actual design faults corrected per system= 

 SUM(Sum actual design faults corrected per subsystem[subsystem!]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per system= 

 SUM(Sum design faults undetected per subsystem[subsystem!]) 

 ~ Defect 

 ~ This variable the overall number of defects that remain undetected in the \ 

  design document. 

 | 

 

module: 

 (MOD1-MOD100) 

 ~  

 ~  | 

 

mod sub1: (MOD1-MOD20) 

 ~  

 ~  | 

 

mod sub2: (MOD21-MOD50) 

 ~  

 ~  | 

 

mod sub3: (MOD51-MOD62) 

 ~  



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 186

 ~  | 

 

mod sub4: (MOD63-MOD84) 

 ~  

 ~  | 

 

mod sub5: (MOD85-MOD100) 

 ~  

 ~  | 

 

subsystem: 

 (SUB1-SUB5) -> (module:mod sub1, mod sub2, mod sub3, mod sub4, mod sub5) 

 ~  

 ~  | 

 

origin: 

 requ, design, code 

 ~  

 ~  | 

 

Sum code faults undetected per module[module]= 

 SUM(Code faults undetected in coding[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults corrected per subsystem[subsystem]= 

 SUM(Actual design faults corrected[origin!,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum actual design faults detected per subsystem[subsystem]= 

 SUM(Actual design faults detected[origin!,factor!,subsystem]) 

 ~ Defect 

 ~  | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 187

 

Sum design faults generated per subsystem[subsystem]= 

 SUM(Design faults generated[origin!,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum design faults pending per subsystem[subsystem]= 

 SUM(Design faults pending[origin!,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum design faults undetected per subsystem[subsystem]= 

 SUM(Design faults undetected[origin!,factor!,subsystem]) 

 ~ Defect 

 ~  | 

 

Sum code faults pending per module[module]= 

 SUM(Code faults pending[origin!,factor!,module]) 

 ~ Defect 

 ~  | 

 

Code doc size[module]= INTEG ( 

 Code development activity[module]-Code verification activity[module]-Code not to verify\ 

  [module], 

  0) 

 ~ KLOC 

 ~  | 

 

******************************************************** 

 .Control 

********************************************************~ 

  Simulation Control Parameters 

 | 

 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 188

FINAL TIME  = 2000 

 ~ Day 

 ~ The final time for the simulation. 

 | 

 

INITIAL TIME  = 0 

 ~ Day 

 ~ The initial time for the simulation. 

 | 

 

SAVEPER  =  

        TIME STEP 

 ~ Day [0,?] 

 ~ The frequency with which output is stored. 

 | 

 

TIME STEP  = 1 

 ~ Day [0,?] 

 ~ The time step for the simulation. 

 | 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 189

APPENDIX B- SOURCE CODE OF THE GENSIM 2.0 WORKFORCE ALLOCATION FUNCTION 
This appendix includes the source code of the allocation function of GENSIM 2.0 in C++. 

 
double GETALLOCATIONX(VECTOR_ARG *alloc,VECTOR_ARG *skills,VECTOR_ARG 
*thresholds,VECTOR_ARG *workload,int num_activities,int num_devs) 
{   
 
 double required_skills_levels[12]; 
 double docs[12],temp_docs[12]; 
 int needy_activities[12]; 
 int permutation[12]; 
 int dev_cap_pattern[12]; 
 int num_needy_activities=0; 
 double allocation[12]; 
 double sum_assigned_skill[12]; 
 int i,j,k,l,m,n,count=0,p,finalPerm,stringIndex,oneIndex;  
 COMPREAL *allocated; 
 double rval; 
 
 double *dev_skills = alloca(num_devs*num_activities*sizeof(double)); 
 int *capabilities = alloca(num_devs*num_activities*sizeof(double)); 
 
 allocated = alloc->vals;     
  
 for(i=0;i<num_devs*num_activities;++i) 
  dev_skills[i]=skills->vals[i]; 
  
 //Initializing demands and skill level thresholds in local arrays 
 for(i=0;i<num_activities;++i) 
 { 
  docs[i] = workload->vals[i]; 
  required_skills_levels[i] = thresholds->vals[i]; 
  allocation[i]=0; 
  sum_assigned_skill[i]=0; 
 } 
  
 // Setting capabilities according to the required skill levels for  
 // different activities 
 for(j=0;j<num_activities;++j) 
  for(i=0;i<num_devs;++i) 
  { 
   if(required_skills_levels[j]>0.0 && 
dev_skills[i*num_activities+j]>required_skills_levels[j]) 
    capabilities[i*num_activities+j]=1; 
   else if(required_skills_levels[j]==0.0 && 
dev_skills[i*num_activities+j]>0.0) 
    capabilities[i*num_activities+j]=1; 
   else 
    capabilities[i*num_activities+j]=0; 
  } 
  
 // Determining the number of activities which need personnel 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 190

 for(i=0;i<num_activities;++i) 
  if(docs[i]>0) 
   num_needy_activities++; 
  
 // Copying the docs array in a temp array to help with extracting 
 // the index of needy activities 
 for(i=0;i<num_activities;++i) 
  temp_docs[i]=docs[i]; 
 
 // Determining the indexes of activities which need personnel. 
 // The result is an array called needy_activities which has 
 // the index of needy activities stored in it from its beginning 
 // to the num_needy_activities 
 for(i=0;i<num_activities;i++) 
  for(j=0;j<num_activities;++j) 
   if(temp_docs[j]>0) 
   { 
    needy_activities[i]=j; 
    temp_docs[j]=0.0; 
    break; 
   } 
  
 // The main for loop which is deciding on the share of the activity 
 // from the developers that can carry out the task, considering other 
 // needy activities. 
 for(i=0;i<num_activities;++i) 
 { 
  if(docs[i]>0) 
  {    
   // Any developer that is going to be assigned to do the  
   // activity must be capabale of it. 
   dev_cap_pattern[i]=1; 
   // Capabilities of the developer in activities which do 
   // not need any personnel is not important. -1 in  
   // dev_cap_pattern means that the developer's skill in 
   // that activity is ignored. 
   for(j=0;j<num_activities;++j) 
    if(docs[j]==0) 
     dev_cap_pattern[j]=-1; 
   // Making capability patterns according to the following: 
   // First developers that can just carry out this task 
   // Second developers that can carry out 2 tasks including 
this task 
   // Third developers that can carry out 3 tasks including 
this task and ...  
  
 ////////////////////////////////////////////////////////////////////////
/// 
   // Assigninig developers which can only carry out this task. 
It is separated 
   // because the algorithm used to generate permutations 
cannot generate the  
   // permutation where all places are 0. 
   for(j=0;j<num_needy_activities;j++) 
    if(needy_activities[j]!=i)     



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 191

     dev_cap_pattern[needy_activities[j]]=0;  
       
 
  
 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_ac
tivities,num_devs); 
  
 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev
_skills,docs,num_activities,num_devs); 
  
 ////////////////////////////////////////////////////////////////////////
/ 
   // Assigninig developers that can carry out more than just 
this task 
   n = num_needy_activities-1; 
   for(j=1;j<=n;++j) 
   {     
    p = j; 
    for (k=0;k<n;k++) 
     if (k < p) 
      permutation[k] = 1; 
     else permutation[k] = 0; 
    // Look for the first generated capability pattern. 
    for(l=0,m=0;l<num_needy_activities && m<n;l++,m++) 
     
    { 
     if(needy_activities[l]==i) 
     { 
      m--; 
      continue; 
     } 
     else 
     
 dev_cap_pattern[needy_activities[l]]=permutation[m]; 
    } 
   
 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_ac
tivities,num_devs); 
   
 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev
_skills,docs,num_activities,num_devs); 
   
 ////////////////////////////////////////////////////////////////////////
/ 
    // Generating other permutations with the help of the 
first one 
    for (finalPerm = 0; finalPerm < p; finalPerm++) 
    { 
     for (oneIndex = finalPerm; oneIndex < p; 
oneIndex++) 
      for (stringIndex = oneIndex; stringIndex < 
n; stringIndex++) 
       if (permutation[stringIndex] == 0) 
       { 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 192

        permutation[oneIndex] = 
0;//new permutation 
        permutation[stringIndex] = 1; 
        count++; 
        // Form the dev_cap_pattern 
according to the permutation 
        // and calling a proper 
function to find out the task's 
        // share of the developers 
with the specified pattern. 
       
 for(l=0,m=0;l<num_needy_activities,m<n;l++,m++)      
        { 
        
 if(needy_activities[l]==i) 
         { 
          m--; 
          continue; 
         } 
         else 
         
 dev_cap_pattern[needy_activities[l]]=permutation[m]; 
        } 
       
 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_ac
tivities,num_devs); 
       
 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev
_skills,docs,num_activities,num_devs); 
       
 /////////////////////////////////////////////////////// 
        permutation[oneIndex] = 
1;//revert to old permutation. 
        permutation[stringIndex] = 0; 
       } 
     permutation[finalPerm] = 0;//now set digit 1 to 
the end of the number and repermutate 
     permutation[n - finalPerm - 1] = 1; 
    } 
   } 
  } 
 } 
 
 // Setting the returning vector 
 for(i=0;i<num_activities;++i) 
 { 
  allocated[i*2]=allocation[i]; 
  if(allocation[i]>0) 
   allocated[i*2+1]=sum_assigned_skill[i]/allocation[i]; 
  else 
   allocated[i*2+1]=0; 
 } 
 
 rval = allocated[0]; 
 return rval; 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 193

} 
//////////////////////////////////////////////////////////////// 
double activity_share(int activity,int *pattern,int *capabilities,double 
*workload,int num_activities,int num_devs) 
{ 
 double sum_workload=0.0; 
 double raw_assignment[12]; 
 int num_matching_devs=0; 
 int assigned_devs[12]; 
 int temp_assign[12]; 
 int dev_match,i,j,k,l,diff=0,max_index,min_index; 
 int num_assigned_devs=0; 
 int num_activity_to_adjust=0; 
 int iterations=0; 
 double temp_work[12]; 
 double sum; 
 // Finding developers with capabilities matching the given pattern. 
 for(i=0;i<num_devs;i++) 
 { 
  dev_match = 1; 
  for(j=0;j<num_activities;++j) 
   { 
    if(pattern[j]==-1) 
     continue; 
    else if (pattern[j]!=capabilities[i*num_activities+j]) 
    { 
     dev_match = 0; 
     break; 
    } 
  } 
  if(dev_match==1) 
   num_matching_devs++; 
 } 
 ///////////////////////////////////////////////////////////////// 
 // Summing up the amount of workload of the activities to which 
 // developers will be assigned. 
 for(i=0;i<num_activities;i++) 
  if(pattern[i]==1) 
   sum_workload+=workload[i]; 
 //////////////////////////////////////////////////////////////// 
 // Setting the initial assignment for different activities 
 // If the raw assignment for a certain activity is below 1 
 // then it is rounded up to 1 and if it is above 1 then it 
 // is rounded down. 
 for(i=0;i<num_activities;++i) 
 { 
  if(pattern[i]==1) 
  { 
   raw_assignment[i] 
=(workload[i]/sum_workload)*num_matching_devs; 
   if((raw_assignment[i]<1) && (raw_assignment[i]>0))  
  
    assigned_devs[i]=1; 
   else 
    assigned_devs[i]=(int)raw_assignment[i];    



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 194

   num_assigned_devs = num_assigned_devs + assigned_devs[i]; 
  } 
  else  
   assigned_devs[i]=0;   
 } 
 //////////////////////////////////////////////////////////////////////// 
 // Adjusting the assigned numbers according to the available personnel 
 // Since floating point numbers are rounded sometimes assigend personnel 
 // are more than there are actually available and sometimes they are 
 // less than available personnel. 
 for(i=0;i<num_activities;++i) 
  temp_assign[i]=assigned_devs[i]; 
 // If we have assigned less personnel than is actually available. 
 if(num_assigned_devs<num_matching_devs) 
 { 
  diff = num_matching_devs-num_assigned_devs; 
  while(diff>0) 
  { 
   max_index = find_max_indexx(temp_assign,num_activities); 
   temp_assign[max_index]=-1; 
   if(assigned_devs[max_index]>0) 
   { 
    assigned_devs[max_index]++; 
    diff = diff - 1; 
   } 
  } 
   
 }  
 // If we have assigned more personnel that is actually available. 
 if(num_assigned_devs>num_matching_devs) 
 { 
  for(i=0;i<num_activities;++i) 
   if(assigned_devs[i]>0) 
    num_activity_to_adjust++; 
  
  for(i=0;i<num_activities;++i) 
   if(assigned_devs[i]>0) 
    temp_work[i]=workload[i]; 
   else  
    temp_work[i]=0.0; 
 } 
 
 if(num_assigned_devs>num_matching_devs) 
 { 
  diff = num_assigned_devs-num_matching_devs; 
  if(num_activity_to_adjust>0) 
   iterations = diff/num_activity_to_adjust+1; 
  
  for(i=0;i<(2*iterations);++i) 
  { 
   for(j=0;j<num_activities && diff>0;++j) 
   { 
    if(assigned_devs[j]>0) 
    { 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 195

     min_index = 
find_min_indexx(temp_assign,temp_work,num_activities); 
     temp_assign[min_index]=0; 
     temp_work[min_index]=1000; 
     if(assigned_devs[min_index]>0) 
     { 
      assigned_devs[min_index]--; 
      diff--; 
     } 
    } 
   } 
   for(k=0;k<num_activities;++k) 
     temp_assign[k]=assigned_devs[k]; 
 
 
   for(l=0;l<num_activities;++l) 
    if(assigned_devs[l]>0) 
     temp_work[l]=workload[l]; 
  } 
 } 
 
 return assigned_devs[activity]; 
} 
//////////////////////////////////////////////////////////////// 
double activity_skill(int activity,int *pattern,int *capabilities,double 
*skills,double *workload,int num_activities,int num_devs) 
{ 
 double sum_workload=0.0; 
 double raw_assignment[12]; 
 int num_matching_devs=0; 
 int assigned_devs[12]; 
 int temp_assign[12]; 
 int *matching_devs; 
 int *allocation; 
 int dev_match,i,j,k,l,diff=0,max_index,min_index; 
 int num_assigned_devs=0; 
 int num_activity_to_adjust=0; 
 int iterations=0,count; 
 double temp_work[12]; 
 double sum; 
 double sum_skill=0.0; 
 
 matching_devs = alloca(num_devs*sizeof(int)); 
 allocation = alloca(num_devs*sizeof(int)); 
 
 // Finding developers with capabilities matching the given pattern. 
 for(i=0;i<num_devs;i++) 
 { 
  dev_match = 1; 
  for(j=0;j<num_activities;++j) 
   { 
    if(pattern[j]==-1) 
     continue; 
    else if (pattern[j]!=capabilities[i*num_activities+j]) 
    { 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 196

     dev_match = 0; 
     break; 
    } 
  } 
  if(dev_match==1) 
  { 
   num_matching_devs++; 
   matching_devs[i]=1; 
  } 
  else if(dev_match==0) 
   matching_devs[i]=0; 
 } 
 ///////////////////////////////////////////////////////////////// 
 // Summing up the amount of workload of the activities to which 
 // developers will be assigned. 
 for(i=0;i<num_activities;i++) 
  if(pattern[i]==1) 
   sum_workload+=workload[i]; 
 //////////////////////////////////////////////////////////////// 
 // Setting the initial assignment for different activities 
 // If the raw assignment for a certain activity is below 1 
 // then it is rounded up to 1 and if it is above 1 then it 
 // is rounded down. 
 for(i=0;i<num_activities;++i) 
 { 
  if(pattern[i]==1) 
  { 
   raw_assignment[i] 
=(workload[i]/sum_workload)*num_matching_devs; 
   if((raw_assignment[i]<1) && (raw_assignment[i]>0))  
  
    assigned_devs[i]=1; 
   else 
    assigned_devs[i]=(int)raw_assignment[i];    
   num_assigned_devs = num_assigned_devs + assigned_devs[i]; 
  } 
  else  
   assigned_devs[i]=0;   
 } 
 //////////////////////////////////////////////////////////////////////// 
 // Adjusting the assigned numbers according to the available personnel 
 // Since floating point numbers are rounded sometimes assigend personnel 
 // are more than there are actually available and sometimes they are 
 // less than available personnel. 
 for(i=0;i<num_activities;++i) 
  temp_assign[i]=assigned_devs[i]; 
 // If we have assigned less personnel than is actually available. 
 if(num_assigned_devs<num_matching_devs) 
 { 
  diff = num_matching_devs-num_assigned_devs; 
  while(diff>0) 
  { 
   max_index = find_max_indexx(temp_assign,num_activities); 
   temp_assign[max_index]=-1; 
   if(assigned_devs[max_index]>0) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 197

   { 
    assigned_devs[max_index]++; 
    diff = diff - 1; 
   } 
  } 
   
 }  
 // If we have assigned more personnel that is actually available. 
 if(num_assigned_devs>num_matching_devs) 
 { 
  for(i=0;i<num_activities;++i) 
   if(assigned_devs[i]>0) 
    num_activity_to_adjust++; 
  
  for(i=0;i<num_activities;++i) 
   if(assigned_devs[i]>0) 
    temp_work[i]=workload[i]; 
   else  
    temp_work[i]=0.0; 
 } 
 
 if(num_assigned_devs>num_matching_devs) 
 { 
  diff = num_assigned_devs-num_matching_devs; 
  if(num_activity_to_adjust>0) 
   iterations = diff/num_activity_to_adjust+1; 
  
  for(i=0;i<(2*iterations);++i) 
  { 
   for(j=0;j<num_activities && diff>0;++j) 
   { 
    if(assigned_devs[j]>0) 
    { 
     min_index = 
find_min_indexx(temp_assign,temp_work,num_activities); 
     temp_assign[min_index]=0; 
     temp_work[min_index]=1000; 
     if(assigned_devs[min_index]>0) 
     { 
      assigned_devs[min_index]--; 
      diff--; 
     } 
    } 
   } 
   for(k=0;k<num_activities;++k) 
     temp_assign[k]=assigned_devs[k]; 
 
 
   for(l=0;l<num_activities;++l) 
    if(assigned_devs[l]>0) 
     temp_work[l]=workload[l]; 
  } 
 } 
  
 for(i=0,j=0;i<num_activities;++i) 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 198

 { 
  if(assigned_devs[i]>0) 
  { 
   count=assigned_devs[i]; 
   while(count>0) 
   { 
    if(matching_devs[j]==1) 
    { 
     count--; 
     allocation[j]=i; 
     j++;      
    } 
    else 
     j++; 
   } 
  } 
 } 
 
 for(i=0;i<num_devs;++i) 
  if(allocation[i]==activity) 
   sum_skill+=skills[i*num_activities+activity]; 
 
 if(assigned_devs[activity]>0) 
  return sum_skill;//assigned_devs[activity]; 
 else  
  return 0; 
} 



University of Calgary, Technical Report, SERG-2007-07 

Simula Research Laboratory, Technical Report, Simula TR 2008-01 

Updated: June 19, 2008 

 

 199

APPENDIX C- LIST OF ACRONYMS 
 

CI Code Inspection 
CM Configuration Management 
DI Design Inspection 
DLL Dynamic Linked Library 
IT Integration Test 
IV&V Independent Verification and Validation 
RI Requirement Inspection 
SD System Dynamics 
ST System Test 
UT Unit Test 
V&V Verification and Validation 

 


