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Abstract Many statechart-based testing strategies result in
specifying a set of paths to be executed through a (flattened)
statechart. These techniques can usually be easily automated
so that the tester does not have to go through the tedious pro-
cedure of deriving paths manually to comply with a coverage
criterion. The next step is then to take each test path indi-
vidually and derive test requirements leading to fully spec-
ified test cases. This requires that we determine the system
state required for each event/transition that is part of the path
to be tested and the input parameter values for all events
and actions associated with the transitions. We propose here
a methodology towards the automation of this procedure,
which is based on a careful normalization and analysis of
operation contracts and transition guards written with the
Object Constraint Language (OCL). It is illustrated by one
case study that exemplifies the steps of our methodology and
provides a first evaluation of its applicability.

1 Introduction

In modeling Object-Oriented software systems, the state-
dependent behavior of objects, object clusters or subsystems
is modeled by a state machine. In the context of the Uni-
fied Modeling Language (UML) [1], the model to be used to
specify such state-dependent behavior is a UML statechart
(simply called statechart in the rest of the document). Such a
model specifies state changes under the form of transitions,
i.e., an event enabling the transition, a guard condition spec-
ifying under which condition the transition fires, and actions
performed as a result of the firing of the transition. Both
events and actions can be further specified by parameters.
Additionally, other behavior can be specified by statecharts,
such as concurrent behavior.
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Statecharts are used during the Analysis to better specify
object behavior (most methodologies promote its use at that
stage, e.g. [2]), as well as during testing,! where the imple-
mentation is tested (verified) against its specification (i.e., its
statechart) [3]. Because statecharts are—according to most
analysis and design methodologies—used to model classes
or small clusters of classes, statechart-based testing is often
used for class or component testing.

When using a statechart for testing, two main problems
have to be solved. First a decision has to be made as to what
transitions or sequences of transitions should be tested since
exhaustive testing (i.e. testing the entire behavior specified
by the statechart) is usually impossible. A number of authors
[3, 4] have proposed test strategies for UML statechart,
based on several coverage criteria (e.g., all transition pairs).
These criteria all assume a test case to be in the form of
a feasible sequence of transitions. The generation of a set
of transition sequences for a given coverage criterion can
usually be automated, under specific assumptions, so that
the tester does not have to go through the tedious procedure
of deriving paths manually to comply with the coverage
criterion (e.g., [4]). The second problem to be solved when
deriving test cases from a statechart is to determine test
data that allow the execution of those transition sequences.
Test data include the identification of the state in which
the object (object cluster) under test should be before the
execution of a transition sequence, as well as possible
arguments (i.e., parameter values) for events and actions in
transitions. Deriving test data is by no means a trivial task.
This problem is similar to the path sensitization problem,
where one tries to find inputs that will drive a routine along a
specific control flow path [5]. Solving the problem amounts
to finding a solution to a set of Boolean predicates extracted
from the control flow path. In our context, statechart-based

I The scope of the testing activity depends on what is modeled by
the statechart. If the statechart models the behavior of a single class,
then it can be used to support unit testing. If the behavior of a class-
cluster, a subsystem or a component is modeled, then we are concerned
with integration testing. If the whole system is modeled, then the focus
of statechart-based testing is system testing.
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testing, those predicates are guard conditions, preconditions,
postconditions, and class invariants. This problem is further
complicated because of the possibly very complex relations
between objects, resulting in object behavior affecting and
being affected by other objects’ state.

The problem of deriving test data for transition se-
quences can be further decomposed into two subproblems:
extracting constraints on test data (e.g., the value of an
event’s parameter should be smaller than an attribute’s
value), and solving these constraints to obtain actual test
data values. We refer hereafter to those constraints as fest
constraints. This article focuses on the former subproblem
and provides guidance on possible solutions to the latter. The
derivation of constraints is the most important and difficult
of the two problems as numerous techniques exist for con-
straint solving. Though they will need to be adapted for the
Object Constraint Language (OCL) [6, 7], we do not foresee
any major obstacle.

As further discussed in Sect. 2, existing testing tech-
niques based on UML statecharts only support a limited sub-
set of the UML notation, and thus only address the deriva-
tion of test data in a restrictive context, thus limiting their
application.

Our objective in this article can then be defined as
follows. Given (1) a class? to be tested, (2) its associated
classes, (3) its statechart, (4) a set of interacting statecharts
belonging to some of the associated classes, and (5) a
specific sequence of transitions to be tested, we want to
determine test constraints (i) on the state of the system at
different points in the transition test sequence and (ii) on
specific arguments for events and actions, so that when the
sequence of events for this transition sequence is received
by a specific instance of the class under test, the transition
sequence can be properly executed. This entails, in partic-
ular, that guard conditions in the statechart(s) be specified
with the Object Constraint Language [6, 7], and that actions
(in transitions and states) and call events be specified using
Contracts [8, 9] (i.e., with pre and post-conditions). Based
on such information, it is then expected that a test tool
can derive test requirements and then fully specified test
cases automatically. Our main motivation in this article is
to explore automated support for test engineers to extract
useful information from statecharts and contracts to derive
the specification of a test plan under the form of test
constraints.

Section 2 provides some information on related works.
Section 3 discusses the testability of UML statecharts.
Section 4 describes the methodology we propose to derive
test constraints, and illustrate it on a case study. Section 5
then concludes by summarizing the results and outlining fu-
ture work.

2 Tt is of course conceivable to have a statechart modeling the be-
haviour of a cluster of classes (e.g., a composite class and its compo-
nent classes). But that does not affect what is presented in this article
and we will assume in the reminder of the text that a class is being
tested.

2 Related work

A number of authors [3, 4] have proposed test strategies
for UML statechart, based on several coverage criteria
such as the all transitions, all transition pairs, full predicate
(specifically targeting guarded transitions) and all round-trip
paths (i.e., all transition sequences that begin and end with
the same state). These criteria all assume a test case to
be in the form of a feasible sequence of transitions. (Note
however that the problem of checking whether a transition
sequence is feasible is not addressed by these authors.)
Techniques and algorithms to automatically generate test
cases according to these criteria have also been proposed
(e.g., [4, 10]). However, they only support a limited part
of the UML statechart notation [1]. For instance, they only
account for change events (an event that occurs when a
Boolean expression becomes true) or signal events (an
event that occurs when a specific signal is received), guard
conditions are expressed through Boolean or primitive type
class attributes, and states do not hold actions. However, the
UML notation also allows the specification of call events
(the event corresponds to the invocation of an operation),
guard conditions can be much more complicated when
expressed with the Object Constraint Language (OCL), and
states can have entry and exit actions.

Other strategies consist in adapting Chow’s method
[11, 12] in a UML context [13, 14], accounting for the hi-
erarchical nature of UML statecharts for instance. However,
again, a subset of the UML notation is supported: only signal
events, and no guard condition (except in [13] where they
only involve time, i.e., this corresponds to UML time and
change events).

Last, some authors suggest transforming the statechart
into a flow graph and applying conventional control and data
flow testing techniques [15, 16]. But their techniques also
have similar limitations in terms of guard conditions and the
kinds of events supported.

None of these works adopt Design by Contract [8]
in defining operations, and modifications to the object’s
state due to events and actions are simply modeled as
assignments to attributes [15]. Furthermore these techniques
consider statecharts in isolation without accounting for
interactions among object statecharts. However, even if
our focus is on testing classes or class clusters, we need to
account for such interactions with associated classes which
are not under test as associated objects may affect the state
or behaviour of the objects under test at run-time.

3 Testability

In this section, after an initial set of definitions, we discuss
a number of issues related to the testability of statecharts
and contracts. In other words, we clearly specify our
assumptions and the trade-offs that are involved in applying
our approach.
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3.1 Definitions

We refer to the owning class as the class that owns the state-
chart based on which the test case (transition test sequence)
is specified. An owning object is an instance of the owning
class. The associated classes are classes to which the own-
ing class navigates through associations (e.g., as specified
in operation contracts or guard conditions in OCL), and the
class cluster consists of the owning class and all its associ-
ated classes. The object cluster is a set of instances for the
class cluster.

We can view an object state according to two levels of
abstractions. The concrete state is defined as the combina-
tion of the object’s attribute values plus its links to other ob-
jects. We refer to the collective state as a set of the concrete
states of all the objects in the object cluster. The concrete
view of a state, which is sometimes referred to as the prim-
itive state [3], is often too granular for statechart modeling
(i.e., it would lead to a large, possibly infinite number of
states). At a more abstract level, concrete states with some
common properties can be grouped together into so called
abstract states [3]. Typically, state invariants associated with
states in a statechart describe abstract states, whereas guard
conditions and event/action postconditions use and model
changes to the collective state.

We identify two types of state-dependent objects un-
der test as they require different processing (and thus dif-
ferent algorithms) with respect to test constraints deriva-
tion (Sect. 4.5). An associated state-dependent object is an
object whose behavior depends on the state of other ob-
jects, whereas an orphan state-dependent object is an ob-
ject whose behavior does not depend on the state of other
objects. In the former case for instance, an object a’s state-
chart (i.e., the statechart for a’s class) has a guard condition
involving object b’s state.

According to [1], an object property is one of the fol-
lowing: An attribute (whose type can be any OCL type); An
association-end (whose type is either a class or a collection
type); A query operation, that is an operation with no side ef-
fect (it returns a value but does not modify the system state);
A non-query operation. A postcondition expression can refer
to the value of a property at the start (resp. upon completion)
of the operation, defined as the pre-value (resp. after-value)
using the @pre prefix. We then define the pre-state (resp.
after-state) of an operation to be the collective state of an
object cluster before (resp. after) executing the operation.

Each OCL constraint is written in the context of a spe-
cific class and the reserved word self is used to refer
to the contextual instance, referred to as the context object
[7]. When used in a precondition, postcondition, or guard, a
property has a navigation path as its prefix (if not, the prop-
erty has an implicit navigation path, which is “self.”).
The navigation path starts from a context object, possibly
followed by a sequence of navigations [7] until the class that
owns the required property is reached. Note that in transi-
tions, call actions can also have navigation paths, starting
from a context object, possibly followed by a sequence of
navigations until the class that owns the operation is reached.

3.2 UML statecharts

This section discusses the specifics of the UML statechart
notation® [1] with respect to testability. Statechart diagrams
can be used to describe the behavior of individual entities
(e.g., a class) as well as a collection of entities (e.g., class
cluster, subsystem, system etc.). For the sake of simplicity,
we assume in the rest of this article that a class is being
tested, though testing several classes in a cluster modeled
by a statechart does not affect what is being presented.

3.2.1 Statechart flattening

The use of composite and concurrent substates in statecharts
helps to cope with complexity but makes it hard to gener-
ate test cases. In order to apply the state-based criteria men-
tioned in the introduction, it is necessary to remove all hi-
erarchy and concurrency in the statecharts under study. The
results are flat statecharts, in which every distinct state is
represented by a node and all possible transitions are shown
explicitly [3]. Though flattened statecharts might be highly
complex, the process can be automated and such statecharts
are not meant to be visualized by software engineers as they
are only used as internal representations for our algorithms.
It should be noted that flattening a statechart may impact
OCL constraints that refer to composite states since these
states are removed in the resulting statechart. In this case,
the OCL constraints may need to be transformed so that
the composite states are replaced by their substates. Exist-
ing flattening algorithms (e.g., [3, 15]) do not address this
issue and would thus have to be adapted, though this does
not present any serious obstacle.* Such transformations are
not addressed by this article and we assume statecharts are
already flattened.

3.2.2 Other assumptions about UML statecharts

The semantics of UML statecharts allow for the possibility
of non-determinism in state transitions: Multiple transitions,
triggered by the same event, may be enabled for firing
from the same source state at the same time. This research
does not handle such cases as we assume statecharts to be
deterministic. In the same vein, non-determinism may also
result from concurrent state machines interacting with one
another (e.g., race conditions where computation results and
state changes depend on the unknown and unpredictable
execution order of concurrent actions [19]). Identifying
such problematic behaviour is however not the purpose of
state-based testing, or any other form of functional testing,
and should anyway be carefully avoided through design
reviews and synchronization mechanisms [20] or detected

3 In this work our tools and algorithms assume UML 1.4 [6]. How-
ever, they can easily be adapted to UML 2.0 [17, 18] since the feasi-
bility of our approach does not depend on constructs which definition
and semantics have changed from UML 1.4 to UML 2.0.

4 A composite state invariant involved in a constraint can simply be
replaced by the disjunction of all its substates’ invariants.
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at runtime [21]. We therefore assume that, if there is con-
currency (modeled as asynchronous signals in statecharts),
it does not entail indeterminism in terms of state changes
and computational results.

In a UML statechart, a transition has five parts [1]: a
source and a target state, an event trigger (the event trigger-
ing the transition), a guard condition (Boolean expression
possibly written in OCL), and an action (or list of actions).
According to the UML specification, there are five kinds of
events and eight kinds of actions. One kind of event, namely
call event, is of particular interest in this research, as this is
the only event associated with an operation. Its effect on the
collective state can thus be specified through a postcondition
(possibly written in OCL). Among the eight kinds of actions,
this research only considers call, send, assignment,
create and destroy, since the other actions do not
affect the collective state. Although assignment (an
attribute is given a value), create and destroy actions
do not have an explicit postcondition, their effect on the
collective state can be considered as their implicit “post-
condition”, e.g., creating an object adds one element to the
collection of all the instances of the corresponding class.

According to [22, 23], events and actions are atomic so
their effect is deterministic. To clarify, what is meant is that
their execution cannot be interrupted by external events. Be-
cause we assume there is no race condition, then the result
is deterministic. In contrast, an activity can be interrupted
by an event. As a result, the effect of an activity on the
collective state might, in principle, be non-deterministic if it
changes the system state. In practice, however, this is not an
appropriate modeling strategy as one cannot guarantee the
system’s state integrity. We, therefore, assume that either
an activity does not change the system state or, if it does,
we assume it completes without interruption and triggers a
completion transition.

An action in a transition indicates that an atomic com-
putation (as defined above) is performed when the transition
fires. Actions can be attached to states as entry/exit actions
or associated with transitions. Note that entry and exit
actions can be substituted with transition actions, without
changing the semantics of a statechart [22]. During the
firing of a transition, the execution of events and actions
are in the following order: event, exit action of the source
state, action sequence attached to the transition, entry action
of the target state [23]. Actions in the transition action
sequence are usually assumed to be independent of one
another, and as a result their order of execution does not
matter. In cases when the order is relevant, it is assumed that
modellers specify transition actions in the right sequence.
We conform to this assumption here and analyze transition
actions according to their written order. When dynamic
choice points are present [20], the actions to be executed
before checking the guard are treated as being executed just
after the exit actions of the source state.

According to [23], an action has a target object set: A
copy of the action with its arguments list is sent concurrently
to every object in the set, and each object receives and han-

dles this action copy independently, thus potentially consti-
tuting a complex concurrent system. This does not matter
in our context as long as the triggered concurrent actions do
not result, as above for asynchronous signals, in state change
indeterminism.

3.3 Operation postconditions

In this research we assume that contracts [8] are defined
to specify operations, and we discuss here requirements
on postconditions so that they offer testable operation
specifications.

In the remainder of this article, we use the term model
constraints to refer to preconditions, postconditions or
guard conditions [7]—which are used in defining UML
models—in order to clearly differentiate them from test
constraints. When a discussion applies to both types of
constraints, we simply use the generic term “constraints”.

A postcondition specifies the result of the service that
is provided by an operation, given that the precondition is
satisfied [8]. In practice, a postcondition usually contains
different predicates that are satisfied all together when the
operation terminates, e.g., an attribute’s value is updated
and a link between two objects is changed. In addition, it is
common that the result of a predicate depends on the inputs
of the operation (e.g., operation’s arguments, object’s state),
e.g., if the first argument’s value is 1 then the new object’s
state is A; otherwise it is state B. Such a situation is easily
expressed in OCL with Boolean operations implies
and if-then-else. For these reasons and to facilitate
subsequent analyses of the statechart, we assume that post-
conditions are in Conjunctive Normal Form® (CNF) [24]
whose conjuncts are either clauses or 1f-then-else or
implies constructs. If this is not the case, postconditions
can be automatically transformed to meet our assumptions
using algorithms in [24, 25].

We further assume that postconditions are complete,
i.e., all changes to the collective state directly resulting from
the execution of the operation are modeled. These include
changes to the attribute values, creation and destruction
of objects, and addition or deletion of links to existing
objects. Postconditions must furthermore be normalized
using algorithms presented in Sect. 4.4.4. We also provide
guidelines (under the form of patterns) to help developers
achieve concise, consistent, and complete descriptions of
postconditions.

Another assumption relates to actions in transitions.
Where their computation is actually performed depends on
the implementation of the statechart. When using the state
design pattern [26], for instance, the actions are actually

3 An expression is said to be in CNF if it consists of the conjunction
of clauses, and each clause consists of a disjunction of atomic formulae
or the negation of an atomic formula. In our context (UML and OCL),
examples of atomic formulae are attributes and OCL collection opera-
tions. An expression is said to be in Disjunctive Normal Form (DNF)
if it consists of a disjunction of conjunctions of atomic formulae (or
negations of atomic formulae).
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invoked by the event handler operations.® The result is that
the event postcondition could be defined so that it includes
the actions’ postconditions. But in order to reduce the com-
plexity of postconditions, and remove redundancy between
postconditions (of call events and actions belonging to
the same transitions), we assume that when a transition
is triggered by a call event, and has actions, the actions’
postconditions are not part of the call event’s postcondition.
This assumption does not affect the modelling of the overall
effect of a transition. As we will see below, it does not
affect our strategy either: If this principle is not followed,
the constraints generated will simply be more complicated.
In general, postconditions model changes to object
properties. According to [9] such postconditions are change
specifications, which define what is changed by an opera-
tion. However, postconditions can also specify what does
not change. Such postconditions are frame rules [9], and
are important to a full understanding of the meaning of an
operation. For example, if we have an operation that adds an
object at the end of a sequence, the change specification can
state that the size of the sequence increases by one and the
last element is the added object while the frame rule can state
that a subsequence (containing elements from the first to the
second last) of the new sequence equals the old sequence.
Therefore, the implementer knows that the operation does
nothing else except appending the object to the sequence.
The use of frame rule has drawbacks: It makes the
postcondition much more complex and adds to the bur-
den when postconditions are checked. For instance, a
class has two Integer attributes a and b, and an op-
eration incrementA () that increments attribute a, and
leaves the other attribute unchanged. A common way to
write the operation’s postcondition is to model changes
to attribute a only: a=a@pre+1. However, if we fol-
low the frame rule strictly, the postcondition would be:
(a=a@pre+l) and (b=be@pre). A tradeoff is to specify
frame rules only where ambiguities would result from not
defining them and to adopt the following convention [9]:
all operations come with an implicit frame rule which states
that, a property does not change unless explicitly specified.

3.4 Practical implications

The assumptions above require the pre-processing of state-
charts (flattening) and postconditions (normalization, com-
pleteness) before test constraints can be derived. However,
this process can be automated as long as postconditions are
expressed in a precise and complete manner, an objective
that we support by providing precise guidelines.

Though the rigorous use of OCL for describing model
constraints imposes a certain discipline on the designers,
there are many benefits to it [27], including an easier
transition to implementation. We face, however, the usual,
expected trade-off where potential users have to choose

6 Event handlers are operations that process events received by in-
stances of the owning class.

between rigor and precision to achieve (test) automation or
the informal use of statecharts for communication purposes
only.

We assume that the result of a sequence of events on a
class (cluster) under test should be deterministic in terms
of state changes. Therefore, since concurrency can bring in-
determinism (e.g., race conditions) [20], we can only handle
asynchronous signals between the owning object and associ-
ated objects in the object cluster as long as they do not entail
indeterminism. We assume that, in principle, a situation in
which computational results and state changes depend on an
execution order, which is inherently unknowable, should be
avoided through the careful use of synchronization mech-
anisms. Our approach should therefore be applicable to a
significant proportion of statecharts in practice.

4 Methodology

This section describes our methodology to derive test
constraints for a given transition test sequence (TTS).
Section 4.2 precisely defines the form of a TTS.
Section 4.3 introduces a data structure, the invocation se-
quence tree (IST), that captures the interactions among state-
dependent objects, and provides a procedure to build an IST
from a TTS and class-cluster statecharts. Section 4.4 pro-
vides normalization rules for the OCL expressions that we
use to ease the generation of test constraints. We then de-
scribe algorithms to derive test constraints on the collective
state and event/action arguments from the IST (Sect. 4.5).
Finally, Sect. 4.6 briefly describes a prototype tool imple-
menting the methodology. In order to facilitate the reading
of the article, we present a selected case study along with the
definitions of concepts. This case study is first presented in
Sect. 4.1.

4.1 Case study

We applied our methodology on two case studies using our
prototype tool: a Video Store System (VSS) that contains
a class cluster whose behavior is described by a statechart,
and a container class implementing a data structure that has
a state-based behavior. These two case studies were selected
for the following reasons: (i) a variety of OCL operations
(including collection operations) are involved in both the
guards and operation contracts, (ii) associated and orphan
state dependent classes are involved. By studying these two
different examples, we wish to provide evidence of the gen-
erality of our methodology. Due to space limitations, we
only report the result of the VSS case study in this article
(as it exhibits a larger variety of constructs) and refer the
reader to [28] for results on the second case study.

The VSS is a UML specification for a video store man-
agement system adapted from [29]. We choose to study a
cluster of three classes, namely, Copy, Reservation, and
Title (see an excerpt of the class diagram in Fig. 1).
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Title 1
name : String 1 |
] salePrice : Real Copy
rentfee : Real - barCode : String
changeOldestPending() 1 state : enum{ForRent,OnHold,ForSale,Rented,Sold}
U subset) 1 .. {subset} cancelReservation()
T holdExpire()
. reservation rent(in r : Rental)
0.. return()
Reservation 0.1 [sel)
setForSale()

reservationNo : String
secondOldestPending

state : enum{Pending,Outstanding,Cancelled,Expired,Fulfilled}

L_|beOldestPending()
cancel()

copyAvailable(in ¢ : Copy)
expire()

fulfill(in r : Rental)

0..1

oldestPending

heldCopy 0..1

Fig. 1 Class diagram of entity classes in the VSS case study (excerpt)

®

<Knew>>

cancelReservation()[ not self.title.reservation
->exists(v:Reservation|v.state=#Pending)]

cancelReservation() [ self.title.
reservation->exists(v:Reservation|
v.state=#Pending)]

ForRent I

holdExpire()[ not self.title.reservation->
exists(v:Reservation|v.state=#Pending)]/self.reservation.expire()

—

>

return() [ not self title.reservation->
exists(v:Reservation|v.state=#Pending)]

setForSale()

rent(r1)

OnHold

holdExpire()[ self.title.reservation
->exists(v:Reservation|v.state=#Pending)]
Iself.reservation.expire()

return()[self.title.reservation
->exists(v:Reservation|v.state=#Pending)]

sell() N Iself title.oldestPending.copyAvailable(self)
ForSale Sold Rented J

<destroy>>

Fig. 2 Statechart of a Copy object in the VSS case study

Instances of Copy in the VSS have a state-dependent be-
havior and Fig. 2 depicts the corresponding statechart: State
OnHo1ld specifies that the Copy object is put on hold for a
client who made a reservation for the corresponding Tit1le,
and a Copy is for rent (state ForRent) only when there is
no Reservation for the corresponding Title. The be-
havior of a Copy object may thus affect, and be affected by
Reservationand Title objects. AReservation ob-
ject has a state dependent behaviour as well, as depicted in
Fig. 3: A Reservation object becomes Out standing
when a Copy is available. Tit 1le objects do not have state-
dependent behavior.

4.2 Transition test sequence (TTS)

As mentioned in Sect. 2, all the proposed criteria based
on statecharts assume a test case specification to be in the
form of a feasible sequence of transitions [3, 4], or tran-
sition test sequence (TTS). We denote such a sequence

rent(r2)
/self.reservation.fulfill(r2)

as: @statel@eventO@statel@eventl@... where
symbol @ is used as a delimiter between states and event
expressions in TTSs. Note that in our testing context, we as-
sume that every TTS starts from the initial state of the own-
ing object. So there is no need to obtain the test prefix [30],
which is a sequence of transitions that puts the system into
the initial state required for the test case to execute correctly.
When the statechart contains guards, the TTS also
specifies a predicate (i.e., Boolean expression that may
contain logical operators) for each event, and the way
those predicates are derived from the corresponding guard
conditions depends on the coverage criterion. Using a
simple example, when one chooses to cover all transitions
in a statechart, in the case of guard conditions, one has to
choose one disjunct in the guard condition when expressed
in a Disjunctive Normal Form (DNF, see Sect. 4.4.1). A
number of more thorough criteria exist to test guards [30]
but a sequence of transitions is always denoted as follows:
@stateO@eventO [pred0] /actionsOe@statel®@
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copyAvailable(c) [self title.oldestPending=self and self.title.reservation->
exists(v: Reservation|v.state=#Pending and v<>self)]
/seff.title.changeOldestPending();self.title.secondOldestPending .beOldestPending()

copyAvailable(c) [self.title.oldestPending = self and
(not self title.reservation->exists(v: Reservation |
v.state=#Pending and v <>self))]

\l/

.<<new>> E [ Pending ]

(Ollltstanding)i

]

Reservation |v.state=#Pending)]
/self title.oldestPending.
copyAvailable(self.heldCopy);
self.heldCopy.cancelReservation()

cancel( ) [self.title.reservation->exists(v:

/self title.change Oldest Pending();
self.title.secondOldestPending.beOldestPending();
Reservation |v.state=#Pending)]
/sef.heldCopy.cancelReservation()!

cancel( )[self.title.oldestPending=self and
v.state= #Pending and v <>self)]

v.state=#Pending and v <>self) ]
self title.reservation->exists(v: Reservation|
cancel( )[not self.title.reservation->exists(v:

cancel( )[self title.oldestPending<>self or
(self.title.oldestPending= self andnot
self.title.reservation->exists(v: Reservation |

Cancelled \/

| <<destroy>
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Fig. 3 Statechart of a Reservation object in the VSS case study

eventl [predl] /actionsl@... where predo,
predl, are the predicates derived from the cor-
responding guard conditions according to the criterion
used, and where actionsO, actionsl, are the
actions executed (there may be more than one action for a
transition) when transitions fire. Those predicates are
always in the form of a conjunction of atomic formulae.

Coming back to our case study, we assume in this article
that we want to test the following Transition Test Sequence
(TTS) on an instance of Copy:

@ForRent@rent (rl) [true]

@Rented@return() [self.title.reservation->
exists (v:Reservation| v.state=#Pending)]l/
self.title.oldestPending.copyAvailable (c)

@OnHold@holdExpire () [self.title.reservation->
exists(V:Reservation|v.state:#Pending)]/
self.reservation.expire ()

@OnHold@rent (r2) /self.reservation.fulfill (r2)

@Rented

This sequence corresponds to the following scenario: A copy
is rented, i.e., there is no reservation for the title (call event
rent () in state ForRent), and a reservation for the cor-
responding title is made before the copy is returned (state
OnHold follows state Rented on call event return ()
in the sequence). Then, the reservation expires, but before it
expires, another reservation is made for the title (the object

stays in state OnHold on call event holdExpire () ). The
second reservation does not expire and the copy is rented.

4.3 Invocation sequence tree (IST)

As aresult of firing a transition, the owning object may trig-
ger changes on other objects (through actions or signals). If
the target objects have state-dependent behaviours, this may
also result in transitions being fired and actions triggered on
yet other objects. In a TTS, each transition can then be as-
sociated with one or more invocation sequences of events
and actions, depending on the number of actions in the tran-
sition (and actions in states). An invocation sequence tree
(IST) is the data structure we define to represent these invo-
cation sequences for a TTS, and then facilitate the derivation
of constraints for that TTS (Sect. 4.5).

In this article, we assume that, if an invocation sequence
forms a cycle,’ then the sequence is infinite. We consider an
infinite invocation sequence to be a sign of an ill-designed
system. As a result, invocation sequences terminate when an
event is sent to an object that does not have a state-dependent
behavior, when the event is not recognized as a trigger event
by the target object, when the target of the actions is not

7 As a result of triggering a transition in an object statechart, an
event is sent (possibly indirectly) to that same object.
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IST previous | * | Invocation ‘O"1
1 incominglnvoc | 0..1 * outgoinglnvoc
{ordered} | 1..* successor |1 0..1] predecessor )
SubTree |q, 1 ISTNode precond - _ 0.1 | TnvecGond
- root - - ‘l 0.1 0.1 Constraint
* 1 expression : String
\ 0..1
actionSubTree . - ‘l
istAction | « 1 0..1
{ordered} {ordered} istEvent postcond
1
SubScenario 1.7
{ordered}

Fig. 4 IST metamodel

another object, or when the triggered transition does not
have actions.

We model the structure of invocation sequence trees by
means of the class diagram in Fig. 4 (metamodel). This
metamodel helps us to not only precisely define what an
invocation sequence tree is but also allows us to define al-
gorithms to derive test constraints in a precise but abstract
manner (Sect. 4.3.2). Such a metamodel is also a good start-
ing point to design a tool (Sect. 4.6) for the derivation of
such constraints.

4.3.1 Definitions

An IST is an acyclic digraph that shows all possible invoca-
tion scenarios that may occur during the execution of a TTS.
However, only one scenario needs to be chosen to execute
the selected test sequence. In this digraph, nodes denote
events or actions and edges denote invocation orders. An
edge is directed and connects two nodes: the predecessor

Invocation subtreg

and successor, the latter being invoked after the former in
the invocation sequence. Nodes and edges in the IST are
represented by classes ISTNode and Invocation in
the IST metamodel (Fig. 4). Nodes in the IST (instances
of class ISTNode) are labelled (attribute expression
in class ISTNode) with the fully qualified name of the
event or action, that is, the name of the event/action is
prefixed by a path starting from the owing object. For
instance a transition with an event and a sequence of two
actions results into three nodes for the event and actions,
and two invocations between the event node and the action
nodes. An invocation scenario consists of a sequence of
invocation subscenarios (abbr. subscenario). A subscenario
corresponds to an event in the TTS and is the sequence of all
the invocations involved in an invocation sequence. Figure 5
shows an example IST and the corresponding two (simple)
statecharts, corresponding to classes X and Y, where X is
the class under test and Y is an associated class. We see
that eventl has two subscenarios and event?2 has one

event2

< %ﬁ\/

[not g] s1
St1 St3
eventi event2 [g]s1
Ay.s1 / action1 / action2
St2 St4
Statechart Statechart
for class X for class
(partial) Y(partial)
X Y
(1) eventi,s1,action2
+action1() +action2() (2) eventi,si

Fig. 5 An example IST

Invocation subscenario:

Invocation scenario:
(1) eventi,s1,action2,event2,action1
(2) event1,s1,event2,action1

(8) event2,action1
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subscenario, resulting in two possible invocation scenarios
for the TTS. A node corresponding to an event in the TTS
and all the nodes that can be invoked directly or indirectly
after it form an invocation subtree (abbr. subtree): class
SubTree in Fig. 4. The subtree models all the invocation
subscenarios that can be invoked when receiving an event.
The IST for a TTS is then a sequence of SubTrees.
Invocations are labelled with conditions, referred to as
invocation conditions, stating the condition that must be ful-
filled to execute the event/action associated with the succes-
sor node. An invocation condition is a conjunction of a max-
imum of three parts, namely a precondition, a state condition
and a guard, depending on the following three situations:

1. The successor node represents an event in the TTS
(event?2 is a successor of event1 in Fig. 5). The cor-
responding invocation condition is the conjunction of the
event precondition and the guard of the transition.

2. The successor node represents an action that does not
trigger any transition in another statechart (actionl in
Fig. 5). The corresponding invocation condition is simply
the precondition of the action.

3. The successor node represents an action or signal (send
clause) that triggers a transition in another statechart. The
corresponding invocation condition is the conjunction of
the precondition of the action (it is not relevant for sig-
nals), the guard of the triggered transition (in the other
statechart), and the state invariant of the source state of
that transition. In Fig. 5, signall is sent to a Y’s in-
stance and triggers a transition to state St3 and the exe-
cution of action2.

When a transition triggered by event ev has several ac-
tions (or signals), say actl,... actn, this results into
an ISTNode instance for ev, an ISTNode instance for
each of the actions (n instances), and n Invocation in-
stances linking the ISTNode for ev and each of the ac-
tion’s ISTNode instances. These invocation instances have
to be considered in sequence as the corresponding actions
are executed in sequence. Recall that actions are analyzed
according to their written order (Sect. 3.2.2).

If any of those actions is invoked on a different ob-
ject than the one receiving ev, and enables more than
one transition, say p transitions, this also results in several
ISTNode and Invocation instances: p ISTNode in-
stances corresponding to p possible executions of the ac-
tion (the expression of those p ISTNode is the same)
and p Invocation instances between the ISTNode for
ev and those p ISTNode instances. Here the invocation
conditions for all those p Invocation instances are mu-
tually exclusive, since we consider only deterministic stat-
echarts. In other words, only one of the Invocation in-
stances can be considered at a time (i.e., in a given scenario).

We now have to distinguish between sequences of
Invocation instances and alternatives Invocation in-
stances that have the same predecessor ISTNode. This is
achieved by means of self association previous-next
on Invocation (Fig. 4). If there is a previous-next
link between two Invocation instances, then one has to

X self.m1 ’

+m1() 2-31 3

I ! ~_[c2]

Y [ct] [not c1] 2 3
+m2() ( self.y.m2 ) ( self.y.m2 J ( self.y.m3 J
+m3()

Fig. 6 Alternative relation vs. sequential relation

be considered before the other. This relation is transitive. Al-
ternatively, when there is no such previous-next link
between two Invocation instances, then only one of the
two Invocation instances can be considered at a time:
this denotes alternative invocations.

Graphically, when drawing the IST, invocation
sequences are denoted with an arc connecting the
Invocation instances involved in the same sequence,
and there is no specific notation for alternative invocations.

Figure 6 illustrates these notions of invocation se-
quences and alternative sequences, assuming class X’s stat-
echart has a transition self.ml () [g] /self.y.m2 () ;
self.y.m3 (), and operation m2 () enables two different
transitions in class Y’s statechart. As a result of firing the
transition in X’s statechart, actions m2 () and m3 () are ex-
ecuted. First, since m2 () enables two transitions in Y’s stat-
echart, two alternative Invocation instances are created:
both have ISTNode instance for self.ml () as a prede-
cessor, and have different, mutually exclusive,® invocation
conditions (respectively, c1 and not c1). Since the tran-
sition in X’s statechart triggers a sequence of actions (i.e.,
m2 () and m3 () ), those two alternative invocations are fol-
lowed by another invocation instance, resulting in two se-
quences of invocations (represented by two arcs in Fig. 6).

In the case where the multiplicity of the association end
on Y’s side is higher than 1, m2 is possibly invoked on more
than one instance of Y. If those are executed concurrently,
it has no effect on our methodology as long as there are no
race conditions involved (Sect. 3.2.2). There are two possi-
ble situations.

— Invocation condition [c1] is defined in terms of the state
of Y instances and different scenarios may be executed
on the different instances of Y depending on their con-
crete state.

— Invocation condition [c1] is defined in terms of the num-
ber of associated Y instances or the collective state of
associated Y instances, and the same scenario will be ex-
ecuted on all associated Y’s instances.

8 If the two enabled transitions originate from the same state in Y’s
statechart, then their guard conditions must be mutually exclusive (we
consider deterministic statecharts) and the invocation conditions are
thus mutually exclusive. Otherwise, the two guard conditions may be
identical, however, the state invariants (also part of the invocation con-
ditions) are then mutually exclusive, making the two invocation condi-
tions mutually exclusive too.
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[self.state=#ForRent or
self.state=#OnHold]

(c1)
1
self.rent(r1)

[self title.reservation->
select(v:Reservation|

state=#Pending]
(c211)

[self title.reservation->select( 21

v:Reservation| v.state=#Pending

[self title.secondOldestPending.

211

self.title.changeOIdestPending(D

v.state=#Pending) : ) self title.oldestPending.
>size()>0 and not(v=self.title.oldestPending)) .
e()>0] >size(j>0] copyAvailable(self) 212
(c2) (c21) . i ) '
2 [self.title.secondOldestPending: self title.secondOldestPending.
state=#Pending] beOldestPending()

(c21.2)

self.return()

[self title.reservation>select(
v:Reservation|v.state=#Pending
and not(v=self itle.oldestPending))
->size()>0]

22

self title.oldestPending.
copyAvailable(self)

[self title.reservation->

[self title.secondOldestPending.
state=#Pending]
(c3.1.1.1)

3114

self.title.changeOIdestPending(D

select(v:Reservation| (c2.2) [ self title.reservation->select —

v.state=#Pending) (v:Reservation|v.state= #Pending and self title.oldestPending.

->size()>0] not(v=self title.oldestPending))->size()>0] copyAvailable(self) 3112

(3) [self.title.reservation->select( il (c311) [self title.secondOldestPending. seff title.secondOldestPending.
v:Reservation| v.state= #Pending) ) ) state=#Pending] beOldestPending()
->size()>0] self.reservation.expire() (€31.1.2)
(3 - , 312
3 [ self.title.reservation->select -

self.holdExpire()

[self title.reservation->select(
v:Reservation| v.state= #Pending)

(c31.2)

3.2
self.reservation.expire()

->size()>0]
[self.state=#ForRent or
self.state=#OnHold]
(4 ! 41
4 [self.reservation.state
selfrent(r2) — standing] self.reservation. fulfill(r2)
(cAl)

Fig. 7 The IST of VSS

Whether in the first or second situation, the multiplicity
of the association does not affect IST's as our goal is to derive
test constraints for each possible invocation scenario for a
given TTS to be tested.

The Invocation Sequence Tree (IST) corresponding to
the example TTS presented at the end of Sect. 4.2 is shown
in Fig. 7. Note that in this figure, though this is not part of the
notation, nodes and edges are numbered to facilitate the dis-
cussion. Nodes 1 to 4 represent the events in the TTS. Tran-
sition rent () from ForRent to Rented (Fig. 2) does
not have any action and is not guarded. The corresponding
node in the IST (node 1) does not have any subtree and the
condition of its incoming invocation only involves the pre-
condition of rent () (among the three parts involved in in-
vocation conditions — recall Sect. 4.3.1). Figure 7 shows that
call event return () has two subscenarios (the first one in-
volves nodes 2, 2.1, 2.1.1 and 2.1.2 and the second one only
2 and 2.2), call event holdExpire () has three subscenar-
ios, and the last rent () node has one subscenario.

Consider node 2 in Fig. 7, corresponding to
guarded transition return() from Rented to
OnHold. The condition (c2) of its incoming invo-
cation (i.e., the edge between node 1 and node 2)

(v:Reservation| v.state=#Pending and
not(v=self title.oldestPending))->size()>0]

self title.oldestPending.
copyAvailable(self)

involves the guard of the transition, the precondition
of return () and the state invariant of the origin state
(Rented). The guard condition’ is self.title.
reservation->select (state=#Pending) ->
size () >0, which is referred to as (exprl). Operation
return () precondition is self.state=#Rented
(expr2), which specifies that the object must be
in state Rented. State Rented invariant, referred
to as (expr3) is: self. state=#Rented'’ and
self.rental->notEmpty () and self.reser-
vation->isEmpty (). The invocation condition is
thus the conjunction of (expl), (exp2) and (exp3).
Note that in Fig. 7, the state invariant part of invocation
conditions is omitted because it is straightforward and
would only clutter the diagram.

9 Note that in the following, when there is no ambiguity, the iterator
variable used in OCL collection operations is omitted.

10 In this example, for the sake of simplicity, we assume there is a
state attribute and, therefore, a simple invariant is defined. In practice,
no state attribute may be used and state invariants tend to be more
complicated. We decided, however, that the level of complexity of our
current case study was adequate.
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step3:

st <-buildSubTree(t) //build a subtree for t D%

step1:
step5:

step 4;

Greate subscenarios for st>

ist <-create an IST
step 2.

@voc <-create an invocation whose successor is st's root node )

t < 1 transition in TTS

step 6:

[tis the lastin TTS ]

Greate invoc’s invocation condition)

step7:
add st to ist

@<

Fig. 8 Building IST (buildIST () ), overall abstract algorithm

If we now turn our attention to condition c2.1, tran-
sition return () has one action that can trigger two
different transitions on the oldest pending reservation,
i.e., the two transitions between states Pending and
Outstanding in Fig. 3, resulting in alternative invoca-
tions in the IST (leading to nodes 2.1 and 2.2, both labelled
self.title.oldestPending.copyAvailable
(self)). Let us consider the invocation leading to node
2.1. It corresponds to the firing of the top most transition
between states Pending and Outstanding in Fig. 3. Its
invocation condition is thus the conjunction of the following
three elements:

— The guard conditions:
self.title.oldestPending=self and
self. title.reservation-> exists
(v:Reservation|v.state=#Pending and
v<>gelf)

— Operation copyAvailable () precondition:
self.state=#Pending and self.title.

oldestPending=self

— The state invariant of the origin state of the transition,

namely, Pending.

4.3.2 Building the invocation sequence tree

To build an IST (i.e., an instance of the IST metamodel) for
a given TTS, we of course need the TTS but also the UML
statechart of the class under test. If the statechart contains
actions that are invoked on instances of other classes, we
also need the UML class diagram (to show the associations
among classes) and the statecharts (if any) of those classes.
We also need preconditions and postconditions for opera-
tions involved in those statecharts, and state invariants, all
written in OCL.

Building an IST for a TTS proceeds in a systematic way,
following a sequence of steps. In this section, we describe
those steps at a high level of abstraction, by means of two
functions. More detailed algorithms and examples can be
found in [31].

The main function, namely buildIST (), whose al-
gorithm is shown in Fig. 8 by means of an activity dia-
gram, consists of a loop that visits all the transitions in the
TTS. For each transition, function buildSubTree () is

[tis not the last in TTS]

step8: T ——
/\t<-next transition in TTS)—

used to build a tree of ISTNodes and Invocations, i.€.,
events/actions triggered when the transition fires (step 3).
Subscenarios, i.e., the actual alternative sequences of
events/actions in the subtree, are then identified (step 4). The
root nodes of the subtrees, i.e., ISTNodes corresponding to
the events of the transitions in TTS, are then linked together
by Invocations whose invocation condition is the con-
junction of the guard and the precondition for each of the
subtree’s events (steps 5 and 6).

Figure 9 is an activity diagram describing function
buildSubTree (t), which recursively builds a subtree
for transition t (recursive call at step 9). First, a subtree is
created and its root node (an ISTNode instance) is set us-
ing t’s event (steps 1 to 3). Then, steps 4 to 19 sequentially
consider each action in transition t. When the end of the ac-
tion sequence is reached (or the action sequence is empty),
buildSubTree (t) terminates (step 20). For each action
in the action sequence, two different series of steps have to
be followed, depending on whether the action is an event
handler, i.e., depending on whether the action enables tran-
sitions in other objects. If the action is an event handler,
steps 7 to 13 are involved, otherwise, steps 14 to 18 are fol-
lowed. In the former situation, all the possible transitions
enabled by the action are identified (step 7), and a subtree
for each of them is created (steps 9 to 13). These steps are
very similar to what has been described for buildIST ()
(a subtree is created, its root node is linked in the current
IST with Invocations, ...). What is new is that sequen-
tial relations between invocations may have to be set (step
12): for instance, if the current action (which is an event
handler) is the second action in the action sequence of t,
previous-next links have to be set between the invo-
cation created for the first action in the sequence and the
invocations created for the event handler action. In the lat-
ter situation, i.e., when the action is not an event handler,
steps are simpler: an ISTNode instance is created for the
action, an Invocation instance is created to link the ac-
tion ISTNode to the ISTNode for t’s event, and sequen-
tial invocations are accounted for (steps 14 to 18).

4.4 Normalization of OCL expressions

As further described in Sect. 4.5, deriving constraints from
an IST requires that model constraints (operation contracts,



410

L. C. Briand et al.

step3:

step1:
H ev<-event of t )

step4:
st_pf- Create parent subtree actSeq <- actions of t )
st_p's root node <- rootNode

step2 \V

rootNode <- Create an ISTNode
for the subtree using ev

step6:

[actSeq ->isEmpty()]

[actSeqg->notEmpty()]
step5;

\< ah <-handler operation of action

action <- 1st action in actSeq )

transitions enabled by ah /™~

step8;
6r<—1st transition in transitionSeq )

F

step9:
st_c <buildSubTree(tr)
(Create a subtree for tr)

Create sequential relation
between invocations

C

step7: CransitionSeq <all possible\/ [ah is an event handler] X[ah is not an event handler]

[tr is not the last in
transitionSeq]

step10:
Add st_c to rootNode ) step13:
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step15:
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step16:
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Create invoc's invlocation condition
step18: \I/

Create sequential relation
between invocations

[action is the last in actSeq]

step20:

Fig. 9 Building subtree (buildSubTree () ), abstract algorithm

guards) written in OCL be transformed to become analyz-
able and comparable, a procedure referred to as normaliza-
tion. A normalized constraint is said to be in a normalized
Sform.

The OCL constraints are normalized to support a number
of analyses:

— Constraint derivation: Transforming a postcondition to a
form that explicitly shows the relation between the pre-
state and the after-state of the operation.

— Consistency checking among OCL expressions: Check
consistency and redundancy among constraints. For ex-
ample, we need to compare a postcondition and the con-
straint on the current collective state and remove the re-
dundant parts.

OCL offers a rich set of operations on the predefined
OCL types. This provides the modeller with flexibility in
writing and thus enhances its ease of use. However, this
flexibility brings about variety. For instance, the same con-
straint can be written using different collection operations
and this raises difficulties regarding the manipulation of
OCL expressions. Normalization steps are required to unify
the form of semantically equivalent constraints and compare
constraints with different semantics. We identify five types
of normalizations: Normalization of logical expressions
(Sect. 4.4.1); Normalization of navigation paths (Sect.
4.4.2); Normalization of operations on OCL basic and col-
lection types (Sect. 4.4.3); Normalization of postconditions

step19:
4<action <- next action in actSeq >< /V
[action is not the last in actSeq]

(Sect. 4.4.4); Elimination of local variables (defined in OCL
let expressions) and query operations'! (Sect. 4.4.5).

The VSS case study is then used in Sect. 4.4.6 to il-
lustrate some of the normalizations, and we discuss in
Sect. 4.4.7 the advantages of normalized forms and their lim-
itations.

4.4.1 Normalizing logical expressions

The main motivation is to ease the combination of OCL ex-
pressions and check for redundancy. Model constraints are
OCL expressions of type Boolean, i.e., logical expressions.
Typical normalizations for logical expressions are the con-
junctive normal form (CNF) and disjunctive normal form
(DNF). Any OCL expression can be converted into its equiv-
alent CNF or DNF using standard Boolean algebra [24].
Operation preconditions and invocation conditions are
transformed into DNF (Disjuncts are the different conditions
under which operations and invocations can be executed or
triggered); Class invariants are transformed into CNF (Con-
juncts are the conditions that must hold at the same time in
order to define a valid state); Operation postconditions are in
the form of a conjunction of atomic formulae or a conjunc-
tion of implies expressions!? (each implied part of the

1" The only operations defined in the class diagram allowed in OCL
expressions as they do not change the state of the system [1].

12 Recall we assume postcondition are complete and precise. There-
fore, in the case of alternative postconditions, we assume them to
be in the form of (A implies B) and (not A implies C),
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implies expressions is a conjunction of atomic formulae).
The reason why implies expressions are not transformed,
for instance using Modus Ponens [24] is that, as discussed
in Sect. 4.5, this facilitates the identification of the differ-
ent conditions under which a subscenario can be executed.
This requires, however, that OCL constructs like if expres-
sions be transformed into implies expressions. Addition-
ally, the predicate parts of implies expressions have to be
transformed into CNF and then a last transformation ensures
that in a conjunction of implies expressions, the predicate
parts of all the expressions are explicitly mutually exclusive.
(further details can be found in [28]).

4.4.2 Normalizing navigation path in OCL expressions

The complexity of comparing OCL expressions is in part
due to navigation mechanisms offered by OCL: This allows
modellers to write expressions that start from a context class
and reach other classes through associations. As a result, two
seemingly different navigation paths can result in the same
collection of objects, and thus two seemingly different OCL
expressions can be equivalent. Let us take an example from a
Video Store System (see Sect. 4.1), where there are associa-
tions between classes Copy, Title and Reservation.
The two following constraints can be written in the con-
text of class Copy (i.e., self represents a Copy in-
stance): self.reservation.title.name='"'Db’’
and self.title.name="'"Db’ . In both expressions at-
tribute name of a Title instance is constrained. Those two
expressions are equivalent, though it is not clear from the
navigation paths that the Title instance involved in both
constraints is the same. The goal of normalizing navigation
paths is thus to be able to compare different OCL expres-
sions and determine, for instance, whether they are equiva-
lent.

The equivalence of navigation paths cannot be, most of
the time, fully determined from a class diagram or any other
UML diagram since the semantics of the associations has to
be considered. Note that one of the main reasons for hav-
ing equivalent paths in a class diagram is that redundant as-
sociations are added to the class diagram during design to
improve performance [2]. As a consequence, the user is ex-
pected to provide information about redundant or equivalent
paths through the class diagram associations: It is usually
possible to enumerate all the equivalent navigation paths as
their number is generally small.

Normalizing navigation paths is performed during the
construction of the IST and can be fully automated using
inputs from the user on equivalent navigation paths. We
first unify (Sect. 4.4.2.1) the context object in the navigation
paths of action expressions (in the case of associated state-
dependent objects), the invocation conditions in the IST, and
the operations’ contracts. Navigation paths are then simpli-

assuming a case with two alternatives. Disjunctions, if present, are
transformed into implies expressions, e.g., (a or b) implies
c is transformed into (a implies c) and (b implies c).
Postconditions are therefore expected to be in CNFE.

fied by replacing them with their simplest equivalent paths
(Sect. 4.4.2.2).

4.4.2.1 Unifying the context object in navigation paths The
first step is to change the navigation path’s context object.
Recall that any OCL constraint is written in the context of a
specific class and the reserved word self is used to refer to
the context object [7]. A constrained element has a naviga-
tion path that starts from the context of the constraint, pos-
sibly followed by a sequence of association-ends (or class
names) until the class that owns the property is reached. In
this work, for each constrained element, we transform the
context object of its navigation path to be the owning ob-
ject. The rationale is that combining OCL expressions re-
quires a common context object to enable comparisons. It
is also preferable to choose the owning object as the com-
mon context object due to the fact that constrained elements
in most model constraints we manipulate (such as guards
and operation contracts for events and actions) already have
the owning object as the context object, and accordingly
this choice will minimize the effort of unifying the context
object.

As an example, let us consider the transition between
states Rented and OnHold of a Copy object (the owning
object) triggered by the event return in Fig. 2. The action
of the transition is a call to operation copyAvailable ()
on the oldest pending Reservation object. In Fig. 3, ac-
tion copyAvailable () is the call event that triggers
the transition from state Pending to Outstanding. In
the statechart the guard of this transition is:

[ self.title.oldestPending =
and
self.title.reservation->exists

(v:Reservation| v.state=#Pending
and v<>gelf)]

self

Note that the context object self in this guard refers
to the oldest pending reservation object and it needs to
be changed to the owning object (the Copy object). The
navigation path self.title.oldestPending of the
action expression on the transition in Fig. 2 shows how
to navigate from the owning object to the oldest pending
reservation object.

The changing of the context object is straightforward,
self in the above guard can be replaced by the navigation
path self.title.oldestPending. We obtain:

[ self.title.oldestPending.title.
oldestPending =
self.title.oldestPending

and

self.title.oldestPending.title.
reservation->

exists (v:Reservation]|

v.state=#Pending and v<>self.title.
oldestPending) ]
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4.4.2.2 Simplifying navigation paths We simplify naviga-
tion paths by (1) removing redundancies within navigation
paths and (2) replacing a navigation path by its simplest
equivalent path. Both simplifications are possible once the
user has provided relevant information regarding the class
diagram association paths, which a tool cannot simply de-
duce from UML diagrams.

Removing redundancy within a navigation path. Assume
there exists one association between class A and B and that
the multiplicity at both association endsis 1 or 0. . 1. In the
context of class A the following OCL expression then holds:
self.b.a=self (a similar expression exists in the con-
text of class B). More generally an OCL constraint involving
a navigation path of the form prePath.b.a.postPath,
where the result of navigation path prePath is an in-
stance of class A, is redundant and can be simplified into
prePath.postPath. Note that such a simplification can
be generalized to more than two classes provided that associ-
ations’ multiplicities are 1 or 0 . . 1. For other multiplicities,
the user input is required to specify whether certain paths in
the class diagram can be simplified.

As an example, let us look at the two conjuncts of the
guard in the previous example. The navigation paths of the
two constrained elements are as follows (Fig. 1):

(1) self.title.oldestPending.title.
oldestPending

(2) self.title.oldestPending.title.
reservation

From the class diagram, the association end with the role
name oldestPending has multiplicity 0. .1 and the
other association end has multiplicity 1. So the following
equations hold.

(a) self.title.oldestPending.title
=sgelf.title

(b) self.title.oldestPending.title.
oldestPending =self.title.
oldestPending

The previous guard can therefore be simplified into:

[ self.title.oldestPending = self.
title.oldestPending

and

self.title.reservation->exists
(v:Reservation| v.state=#Pending

and v<>sgelf.title.oldestPending) ]

Note that, as shown by the first conjunct above, this first
step can reveal constraints that are always true, and are even-
tually removed.

Replacing a navigation path with the simplest equivalent
path. Two different situations can occur. First, different
navigation paths starting with the same context that result
in the same collection of objects are said to be equivalent
since they provide different ways to retrieve the same

information. For instance, using the previous example,
paths self.title and self.reservation.title
are equivalent. Then, one of the equivalent navigation
paths can be considered the simplest (e.g., self.title)
and can be used to replace any occurrence of the other
equivalent navigation paths in OCL expression (e.g.,
self.reservation.title). In this case, the simplest
navigation path is simply the shortest in terms of number of
associations.

A second situation leading to possible simplifications
is when two different collections of objects, resulting from
two different navigation paths starting from the same con-
text (say pathl and path?2) have an include relationship
(in OCL, pathl->includesAll (path2)). In this sit-
uation, OCL collection operations (such as select) can
be applied on the larger collection to yield the smaller col-
lection: one can find an OCL operation op, likely with an
OCL expression as a parameter (such as select), such
that pathl->op () =path2. Then, any occurrence of
pathl->op () can be replaced by path2. In this case,
the simplest navigation path is the one that does not involve
an OCL collection operation.

In both situations, the user input is required to specify
equivalent, simpler paths as the class diagram does not pro-
vide enough information to do so automatically: The seman-
tics of associations need to be considered.

4.4.3 Normalizing operations on OCL types

OCL offers a rich set of predefined operations for so
called basic types (e.g., Integer) and collection types
(e.g., Set). Again, this provides flexibility but also re-
sults in different ways of expressing constraints. For in-
stance, aSet->gize()=0 and aSet->1sEmpty ()
are two syntactically different constraints that are semanti-
cally equivalent. Normalization is then necessary in order to
compare operations on OCL basic and collection types.
The normalization of operations is based on the fact
that many operations on OCL basic and collection types
can be expressed through other operations. For instance,
when two values r1 and r2 of type Real are compared,
rl<=r2 can be re-expressed as (rl<r2)or (rl=r2),
and collection->1isEmpty () can be re-expressed as
collection->size ()=0. The normalization of oper-
ations on OCL types consists in changing OCL expressions
such that only a subset of the operations, called the set of
core operations, is used. Core operations must have the same
expressive power as the complete set of operations. How-
ever, the choice of the core operations is not straightforward.
Recall that our aim is to enable the test constraint deriva-
tion approach described in Sect. 4.5. This approach relies
solely on the syntax to identify the semantic equivalence
between two constraints. There are two extreme situations
for the choice of a set of core operations: (1) it includes all
OCL type operations, i.e., no operations are normalized; (2)
it is the minimum set of operations, that is, no core opera-
tions can be re-expressed by any other core operations. (1)
is obviously not a good choice. For our problem, (2) is not
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a good choice either as we have to keep some redundant op-
erations. Indeed, implies expressions are not transformed
into conjunctions and disjunctions using Modus Ponens to
facilitate the derivation of test constraints (see Sect. 4.5).
Moreover, operations that iterate over collection elements
such as select, collect, and sum are not transformed
into equivalent expressions using operation iterate, since
they enhance the readability of the test constraints (more
readable than their 1t erate counterpart). This is important
as the resulting test constraints are likely to be presented to
the user for further analysis, so as to detect possible remain-
ing redundancies or impossible constraints. Of course this
is a trade-off as keeping these iterative operations in addi-
tion to iterate may result into redundancies and incon-
sistencies that are not detected. We therefore advise not to
use iterate in OCL expressions as it is usually possible,
in the vast majority of cases we encountered, to use high
level iterative operations such as select or collect.
Therefore, we adopt an intermediate normalization strategy
between solutions (1) and (2), and try to alleviate the con-
sequences of not having a minimum core of operations by
avoiding the use of iterate.

The normalization of operations can be automated and is
performed on both the operation contracts and the guards. In
the following, we only list example normalization rules due
to space constraints. For a complete list the reader is referred
to [31].

The normalization rules of operations on basic types are
straightforward, as illustrated by the examples below.

— Boolean type: b xor b2 is transformed into not (b
= Db2).

— Real and Integer type: r<>r2 is transformed into
not (r=r2).

The normalization of collection operations is much more
complex. Two types of collection operations are distin-
guished here: Type (1) collection operations return a new
collection, whereas Type (2) operations test the properties
of the collection and return a Boolean or Integer value.
The normalization of Type (1) operations is part of the
step to identify the equivalence of two OCL expressions
returning collections. The normalization of Type (2) col-
lection operations transforms most of these operations
into a test on a numeric property of the collection. The
motivation is to ease consistency & redundancy checking
between OCL expressions involving collection operations.
Some examples of the normalization rules for Type (1) and
Type (2) collection operations are provided below where :
denotes on the right hand side, the normalized form of the
expression on the left hand side.

— Type (1) collection operations
set->including (object)
set->union (Set{object})
set->excluding (object)
set - Set{object}
bag->reject (expr)
bag->select (not expr)

sequence->append (object)
sequence->union (Sequence{object})
— Type (2) collection operations
set->includes (object)
set->count (object) =1
bag->includes (object)
bag->count (object) > 0
sequence->includes (object)

sequence->count (object) > 0

Furthermore, operation select is further normalized into
multiple select operations when the OCL expression
passed as a parameter is a conjunction. For instance,
path-> select(a and b and c¢) is transformed
into the equivalent expression path->select (a)->
select (b) ->select (c). This normalization ensures
that if path->select (a and b and c) appears in
several OCL expressions (e.g., two different postconditions),
possibly with different orders of conjuncts a, b and c (e.g., a
and c¢ and b), the normalized expression is the same!3
(i.e., select (a) ->select (b) ->select (c)). This
normalization increases the chances of the constraint
derivation algorithm to find equivalent OCL expressions (it
uses the syntax of OCL expressions to compare them).

4.4.4 Normalizing PostConditions

As further described in Sect. 4.5, one important issue dur-
ing constraint derivation is to transform a constraint on the
after-values, as specified in an invocation condition, into a
constraint on before-values using an operation postcondi-
tion. To enable the necessary substitutions, postconditions
must be normalized to explicitly show the relations between
the pre-state and the after-state of the operation: they must
be transformed into a specific format that will enable such
substitutions (Sect. 4.4.4.1) and they must be complemented
(Sect. 4.4.4.2).

4.4.4.1 The standard equality form (SEF) We say an atomic
formulae is in the Standard Equality Form if and only if it
is written as an equation 1-value = r-value where
r-value is an OCL expression of only parameters, liter-
als or values of properties (e.g., attributes) at the start of the
execution of the operation (i.e., @pre values). A conjunc-
tion (or disjunction) of atomic formulae is in the SEF if and
only if all its atomic formulae are in the SEF. An implies
expression is in the SEF if and only if the implied part is a
conjunction of atomic formulae in the SEF. And a postcon-
dition, i.e., a conjunction of atomic formulae or implies
expressions, is in the SEF if all its conjuncts (i.e., atomic
formulae or implies expressions) are in the SEF.

Some examples and counter-examples of clauses in the
Standard Equality Form are provided in Table 1 (where
attrib denotes an attribute, param denotes a parameter).

13 We have to chose a specific order for a, b, and c. A simple one is
the alphabetical order of OCL expressions a, b, and c.
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Table 1 Example clauses that comply with or violate the Standard
Equality Form

Clauses in the SEF

attrib=10

attrib=param+1

attribl=attrib2e@pre+1

set=Set{objectl,
object2}

set->size() =
set@pre->size()+1

collection->size ()=0

Clauses not in the SEF

attrib-10=0
attriblepre+l=attrib2
attribl=attrib241
asset->includes (obj)

collection->isEmpty ()

Note that clause attribl=attrib2+1 is not in the
SEF as, using that clause only, one doesn’t know whether
attrib2’s value is changed by the operation. For in-
stance, if another clause in the operation’s postcondition is
attrib2=attrib3@pre, then the SEF for the clause
above is attribl=attrib3@pre+1. If on the contrary
attrib2’s value is not changed by the operation, then
the SEF is attribl=attrib2e@pre+1. Note also that
collection->igEmpty () is not in the SEF whereas
the equivalent expression collection->size () =0 is.
The SEF is one of the main reasons for the normalization
rules of OCL collection operations introduced in Sect. 4.4.2.

Finally, transforming a postcondition into its SEF can
be automated as this simply entails replacing occurrences in
r-values with 1-values of other equations.

4.44.2 Complementing PostConditions Assume that oper-
ation opl has the following postcondition: roleName=
roleName@pre->append (obj) where obj is a pa-
rameter of the operation and roleName is a naviga-
tion of an ordered association (i.e., roleName denotes a
Sequence). Further assume that, following the node rep-
resenting operation op1 in the invocation scenario, the invo-
cation condition is roleName->size () <3.

When deriving the test constraint for the invocation
scenario, we have to transform the invocation condition
above (i.e., which is a constraint on the size of the sequence
after the execution of op1l) into a constraint on the size of
the sequence before the execution of opl. As described in
Sect. 4.5, this is done based on the operation postcondition.
However, nothing in the operation’s postcondition describes
how the size of the sequence is changed: the size is implic-
itly increased by one because of the append operation. In
order to allow the derivation of the constraint on the size of
the sequence before the execution of the operation, we have
to complement the postcondition and re-write it as follows:
roleName=roleName@pre->append (obj) and
roleName->size ()= roleName@pre->size ()
+1. Itis then possible to derive that roleName->size ()
<2 must hold before the execution of the operation.

The problem is that we cannot presume, when comple-
menting the postcondition, what are the other model con-
straints (invocation conditions) that need to be propagated
based on the postcondition, i.e., how we should complement
the postcondition. For instance, if instead of a constraint on
the size of the sequence, we have a constraint on the first

element in the sequence, we have to complement the post-
condition in a different way and state that the first element in
the sequence is not changed by the operation. To address this
issue we have to complement the postcondition in a system-
atic way according to the OCL type and the operation used.
In our example, we have to state three things: the size of the
collection increases by one, the last element in the collection
is the one added, and all the other elements remain the same.
The postcondition then becomes!“:

roleName=roleName@pre->append (obj)
and roleName->size () =roleNamee@pre->
size()+1

and roleName->at (roleName->size ())=0bj

and roleName->size()>1 implies
Sequencef{l..roleName}->size()-1->
forAll (index:Integer|roleName->at
(index) =roleName@pre->at (index) )

Note that what is added as a complement to the postcondi-
tion is inspired by the postcondition of the OCL collection
operation (append) as stated in [7]. We define postcondi-
tion complementing rules for all operations in [31].

In order to complement operation postconditions in a
systematic way, there must be a way to identify what
changes have been modeled, and more importantly, to iden-
tify whether changes are modelled in a complete way (i.e.,
the postcondition unambiguously specifies what changes
and what does not change). However, this is not an easy task
because there is no set of rules on how to use OCL to model
operation contracts. In other words, the flexibility provided
by OCL makes it more complicated to analyze postcondi-
tions. Therefore, we assume that modellers use OCL in a
specific way when they write operation contracts. We de-
fine specific forms for modeling a particular change to cer-
tain types of model elements (e.g., adding or deleting an
element from a set) and we call these forms contract pat-
terns. Such patterns are designed with the aim to be correct,
complete, concise and easy to understand. Therefore, they
do not only facilitate our analysis, they are also desirable
in terms of properly defining contracts in OCL. For each
contract pattern, we define a corresponding complementing
rule that converts the postcondition of the operation into its
normalized form (with complement postconditions added).
When complementing a postcondition, we use these patterns
to match the operation contract. If the contract matches a
pattern, it is replaced by the pattern’s corresponding comple-
mented postconditions (e.g., instances of the append opera-
tion above are replaced with the four conjuncts of the com-
plementing rule).

For the list of all possible changes to model elements,
their contract patterns, and the corresponding complement-
ing rules, refer to [31].

We now show a contract pattern example. Assume
that class className has an operation that adds an
object, passed as a parameter, to a set. The contract

14 For the sake of simplifying our discussion, we left the append ()
in the expression, though it is supposed to be normalized.
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pattern is as follows (parentheses show the normalized forms
of excludes and includes):

context className::operation

objectTypeParameter)
[k%kokok ok ok ok kokokx pattern skkkkkkkkkkxk /
pre: set->excludes (object)

(set->count (object) =0)
post: set->includes (object)

(set->count (object)=1)

and set->sgize()=set@pre->size()+1

(object:

The complemented postcondition is shown below:

[* % %% Complemented postcondition %k /

post: set = set@pre->union (Set{object})
and set->size()=set@pre->size()+1
and set->count (object)=1

Several things need to be noted. First, the complemented
postcondition is in standard equality form. Second, one
more conjunct (the third one) is added to the complemented
postcondition. This conjunct is necessary if we have to
propagate an invocation condition that checks the value of
set->count (object).

4.4.5 Eliminating local variables and query operations

Because let expressions allow the definition of local vari-
ables and functions, thus helping to write complex OCL ex-
pressions, every occurrence of such a variable or function
must be replaced by its corresponding expression.

Query operations [1] do not have any impact on the col-
lective state and return a value (the result keyword is
used in the postcondition of the operation). We replace ev-
ery call to a query operation with the expression assigned to
result.

4.4.6 Examples in the VSS case study

If we now revisit the invocation leading to node 2.1 in the
IST of Fig. 7, recall this was stated to be the conjunction of
three elements, including the two listed below:

— The guard conditions:
self.title.oldestPending=self and
self.title.reservation->
exists (v:Reservation|v.state=#Pending
and v<>self) (expr4)
— Operation copyAvailable () precondition:
self.state=#Pending and self.title.
oldestPending=self (expr5)

Some upfront normalization is necessary to obtain the in-
vocation condition c2.1 in Fig. 7 from these elements.
First the navigation paths must be normalized, since we
want to describe a constraint in the context of the Copy
object whereas self in (expr4), for instance, refers
to a Reservation object: the oldest pending reserva-
tion, as shown in the navigation path of call event

copyAvailable () of the transition that is fired (Fig. 2).
Therefore, self in (expr4) and (expr5) must be
replaced with self.title.oldestPending (self

here refers to the Copy object), and we obtain:

(expr4.1) self.title.oldestPending.title.
oldestPending=self.title.
oldestPending

and self.title.oldestPending.title.
reservation->exists (v:Reservation|
v.state=#Pending and not (v=self.
title.oldestPending))

self.title.oldestPending.state=#
Pending

and self.title.oldestPending.title.
oldestPending=self.title.
oldestPending

(expr5.1)

Next, the navigation paths are simplified as there exist
redundant paths in the class diagram. Redundant paths,
as provided by the user are: self.title.oldest
Pending.title.oldestPending=self.title.
oldestPendingandself.title.oldestPending.
title=self.title. As a result, (expr4.1l) and
(expr5.1) are transformed into:

(expr4.2) self.title.oldestPending=self.title.

oldestPending
and self.title.reservation->exists

(v:Reservation|v.state=#Pending and
not (v=self.title.oldestPending))

(expr5.2) self.title.oldestPending.state=#
Pending and self.title.
oldestPending=self.title.
oldestPending

Another information provided by the user states that
the oldest pending reservation for a title is always in
state pending,15 ie., self.title.oldestPending.
state=#Pending is always true. The above two expres-
sions can then be transformed into:

(expr4.3) self.title.reservation->exists
(v:Reservation|
v.state=#Pending and not (v=self.
title.oldestPending))
(expr5.3) true

Last, operation exists () is transformed using operation
select (), and the result is the invocation condition c2.1
in Fig. 7.

4.4.7 Advantages and limitations

As discussed in previous sections, the normalization of the
OCL expressions has a number of advantages with respect
to our objectives of automating the derivation of test con-
straints. It unifies the expression of semantically equivalent
model constraints (Sects. 4.2, 4.3 and 4.4.5) so that each dis-
tinct constraint can be uniquely expressed (in most cases).

15 Note that this information could also be found in the class invariant
of class Title.
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It further converts each type of model constraints (precon-
ditions, postconditions, and guards) into appropriate nor-
mal forms (Sect. 4.4.1) and transforms the postcondition
(Sect. 4.4.4) to enable the automated test constraints deriva-
tion. Furthermore all the normalization steps themselves can
be automated at this point. An additional benefit is that the
normalized forms of postconditions provide guidelines (in
the form of patterns) on how to write operation contracts
that are complete and concise.

However, there is one limitation for the normaliza-
tion technique in terms of detecting redundancies and
inconsistencies among OCL constraints. For example,
two normalized OCL constraints with a different syn-
tax might be semantically redundant (e.g., self.a>1
and self.a>2) or inconsistent (e.g., self.b>10 and
not (self .b>5)). Such relations are not easily detected
even after the normalization steps have been performed.
Theorem proving would be the most appropriate technique
to check these relations [24]. Yet theorem-provers for OCL
are not readily available. Even if there were such theorem
provers, the cost and complexity of applying them will likely
be very high.'® Therefore, this research does not adopt any
theorem proving technique. Instead, it relies solely on the
syntactic equivalence to identify relations among OCL con-
straints. Nevertheless, we have observed that our technique
based on normalization is still useful and practical for two
reasons. First, in many cases, after the normalization is per-
formed, two OCL constraints have exactly the same expres-
sion or one expression is a direct negation of the other thus
easily enabling automated detection of redundancies and
inconsistencies, respectively. For instance, after normaliza-
tion, two constraints aCollection->isEmpty () and
aCollection->size () =0 will be identical (both will
be normalized into aCollection->size () =0) so that
they can easily be detected as redundant. Second, redundan-
cies and inconsistencies in the test constraints do not prevent
us from applying the test constraint derivation methodol-
ogy. The only drawback is that the process may produce test
constraints that consist of redundant or inconsistent compo-
nents. One solution is that the tester manually identifies such
relations among constraints. The normalization techniques
make this work much easier. Moreover, it may not be neces-
sary to identify and remove redundant and inconsistent post-
conditions during the test constraint derivation. During the
subsequent constraint solving stage (which is the next step to
derive test data after the test constraints are obtained), when
we apply heuristic constraint solving techniques such as Ge-
netic Algorithms (GA) [32], the redundancies within con-
straints might delay the convergence of the GA algorithms
but will not prevent it from finding the solution. And in cases
where there are inconsistencies among these constraints, GA
algorithms will not converge, and we can then claim, with

16  Recall that the test constraint derivation process iterates all the in-
vocations in an invocation subscenario (Sect. 4.5) and theorem proving
needs to be performed after the constraint propagation during each iter-
ation. Moreover, the propagated constraints might be in a very complex
form, thus further increasing the burden of the theorem prover.

a certain degree of confidence, that there exist inconsisten-
cies that make the test constraints unsolvable and check them
more thoroughly.

4.5 Test constraints derivation

Recall from Sect. 3.1 that we distinguish associated state-
dependent objects (their state depends on other objects’
states) from orphan state-dependent objects. Indeed, since
the behaviour of an associated state dependent object de-
pends on other objects’ state, some transitions in the TTS for
the associated state-dependent object may require that other
objects be in specific states. A driver executing the TTS then
needs to suspend the execution to set the state of those other
objects before resuming the execution (i.e., before trigger-
ing the transition that requires other object to be in specific
states). In the case of an associated state-dependent object,
it is then important to derive (under the form of a test con-
straint) the collective state before every transition in the TTS
(this includes the initial state), in addition to the argument
values for events and actions. In the case of an orphan state-
dependent object, since the behaviour does not depend on
any other object, we can derive a test constraint for the whole
TTS, that is a constraint to be satisfied at the very beginning
of the TTS. As a result, the driver does not have to suspend
the execution.

An invocation subscenario represents a possible firing of
a transition in the owning object’s statechart. It starts with
an edge (i.e., an Invocation instance) labelled with the
conjunction of the transition’s guard condition and the pre-
condition of the transition’s event handler, followed by a
node (i.e., an ISTNode instance) representing the event of
the transition. This is possibly followed by a sequence of
edges/nodes representing the actions in the transition, and
in transitions of other statecharts that are triggered as a re-
sult of the transition. Figure 10 shows an example IST!”: de-
tails on events, actions and invocation conditions have been
omitted and replaced by simple names (e.g., condition c1
for the edge leading to node labelled n1). This IST is built
for a TTS composed of four transitions which events are n1,
n2, n3 and n4 (and guard conditions c1, c2, ¢3 and c4,
respectively). Figure 10 also highlights two invocation sub-
scenarios (circled), one for event n2 and one for event n3
from a total of seven subscenarios in the whole IST: one
subscenario for event n1 (limited to n1l), two for event n2,
three for event n3 (because of two alternative invocations at
nodes n3 and n3 . 1) and one for event n4.

Deriving a test constraint for an invocation
subscenario—the constraint which, when satisfied, al-
lows the execution of the event(s)/action(s) (sometimes by
sending signals) in the subscenario—amounts to propa-
gating constraints that appear in the tree branches of the
subscenario (i.e., invocation conditions for edges and post-
conditions for nodes) onto the first edge of the subscenario

17 This is not an abstract IST as Error! Reference source Fig. 10. is
the IST in Error! Reference source Fig. 7. (the Video Store System
case study) with a different layout and different labels.



Automated support for deriving test requirements from UML statecharts

417

Fig. 10 An example IST

(e.g., edge labelled [c2] for event n2’s subscenarios). This
is done in a recursive, bottom-up way, starting with the
last edge in the tree path representing the subscenario and
ending with the first one (e.g., in Fig. 10, from the edge be-
tween n3 and n3 . 2 to the edge between n2 and n3). Note
that the result of that process might be a set of constraints
rather than a single constraint as discussed below.

We first describe how constraints are propagated in sub-
scenarios from edge to edge (Sect. 4.5.1) and then describe
how the corresponding OCL expressions are transformed
(Sect. 4.5.2). We then illustrate the whole approach on the
VSS case study (Sect. 4.5.3).

4.5.1 Propagating constraints in a subscenario

In the case of a subscenario that is reduced to a branch (cir-
cled subscenario for event n3 in Fig. 10), the bottom up pro-
cess is illustrated by the activity diagram in Fig. 12. The gen-
eral problem to be solved in this recursive process (core of
the loop in Fig. 12) is, given an ISTNode and its incom-
ing and outgoing Invocations (i.e., edges), to propagate
the invocation condition in the outgoing invocation onto the
invocation condition in the incoming invocation, using the
node’s postcondition. As illustrated in Fig. 11, we have to
propagate invocation condition ¢2 (for invocation I2) onto
invocation condition for invocation I1 using postcondition
post. Informally,'® this amounts to changing I1 invoca-
tion condition from c¢1 to ¢1 and f (post,c2), where
f is the function, to be defined, that propagates c2 from I2
to I1 using post. The rationale is that, if ¢1 and a func-
tion of post and c2 (denoted f (post, c2)) is satisfied,
then we can execute Opl and Op2, i.e., c1 is true and af-
ter executing Op1, c2 is true, thus allowing the execution of
Op2. The propagation thus consists in transforming a con-
straint on the after-state of operation Op1l (i.e., values after
the execution of Op1), as stated in c2, into a constraint on

18 No invocation condition is changed in the IST, as suggested by the
discussion. Separate constraints are generated during our IST analysis
to save the results of the propagation. But this way of writing makes
it easier to provide some intuition as to what is done in the recursive
process.

[c1 and f(post,c2) ]

N -
invocation I1
D~ -~
postcondition post
IS -
invocation 12

(@) (b)

Fig. 11 Deriving test constraints (example 1)

the pre-state of operation Op1l (i.e., values before the exe-
cution of Op1), using postcondition post that provides the
mapping between those after and pre-state. This is repeated
(steps 3 to 5 in Fig. 12), starting from the bottom of the tree
representing the subscenario, up until the tree top is reached.

For example, assume c2 equals to attribute>3 and
that post equals to attribute=attribute@pre+1.
Then, the  propagation results in  constraint
attribute+41>3 that must be fulfilled in conjunc-
tion with c1. If the postcondition rather contains implies
expressions (instead of a conjunction of atomic formulae),
the propagation can lead to a set of constraints. In our
example, condition c2 being the same, assume post
equals to the following:

aCollection->size()=1 implies attribute=
attribute@pre+1 and not (aCollection->size ()
=1) implies attribute=attributee@pre+2

Then, the constraint to be propagated and to be ful-
filled in conjunction with c1 depends on the size of
aCollection. If aCollection->size()=1 then
the propagation results in aCollection->size ()=
1 and attribute+1>3 whereas if not (aCollec-
tion-> size()=1) then the propagation re-
sults in not (aCollection->size()=1) and
attribute42>3. This illustrates that the result of the
recursive process can be a set of constraints. Here, two
different constraints can be fulfilled in order to execute the
sequence of Opl and Op2. In the general case, the con-
straints generated at a given step in the recursive process is
the Cartesian product of the constraints already in the set of
constraints and the implies-expressions in the postcondition.



418

L. C. Briand et al.

¢

[Invocation 12 is

stepi: the first one]

step3;
%(Om <-ISTNode predecessor to !2)

v

12 <-last invocation in subscenarica

step2:

step6:

tep4,
[Invocation 12 not step . - .
the first one] 11 <-incoming invocation to Op1

step5: \5/

Use 12 to initialize set of constraints sc

12<-11

Update sc using I1 invocation condition and Op1 postconditioa

Fig. 12 Deriving test constraints, abstract algorithm

Note that if the invocation condition to be propagated us-
ing a postcondition is true, then the propagation results in
true, as the postcondition has no impact on the execution
of the second operation in the subscenario. In our example,
if c2=true, satisfying c1 is sufficient to execute both Op1
and Op2, In other words, £ (post, true) =true.

In the case of a subscenario that is a tree (e.g., sub-
scenario for event n2 in Fig. 10), i.e., it contains invoca-
tion sequences, the previous strategy can be used after a
simple transformation of the tree: invocation sequences can
be transformed into a path that specifies the exact same
execution order: e.g., in the circled subscenario for event n2
in Fig. 10, the transformation results in invocations between
nodesn2.2 andn2.2.1 and between nodes n2 .2 .1 and
n2.2.2. The algorithm described above can then be ap-
plied without any adaptation.

Also, in the case of an orphan state-dependent object,
since the behaviour does not depend on any other object,
the invocation subtrees cannot contain invocation alterna-
tives and the depth of the subtrees, measured as the number
of nodes in paths of the tree is at most one (each subtree con-
tains one subscenario). Then, another transformation of the
IST allows us to derive a test constraint for the whole TTS,
that is a constraint to be satisfied at the very beginning of the
TTS, and not only for each event in the TTS.

These two similar IST transformations are very simple
and are thus omitted in this article. The interested reader is
referred to [28, 31] for more details.

4.5.2 Transforming OCL constraints

In order to detail how the propagation of an invocation con-
dition, using a postcondition, is achieved (e.g., what func-
tion f is in Fig. 11), it is important to note that we make a
number of assumptions on how each of the constraints that
appear in a subscenario (i.e., postconditions and invocation
conditions) is expressed in OCL. This is required in order
to ease the derivation of test constraints. In Sect. 4.4, we
present normalization steps that ensure these assumptions
are met. More precisely, we assume a normalized invocation
condition is in DNF and a normalized postcondition is in the
Standard Equality Form (SEF). The SEF is a conjunction
of equations'® 1-value = r-value where 1-value
is the value of a constrained element after the execution of

19 The symbols 1-value and r-value refer to the left-hand-side
and the right-hand-side of a relational expression respectively. For in-
stance, the 1-value of a relation expression a=b@pre+1 is a and
the r-value is bepre+1.

the operation and r-value is an OCL expression possi-
bly containing @pre values (i.e., values before the execution
of the operation), arguments and literals. Alternatively, con-
juncts in the SEF can contain implies expressions of the
form condition implies impliedPart, in which
case the conditions of the implies expressions are mu-
tually exclusive and the implied parts are conjunctions of
l-value = r-value equations.

Let us first consider the simple situation where the post-
condition of operation Op1 (Fig. 11), namely post, does
not contain any implies expression. It is thus a conjunc-
tion of equations, as stated above. The propagation of in-
vocation condition I2, onto I1, then replaces every oc-
currence in I2, of every 1-value that appear in post
with the corresponding r-value in which @pre post-
fixes are removed. This transformation of invocation con-
dition I2 then has to be fulfilled in conjunction with c1
(invocation condition for I1). Reusing a previous exam-
ple, assuming c2 equals to attribute>3 and post
equals to attribute=attributeepre+1, the prop-
agation replaces attribute in attribute>3 with
attribute@pre+1 after removing @pre, thus resulting
inattribute+1>3.

If the postcondition contains implies expressions
of the form condition implies impliedPart, the
transformation is different. Different implies expressions
state that the operation can be executed in different ways and
then produces different results. Each implies expression
describes one of these different executions: condition
describes the condition under which the operation has
to be executed in order to produce a result that satis-
fies impliedPart. Then, for each implies expres-
sion, condition must be satisfied in conjunction with
the propagation result of c2 and impliedPart. Reusing,
once again, a previous example, assume c2 equals to
attribute>3 and post equals to the following:

aCollection->size()=1 implies
attribute=attributeepre+1

and

not (aCollection->size()=1)
attribute=attributee@epre+2

implies

This results in the following set of two constraints (due to
the two implies expressions):

{ aCollection->size()=1 and attribute+
1>3, not (aCollection->size()=1) and
attribute+2>3}
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Note that in the two descriptions above we considered
one invocation condition c2 that needs to be propagated us-
ing the operation postcondition post, as we wanted the dis-
cussion to remain simple. However, as we have seen, dur-
ing each execution of the loop in Fig. 12, we may have to
consider a set of constraints (and not only one constraint),
because of implies expressions in postconditions associ-
ated with node(s) below in the subscenario. We thus may
need to apply the transformation above, where one con-
straint is propagated, on a set of constraints. This time, the
invocation condition for invocation between nodes Op1 and
Op?2 is a set of conditions cond;, condy,...cond,, and
the propagation also results in a set of conditions c1 and
f (post, cond;), cl and f (post, condy), ... cl
and f (post, cond,).

Last, note that this propagation of invocation con-
ditions using postconditions may require inputs from
the user. Indeed, we do not rely on a constraint solver
for OCL expression when propagating constraints.?? We
only rely on the syntax of the OCL expressions (after
normalization) and this may not be sufficient. For exam-
ple, assume we have to propagate invocation condition
path->select (ocl_expressionl) ->size()>1
using postcondition path->select (ocl_express-
ion2) ->append (obj). If ocl_expressionl and
ocl _expression2 are syntactically identical, then
we can derive (propagation) that path->select
(ocl_expressionl)->size()>0 must be true
before the execution of the operation. However, if using the
syntax of ocl_expressionl and ocl_expression2
we cannot automatically identify that the same collection
of elements is involved in the invocation condition and the
postcondition, it is not possible to perform the propagation.
In such a situation, the user must provide, under the form
of an OCL expression, that part of the invocation condition
and part of the postcondition are identical.

4.5.3 Example from the VSS case study

The constraint derivation algorithm presented above visits
the nodes corresponding to the events in the TTS in order,
from the first event node to the last (node 1 to node 4 in
Fig. 7). For each trigger event node, the algorithm analyzes
the corresponding subscenarios and derives the constraints
that must be true for executing all the actions in each of
them. The resulting constraints are then combined (conjunc-
tion) with the predicate condition of the event to form the
complete test constraint for each invocation subscenario.

We show below, for each trigger event in the TTS, and
each of the corresponding subscenario, the resulting con-
straint on the collective state. All these constraints must
be fulfilled while executing the selected transition test se-
quence.

The first constraint specifies that the state of the copy
must be either ForRent or OnHold for the first transi-

20 We considered this would not be realistic considering the current
state and applicability of this technology.

tion in the TTS to fire. Constraint number 7 additionally
requires that the reservation associated with the copy is in
state Out standing. Constraints 2 and 3 (resp. 4 to 6) ap-
ply to event 2 (resp. 3) in the IST, i.e., event return ()
(resp. holdExpire()). These constraints specify that
there must be one (constraints 3 and 5) or at least two (con-
straints 2 and 4) pending reservations for the copy’s title for
the event and the corresponding actions (in the subtree) to
execute. Note that constraint number 6 is impossible (the
second conjunct is the negation of the first one), as it corre-
sponds to the situation where there is no pending reservation
for the title, which contradicts the fact that the statechart for
Copy stays in state OnHold on event holdExpire () in
our sequence.

1. Event 1 has only one subscenario (made of node 1)
self.state=#ForRent or
self.state=#OnHold

2. Subscenario 1 for event 2 (nodes 2, 2.1, 2.1.1 and 2.1.2)
gself.title.reservation->sgelect

(state=#Pending) ->size () >0
and self.title.reservation->
select (state=#Pending) ->size()>1

3. Subscenario 2 for event 2 (nodes 2. and 2.2)

self.title.reservation->select
(state=#Pending) ->size () >0

and not self.title.reservation->
select (state=#Pending)

->gize()>1

4. Subscenario 1 for event 3 (nodes 3, 3.1, 3.1.1, 3.1.1.1
and 3.1.1.2)
self.title.reservation->sgelect

(state=#Pending) ->size () >0
and self.title.reservation->
select (state=#Pending) ->size()>1

5. Subscenario 2 for event 3 (nodes 3, 3.1 and 3.1.2)
gself.title.reservation->sgelect

(state=#Pending) ->size () >0
and not self.title.reservation->
select (state=#Pending)
->gize()>1

6. Subscenario 3 for event 3 (nodes 3 and 3.2)

self.title.reservation->select
(state=#Pending) ->size () >0

and not self.title.reservation->
select (state=#Pending)

->gize()>0

7. Event 4 has only one subscneario (nodes 4 and 4.1)
(self.state=#ForRent or
self.state=#0OnHold)
and self.reservation.state=

#Outstanding

When executing the complete TTS, any of constraints 2 and
3 can be combined with any of constraints 4 and 5 for events
return () and holdExpire (), respectively, resulting in
four different executions of this specific TTS.

Let us illustrate the constraint derivation on one subsce-
nario, i.e., the first subscenario for call event return () :
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Nodes 2,2.1,2.1.1,2.1.2. Note that in the description
below, due to space constraints, only some of the normal-
ization steps involved in the derivation are presented. Start-
ing from the last invocation condition (c2 .1 . 2) in the sub-
scenario, the constraint derivation proceeds according to the
following four steps:

Step 1: We propagate c2.1.2 (which is true) using the
postcondition of the operation in node 2.1 .1, thus
producing true (the postcondition does not have
any impact on the invocation condition). The con-
dition to be satisfied for the execution of nodes
2.1.1 and 2.1.2 in sequence is then c2.1.1
and true,thatisc2.1.1.

We propagate c¢2.1.1, which is also true
(c2.1.1 and c2.1.2 are equal) using the post
condition of the operation in node 2 . 1. The condi-
tion to be satisfied for the execution of nodes 2.1,
2.1.1and2.1.2isthenc2.1 and true,that
isc2.1.

Step 3: We propagate c2 . 1, that is:

Step 2:

self.title.reservation->select (v:
Reservation|v.state=#Pending and not
(v=self.title.oldestPending)) ->
size()>0

which is normalized into:

self.title.reservation->select
(v:Reservation|v.state=#Pending) - >

select (v:Reservation|not (v=self.
title.oldestPending)) ->

size () >0

The propagation then uses return () postcondition:

public Copy::return()

post:

( self.title.reservation@pre->select
(v:Reservation]|

v.state=#Pending) ->size () >0

implies

self.state=#0OnHold and

self.currentRental->size()=0

and Copy.alllnstances->select (c:Copy|
c.state=#0nHold) ->size ()=

Copy.alllInstances@pre->select (c:Copy|
c.state=#0nHold) ->

size()+1

and Copy.allInstances->select (c:Copy|
c.state=#Rented) ->size ()=

Copy.alllnstances@pre->select (c:Copy |
c.state=#Rented) ->

size()-1

)

and

( not self.title.reservation@pre->
select (v:Reservation|

v.state=#Pending) ->size () >0

implies

self.state=#ForRent and
self.currentRental->isEmpty ()
and Copy.allInstances->select (c:Copy]
c.state=#ForRent) ->size ()=
Copy.alllnstances@epre->select (c:Copy |
c.state=#ForRent) ->
size()+1
and Copy.alllnstances->select (c:Copy]
c.state=#Rented) ->size ()=
Copy.allInstances@pre->select (c: Copy|
c.state=#Rented) ->
size()-1
)
The constraint to be propagated (c2.1) constrains col-
lection self.title.reservation. The propagating
process therefore tries to match this collection with an
1-value of a conjunct in the postcondition. Recall
that the normalized postcondition is already in Stan-
dard Equality Form, and thus model elements that are
modified by the operation appear as 1l-values. If an
1-value starts with self.title.reservation, it
means that the collection is modified by the operation. Af-
ter checking the postcondition, no matches are found, i.e.,
self.title.reservation is not modified by opera-
tion return (). Therefore, the intermediate test constraint
is propagated without changes (f (post,c2.1)=c2.1)
and has to be combined (conjunction) with invocation con-
dition c2, resulting in:
self.title.reservation->select
(v:Reservation|v.state=#Pending)
->size()>0
and
self.title.reservation->select
(v:Reservation|v.state=#Pending)
->select (v:Reservation|not (v=
self.title.oldestPending)) ->
size()>0

Step 4: Last, this OCL constraint is shown to the user. As
an option, the user may then provide more informa-
tion to the tool to simplify the resulting OCL expres-
sions, in the same way relations between invocation
conditions and postconditions during the constraint
derivation process can be provided. In the above ex-
ample, the user may provide the following equiva-
lence:

self.title.reservation->select
(v:Reservation|v.state=#Pending)

->select (v:Reservation|not (v=self.
title.oldestPending)) ->

size()

= self.title.reservation->

select (v:Reservation|v.state=
#Pending)

->gize()-1

In other words, for a Copy’ s Title, the number of pend-
ing reservations, excluding the oldest pending one, is one
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less than the number of pending reservations. By combining
this OCL expressions and the second conjunct (i.e., replac-
ing an 1-value with an r-value), the test constraint is
transformed into:

self.title.reservation->select
(v:Reservation|v.state=#Pending)
->gize()>0

and

self.title.reservation->select
(v:Reservation|v.state=#Pending)
->size()-1>0

We can observe that this latest constraint is easier to read
and interpret. This is the condition that must be satisfied
(e.g., by a test driver) in order to execute the transition be-
tween states Rented and OnHold in Copy’s statechart and
execute the subscenario involving nodes 2, 2.1, 2.1.1, and
2.1.2 in the IST. By reading and interpreting it, we can de-
duce that there must be at least two pending reservations for
the title. This can either be automated by a constraint solver,
for example heuristics such as genetic algorithms [32], or
deduced by the user from reading the test constraint.

4.6 Prototype tool

A prototype tool called Contract-based Constraint Deriva-
tion Tool (CBCDTool) was developed to show the feasibil-
ity of our approach towards automated support for deriv-
ing test constraints on test data from UML statecharts [28,
31]. CBCDTool takes as inputs information on (1) state-
charts (including state invariants), and operations contracts,
(2) the class diagram (operation signatures, attributes, as-
sociations), (3) the TTS, (4) equivalent navigation paths in
the class diagram. As an output, the tool produces the con-
straints for the different transitions in the TTS.

The tool is implemented in Java and entails several pack-
ages (e.g., a package in charge of reading input data, includ-
ing an XMI parser and an OCL parser). Two packages are
of particular importance: the package including the UML
metamodel (which has been slightly adapted from [1] for our
purpose) and the package implementing the IST metamodel.
More implementation details can be found in [28]. All the
steps towards the derivation of constraints have been imple-
mented except the normalization of logical expressions and
postconditions (the current implementation assumes logical
expressions and postconditions are already normalized). The
reason is that there exist algorithms for the normalization of
logical expressions and we have identified ways to automat-
ically normalize postconditions (as explained in Sect. 4.4.4).
Automating these two steps thus does not raise major prob-
lems, and we wanted to focus on the harder problem of the
constraint derivation.

5 Conclusions

This article explores the automated support for deriving test
requirements from UML statecharts given coverage criteria

such as the all transitions, all transition pairs, full predicate,
and all round-trip paths [3, 4]. These criteria all assume a test
case to be in the form of a feasible sequence of transitions
(Transition Test Sequence or TTS). The test requirements
take the form of logical constraints and the test data deriva-
tion problem can be divided into two subproblems. The first
subproblem is to derive test constraints on system states and
arguments of events and actions for a given TTS. The sec-
ond subproblem is then to generate actual test data values
that satisfy these test constraints.

This article addresses the first subproblem as this is
likely the most complex one, since various constraint-
solving techniques can be readily adapted [32, 33]. It
clarifies relevant issues and proposes a methodology to au-
tomate the derivation of test constraints for a given TTS. The
methodology defines an appropriate model representation,
the Invocation Sequence Tree (IST), to capture all possible
sequences of actions triggered by a TTS. Information in the
statecharts and class diagrams are extracted and modelled
into ISTs, which are more amenable to the definition of
algorithms. The methodology also identifies four types of
normalizations for OCL expressions to support the analysis
of model constraints written in OCL and the generation
of test constraints. Note that these normalization rules can
be also considered as guidelines for software engineers
to write preconditions, postconditions, and invariants in
OCL. Moreover, the methodology provides a number of
algorithms that specify a sequence of precise steps to
automatically generate test constraints. The algorithms
involve (1) creating the IST from the model information,
(2) performing normalization of OCL expressions, and (3)
deriving test constraints on the system state and event/action
arguments based on the analysis of invocation conditions
and operation contracts for events and actions. A prototype
tool is also implemented as a proof-of-concept. The tool
is assessed through two case studies [28]—one of them is
presented here—which provide an initial demonstration of
the feasibility of automating the methodology.

The normalization of postconditions requires that
modellers follow certain patterns while modeling opera-
tion contracts, which may restrict the applicability of our
methodology, as they may not be followed in practice.
However, we believe that these contract patterns correspond
to good practice and should be encouraged.

Presently our methodology can identify redundancy
or inconsistency between two OCL constraints only when
they have exactly the same expression (eg. a>b and
a>Db) or one expression is the direct negation of the other
(e.g., a>b and not (a>Db)). Other types of redundancy
(e.g., constraintA implies constraintB, hence
constraintB is redundant in expression constraintA
and constraintB) or inconsistency (e.g.,
constraintA implies constraintB, hence
constraintA and (not constraintB) are incon-
sistent) cannot be automatically tackled and have to be
identified manually. Automating this aspect would require
an OCL theorem prover and even regular theorem provers
would not be easy to use in practice. However, we also
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expect normalization to facilitate the manual analysis of
constraints. In the worst case, if redundancies exist, this
will simply slow down constraint solving algorithms. If, on
the other hand, inconsistencies are present, that is the test
constraint cannot be satisfied, then the constraint solving
algorithm will not converge towards a result.

We also had to assume that the statecharts used for test-
ing purposes are deterministic. This not only implies they are
complete and well formed, but that concurrently executing
statecharts do not trigger race conditions at run time. Such
problems cannot be detected by state-based testing and must
be addressed beforehand.

Additional case studies should of course be performed
to evaluate our methodology. More specifically, empirical
work can be carried out to investigate how people use OCL
and to find a set of common modelling styles that are widely
accepted. This could help in defining less restrictive mod-
elling patterns so that our approach can be more widely
applicable.

Recall that the test case derivation problem is divided
into two subproblems. This article addresses the first prob-
lem, namely, the derivation of the test constraints. Such test
constraints can then be used to derive actual test data either
by providing guidance to the tester or by using constraint-
solving techniques. Recall that our Video Store System
(VSS) case study shows that infeasible test constraints might
result during the test constraints derivation process. It is
hoped that such constraints can be identified during this
stage.

The second subproblem belongs to the realm of Con-
straint Satisfiability Problem (SAT) [32, 33] that requires
the use of the constraint-solving techniques. There are a
number of such techniques available, to name a few among
the most popular ones: Linear Programming, Hill Climbing,
Simulated Annealing, and Genetic Algorithms. These tech-
niques all have their strengths and weaknesses. So there is
no single best-for-all technique for an arbitrary SAT prob-
lem [33]. Which technique to choose really depends on the
nature of the individual type of problem. Moreover, in or-
der to apply a constraint-solving technique, our test con-
straints need to be transformed into the representations re-
quired by the technique. Therefore, further work needs to
investigate all possible forms of test constraints as well as
in what representations these forms of constraints can be
encoded.

Last, alternatives to the use of OCL for specifying op-
erations’ behaviour is worth investigating. Action semantics
is now part of the UML standard [1, 18, 34]. Where OCL
specifies an operation’s behaviour under the form of con-
straints (pre- and post-conditions), action semantics defines
the semantics of a complete set of actions at a high level
of abstraction (e.g., manipulating a collection of objects).
However, action semantics does not specify any notation,
and there already exist several action semantics conforming
languages [34] that have not yet been standardized (as op-
posed to the OCL).
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