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a b s t r a c t

During iterative, UML-based software development, various UML diagrams, modeling the same system at
different levels of abstraction are developed. These models must remain consistent when changes are
performed. In this context, we refine the notion of impact analysis and distinguish horizontal impact
analysis–that focuses on changes and impacts at one level of abstraction–from vertical impact analy-
sis–that focuses on changes at one level of abstraction and their impacts on another level. Vertical impact
analysis requires that some traceability links be established between model elements at the two levels of
abstraction. We propose a traceability analysis approach for UML 2.0 class diagrams which is based on a
careful formalization of changes to those models, refinements which are composed of those changes, and
traceability links corresponding to refinements. We show how actual refinements and corresponding
traceability links are formalized using the OCL. Tool support and a case study are also described.

! 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of the Unified Model Language (UML) [37] for complex
systems leads to a large number of inter-dependent UML diagrams
that have to be consistent, e.g., the operations used in sequence
diagrams must be defined in class diagrams. Furthermore, recent
development methodologies, such as the Rational Unified Process
[26], promote successive modeling iterations evolving and refining
models until the final product is complete. As a result, for a specific
system, different versions of the same UML diagrams are incre-
mentally produced at different levels of abstraction. In the simplest
case, one can consider two standard analysis and design abstrac-
tion levels [9]. An iterative development process should ensure
that these two models remain consistent as they are incrementally
refined and changed.

Using and updating these different models should be supported
by some tool infrastructure, and one way to cope with the mainte-
nance of such models is to comply with the Model Driven Architec-
ture (MDA) framework [25]. According to MDA, a platform
independent model (PIM)—the analysis model—is transformed into
a platform specific model (PSM)—the design model, which is itself
transformed into code. To allow (fully) automated transformations,
MDA requires that tools ‘‘maintain the relationship between PIM
and PSM, even when changes to the PSM are made. Changes in
the PSM will thus be reflected in the PIM, and high-level documen-
tation will remain consistent with the actual code.” [25] In prac-

tice, when such transformations are not automated, an essential
requirement is that some form of traceability between the models
must be created and maintained and support must also be pro-
vided to facilitate the change of a PSM when its corresponding
PIM changes.

Impact analysis is defined as ‘‘identifying the potential conse-
quences of a change, or estimating what needs to be modified to
accomplish a change.” [4] In the context of UML-based iterative
development, we refine this notion and consider horizontal impact
analysis (HIA) and vertical impact analysis (VIA). HIA focuses on
changes and impacts at one level of abstraction, and has been ad-
dressed by existing impact analysis work (e.g., [5,6]), whereas VIA
focuses on changes at one level of abstraction and their impact at
another level of abstraction. (This is similar to the notion of hori-
zontal and vertical consistency between models [16].) This is illus-
trated in Fig. 1 where we consider two levels of abstraction. A
change to a sequence diagram at the analysis (abstraction) level
may impact other analysis diagrams: this is horizontal impact anal-
ysis. The same change may also impact model elements at the de-
sign (abstraction) level: this is vertical impact analysis.

Both HIA and VIA require some level of traceability. Traceability
is ‘‘the ability to trace between software artifacts generated and
modified during the software product life cycle.” [4] In the case
of HIA, traceability must exist between model elements at the
same level of abstraction, and those links are established during
horizontal evolution (Fig. 1), e.g., during analysis, an entity class re-
ceives new attributes, and traceability links are created between
the class and the new attributes. Existing impact analysis tech-
niques [6] have relied on such traceability links. In the case of
VIA, traceability must exist between model elements at the more
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abstract (analysis) level and model elements at the more refined
(design) level, and traceability links are established during vertical
evolution (Fig. 1). For example, the designer finds a state-depen-
dent class in the analysis model and decides to use the state design
pattern in the design (vertical evolution), in which case, links are
created between the class in the analysis model and the pattern
classes in the design model. In order to identify traceability links
for supporting VIA, we must either capture (during vertical evolu-
tion) or determine (by comparison of models) the intent of the de-
signer that lay behind changes when models are refined. Intent is
modeled in this paper by a taxonomy of refinements. Rules associ-
ated with different types of refinements are then used to automat-
ically identify refinements and establish traceability links.

A refinement is ‘‘used to model transformations from analysis to
design and other such changes.” [46]. A more general definition is
given in [44], in which refinement is defined as ‘a transformation
that adds more detail to an existing model’. In [10, p. 215], the con-
cept of refinement is defined as ‘‘a detailed description that con-
forms to another (its abstraction). Everything said about the
abstraction holds, perhaps in a somewhat different form, in the
refinement. Also called realization”. The notion of refinement bears
some similarities with the notion of refactoring (e.g., for UML dia-
grams [34]), which is defined as ‘‘a disciplined technique for
restructuring an existing body of code, altering its internal struc-
ture without changing its external behaviors” in [17]. Refinements
need to maintain the external behavior of a system as refactorings
do; however performing refinements is to refine an abstract model
into a detailed design model (i.e., vertical evolution) and perform-
ing refactorings aim at improving the internal structure of systems
(horizontal evolution). In [19] the authors propose the concept of
change pattern, which is defined as ‘‘a general repeatable solution
to a commonly occurring problem in software evolution”. The
authors state that change patterns have no restriction on the pres-
ervation of models’ behavior and are more general than refactor-
ing. In this sense, the term change pattern has the same meaning
as our concept of refinement. Applying design patterns to solve
commonly occurring design or modeling problems can be thought
of as a special type of refinement. In other words, our refinement
notion does not distinguish the notions of refinement, refactoring,
and design pattern, because we treat refactoring and design pat-
terns as special types of refinement.

In this article we describe an approach to support, in a (semi-)
automated way, traceability analysis for vertical impact analysis
of UML class diagrams and we formalize the notions of traceability

(link) and refinement in that specific context. This is motivated by
two objectives: (1) To specify, in an unambiguous manner, possible
types of refinements and traceability rules, (2) To facilitate auto-
mated traceability analysis based on state-of-the-art, industry-
strength modeling technology. This article focuses on the traceabil-
ity analysis part of the problem and leaves VIA for future work.
However, it is important to keep in mind that the overall goal is
to support VIA as this may drive some of our decisions.

The rest of the article is structured as follows. Section 2 reports
on related work. Our approach is described in details in Section 3.
Section 4 presents a case study, and Section 5 shortly discusses our
prototype tool. Conclusions are drawn in Section 6.

2. Related work

Several streams of research relate to our problem: refinement
analysis (Section 2.1); traceability link analysis (Section 2.2); im-
pact analysis (Section 2.3).

2.1. Classifying and identifying refinements

The UML notation can be extended with specific stereotypes1 to
specify refinements [33,43]. For example, a refined operation that
accesses a new attribute [33] is a refinement. An association which
is refined into two associations and a new class [43] is another
refinement example. Similarly, authors suggest that designers use
a specific stereotype (!refine") to define refinements, and that
refined and refinement elements be linked thanks to UML metamod-
el element Abstraction [40]. Despite the benefits, these solutions
may however become a burden to designers who have to perform
model modifications and document them with the proposed
stereotypes.

In [15] the authors are interested in preserving consistency dur-
ing the evolution of UML-RT [42] models, a variation of UML spe-
cifically dedicated to real-time systems. The authors identify
three kinds of modifications (Creation, Deletion, and Update), and
focus on four main model elements of UML-RT models (capsules,
port, connectors, and protocols). Thanks to a (partial) mapping
from UML-RT to Communicating Sequential Processes, the authors
are able to identify under which conditions modifications of these
model elements maintain consistency, e.g., under which conditions
a modified deadlock free model remains deadlock free. The authors
restrict their analysis, e.g., to non-hierarchical UML-RT models, and
do not show how these atomic changes can be combined into more
complex changes and how consistency can then be checked.

In [50] the authors propose an approach to identify refactorings
based on the authors’ previous work: UMLDiff [49]. UMLDiff is used
to identify elementary structural changes between two versions of
design-level software artifacts such as UML models or code. Four
types of structural changes are defined: addition, removal, move,
and renaming. Changes to associations are not taken into account.
After obtaining a set of elementary structural changes, a set of que-
ries are performed to automatically detect refactorings. These que-
ries are not discussed in the paper and the reader is referred to the
implemented software for detailed information about the specifi-
cation of refactorings and the related detection algorithms. Two
taxonomies of refactorings are provided, most of which are from
Fowler’s work [18].

A classification of nine class diagram refinements is presented
in [21], e.g., adding an attribute to a class; splitting a class into

Fig. 1. Horizontal vs. vertical impact analysis.

1 Stereotypes are specified in UML for the purpose of extending the semantics of
existing model elements without changing their structures [38]. For example,
stereotype !refine" is a standardized stereotype, which ‘‘specifies a refinement
relationship between model elements at different semantic levels, such as analysis
and design”.
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two classes with an association. These structural refinements are
then used to specify behavioral refinements in collaboration dia-
grams. Only a few simple refinements are presented though and
their detection by a tool is not described.

A number of class diagram refinements are discussed in [14].
Their (semi-)automated identification however requires that trace-
ability links be already established. (We will see that our approach,
on the other hand, does not make this assumption.) Once traceabil-
ity links are known, refinements are used to abstract out informa-
tion from the refined model and reconcile this information with
the abstract model. Those refinements are based on the topology
(e.g., associations between classes) of the UML class diagrams (ab-
stract, refined) being analyzed, whereas our approach also relies on
the automated detection of refinements and their intent, which is
modeled by a taxonomy of refinements.

An interesting approach towards the specification of UML
refinements is suggested in [39]. The author first formally specifies
legal refinements in Object-Z and then studies how these Object-Z
refinements translate into UML. No identification mechanism of
such refinements is suggested though.

In terms of refinement classification, there is no related work
that proposes a systematic and precise classification. Some of the
relevant articles [41,42] classify refinement at a very low level
(e.g., addition and deletion of a model element); others only take
into account a few simple refinements which are not organized
in a systematic way [14,21]. Another body of work only focuses
on refactoring (a special type of refinement), in particular those de-
fined by Fowler [18]. In terms of refinement identification/detec-
tion, some related works rely on stakeholders to explicitly
specify refinements by means of stereotypes; some related works
do not address the automated identification of refinement at all.
Our refinement taxonomy is based on a careful and systematic
study of the related literature or according to our own experience
of UML-based software development. It contains 31 concrete class
diagram atomic refinements and is also expected to be refined over
time. Besides, each concrete refinement in the taxonomy is rigor-
ously specified, following a template description.

2.2. Capturing traceability information

In [1], the authors review the current state of the art of model
traceability and also mention open issues like automatic traceabil-
ity link creation. As indicated in the paper, there are three research
directions for the automatic traceability link creation and mainte-
nance. One is to apply text mining and information retrieval tech-
niques to recover traceability links between software artifacts (e.g.,
[2,20]). In this line of work, traceability links are generated through
computing a similarity score between a query and each artifact in a
set of software artifacts. The limitation of such information retrie-
val techniques is that they are probabilistic in nature and they will
never provide perfectly accurate result (100% recall and precision).
As discussed in [32], in practice, typical recall and precision values
are around 70% and 30%, respectively, which means that software
engineers are required to manually analyze and discard a high
number of false positives (due to low precision). A second research
direction is to derive traceability links from existing ones. This kind
of approaches requires the existence of a set of initial traceability
links between software artifacts. In [36], an approach for managing
the evolution of traceability links between a software architecture
and its implementation is presented. When an architecture or its
corresponding source code evolve, existing traceability links are
analyzed and updated. The granularity of this approach is coarse-
grained and its implementation works at the java file level. Estab-
lishing traceability links by monitoring users’ modifications and
analyzing change history is a third research direction. Our ap-
proach fits into this category. We establish traceability links be-

tween model elements belonging to two different models by
identifying refinements from a set of atomic changes obtained by
monitoring user’s modifications.

Letelier presents a framework for the specification of traceabil-
ity links between high-level requirements and UML models [29].
Although primarily intended to support stakeholders in tracing
high-level (textual) requirements to various UML models during
initial development phases, the framework also allows traceability
links between UML model elements. Defining such traceability
links is however the responsibility of the stakeholders. Similar tool
support to help engineers and maintainers handle traceability links
is also suggested in [48].

Another way to establish traceability links automatically is to
rely on automated model transformations. Once one knows how
a model is transformed, the transformation can be studied and
traceability links can be established between model elements of
the two model versions. Such transformations are at the core of
MDA [25] and some automated transformations have already been
described, for instance for design patterns [24]. The use of such
transformations to establish traceability has not received much
attention, with the noticeable exception of [35,41,47] where the is-
sue is mentioned.

2.3. Performing impact analysis

Most impact analysis techniques rely on a graph representation
of software artifacts (nodes) and their dependencies (edges). This
graph can (for instance) represent classes, attributes, and opera-
tions (nodes) and definitions of attributes/operations in classes as
well as operation calls (edges) [31], or simply class dependencies
[27]. These dependencies can be retrieved from the code or from
design models. As opposed to the simple traversal of the depen-
dency graph to identify direct and indirect impacts [27], the work
in [31] suggests a detailed analysis of the changes, organized in a
change taxonomy, to precisely study how changes propagate (if
they do). Such a change taxonomy, though more extensive and
based on changes and impacts on UML models (rather than pri-
marily on code), is also used in [6]. Rules precisely define under
which conditions changes propagate, i.e., under which conditions
we obtain indirect impacts.

Note that these strategies (including [6]) have all been defined
for horizontal impact analysis. Vertical impact analysis is sug-
gested in [3,33], although this terminology is not used by these
authors. No precise vertical impact analysis approach is described
though. To the best of our knowledge, no such work has been re-
ported to date. One noticeable exception is [48] where maintaining
traceability is restricted to traceability between high level textual
requirement descriptions and use cases (and use case descrip-
tions). In the same vein, a framework for the synchronization and
evolution of models of varying kinds (i.e., varying metamodels) is
proposed in [23]: models to be synchronized are viewed as graphs,
specified according to the framework; dependencies between
model specifications (graphs) are specified according to the frame-
work (traceability descriptions), and changes to models can then
be propagated. The authors, however, assume the models are al-
ready synchronized, i.e., traceability links are known, and thus fo-
cus on the representation of such links and their use to propagate
changes in models whose metamodels might be different.

In [45] the authors propose a qualitative approach to represent
and quantify traceability links between design elements and the
design rationale for the purpose of performing change impact anal-
ysis. A Bayesian Belief Network (BBN) is applied to capture proba-
bilistic, causal traceability links. The change impact analysis
mechanism is based on the BBN-based reasoning method. The ap-
proach also relies on the existence of traceability links between the
design rationale and other software artifacts. Besides, the probabil-
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ities on nodes in the BBN model are provided by architects and are
estimates based on their experience and intuition. In this article, in
order to support vertical impact analysis, we focus on the (semi-)
automated identification of traceability links.

3. Traceability links for VIA

Our overall objective is to perform vertical impact analysis (VIA)
of UML 2.0 models as automatically and efficiently as possible. As
already discussed, this requires that traceability links be estab-
lished between model elements at the two levels of abstraction
during vertical evolution: we need to identify the changes to the
analysis model that may lead to changes in the design model. First,
atomic changes, which are the elementary steps by which one
model evolves into another, are identified automatically. Second,
refinements are derived from the identified atomic changes, thus
capturing the user’s intent at a higher level of abstraction than
atomic changes. Third, traceability links are established between
model elements of UML model versions automatically (e.g., from
analysis model elements to design model elements), based on
the identified refinements. Finally, with two UML model versions,
the corresponding traceability links, and a HIA approach in hand,
VIA can be performed to answer the question: what is the impact
of changes to the abstract model on the refined model? We intend
to automate the above four activities as much as possible, though
the current paper focuses on the first three ones. Note that though
our objective is not to require that the designer explicitly specifies
refinements, human input might be desirable on occasions. We
aim, however, at minimizing the occurrence of such human input.

In the following, we formalize the notions of atomic change,
refinement, traceability link, VIA and HIA, by means of a metamod-
el (Section 3.1). We then present taxonomies of atomic changes
and refinements for class diagrams (Sections 3.2 and 3.3). Section
3.4 shows, on one example, how we specify refinements and the
corresponding traceability links. A working example is also pro-
vided in [7] to illustrate our methodology.

3.1. Metamodel

The class diagram in Fig. 2 illustrates the main concepts of our
approach and their relationships. This is also the starting point for

the design of our tool presented in Section 5. A data dictionary
describing each metaclass, its attribute(s) and association(s) is pro-
vided in [7] for reference.

A UMLModel is composed of Elements (i.e., association mode-
lElements), grouped into diagrams (class UMLDiagram): this is
formally specified by the first Object Constraint Language (OCL)
constraint in Fig. 4. Each UMLDiagram can be a ClassDiagram,
or any other valid UML diagram. Element is one of the meta-clas-
ses of the UML 2.0 metamodel [37], and is therefore the bridge be-
tween our metamodel and the UML 2.0 metamodel.2 A UMLModel is
associated with instances of Refinement by two associations since
a model can be refined (rolename toRefinedModel) and at the
same time be the refinement of another model (rolename toOrig-
inalModel). A refinement is between the original model (rolename
originalModel) and the refined model (rolename refinedMod-
el). A refinement is either an AtomicRefinement, corresponding
to a series of AtomicChanges, or a CompositeRefinement com-
posed of more than one Refinement. AtomicChange and Atomic-
Refinement are the roots of hierarchies (taxonomies) of atomic
changes and refinements (Sections 3.2 and 3.3). Since the analyzed
models may not contain enough information to identify a refine-
ment, the user’s help may be requested (class UserHelp). If identi-
fying a specific refinement requires user input, we define, in a
specific format (e.g., yes-no or multiple-choice questions) a request
for information to be presented to the user. Recall that our objective
is to minimize the user’s involvement.

An AtomicRefinement is derived from a group of Atomic-
Changes that occur together (multiplicity 1..* of role name atom-
icChanges). It cannot be decomposed into other refinements. A
CompositeRefinement consists of more than one Refinements
which can be Atomic-Refinements and/or CompositeRefine-
ments. The refinements grouped into a composite refinement are
between the same original and refined models. This is specified
by the second OCL constraints in Fig. 4.

An AtomicChange affects a model element (instance of Ele-
ment) and is further described by a ChangeDescription. We

Fig. 2. Conceptual metamodel.

2 Note that although we focus on refinements and traceability links for class
diagrams in this paper, class Element will allow us to extend our approach and
consider refinements and traceability links for other UML diagrams, as well as ones
involving several different UML diagrams at the same time.
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consider four different kinds of AtomicChanges, as defined in enu-
meration AtomicChangeTypes: changed, moved, deleted, and
added elements. The last two are self-explanatory: the added (re-
moved) element is the affectedElement in the refined (original)
model. An element is moved when its location changes, e.g., an
operation is moved from a class to another. For a moved element,
affectedElement represents the element in the original model,
whereas targetLocation or diagramLocation associations
from class ChangeDescription describe the new location. In
the case the moved element belongs to another model element
(e.g., an operation belonging to a class is moved), targetLoca-
tion is to be used. If instead the moved element belongs to a dia-
gram (e.g., a class which belongs to a class diagram is moved to
another diagram), diagramLocation is to be used. A changed
element occurs when a named element changes name, e.g., an
attribute name changes. The name change is then recorded in attri-
butes beforeValue and afterValue of class ChangeDescrip-
tion. These notions are consistent with the compare and merge
facility [30], and the notion of deltas between models which is
available in Rational Software Architect (RSA) [22]. The compare
and merge facility is indeed the mechanism we intend to rely on
for the detection of model changes to identify refinements. Con-
straints on the metamodel that correspond to these descriptions
are given in Fig. 3.

Instances of TraceabilityLink are established for each
Refinement instance, between the elements in the original model
that are being refined and the elements of the target model that are
the refinements (associations to Elementwith role names origin
and target, respectively). The origin and target of a traceability
link are model elements of the original and refined models, respec-
tively, of the corresponding refinement. This corresponds to the
third constraints in Fig. 4.

When traceability links can be established between a series of
models, we can derive traceability links between the elements of
the first (most abstract) model and the elements of the last (most
refined) model, these links being modeled as instances of class
DerivedTraceabilityLink. For instance, if class A in model ver-
sion 1 is refined into class A in model version 2 which is itself re-
fined into class A in model version 3, the two traceability links
(from version 1 to version 2, from version 2 to version 3) can be
used to establish a traceability link between A in version 1 and A
in version 3, which corresponds to an instance of DerivedTrace-
abilityLink in our metamodel.

Once refinements between two model versions (say, the origi-
nal analysis model and the refined design model) have been iden-
tified and the corresponding traceability links established, one can
perform vertical impact analysis (class VerticalImpact). A Ver-
ticalImpact relies on traceability links to identify the elements
of the refined model (impactedElements) that may need to be
changed because of a set of changes in the original model (chang-
edElements). Since traceability links indicate how each original
model element is refined, the changes to the original model are
necessarily at the origin of some traceability links. Similarly, the
set of elements impacted by the VerticalImpact must be a sub-
set of the target elements of the traceability links. This is modeled
by the fourth OCL constraint in Fig. 4.

The changed elements at one level of abstraction (e.g., in the
original model) can be the result of a HIA, i.e., a HorizontalIm-
pact can cause another HorizontalImpact. Impacted elements
in a more abstract level can be the starting point of a VIA: a Hor-
izontalImpact can cause a VerticalImpact. Similarly, the ele-
ments of the refined model being impacted by the VIA can be the
starting point of a HIA: a VerticalImpact can cause a Horizon-
talImpact. In other words, the result of a HIA can be the starting

Fig. 3. Constraints of the metamodel for atomic change.
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point of a VIA and a VIA can cause another HIA. This is modeled by
the reflexive association on class Impact.3 HIA is modeled by clas-
ses Change and Impact, and their associations, which we reuse
from an earlier work on UML-based impact analysis [6]. We intro-
duce two classes VerticalImpact and HorizontalImpact as
the subclasses of Impact in order to distinguish HIA impacts from
VIA impacts.

3.2. Taxonomy of atomic changes

In order to precisely specify (atomic) refinements we need to
precisely specify the atomic changes they can be composed of.
Such a taxonomy was presented in [6] for HIA purposes, where
each UML model element was defined by a set of properties (e.g.,
a class has attributes) among which core properties uniquely iden-
tify the element (e.g., the class name).

Since vertical evolution involves model changes, we adapted
the taxonomy presented in [6] for the purpose of identifying trace-
ability links, while accounting for the fact that we rely on the com-
pare& merge facility of RSA to provide such atomic changes. First,
in [6], changing the core properties of an element is interpreted as
the deletion of the element and the addition of a new element. This
is however classified as a change by RSA [22,30], i.e., as an atomic
change of type changed. Second, moving an element from a loca-
tion to another (e.g., an operation from a class to another) is clas-
sified as a deletion and an addition in [6], whereas in RSA we have
the notion of moved elements. In other words, the taxonomy was
adapted to benefit from the precise, fine-grained identification of
changes provided by RSA.

Though an AtomicChange can occur in any UML diagram, we
focus in this paper on class diagrams. Fig. 5 shows an excerpt of
the taxonomy: an AtomicChange in a class diagram can be the
addition of a class, the deletion of an association, the move of an

attribute between two classes or the change of a class, which is
either a change of name, a change of property IsAbstract [37]
and so on. The complete taxonomy for class diagram atomic
changes currently contains 47 concrete changes [7], i.e., leaf nodes
in the inheritance hierarchy rooted in ClassDiagramAtomic-
Change, and can be refined over time if necessary.

3.3. Taxonomy of refinements

We also define a taxonomy of atomic refinements (Fig. 6),
again focusing on class diagram refinements in this paper. Notice
that using the composite design pattern we model the possibility
that a refinement involves both class and sequence diagram atomic
refinements. (Other diagrams could be added to Fig. 6 using the
same principle.) We defined our taxonomy of class diagram atomic
refinements based on a careful and systematic study of the related
literature (conference and journal articles (e.g., [13]), text books
(e.g., [9,10,18,28]), and web pages (e.g., [17])) and according to
our own experience of UML-based software development. This tax-
onomy is also expected to be refined over time.

Fig. 6 shows an excerpt of our taxonomy of 31 concrete class
diagram atomic refinements, i.e., leaf nodes in the inheritance hier-
archy rooted in ClassDiagramRefinement [7]. As an example,
Class -> Classes+Rels refers to a family of refinements where
a class is refined into a set of classes and their relationships. For in-
stance, TopDownGen is a refinement through generalization: the
class being refined is added a subclass in the refined model. Other
refinements, not shown in Fig. 6, describe the refinement of classes
and their relationships into a single class or the refinement of a
class into several classes (e.g., splitting of responsibilities) [7].

3.4. Refinement/traceability link specification

Each concrete refinement in the taxonomy is rigorously speci-
fied, following a template description containing: a general
description of the refinement; the list of atomic changes that
must be present, and the constraints they must satisfy, to

Fig. 5. Taxonomy of atomic changes.

Fig. 4. Some OCL constraints on the metamodel.

3 VIA and HIA are therefore accounted for in our traceability definitions, although
the details of the impact rules being used during VIA and HIA are left for future work.
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unambiguously identify the refinement; and a description of the
corresponding traceability links. Constraints on atomic changes
and traceability links are described using the OCL. We believe that,
if we want such research to converge over time and other research-
ers to build on it, the method employed for detecting changes,
refinements, and establishing traceability links needs to be rigor-
ously specified.

As an example, consider the class diagram atomic refinement
TopDownGen (Fig. 6)where a class is refinedbymeansof a top-down
generalization: a subclass is added to this class. The specification of
refinement TopDownGen, i.e., the characterization of its atomic
changes and their relations, is shown as the OCL invariant for class
TopDownGen in Fig. 7a. The expression indicates that aTopDownGen
refinement is composed of two atomic changes of type AddedClass
and AddedGeneralization (first three terms in the conjunction).
Additionally, the newly added generalization relationship relates
the added class (the child class of the generalization) and a class that
belongs to the original model (last two conjuncts).

For such a refinement, two traceability links have to be estab-
lished: one between the original class and the superclass of the
added generalization; one between the original class and the
added subclass. The rationale is that if a change to the original class
(in the original model) is performed, or if this class is deemed to be

impacted based on horizontal impact analysis, then both the par-
ent class and the child class of the added generalization (in the tar-
get model) may need to be updated. (Recall that how the
traceability links are actually used during VIA is outside the scope
of this paper.) These traceability links are specified in the OCL
expression shown in Fig. 7b. The first four let expressions define
local variables for the rest of the constraint: newGen refers to the
added generalization; superClass and subClass refer to the par-
ent and child classes of the added generalization, respectively; and
origClass refers to the class in the original model that is being
refined, and is identified by looking for the class in the original
model which has the same name as the superclass. Using these lo-
cal variables, the rest of the expression (after the in keyword) indi-
cates that there are two traceability links for the TopDownGen
refinement, one between origClass and superClass, and one
between origClass and subClass.

3.5. Algorithm for identifying refinements and establishing traceability
links

For the specification of atomic refinements, we have one alter-
native: to assume that each refinement is specified independently
of all the other possible refinements that can apply to the refined

Fig. 6. Taxonomy of refinements.

Fig. 7. Refinement TopDownGen.
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element(s), or to account for all those other possible refinements
during specification. We have opted for the former as this simpli-
fies the specification expressions without any loss of precision.
Taking the TopDownGen refinement of Fig. 7 as an example, the
reader has noticed that the parent class of the added generaliza-
tion (i.e., in the refined model) is identified in the original model
by its name, i.e., we assume the name of the class being refined
by TopDownGen has not changed. Therefore, for specification pur-
poses only, we assume that the class being refined with the Top-
DownGen refinement is not also refined according to another
refinement, e.g., its name does not change as a result of a refine-
ment and the class is not split into two classes as a result of a
refinement. Alternatively, accounting for every possible other
refinement would require that we account for a possible change
of name, a possible splitting of the class and many other refine-
ment types in the OCL expression of Fig. 7. This would clearly
make this expression overly complex and would limit the practi-
cality of the approach.

Instead of accounting for multiple refinements (and associated
traceability links) in refinement specifications, we rely on an algo-
rithm (Fig. 8) to avoid the situation where multiple refinements oc-
cur sequentially and are required to be specified together. The
algorithm is formalized using pseudocode where some variables
are typed as model elements in our metamodel (Fig. 2), which
are highlighted in courier font. The algorithm relies on the fact
that we collect atomic changes in the order they are performed
by the designer, thanks to the compare and merge facility of
RSA.4 The inputs are therefore the original and refined models be-
tween which traceability links have to be established (parameters
originalM and refinedM, respectively), a collection of refinement
specifications (parameter refRepository), and a sequence of ob-

served atomic changes (parameter observedACs). The problem
bears some similarities with finding patterns, i.e., refinements’ sets
of atomic changes as defined in refRepository, in the input se-
quence observedACs. However, one major difficulty (compared to
string pattern matching) is that the atomic changes specifying a gi-
ven refinement may not necessarily appear in a specific order in the
input sequence (the order of appearance of atomic changes in
observedACs is not relevant to identify an occurrence of the refine-
ment/pattern), and atomic changes specifying different refinements
may be mixed/interleaved (the successiveness in observedACs of
the atomic changes specifying a refinement is not relevant to iden-
tify an instance of the refinement).

At the core of the algorithm is function IdentifyRefine-
ment(seqAC, refs, m, idAC): line 7. This function has three input
parameters: a sequence of atomic changes to identify refinement
from (seqAC), a set of refinement specifications (refs), and a mod-
el (m). It returns zero or one refinement identified in seqAC, and has
one output parameter (idAC), namely the set of atomic changes
that correspond to the identified refinement. Starting from the first
atomic change in seqAC, this function tries to identify the smallest
sub-sequence of seqAC in which a refinement from refs can be
identified. This relies on the fact that all our refinements have dif-
ferent specifications: they either are derived from different types
of atomic changes, different numbers of atomic changes, or the
atomic changes must satisfy different (OCL) conditions. It is there-
fore sufficient to look for the smallest sub-sequence. Note though
that if the identified refinement requires n atomic changes, this
sub-sequence may have more than n atomic changes (though only
n of them will be matched) since refinements may be interleaved.

The algorithm then repeatedly identifies one refinement at a
time by calling IdentifyRefinement () (loop starting and ending
at lines 5 and 17) until no more refinement can be identified
(IdentifyRefinement () returns null). Each time a refinement
is found (lines 9-13), the matched atomic refinements (returned
in the last argument of IdentifyRefinement ()) are removed

Fig. 8. Refinement identification and traceability algorithm.

4 The compare and merge facility of RSA can keep track of changes performed by
users and the order of these atomic changes.
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from the atomic changes to be used in the next iteration of the loop
(line 9). Additionally, an intermediate model is built (line 10) by
applying the identified refinement (i.e., by applying the matched
atomic changes) and this intermediate model is used during the
next iteration of the loop. This way, in subsequent iterations of
the loop, we can identify new refinements that are made of atomic
changes on previously changed elements, e.g., a class is renamed in
a first refinement and then is extended in a second refinement.
Traceability links are then established (line 11) between the model
before the matched atomic changes have been performed (mod-
el1) and the model constructed by applying the refinement (mod-
el2). Once no more refinement can be identified, all the
intermediate models and traceability links are revisited (line 18)
to establish traceability links between the original model (ori-
ginalM) and the refined model (refinedM).

Note that at the end of the execution of the algorithm, some
atomic changes may remain unmatched, i.e., the set remaining-
ACs may not be empty. This happens if the refined model refi-
nedM is an intermediate model for the designer who has
additional modifications to be made.

4. Case study

The goal of our case study is to validate the completeness and
correctness of our approach and provide illustrative examples of
refinement rules.

4.1. Case study subject

Arena is a non-trivial, textbook case study [9]. Its goal is to illus-
trate object-oriented software development, including require-
ments elicitation, analysis, system design, and object design. Its
analysis and (incomplete) design class diagrams can be found in
[9]. We reverse-engineered the complete design class diagram
from the code posted on the textbook companion web site [8].
The analysis class diagram is made of 17 classes (Fig. 9), whereas
the design class diagram contains 19 classes and 6 interfaces
(Fig. 10). Additional characteristics of the two class diagrams are
summarized in Table 1. We have omitted all the classes in charge
of network communications, data storage, and graphical user inter-
face from the design class diagram since, though part of the design,
they are not produced through refinements of analysis classes but
are rather added, for example, to address non-functional require-

ments. These classes therefore do not pertain to our study. Specific
refinements and traceability links will need to be devised for such
additions, and this is outside the scope of this paper.

A number of reasons led us to select Arena as a case study: (1) it
was developed independently from our research, (2) it is a working
system, (3) it is sufficiently complex to demonstrate the feasibility
of our approach but of a manageable size, and (4) as further dis-
cussed below, the changes involved are sufficiently varied to inves-
tigate whether our approach is sound and our taxonomies are
reasonably complete.

4.2. Validation procedure and summary of results

The goal of our validation was two-fold: (1) To assess whether
our atomic change taxonomy was complete with respect to our
case study: does it accommodate all changes in our case study;
(2) To determine whether our refinement rules could account for
all atomic changes and whether they led to correct deductions
regarding the refinements made to the analysis model to obtain
the design model. In order to achieve this goal, the validation pro-
cedure depicted in Fig. 11 was performed on the Arena models to
validate our traceability analysis methodology.

The validation procedure of Fig. 11 is composed of five steps.
After collecting the analysis and design class diagrams discussed
above, we manually identified a sequence of atomic changes that
would allow us to transform the former into the latter. To do so,
we studied the refinement scenario discussed in the textbook [9]
(the textbook provides the rationale for the scenario, following a
well-defined development process) and identified the atomic
changes that would correspond to this scenario. The identified se-
quence is therefore a minimum sequence5 of atomic changes that
would allow us to transform the analysis class diagram into the de-
sign class diagram (step 1). Admittedly, other possible scenarios—
leading to the same design model—could be considered: the order
according to which atomic changes are applied could be different
and, therefore, the set of refinement rules to be applied could differ
as well. Table 2 shows all the refinement types identified from the
atomic changes (with their types) of the refinement scenario: The
first column lists the refinement types; The second column indicates

Fig. 9. Case study (from[8]): Analysis model (class User appears twice for layout purposes).

5 It is minimum in the sense that it is the shortest route to go from the analysis
diagram to the design diagram, as per the refinement scenario described in the
textbook [9] (where only necessary transformations are reported).
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the number of occurrences of each refinement; Column three shows
the actual changes being made to the Arena analysis class diagram;
The last column shows the identified atomic changes for the refine-
ments. For instance (first row of Table 2), classes User and Player
of the analysis model have been refined into class User of the design
model (column 3) after applying a CollapseHierarchy refinement
(column 1) for which two types of atomic changes are used to iden-
tify it (last column): DeletedClass and DeletedGeneraliza-
tion; each of them being applied only once. As detailed in Table
2, the selected refinement scenario led to 90 atomic changes, from
12 different atomic change types in our taxonomy.

The second step of our validation was to verify the complete-
ness of our atomic change taxonomy by checking whether the Are-
na analysis model can be transformed into the design model by
only applying the identified atomic changes. If these atomic
changes had turned out not to be sufficient to obtain the design
model from the analysis model, we would have had to question
the completeness of our taxonomy. One important observation
from this step was that, for this rather complex scenario, our tax-
onomy of atomic changes was sufficient to explain how the Arena
analysis model can be transformed into the design model.

The third step of our validation was to evaluate our refinement
rules (OCL). By analyzing the identified atomic changes, we could
devise which refinements were actually performed to obtain the
design class diagram. 66 refinements from 18 of the refinement
types in our taxonomy [7] were necessary to complete the class
diagram transformation from analysis to design. Our refinement

taxonomy was therefore deemed complete (step 4) for the case
study at hand and it was sufficient to account for all atomic
changes identified during step 1. In other words, the 66 identified
refinements accommodate all the 90 atomic changes.

The last step was to verify the correctness of the identified
refinements by checking their intent, at a high level of abstraction,
against the analysis and design class diagrams. Recall that the
objective of our approach is to determine the user intent associated
with model refinements, which then allows us to establish mean-
ingful traceability links between two models at different levels of
abstraction. This step is manual as it requires us to understand
why the changes were made and verify that we identified the cor-
rect refinements using our rules based on the identified atomic
changes. For the Arena case study, our verification is based on
the information provided in [9] and our experience regarding ob-
ject-oriented design. Such analysis showed that the identified
refinements were able to explain why and how the Arena analysis
model was refined into the design model, while conforming to the
information provided in [9]. For example, as shown in the third
row of Table 2, we identified an instance of refinement Add-
BridgeClass, which is to refine the association between classes
Tournament and Match in the analysis model into a path between
these two classes through a new class Round. As indicated in [9]
(page 381), the new class Round ‘‘corresponds to a set of Matches
that can be held concurrently.” The association between classes
Tournament and Match in the analysis cannot model the require-
ment of organizing a set of matches held concurrently. A new
bridge class Round has to be added to bridge classes Tournament
and Match. This conforms to the intent of our identified refinement
AddBridgeClass.

Table 2 therefore shows that all the identified atomic changes
are involved in at least one refinement, suggesting that our refine-
ment rules accounted for all atomic changes in the case study: we
can fully explain how the analysis model is refined into the design
model thanks to the identified atomic changes and the proposed
refinement rules. Furthermore, all applied refinement rules were
checked for correctness, i.e., the intent of the refinements, at a high
level of abstraction, as formalized by the rules, was checked against

Fig. 10. Case study (from [9]): design model.

Table 1
Class diagrams characteristics

Class diagram (analysis) Class diagram (design)

# Classes 17 19
# Interfaces 0 6
# Associations 17 34
# Dependencies 0 7
# Generalizations 7 2
# Model elements 41 68
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the class diagrams. The goal was to see whether the user’s rationale
when refining the analysis class diagram into the design class dia-
gram (as explained in the textbook reporting the case study) is cap-
tured by the identified refinements.

In summary, the case study shows that all the changes per-
formed to the model belong to our taxonomy of atomic changes,
and all those changes are correctly used in at least one refinement
rule. In other words, our taxonomies of atomic changes and the set
of refinement rules we proposed are complete and correct based on
the Arena case study.

4.3. Detailed results

Using excerpts of the analysis and design class diagrams of the
Arena case study (Fig. 12), we illustrate in the subsections below
two of the refinements (from a total of 66) we have identified,
thereby providing additional insights into the results presented
in the previous section. Fig. 12a and Fig. 12c are excerpts of the
analysis and design class diagrams, respectively. Fig. 12b shows
an intermediate step in the refinement scenario discussed previ-
ously (recall that it involves several refinements) that we add for
illustration purposes.

4.3.1. Refinement detailassofunctionality
Fig. 13 shows the OCL specification of refinement DetailAsso-

Functionality, whose intent is to refine an association by add-
ing new classes and associations. The general idea for identifying
such a refinement is to be able to find, in the refined class diagram,
at least one path between the classes at the two ends of the asso-
ciation6 being deleted in the original model. Referring to Fig. 12a and
b, the association between classes Arena and Game is deleted. These

two classes can be found in the refined model, Fig. 12b, and there ex-
ists a path between these two classes: class Arena, association be-
tween Arena and GameManager, class GameManager, association
between GameManager and GameEntry, class GameEntry, associa-
tion between GameEntry and Game, and class Game.

As specified in Fig. 13a, such a refinement is at least made of one
DeletedAssociation atomic change: the deleted association (in
the original model) is referred to as delAsso. The next let expres-
sions are used to identify the classes at the two ends of the deleted
association in the original model (origA and origB) and the same
classes in the refined model (refA and refB). Last, we use opera-
tion exists () of class Path to identify whether there is a path be-
tween refA and refB in the refined model. Class Path does not
appear in our metamodel as it is only a helper class used to shorten
our OCL expressions. Its specification is given in [7]. A Path in-
stance is associated with a sequence of Elements, i.e., a path is a
sequence of UML model elements. More precisely, elements are
classes (or interfaces) and relationships. Operation exists(en-
dA,endB), endA and endB being classes of the samemodel, returns
true if and only if there exists a path between these two classes.
Recall that we assume that only one refinement is applied to the
original model when specifying refinements. We can therefore
identify a refined class (referred to as refA or refB) by looking
for the class in the refined model which has the same name as
the original class (referred to as origA or origB).

Fig. 13b specifies how traceability links are established for
refinement DetailAssoFunctionality. For each path that we
can find in the refined model between refA and refB (we use
operation getPaths () of class Path), we establish a traceability
link between the removed association delAsso (in the original
model) and each element of the identified path.

4.3.2. Refinement replacesuperclasswithinterface
The ReplaceSuperclassWithInterface refinement con-

sists in replacing a parent class with an interface and replacing

Fig. 11. Validation procedure.

6 In this article, we assume associations are binary, although n-ary associations can
be transformed into binary associations and handled following the same principles.
Future work will adapt our OCL expressions to account for n-ary associations.
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the generalization relationships (to the replaced class) with
implementation relationships. Four kinds of atomic changes are

therefore used to identify this refinement: DeletedClass, Add-
edInterface (with the same name as the deleted class), Dele-
tedGeneralization (its general end is the deleted class), and
AddedDependency (between subclasses of the deleted class and
the added interface). Recalling that in UML 2.0, an implementa-
tion is a dependency, these conditions are specified in the OCL
expression of Fig. 14a. Notice that, once again, we use class names
to recognize classes that belong to both the original and refined
models.

When a ReplaceSuperclassWithInterface refinement is
identified, a number of traceability links are established as speci-
fied in Fig. 14b. First, we establish a link between the deleted class
(in the original model) and the added interface (in the refined
model). Second, we establish a link between the deleted class
and each class that implements the added interface. The rationale
is that a change to the (deleted) class in the original model may im-
pact the (added) interface as well as all the classes that implement
the interface (in the refined model).

Referring to our Arena case study, abstract class Game
(Fig. 12b) is transformed into an interface (Fig. 12c). The general-
ization between class TicTacToe and class Game is transformed
into an implementation between class TicTacToe and interface
Game. In this example, two traceability links are established: one
from class Game (original model) to interface Game (refined
model); one from class Game (original model) to class TicTacToe
(refined model).

Table 2
Summary of refinements and atomic changes

Refinement type (total 18) No. of
occurrences

Changes made to the analysis modea Atomic Changes (for one instance of a
refinement type) with no. of occurrences

(Part A)-Summary of refinements and atomic changes
CollapseHierarchy 2 Classes User and Player -> class User DeletedClass (1)

DeletedGeneralization (1)Classes User and LeagueOwner -> class User
ReplaceSuperclassWithInterface 2 Superclass Game -> interface Game DeletedClass (1)

AddedInterface (1)
DeletedGeneralization (1)
AddedDependency (1)

Superclass TournamentStyle -> interface TournamentStyle

AddedBridgeClass 1 Association between Tournament and Match -> new class Round
and associations

DeletedAssociation (1)
AddedAssociation (3)
AddedClass (1)

TopDownGen 2 Class Match -> classes Match and TicTacMatch AddedClass (1)
AddedGeneralization (1)

Class Round -> classes Round and KnockOutRound
InlineClass 1 Classes Interest Group and User -> class User DeletedClass (1)

DeletedAssociation (1)
DetailAssoFunctionality 1 Association between Arena and Game -> path between Arena and

Game
DeletedAssociation (1)
AddedAssociation (3)
AddedClass (2)

ByBridgeClass 1 Association between Arena and Interest Group -> path between
Arena and User via bridge class GateKeeper

AddedAssociation (3)
DeletedAssociation (1)

1 Association between Arena and LeagueOwner -> path between
Arena and User via bridge class League (rolename owner)

ClassIsAbstractRef 2 Class User: abstract -> concrete ChangedClassIsAbstract (1)
Class Match: concrete -> abstract

(Part B)-Summary of refinements and atomic changes
AssoEndMultiplicityRef 2 Multiplicity between League and TournamentStyle: many -> 1 ChangedAssoEndMultiplicity (1)
AssoEndIsNavigableRef 3 Association between League and TournamentStyle: non-

navigable -> navigable
ChangedAssoEndIsNavigable (1)

RelocateAssociationRef 3 Association between Match and Player -> association between
Match and User

RelocateAssociation (1)

AddedClassRef 7 Class Session is added AddedClass (1)
AddedInterfaceRef 4 Interface Statistics is added AddedInterface (1)
AddedAssociationRef 16 Association between Round and User is added AddedAssociation (1)
AddedDependencyRef 5 Dependency between Move and TicTacToeMove is added AddedDependency (1)
DeletedClassRef 5 Class Advertiser is deleted DeletedClass (1)
DeletedGeneralizationRef 3 Generalization between Game and Chess is deleted DeletedGeneralization (1)
DeletedAssociationRef 5 Association between Advertiser and Account is deleted DeletedAssociation (1)

a This column only shows sample examples of refinements from the Arena case study. The complete list of changes and refinements made to the analysis model is provided
in [7].

Fig. 12. Two example refinements from the Arena case study.
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5. Automation

Our approach is implemented in a tool named VIATool (Verti-
cal Impact Analysis Tool7) which we built as a set of java plug-ins to
the Eclipse platform using IBM Rational Software Architect (RSA)

[22]. This tool is architected by integrating the following technolo-
gies: Eclipse development platform, EMF, OCL Engine, Compar-
eMerge Engine, and Eclipse UML. Our goal was to obtain a tool
that could be easily extended, would easily accommodate certain
types of changes, and that could be adapted to other modeling envi-
ronments than RSA while taking advantage of the most advanced,
available technologies.

As shown in Fig. 15, the tool is composed of two subsystems to
first identify refinements and establish traceability links between

Fig. 13. Refinement DetailAssoFunctionality.

Fig. 14. Refinement ReplaceSuperclassWithInterface.

7 Only the traceability link identification is implemented as the VIA part is still
ongoing work.
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two UML models (subsystem VIATraceability), and then per-
form vertical impact analysis (subsystem VIAPerform), though
the latter is not described in detail in this paper. Both subsystems
rely on existing Eclipse-based technologies: Eclipse EMF,
Eclipse UML2, RSA’s CompareMerge Engine, and RSA’s OCL En-
gine.Eclipse EMF [11] is a modeling and code generation engine
for building applications based on a structured data model. Using
EMF, a developer can define a data model and get a set of Java clas-
ses, automatically generated by the EMF facility, to create and
manipulate instances of the data model. EMF also produces a set
of adapter classes that enable viewing and editing the model,
and a basic editor, which is itself an Eclipse plug-in [11]. The
Eclipse UML2 project is an EMF-based implementation of the
UML 2.0 metamodel [37] for the Eclipse platform [12], and is inte-
grated into RSA. The UML models to be analyzed are instantiated
using the Eclipse UML2 project and can be obtained from RSA.
The CompareMerge Engine [30], which is part of RSA, is used to
compare two versions of a model. The OCL Engine is used to eval-
uate OCL expressions against an instance of an EMF model.

In the VIATraceability subsystem, the Eclipse EMF frame-
work is used to create the metamodel of Fig. 2, generate corre-
sponding java APIs, and generate basic user interface (UI)
components to create and edit instances of the metamodel.
Fig. 16 presents an example of such a UI for editing refinement
TopDownGen. Refinement Repository (Fig. 15) is composed of
all the refinements we have specified. Traceability Reposi-
tory (Fig. 15) is used to preserve all the traceability links being
established. This repository is then available to VIAPerform.

In the VIAPerform subsystem, the VIA Performing Engine is
initiated by the VIA Eclipse Plugin of the VIATraceability
subsystem. Vertical impact analysis is triggered by a change (the
Change subsystem), which is obtained from the RSA’s Compar-
eMerge Engine. VIA Performing Engine performs vertical im-
pact analysis with two UML models, a change, and the
established traceability links for these two UML models (Trace-
ability Repository) as inputs. Then a report is generated to
show the analysis results. Some of the technical details of these
subsystems are still under investigation since, as already men-
tioned, our future work on VIA and HIA will based on the traceabil-
ity analysis presented in this paper.

Our approach starts from the VIA Capturing Traceability
Engine that automatically obtains atomic changes. These are the
elementary steps by which one model evolves into another, from
the RSA’s CompareMerge Engine. These atomic changes are then
used to determine refinement(s) by trying to identify instances of
all the refinements available in the Refinement Repository,
using the corresponding OCL rules (e.g., part (a) of Figs. 7, 13,
14). The OCL Engine is used to check those OCL expressions. Then,
traceability links are established automatically, based on the iden-
tified refinements (e.g., part (b) of Figs. 7, 13, 14). These traceability
links are stored in the Traceability Repository for later con-
sumption by the VIA Performing Engine. When traceability
links are ready for two UML models, the VIA Eclipse Plugin ini-
tiates the VIA Performing Engine.

Each step of our methodology can be fully automated. First, our
tool relies on RSA’s CompareMerge Engine to automatically ob-
tain atomic changes. The CompareMerge Engine is a mature
technology and has been delivered as a component of RSA. Second,
the OCL Engine is used to automatically query the OCL rules of
the refinements in the refinement repository to identify refine-
ments and establish traceability links. The OCL Engine is a query
framework freely downloadable from the Eclipse’s website. Third,
a vertical impact analysis can be performed automatically using
the traceability links, given a set of changes. The changes trigger-
ing the impact analysis are obtained from the CompareMerge
Engine.

Thanks to the VIA Capturing Traceability Engine, our
architecture distinguishes the refinement specification (contained
in the Refinement Repository), specifying required atomic
changes, from the observed atomic changes obtained from the
CompareMerge Engine. As a result, it ensures that, even though
our tool relies on a set of existing technologies, they can be re-
placed with others as long as they provide equivalent functionality.
For example, other OCL engines can be used instead of the one pro-
vided by Eclipse. Also, the CompareMerge Engine can be replaced
with other model comparison tools.

Fig. 15. VIATool architecture overview.

Fig. 16. User interface for editing refinement TopDownGen.
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Furthermore, all the technologies we used and developed are
harmoniously integrated with a user’s modeling environment. All
of them and the modeling environment are based on EMF and it
is therefore easy to integrate them together. For the current imple-
mentation, we use IBM’s RSA as modeling environment, but our
approach is not necessary bound to any special software modeling
environment. The only issue we need to consider, when a different
modeling environment is used, is that the comparison engine—
which operates directly on user models—should be able to provide
the atomic changes made to the models developed in the new
modeling environment.

As we discussed in Section 3.3, even though our goal was to de-
fine a complete refinement taxonomy, it is expected that new
types of refinements will be uncovered on new case studies and
the taxonomy will consequently need to be refined over time.
Our tool is designed to accommodate such changes as users can
add their own refinements to the refinement repository by simply
creating an instance of the metamodel (corresponding to Fig. 2).
The EMF framework automatically generates a basic user interface
for the users to create and edit instances of refinements (see
Fig. 16).

As we discussed in Section 3, our methodology can be applied to
any UML diagram, and not only class diagrams, Though we only
provide the taxonomy for class diagram refinements in this paper,
our approach and tool architecture are designed to ensure that
other UML diagrams can be introduced in the future without any
major modifications. This is achieved by storing all the refinements
separately in the refinement repository and by ensuring that other
components of the tool do not depend on the types of diagrams.
For example, the tasks of obtaining atomic changes from the com-
parison engine or establishing traceability links are all diagram-
type independent.

We chose to store and maintain the established traceability
links independently from the user’s model. There are several ben-
efits in doing so. First we avoid cluttering the user’s model and ex-
pose all the traceability links, thus adding complexity to the user’s
modeling activities. Second this solution supports the evolution of
the traceability metamodel without requiring changes to other
parts of the framework. This may happen when additional infor-
mation must be captured along with the traceability links, for
example probabilities of impact. Since traceability information is
independent from the user’s model, VIA is performed based on
our traceability repository rather than on the user’s model. In some
cases, if a VIA strategy requires to access the model elements of the
user’s model, it can simply follow the traceability links which con-
tains references to the user’s model they relate.

6. Conclusion

UML models are, when used on typical commercial systems,
very complex artifacts. Model-driven development practices [25]
are iterative and rely on the stepwise refinement of analysis mod-
els into increasingly detailed design models, all the way down to
implementation. However, changes (e.g., requirements, architec-
ture) are typically taking place at the same time as model refine-
ments, thus leading to a complex change management problem.
How, under those conditions, can one ensure that models at differ-
ent levels of abstraction remain consistent, especially in a context
where changes and refinements are performed by different indi-
viduals in the context of large teams?

This paper proposes a methodology and automation strategy to
address the above problem. It is based on a careful classification of
changes and refinements (capturing the changes’ intent at a higher
level of abstraction than model element changes) in UML models
and an automated identification of refinements based on detected

changes. For each refinement, traceability links are then automat-
ically established and can then be used to control the impact of
changes in more abstract models on more refined models. We refer
to this process as Vertical Impact Analysis (VIA). This work comple-
ments and extends earlier work [6] on the impact analysis across
UML diagrams within the same model, referred to as Horizontal
Impact Analysis (HIA). Another contribution of this paper is of
methodological nature: we provide a way, which is based on meta-
modeling and constraints expressed in the Object Constraint Lan-
guage, to formally define change types, relate them to change
intents (refinements), and formally specify the derivation of trace-
ability links. This approach, while allowing for a rigorous and for-
mal specification, has the advantage of facilitating tool
automation (the metamodel and constraints are a starting point
for tool design), and is easier to implement using available, indus-
try-strength modeling technology such as Eclipse EMF [11].

A case study, based on a system developed independently from
this research, shows that for a non-trivial model refinement sce-
nario, our change taxonomies and refinement rules are complete
and correct. They can accommodate the transformation of an anal-
ysis model into a design model.

Future work includes further investigating VIA: change impact
mechanisms based on traceability links. We foresee that these
mechanisms will likely adapt and extend mechanisms already re-
ported for HIA (e.g., [6]). This paper is only a first step as it only ad-
dresses traceability analysis to support VIA for class diagrams.
More work is under way to extend the work to the complete set
of UML diagrams. Furthermore, we need to identify specific trace-
ability mechanisms for design pattern classes and perform addi-
tional cases studies.
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