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1 INTRODUCTION 

Managerial aspects of software development projects including planning, resource allocation, workforce 
training, etc. have a significant impact on their performance, i.e., duration, effort and the quality of the 
final product. However, these areas have not received enough attention by the software engineering 
research community and still most problems involving these issues are often dealt with relying on expert 
knowledge and intuition only.  

Empirical research is essential for developing theories of software development, transforming the art of 
software development into an engineering discipline and hence overcoming the aforementioned problem. 
However, empirical theories and knowledge require evidence of the efficiency and the effectiveness of 
the tools, techniques or practices in various application contexts.  

Controlled experiments and surveys are methods commonly used for empirical research, however, they 
are costly. Hence, support for making decisions on which experiments and case studies are more 
worthwhile to spend effort and time on, would be helpful. GENSIM 2.0 [1] is a customizable and reusable 
software development process simulation model developed to address this issue. Inspired by the idea of 
frameworks in software systems, GENSIM 2.0 consists of a small set of generic reusable components 
which can be composed to model a wide range of different software development processes.  

These components capture key attributes of the entities involved in different building blocks of the 
development processes affecting the project performance. What makes the model results interesting and 
hard to predict, are the numerous complex relationships and influences between attributes. The current 
implementation of GENSIM 2.0 simulates the well-known V-Model software development process. It 
consists of three development phases (requirements specification, design and code), each consisting of a 
document development activity and a verification activity (e.g. Inspection) carried out on the developed 
artifacts (requirements specification, design, code), and three validation activities (unit, integration and 
system test). 

GENSIM 2.0 has many parameters. Parameters can represent model inputs, outputs, or they are used to 
calibrate the model to expert knowledge and empirical data specific to an organization, process, 
technique or tool. Input parameters represent project specific information such as estimated product 
sizes, developer skills and project policies. Project policies may, for example, define how verification and 
validation activities should be combined, or whether design artifacts should be reworked if defects 
originating in the design phase are only detected in the code by subsequent verification and validation 
activities. Calibration parameters represent organization specific information that typically is retrieved 
from measurement programs and empirical studies. Input and calibration parameters are similar in the 
sense that they both remain constant during simulation time. Output parameters represent values that are 
calculated by the simulation engine .   

Besides their usage in the simulation model, i.e., input, calibration and output, GENSIM 2.0 parameters 
can also be categorized according to the entity which they represent an attribute of, i.e., process, product, 
resource and project. Additionally, they can be classified according to the view they are associated with. 
Which type of view, i.e., product, defect, resource or state flow view, a parameter is associated with 
depends on the primary effect of the attribute it represents. A complete description of all parameters and 
their defining equations can be found in [1]. 

Model calibration refers to the adjustment of the simulation model calibration parameters until, for a 
certain input, the model’s generated output matches a dataset observed in a real-world environment. 
Software process simulation model calibration can be done based on expert estimates or through 
parameter fitting based on historic data collected from organization-specific or public repositories. In 
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cases when such data is not available, calibration can also be done using data published in the software 
engineering literature, which is in fact a mix of different sources. For the current version of GENSIM 2.0, 
data published in the literature was used. Calibration is an important step in the development of 
simulation models and is intended to ensure sound behavior of the model. Calibration is also required to 
build confidence in the simulation results. 

GENSIM 2.0 is designed to be reused, customized and applied to tackle emerging software development 
related problems of any kind. This technical report is not only intended to show the current calibration 
values of GENSIM 2.0, but also to elaborate more on its calibration parameters themselves which in turn 
allows for easy re-calibration of the model. The rest of this technical report is structured as follows: 
Sections 2 discusses the previous works in the area of simulation model calibration. Section 3 presents 
GENSIM 2.0 calibration parameters with details. Section 4 discusses sources that can potentially be used 
to calibrate GENSIM 2.0 and similar models. Section 5 illustrates the values currently used for calibration 
of GENSIM 2.0. Finally, section 6 discusses conclusions of the presented material and suggests future 
steps.  

2 RELATED WORK 

The calibration of SD (System Dynamics) models and the associated difficulties have been discussed in 
the literature for many years. The approach used for calibrating GENSIM 2.0 can be characterized as 
calibration “by hand”. Calibration “by hand” is an iterative process in which the modeler “examines 
differences between simulated output and data, identifies possible reasons for those differences, adjusts 
model parameters in an effort to correct the discrepancy, and re-simulates the model, looping back to the 
first step.” [2]. A discussion of the problems associated with this approach, i.e., limited reliability of the 
calibration process which strongly relies on the expertise of the modeler, can be found in [2]. The 
alternative to calibration “by hand” is automated calibration. Automated calibration, while improving 
reliability, is not an easy endeavor either. A thorough discussion of the problems associated with 
automatic calibration of SD models, and ways to mitigate these problems, can be found in [3]. 

In [4], the authors argue that in order to truly realize the benefits of the use of software process simulation 
models, i.e., as virtual software engineering laboratories, process simulation has to be combined with 
empirical studies. They propose that this combination should be done in such a ways that firstly, 
empirical knowledge is used for development and calibration of simulation models and secondly, results 
from process simulation are used for supporting real experiments. They provide guidelines on how to 
achieve these objectives as well. The idea of combining simulation models with empirical studies is not 
limited to [4]. Pervious studies such as [5] had proposed the combination of process simulation models 
and empirical data in support of decision analysis in software development. In [5] the authors argue that 
since for decision-making, in practice, there is a need to apply the available empirical knowledge, 
expensive empirical work should be systematically extended with simulation to fill the gaps in the 
variable space of the decision-making context. 

[6] is an example of the studies that used the concepts provided in [5] for developing and calibrating a 
simulator in support of decision-making for planning the effort to be allocated to inspections in different 
software engineering development phases. In [6], the authors elaborate on how isolated pieces of 
empirical data could be combined and used for developing and calibrating simulation models, in order to 
provide project managers with comprehensive data that allows meaningful comparison of different 
process alternatives. The approach taken in the study represented in this technical report is no different 
from the work discussed above from a methodological point of view. The only difference is that the use 
of empirical data in calibrating the model is explained for the entire set of model parameters which 
enables easier re-calibration and extended experimentation with the model as suggested in [4]. 
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3 GENSIM 2.0 CALIBRATION PARAMETERS 

GENSIM 2.0 parameters including its calibration parameters can be classified in different ways [1]. 
Besides their usage in the simulation model, i.e., input, calibration and output, the GENSIM 2.0 
parameters can also be categorized according to the entity which they represent an attribute of. In 
GENSIM 2.0 it is assumed that parameters can represent attributes of four different entity types namely 
process, product, resource and project. Attributes of the process category define the structure of the 
development process or the specifics of how different activities are carried out. Attributes of the product 
category define the specifics of the software product that is being developed. Attributes of the resource 
category capture the specifics of the available resources for the project including tools/techniques and the 
workforce. Finally, attributes of the project mostly capture the software development context and 
managerial policies.  

GENSIM 2.0 parameters can also be classified according to the view that they are associated with. In 
order to capture the main dimensions of project performance, i.e., project duration, project effort, and 
product quality, and to explicitly represent the states of activities, GENSIM 2.0 is implemented in 
separate views as follows:  

1. Product Flow View models the specifics of how software artifacts are sent back and forth during and 
between different activities of the development project. 

2. Defect Flow View models the specifics of how defects are moved around (generated, propagated, 
detected and corrected) as different software artifacts are processed  

3. Resource Flow View models the specifics of how different resources (workforce, techniques/tools) 
are allocated to different activities of the development project. 

4. State Flow View models the specifics of how the states of different entities as explained in Section 4.1 
change during the development project.  

Which type of view, i.e., product, defect, resource or state flow a parameter is associated with depends on 
the primary effect of the attribute it represents.  For example, Required skill level for code dev is an input 
parameter representing a managerial policy that primarily affects the resource flow of the code 
development activity. For a more detailed description of GENSIM 2.0 parameters, their classifications and 
the views refer to [1]. In the following we exclusively discuss the calibration parameters. 

Since all three development phases of GENSIM 2.0 are modeled using one single pattern (see [1] for 
details), corresponding sets of parameters (including calibration parameters) have been defined for each 
development phase. To give an example, in the code phase model, the parameter Code ver effectiveness is 
used to represent the effectiveness of the code verification technique in detecting defects of the code 
artifacts. Meanwhile, the parameter Design ver effectiveness is defined in the design phase model to specify 
the effectiveness of the design verification technique with regards to detecting defects of the design 
artifacts. The same rule applies for the group of parameters used in modeling different validation phases. 
Table 1 and Table 2 list and describe the calibration parameters used in modeling the code development 
and system test phases of GENSIM 2.0, respectively. As mentioned, corresponding tables could be 
defined for other development or validation phases. 
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Table 1: Calibration parameters of the code development phase 

 Parameter Name Unit Attribute View Description 

1 Code rework effort for code 
faults detected in CI 

PD/Defect Process C-D The amount of effort that should 
be spent for fixing a defect in the 
code artifacts if detected during 
code verification 

2 Code rework effort for code 
faults detected in UT 

PD/Defect Process C-D The amount of effort that should 
be spent for fixing a defect in the 
code artifacts if detected during 
unit test 

3 Code rework effort for code 
faults detected in IT 

PD/Defect Process C-D The amount of effort that should 
be spent for fixing a defect in the 
code artifacts if detected during 
integration test 

4 Code rework effort for code 
faults detected in ST 

PD/Defect Process C-D The amount of effort that should 
be spent for fixing a defect in the 
code artifacts if detected during 
system test 

5 Average design to code 
conversion factor 

KLOC/Page Product C-P The multiplier specifying how 
many kilo lines of code has to be 
developed per each page of the 
design artifacts.  

6 Average # of UT test cases per 
code size unit 

Test case/ 
KLOC 

Product C-P The number of test cases that has 
to be developed in order to unit 
test the code artifacts 

7 Average design to code fault 
multiplier 

N/A Product C-D The multiplier specifying how 
many faults will be committed in 
the code artifacts because of an 
undetected design defect.  

8 Maximum code ver. 
effectiveness 

N/A Resource C-D The effectiveness of the code 
verification technique with 
regards to defection of code 
defects if applied by an optimally 
skilled verifier 

9 Maximum code ver. rate per 
person per day 

KLOC/ 

Person-Day 

Resource C-P The amount of code artifacts that 
can be verified in one day by an 
optimally skilled verifier. 

10 Initial code dev. rate per 
person per day 

KLOC/ 

Person-Day 

Resource C-R The amount of code artifacts that 
can be developed (not reworked) 
in one day by one optimally 
skilled developer 

11 Minimum code fault 
injection rate per size unit 

Defect/KLOC Resource C-D The number of defects that an 
optimally skilled developers in a 
size unit of the code artifacts. 

CI = Code Inspection, UT = Unit Test, IT = Integration Test, ST = System Test 
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Table 2: Calibration parameters of the system test phases 

 Parameter Name Unit Attribute View Description 

1 Maximum ST effectiveness N/A Resource S-D The effectiveness of the system 
testing technique with regards to 
defection of code defects if 
applied by an optimally skilled 
tester 

2 Average  ST productivity per 
person per day 

KLOC/ 

Person-Day 

Resource S-P The amount of code artifacts that 
can be system tested (including 
test case development) in one 
day by a tester. Since the test case 
development and execution 
activities are considered together 
in this parameter, It is assumed 
that the skill level of the testers 
does not have any effect on this 
rate. 

3 Maximum # of ST test cases 
developed per person per 
day 

Test case/ 

Person-Day 

Resource S-P The number of system test cases 
that can be developed in one day 
by an optimally skilled tester. 

4 Average # of ST test cases 
executed per person per day 

Test case/ 

Person-Day 

Resource S-P The number of system test cases 
that can be executed in one day 
by a tester. It is assumed that the 
skill level of the testers does not 
have any effect on the test case 
execution rate. 

4 SOURCES OF CALIBRATION 

Many different sources could potentially be used for calibration of software process simulation models, 
expert estimates are one of them. In [7] the authors discuss how expert knowledge and data from project 
data bases was used to develop and calibrate PSIM, a software process simulation model developed in 
order to show the usefulness of SD modeling in tackling software project management issues in a 
development department of Siemens. Despite being a good source in many situations, expert knowledge 
is considered to be subjective and is often complemented with real-world empirical data collected 
through measurement programs. Whenever simulation models are developed for specific purposes 
within specific organizations, this data could be gathered from different repositories within the 
organization. These repositories often contain data collected from many different projects carried out in 
the organization and are specific to its environment. 

Whenever, expert knowledge or organization-specific data is not available or not applicable due to their 
relevance only in a specific context, online repositories (such as [8], [9] and [10] ) which often contain 
cross-organizational data could be used to collect the necessary information for calibration of simulation 
models. The Software Information Repository [8], is maintained by an online community. Its members 
contribute and exchange information and data regarding process improvement activities around the 
world in order to build a knowledge base of this information which can be used by any interested 
individual. The PROMISE Software Engineering Repository presented in [9] is a collection of datasets and 
tools is made publicly available to support researchers in building predictive software models. The 
Software-artifact Infrastructure Repository presented in [10] has been designed and constructed in 



University of Calgary, Technical Report, SERG-2007-08 
Simula Research Laboratory, Technical Report, Simula TR 2008-02 

Updated: June 19, 2008 

 

 8 

support of controlled experimentation with software testing techniques. It contains many Java and C 
software systems, in multiple versions, along with their supporting artifacts such as test suites, fault data, 
scripts and manuals on how to experiment with the provided material. Results obtained from 
experimentation with the provided systems could be used to obtain estimates of different calibration 
parameters used in simulation models. 

Another source of data that can be used for calibration of software process simulation models is the 
software engineering literature. The software engineering literature now contains many publications 
reporting data collected from different kinds of sources. Some of these publications such as [11] report 
data collected from an experiment carried out with groups of students or professionals. In [11] an 
experiment is carried out with one group of 42 advanced students and another group of 32 professionals 
to compare the effectiveness of three different testing strategies. Another group of these publications are 
the ones that report coarse-grained data gathered from real-world projects in industrial settings and 
mostly discuss the lessons learnt and the experiences. [12], is an example of these publications. In [12], the 
authors present high-level information regarding couples of projects in Motorola and discuss how CMM 
[13] helped them to improve the performance of their projects. The last group of publications comprises 
the results from surveys carried out on the existing literature itself. In [14] and [15] for example the 
authors have gathered and compared data reported in many other existing publications. For the current 
version of GENSIM 2.0 the SE literature has been chosen as the source for calibration.  

5 CURRENT PARAMETER CALIBRATION OF GENSIM 2.0 

In this section current values of GENSIM 2.0 calibration parameters together with how and from what 
source they were obtained are presented. The next section discusses the calibration of the development 
phases (requirements specification, design and code) and after that calibration of the validation phases 
are explained. 

5.1 CALIBRATION OF THE DEVELOPMENT PHASES 

This subsection describes how and from which sources calibration parameters used in the simulation 
modeling of the development phases of GENSIM 2.0 were calibrated for its current version. To make the 
understanding of the overall material easier, the parameters are divided into different groups and then 
the calibration is presented for each group. 

Initial development parameters: These parameters specify the productivity of the developers in 
developing software artifacts for the first time. For example, Initial code dev. rate per person per day specifies the 
speed with which the developers develop software code artifacts for the first time. Three parameters in 
the model belong to this category as shown in Table 3. To calibrate these parameters, the COCOMO ΙΙ 
[16] post architecture model was used. COCOMO ΙΙ is a model that generates estimations of the cost, 
effort, and schedule of a new software development activity across 4 life-cycle phases of software 
development, i.e., Plans and Requirements, Product Design, Programming and Integration and test. 
Additionally, within each life-cycle phase, it provides effort and time estimations for 8 different activities, 
i.e., Requirements Analysis, Product Design, Programming, Test Planning, Verification and Validation, 
Project Office, CM/QA and manuals.  

In order to calculate the initial development parameters, specifications of a hypothetical system was 
inputted into the COCOMO ΙΙ model and the estimations were generated. Following explains the details 
on how the Initial code dev. rate per person per day parameter was calculated:  
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1. The effort spent on the programming activity during the plans and requirements, product design and 
programming phases were summed up to obtain E . The schedule time spent on the programming 
activities of the three aforementioned phases were also summed up to obtain S . 

2. The resultant effort ( E ) was divided by the resultant schedule time ( S ) to obtain the average 
number of developers allocated for the programming activity ( D ) during S . 

3. It was assumed that S  includes the time spent for the initial code development activity, rework due 
to faults detected in the code verification activity and rework due to defects detected in the unit test 
activity. Since, as explained in [1], the effect of learning is incremented by 1 every time an artifact is 
processed (developed, reworked or verified), the learning effect is 2 right after it is verified 
completely for the first time and is 3 after it is completely reworked due the faults detected during 
verification. Hence, it is assumed as an approximation that the effect of learning equals an average of 
2.5 during the period that it is reworked due to faults detected in code verification. As a result, 
rework due to code faults detected in the code verification activity is 2.5 times faster than the initial 
development. For the same reason, rework due to defects detected in unit testing is assumed to be 3.5 
times faster than the initial development. 

4. With the above assumptions, solving the equation below for x will determine the overall schedule 
time spent on the initial code development activity (T ). 

xxxS )5.3/1()5.2/1( ++=  

5. Having calculated T , the productivity of each of the developers in the initial code artifact 
development activity could be obtained using the following formula assuming the size of the code 
artifacts: 

TD
artifactscodetheofSizep

×
=  

Corresponding calculations were applied to calculate the Initial design dev. rate per person per day and the Initial requ 
spec dev. rate per person per day parameters. In the hypothetical system specified for the current calibration of 
GENSIM 2.0, the size of the requirements specification artifact was assumed to be 50 pages. Considering 
the conversion factor between the requirements specification and the design artifacts, size of the overall 
design artifacts is calculated as 1550 pages by the simulation model. To calculate the size of the module 
code artifacts, their average size is calculated initially using the conversion factor between the design and 
code artifacts. After calculating the average module code size, in order to avoid having the same size for 
all the modules, their average size is multiplied by a uniformly generated random number between 0.5 
and 1.5. With these calculations, the size of the overall system is calculated as 307.15 KLOC. 

Table 3: Calibration values of the initial development parameters 

Parameter Name Unit  Value 

Initial requ. dev. rate per person per day Page/Person-Day 0.07 

Initial design dev. rate per person per day Page/Person-Day 0.829 

Initial code dev. rate per person per day KLOC/Person-Day 0.048 

Correction effort parameters: These parameters specify the amount of effort that needs to be spent for 
correcting the detected defects. The values of these parameters depend greatly on the time of the 
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detection of the defect. For the code artifacts, to capture this difference, four distinct parameters where 
specified in GENSIM 2.0 as shown in the first four rows of Table 4. To calculate values of these four 
parameters two different sources were used ([14] and [17]). In [14], the author presents averages of many 
reported values in the literature for each of these four parameters as absolute numbers. In [17] the author 
presents these values as relative numbers. He claims that if the cost of fixing a defect if detected during 
the implementation is 1, then the cost of fixing it if detected during integration test is 2.5 and if detected 
during system test is 13. For the defects detected during code verification and unit test, values reported in 
[14] were used. For the defects detected in integration test and system test, we assumed that in [17], by 
defects detected during implementation, the author means, the defects detected during unit test. Hence, 
the value reported in [14] for the defects detected during unit test, was multiplied by 2.5 and 13 to 
calculate the parameters for integration and system test respectively.  

For the requirements specification and design artifacts, since no data was found regarding the difference 
of the correction effort of the detected defects depending on the time of detection, the values reported in 
[14] were used to specify the amount of the effort required for correction of the defects of these artifacts 
regardless of the time of detection.  

Table 4: Calibration values of the correction effort parameters 

Parameter Name Unit  Value 

Code rework effort for code faults detected in CI Person-Day/Defect 0.3387 

Code rework effort for code faults detected in UT Person-Day/Defect 0.4325 

Code rework effort for code faults detected in IT Person-Day/Defect 1.0815 

Code rework effort for code faults detected in ST Person-Day/Defect 5.6225 

Design rework effort per fault Person-Day/Defect 0.29 

Requ. spec. rework effort per fault Person-Day/Defect 0.125 

Artifact Conversion Parameters:  These parameters including Average requ. spec. to design conversion factor 
and Average design to code conversion factor, determine the relationship between the sizes of the artifacts 
developed in up-stream phases and the sizes of the artifacts developed in the down-stream phases. These 
parameters should be calibrated by collecting information from multiple projects for a certain context. 
Since no such data was found published in the software engineering literature, for the current calibration 
of GENSIM 2.0, these values where assumed hypothetically as shown in Table 5. 

Table 5: Calibration values of the artifact conversion parameters 

Parameter Name Unit  Value 

Average requ. spec. to design conversion factor Page/Page 31 

Average design to code conversion factor KLOC/Page 0.2 

Fault Conversion Parameters: These parameters determine the number of faults that an undetected 
defect in the artifacts of an up-stream phase causes in the artifacts of the down-stream phase. Similar to 
artifact conversion parameters, these parameters should be calibrated using information collected from 
multiple projects for a certain context. Since no such data was found published in the software 
engineering literature, for the current calibration of GENSIM 2.0, these values where assumed 
hypothetically as shown in Table 6.   
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Table 6: Calibration values of the fault conversion parameters 

Parameter Name Unit  Value 

Average requ. spec. to design fault multiplier N/A 3 

Average design to code fault multiplier N/A 3 

Verification Rate Parameters: These parameters determine the speed with which the verification 
activities are carried out. For calibration of these parameters the values presented in [14] were used as 
shown in Table 7. 

Table 7: Calibration values of verification rates 

Parameter Name Unit  Value 

Maximum requ. spec. ver. rate per person per day Page/Person-Day 8 

Maximum design ver. rate per person per day Page/Person-Day 30 

Maximum code ver. rate per person per day KLOC/Person-Day 0.6 

Defect Injection Parameters: In GENSIM 2.0, defects in artifacts are caused by two different sources, 
firstly, the defects propagated from the up-stream phases and, secondly, the faults that the developers 
commit themselves. Defect injection parameters determine the rate with which the developers themselves 
inject defects in the artifacts. These parameters were calibrated using a Defect Containment Matrix [18]. A 
Defect Containment Matrix maps the phase in which a defect originated to the phase in which the defect 
was detected. For the current calibration of GENSIM 2.0, a hypothetical matrix, as illustrated in Table 8, 
was assumed and the injection rates were calculated according to this matrix. Rows represent the phases 
in which the defects are detected. Columns represent the origin of the detected defects. For example, it 
can be seen that a total number of 2736 design defects were detected in the design phase, 1181 of which 
were originated in the requirements phase, i.e., were injected in the design artifacts due to undetected 
requirements specification defects. 

Table 8: Hypothetical Defect Containment Matrix 

 Stage Originated 

Stage Detected Requirements Design Code UT IT ST Field Total 

Requirements 1515       1515 

Design 1181 1555      2736 

Code 402 912 2421     3735 

Unit test 200 420 1525 37    2182 

Integration test 191 223 370 7 1   792 

System test 89 114 114 5 0 10  332 

Field 5 8 23 0 0 0 0 36 

Total 3583 3232 4453 49 1 10 0 11328 
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Using Table 8 we calculate the total number of defects that the developers have injected in different 
artifacts, i.e., requirements specification, design and code. In the following the calculation process is 
explained for the requirements specification artifact:  

1. The number of requirements specifications defects that were detected in the design phase is 
calculated. From Table 8 it can be seen that 1181 design defects were detected in the design phase that 
originate in the requirement specification phase. Considering the fault multiplier between the 
requirements specification defects and the design defects (Average requ. spec. to design fault multiplier) 
which is assumed to be 3, it results that 394, i.e., 1181 divided by 3 requirements specification defects 
have been detected in the design phase. 

2. The above calculation is done for the code defects that were found in the code phase and originated 
in the requirements specification phase. However, in this step, the applied fault multiplier is 9 
because every requirements specification causes 3 design defects and every design defect causes 3 
code defects. Hence, 45 (402 divided by 9) requirements specification defects were detected during 
the code phase. 

3. The previous step with the same fault multiplier is carried out for the unit test, integration test, 
system test and the field phases. 

4. The numbers of the requirements specification defects from all the previous steps are summed up 
together with the number of the requirements specification defects detected during the requirements 
specification phase itself to give us the total number of defects that the developers have injected in the 
requirements specification artifact.   

A process corresponding to the above is followed for the design and code artifacts. The results of these 
calculations are shown in Table 9. 

Table 9: Total number of defects injected in different artifacts 

Artifact Unit  Value 

Requirements Specification Defect 2007=1515+394+45+22+21+10 

Design Defect 2114=1555+304+140+74+38+3 

Code Defect 4453=2421+1525+370+114+23 

Having the total number of defects that the developers have injected in different artifacts, the defect 
injection rates could be calculated by dividing the total number of defects injected in the artifacts by their 
size. The results of the calculations are shown in Table 10. The sizes of the artifacts were assumed as 
explained in the calibration of the initial development parameters. 

Table 10: Calibration values of defect injection parameters 

Parameter Name Unit  Value 

Minimum requ. spec. fault injection rate per size unit Defect/Page 40.14 

Minimum design fault injection rate per size unit Defect/Page 1.362 

Minimum code fault injection rate per size unit Defect/KLOC 14.52 
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Verification Effectiveness Parameters: These parameters specify the effectiveness of the artifact 
verification techniques with regards to defect detection. Effectiveness is expressed as the percentage of 
the artifact defects that are detected by the artifact verification technique. There exist many sources that 
can be used for calibration of these parameters in the software engineering literature, e.g., [14] and [15]. 
However, for the current calibration of GENSIM 2.0, we used the Defect Containment Matrix shown in 
Table 8 and the total number of defects injected in different artifacts shown in Table 9. In the following, 
the calibration is presented for the design verification technique.  

To calculate the effectiveness of the design verification technique, we have to consider both the total 
number of defects that are injected in the design artifacts due to developer errors and the number of 
defects injected due to undetected requirements specification defects. Comparing Table 8 and Table 9, it 
can be seen that 492 (2007 minus 1515) requirements specifications defects propagate to the design 
phases. Considering the fault multiplier between requirements specification and design defects, it is 
concluded that 1477 (492 multiplied by 3) defects are injected in the design artifacts due to undetected 
requirements specification defects. Adding these 1477 defects to the 2114 design defects that are injected 
due to developer errors determines that 3591 defects have been injected in the design artifacts. According 
to Table 8, 2736 of these defects are detected in the design phase. Hence the effectiveness of the design 
verification technique is calculated as 0.76 (2736 divided 3591). A corresponding process is carried out for 
the requirements specification and code verification technique and the results are presented in Table 11. 

Table 11: Calibration values of verification effectiveness parameters 

Parameter Name Unit  Value 

Maximum requ. spec. ver. effectiveness N/A 0.75 

Maximum design ver. effectiveness N/A 0.76 

Maximum code ver. effectiveness N/A 0.53 

Number of Test Cases Parameters: These parameters such as Average # of UT test cases per code size unit 
specify the number of test cases that is required to test the developed artifacts. Since no source for 
calibrating these parameters was found in the literature, no values have been assigned to these variables 
for the current calibration of GENSIM 2.0. Refer to [1] for explanation on how the model works when test 
case data is not available. 

5.2 CALIBRATION OF VALIDATION PHASES 

This subsection describes how and from which sources calibration parameters used in the simulation 
modeling of the validation phases of GENSIM 2.0 were calibrated for its current version. To make the 
understanding of the overall material easier, the parameters are divided into different groups and then 
the calibration is presented for each group. 

Validation Rate Parameters: These parameters specify the speed with which the testers test the artifacts. 
For calibration of these parameters the values represented in [14] as shown in Table 12 were used. 
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Table 12: Calibration values of the validation rate parameters 

Parameter Name Unit  Value 

Average UT productivity per person per day KLOC/Person-Day 0.3093 

Average IT productivity per person per day KLOC/Person-Day 0.1856 

Average ST productivity per person per day KLOC/Person-Day 0.1546 

Validation Effectiveness Parameters: These parameters specify the effectiveness of the validation 
techniques with regards to defect detection. Similar to the verification effectiveness parameters, many 
sources are available in the software engineering literature to calibrate these parameters such as [14]. 
However, for the current calibration of GENSIM 2.0, similar to the verification effectiveness parameters, 
these parameters were calibrated using the Defect Containment Matrix shown in Table 8. Hence the 
effectiveness of each of these techniques was calculated by dividing the total number of code defects 
detected by the validation technique divided by the number of code defects propagated to the 
corresponding validation phase. The results of the calculations are shown in Table 13. 

Table 13: Calibration values of the validation effectiveness parameters 

Parameter Name Unit  Value 

Maximum UT effectiveness N/A 0.66 

Maximum IT effectiveness N/A 0.69 

Maximum ST effectiveness N/A 0.93 

Test case Development and Execution Rate Parameters: These parameters such as Average # of UT test 
cases developed per person per day specify the number of test cases that are developed or executed by one 
tester in one day. Since no source for calibrating these parameters was found in the literature, no values 
have been assigned to these variables for the current calibration of GENSIM 2.0. Refer to [1] for 
explanation on how the model works when test case data is not available. 

6 CONCLUSION 

This technical report elaborated on how GENSIM 2.0 is calibrated currently. GENSIM 2.0 is a software 
process simulation model that is intended to be reused, customized and applied to tackle emerging 
software engineering issues of any kind. One of the essential characteristics of a reusable simulation 
model is that it can be re-calibrated. That is why, besides showing the current values that are used for 
calibration of GENSIM 2.0, this report is also intended to be used as a guideline on how GENSIM 2.0 
could be re-calibrated. 

Future work regarding the calibration of GENSIM 2.0 includes further investigation of the software 
engineering literature to find more sources that could potentially be used for calibration of GENSIM 2.0 
and its re-calibration in order to add to the reliability of its generated estimations.  
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