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Abstract 

In the context of open source development or software 
evolution, developers often face test suites which have 
been developed with no apparent rationale and which may 
need to be augmented or refined to ensure sufficient 
dependability, or even reduced to meet tight deadlines. 
We refer to this process as the re-engineering of test 
suites. It is important to provide both methodological and 
tool support to help people understand the limitations of 
test suites and their possible redundancies, so as to be able 
to refine them in a cost effective manner. To address this 
problem in the case of black-box testing, we propose a 
methodology based on machine learning that has shown 
promising results on a case study. 

1 Introduction 

In the context of open source development, it is often 
the case that one is confronted with existing test suites 
that are based on no explicit rationale or specifications, 
other than general guidelines for exercising the main user 
functionalities for example (e.g., based on check lists 
[25]). For instance, open source software development 
projects have been shown to lack “attention to basic, 
accepted, and mature testing techniques [32].” In practice, 
software developers who intend to reuse open source code 
are commonly confronted with such ad hoc test suites. It 
is therefore important to evaluate them and possibly 
reduce or augment them, depending on whether they are 
deemed redundant or too weak to achieve a sufficient 
level of confidence. For instance, Zhao and Elbaum report 
that in a large proportion of open source software 
development projects, test suites achieve low source code 
coverage (e.g., 30%) [32]. Developers hence have an 
alternative: either build new test suites or reuse existing 
ones; and they often go for the latter as it (hopefully) 
reduces effort and therefore costs. This will inevitably 
lead them to understanding, evaluating and possibly 
improving these test suites. 

Similarly, in an evolution context, because of 
personnel turnover, the originator of the test suite may not 

be available and whoever is in charge of modifying and 
re-testing the software is confronted with understanding 
and evaluating existing test suites. Even in the context of 
regression testing, where one needs to select a subset and 
prioritize existing test cases, it is important to ensure that 
the original test suite is sufficiently complete and not 
redundant before selecting or prioritizing. 

We propose a partially automated methodology to help 
software engineers analyze the weaknesses of test suites 
and iteratively improve them. We refer to this process as 
the re-engineering of test suites as it is similar to what can 
be seen in re-engineering source code where code 
information is extracted, abstracted from a design 
standpoint, and then used to decide about design changes 
[11]. Similarly, our methodology is based on abstracting 
test suite information and then deciding about changes to 
the test suite. To transform test cases into test case 
specifications at a higher level of abstraction, we rely on a 
black-box test specification technique: Category-Partition 
[26]. Test cases are abstracted under the form of category 
and choice combinations, as defined in Category-
Partition. These choice combinations characterize a test 
case in terms of input and execution environment 
properties. A machine-learning algorithm is then used to 
learn about relationships between inputs/environment 
conditions and outputs as they are exercised by the test 
suite. This allows the tester to precisely understand the 
capabilities and weaknesses of the test suite. Based on a 
series of systematic heuristics to guide the analysis of 
those relationships, our methodology then facilitates the 
improvement of the test suite specification (Category-
Partition) and test cases. 

Section 2 provides some background. Our approach is 
described in Sections 3 and 4. A case study is discussed in 
Section 5. Related work is described in Section 6. 
Conclusions are drawn in Section 7. 

2 Background 

2.1 Using Category Partition 

To illustrate how the Category Partition (CP) [26] 
black-box testing method works, let us take the well-
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known and simple Triangle program example [21], which 
we will use as a working example to illustrate the 
concepts of our methodology. The test input values 
characterize the length of triangle sides (a,b,c) and its 
output determines whether these sides correspond to an 
equilateral, isosceles, or irregular triangle. In addition, the 
program may determine that the sides cannot correspond 
to a triangle (based on checking certain inequalities) or 
that the side values are illegal (below or equal to zero). 
CP requires that we identify properties of the triangle 
sides that will affect its behavior and possibly its output. 
The motivation is to ensure that the behavior of the 
software under test is fully exercised. In our Triangle 
example, these properties may correspond to Boolean 
expressions stating relationships between sides, e.g., how 
a compares to b and c. These properties are called 
“categories” and are associated with “choices”. For 
example, taking the “a compares to b and c” category, 
choices could correspond to the two mutually exclusive 
situations where a<=b+c and a>b+c. In addition, though 
we do not make use of them in our approach, CP requires 
that “properties” and “selectors” be defined to model 
interdependencies between choices and thus be used to 
automatically identify impossible combinations of choices 
across categories [26]. The complete application of CP to 
the Triangle program is available in [6]. 

In addition to categories and choices describing input 
parameters of the program, CP requires the identification 
of categories and choices for environment conditions, i.e., 
conditions of the environment of the program that may 
affect its behavior (e.g., contents of a database, state of 
external systems, load of the processor or network). CP 
can therefore help characterize functional as well as non-
functional behavior, targeting functional testing, 
performance testing, and robustness testing. 

In our context, once categories and choices are 
defined, we use them to automatically transform test cases 
into “abstract” test cases. These can be seen as tuples of 
choices associated with an output equivalence class. In 
our example, test case (a=2,b=3,c=3) could be abstracted 
into a tuple such as (a<=b+c, b=c, isosceles): the first 
choice is the one discussed earlier, for category “how a 
compares to b and c”, the second choice belongs to 
another category, and the expected output value is 
isosceles. Note that tuples would in reality contain pairs 
of the form (category, choice) and output equivalence 
classes instead of simply choices and output values. In 
this paper, we only show choices for the sake of brevity. 
Furthermore, simply using output values is usually only 
applicable in simple cases such as the Triangle example. 
Even in this case, examples of output equivalent classes 
could be: (IsTriangle, NotTriangle), the first equivalence 
class including the following values: Isosceles, 
Equilateral, Irregular. The selection of an appropriate 
level of granularity for output equivalence classes will be 
the tester’s decision and will depend on the behavioral 

complexity of the program and the number of test cases 
that can be run as, the finer the granularity, the larger the 
number of test cases generated by our approach. 

Notice that tuples typically involve many choices as 
every existing choice condition that applies to a test case 
is used when creating the corresponding abstract test case. 
For example, test case (a=2,b=3,c=3) could be abstracted 
into a tuple such as (a<=b+c, b=c, a>=0, b>=0, c>=0, 
isosceles), where the last three choices belong to three 
different categories, each one defining the property of a 
triangle side as being either strictly negative or not. Last, 
it may happen that none of the choices defined for a 
specific category can be used when creating an abstract 
test case1. In such a situation, we add a “not applicable” 
(or N/A) choice to the category and use this pseudo 
choice in the tuple. For example, assume a program 
manipulates a string of characters and its behavior 
depends on whether the string contains only numbers or 
only letters (the behavior would furthermore depend on 
whether the string contains capital letters or not). Then 
one would define (at least) a category Cat1 with two 
choices (C1 and C2, respectively) for the two different 
types of strings, and a category Cat2 for strings 
containing letters with two choices (C3 and C4, 
respectively) specifying whether the string contains 
capital letters or not. Suppose that we want to create the 
abstract test case for a test case where the input parameter 
contains only numbers. Choice C1 would be used in the 
tuple but none of the choices of Cat2 are applicable. We 
then define a N/A choice for Cat2 and use it in the tuple. 

Our main reason to transform the test suite into an 
abstract test suite is that it will be much easier, as 
described next, for the machine learning algorithm to 
learn relationships between input properties and output 
equivalence classes. Devising such categories and choices 
is anyway necessary to understand the rationale behind 
test cases and is a way for the tester to formalize her 
understanding of the functional specifications of the 
software under test. This is a necessary exercise, as 
discussed above, both in a context of software evolution 
or reuse of open source software: if one needs to evolve a 
test suite one has to first make the effort to understand the 
system (possibly its source code) and the test suite. Note 
that the initial categories and choices defined by the tester 
do not have to be perfect as our methodology will help 
identify problems in their definitions. 

2.2 C4.5 Decision Trees (DT) 

There are a large number of machine learning and data 
mining techniques [31]. They differ widely in terms of 
                                                                          
1 This is typically the case when choices cannot be combined across 

categories, or when categories are not applicable. Such a situation 
would be specified with “properties” and “selectors” if we were 
applying CP for the purpose of generating test cases, instead of using 
CP to characterize existing test cases. 
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their basic principles, their working assumptions, and 
their weaknesses and strengths. None of the techniques is 
inherently better than the other and which one is most 
appropriate tends to be context dependent. Some of these 
techniques focus on classification, which is the problem at 
hand in this paper as we want to learn about the 
relationship between input and environment properties 
(categories and choices), and output equivalence classes. 

A specific category of machine learning techniques 
generates classification rules [31] which are easily 
amenable to interpretation: e.g., the C4.5 decision tree 
algorithm [29] (where the paths from the root node of the 
tree to any leaf can be considered a rule), the Ripper rule 
induction algorithm [9]. In our context, the rules would 
look like properties on test inputs, i.e., combinations of 
pairs (category, choice), being associated with output 
equivalence classes. The main advantage of these 
techniques is the interpretability of their models: certain 
conditions imply a certain output equivalence class. 

Some techniques, like C4.5, partition the data set (e.g., 
the set of test cases) in a stepwise manner using complex 
algorithms and heuristics to avoid overfitting the data 
with the goal of generating models that are as simple as 
possible. Others, like Ripper, are so-called covering 
algorithms that generate rules in a stepwise manner, 
removing observations that are “covered” by the rule at 
each step so that the next step works on a reduced set of 
observations. With coverage algorithms, rules are 
interdependent in the sense that they form a “decision 
list” where rules are supposed to be applicable in the 
order they were generated. Because this makes their 
interpretation more difficult, we will use a classification 
tree algorithm, namely C4.5, and use the WEKA tool [31] 
to build and assess the trees. 

For the Triangle problem, and based on an abstract test 
suite, a rule generated by the C4.5 algorithm in the 
context of the WEKA tool could look like: 
1 (a vs. b) = a!=b 
2 |  (c vs. a+b) = c<=a+b 
3 |  |  (a vs. b+c) = a<=b+c 
4 |  |  |  (b vs. a+c) = b<=a+c 
5 |  |  |  |  (b vs. c) = b=c 
6 |  |  |  |  |  (a) = a>0: Isosceles (22.0) 

This should be read as follows: if a is different from b 
(category “a vs. b” and choice “a!=b”—line 1), c is 
below or equal to a+b (category “c vs. a+b” and choice 
“c<=a+b”), a is below or equal to b+c (line 3), b is below 
or equal to a+c, b=c, and a>0, then the triangle is 
Isosceles (line 6). This rule is based on 22 instances (line 
6), that is in our context 22 abstract test cases. 

We need to create abstract test cases from concrete 
(raw) test cases since using raw data will likely generate 
incorrect and possibly meaningless decision trees. Since 
the raw data does not contain any explicit information on 
high-level properties (e.g., categories and choices), it is 
impossible for an inductive machine learning algorithm to 
learn which properties are of interest, as it can only relate 

values of the parameters instead of relevant properties of 
those parameters. To facilitate the learning process, 
further guidance needs to be provided to the learning 
algorithm to generate a meaningful tree. As an example, 
let us use the Triangle program to illustrate this. 
Executing C4.5 on the raw test cases for the Triangle 
program, we obtain a decision tree containing the rule 
below (among a total of 6 rules): contrary to the rule 
discussed previously, this rule shows parameter names 
instead of categories and choices. The rule, which 
indicates that if c>1, b>1, and a>3 then the triangle is 
isosceles, is incorrect since other conditions should hold 
to have an isosceles triangle. It simply happens that in this 
test suite, each time those conditions hold, the triangle is 
isosceles. 

(c) > 1 
|   (b) > 1 
|   |   (a) > 3: Isosceles  

3 OVERVIEW 

Figure 1 provides an overview of the steps involved in 
the MELBA (MachinE Learning based refinement of 
BlAck-box test specification) methodology we will 
describe in detail in the next section. The inputs of the 
methodology are the test suite to be re-engineered and a 
test specification. 

3.1 An Iterative Process 

We do not make any specific assumption regarding the 
contents of a test case and the software unit under test 
(SUT), other than the feasibility of transforming test cases 
into abstract test cases given pre-defined categories and 
choices. In particular, we do not assume that the test suite 
has been originally derived according to the Category-
Partition method. Though the test specification, used to 
characterize existing test cases, is assumed in this paper to 
follow the category-partition [26] (CP) strategy, future 
work will investigate how our methodology could be 
tailored to other black-box strategies. It is worth 
mentioning that, as other black-box test techniques, the 
complexity of testing depends on the behavioral specifica-
tion of the SUT, not necessarily its source code size. 

In practice, the test specification may or may not exist 
to start with, especially if no black-box strategy was used 
to identify the test cases. In the latter case, which is likely 

(4) Update Test Suite

(5) Update Category-Partition

Abstract Test Suite (ATS)

Decision Tree (DT)
Test Suite

(3) Analysis of 
DT

(2) C4.5 Decision Tree

Category 
Partition

(1) Generate Abstract 
Test Suite

Automated activity Partially automated activity Manual activity (with heuristic support)

Figure 1 The MELBA Methodology 
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to be the most common situation, the test specification has 
to be either reverse-engineered or created from high-level 
specification (likely plain language). Furthermore, the 
output domain has to be divided into equivalence classes. 
The level of granularity of this partition of the output 
domain is a decision of the tester. Increased granularity 
will result into increased testing effort but will 
characterize the SUT behavior in a more precise way. 

As the input domain is modeled using CP categories 
and choices (Section 2.1) the test suite is then transformed 
into an abstract test suite (Activity 1 in Figure 1). An 
abstract test case shows an output equivalence class and 
pairs (category, choice) that characterize its inputs and 
environment parameters (e.g., execution configuration), 
instead of raw inputs. Once an abstract test suite is 
available, a machine learning algorithm (C4.5) is used to 
learn rules that relate pairs (category, choice), modeling 
input properties, to output equivalence classes (Activity 
2). An example of such rule was discussed in Section 2.2. 

These rules are in turn analyzed (Activity 3) to 
determine potential problems that may indicate 
redundancy among test cases and the need for additional 
test cases (Activity 4). Those rules may also indicate that 
the CP specification needs to be improved, e.g., an 
important category is missing or certain choices are ill-
defined (Activity 5). In the next section, we will detail a 
number of heuristics that can be used to automatically 
analyze the C4.5 rules and investigate ways to improve 
test suites and CP specifications. 

The improvement process in Figure 1 is iterative as 
improvements to either the test suite or test specification 
can lead to the identification of new problems to be 
addressed. The learning algorithm will therefore be 
repeatedly executed (edges from Activities 4 and 5 to 
Activity 1, followed by Activity 2), which is not an issue 
as obtaining C4.5 decision trees for a few thousands of 
(abstract) test cases and a few dozen categories is quick 
(Section 3.2). The process stops when no more problems 
can be found in the rules learnt by the machine learning 
algorithm (Activity 3). 

One issue is the presence of faults and its impact on 
MELBA and C4.5. MELBA assumes that the initial test 
suite has been run, failures have been detected and the 
corresponding faults corrected. In short, the starting point 
of the iterative process is a possibly incomplete but 
passing set of test cases. However, as the test suite is 
augmented with new test cases, failures can arise and new 
faults can be detected. These faults must then be corrected 
and the new test cases must pass before re-running C4.5 
and obtain a new decision tree. Otherwise, since some of 
the outputs might be incorrect, this might lead to 
misclassifications in the tree which, though they would 
not necessarily prevent the use of MELBA, could make 
the decision tree analysis more complex. 

In the context of software evolution, changes and 
additions to the software naturally lead to changes to the 

test specifications and corresponding test suites. In that 
case, the decision tree is automatically rebuilt and the 
MELBA process is run again to refine the new and 
changed parts of the test specifications and test suite. 

3.2 Manual Effort and Automation 

Once the CP specification is defined, the 
transformation of test cases into abstract test cases is easy 
to automate. For instance, in our case study, using a CP 
specification of nine categories and 33 choices and a test 
suite of 221 test cases, it took a couple of seconds to 
create 221 abstract test cases. We also used this tech-
nology for a different purpose in [7] and with a larger 
problem: the Space program [28], for which we defined 
83 categories and 582 choices, and abstracted 13,585 test 
cases in less than a minute. In short, Activity 1 in Figure 1 
is automated and fast. 

Defining categories and choices, on the other hand, 
requires much thinking as one must identify them so that 
they determine the system behavior and therefore output 
equivalence classes. This requires an understanding of the 
system domain but is, on the other hand, what a tester 
would typically do anyway when trying to reengineer a 
test suite, for instance using CP or any other black-box 
test technique. Though this represents an up-front 
investment, there is no way one can reuse a test suite or 
modify a system with confidence without making an 
effort to understand the relationships between the inputs, 
environment conditions, and outputs of the system. 

Activity 2 is another automated step, for which we use 
the WEKA tool, which implements C4.5. For our case 
study, it took less than a second for WEKA to generate a 
decision tree. In the case of the larger Space problem 
mentioned above, it took eight seconds to generate a tree 
based on 13,585 abstract test cases. 

Activity 3 is partially automated. On the one hand, 
much information is automatically provided in the WEKA 
output: misclassifications, categories and choices used in 
learnt rules, number of instances (i.e., abstract test cases) 
involved in rules. This information is the source of our 
heuristics for problem identification (Section 4.1). The 
tester then has to identify the causes of those problems, a 
process that we support with guidelines (Section 4.2). 

Activities 4 and 5 are not automated at this point, as 
they rely on the know-how and expertise of the tester. 
However, as discussed next, we provide guidance to help 
identify which categories/choices need to be refined, 
which abstract test cases need to be defined. Test suite 
amendment (Activity 4) requires an effort that is anyway 
incurred if one is improving a test suite. 

In other words, we provide partially automated support 
for test suite specification reconstruction and test suite 
improvement, activities that are usually entirely manual 
[23]. Though some level of manual effort is un-avoidable 
(e.g., discovering categories and choices, creating new 
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test cases), we provide help, under the form of heuristics, 
to facilitate the tester’s work. Also, recall that the initial 
CP specification does not need to be perfect, and can be 
improved iteratively through the MELBA process. 

4 METHODOLOGY 

Our approach is to identify problems in C4.5 decision 
trees (Section 4.1) and relate them to potential test suite or 
CP specification deficiencies (Section 4.2). We then 
discuss strategies to augment a test suite in Section 4.3. 
We illustrate these steps, i.e., activities 3, 4, and 5 in 
Figure 1, on our Triangle working example (the CP 
specification is available in [6]). 

4.1 Identifying Problems in C4.5 Trees 

When analyzing a C4.5 decision tree in the context of 
our methodology, we can identify a number of potential 
problems: 

Case 1—Instances (test cases) can be misclassified: 
the wrong output equivalence class is associated to a test 
case. In other words, a test case belongs to a tree leaf 
where the majority of instances belong to another output 
equivalence class. 

Case 2—Certain categories or choices are not used in 
the tree (i.e., they are not selected as attributes to split a 
(sub)set of instances in the tree). 

Case 3—Certain combinations of choices, across 
categories, are not present on any path, from the root node 
to any leaf of the tree. 

Case 4—A leaf of a tree contains a large number of 
instances (test cases). 

All of the above cases can be automatically detected 
by a dedicated tool. However, as discussed next (Section 
4.2), determining the exact cause of the problem can only 
be facilitated but not entirely automated. 

Cases 2 and 3 have been shown to be the main issues 
when practitioners apply Category-Partition [8]. The 
authors suggest that practitioners follow a checklist to 
systematically identify these problems. In some way, we 
provide automated support and a set of heuristics to help 
address these problems. Our work also goes beyond this 
as we address the improvement of the test suite. 

4.2 Linking Problems to Causes 

The problems discussed above all have one or more 
potential causes, as summarized in Figure 3. Specific 
examples of these problems on the Triangle program can 
be found in [6]. 

Misclassifications in the decision tree (Case 1) can 
have two potential causes: Case 1.1, Case 1.2. 

Case 1.1 (Missing category/choice): A category or 
choice is missing, although it is necessary to determine 
the appropriate output equivalence class. 

Example 1 in Figure 2, for the Triangle example, is 
produced by C4.5 if one omits the category that tests 
whether c is strictly positive or not (two choices) when 
using category partition. This results in two misclassified 
instances (abstract test cases) among 26 instances (24+2), 
classified as Isosceles triangles by the rule when they are 
in fact not triangles. 

Case 1.2 (Ill-defined choices): Even though a category 
may be necessary and present in the characterization of 
test cases, the choices may be ill-defined, making the 
category a poor attribute to explain the output equivalence 
classes. 

Assuming the two choices of category “c compared 
to a and b” are incorrectly specified as follows: 

c < a+ b (should be <=) 
c >= a +b (should be >) 
C4.5 returns the rule in Example 2 (Figure 2), showing 

two misclassified instances. Because the relational 
operators were changed (by moving the “=” operator from 
c17 to c18), these misclassifications are due to abstract 
test cases where c=a+b. 

Both Cases 1.1 and 1.2 will lead to the refinement of 
the CP specifications, either by adding categories/choices 
or redefining choices for existing categories. 

Some categories (or choices) can be defined in the CP 
specification but not end up being used in the decision 
tree (Case 2). This can also be explained by several 
potential causes: Case 2.1, Case 2.2, Case 2.3. 

Case 2.1 (Useless categories): A category may be 
irrelevant if it turns out not to play a role in determining 
output equivalence classes. This may be due to the fact 
that the defined output classes are too rough for the 
category to play a role or simply that it is redundant 
(correlated) with other categories. 

Example 1:  
(a vs. b) = a=b 
| (b vs. c) = b!=c 
| | (a vs. b+c) = a<=b+c 
| | | (c vs. a+b) = c<=a+b: Isosceles (24.0/2.0) 

Example 2:  
(a vs. b) = a=b 
| (c) = c>0 
| | (b vs. c) = b!=c: Isosceles (24.0/2.0) 

Figure 2 Examples of detected problems using the Triangle program 

Problems             Causes

Missclassifications

Too Many Test 
Cases for a Rule

Unused Categories

Missing Combinations 
of Choices

Missing Category

Ill-defined Choices

Missing Test Cases

Redundant Test Cases

Useless Categories

Impossible Combinations 
of Choices  

Figure 3 Problems and potential causes 
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For example, the following category obviously does 
not play a role in determining the type of a triangle 
formed by sides a, b, and c, since its choices are 
redundant with other choices of the CP specification [6]. 
If added when applying CP, this category would not be 
selected in the decision tree. 

CATEGORY - c compared to a 
  Choice: c > a 
  Choice: c <= a 
Case 2.2 (Missing test cases): Missing test cases can 

also lead to a category or choice not being selected. For 
example, there may not be test cases that exercise some or 
all of the choices of a category, thus resulting in that 
category being partly used (not all its choices are used) or 
not being relevant in the decision tree. 

For example, to select an extreme case, if all test cases 
where a<=0 are removed from the test suite (i.e., in all the 
test cases, a>0) then the category which tests whether a is 
strictly positive or not, will not be selected as this 
category does not differentiate test cases. 

Case 2.3 (Ill-defined choices): Similar to Case 1.2, ill-
defined choices may make a category irrelevant as it does 
not accurately determine the output classes. 

Case 2.1 may lead to removing a category from the CP 
specification, thus leading to a smaller number of test 
frames and therefore fewer test cases. Case 2.3 would 
require the modification of choice definitions, possibly 
leading to an increased number of test cases. Case 2.2 
requires the addition of test cases. 

Even if all expected categories show up in the tree, 
certain combinations of choices across categories may not 
be exercised by the tree (Case 3). This may be the results 
of several potential causes: Case 3.1, Case 3.2. 

Case 3.1 (Impossible combinations): As it is often the 
case in the context of CP, some combinations of choices 
may not be possible. 

For example, combination of choices a>b+c and c>a+b 
is not possible. Recall (Section 2.1) that when building an 
abstract test case from a concrete test case, we add a N/A 
choice when a category does not apply to a test case, 
therefore also suggesting an impossible combinations. 

Case 3.2 (Missing test cases): Similar to Case 2.2, if 
test cases that exercise certain combinations of choices 
are missing from the test suite, then it is impossible for 
the tree to identify such combinations as relevant to 
determine output classes.  

The last problem is related to the redundancy of test 
cases (Case 4). It is in general important to minimize 
functional test suites and ad hoc test suites often turn out 
to contain such redundancy. In our context, when many 
test cases end up in a decision tree leaf then the question 
arises whether they are all necessary. Indeed, this means 
that a number of test cases exercise the same choice 
combinations for a subset of categories and then, as a 
result, fall in the same output equivalence class. The tester 
may then consider whether all these test cases in the same 

tree leaf are necessary as they have similar properties, 
lead to similar outputs, and probably exercise the software 
in a similar fashion. Though this remains a subjective 
decision that only the tester can make, the decision tree 
points out potential redundancy. There may be, however, 
two reasons for redundancy: Case 4.1, Case 4.2. 

Case 4.1 (Too many test cases for a rule): The most 
straightforward reason is of course the presence of 
redundant test cases, as described above. 

Case 4.2 (Ill-defined choices): Ill-defined choices can 
lead to misclassifications but also to the impossibility for 
C4.5 to split further leaves with large numbers of 
instances.  

It should be fairly easy to differentiate Case 4.1 from 
Case 4.2. The presence of misclassifications suggests that 
Case 4.2 is more plausible. No misclassification probably 
indicates the presence of redundant test cases. 

4.3 Heuristics for Adding Test Cases 

As discussed previously, different reasons can lead to 
the addition of test cases (Cases 2.2 and 3.2): a choice 
may be missing in the tree; a category may be missing in 
the tree; certain choice combinations may be missing. 

If a category (or choice) is missing, and the category is 
useful, then the tester has to create test cases involving 
each choice of the category2. However, the question is 
which combinations with other choices to include in the 
test suite? The first solution is to follow the CP method 
and build all the feasible (according to properties and 
selectors) combinations of choices and select the ones that 
are missing in the abstract test suite. We have however 
discussed that those properties and selectors were not 
required for applying our methodology (Section 2.1). 
Furthermore, this is an expensive option that does not 
make use of the information provided by the decision tree. 

An alternative is to identify which combinations of 
choices may be relevant to determine the output class and 
could be missing from the test suite. Assume that part of 
the tree obtained from C4.5 shows categories Cat1, Cat2, 
and Cat3 with choices C1 and C2, C3 and C4, and C5 and 
C6, respectively, as illustrated in Figure 4Figure 5 (a). The 
tree excerpt indicates that combining C2 of category Cat1 
with C5 or C6 of category Cat3 plays a role in determining 
output equivalence classes (the pairs of choices belong to 
different paths in the tree). Since Cat1 has another choice 
than C2, namely C1, we may conjecture that Cat3 might 
also be relevant to determine the output in the context of 
C1 and that the tester should therefore combine choice C1 
with Cat3’s choices. Similarly, the tree suggests that the 
combinations of C2 with Cat2’s choices may be missing 
in the test suite, thus resulting in four test cases being 
                                                                          
2 As a special case, we consider the situation where the tree shows a 

feasible rule (i.e., feasible choice combination) with no instance. The 
tester can then simply add a test case for that rule satisfying the 
corresponding choice combination. 
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added3. This heuristic can be generalized to cases where 
category Cat1 is not a parent of Cat2 and Cat3 in the tree 
but rather an ancestor of Cat2 and Cat3 (i.e., there are 
intermediate categories): Figure 4 (b). 

One advantage of this heuristic is that by using the 
information provided by the tree, when intending to cover 
new choices, the tester does not have only the expensive 
option to exercise all the feasible combinations of 
choices, but can focus on combinations that are likely to 
affect the output. 

5 CASE STUDY 

In this section, we first describe the system used for 
the case study and the application of CP on this program 
(Section 5.1). We then present the design of the case 
study (Section 5.2) and describe the results of applying 
MELBA (Section 5.3). 

5.1 The PackHexChar Program 

PackHexChar is a Java adaptation of the sreadhex 
procedure, used in the GhostScript program and described 
in [24], to manipulate hexadecimal characters. 
PackHexChar takes a string of characters representing 
hexadecimal digits (parameter S) and compacts the 
representation of the string in binary format (output), 
specifically as an array of Bytes: e.g., string “34AB”, 
corresponding to binary values 0011, 0100, 1010, and 
1011, is compacted into an array of two Byte values 
00110100 and 10101011 (the binary representation of 
hexadecimal characters 3 and 4 are combined into the first 
binary value 00110100). In the input string, characters 
other than hexadecimal ones are ignored. In addition to 
the array of Bytes, the program returns an integer value. If 
the input string contains an even number of hexadecimal 
characters, pairs of hexadecimal characters are 
compacted, the program returns the array of Bytes and the 
returned integer value equals to -1. If the input string 
contains an odd number of hexadecimal characters, an 
even number of characters is compacted, and the program 
returns the remaining hexadecimal character. The user can 
decide to look at only a sub-string of the input string S, 
using the input parameter RLEN: the RLEN first 
                                                                          
3 There is one exception though: if C1 is an error condition (e.g., an out 

of range input value), then C1 is not combined with C5 and C6. This 
is consistent with the CP strategy. 

characters of S are then analyzed. If RLEN is not a legal 
value (negative or greater than S’s length), the program 
returns value -2. The user can ask the program to append 
a hexadecimal character at the beginning of S. This is 
useful when a string is split and analyzed in pieces with 
repeated calls to PackHexChar: a call can return a trailing 
hexadecimal character, which has to be appended at the 
beginning of the string during the next call. This is done 
with input parameter ODD_DIGIT. An ODD_DIGIT 
value of -1 indicates that no character is to be appended. 
If ODD_DIGIT has an illegal value (strictly below -1 or 
not a hexadecimal value), the program returns -3. 

Due to time constraints in the design of our case study 
(see below), we had to select a small program that could 
be reasonably understood within three hours.  

Though the source code itself is small, we can see that 
the behavior of the PackHexChars program is from a 
functional standpoint far from being simple. Even when 
testing entire use cases [18, 19, 26], the number of 
categories and choices may not be very different from 
what we have here. 

5.2 Design of the Case Study 

Recall from the introduction that the MELBA 
methodology we propose can be applied in two broad 
application contexts: (1) The reuse, validation, and 
integration of open source software and (2) software 
evolution. This leads to two distinct situations that require 
two slightly different types of case studies. The first 
situation is not addressed in this paper but is discussed in 
[6]. The second distinct situation, that is the focus of this 
paper, is when the CP specification is used to generate the 
test suite and the test suite must evolve to account for 
changes in the system under test (Evolution context).  

Our case study took place in the context of a 
specialized 4th year course on software testing. 21 
students were properly trained regarding white and black-
box testing techniques, including CP. They were asked, 
during a three hour lab period, to devise a test 
specification from the source code using CP, and devise a 
test suite from this specification. The limited time 
available to browse through the code explains why we 
had to work with a small though functionally complex 
program. Due to time constraints, we did not ask the 
students to go through the MELBA process themselves. 
The process was applied by a Master student, starting 
from the CP specification and test suites provided by the 
students. Results are reported in the next section for one 
representative student’s CP specification and test suite. 

During the MELBA improvement process, the size of 
each augmented test suite was monitored as well as its 
capability to detect 231 seeded faults. Faults were seeded 
by using the usual method of creating mutant programs 
using a mutation system (Mujava [22]) and then 
computing the mutation scores of test suites to assess their 

Category Cat1

Category Cat2 Category Cat3

C1 C2

C4C3 C6C5
 

Category Cat1

Category Cat2 Category Cat3

C1 C2

C4C3 C6C5
 

 (a) (b) 
Figure 4 Adding Test Cases from the Tree 
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effectiveness. All non-equivalent mutants (see below) 
generated by MuJava were retained for the analysis. 

We asked an expert, well versed into black-box testing 
(including CP), to use CP on the PackHexChars program. 
The expert identified nine categories and 23 choices 
(referred to as the expert CP specification) [6]. This led to 
the generation of 221 test cases by identifying all 
compatible choice combinations (referred to as the expert 
test suite). The reason for devising the “expert” CP 
specification was two-fold. First it is intended to be a 
reference for assessing the student’s CP specifications and 
understand the cause of problems in the decision trees. 
Second, the resulting large, expert test suite can be used to 
weed out equivalent mutants. They were identified by 
running the complete test suite (221 test cases) and then 
by identifying the remaining live mutants. Following a 
common heuristic [2], these live mutants were considered 
to be equivalent though for some of them this is probably 
not the case. But following this procedure we can ensure 
all mutants used for the case study are not equivalent. 

5.3 Results with one Student’ CPs  

Student B’s test suite contains 31 test cases. We 
(automatically) created 31 abstract test cases using B’s CP 
specification. Executing C4.5 on these abstract test cases, 
we obtain the decision tree of Figure 5. The decision tree 
shows eight misclassified test cases (Case 1). This is due 
to the student failing to recognize that the program 
compacts the first RLEN hexadecimal characters in the 
input string (Section 5.1), resulting in a missing category 
in student B’s CP (Case 1.1). Some combinations of 
choices are also missing in the decision tree (Case 3). 
Some of them are actually identified in the tree: they have 
a number of instances equal to 0. The first two rules are 
feasible combinations and indicate missing test cases 
(Case 3.2). The subsequent two rules with zero instances 
are unfeasible combinations of choices (Case 3.1). The 
decision tree also shows a missing choice (rlen<0), which 
is simply due to missing test cases (Case 2.2). 

We first add the missing category to the student’s CP: 
Category: Number of hexadecimal characters in 

the first rlen characters of input string s 
Choice 1: Odd 
Choice 2: Even 
Choice 3: Zero 
Once the abstract test cases are (automatically) re-

created from the updated CP, the execution of C4.5 
produces a new decision tree [6]. The tree shows one rule 
with no instance, which is an unfeasible combination of 
choices (Case 3.1). Using the heuristic of Section 4.3, the 
tree also suggests that eight combinations of choices are 
potentially missing. Looking at the test suite shows that 
none of them is already exercised. 

We therefore create eight test cases, (automatically) 
produce the corresponding abstract test cases and re-run 
C4.5, which returns a third decision tree [6]. The tree 

shows potentially missing choice combinations which are 
either unfeasible or already appear in some rules. The tree 
shows three rules with a number of instances larger than 
the other rules (8, 9, and 7 instances), possibly suggesting 
redundant test cases. We removed some of the test cases 
in those rules (randomly selected), keeping one test case 
for each one of them. We re-run C4.5 and obtain the same 
tree except that the three rules which had a large number 
of instances finally contain one instance. 

In terms of mutation scores, the test suites of the three 
iterations found 200, 207, and 205 faults, respectively. 
The sizes of the test suites were respectively 31, 39, and 
12 test cases. Augmenting the test suite in the second 
iteration seems rather effective: Eight additional test cases 
kill seven additional mutants. However, our heuristic for 
removing redundant test cases leads to two mutants 
remaining undetected, though the reduction in size is 
relatively substantial. Future work will investigate 
refinements of our test suite reduction heuristic. 

5.4 Discussion 

We showed that using MELBA we were able to 
identify instances of problems in the decision trees and 
use this information to improve both test suites and CP 
specifications. The iterative process stopped when no 
problem could be identified in the trees, at which point 
the test suites and CP specifications were reaching a 
quality level that would likely have been achieved by an 
expert and that was in any case equivalent to the best CP 
specifications we could derive: when considering only the 
categories and choices that are selected by C4.5 decision 
trees⎯as they determine the output equivalence 
classes⎯we found that one or more choices (C’) in the 
expert CP specification correspond to one choice (C) in 
the students’ CP specifications in such a way that the 
output equivalence class would be predicted the same 
using C or C’. 

From the case study, we can also conclude that our 
taxonomies of decision tree problems and their possible 

ODD_DIGIT = odd_digit=-1 
| RLEN = rlen=0: -1.0 (2.0) 
| RLEN = 0<rlen<=sLength 
| | SLENGTH VS. RLEN = sLength>rlen 
| | | SCHARTYPE = allValid: S[rlen-1] (5.0/2.0) 
| | | SCHARTYPE = N/A: -1.0 (0.0) 
| | | SCHARTYPE = allInvalid: -1.0 (0.0) 
| | | SCHARTYPE = MixedChars: -1.0 (12.0/5.0) 
| | SLENGTH VS. RLEN = sLength=rlen: -1.0 (2.0) 
| | SLENGTH VS. RLEN = sLength<rlen: -1.0 (0.0) 
| | SLENGTH VS. RLEN = sLength=0: -1.0 (0.0) 
| RLEN = rlen>sLength: -2.0 (1.0) 
ODD_DIGIT = odd_digit=[0-15] 
| SLENGTH = OddLength: odd_digit (1.0) 
| SLENGTH = EvenLength: -1.0 (3.0/1.0) 
| SLENGTH = Empty: odd_digit (2.0) 
ODD_DIGIT = odd_digit>15: -3.0 (2.0) 
ODD_DIGIT = odd_digit<-1: -3.0 (1.0) 

Figure 5 First decision tree for B’s TS + B’s CP 
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root causes are complete with respect to the PackHexChar 
program (seven of the nine problems discussed in Section 
4.1 where observed), though future work will need to 
investigate further whether those taxonomies need to be 
extended. Furthermore, we observed that based on our 
students’ test suites, who can be considered competent 
testers in terms of training, we could achieve a final CP 
specification and test suite in two to three improvement 
steps [6]. 

If we step back to reflect on the role of machine 
learning in the MELBA process, the case study clearly 
illustrated the necessity to abstract out rules 
characterizing relationships between inputs, environment 
conditions, and outputs, from the test specifications and 
corresponding test suites. For the student for which we 
report results, we discovered that the student failed to 
recognize that the program compact the first RLEN 
hexadecimal characters in the input string, resulting in a 
missing category in student’ CP and in missing test cases. 
Without the machine learning algorithm we would have 
had to look at the raw test cases (perhaps at the abstract 
test cases) and it would have been difficult to identify this 
deficiency of the CP specification and test suite. Indeed, 
analyzing the raw (or even abstract) test cases (i.e., 
deciphering the test case description or test case 
implementation), would show─albeit with difficulty given 
the number of test cases─what is actually exercised, not 
necessarily what is not exercised. On the other hand, the 
machine learning algorithm provides useful information 
(e.g., misclassifications), thus suggesting that something 
is wrong and should be investigated. 

By analyzing the size and mutation scores associated 
with the test suites, we can conclude that with a 
reasonable increase in test cases (8), we found a 
significant number of additional faults (7). However, 
though our results also showed that our heuristic to 
remove redundant test cases leads to significant reduction 
in test suite size (~50%), a small reduction in the number 
of faults detected may also be observed. Future work will 
have to investigate refined heuristics. Though, due to size 
constraints, only the results of one student could be 
reported here, the student was selected as representative 
of the cases that we have investigated [6]. 

6 RELATED WORK 

We see two different areas of work related to the 
MELBA technology. First, our work bears some 
similarities with techniques that learn program behavior 
[1, 5, 17, 27]. Our work differs from those in a number of 
ways: (1) They all involve the instrumentation of the 
source code to collect execution traces (e.g., calls to APIs 
[1], control flow graph [5]); (2) They produce different 
kinds of (reverse-engineered) specification (e.g., ADTs 
[1], ‘likely invariants’ [17, 27], as defined in [13]); (3) 

They provide no (or little [27]) guidance regarding the 
definition (or refinement) of test cases (some rely on an 
automatic test data generator [5]).  

A second area of related works are those techniques 
that attempt to improve test suites [3, 4, 10, 12, 30]. 
Again, our work differs from those in a number of ways: 
(1) They all involve the instrumentation of the source 
code to collect execution traces (e.g., specific statements 
to reverse-engineer ‘likely invariants’ [10]) possibly from 
actual users in the field [12]; (2) A learning algorithm is 
not always used to help the user improve test suites (e.g., 
[12]) or no real guidance for the generation of new test 
cases is always provided (e.g., [30]); (3) When test data 
are automatically generated, only rudimentary algorithms 
are used (e.g., simple constraint solving algorithms [10]); 
(4) They rely on different kinds of (reverse-engineered) 
specification (e.g., ‘likely invariants’ [10], as defined in 
[13]); Z specification [30]. 

Other research activities are related, as they involve 
some form of learning mechanism, but have a different 
overall objective than improving test suites: To 
understand failure conditions by profiling deployed 
software [16]; To improve diagnosability by pinpointing 
faulty statements with a high accuracy [4] (using 
Tarantula [20]); To identify feasible paths in a control 
flow graph with high traversing probability using an 
adaptive sampling mechanism [3] Many other 
applications of machine learning techniques to software 
engineering exist in literature (e.g., [7, 14]) but are less 
related to our focus on test suite and test specification 
improvement. 

To summarize, our approach differs from the above 
with respect to one or several of the following aspects: (1) 
It addresses black-box functional testing, (2) It provides 
guidance in terms of new functional test cases to consider, 
(3) It helps refine the test specifications from which test 
cases can then be derived following a clear rationale, (4) 
It does not require any program instrumentation. To 
conclude, no existing technique can be directly compared 
with MELBA. 

7 CONCLUSION 

This paper proposed MELBA, a partially automated 
iterative methodology based on the C4.5 machine learning 
algorithm, to help software engineers analyze the 
weaknesses and redundancies of test specifications and 
test suites and iteratively improve them. 

The MELBA methodology takes two inputs: (i) a 
predefined test suite, developed according to a possibly 
unknown testing method, (ii) a (possibly imperfect) test 
specification developed using the Category-Partition (CP) 
strategy. Based on the CP specification, test cases are 
transformed into abstract test cases which are tuples of 
pairs (category, choice) associated with an output 



 

10 

equivalence class (instead of raw inputs/outputs). C4.5 is 
then used to learn rules that relate pairs (category, 
choice), modeling input properties, to output equivalence 
classes. These rules are in turn analyzed to determine 
potential improvements of the test suite (e.g., redundant 
test cases, need for additional test cases) as well as 
improvements of the CP specification (e.g., need to add a 
category or choices). 

We have illustrated the main aspects of the MELBA 
methodology on a running example (the Triangle 
program), and evaluated its effectiveness on test suites 
and CP specifications created by fully trained 4th year 
students on a small size but logically complex program. 
The study showed that the iterative process can indeed 
improve the CP specification to a level that is equivalent 
to what an expert would likely produce within two to 
three improvement cycles. The resulting test suites were 
significantly more effective in terms of fault detection 
while only requiring a modest size increase. 

Future work will include investigating other black-box 
specifications than CP, additional evaluations of MELBA 
on programs of varying sizes and complexities, as well as 
user-friendly, automated tool support. 
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