
1

Using Machine Learning to Refine Black-Box Test Specifications and Test Suites

 Lionel C. Briand (1) Yvan Labiche (2) Zaheer Bawar (2)
 (1) Simula Research Laboratory (2) Carleton University, Squall Lab
 & University of Oslo 1125 Colonel By Drive
 P.O. Box 134, Lysaker, Norway Ottawa, ON K1S5B6, Canada
 briand@simula.no labiche@sce.carleton.ca zbawar3@scs.carleton.ca

Abstract

In the context of open source development or software
evolution, developers often face test suites which have
been developed with no apparent rationale and which may
need to be augmented or refined to ensure sufficient
dependability, or even reduced to meet tight deadlines.
We refer to this process as the re-engineering of test
suites. It is important to provide both methodological and
tool support to help people understand the limitations of
test suites and their possible redundancies, so as to be able
to refine them in a cost effective manner. To address this
problem in the case of black-box testing, we propose a
methodology based on machine learning that has shown
promising results on a case study.

1 Introduction

In the context of open source development, it is often
the case that one is confronted with existing test suites
that are based on no explicit rationale or specifications,
other than general guidelines for exercising the main user
functionalities for example (e.g., based on check lists
[25]). For instance, open source software development
projects have been shown to lack “attention to basic,
accepted, and mature testing techniques [32].” In practice,
software developers who intend to reuse open source code
are commonly confronted with such ad hoc test suites. It
is therefore important to evaluate them and possibly
reduce or augment them, depending on whether they are
deemed redundant or too weak to achieve a sufficient
level of confidence. For instance, Zhao and Elbaum report
that in a large proportion of open source software
development projects, test suites achieve low source code
coverage (e.g., 30%) [32]. Developers hence have an
alternative: either build new test suites or reuse existing
ones; and they often go for the latter as it (hopefully)
reduces effort and therefore costs. This will inevitably
lead them to understanding, evaluating and possibly
improving these test suites.

Similarly, in an evolution context, because of
personnel turnover, the originator of the test suite may not

be available and whoever is in charge of modifying and
re-testing the software is confronted with understanding
and evaluating existing test suites. Even in the context of
regression testing, where one needs to select a subset and
prioritize existing test cases, it is important to ensure that
the original test suite is sufficiently complete and not
redundant before selecting or prioritizing.

We propose a partially automated methodology to help
software engineers analyze the weaknesses of test suites
and iteratively improve them. We refer to this process as
the re-engineering of test suites as it is similar to what can
be seen in re-engineering source code where code
information is extracted, abstracted from a design
standpoint, and then used to decide about design changes
[11]. Similarly, our methodology is based on abstracting
test suite information and then deciding about changes to
the test suite. To transform test cases into test case
specifications at a higher level of abstraction, we rely on a
black-box test specification technique: Category-Partition
[26]. Test cases are abstracted under the form of category
and choice combinations, as defined in Category-
Partition. These choice combinations characterize a test
case in terms of input and execution environment
properties. A machine-learning algorithm is then used to
learn about relationships between inputs/environment
conditions and outputs as they are exercised by the test
suite. This allows the tester to precisely understand the
capabilities and weaknesses of the test suite. Based on a
series of systematic heuristics to guide the analysis of
those relationships, our methodology then facilitates the
improvement of the test suite specification (Category-
Partition) and test cases.

Section 2 provides some background. Our approach is
described in Sections 3 and 4. A case study is discussed in
Section 5. Related work is described in Section 6.
Conclusions are drawn in Section 7.

2 Background

2.1 Using Category Partition

To illustrate how the Category Partition (CP) [26]
black-box testing method works, let us take the well-

2

known and simple Triangle program example [21], which
we will use as a working example to illustrate the
concepts of our methodology. The test input values
characterize the length of triangle sides (a,b,c) and its
output determines whether these sides correspond to an
equilateral, isosceles, or irregular triangle. In addition, the
program may determine that the sides cannot correspond
to a triangle (based on checking certain inequalities) or
that the side values are illegal (below or equal to zero).
CP requires that we identify properties of the triangle
sides that will affect its behavior and possibly its output.
The motivation is to ensure that the behavior of the
software under test is fully exercised. In our Triangle
example, these properties may correspond to Boolean
expressions stating relationships between sides, e.g., how
a compares to b and c. These properties are called
“categories” and are associated with “choices”. For
example, taking the “a compares to b and c” category,
choices could correspond to the two mutually exclusive
situations where a<=b+c and a>b+c. In addition, though
we do not make use of them in our approach, CP requires
that “properties” and “selectors” be defined to model
interdependencies between choices and thus be used to
automatically identify impossible combinations of choices
across categories [26]. The complete application of CP to
the Triangle program is available in [6].

In addition to categories and choices describing input
parameters of the program, CP requires the identification
of categories and choices for environment conditions, i.e.,
conditions of the environment of the program that may
affect its behavior (e.g., contents of a database, state of
external systems, load of the processor or network). CP
can therefore help characterize functional as well as non-
functional behavior, targeting functional testing,
performance testing, and robustness testing.

In our context, once categories and choices are
defined, we use them to automatically transform test cases
into “abstract” test cases. These can be seen as tuples of
choices associated with an output equivalence class. In
our example, test case (a=2,b=3,c=3) could be abstracted
into a tuple such as (a<=b+c, b=c, isosceles): the first
choice is the one discussed earlier, for category “how a
compares to b and c”, the second choice belongs to
another category, and the expected output value is
isosceles. Note that tuples would in reality contain pairs
of the form (category, choice) and output equivalence
classes instead of simply choices and output values. In
this paper, we only show choices for the sake of brevity.
Furthermore, simply using output values is usually only
applicable in simple cases such as the Triangle example.
Even in this case, examples of output equivalent classes
could be: (IsTriangle, NotTriangle), the first equivalence
class including the following values: Isosceles,
Equilateral, Irregular. The selection of an appropriate
level of granularity for output equivalence classes will be
the tester’s decision and will depend on the behavioral

complexity of the program and the number of test cases
that can be run as, the finer the granularity, the larger the
number of test cases generated by our approach.

Notice that tuples typically involve many choices as
every existing choice condition that applies to a test case
is used when creating the corresponding abstract test case.
For example, test case (a=2,b=3,c=3) could be abstracted
into a tuple such as (a<=b+c, b=c, a>=0, b>=0, c>=0,
isosceles), where the last three choices belong to three
different categories, each one defining the property of a
triangle side as being either strictly negative or not. Last,
it may happen that none of the choices defined for a
specific category can be used when creating an abstract
test case1. In such a situation, we add a “not applicable”
(or N/A) choice to the category and use this pseudo
choice in the tuple. For example, assume a program
manipulates a string of characters and its behavior
depends on whether the string contains only numbers or
only letters (the behavior would furthermore depend on
whether the string contains capital letters or not). Then
one would define (at least) a category Cat1 with two
choices (C1 and C2, respectively) for the two different
types of strings, and a category Cat2 for strings
containing letters with two choices (C3 and C4,
respectively) specifying whether the string contains
capital letters or not. Suppose that we want to create the
abstract test case for a test case where the input parameter
contains only numbers. Choice C1 would be used in the
tuple but none of the choices of Cat2 are applicable. We
then define a N/A choice for Cat2 and use it in the tuple.

Our main reason to transform the test suite into an
abstract test suite is that it will be much easier, as
described next, for the machine learning algorithm to
learn relationships between input properties and output
equivalence classes. Devising such categories and choices
is anyway necessary to understand the rationale behind
test cases and is a way for the tester to formalize her
understanding of the functional specifications of the
software under test. This is a necessary exercise, as
discussed above, both in a context of software evolution
or reuse of open source software: if one needs to evolve a
test suite one has to first make the effort to understand the
system (possibly its source code) and the test suite. Note
that the initial categories and choices defined by the tester
do not have to be perfect as our methodology will help
identify problems in their definitions.

2.2 C4.5 Decision Trees (DT)

There are a large number of machine learning and data
mining techniques [31]. They differ widely in terms of

1 This is typically the case when choices cannot be combined across

categories, or when categories are not applicable. Such a situation
would be specified with “properties” and “selectors” if we were
applying CP for the purpose of generating test cases, instead of using
CP to characterize existing test cases.

3

their basic principles, their working assumptions, and
their weaknesses and strengths. None of the techniques is
inherently better than the other and which one is most
appropriate tends to be context dependent. Some of these
techniques focus on classification, which is the problem at
hand in this paper as we want to learn about the
relationship between input and environment properties
(categories and choices), and output equivalence classes.

A specific category of machine learning techniques
generates classification rules [31] which are easily
amenable to interpretation: e.g., the C4.5 decision tree
algorithm [29] (where the paths from the root node of the
tree to any leaf can be considered a rule), the Ripper rule
induction algorithm [9]. In our context, the rules would
look like properties on test inputs, i.e., combinations of
pairs (category, choice), being associated with output
equivalence classes. The main advantage of these
techniques is the interpretability of their models: certain
conditions imply a certain output equivalence class.

Some techniques, like C4.5, partition the data set (e.g.,
the set of test cases) in a stepwise manner using complex
algorithms and heuristics to avoid overfitting the data
with the goal of generating models that are as simple as
possible. Others, like Ripper, are so-called covering
algorithms that generate rules in a stepwise manner,
removing observations that are “covered” by the rule at
each step so that the next step works on a reduced set of
observations. With coverage algorithms, rules are
interdependent in the sense that they form a “decision
list” where rules are supposed to be applicable in the
order they were generated. Because this makes their
interpretation more difficult, we will use a classification
tree algorithm, namely C4.5, and use the WEKA tool [31]
to build and assess the trees.

For the Triangle problem, and based on an abstract test
suite, a rule generated by the C4.5 algorithm in the
context of the WEKA tool could look like:
1 (a vs. b) = a!=b
2 | (c vs. a+b) = c<=a+b
3 | | (a vs. b+c) = a<=b+c
4 | | | (b vs. a+c) = b<=a+c
5 | | | | (b vs. c) = b=c
6 | | | | | (a) = a>0: Isosceles (22.0)

This should be read as follows: if a is different from b
(category “a vs. b” and choice “a!=b”—line 1), c is
below or equal to a+b (category “c vs. a+b” and choice
“c<=a+b”), a is below or equal to b+c (line 3), b is below
or equal to a+c, b=c, and a>0, then the triangle is
Isosceles (line 6). This rule is based on 22 instances (line
6), that is in our context 22 abstract test cases.

We need to create abstract test cases from concrete
(raw) test cases since using raw data will likely generate
incorrect and possibly meaningless decision trees. Since
the raw data does not contain any explicit information on
high-level properties (e.g., categories and choices), it is
impossible for an inductive machine learning algorithm to
learn which properties are of interest, as it can only relate

values of the parameters instead of relevant properties of
those parameters. To facilitate the learning process,
further guidance needs to be provided to the learning
algorithm to generate a meaningful tree. As an example,
let us use the Triangle program to illustrate this.
Executing C4.5 on the raw test cases for the Triangle
program, we obtain a decision tree containing the rule
below (among a total of 6 rules): contrary to the rule
discussed previously, this rule shows parameter names
instead of categories and choices. The rule, which
indicates that if c>1, b>1, and a>3 then the triangle is
isosceles, is incorrect since other conditions should hold
to have an isosceles triangle. It simply happens that in this
test suite, each time those conditions hold, the triangle is
isosceles.

(c) > 1
| (b) > 1
| | (a) > 3: Isosceles

3 OVERVIEW

Figure 1 provides an overview of the steps involved in
the MELBA (MachinE Learning based refinement of
BlAck-box test specification) methodology we will
describe in detail in the next section. The inputs of the
methodology are the test suite to be re-engineered and a
test specification.

3.1 An Iterative Process

We do not make any specific assumption regarding the
contents of a test case and the software unit under test
(SUT), other than the feasibility of transforming test cases
into abstract test cases given pre-defined categories and
choices. In particular, we do not assume that the test suite
has been originally derived according to the Category-
Partition method. Though the test specification, used to
characterize existing test cases, is assumed in this paper to
follow the category-partition [26] (CP) strategy, future
work will investigate how our methodology could be
tailored to other black-box strategies. It is worth
mentioning that, as other black-box test techniques, the
complexity of testing depends on the behavioral specifica-
tion of the SUT, not necessarily its source code size.

In practice, the test specification may or may not exist
to start with, especially if no black-box strategy was used
to identify the test cases. In the latter case, which is likely

(4) Update Test Suite

(5) Update Category-Partition

Abstract Test Suite (ATS)

Decision Tree (DT)
Test Suite

(3) Analysis of
DT

(2) C4.5 Decision Tree

Category
Partition

(1) Generate Abstract
Test Suite

Automated activity Partially automated activity Manual activity (with heuristic support)

Figure 1 The MELBA Methodology

4

to be the most common situation, the test specification has
to be either reverse-engineered or created from high-level
specification (likely plain language). Furthermore, the
output domain has to be divided into equivalence classes.
The level of granularity of this partition of the output
domain is a decision of the tester. Increased granularity
will result into increased testing effort but will
characterize the SUT behavior in a more precise way.

As the input domain is modeled using CP categories
and choices (Section 2.1) the test suite is then transformed
into an abstract test suite (Activity 1 in Figure 1). An
abstract test case shows an output equivalence class and
pairs (category, choice) that characterize its inputs and
environment parameters (e.g., execution configuration),
instead of raw inputs. Once an abstract test suite is
available, a machine learning algorithm (C4.5) is used to
learn rules that relate pairs (category, choice), modeling
input properties, to output equivalence classes (Activity
2). An example of such rule was discussed in Section 2.2.

These rules are in turn analyzed (Activity 3) to
determine potential problems that may indicate
redundancy among test cases and the need for additional
test cases (Activity 4). Those rules may also indicate that
the CP specification needs to be improved, e.g., an
important category is missing or certain choices are ill-
defined (Activity 5). In the next section, we will detail a
number of heuristics that can be used to automatically
analyze the C4.5 rules and investigate ways to improve
test suites and CP specifications.

The improvement process in Figure 1 is iterative as
improvements to either the test suite or test specification
can lead to the identification of new problems to be
addressed. The learning algorithm will therefore be
repeatedly executed (edges from Activities 4 and 5 to
Activity 1, followed by Activity 2), which is not an issue
as obtaining C4.5 decision trees for a few thousands of
(abstract) test cases and a few dozen categories is quick
(Section 3.2). The process stops when no more problems
can be found in the rules learnt by the machine learning
algorithm (Activity 3).

One issue is the presence of faults and its impact on
MELBA and C4.5. MELBA assumes that the initial test
suite has been run, failures have been detected and the
corresponding faults corrected. In short, the starting point
of the iterative process is a possibly incomplete but
passing set of test cases. However, as the test suite is
augmented with new test cases, failures can arise and new
faults can be detected. These faults must then be corrected
and the new test cases must pass before re-running C4.5
and obtain a new decision tree. Otherwise, since some of
the outputs might be incorrect, this might lead to
misclassifications in the tree which, though they would
not necessarily prevent the use of MELBA, could make
the decision tree analysis more complex.

In the context of software evolution, changes and
additions to the software naturally lead to changes to the

test specifications and corresponding test suites. In that
case, the decision tree is automatically rebuilt and the
MELBA process is run again to refine the new and
changed parts of the test specifications and test suite.

3.2 Manual Effort and Automation

Once the CP specification is defined, the
transformation of test cases into abstract test cases is easy
to automate. For instance, in our case study, using a CP
specification of nine categories and 33 choices and a test
suite of 221 test cases, it took a couple of seconds to
create 221 abstract test cases. We also used this tech-
nology for a different purpose in [7] and with a larger
problem: the Space program [28], for which we defined
83 categories and 582 choices, and abstracted 13,585 test
cases in less than a minute. In short, Activity 1 in Figure 1
is automated and fast.

Defining categories and choices, on the other hand,
requires much thinking as one must identify them so that
they determine the system behavior and therefore output
equivalence classes. This requires an understanding of the
system domain but is, on the other hand, what a tester
would typically do anyway when trying to reengineer a
test suite, for instance using CP or any other black-box
test technique. Though this represents an up-front
investment, there is no way one can reuse a test suite or
modify a system with confidence without making an
effort to understand the relationships between the inputs,
environment conditions, and outputs of the system.

Activity 2 is another automated step, for which we use
the WEKA tool, which implements C4.5. For our case
study, it took less than a second for WEKA to generate a
decision tree. In the case of the larger Space problem
mentioned above, it took eight seconds to generate a tree
based on 13,585 abstract test cases.

Activity 3 is partially automated. On the one hand,
much information is automatically provided in the WEKA
output: misclassifications, categories and choices used in
learnt rules, number of instances (i.e., abstract test cases)
involved in rules. This information is the source of our
heuristics for problem identification (Section 4.1). The
tester then has to identify the causes of those problems, a
process that we support with guidelines (Section 4.2).

Activities 4 and 5 are not automated at this point, as
they rely on the know-how and expertise of the tester.
However, as discussed next, we provide guidance to help
identify which categories/choices need to be refined,
which abstract test cases need to be defined. Test suite
amendment (Activity 4) requires an effort that is anyway
incurred if one is improving a test suite.

In other words, we provide partially automated support
for test suite specification reconstruction and test suite
improvement, activities that are usually entirely manual
[23]. Though some level of manual effort is un-avoidable
(e.g., discovering categories and choices, creating new

5

test cases), we provide help, under the form of heuristics,
to facilitate the tester’s work. Also, recall that the initial
CP specification does not need to be perfect, and can be
improved iteratively through the MELBA process.

4 METHODOLOGY

Our approach is to identify problems in C4.5 decision
trees (Section 4.1) and relate them to potential test suite or
CP specification deficiencies (Section 4.2). We then
discuss strategies to augment a test suite in Section 4.3.
We illustrate these steps, i.e., activities 3, 4, and 5 in
Figure 1, on our Triangle working example (the CP
specification is available in [6]).

4.1 Identifying Problems in C4.5 Trees

When analyzing a C4.5 decision tree in the context of
our methodology, we can identify a number of potential
problems:

Case 1—Instances (test cases) can be misclassified:
the wrong output equivalence class is associated to a test
case. In other words, a test case belongs to a tree leaf
where the majority of instances belong to another output
equivalence class.

Case 2—Certain categories or choices are not used in
the tree (i.e., they are not selected as attributes to split a
(sub)set of instances in the tree).

Case 3—Certain combinations of choices, across
categories, are not present on any path, from the root node
to any leaf of the tree.

Case 4—A leaf of a tree contains a large number of
instances (test cases).

All of the above cases can be automatically detected
by a dedicated tool. However, as discussed next (Section
4.2), determining the exact cause of the problem can only
be facilitated but not entirely automated.

Cases 2 and 3 have been shown to be the main issues
when practitioners apply Category-Partition [8]. The
authors suggest that practitioners follow a checklist to
systematically identify these problems. In some way, we
provide automated support and a set of heuristics to help
address these problems. Our work also goes beyond this
as we address the improvement of the test suite.

4.2 Linking Problems to Causes

The problems discussed above all have one or more
potential causes, as summarized in Figure 3. Specific
examples of these problems on the Triangle program can
be found in [6].

Misclassifications in the decision tree (Case 1) can
have two potential causes: Case 1.1, Case 1.2.

Case 1.1 (Missing category/choice): A category or
choice is missing, although it is necessary to determine
the appropriate output equivalence class.

Example 1 in Figure 2, for the Triangle example, is
produced by C4.5 if one omits the category that tests
whether c is strictly positive or not (two choices) when
using category partition. This results in two misclassified
instances (abstract test cases) among 26 instances (24+2),
classified as Isosceles triangles by the rule when they are
in fact not triangles.

Case 1.2 (Ill-defined choices): Even though a category
may be necessary and present in the characterization of
test cases, the choices may be ill-defined, making the
category a poor attribute to explain the output equivalence
classes.

Assuming the two choices of category “c compared
to a and b” are incorrectly specified as follows:

c < a+ b (should be <=)
c >= a +b (should be >)
C4.5 returns the rule in Example 2 (Figure 2), showing

two misclassified instances. Because the relational
operators were changed (by moving the “=” operator from
c17 to c18), these misclassifications are due to abstract
test cases where c=a+b.

Both Cases 1.1 and 1.2 will lead to the refinement of
the CP specifications, either by adding categories/choices
or redefining choices for existing categories.

Some categories (or choices) can be defined in the CP
specification but not end up being used in the decision
tree (Case 2). This can also be explained by several
potential causes: Case 2.1, Case 2.2, Case 2.3.

Case 2.1 (Useless categories): A category may be
irrelevant if it turns out not to play a role in determining
output equivalence classes. This may be due to the fact
that the defined output classes are too rough for the
category to play a role or simply that it is redundant
(correlated) with other categories.

Example 1:
(a vs. b) = a=b
| (b vs. c) = b!=c
| | (a vs. b+c) = a<=b+c
| | | (c vs. a+b) = c<=a+b: Isosceles (24.0/2.0)

Example 2:
(a vs. b) = a=b
| (c) = c>0
| | (b vs. c) = b!=c: Isosceles (24.0/2.0)

Figure 2 Examples of detected problems using the Triangle program

Problems Causes

Missclassifications

Too Many Test
Cases for a Rule

Unused Categories

Missing Combinations
of Choices

Missing Category

Ill-defined Choices

Missing Test Cases

Redundant Test Cases

Useless Categories

Impossible Combinations
of Choices

Figure 3 Problems and potential causes

6

For example, the following category obviously does
not play a role in determining the type of a triangle
formed by sides a, b, and c, since its choices are
redundant with other choices of the CP specification [6].
If added when applying CP, this category would not be
selected in the decision tree.

CATEGORY - c compared to a
 Choice: c > a
 Choice: c <= a
Case 2.2 (Missing test cases): Missing test cases can

also lead to a category or choice not being selected. For
example, there may not be test cases that exercise some or
all of the choices of a category, thus resulting in that
category being partly used (not all its choices are used) or
not being relevant in the decision tree.

For example, to select an extreme case, if all test cases
where a<=0 are removed from the test suite (i.e., in all the
test cases, a>0) then the category which tests whether a is
strictly positive or not, will not be selected as this
category does not differentiate test cases.

Case 2.3 (Ill-defined choices): Similar to Case 1.2, ill-
defined choices may make a category irrelevant as it does
not accurately determine the output classes.

Case 2.1 may lead to removing a category from the CP
specification, thus leading to a smaller number of test
frames and therefore fewer test cases. Case 2.3 would
require the modification of choice definitions, possibly
leading to an increased number of test cases. Case 2.2
requires the addition of test cases.

Even if all expected categories show up in the tree,
certain combinations of choices across categories may not
be exercised by the tree (Case 3). This may be the results
of several potential causes: Case 3.1, Case 3.2.

Case 3.1 (Impossible combinations): As it is often the
case in the context of CP, some combinations of choices
may not be possible.

For example, combination of choices a>b+c and c>a+b
is not possible. Recall (Section 2.1) that when building an
abstract test case from a concrete test case, we add a N/A
choice when a category does not apply to a test case,
therefore also suggesting an impossible combinations.

Case 3.2 (Missing test cases): Similar to Case 2.2, if
test cases that exercise certain combinations of choices
are missing from the test suite, then it is impossible for
the tree to identify such combinations as relevant to
determine output classes.

The last problem is related to the redundancy of test
cases (Case 4). It is in general important to minimize
functional test suites and ad hoc test suites often turn out
to contain such redundancy. In our context, when many
test cases end up in a decision tree leaf then the question
arises whether they are all necessary. Indeed, this means
that a number of test cases exercise the same choice
combinations for a subset of categories and then, as a
result, fall in the same output equivalence class. The tester
may then consider whether all these test cases in the same

tree leaf are necessary as they have similar properties,
lead to similar outputs, and probably exercise the software
in a similar fashion. Though this remains a subjective
decision that only the tester can make, the decision tree
points out potential redundancy. There may be, however,
two reasons for redundancy: Case 4.1, Case 4.2.

Case 4.1 (Too many test cases for a rule): The most
straightforward reason is of course the presence of
redundant test cases, as described above.

Case 4.2 (Ill-defined choices): Ill-defined choices can
lead to misclassifications but also to the impossibility for
C4.5 to split further leaves with large numbers of
instances.

It should be fairly easy to differentiate Case 4.1 from
Case 4.2. The presence of misclassifications suggests that
Case 4.2 is more plausible. No misclassification probably
indicates the presence of redundant test cases.

4.3 Heuristics for Adding Test Cases

As discussed previously, different reasons can lead to
the addition of test cases (Cases 2.2 and 3.2): a choice
may be missing in the tree; a category may be missing in
the tree; certain choice combinations may be missing.

If a category (or choice) is missing, and the category is
useful, then the tester has to create test cases involving
each choice of the category2. However, the question is
which combinations with other choices to include in the
test suite? The first solution is to follow the CP method
and build all the feasible (according to properties and
selectors) combinations of choices and select the ones that
are missing in the abstract test suite. We have however
discussed that those properties and selectors were not
required for applying our methodology (Section 2.1).
Furthermore, this is an expensive option that does not
make use of the information provided by the decision tree.

An alternative is to identify which combinations of
choices may be relevant to determine the output class and
could be missing from the test suite. Assume that part of
the tree obtained from C4.5 shows categories Cat1, Cat2,
and Cat3 with choices C1 and C2, C3 and C4, and C5 and
C6, respectively, as illustrated in Figure 4Figure 5 (a). The
tree excerpt indicates that combining C2 of category Cat1
with C5 or C6 of category Cat3 plays a role in determining
output equivalence classes (the pairs of choices belong to
different paths in the tree). Since Cat1 has another choice
than C2, namely C1, we may conjecture that Cat3 might
also be relevant to determine the output in the context of
C1 and that the tester should therefore combine choice C1
with Cat3’s choices. Similarly, the tree suggests that the
combinations of C2 with Cat2’s choices may be missing
in the test suite, thus resulting in four test cases being

2 As a special case, we consider the situation where the tree shows a

feasible rule (i.e., feasible choice combination) with no instance. The
tester can then simply add a test case for that rule satisfying the
corresponding choice combination.

7

added3. This heuristic can be generalized to cases where
category Cat1 is not a parent of Cat2 and Cat3 in the tree
but rather an ancestor of Cat2 and Cat3 (i.e., there are
intermediate categories): Figure 4 (b).

One advantage of this heuristic is that by using the
information provided by the tree, when intending to cover
new choices, the tester does not have only the expensive
option to exercise all the feasible combinations of
choices, but can focus on combinations that are likely to
affect the output.

5 CASE STUDY

In this section, we first describe the system used for
the case study and the application of CP on this program
(Section 5.1). We then present the design of the case
study (Section 5.2) and describe the results of applying
MELBA (Section 5.3).

5.1 The PackHexChar Program

PackHexChar is a Java adaptation of the sreadhex
procedure, used in the GhostScript program and described
in [24], to manipulate hexadecimal characters.
PackHexChar takes a string of characters representing
hexadecimal digits (parameter S) and compacts the
representation of the string in binary format (output),
specifically as an array of Bytes: e.g., string “34AB”,
corresponding to binary values 0011, 0100, 1010, and
1011, is compacted into an array of two Byte values
00110100 and 10101011 (the binary representation of
hexadecimal characters 3 and 4 are combined into the first
binary value 00110100). In the input string, characters
other than hexadecimal ones are ignored. In addition to
the array of Bytes, the program returns an integer value. If
the input string contains an even number of hexadecimal
characters, pairs of hexadecimal characters are
compacted, the program returns the array of Bytes and the
returned integer value equals to -1. If the input string
contains an odd number of hexadecimal characters, an
even number of characters is compacted, and the program
returns the remaining hexadecimal character. The user can
decide to look at only a sub-string of the input string S,
using the input parameter RLEN: the RLEN first

3 There is one exception though: if C1 is an error condition (e.g., an out

of range input value), then C1 is not combined with C5 and C6. This
is consistent with the CP strategy.

characters of S are then analyzed. If RLEN is not a legal
value (negative or greater than S’s length), the program
returns value -2. The user can ask the program to append
a hexadecimal character at the beginning of S. This is
useful when a string is split and analyzed in pieces with
repeated calls to PackHexChar: a call can return a trailing
hexadecimal character, which has to be appended at the
beginning of the string during the next call. This is done
with input parameter ODD_DIGIT. An ODD_DIGIT
value of -1 indicates that no character is to be appended.
If ODD_DIGIT has an illegal value (strictly below -1 or
not a hexadecimal value), the program returns -3.

Due to time constraints in the design of our case study
(see below), we had to select a small program that could
be reasonably understood within three hours.

Though the source code itself is small, we can see that
the behavior of the PackHexChars program is from a
functional standpoint far from being simple. Even when
testing entire use cases [18, 19, 26], the number of
categories and choices may not be very different from
what we have here.

5.2 Design of the Case Study

Recall from the introduction that the MELBA
methodology we propose can be applied in two broad
application contexts: (1) The reuse, validation, and
integration of open source software and (2) software
evolution. This leads to two distinct situations that require
two slightly different types of case studies. The first
situation is not addressed in this paper but is discussed in
[6]. The second distinct situation, that is the focus of this
paper, is when the CP specification is used to generate the
test suite and the test suite must evolve to account for
changes in the system under test (Evolution context).

Our case study took place in the context of a
specialized 4th year course on software testing. 21
students were properly trained regarding white and black-
box testing techniques, including CP. They were asked,
during a three hour lab period, to devise a test
specification from the source code using CP, and devise a
test suite from this specification. The limited time
available to browse through the code explains why we
had to work with a small though functionally complex
program. Due to time constraints, we did not ask the
students to go through the MELBA process themselves.
The process was applied by a Master student, starting
from the CP specification and test suites provided by the
students. Results are reported in the next section for one
representative student’s CP specification and test suite.

During the MELBA improvement process, the size of
each augmented test suite was monitored as well as its
capability to detect 231 seeded faults. Faults were seeded
by using the usual method of creating mutant programs
using a mutation system (Mujava [22]) and then
computing the mutation scores of test suites to assess their

Category Cat1

Category Cat2 Category Cat3

C1 C2

C4C3 C6C5

Category Cat1

Category Cat2 Category Cat3

C1 C2

C4C3 C6C5

 (a) (b)
Figure 4 Adding Test Cases from the Tree

8

effectiveness. All non-equivalent mutants (see below)
generated by MuJava were retained for the analysis.

We asked an expert, well versed into black-box testing
(including CP), to use CP on the PackHexChars program.
The expert identified nine categories and 23 choices
(referred to as the expert CP specification) [6]. This led to
the generation of 221 test cases by identifying all
compatible choice combinations (referred to as the expert
test suite). The reason for devising the “expert” CP
specification was two-fold. First it is intended to be a
reference for assessing the student’s CP specifications and
understand the cause of problems in the decision trees.
Second, the resulting large, expert test suite can be used to
weed out equivalent mutants. They were identified by
running the complete test suite (221 test cases) and then
by identifying the remaining live mutants. Following a
common heuristic [2], these live mutants were considered
to be equivalent though for some of them this is probably
not the case. But following this procedure we can ensure
all mutants used for the case study are not equivalent.

5.3 Results with one Student’ CPs

Student B’s test suite contains 31 test cases. We
(automatically) created 31 abstract test cases using B’s CP
specification. Executing C4.5 on these abstract test cases,
we obtain the decision tree of Figure 5. The decision tree
shows eight misclassified test cases (Case 1). This is due
to the student failing to recognize that the program
compacts the first RLEN hexadecimal characters in the
input string (Section 5.1), resulting in a missing category
in student B’s CP (Case 1.1). Some combinations of
choices are also missing in the decision tree (Case 3).
Some of them are actually identified in the tree: they have
a number of instances equal to 0. The first two rules are
feasible combinations and indicate missing test cases
(Case 3.2). The subsequent two rules with zero instances
are unfeasible combinations of choices (Case 3.1). The
decision tree also shows a missing choice (rlen<0), which
is simply due to missing test cases (Case 2.2).

We first add the missing category to the student’s CP:
Category: Number of hexadecimal characters in

the first rlen characters of input string s
Choice 1: Odd
Choice 2: Even
Choice 3: Zero
Once the abstract test cases are (automatically) re-

created from the updated CP, the execution of C4.5
produces a new decision tree [6]. The tree shows one rule
with no instance, which is an unfeasible combination of
choices (Case 3.1). Using the heuristic of Section 4.3, the
tree also suggests that eight combinations of choices are
potentially missing. Looking at the test suite shows that
none of them is already exercised.

We therefore create eight test cases, (automatically)
produce the corresponding abstract test cases and re-run
C4.5, which returns a third decision tree [6]. The tree

shows potentially missing choice combinations which are
either unfeasible or already appear in some rules. The tree
shows three rules with a number of instances larger than
the other rules (8, 9, and 7 instances), possibly suggesting
redundant test cases. We removed some of the test cases
in those rules (randomly selected), keeping one test case
for each one of them. We re-run C4.5 and obtain the same
tree except that the three rules which had a large number
of instances finally contain one instance.

In terms of mutation scores, the test suites of the three
iterations found 200, 207, and 205 faults, respectively.
The sizes of the test suites were respectively 31, 39, and
12 test cases. Augmenting the test suite in the second
iteration seems rather effective: Eight additional test cases
kill seven additional mutants. However, our heuristic for
removing redundant test cases leads to two mutants
remaining undetected, though the reduction in size is
relatively substantial. Future work will investigate
refinements of our test suite reduction heuristic.

5.4 Discussion

We showed that using MELBA we were able to
identify instances of problems in the decision trees and
use this information to improve both test suites and CP
specifications. The iterative process stopped when no
problem could be identified in the trees, at which point
the test suites and CP specifications were reaching a
quality level that would likely have been achieved by an
expert and that was in any case equivalent to the best CP
specifications we could derive: when considering only the
categories and choices that are selected by C4.5 decision
trees⎯as they determine the output equivalence
classes⎯we found that one or more choices (C’) in the
expert CP specification correspond to one choice (C) in
the students’ CP specifications in such a way that the
output equivalence class would be predicted the same
using C or C’.

From the case study, we can also conclude that our
taxonomies of decision tree problems and their possible

ODD_DIGIT = odd_digit=-1
| RLEN = rlen=0: -1.0 (2.0)
| RLEN = 0<rlen<=sLength
| | SLENGTH VS. RLEN = sLength>rlen
| | | SCHARTYPE = allValid: S[rlen-1] (5.0/2.0)
| | | SCHARTYPE = N/A: -1.0 (0.0)
| | | SCHARTYPE = allInvalid: -1.0 (0.0)
| | | SCHARTYPE = MixedChars: -1.0 (12.0/5.0)
| | SLENGTH VS. RLEN = sLength=rlen: -1.0 (2.0)
| | SLENGTH VS. RLEN = sLength<rlen: -1.0 (0.0)
| | SLENGTH VS. RLEN = sLength=0: -1.0 (0.0)
| RLEN = rlen>sLength: -2.0 (1.0)
ODD_DIGIT = odd_digit=[0-15]
| SLENGTH = OddLength: odd_digit (1.0)
| SLENGTH = EvenLength: -1.0 (3.0/1.0)
| SLENGTH = Empty: odd_digit (2.0)
ODD_DIGIT = odd_digit>15: -3.0 (2.0)
ODD_DIGIT = odd_digit<-1: -3.0 (1.0)

Figure 5 First decision tree for B’s TS + B’s CP

9

root causes are complete with respect to the PackHexChar
program (seven of the nine problems discussed in Section
4.1 where observed), though future work will need to
investigate further whether those taxonomies need to be
extended. Furthermore, we observed that based on our
students’ test suites, who can be considered competent
testers in terms of training, we could achieve a final CP
specification and test suite in two to three improvement
steps [6].

If we step back to reflect on the role of machine
learning in the MELBA process, the case study clearly
illustrated the necessity to abstract out rules
characterizing relationships between inputs, environment
conditions, and outputs, from the test specifications and
corresponding test suites. For the student for which we
report results, we discovered that the student failed to
recognize that the program compact the first RLEN
hexadecimal characters in the input string, resulting in a
missing category in student’ CP and in missing test cases.
Without the machine learning algorithm we would have
had to look at the raw test cases (perhaps at the abstract
test cases) and it would have been difficult to identify this
deficiency of the CP specification and test suite. Indeed,
analyzing the raw (or even abstract) test cases (i.e.,
deciphering the test case description or test case
implementation), would show─albeit with difficulty given
the number of test cases─what is actually exercised, not
necessarily what is not exercised. On the other hand, the
machine learning algorithm provides useful information
(e.g., misclassifications), thus suggesting that something
is wrong and should be investigated.

By analyzing the size and mutation scores associated
with the test suites, we can conclude that with a
reasonable increase in test cases (8), we found a
significant number of additional faults (7). However,
though our results also showed that our heuristic to
remove redundant test cases leads to significant reduction
in test suite size (~50%), a small reduction in the number
of faults detected may also be observed. Future work will
have to investigate refined heuristics. Though, due to size
constraints, only the results of one student could be
reported here, the student was selected as representative
of the cases that we have investigated [6].

6 RELATED WORK

We see two different areas of work related to the
MELBA technology. First, our work bears some
similarities with techniques that learn program behavior
[1, 5, 17, 27]. Our work differs from those in a number of
ways: (1) They all involve the instrumentation of the
source code to collect execution traces (e.g., calls to APIs
[1], control flow graph [5]); (2) They produce different
kinds of (reverse-engineered) specification (e.g., ADTs
[1], ‘likely invariants’ [17, 27], as defined in [13]); (3)

They provide no (or little [27]) guidance regarding the
definition (or refinement) of test cases (some rely on an
automatic test data generator [5]).

A second area of related works are those techniques
that attempt to improve test suites [3, 4, 10, 12, 30].
Again, our work differs from those in a number of ways:
(1) They all involve the instrumentation of the source
code to collect execution traces (e.g., specific statements
to reverse-engineer ‘likely invariants’ [10]) possibly from
actual users in the field [12]; (2) A learning algorithm is
not always used to help the user improve test suites (e.g.,
[12]) or no real guidance for the generation of new test
cases is always provided (e.g., [30]); (3) When test data
are automatically generated, only rudimentary algorithms
are used (e.g., simple constraint solving algorithms [10]);
(4) They rely on different kinds of (reverse-engineered)
specification (e.g., ‘likely invariants’ [10], as defined in
[13]); Z specification [30].

Other research activities are related, as they involve
some form of learning mechanism, but have a different
overall objective than improving test suites: To
understand failure conditions by profiling deployed
software [16]; To improve diagnosability by pinpointing
faulty statements with a high accuracy [4] (using
Tarantula [20]); To identify feasible paths in a control
flow graph with high traversing probability using an
adaptive sampling mechanism [3] Many other
applications of machine learning techniques to software
engineering exist in literature (e.g., [7, 14]) but are less
related to our focus on test suite and test specification
improvement.

To summarize, our approach differs from the above
with respect to one or several of the following aspects: (1)
It addresses black-box functional testing, (2) It provides
guidance in terms of new functional test cases to consider,
(3) It helps refine the test specifications from which test
cases can then be derived following a clear rationale, (4)
It does not require any program instrumentation. To
conclude, no existing technique can be directly compared
with MELBA.

7 CONCLUSION

This paper proposed MELBA, a partially automated
iterative methodology based on the C4.5 machine learning
algorithm, to help software engineers analyze the
weaknesses and redundancies of test specifications and
test suites and iteratively improve them.

The MELBA methodology takes two inputs: (i) a
predefined test suite, developed according to a possibly
unknown testing method, (ii) a (possibly imperfect) test
specification developed using the Category-Partition (CP)
strategy. Based on the CP specification, test cases are
transformed into abstract test cases which are tuples of
pairs (category, choice) associated with an output

10

equivalence class (instead of raw inputs/outputs). C4.5 is
then used to learn rules that relate pairs (category,
choice), modeling input properties, to output equivalence
classes. These rules are in turn analyzed to determine
potential improvements of the test suite (e.g., redundant
test cases, need for additional test cases) as well as
improvements of the CP specification (e.g., need to add a
category or choices).

We have illustrated the main aspects of the MELBA
methodology on a running example (the Triangle
program), and evaluated its effectiveness on test suites
and CP specifications created by fully trained 4th year
students on a small size but logically complex program.
The study showed that the iterative process can indeed
improve the CP specification to a level that is equivalent
to what an expert would likely produce within two to
three improvement cycles. The resulting test suites were
significantly more effective in terms of fault detection
while only requiring a modest size increase.

Future work will include investigating other black-box
specifications than CP, additional evaluations of MELBA
on programs of varying sizes and complexities, as well as
user-friendly, automated tool support.

8 References

[1] Ammons G., Bodik R. and Larus J. R., “Mining
Specifications,” Proc. POPL, pp. 4-16, 2002.

[2] Andrews J. H., Briand L. C., Labiche Y. and Namin A. S.,
“Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria,” TSE, 32 (8), pp. 608-624, 2006.

[3] Baskiotis N., Sebag M., Gaudel M.-C. and Gouraud S., “A
Machine Learning Approach for Statistical Software
Testing,” Proc. Int. Joint Conf. on Artificial Intelligence,
pp. 2274-2279, 2007.

[4] Baudry B., Fleurey F. and Le Traon Y., “Improving Test
Suites for Efficient Fault Localization,” Proc. ICSE, pp. 82-
91, 2006.

[5] Bowring J. F., Rehg J. M. and Harrold M. J., “Active
Learning for Automatic Classification of Software
Behavior,” Proc. ISSTA, pp. 195-205, 2004.

[6] Briand L. C., Labiche Y. and Bawar Z., “Using Machine
Learning to Refine Black-box Test Specifications and Test
Suites,” Carleton Univ., Tech. Report SCE-07-05, 2007.

[7] Briand L. C., Labiche Y. and Liu X., “Using Machine
Learning to Support Debugging with Tarantula,” Proc.
ISSRE, pp. 137-146, 2007.

[8] Chen T. Y., Poon P.-L., Tang S.-F. and Tse T. H., “On the
Identification of Categories and Choices for Specification-
Based Test Case Generation,” IST, 46(13), pp. 887-
898,2004.

[9] Cohen W. W. and Singer Y., “Simple, Fast, and Effective
Rule Learner,” Proc. AAAI/IAAI, pp. 335-342, 1999.

[10] Csallner C. and Smaragdakis Y., “DSD-Crasher: A Hybrid
Analysis Tool for Bug Finding,” Proc. ISSTA, pp. 245-254,
2006.

[11] Demeyer S., Ducasse S. and Nierstrasz O., Object-Oriented
Reengineering Patterns, Morgan Kaufmann, 2003.

[12] Elbaum S. and Diep M., “Profiling Deployed Software:
Assessing Strategies and Testing Opportunities,” TSE, 31
(4), pp. 312-327, 2005.

[13] Ernst M. D., Cockrell J., Griswold W. G. and Notkin D.,
“Dynamically discovering likely program invariants to
support program evolution,” TSE, 27 (2), pp. 1-25, 2001.

[14] Francis P., Leon D., Minch M. and Podgurski A., “Tree-
Based Methods for Classifying Software Failures,” Proc.
ISSRE, pp. 451-462, 2004.

[15] Grochtmann M. and Grimm K., “Classification Trees for
Partition Testing,” STVR, 3 (2), pp. 63-82, 1993.

[16] Haran M., Karr A., Last M., Orso A., Porter A., Sanil A.
and Fouche S., “Techniques for Classifying Executions of
Deployed Software to Support Software Engineering
Tasks,” TSE, 33 (5), pp. 1-18, 2007.

[17] Harder M., Mellen J. and Ernst M. D., “Improving Test
Suites via Operational Abstraction,” Proc. ICSE, pp. 60-71,
2003.

[18] Hartmann J., Vieira M., Foster H. and Ruder A., “A UML-
Based Approach to System Testing,” Innovations in
Systems and Software Eng., 1 (1), pp. 12-24, 2005.

[19] Hartmann J., Vieira M. and Ruder A., “UML based Test
Generation and Execution,” Proc. Workshop on Software
Test, Analyses and Verification, 2004.

[20] Jones J. A. and Harrold M. J., “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” Proc.
ASE, pp. 273-282, 2005.

[21] Jorgensen P. C., Software Testing: A Craftsman's
Approach, CRC Press, 2nd Edition, 1995.

[22] Ma Y.-S., Offutt A. J. and Kwon Y.-R., “MuJava: A
Mutation System for Java,” Proc. ICSE, pp. 827-830, 2006.

[23] Maki-Asiala P. and Matinlassi M., “Quality Assurance of
Open Source Components: Integrator Point of View,” Proc.
COMPSAC, pp. 189-194, 2006.

[24] Marick B., The Craft of Software Testing, Prentice Hall,
1995.

[25] Michlmayr M., Hunt F. and Probert D., “Quality practices
and problems in free software projects,” Proc. Int.
Conference on Open Source Systems, pp. 24-28, 2005.

[26] Ostrand T. J. and Balcer M. J., “The Category-Partition
Method for Specifying and Generating Functional Test,”
Communications of the ACM, 31 (6), pp. 676-686, 1988.

[27] Pacheco C. and Ernst M. D., “Eclat: Automatic generation
and Classification of Test Inputs,” Proc. ECOOP, pp. 504-
527, 2005.

[28] Pasquini A., Crespo A. and Matrelle P., “Sensitivity of reli-
ability-growth models to operational profiles errors vs
testing accuracy,” Trans. on Reliability, 45 (4), pp. 531-
540, 1996.

[29] Quinlan J. R., C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993.

[30] Singh H., Conrad M. and Sadeghipour S., “Test Case
Design Based on Z and the Classification-Tree Method,”
Proc. ICFEM, pp. 81-90, 1997.

[31] Witten I. H. and Frank E., Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufman, 2005.

[32] Zhao L. and Elbaum S., “Quality assurance under the open
source development model,” JSS, 66 (1), pp. 65-75, 2003.

