
Softw Syst Model
DOI 10.1007/s10270-008-0099-7

REGULAR PAPER

A UML-based quantitative framework for early prediction
of resource usage and load in distributed real-time systems

Vahid Garousi · Lionel C. Briand · Yvan Labiche

Received: 22 June 2006 / Revised: 9 July 2008 / Accepted: 17 July 2008
© Springer-Verlag 2008

Abstract This paper presents a quantitative framework for
early prediction of resource usage and load in distributed
real-time systems (DRTS). The prediction is based on an
analysis of UML 2.0 sequence diagrams, augmented with
timing information, to extract timed-control flow informa-
tion. It is aimed at improving the early predictability of a
DRTS by offering a systematic approach to predict, at the
design phase, system behavior in each time instant during
its execution. Since behavioral models such as sequence dia-
grams are available in early design phases of the software
life cycle, the framework enables resource analysis at a stage
when design decisions are still easy to change. Though we
provide a general framework, we use network traffic as an
example resource type to illustrate how the approach is

Communicated by Dr. Sebastien Gerard.

The initial work of this paper started when V. Garousi was a Ph.D.
student at the Software Quality Engineering Laboratory at Carleton
University.

V. Garousi (B)
Department of Electrical and Computer Engineering,
Software Quality Engineering Research Group,
University of Calgary, 2500 University Drive NW,
Calgary, AB T2N 1N4, Canada
e-mail: vgarousi@ucalgary.ca

L. C. Briand
Simula Research Laboratory and University of Oslo,
P.O. Box 134, Lysaker, Norway
e-mail: briand@simula.no; briand@sce.carleton.ca

L. C. Briand · Y. Labiche
Department of Systems and Computer Engineering Software
Quality Engineering Laboratory, Carleton University,
1125 Colonel By Drive, Ottawa,
ON K1S 5B6, Canada
e-mail: labiche@sce.carleton.ca

applied. We also indicate how usage and load analysis of
other types of resources (e.g., CPU and memory) can be per-
formed in a similar fashion. A case study illustrates the fea-
sibility of the approach.

Keywords Resource usage prediction · Load analysis ·
Load forecasting · Resource overuse detection · Real-time
systems · Distributed systems · UML

Abbreviations
ASA Automatic system agent
CCFG Concurrent control flow graph
CCFP Concurrent control flow path
CFP Control flow path
DTCCFP Distributed timed concurrent control

flow path
LFQ Load forecasting query
MBLF Model-based load forecasting
MBPA Model-based predictability analysis
MBRUA Model-based resource usage analysis
NDD Network deployment diagram
PA Predictability analysis
DRTS Distributed real-time system
RUA Resource usage analysis
RUD Resource usage definition
RUM Resource usage measure
RUQ Resource usage query
SCAPS SCAda-based power system
SD Sequence diagram
SDS Sequence diagrams schedule
TC Tele-control unit
TCCFP Timed concurrent control flow path
UML-SPT UML profile for schedulability,

performance, and time

123

V. Garousi et al.

1 Introduction

Distributed real-time systems (DRTS) (referred to as “sys-
tems” in the remainder of this paper) are becoming more
important to our everyday life. Examples include command
and control systems, aircraft aviation systems, robotics, and
nuclear power plant systems [1]. Their development and ver-
ification and validation are difficult as engineers have to
account for real-time constraints [1]. An important part of
their verification and validation is to analyze how different
resources (e.g., network, memory, CPU) are utilized. If a sys-
tem overuses a resource (overload conditions) or uses it in
an invalid way (e.g., violating mutual exclusion), functional
and/or non-functional failures may be inevitable.

Predictability Analysis [2–4] aims at analyzing a system’s
resource usage before the system is deployed or even imple-
mented. It is required by various activities that designers
perform to assure that the systems they develop are safe,
reliable, and satisfy time constraints. For example, Resource
usage analysis and verification aims at ensuring that a sys-
tem accesses resources in a valid manner as this can have an
important impact on program correctness [5,6]. For example,
there are often objects that should be accessed in a mutually
exclusive manner. Furthermore, controlling the way that soft-
ware consumes resources is an important concern for soft-
ware executing on embedded devices, such as smart cards,
where memory is limited [7]. Load forecasting is to predict
server workloads [8,9], and has been used for a variety of
purposes. For instance, load forecasting can be used to pre-
dict the running time of a task on a host by predicting the load
the task would encounter on that host [9]. Load forecasting
can also be used to predict load in the context of internet-
based systems and web services (e.g., [10,11]). Load fore-
casting results are also usually used to perform load balancing
and load sharing (e.g., [11]) to prevent load-related failures.
Resource usage analysis aims at predicting the usage pat-
tern of scenarios in a system for a resource type (e.g., CPU
usage pattern of a given procedure), while load forecasting
takes place at a higher level of granularity and is usually per-
formed for hosts and distributed nodes to analyze the amount
of load a node is processing (e.g., number of requests a web
server is handling at a time instance).

The above analyses are typically performed late during
software development, typically when the software is
deployed, and one can analyze how the system actually
utilizes resources. Alternatively, such analyses can be per-
formed in early phases of software development, before any
implementation is available, and the resource usage is then
predicted. The advantage of the latter model-based approach
is that during early stages of development, design decisions
are still quite easy (and inexpensive) to change, whereas late
design changes are known to be significantly more expensive
[12]. One difficulty though is that any such early analysis

must rely on estimates (e.g., execution times, transmission
of data over the network) which are known to be difficult to
obtain [1]. But approximations, simplifications, and assump-
tions are however necessary when the goal is to provide
designers with a tool to make predictions based on what is
known at design time. There are certainly many things that
are not known yet regarding the implementation and execu-
tion that will affect resource usage and load. But having a tool
allowing designers/architects to predict based on what they
know at early design stages is a way to support early design
decisions and identify potential bottlenecks that will have
to be carefully watched in the remainder of development.
Indeed, according to the Software Performance Engineer-
ing guidelines [13], if unacceptable resource usage and/or
load are discovered late in the project, it is necessary to
either abandon the system entirely or go through redefin-
ition, redesign and redevelopment phases until the system
becomes acceptable. Both of these options are much more
expensive than validating resource usage and load goals from
the beginning of the project.

In the context of model-based software development, the
unified modeling language (UML) [14] is now the de-facto
standard notation and has been adopted for building time-
critical and resource-critical distributed systems. Therefore,
model-based predictability analysis (MBPA) techniques
(such as resource usage analysis and load forecasting) must
be developed for exploiting UML models early in the design
process. Several MBPA techniques have been proposed in
the literature (e.g., [2,4,15–20]), from which a few make
use of UML models, specifically activity and sequence dia-
grams. They however support analysis techniques that are
different, though complementary to ours, such as response
time and throughput analysis, schedulability analysis and
optimal priority assignment [16]. Furthermore, no existing
work addresses the problem of timed resource usage and
load analysis based on the analysis of messages and their
parameters and return values specified in UML models.

For practical reasons, in order to increase the applicability
of our approach, we also aim at using UML models that have
been built for the purpose of designing systems, as opposed
to models specifically built for resource usage analysis.

This paper presents a quantitative UML-based MBPA
framework. It consists in analyzing the control flow in UML
2.0 Sequence Diagrams (SD) [21] which are assumed to be
augmented with timing information as it is usually the case
for Real-Time (RT) systems [22]. Our ultimate goal is to
investigate different aspects of MBPA. As a starting point,
two MBPA methods are discussed in this paper: resource
usage analysis and load forecasting; as they are among the
most common analyses discussed in the literature (e.g.,
[2–4]), and we mainly focus on one resource type, namely
network traffic. Two other resources (CPU and memory) are
also discussed, though in much less details as their treatment

123

A UML-based quantitative framework

follows very similar principles. The approach is illustrated
with examples and a case study is performed to demonstrate
its feasibility.

Resource usage analysis (RUA) and load forecasting
essentially relate to the behavior of a system, i.e., the exe-
cutions of a system’s behavioral scenarios consume resource
and entail load on system entities. UML provides ways to
model the behavior of an object-oriented (OO) system using
interaction (e.g., sequence) diagrams. Therefore, perform-
ing RUA and load forecasting on behavioral UML diagrams
should be advantageous compared to techniques based on
source code (e.g., [6]) and runtime information since design
decisions are significantly easier to change before the system
is implemented.

The rest of this article is structured as follows. Section 2
provides background information, which includes an over-
view of the technique we use for control flow analysis of
sequence diagrams. A survey of related works is presented
in Sect. 3. Section 4 presents an overview of our predictability
analysis approach: Prediction of resource usage is discussed
in Sect. 5 and load forecasting is described in Sect. 6. Sec-
tion 7 illustrates how our MBPA approach can be used for
other purposes. Section 8 presents the set up and results of a
case study. Finally, Sect. 9 concludes the article and discusses
some of the future research directions.

2 Background

Section 2.1 introduces the UML profile for schedulability,
performance and time (UML-SPT) [22], and Sect. 2.2 sum-
marizes the technique we have developed to perform control
flow analysis of UML 2.0 sequence diagrams [23].

2.1 UML profile for schedulability, performance, and time

Since its adoption as a standard, the UML has been used in
a large number of time-critical and resource-critical distrib-
uted systems [24–28]. Based on this experience, a consensus
has emerged that, while being useful, UML is lacking some
modeling notations in key areas that are of particular concern
to designers. In particular, the lack of a quantifiable notion of
time was recognized as an obstacle to its broader use in the
distributed and embedded domains. To address those needs,
the OMG adopted the UML-SPT [22].

Note that the UML-SPT was the standard profile when
the first draft of this paper was prepared. As of the time of
writing the final version of this paper (March 2008), the OMG
is working on the finalization stage of a new improved profile,
called the UML profile for modeling and analysis of real-time
and embedded systems (MARTE)[29], which is expected to
replace SPT in the near future. The framework reported in
this paper can be modified to be applicable with MARTE as

its time modeling specification seems to be similar to that of
SPT.

The UML-SPT proposes a framework for modeling real-
time systems using UML. The profile is now popular in the
research community [15,30–32] and is getting accepted in
industry [33]. An example SD annotated with timing infor-
mation using the UML-SPT is shown in Fig. 1. It illustrates
some of the extensions to UML that are specified in the UML-
SPT.

As defined by the UML-SPT, the “RTstimulus” stereotype
models a timed stimulus and can be attached to action execu-
tions that generate stimuli (such as call action and method).
RTstart and RTend tagged-values indicate “the start and end
times of the stimulus, corresponding to the stimulus gener-
ation and stimulus reception” [22]. In Fig. 1, message A is
sent at time 0 ms, which gives a time origin for the sequence
diagram (see below) and received at time 2 ms, and message
C is sent at time 7 ms (after A). Both RTstartand RTend are
of type RTtimeValue [22], which is a general mechanism for
specifying time values in UML-SPT models. The general for-
mat for expressing time value expressions using RTtimeValue
is described in [22]:

〈timeV alStr〉 ::=
(〈timeStr〉|〈dateStr〉|〈dayStr〉|〈metricT imeStr〉)

[“, ”〈clock − id〉]
where timeStr, dateStr, dayStr and metricTimeStr are used
to express second/minute/hour, day/month/year, days of a
week, and Probability Distribution Functions for time, respe-
ctively. The optional clock-id value denotes the clock mech-
anism used, e.g., International Atomic Time (TAI).

Note that there is no constraint in the UML-SPT profile
requiring that every message in a SD be specified with timing
information, and our approach does abide to this (note that
this is not the case in Fig. 1). We will see later in this document
that, since our technique is based on specified timing infor-
mation, messages without timing information are simply not
accounted for during resource usage and load analysis. As
for any model-based technique, the results of our technique
(e.g., accuracy) depend on the amount and quality of the
information provided as input.

As specified in the UML-SPT, timing information is either
absolute or relative, and in the latter case, it is “relative to
the event whose timing mark value is zero” [22]. This is the
case in Fig. 1 where the first message (i.e., A) has a start-
ing timing mark of 0, and therefore, all the other messages’
timing information are relative to this message’s start time.
If no such event exists, “the interpretation of the [timing]
values is application specific (i.e., they may be relative or
absolute depending on convention)” [22]. In this latter case,
the UML-SPT does not indicate how the “application spe-
cific” semantics is specified by the designer (using the UML-
SPT notation). For instance, the designer could have a

123

V. Garousi et al.

SD M

Object5 Object3 Object4o1

{node=n1}
o3

{node=n1}
o4

{node=n4}
Object2o5

{node=n5}

C

ED

F

G

[condition2]loop
H

I

Object1
o2

{node=n2}

opt [condition1]

ref
N

«RTstimulus»
{RTstart=(0,'ms')
RTend=(2,'ms')}

«RTstimulus»
{RTstart=(3,'ms')
RTend=(6,'ms')}

«RTstimulus»
{RTstart=(7,'ms')
RTend=(8,'ms')}

«RTstimulus»
{RTstart=(9,'ms')
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(9,'ms')
RTend=(10,'ms')}

«RTstimulus»
{RTstart=(10,'ms')
RTend=(12,'ms')}

«RTstimulus»
{RTstart=(13,'ms')
RTend=(14,'ms')}«RTstimulus»

{RTstart=(14,'ms')
RTend=(15,'ms')}

«RTstimulus»
{RTstart=(17,'ms')
RTend=(19,'ms')}

A

B

Fig. 1 An (abstract) example SD annotated with timing information using the UML-SPT

separate application specific semantics for each SD, or an
application specific semantics for all the SDs of the system,
and this information would likely be specified with some
UML-SPT or MARTE stereotype.

In order to proceed with our approach, we adopted one
possible semantics which matches standard UML-based
object-oriented software development (e.g., [34]). If a SD
corresponds to a use case that is directly triggered by an
actor, then we require that the first message of the SD be
specified with a start time equal to 0. Otherwise, the SD is
triggered by another SD (using an InteractionUse construct
[14]), which corresponds to either an include or an extend
relationship between the corresponding use cases. If SD A is
triggering SD B, then the triggering time of B (as specified
in A) is the time origin for the time information of all the
messages in B, and the first message in B does not need a
timing information equal to 0.

It is worth noting that the SPT specification (for UML
1.x) does not indicate how timing information associated to
messages in a loop combined fragment (UML 2.0) have to
be interpreted. Recognizing that a UML 2.0 loop combined
fragment is in fact a while loop, i.e., the condition is evaluated
before each iteration [14], we made the following assump-
tions: the time it takes to evaluate the condition of a loop is
the same for each iteration of the loop and is merged with the
triggering time of the first message of the loop (e.g., evalua-
tion of condition 2 in Fig. 3 takes 1 ms and is included in the
duration of message H). This is a temporary but reasonable
solution while waiting for an update in the final version of
MARTE. Start and end times of messages in loop iterations
(after the first one) are calculated accordingly based on the

original timing information provided in the SD, e.g., in the
second iteration of the loop in Fig. 3, Hand I will start at 14
and 17 and end at 16 and 18, respectively (14 ms was the end
time of messageI in the first iteration).

UML 2.0 sequence diagrams and their composition are
based on the semantics of Message Sequence Charts (MSCs)
[35]. There has been some work on adding the notion of
time to MSCs. For instance, time constraints between mes-
sages in one or different MSCs can be defined [36]. This is
very similar to our assumption regarding included SDs dis-
cussed above, except that instead of asking the designer to
define a time constraint (between the triggering message of
the included SD and the first message of the included SD),
we assume the two time instants are the same. More details
on time and compositional semantics of SDs and MSCs can
be found in related work (e.g., [36,37]).

Note that the current article assumes that timing informa-
tion is already available, and that some form of schedula-
bility analysis has been successfully performed (e.g., [38]).
A number of techniques can be used to estimate these mes-
sage execution times. Most of them either rely on some form
of (semi-)automated source code analysis of the tasks (e.g.,
[39]) or some type of runtime monitoring of task executions
(e.g., [40]). These techniques cannot be used in our context
since they require that the system be implemented whereas
we assume our approach is used during the design stages.
Another approach to obtain such information, at design time,
is to estimate the source lines of code for tasks (e.g., using past
experience in developing similar tasks) and use benchmarks
of the selected programming language executions on the
selected hardware [41]. Early predictions necessarily imply

123

A UML-based quantitative framework

1 SD::InteractionFragment.allInstances->forAll(interFrag:InteractionFragment|
2 CCFG::InitialNode.allInstances->exits(in:InitialNode|
3 in.activity=Utility::Util.getCCFG(interFrag) and
4 in.outgoing->includes(flow:ControlFlow|
5 getCCFG(interFrag).node->exits(an:ActivityNode|
6 an.inFlow->includes(Utility::Util.getFirstMessage(interFrag).sendEvent)
7 and flow.target=an
8)
9)
10)

Fig. 2 OCL specification of rule #2 in Table 1

A B C

E

H

[condition2]

[else]

D

I

F

G

Call
Node

Reply
Node

Legend

[else]

[condition1] CCFG(N)

...

Fig. 3 CCFG of the SD in Fig. 1

simplifications, approximations, and assumptions (e.g., one
can specify pessimistic, optimistic, and expected loads using
the profile), as discussed by Gomaa [41], but allow early
design assessments and decision making. It is a tradeoff.
Our approach is meant to be practical, scalable, and cost-
effective and is hence not based on complex, detailed mod-
eling and complex model transformations. Only case studies
will tell whether assumptions are acceptable, e.g., our con-
trolled experiment in Sect. 8, and this is the objective of the
study reported in this work. For instance, our recent work on
model-based stress testing [42], that relies on the resource
usage and load prediction techniques reported in the current
paper, showed that, even if the timing information of mes-
sage are estimated, one can define stress test cases that do
entail maximum network traffic and reveal faults.

Last, it is worth noting that the level of precision of the
time information will of course drive the level of precision
of the RUA results.

2.2 Control flow analysis of UML 2.0 SDs

The UML 2.0 SD notation [21] provides various program-
like constructs such as conditions, loops, and procedure calls,

as well as asynchronous messages and parallel combined
fragments to model parallelism, thereby allowing a designer
to model a large variety of flows of executions in one single
view.

We presented a technique to analyze these flows of exe-
cutions [23]. Based on the well-defined UML 2.0 activity
diagrams, we proposed an extended activity diagram meta-
model, referred to as Concurrent Control Flow Graph (CCFG),
to support control flow analysis of UML 2.0 SDs. Each SD
is transformed into a CCFG and the mapping between a SD
and the corresponding CCFG was formally specified as a set
of Object Constraint Language (OCL) [43] rules. Nodes in
a CCFG correspond to messages in the SD, and edges in
a CCFG denote possible sequential and concurrent flows of
executions between messages in the SD. Concurrency in a SD
(either asynchronous messages or par combined fragments)
map to fork and join nodes in the CCFG. Additionally, when
a SD refers to another SD, there exist edges connecting their
corresponding CCFGs to form an Inter-SDCCFG, which is a
concept similar to the inter-procedural CFG [44]. We defined
14 OCL mapping rules, listed in Table 1, that relate elements
of an instance of the SD metamodel to elements of an instance
of the CCFG metamodel. As an example, Fig. 2 shows the
OCL specification of rule #2 in Table 1. This rule speci-
fies that the first message of an SD is mapped to the edge
outgoing from the initial node of the corresponding CCFG.
More specifically, each interaction fragment in a SD (line
1 in Fig. 2) has an initial node (lines 2–3), and this initial
node’s outgoing flow (i.e., edge in the CCFG) maps to the
first message of the interaction fragment (lines 4–7). Note
that to reduce the complexity of our OCL rules, we defined
several utility functions inside a utility class Util. In Fig. 2,
getCCFG() returns the CCFG mapped to an interaction frag-
ment, and getFirstMessage() returns the first message of a
given interaction fragment. Additional details, including a
description of the CCFG metamodel and all the OCL consis-
tency rules, are provided in a technical report [45].

As an illustrative (abstract) example, the SD of Fig. 1 is
mapped to the CCFG of Fig. 3 by applying our transformation

123

V. Garousi et al.

Table 1 Mapping rules from SDs to CCFGs [23]

Rule # SD feature CCFG feature

1 Interaction Activity

2 First message end Flow between initial node and first control node

3 SynchCall/SynchSignal Call node

4 AsynchCall or AsynchSignal (Call node + Fork node) or reply node

5 Message send event and receive event Control flow

6 Lifeline Object partition

7 par Combined fragment Fork node, join node and activities for the interaction fragments

8 loop Combined fragment Decision node and activities for the interaction fragments

9 alt/opt Combined fragment Decision node and activities for the interaction fragments

10 break Combined fragment Activity edge and activities for the interaction fragments

11 Last message ends Flow between end control nodes and final node

12 Interaction occurrence Control flow across CCFGs

13 Polymorphic message Decision node

14 Nested interaction fragments Nested CCFGs

technique1: Activity node B in Fig. 3 corresponds to message
B in Fig. 1; The flow from activity node A to activity node
B in Fig. 3 corresponds to message Abeing ahead of mes-
sage B in terms of control flow in Fig. 1; The decision node
in Fig. 3 with two outgoing edges labeled with [condition1]
and [else] corresponds to the alternative interaction fragment
labeled with [condition1], a generic condition, in Fig. 1; The
fork nodes in Fig. 3 are due to asynchronous messages C and
E in Fig. 1; The CCFG of triggered SD N (in the alternative
combined fragment in Fig. 1) is not detailed in Fig. 3 but
edges to its start node and from its end node appear, illustrat-
ing the notion of inter-SD CCFG.

We showed in [23] that our OCL rules and CCFG meta-
model are complete, i.e., the CCFG metamodel has all the
classes and associations needed, and the rules are adequate
for the purpose of control flow analysis.

Based on the CCFG, we defined the notion of Concurrent
Control Flow Paths (CCFPs), which are a generalization of
the conventional Control Flow Path concept to account for
concurrency [23]. Each CCFP is defined as a concurrent path,
starting from the initial node of the CCFG to its final node.
Concurrent paths include all the branches going out from a
fork node in a CCFG. A CCFP is derived by traversing the
CCFG from the initial node to the final node and concatenat-
ing all the nodes in the path, in order. Similarly to traditional
control flow analysis, special considerations regarding deci-
sion nodes should be made in terms of conditions and loops,
i.e., two different CCFPs for true/false edges of a conditional
node should be derived. For instance, the loop made of nodes
H and L in Fig. 3 can lead to an infinite number of paths.

1 Note that the UML-SPT notation in Fig. 1 is not required for control
flow analysis. UML-SPT is used in Fig. 1 as this SD will be our running
example in Sect. 5.

FG

HI
DE

ABC
FG

HI
DE

ABC

FG

HI
DE

ABC
FG

DE
ABC

NN 2,

3

4

1,

2

3

21

)()(

Fig. 4 Some of the CCFPs of the CCFG in Fig. 3

Applying a strategy often used when deriving control flow
paths from source code, one can try to bypass the loop (if pos-
sible), take it only once, a representative or average number,
and a maximum number of times (other loop bound analysis
can be used to identify minimum and maximum numbers of
execution [46]). Furthermore, when SDs call each other (as it
is the case in Fig. 1), the CCFPs of the caller SD will include
the CCFPs of the called SD.

Applying the above procedure generates a number of
CCFPs, four of which are shown in Fig. 4: each CCFP is iden-
tified by symbol ρ, which will denote CCFPs in the remainder
of this article: ρ1 (the loop of SD M is bypassed), ρ2 (the loop
is taken once), ρ3 (the loop is taken a representative number
of times, in this case twice), and ρ4 (the loop is taken a max-
imum number of times, in this case three times). ρN ,1 and
ρN ,2 are two of the CCFPs of the SD N which are included
in ρ3 and ρ4.ρ1 and ρ2 are derived by taking the false (else)
branch of condition1, while ρ3 and ρ4 are derived by taking
its true branch.

These CCFPs are represented textually based on a gram-
mar specified in [23]. Following our notation, ρ3 specifies
that the CCFP starts with nodes A, B, and C executed in
sequence, followed by two concurrent executions (fork nodes
in Fig. 3): the execution of F followed by G on one hand, the
execution of D and E followed by two executions of H and I
in sequence (loop), on the other hand.

123

A UML-based quantitative framework

When messages of a SD are annotated with timing infor-
mation (using the UML-SPT profile), we refer to the corre-
sponding CCFPs as Timed Concurrent Control Flow Paths
(TCCFP). The concept of TCCFP is defined to emphasize the
inclusion of timing information in CCFPs. All the CCFPs in
Fig. 4 are also TCCFPs (although our notation for CCFPs
does not indicate timing information, the mapping between
the SD and the CCFG, and then the identification of CCFPs
allows us to retrieve timing information and identify whether
a CCFP is a TCCFP).

3 Related work

Among MBPA techniques reported in literature (e.g., [2,4,
15–20]), a few make use of UML models, specifically activity
and sequence diagrams, to analyze resource usage and load
(e.g., [16]). A comprehensive survey of recent research in
the field of model-based performance prediction in software
development is reported in [17].

UML-MAST (Modeling and Analysis Suite for Real-Time
Applications) [16] is a modeling and analysis suite. It was
developed concurrently to UML-SPT with similar goals but it
resulted in slightly different extensions of UML (see [16] for
details). For instance, UML-MAST suggests the use of spe-
cific stereotypes (e.g., RT_Situation) to model workloads and
timing requirements. UML-MAST diagrams are annotated
with resource usage information such as minimum and max-
imum transmission times of data over network and timing
information such as Best- and Worst-Case Execution Times.
This data can then be used for analysis purposes, e.g., block-
ing times of resources (due to mutual exclusion), and worst
response times. Besides the fact that UML-MAST suggests
extensions to UML that have not been standardized by the
OMG—our choice of UML-SPT is indeed primarily driven
by its standardization, the fundamental difference between
UML-MAST and our work is that MAST supports analysis
techniques that are different though complementary to ours:
they focus on schedulability analysis and optimal priority
assignment (UML-MAST) whereas we investigate resource
usage and load analysis.

Other techniques reported in literature rely on either
behavioral models [4,15] or structural (architectural) models
[2], and, similarly to [16], focus on different though com-
plementary analysis techniques: validation and performance
evaluation [2,15], and schedulability analysis [4].

In Bernardi et al. [15], the authors report on the use of
UML 1.x sequence diagrams and statecharts for the valida-
tion and the performance evaluation of systems. The authors
assume that the system is specified as a set of statecharts and
that sequence diagrams are used to represent “executions of
interest”, i.e., scenarios of execution. It is argued that UML
1.x lacks a formal semantics and hence it is not possible to

apply, directly, mathematical techniques on UML models for
system validation. To reach this goal, the authors propose an
automatic translation of sequence diagrams and statecharts
into Generalized Stochastic Petri-nets, and a composition
of the resulting Petri-net models into a set of mathemati-
cal models suitable for performing two types of analysis: (1)
Correctness analysis and (2) Performance analysis. The for-
mer analysis verifies that the scenario represented by a SD is
admissible in the sense that there exists at least a set of inputs
which, when fed to the model, fires the path (in the composed
model) specified by the scenario. Performance analysis is
performed by measuring several metrics, defined in the arti-
cle, which are computed by measuring the crossing time of
tokens between different places. The idea of translating UML
models to Generalized Stochastic Petri-nets is similar to our
control flow analysis approach, but it only considers scenario
diagrams (SDs with one CFP) while the current work takes
into account the program-like constructs (e.g., if, loop) in
UML 2.0 SDs.

The work in Feiler et al. [2] presents a model-based
architectural approach for improving predictability of per-
formance in embedded systems. The approach is component-
based and utilizes an automated analysis of task and
communication architectures to provide insight into schedu-
lability and reliability during design. The MetaH language
and toolset from Honeywell [47] is used as the modeling lan-
guage. The work is based on runtime task and communication
architectural models in the MetaH language, and does not
analyze behavioral models to perform predictability analy-
sis. The authors note that partitioning (resulting from the use
of MetaH architectural models) enforces timing protection,
i.e., satisfaction of timing constraints, and thus yields more
accurate predictability. Since this work is based on architec-
tural models (which are structural, rather than behavioral),
its ability to predict behavior cannot be evaluated.

Yau and Zhou [4] presented an approach to incorporate
schedulability analysis into existing frameworks for model-
based software development. The goal is to improve the pre-
dictability of a system and increase the capability of model
refinements and code generation using the schedulability
analysis results. The authors propose a new diagram in the
context of UML-based system development, referred to as
scheduling reference diagrams. A scheduling reference dia-
gram models the timing and schedulability aspects of dis-
tributed tasks in a system. Scheduling reference diagrams
are generated from timing requirements and collaboration
diagrams, and are used to conduct schedulability analysis.
The work does not discuss how the complex control flow
structures (such as alternatives and loops) are handled. It is
thus difficult to compare it with our approach, which is based
on UML 2.0 SDs. Furthermore, the authors focus on schedu-
lability analysis and do not comment on other analyses such
as resource and load forecasting.

123

V. Garousi et al.

For the purpose of performance analysis, there exist sev-
eral works (e.g., [18–20]) which transform UML models into
different types of performance models, e.g., Layered Queu-
ing Networks (LQN). The technique reported in [18] gen-
erates (scenario) Precedence Graphs (PG) from UML SDs.
Then, a global precedence graph merges different scenario
PGs and represents the behavior of the whole system. An
Extended Flow Graph is then generated based on the global
PG, in which workload data (from operational profiles) are
incorporated. A Layered Queuing Network (LQN) is built
afterwards, that is used to perform different types of per-
formance analysis, e.g., response time analysis. A similar
approach is presented in [19]. It differs from [18] in that it
uses the information specified in use case diagrams (in addi-
tion to SDs) to derive a system’s operational profile, and it
uses deployment diagrams to derive hardware and network
attributes (e.g., network bandwidth). The fundamental differ-
ences between [18,19] and our work are two-fold: (1) they
consider earlier versions of UML (i.e., 1.x) while our work
supports UML 2 (Sect. 2.2), and (2) they focus on other types
of performance analysis than resource usage and load analy-
sis and do not rely on any analysis of message parameters
and their sizes.

The book by Smith and Williams [20] is a comprehen-
sive body of knowledge on Software Performance Engineer-
ing (SPE) in the context of UML-driven development which
more or less includes the ideas and techniques discussed in
the two papers [18] and [19]. Published in 2002 (around the
time UML 2 was being finalized), it discusses that complex
UML elements (e.g., combined fragments in SDs) should be
taken into account in precise performance analysis based on
UML models. However, it does not provide the how-to on the
issue, i.e., how to perform control flow analysis when SDs
have asynchronous messages and concurrent fragments. Fur-
thermore, similar to other works, it does not discuss resource

usage and load analysis based on message parameters and
their corresponding data sizes.

In summary, our approach’s novelty is that parameters and
return values of messages in SDs and their corresponding data
sizes are accounted for during resource usage and load analy-
sis, and that we fully support the UML 2 SD notation. The
main technical contribution of our work is the way SD mes-
sages and their parameters are analyzed, using the notions
of Resource Usage Measure, Resource Usage Query, and
Resource Usage Query (Sect. 5). No other work takes such
a quantitative approach in resource usage prediction.

4 Model-based predictability analysis: an overview

The activity diagram of Fig. 5 provides an overview of our
MBPA approach. The diagram conforms to the general
model-processing framework, proposed by the UML-SPT
profile [22], where our technique acts as a model proces-
sor that takes a UML model as input, plus some additional
resource-dependent inputs (for resource usage analysis and
load forecasting), and generates the analysis results.

The UML behavioral model used as input is a set of SDs
augmented with timing information using UML-SPT: the
SDs are used to identify control flow paths and therefore
possible scenarios involving resource usage. The structure
model (class diagrams) is used to identify generalization rela-
tionships among classes to be able to appropriately handle
polymorphic behaviors of objects in SD lifelines when ana-
lyzing control flow [23]. Furthermore, as discussed in Sect. 5,
resource usage analysis will use the internal structure of
classes in the system. Network Deployment Diagrams (NDD)

in Fig. 5 are models to describe the distributed architecture
(Sect. 5.1.2) of a system, a piece of information required for

Model-Based Predictability Analysis (MBPA)

Model ProcessorUML Model

Behavior Model (Sequence
Diagrams, augmented with timing

information using UML-SPT)

Timed Concurrent Control
Flow Paths (TCCFP)

Control Flow Analysis of
Sequence Diagrams Load Forecasting

Resource Usage
Analysis

Load Forecasting
Result

Resource Usage
Result

Resource Usage
Definition

Load Forecasting Query

Structure Model (Class Diagrams)

Resource Usage
Query

Resource Usage
Measure

Sequence Diagrams Schedule

Network Deployment Diagram
(an interpretation of Package

Diagrams)

Fig. 5 Overview activity diagram of the model-based predictability analysis (MBPA) approach

123

A UML-based quantitative framework

network traffic analysis and prediction, which is the type of
RUA we focus on in this paper.

The technique then analyzes the control flow in the input
model (Sect. 2.2) and uses the resulting TCCFPs for resource
usage analysis and load forecasting. The Resource Usage
Definition (RUD), Resource Usage Measure (RUM) and
Resource Usage Query (RUQ) are input parameters for the
Resource Usage Analysis activity, and are used to tailor the
analysis to different types of resources: e.g., CPU, memory,
network traffic. The above concepts are discussed in detail
in Sect. 5.

Thanks to the concepts of RUD and RUM, our MBPA
approach is flexible as it can be easily tailored and applied
to a variety of resource types (e.g., network, CPU, mem-
ory, disk, and database). In the current article, we discuss
in detail the use of this approach to one resource, specifi-
cally network traffic, and mention two applications to other
resources, specifically CPU and memory usage.

5 Resource usage analysis

In this article, we primarily tailor the approach discussed
previously to one resource type: network traffic. Section 5.1
provides a set of fundamental definitions and concepts which
will be used for network traffic usage analysis. Specific RUD,
RUM, and RUQ for network traffic are presented in Sect. 5.2,
Sect. 5.3, and Sect. 5.4, respectively. We then define in
Sect. 5.5 a set of traffic usage measures. To demonstrate the
applicability of the approach to other resource types, Sect. 5.6
briefly presents how to tailor the approach (i.e., discusses
possible RUD and RUM) to the CPU and memory resource
types.

5.1 Definitions

5.1.1 Formalizing sequence diagram messages

As discussed in Sect. 4, our technique needs to manipulate
SD messages, and we therefore need a formal representation
for SD messages. Similar to the tabular notation for UML 2.0
SDs in Appendix D.1 of the UML 2.0 standard [21], each SD
message, in the design model of a distributed system, can be
denoted as a tuple:

message = (sender, receiver, methodOrSignalName,
msgSort, parameterList, returnList, startTime, endTime,

msgType)

where

• sender denotes the sender of the message and is itself a
tuple of the form sender = (object, class, node), where:
object is the object (instance) name of the sender; class

is the class name of the sender; node is where the sender
object is deployed.

• receiver denotes the receiver of the message and has the
same form as sender.

• method Or SignalName is the name of the method or the
signal class name on the message.

• msgSort (message sort) is the type of communication
reflected by the message, as defined in UML 2.0 [21]. It
can be either synchCall (synchronous call), synchSignal
(synchronous signal), asynchCall (asynchronous call), or
asynchSignal (asynchronous signal).

• parameterList is the list of parameters for call messages.
parameterList is a sequence of the form 〈(p1, C1, in/out),
. . . , (pn, Cn, in/out)〉, where pi is the i−th parameter
name of class type Ci and in/out defines the kind of the
parameter. For example if the call message is m(o1 :
C1, o2 : C2), then the ordered parameters set will be
〈(o1, C1, in), (o2, C2, in)〉. If the method call has no para-
meter, this set is empty.

• returnList is the list of return values on reply messages.
It is empty in other types of messages. UML 2.0 assumes
that there may be several return values for a reply mes-
sage. We show returnList in the form of a sequence
〈(var1 = val1, C1), …,(varn= valn, Cn)〉, where vali
is the return value for variable vari with type Ci .

• startTime is the start time of the message (modeled by
UML-SPT’s RTstart tagged value).

• endTime is the end time of the message (modeled by
UML-SPT’s RTend tagged value).

• msgType is a field to distinguish between signal, call and
reply messages. Although the msgSort attribute of each
message in the UML metamodel can be used to distin-
guish signal and call messages, the metamodel does not
provide a built-in way to separate call and reply messages.
Further explanations on this and an approach to distin-
guish between call and reply messages can be found in
[23].

As an example of this formalism, message A in the SD in
Fig. 1 is represented as ((o1, C1, n1), (o2, C2, n2), A,

synchCall, null, null, ‘0 ms’, ‘2 ms’, ‘Call’). Using this
formalism, different fields of a message are accessed using the
record notation. For example, given a message m, m.sender.
object refers to the sender object of message m.

5.1.2 Network deployment diagram

A Network Deployment Diagram (NDD) models the distrib-
uted architecture of a system and is specifically needed for the
RUA in this article (network traffic resource type). A NDD
complements the information available in SDs (and other
UML diagrams) about the deployment of objects on nodes
by describing the topology of a distributed system. NDDs are

123

V. Garousi et al.

Fig. 6 a An example of a
hierarchical distributed system.
b The corresponding network
deployment diagram (NDD)

n1 n2 n3 n4

network1 network2

SystemNetwork

(b)(a)

«network»
SystemNetwork

«network»
network1

«network»
network2

n1 n2 n3 n4

an extension to UML 2.0 package structures [21], where the
entire system network is the root (high level) package and
other networks and nodes are the sub-packages modeled in
a hierarchical manner. An example of a hierarchical distrib-
uted system and the corresponding NDD is shown in Fig. 6a
and b, respectively.

As discussed later, analyzing the usage of resource net-
work requires that we identify paths in the network that are
involved when messages are sent. To identify the network
path between any two given nodes, we define the network
path function getNetworkPath(ns , nr)where ns and nr are the
sender and the receiver nodes of a message, respectively. For
example, the derivation of the network path between n1(the
sender) and n4 (the receiver) is depicted in Fig. 6b and is
formally represented as:

getNetworkPath(n1, n4)

= 〈network1, System Network, network2〉

In this paper, we make a simplifying assumption: we assume
there is only one path between any two given nodes in the net-
work and therefore the getNetworkPath function returns only
one path. As a result, the proposed approach is, as reported
here, only applicable to systems in which there is only one
network path between any two given nodes (for example, our
case study system in Sect. 8). As this is out of the scope of the
current paper, the reader is referred to [48] for a detailed dis-
cussion about how to relax this assumption. In general, there
are several possible paths between two nodes in the network,
and the data sent from a node to another is actually divided
into several parts and transmitted through those paths. The
dispatching of parts is handled by networking components
of the system (e.g., routers).

Assuming the network paths’ dispatching policy does not
change during the transmission of a message (adaptive dis-
patching policies are usually used to balance load in each time
instance), the transmission shares of each of the involved net-
works stay the same during the entire transmission. Further
assuming that the share only depends on the number of paths
between the two nodes (in practice, more traffic is usually
sent through networks with higher bandwidths), we define
function netTransmissionShare to compute the share of a net-
work between two nodes as the ratio of the number of paths

between two nodes in which the network is a member of,
to the total number of paths between two nodes. Using addi-
tional information on the actual network infrastructure on the
distributed system, these two assumptions (the share depends
on the number of paths and does not change over time) can be
relaxed and a more accurate netTransmissionShare function
can be defined. The netTransmissionShare function is used
in the network traffic usage formulas in the rest of this article
to calculate the amount of traffic on a specific network. This
will enable our test methodology to estimate the anticipated
traffic on a network.

5.2 Resource usage definition

Recall that a RUD is a set of criteria to select relevant ele-
ments in a behavioral model for a specific resource. Given
that we are interested in network traffic, we must identify
from SDs how the network is used, i.e., messages that involve
the network. One possible RUD for network traffic usage
is therefore to transform TCCFPs into Distributed TCCFPs
(DTCCFPs) by removing local messages (sent between two
objects on a node) and therefore keeping only the distributed
ones (TCCFPs and DTCCFPs are types of CCFPs, which are
ordered sequences of concurrent message). A formal defini-
tion of this RUD is given in Eq. 1.

network

network

nodereceivermsgnodesendermsgmsgmsg
RUDTCCFP

DTCCFPTCCFPRUD

inmessagesLocal

}....|{
)(:

:

Equation 1 RUD of the network traffic usage analysis technique.

The start and end times of the messages in a TCCFP or
a DTCCFP are extracted from the timing information speci-
fied (using the UML-SPT profile) in the SD. As an example,
to derive the DTCCFPs of the TCCFPs in Fig. 4, we first
determine if each message in the TCCFPs is local or dis-
tributed. According to the corresponding SD (Fig. 1), all the
messages except A and B are distributed. Hence, using the
RUD in Eq. 1, the DTCCFPs corresponding to the TCCFPs
in Fig. 4 are shown in Fig. 7.

123

A UML-based quantitative framework

FG

HI
DECDTCCFP

FG

HI
DECDTCCFP

FG

HI
DECDTCCFP

FG

DECDTCCFP

3

4

2

3

21

)(
)(,

)(
)(

)(,)(

Fig. 7 DTCCFPs of the TCCFPs in Fig. 4

5.3 Resource usage measure

Recall that a RUM is a function to measure the usage of a
resource by the model elements selected by a RUD. In the
case of resource network, we define a RUM to measure (in
terms of resource usage) the distributed messages identified
in DTCCFPs, i.e., we measure the data traffic entailed by
messages on a network: RUMnetwork(msg) (Eq. 2).

attributesCa i

returnListmsgCC i

istparameterLmsgCC i

network

i

iii

ii

adataSizeCdataSizeamclassDiagrC

meOrSignalNamsg.methoddataSizemsgSignalDT

CdataSizemsgDTReply

CdataSizemsgCallDT

Signal''msgTypemsgmsgSignalDT

ReplymsgTypemsgmsgDTReply

Call''msgTypemsgmsgCallDT

msgRUMMessagemsg

.

.),|(

.),,|(

)()(:

)()(

)()(

)()(

.if;)(

''.if;)(

.if;)(

)(:

Equation 2 RUM to analyze network traffic usage.

The most data centric parts of a call, a reply, and a signal
message are parameterList, returnList (Sect. 5.1.1), and the
attributes of the corresponding signal class. CallDT, ReplyDT
and SignalDT denote the amount of Data Traffic for a call,
reply, or signal message. The data traffic for a call message
(CallDT), is the summation of data sizes of all the attributes
of each parameter class. For a reply message, data traffic is
the summation of data sizes of all the attributes of each class
in the return list (ReplyDT). Data traffic for a signal message
(SignalDT), is the data sizes of all the attributes of the signal
class referred to by the message. The data carried by a signal
message is represented as attributes of the signal instance.

To estimate the data size of a set of objects, we add up
data sizes of all the classes in the set. Let us define the data
size of a class to be the total sizes of its attributes in bytes.
Therefore the total size of the classes in a parameterList and
returnList can be an estimate for the data sizes of call and
reply messages. Admittedly, other measures of network traf-
fic can be considered. For example, a more accurate estimate
would also account for the data added by the lower layers of
the OSI (Open Systems Interconnection) network model—
such as data link and physical—to the data submitted by the
application layer of the OSI model. This, however, requires
a detailed, platform-specific analysis of packet and frame

-field1 : long[100]
-field2 : long[500]

A

-new_field_b : long[400]

B

-new_field_c : long[200]

C

Fig. 8 A class diagram showing three classes with data fields

structures in different layers of the OSI model. We however
expect the extra data to represent a small percentage of the
network traffic, an assumption that will be verified in our case
study (Sect. 8).

A dash (-) in Eq. 2 indicates that a field can take any arbi-
trary value. Note the format of parameterList and returnList,
as mentioned in Sect. 5.1. msg.parameterList (msg.returnList)
is the sequence of parameters (returns) for a call (reply) mes-
sage. The function dataSi ze(Ci) returns the data size of the
class Ci . classDiagram is the set of classes (it can be extracted
from the system’s class diagram). C.attributes denotes the set
of attributes of class C , accounting for inherited attributes
(again, it can be extracted from the system’s class diagram).
si ze(ai) is the size of an attribute ai of class C, which can
be calculated based on attribute types. If the attribute type
is an atomic type, e.g., int, long, bool, its size (in bytes) can
be found in the specification of the programming language
used to develop the system. For example, the data sizes of
primitive Java data types short, int and long are two, four
and eight bytes in Java, respectively. In case an attribute ai
is itself an object, the size of that attribute, size (ai), will be
the size of its class and can be calculated recursively using
Eq. 2. As an example, suppose a call message msg1 with
parameterList = 〈(o1, A), (o2, B)〉, where classes A and B
are defined in the class diagram of Fig. 8. Using the class
specifications of A and B, we can estimate the size of the
message msg1 as: si ze(msg1) = si ze(A) + si ze(B) =
(8∗(100 + 500)) + (8∗(100 + 500) + 8∗400) = 12.8K B

5.3.1 Effect of inheritance

When estimating the data size of a class (and the messages
using it), it is important to take into account the inheritance
relationships in which the class is involved. This might affect
the size of the messages making use of that particular class
because of dynamic binding.

For example, suppose the method signature of a method
m to be m(o1, o2 : A) : A, which means that two parame-
ters of class type A (defined in Fig. 8) are passed to method
m and an object of type A is returned. Since B and C are

123

V. Garousi et al.

sub-classes of A (Fig. 8), an object of type B and C can also
be an argument of method m, which will cause the message
to have different data sizes since B and C both define an extra
attribute (compared to A). At least three approaches can be
taken to analyze the data size of such a message:

1. One may calculate the data size of all the classes in such
inheritance relationships (classes A, B and C in the above
example) and then pick the maximum value as data size.
For example, the maximum data size of the message m
(above) using this approach can be calculated as follows
(dataSize(m) only counts the two parameters, thus the
multiplication by factor 2, since the return value is not
part of the size of the call message, but part of the return
message):

dataSi ze(m) = 2∗max(dataSi ze(A),

dataSi ze(B), dataSi ze(C))

= 2∗(8∗(100 + 500), 8∗

×(100 + 500 + 400),

8∗(100 + 500 + 200)) = 16K B

2. The probabilities of a superclass and its subclasses to be
the run-time type of an argument (given in an operational
profile for instance) can be taken into account. For exam-
ple, assume an operational profile which specifies the
following probabilities: p(A)=0.6, p(B)=0.3, p(C)=0.1.
The expected data size of the message m (above) using
this approach can then be calculated as:

dataSi ze(m) = 2∗[p(A)∗dataSi ze(A) + p(B)
∗ dataSi ze(B) + p(C)∗dataSi ze(C)]

= 2∗[0.6∗8∗(100 + 500)

+ 0.3∗8∗(100 + 500 + 400)

+ 0.1∗8∗(100 + 500 + 200))]
= 11.84K B

3. The data size of the superclass itself can be used, i.e.,
one uses a minimum value, not accounting for the child
classes’ attributes. This approach is accurate when the
programming language or the programming conventions
selected during implementation enforces that when a
parameter type is defined as being A, no subclass of A can
be used. Using this approach, the data size of the message
m (above) can then be calculated as::dataSize(m)=2*
dataSize(A)=2*(8*(100+500))= 9.6 KB

5.3.2 Indeterminism in messages sizes

Some data sizes never change given a programming language
(e.g., an int in C++ is four bytes) whereas some data sizes may

change from one message to another, from one execution to
another (e.g., a string). In the latter case, Eq. 2 can not be
applied to estimate the data size of a message. Other data
structures such as linked lists, hash tables, and trees also
may have variable sizes and introduce indeterminism during
data sizes estimation.

One simple approach to estimate data size in this latter
case is to monitor a sufficient number of runs of the sys-
tem, measure data sizes and build statistical distributions of
size values. This, however, requires that the system be imple-
mented, whereas we assume that our approach is used during
design. During design, similarly to the identification of time
information in SDs (Sect. 2.1), we have to resort to estimates
based for instance on benchmarks [41].

5.4 Resource usage query

Recall that a RUQ is a querying mechanism for RUA used
to focus on some particular aspects of the resource usage in
a system. For the network traffic usage analysis, we define
four query attributes:

• Traffic location: objects, nodes or networks (Sect. 5.4.1)
• Traffic direction (for nodes only): in, out, or bidirectional

(Sect. 5.4.2)
• Traffic type: data traffic or number of messages (Sect.

5.4.3)
• Traffic duration: instant or interval (Sect. 5.4.4)

A RUQ can be a combination of the above four query attri-
butes, such as: What is the data traffic (type) over the system
network (location) in time interval 1ms to 10ms (duration)?
We discuss the above four query attributes in more detail
next. We then define a class of traffic usage functions for
DTCCFPs which are classified based on the query attributes.
These functions compute the output of our RUA technique.

5.4.1 Location: objects, nodes or networks

If we leave out the intermediate network nodes (such as
routers and gateways), network traffic can essentially go
through two places in a system: nodes or networks. In a typ-
ical scenario, a message is initiated by a sender node, travels
along a network path (that consists of one or more networks—
Sect. 5.1.2) from the sender to a receiver node, and arrives
at the destination node where it is supposed to be handled
appropriately. It is therefore important to be able to iden-
tify the network path between two nodes. Furthermore, since
messages can have different destination (or source) objects,
possibly hosted by one node, a fined grained analysis can
focus on the traffic involving one particular object (instead
of a node or network).

123

A UML-based quantitative framework

5.4.2 Direction (for nodes only): in, out, or bidirectional

In case traffic location is node or object, we can think of
three measurements in terms of traffic direction: in, out or
bidirectional; because a node or an object is an end point
of traffic in the system. Since a network in the system only
relays traffic, i.e., it transmits traffic to other networks/nodes,
we consider only one traffic direction for networks: bidirec-
tional. For brevity, when we talk about traffic for networks
in this article, we implicitly refer to bidirectional traffic.

5.4.3 Traffic types: data traffic or number of messages

In our context, network traffic can be characterized by at
least two types: the amount of data (i.e., size) transmitted
between two distributed objects, and the frequency (or num-
ber) of distributed messages. For example, consider a simple
system made up of two nodes n A and nB . Node n A might
rarely communicate with nB , but when sending a message,
n A sends a large amount of data to nB . On the other hand, nB
may frequently send queries to n A, and get replies, but each
message and reply may have small data sizes. Therefore, both
the amount of data and the frequency of messages are relevant
to us. These two notions have already been used in a different
context, specifically stress testing distributed systems, where
it has been shown that deriving stress test cases using these
two traffic types may reveal different types of faults [49]

5.4.4 Duration: instant or interval

One can analyze network traffic at a given time instant or
over a period of time (or time interval). In the latter case, one
may for example be interested in an average amount of traf-
fic over the network. Analyzing traffic over a time interval
might be interesting, for instance when the saturation of a
specific resource over a time interval is the main concern for
developers. For example, performing a RUA over time inter-
vals can be used to assure that network buffers of a system
will never overflow. The time unit that we consider here is
the time measurement precision (e.g., milliseconds) used by
the designer in SDs (Sect. 2.1).

5.5 Resource usage analysis functions

We define a set of traffic usage functions for DTCCFPs
which are classified based on the query attributes defined
in Sect. 5.4. The naming convention of the functions is dis-
cussed in Sect. 5.5.1. For brevity, only formal definitions of
resource usage functions for network traffic location are pre-
sented in Sect. 5.5.2. The functions for node and object usage
locations are derived in a similar fashion and are presented in
[48]. Section 5.5.3 illustrates the definitions with examples.

5.5.1 Naming convention

A tree structure denoting the traffic functions’ naming con-
vention and their input parameters is shown in Fig. 9. The
root node of the tree has a null label. A function name is
determined by traversing the tree from the root to a leaf node
and concatenating all the node labels in order.

Five layers are shaded in the tree. The top four layers
correspond to the four query attributes discussed in Sect. 5.4.
By counting the number of paths from the root node of the
tree to leaf nodes, we get 28 paths (4 for networks, and 12
for node and object categories each), resulting in 28 different
traffic functions.

The bottom layer in Fig. 9 specifies the input parameters
of a traffic function whose name is determined by traversing
from the root to a leaf node. For example, consider the path
specified by the bold line in Fig. 9, i.e., function NetInsDT.
Its input parameter is (ρ, net, t). This function returns the
instant (Ins) data traffic (DT) value of a given DTCCFP (ρ)
for a given network (net) at a given time (t). Input parameters
including int in the bottom layer of Fig. 9 correspond to the
functions with interval duration. The start and end times of
an interval, i.e., int=(start, end), must be provided for such
functions. For functions with node or object traffic location,
the input parameters include either nod or obj as traffic loca-
tion, respectively. Functions with network traffic location are
described in Sect. 5.5.2. Similar functions can be defined for
node and object traffic location.

5.5.2 Traffic location: network

1. NetInsDT(ρ, net, t) returns the instant data traffic for
DTCCFP ρ on network net at time t .

Net I ns DT (ρ, net, t)

=

∑
msgi ∈Message

netT ransmissionShare

(net, msgi .sender.node, msgi .receiver.

node).

RU Mnet (msgi)/dur(msgi)

; |Message| > 0, where

Message =

msgi |msgi ∈ ρ∧
msgi .start ≤ t ≤ msgi .end∧
net ∈ get Network Path

(msgi .sender.node, msgi .receiver.node)

0 ;otherwise

123

V. Garousi et al.

Traffic Direction

Traffic Location

Traffic Duration

Traffic Type
DT MT DT MT DT MT DT MT DT MT DT MT

Ins Int Ins InsInt Int

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DT: Data Traffic
MT: Message Traffic

In
Out

Obj
Obj: Object

Bi: Bidirectional
Bi

DT MT DT MT

Ins Int

Input Parameters (p,net,t) (p,net,int) (p,nod,t) (p,nod,int)
(p,nod,t) (p,nod,int) (p,nod,t) (p,nod,int)

(p,obj,t) (p,obj,int) (p,obj,t) (p,obj,int)

Fig. 9 Naming convention and input parameters of the traffic usage analysis functions

where dur(msg)returns the time duration of a message:
dur(msg)= msg.endTime - msg.startTime. Since a mes-
sage can span over several time units, data traffic value of
a message within a time unit is its total data size divided
by its duration, which yields the message’s traffic per
time unit. This is an approximation as packets could be
sent at various rates for a message. As a simplification, we
assume a uniform distribution of traffic during the dura-
tion of a message. The getNetworkPath (sender node,
receiver node) function (Sect. 5.1.2) returns the path of
nodes connecting a sender and a receiver node.

2. NetInsMT(ρ, net, t) returns the instant message traffic
for DTCCFP ρ on network net at time t .

Net I ns MT (ρ, net, t)=|Message| , where Message

=

msgi |msgi ∈ ρ∧
msgi .start ≤ t ≤ msgi .end∧
net ∈ get Network Path(msgi .sender.node,

msgi .receiver.node)

3. NetIntDT(ρ, net, int) returns the data traffic for DTCCFP
ρ on network net over time interval int. NetIntDT can be
calculated using NetInsDT.

Net I nt DT (ρ, net, int) =
∑

t=int.start,int.start+1,...,int.end

Net I ns DT (ρ, net, t)

4. NetIntMT(ρ, net, int) returns the message traffic for DTC-
CFP ρ on network net over time interval int.

Net I nt MT (ρ, net, int) =
∑

t=int.start,int.start+1,...,int.end

Net I ns MT (ρ, net, t)

5.5.3 Examples

As an example, suppose DTCCFP ρ = cm1cm2rm1rm2
where cmi and rmi are call and reply messages, respec-
tively, and are defined in the messages’ format (Sect. 5.1.1)
as follows:

cm1 = ((o1, c1, n1), (o2, c2, n2), t (), synchCall,

〈(p1 : −), (p2 : −)〉, null, 1, 2, ‘Call’)

cm2 = ((o2, c2, n2), (o3, c3, n3), u(), synchCall,

〈(p3 : −), (p4 : −)〉, null, 3, 5, ‘Call’)

rm1 = ((o3, c3, n3), (o2, c2, n2),

null, null, null, 〈(x = u(),−)〉, 8, 9, ‘Reply’)

rm2 = ((o2, c2, n2), (o1, c1, n1),

null, null, null, 〈(y = t (),−)〉, 12, 13, ‘Reply’)

Recall that a dash (-) indicates that a field can take any arbi-
trary value (a “don’t care” field). Let us assume the system’s
NDD is the one in Fig. 10. Further assume that the sizes of the
four messages of DTCCFP ρ are calculated using the RUM
in Eq. 2 yielding the following values: cm1(90 KB), cm2(80
KB), rm1(30 KB), and rm2 (50 KB). The following traffic
functions can then be calculated.

123

A UML-based quantitative framework

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
t (ms)

t (ms)

100

KB

N
et

In
sD

T(
p,

N
et

w
or

k 1
,t)

90

40 40 30
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

#

N
et

In
sM

T
(p

,N
et

w
or

k 1
,t)

KB

NetworkNetInsDTNetworkNetInsDT

tNetworkNetInsDTNetworkNetIntDT
t

110040400

)9,,()2,,(

),,())9,2(,,(

11

9

2 11

NetInsDT(ρ,Network1,t):

NetInsMT(ρ,Network1,t):

NetIntDT(ρ,Network 1,(2,9)):

Network2

System
Network

Network1

Network3n1 n2 n3 n4

n5

Fig. 10 A simple system topology

It is true that, certain networks, e.g., Controller Area Net-
works (CAN), place limitations on transmitted data size (due
to reliability and predictability constraints). However, let us
suppose the case when a designer has specified a message
in a UML model whose real data size is going to be more
than the maximum size of packets in the underlying dedi-
cated network (e.g., 8 bytes). It is then safe to assume that
the large message will be divided into several smaller pack-
ets and then transmitted when the system is developed and
deployed. We believe the current analysis follows the above
scheme without discussing the details of specific networks.

Our framework can thus be useful when using networks of
the above types.

5.6 Resource usage analysis of other resource types

We briefly mention here how the RUA technique described
in the previous sections for network traffic can be adapted to
other resource types (e.g., CPU, memory, disk, and database).
The RUA activity of our MBPA approach is general as it
parameterizes general concepts (RUD and RUM) which can
be tailored to each specific resource type, thus providing a
framework for all types of resources. For example, we present
below the RUDs and RUMs for resource types CPU and
memory. Note that the time-based RUA functions (similar to
the ones in Sect. 5.5 for network usage) for these resource
types are not discussed here and should be investigated later
based on the presented RUDs and RUMs.

5.6.1 CPU

Our approach for calculating CPU usage using SD messages
is as follows. Among call, reply and signal messages, only
call and signal messages consume CPU power. Admittedly, a
return message also consumes some CPU power (e.g., copy-
ing the return results to a stack and returning back the con-
trol to the caller). However, as a simplification, we consider
the CPU usage entailed by reply messages to be negligible

123

V. Garousi et al.

SD

o1

{node=n1}
eo1 (Event
Occurrence)

o2

{node=n2}

op()

r
eo2 (Event
Occurrence)

«PAstep»
{PAdemand=
('msr','mean',90)}

«RTAction»
{RTduration=(100, ‘ms’)}

Fig. 11 Modeling CPU usage demand example

compared to the execution of call and signal messages. The
practical impacts of such simplification and more accurate
measures should however be investigated in future work.

The CPU usage of each call message depends on the
processing complexity of the operation of the message, which
can be either (1) predicted (calculated by a performance tool),
(2) measured (if an executable implementation of the system
is available), (3) required (coming from the system require-
ments or from a performance budget based on a message,
e.g., a required response time for a scenario), or (4) assumed
(based on experience) by modelers [15]. The prediction of
processing complexity of an operation is a challenging task
in the early design phase. Existing works (e.g., [41,50,51])
have proposed solution to this problem, some of which can
be used during design (e.g., [22]). Studying these solutions
and finding an adequate one is however outside the scope of
this paper.

The UML–SPT [15] discusses ways to model CPU usage
in behavioral models. For example, message op() in Fig. 11
is annotated with the PAstep stereotype and the PAdemand
tagged-value (PA stands for Performance Analysis).

}''|{)(:

:

replyemsg.msgTypmsgmsgRUDTCCFP

TCCFPTCCFPRUD

CPU

CPU

)()(: msgCPUUsagemsgRUMMessagemsg CPU

Equation 3 RUD and RUM for CPU resource.

As an example, the PAdemand annotation of the execu-
tion occurrence for message op() in Fig. 11 means that the
execution of this message utilizes on average (mean) 90% of
the CPU (on node n2) and that this value is measured (msr).

Based on our approximation for CPU usage by SD mes-
sages, we present the RUD and RUM for CPU resource analy-
sis in Eq. 3, where function CPUUsage (message)returns the
processing complexity value associated with the execution
occurrence of a message (provided by the PAdemand anno-
tation in the UML models).

The RUMC PU of a message equals to the processing com-
plexity value of the operation associated with the message.
It is important when analyzing CPU usage to consider event

occurrences2 in SDs. For example, consider the SD in Fig. 11,
and assume op() is the only message considered in the RUA
according to RUDC PU . Since the processing of op() starts on
object o2 at event occurrence eo1 and finishes at eo2, the mes-
sage consumes CPU power only in the time period between
these two event occurrences.

Another important consideration when analyzing CPU
usage in distributed systems is the locality of the usage. Sim-
ilar in concept to the location attribute of network traffic
(Sect. 5.4.1), the CPU usage location denotes the particu-
lar CPU on which a message is processed. For example, as
shown in Fig. 11, o1 and o2 are deployed on nodes n1 and n2.
Therefore, the actual execution of operation op() takes place
on n2and leads to CPU usage on n2only. The locality aspect
of CPU usage is important because it is crucial for engineers
to determine the host CPU which must handle the processing
load of a message in a system. Furthermore, we made a sim-
plification in this section that the CPU utilization of message
during its execution is uniform. A more realistic approach
will be to define a time-based function, which will predict
a message’s CPU utilization at each time instance during its
execution.

5.6.2 Memory

We estimate memory usage by SD messages as follows.
Memory is used by messages in two ways:

• Messages which associated method or signal name is cre-
ate or destroy, or

• Temporary (heap) memory used by local variables as a
result of message invocations.

For example, consider the SD in Fig. 12. Object o1 creates
an object of class C3 and destroys it after sending a message
(m2) to it and receiving a reply (r2). Thus, temporary (heap)
memory corresponding to the data size of C3 is allocated
and then de-allocated. Furthermore, assume the source-code
implementation of messages m1 and m2 results in 10 and
20 integer local variables, respectively. Assuming that each
integer variable consumes four bytes of memory, invocation
of m1 and m2 will consume 40 and 80 bytes of heap memory.
Estimating such information may be possible in late design
stages by using, for example, approximations similar to the
ones used in [22]. It should be acknowledged that this is in
general a complex task which would need lots of experience
and skills from designers. Such information should then be
provided by designers in an appropriate way, for example by
using specific tagged-values.

2 “EventOccurrences represents moments in time to which Actions are
associated. An EventOccurrence is the basic semantic unit of Interac-
tions. EventOccurrences are ordered along a Lifeline”[21].

123

A UML-based quantitative framework

SD

o1

m1

o2

r1
o3:C3

create
m2

r2

destroy

Fig. 12 Memory usage analysis example

Based on our approximation for memory usage by SD
messages, we present the RUD and RUM for memory usage
in Eq. 4, where function dataSize (class) returns the data
size of a class (Sect. 5.3). A create message allocates mem-
ory space (denoted with +), while a destroy message releases
memory (denoted with -). Note that, for simplicity, the tem-
porary (heap) memory used by local variables resulting from
message invocations has not been incorporated into RUD
or RUM: The temporary memory allocated in the beginning
of an operation by its local variables will be de-allocated
upon return from the operation. As a result, the granularity
of the RUA based on the RUD and RUM in Eq. 4 is at the
message level. However if a time-based RUA is to be per-
formed, time-based RUD and RUM should be defined where
the intra-message-invocation memory usage should also be
accounted for. Similar to the locality aspect of CPU usage,
memory usage analysis should also take locality into account
in the context of distributed systems.

5.7 Scalability of the approach

We discuss in this section the scalability of our framework
w.r.t. the model size of a system. As we discussed in Sect. 2.2,
the DTCCFPs of the SDs of a system are generated by our
UML 2 sequence diagram control flow analysis. DTCCFPs
are then used by the resource usage analysis. Thus, the larger
the model size, the more time it will take to perform control
flow analysis, derive DTCCFPs, and perform the analysis.
The number of SDs (referred to as s), the (average) number
of DTCCFPs in SDs (referred to as p), and the number of
messages in each DTCCFP (referred to as m) are measures of
model size that have an impact on scalability. Based on these
measures, the average-case time complexity of our control
flow analysis is in O(s.m.p): during the analysis, we have to

traverse all the SDs, all the DTCCFPs of each SD, and all
the messages of each DTCCFP. Considering that the number
of SDs (s) is usually not a very large number, and that the
average number of DTCCFPs per SD (p) is usually small, we
can conclude that our control flow analysis is quite scalable.

The RUA is performed using the functions in Sect. 5.5
which basically query the messages of a given DTCCFP
and return the value of a formula calculated based on those
messages. Thus, the average-case time complexity of our
resource usage analysis is in O(m), and is therefore scalable.

6 Load forecasting

We define model-based load forecasting (MBLF) as the
process to predict the amount of load on different entities
of a system using models. In our context, an entity can be an
object, a node, or a network in a system. Load on an entity
with respect to a resource type can be informally phrased as
the total usage amount of that resource deployed on that par-
ticular entity given a specific execution of the system. Such
system execution involves the execution of several scenar-
ios that we intend to derive from SDs. Since the notion of
time is paramount in the systems we analyze, those scenario
executions have to be scheduled. In other words, we need
as input (recall Fig. 5) a Sequence Diagram Schedule (SDS)
that is a list of SD scenarios (under the form of TCCFPs) and
their start time, i.e., time instants at which to start the exe-
cution of the TCCFPs. The designer has therefore to choose
time instants for triggering SDs (i.e., the TCCFPs) to be trig-
gered. Helping the designer choosing a SDS is out of the
scope of this paper. However, a testing technique such as the
one defined in [48] could help. Our objective is therefore
to estimate the total load entailed on an entity by triggering
the execution of a set of SDs at specific time instants. The
motivations for doing this at the design stage are:

1. Analyzing the load on each entity to check whether it
conforms to specifications at a stage of development
where design decisions can still be easily changed.

2. Finding the entities with highest loads and applying Soft-
ware Performance Engineering [13] practices to balance
load, if needed.

3. Stress testing: Using load forecasting data, stress test
cases can be devised to maximize load and evaluate the
robustness of the system [52].

Equation 4 RUD and RUM
for memory resource.

}},{|{)(:

:

destroycreatemeOrSignalNamsg.methodmsgmsgRUDTCCFP

TCCFPTCCFPRUD

Memory

Memory

destroygnalNamemethodOrSimsgclasssendermsgdataSize-

creategnalNamemethodOrSimsgclassceiverermsgdataSize
msgRUMMessagemsg Memory .if;)..(

.if;)..(
)(:

123

V. Garousi et al.

In our context, MBLF is closely related to RUA because
RUA results are used to perform MBLF (recall Fig. 5). While
Sect. 5 discussed how to measure resource usage for one
TCCFP (we selected network usage and therefore consid-
ered DTCCFPs), MBLF determines how much total load is
imposed on an entity by triggering several TCCFPs (whose
triggering times have been provided). MBLF can be per-
formed on different resource types, and, similarly to the RUA
in Sect. 5, we select network traffic in this section as an exam-
ple resource type, and therefore consider several DTCCFPs.

The concept of Load Forecasting Query (LFQ), to filter
the MBLF results for an entity, is described in Sect. 6.1.
We provide a high-level overview of our load forecasting
approach in Sect. 6.2. We then define a class of load fore-
casting functions in Sect. 6.3 which are classified based on
four load attributes (Sect. 6.1). The functions are similar to
the traffic usage analysis functions (Sect. 5.5), except that the
parameters of a typical load forecasting function are a sched-
ule of a set of DTCCFPs, an entity, and a time instance (or
interval), instead of a DTCCFP, an entity, and a time instant
(or interval).

6.1 Load forecasting query

The following four load attributes determine the specifics of
the MBLF to perform:

• Load location: nodes, objects or networks
• Load direction (for nodes only): into, from, or bidirec-

tional
• Load type: data traffic or number of messages
• Load duration: instant or interval

For example, a LFQ can be the following: what is the total
(i.e., by all SDs in a SDS) number of requests towards object
o at time instant t? Note that there is a difference between
a LFQ and a RUQ (Sect. 5.4): the former is a query for the
amount of load entailed by triggering a set of TCCFPs, while
the latter is a query for the amount of resource usage entailed
by triggering a TCCFP. Such a difference originates from
the difference between MBLF and RUA. RUA performs an
analysis for a particular TCCFP, while MBLF performs an
analysis for a set of TCCFPs.

6.2 Load forecasting approach

As already defined, a Sequence Diagrams Schedule (SDS)
is a set of specific TCCFPs from SDs (one TCCFP per SD)
and their start time. A formal definition of a SDS is as fol-
lows. Assuming that a system has nTCCFPs (ρ1, …, ρn),
a SDS is a schedule of a selected set of TCCFPs in the
form of: 〈(ρ1,α1ρ1), (ρ1,α2ρ1),…, (ρ1,αiρ1), (ρ2,α1ρ2),
…, (ρm,α1ρm), (ρm,α2ρm),…, (ρm,α jρm)〉, where the value

of m is independent of the value of n and each entry of the
sequence is a tuple (ρ, αρ) such that αρ is the start time
of TCCFP ρ, i.e., the time to trigger ρ. Note that zero, one
or more different schedules of a TCCFP can appear in a
SDS. For example, in a system which has three TCCFPs
(ρ1, ρ2, ρ3), sds=〈(ρ1,2ms), (ρ1,5ms), (ρ3,1ms)〉 includes
two schedule of ρ1 (at 2ms and 5 ms), one schedule of ρ3 (at
1ms) and no schedule of ρ2.

A high-level overview of our load forecasting approach is
illustrated using the example in Fig. 13, which shows how the
example LFQ in Sect. 6.1 can be answered. We assume that
the system has three SDs, one DTCCFP has been selected for
each SD (namely ρ1, ρ2 and ρ3) to form a SDS. In order to
forecast load, the RUA in Sect. 5 is performed first (Fig. 13a).
This results in a curve for each DTCCFP that shows the
resource usage of that DTCCFP over time (recall the nam-
ing convention of Fig. 9). For example, ObjInInsMT(ρ1,o,t)
shows the message traffic entailed by DTCCFP ρ1 at each
instant t towards object o. Using the start times from the SDS,
MBLF schedules RUA results of DTCCFPs (Fig. 13b) and
then calculates the amount of load at a given time instant
by adding up the usage values of all the selected DTCCFPs
(shown by a dashed line in Fig. 13c).

6.3 Load forecasting functions

The naming convention of the functions is given in Sect. 6.3.1.
For brevity, only formal definitions of load functions for net-
work load location are presented in Sect. 6.3.2. The functions
for node and object load locations are derived in a similar
fashion and are presented in [48].

6.3.1 Naming convention

A tree structure denoting the convention for naming load
forecasting functions is shown in Fig. 14. The root node of
the tree has a null label. A function name is formed by tra-
versing the tree from the root to a leaf node and concatenating
all the node labels in order. The bottom layer in Fig. 14 spec-
ifies the input parameters of each load forecasting function.
For example, consider the path specified by the bold line in
Fig. 14, i.e., function NetInsDL. According to the bottom
layer, the input parameter of this function is (sds, net, t). This
function returns the instant (Ins) data load (DL) value of a
given SDS (sds) for a given network (net) at a given time (t).
Input parameters with int in the bottom layer of Fig. 14 cor-
respond to the functions with interval duration. The start and
end times of an interval, i.e., int=(start, end), should be pro-
vided for such functions. For functions with node or object
traffic location, the input parameters include either nod or
obj as traffic location, respectively.

123

A UML-based quantitative framework

t

ObjInInsMT(p2,o,t)

ObjInInsMT(p1,o,t)

ObjInInsMT(pn,o,t)

t

ObjInInsMT(p2,o,t)

ObjInInsMT(p1,o,t)

ObjInInsMT(pn,o,t)

Scheduling DTCCFPs using a Sequence
Diagrams Schedule (SDS)

(b)

Scheduling

Resource Usage Analysis
Functions of DTCCFPs

(a)

t

t

start time
of p1

MBLF

ObjInInsMT(p2,o,t)

ObjInInsMT(p1,o,t)

ObjInInsMT(pn,o,t)

Load Forecasting

(c)

t

start time
of p2

start time
of pn

Fig. 13 Load forecasting approach

Input Parameters (sds,net,t) (sds,net,int) (sds,nod,t) (sds,nod,int)
(sds,nod,t) (sds,nod,int) (sds,nod,t) (sds,nod,int)

(sds,obj,t) (sds,obj,int) (sds,obj,t) (sds,obj,int)

Load Direction

Load Location

Load Duration

Load Attribute
DL ML DL ML DL ML DL ML DL ML DL ML

Ins Int Ins InsInt Int

Net Nod

In Out

Net: Network
Nod: Node

Ins: Instant
Int: Interval

DL: Data Load
ML: Message Load

In
Out

Obj
Obj: Object

Bi: Bidirectional
Bi

DL ML DL ML

Ins Int

Fig. 14 Naming convention and input parameters of load forecasting functions

6.3.2 Load location: network

The formulas to calculate the load forecasting functions with
network load location are presented next. Functions for node
and object load locations are presented in [48].

1. NetInsDL(sds, net, t) returns the instant data load for SDS
sds on network net at time t(time t=0 is the beginning
of the SDS).

Net I ns DL(sds, net, t)

=
∑

∀(ρ,αρ)∈sds

Net I ns DT (ρ, net, t − αρ)

2. NetInsML(sds, net, t) returns the instant message load for
SDS sds on network netat time t .

Net I ns M L(sds, net, t)

=
∑

∀(ρ,αρ)∈sds

Net I ns MT (ρ, net, t − αρ)

3. NetIntDL(sds, net, int) returns the interval data load for
SDS sds on network netover time interval int. NetIntDL
is calculated using NetInsDL.

Net I nt DL(sds, net, int) =∑

t=int.start,int.start+1,··· ,int.end

Net I ns DL (sds, net, t)

4. NetIntML(sds, net, int) returns the interval message load
for SDS sds on network netover time interval int.

123

V. Garousi et al.

NetIntML is calculated using NetInsML.

Net I nt M L(sds, net, int) =
∑

t=int.start,int.start+1,··· ,int.end

Net I ns M L (sds, net, t)

7 Reusing MBPA principles for additional applications

We describe in this section how the prediction of resource
usage and load enables designers to perform two additional,
important activities: Detecting resource overuse (Sect. 7.1);
Predicting resource utilization (Sect. 7.2).

7.1 Detecting resource overuse

Given a resource R with capacity value C R , we say that R
is overused if the total usage of R, referred to as U R , by
processes of a system reaches or exceeds C R (U R≥C R).
Note that resource usage and capacity are measured using
the same unit but the unit depends on the resource type. For
example, capacity and usage of a network are both usually
measured in Mbps (mega bits per second). The capacity of
a CPU is usually fixed at 100% and CPU usage is measured
relatively to this capacity (e.g., 80%).

Considering network traffic as resource type and using
the formalisms in Sects. 5 and 6, Eq. 5 can be used to detect
network traffic overuse based on load analysis information.
The function DetectNetworkTrafficOveruse(sds, net, Cnet)
returns true if the amount of traffic on network netentailed
by a set of TCCFPs with a specific schedule sds is superior
to the network’s capacity value (Cnet) in at least one discrete
time instance (t in Eq. 5).

Note that we use the data load forecasting function NetIns
DL in Eq. 5, since network capacities are usually measured
in terms of maximum amount of data which can be transmit-
ted over a network. However, we acknowledge that detection
of network traffic overuse can also potentially be performed
based on message traffic. Message capacity of a network
depends on many factors (e.g., buffer sizes) and measuring
a network’s message capacity requires additional analysis
using communication network theories (e.g., queuing
theory [53]).

7.2 Predicting resource utilization

Informally, the resource utilizationratio (or simply resource
utilization) is defined as the amount of usage of a resource

divided by its capacity/speed/etc. (depending on resource
type) [54], e.g., if 500 MB of a 2 GB RAM module is
allocated in a time instant, we can say that the resource uti-
lization of this module is 25% at that particular time instant.

It is possible to predict the utilization of a resource from
our proposed analysis by simply dividing the RUA metric
by the capacity of the resource, e.g., the first two formulas in
Eq. 6 can be used to predict the utilization (ratio) of a network
and a memory module with the capacity of Cnet and Cmem ,
respectively, at a time instant tby executing a given Sequence
Diagram Schedule (SDS). The Mem I ns DT (ρ, mem, t)
memory usage analysis function can be easily calculated by
using RU MMemor y(msg) from Eq. 4 similar to what was
done in Sect. 5.5 for the network resource type. Calculating
the utilization of a resource over a time period is also possi-
ble using our proposed analysis: the 3rd formula of Eq. 6 can
estimate the utilization ratio of a network over a time period
using instant utilization values. System-wide resource uti-
lization prediction is also possible by considering all possible
SDSs in a system (4th formula in Eq. 6).

8 Case study

We apply our model-based resource usage analysis (MBRUA)
approach to a distributed system to demonstrate its feasibility
and to illustrate the variety of MBRUA activities that can be
performed. The system and its UML model are described in
Sect. 8.1. We then report on two applications of our MBRUA
approach: (1) Predicting resource usage (Sect. 8.2), and (2)
Detecting resource overuse (Sect. 8.3). Final discussions and
limitations of our framework are summarized in Sect. 8.4.

8.1 The case study system and its UML model

Our case study system is a prototype SCADA-based power
system (Supervisory Control and Data Acquisition Systems
[55]). The system is referred to as SCAPS (a SCAda-based
Power System) [52]. SCAPS is a system to control the power
distribution grid across a nation consisting of several
provinces. Each province has several cities and regions.
There is one central server in each province which gath-
ers the SCADA data from Tele-Control units (TC) from all
over the province and sends them to the central national
server. The national server performs the following real-time,
data-intensive safety-critical functions as part of the Power
Application Software: (1) Overload monitoring and control,
(2) Detection of separated (disconnected) power system, and
(3) Power restoration after grid failure. The complete UML

Equation 5 Detecting network
traffic overuse based on load
analysis information. otherwise;

),,(|if;
),,(

false
CtnetsdsNetInsDLttrue

CnetsdsOveruseorkTrafficDetectNetw net
net

123

A UML-based quantitative framework

Equation 6 Predicting
Resource Utilization.

sds

endstartstartt

mem

sds

net

sds

tnetdslization(sNetworkUtits(netlizationInNetworkUtiSystemWide

tnets(sdslizationInNetworkUtinetsdstlizationInNetworkUti

C

tmemMemInsDT
tmem(sdsizationInsMemoryUtil

C

tnetNetInsDT
tnets(sdslizationInNetworkUti

),,),

),,int),,(

),,(
),,

),,(
),,

.int,,1.int,.int

sd OM_ON

analyzeOverload(:ASA.loadON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“load”)

queryONData(“load”)

loadON
{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(5,'s')
RTend=(12,'s')}

{RTstart=(12,'s')
RTend=(13,'s')}

(a)

sd DSPS_ON

detectSeparatedPS(:ASA.connectivityON)

:ASA
{node = SEV_CA1}

:ProvController
{node = SEV_ON}

ref
queryONData(“connectivity”)

queryONData(“connectivity”)

connectivityON

{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(8,'s')
RTend=(11,'s')}

{RTstart=(12,'s')
RTend=(14,'s')}

(b)

sd queryONData(dataType)

:ProvController
{node = SEV_ON}

:TC
{node = TC_YOW1}

:TC
{node = TC_YOW2}

:TC
{node = TC_YOW3}

:TC
{node = TC_YYZ1}

:TC
{node = TC_YYZ2}

par
query(dataType)

YOW1 query(dataType)

query(dataType)

query(dataType)

query(dataType)

YOW2

YOW3

YYZ1

YYZ2

queryONData(dataType)
{RTstart=(1,'s')
RTend=(3,'s')}{RTstart=(0,'s')

RTend=(1,'s')}

{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(0,'s')
RTend=(1,'s')}

{RTstart=(1,'s')
RTend=(4,'s')}

{RTstart=(1,'s')
RTend=(3,'s')} {RTstart=(1,'s')

RTend=(2,'s')}

{RTstart=(1,'s')
RTend=(2,'s')}

(c)

«network»
Ontario

TC_YOW1

«network»
Canada

«network»
Quebec

«network»
Ottawa

«network»
Toronto

TC_YOW2

TC_YOW3

TC_YYZ1

TC_YYZ2

SEV_ON

SEV_CA1

...

(d)

Fig. 15 Parts of the SCAPS design UML model

design model of SCAPS is presented in [56], and we only
present in Fig. 15 the parts of the model used in the two
analyses of Sects. 8.2 and 8.3.

The SD in Fig. 15a, OM_ON, corresponds to the overload
monitoring (OM) control of the province of Ontario (ON)
in SCAPS. The SD in Fig. 15b, DSPS_ON, corresponds to
a use case which is responsible for Detection of Separated
Power System (DSPS) for the province of Ontario (ON). This
SD fetches grid connectivity data from the ON provincial
controller and checks whether there is any separated power
system by using detectSeparatedPS(). By using the interac-

tion occurrence construct of UML 2.0 SDs, the SD OM_ON
references the SD in Fig. 15c to retrieve data from the provin-
cial Tele-Control units. An object of type ASA (Automatic
System Agent), deployed in one of the national servers
(SEV_CA1), is the active object in those SDs.

Figure 15d is the NDD, as defined in Sect. 5.1.2, of
the system. We do not show the SCAPS class diagram here
due to its large size. Parameter dataType in Fig. 15c, used in
call messages queryONData, is an instance of class
LoadStatus. An instance of the LoadStatus class stores infor-
mation about the load levels of different parts of the grid

123

V. Garousi et al.

served by a SCAPS Tele-Control unit. The data size of this
class, as required in our predictability analysis and calcu-
lated using Eq. 2 based on the attributes of the LoadStatus
class in the SCAPS class diagram, is 4 MB. Note that such
an estimate is a realistic value, according to the SCADA
literature (e.g., [55]). Furthermore as we discuss in detail in
[56], the real-time constraints in Fig. 15 are realistic esti-
mates of message duration times used in SCADA power sys-
tems. For example, the analyzeOverload message should be
completed in less than a second or a RT fault (resulting in a
catastrophic result) will occur in the system.

8.2 Predicting resource usage pattern

To demonstrate the capability of our MBRUA approach to
predict resource usage, we apply the technique to SCAPS
using the partial design model in Fig. 15 and considering
network as an example resource type. The predicted net-
work usage of executing SD OM_ON is compared to the real
observed resource usage values derived by running this SD
and measuring the amount of network traffic using the Net-
work Traffic Monitortool [57] in each time instant. Different
steps of the prediction process are discussed next.

8.2.1 Control flow analysis of SCAPS SDs

The first step of the MBRUA is to analyze the control flow in
SDs. The CCFG of the SD OM_ON is shown in Fig. 16. To
ease discussion, CCFG nodes have been labeled Ax . The next
step is to derive TCCFPs from the CCFG. Since there are no
decision nodes in the CCFG, there is only one TCCFP called
ρO M_O N in Fig. 17. Using RUD (Sect. 5.2), the RUA process
converts ρO M_O N to a DTCCFP, as shown in Fig. 17. Only
local message A13 is removed in this process, as the other
messages are all distributed.

8.2.2 Traffic prediction and measurement

We show next how to predict the interval data traffic over
the SCAPS national network (Canada) during the execution
of SD OM_ON. The RUA function Net I ns DT (ρO M_O N ,
“Canada”, t) is computed for different values of t in the time
interval [0 ms, 13 ms (duration of ρO M_O N)], as depicted in
Fig. 18. Referring to the messages in the SD OM_ONand
the SCAPS deployment structure (Fig. 15d), only the reply
message from an object of type ProvController to an object of
type ASA, i.e., message A12 in Fig. 16, is sent over the national
network (Canada) and is considered in the RUA. The data
size of this return message is 20MB: 5(numberof T Csin
Ontario) × 4 M B (data si ze of the LoadStatus class).
Since the duration of this message is 7 s (12-5 as specified in
Fig. 15a), the estimated traffic per time unit is 20 M B/7 ≈
2.85 M B/s.

We discuss now how we compared the above predicted
network usage with the measured network usage entailed by
executing CCFP ρO M_O N . The runtime resource usage val-
ues were measured by executing CCFP ρO M_O N and record-
ing the amount of network traffic using the monitoring tool
[57] in each time instant. Note that we have the same time
precision (1 s) in the monitoring tool, the time annotations
in the SDs, and our formulas. We used the approximation
[58] of summing up the traffic on all the nodes in a particular
network to measure the total traffic on that network. We tried
to make our measurements as accurate as possible by turn-
ing off all network services on the machines involved except
the SCAPS application. In this way, all the measured traffic
corresponded only to the traffic exchanged by the SCAPS
applications on different nodes.

Four PCs were used to play the roles of SEV_CA1 (one
PC),SEV_ON(one PC), TC_YOWx (one PC) and TC_YYZx
(one PC) nodes. The last two deployment decisions (related
to TCs) were made to simplify the system’s deployment,
controllability (less nodes to control at runtime) as well as

CCFG(OM_ON)

CCFG(queryONData)

:ASA.loadON=queryONData(“load”)

query(dataType)

YOW1

query(dataType) query(dataType)

YOW3

query(dataType)query(dataType)

YOW2 YYZ1 YYZ2

A2
A3 A4 A5 A6

A7 A8 A9 A10 A11

analyzeOverload(:ASA.loadON)

A13

queryONData(“load”)

A1

A12

Fig. 16 CCFG of SD OM_ON

123

A UML-based quantitative framework

12

116

105

94

83

72

1_1312

116

105

94

83

72

1_)(A

AA

AA

AA

AA

AA

ADTCCFPAA

AA

AA

AA

AA

AA

A ONOMONOM

Fig. 17 The only TCCFP and DTCCFP of the CCFG in 16

NetIns DT (pOM_ON ,”Canada”,t) (MB)

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 t (s)

Predicted

Observed

Fig. 18 An example of predicted and observed resource usage analysis

observability. The later two properties are important for the
case study system since, in our context, they facilitate traffic
measurement in our experiments. The system was designed
in a way that TCs operation could be easily controlled (high
controllability) and their behavior and resource usage pattern
could be easily observed (high observability). The actual net-
work deployment of our case study is illustrated in Fig. 19:
three intranets in our institution (servers, SCE department,
and squall.sce.carleton.ca) were chosen to simulate the net-
work architecture of SCAPS.

Indeed, as discussed above, our goal in this section of the
case study is to show how the predicted values (calculated
using the RUA functions defined in Sect. 5.5) of the interval
data traffic over the SCAPS national network (Canada) dur-
ing the execution of SD OM_ON compare to the measured
values. As illustrated in Figs. 15d and 19, the traffic over the
national network (Canada) should not change when several
TCs of the system are merged into one physical node. Note
these TCs only return data (i.e., to be transmitted over the
network) and having one merged physical node or several
nodes should not differ from a network traffic point of view.

The Operating System (OS) and hardware configurations
of the machines used are detailed in Table 2. All the network
connections had a bandwidth of 100 Mbps. The monitoring
tool [57] was installed on each machine and was “turned
on” to monitor and log the measured traffic per second. Note
that we conducted a careful analysis of the monitoring tool
output results in order to calculate only the traffic values
on the Canada network, e.g., network traffic measurements
between TC_YOWx and SEV_ON nodes (Fig. 19) were not
used in the analysis.

Note that although the monitoring tool allows us to let us
extract the traffic values resulting from a network application
among several running applications on a machine, we nev-
ertheless decided to turn off other network applications (and
services) on the machines to simulate a dedicated network as
it is the case in real systems, and to minimize any network-
related effect by other applications on our case study.

8.2.3 Comparison results

The average values of observed data traffic in each time
instant over 10 runs are depicted in Fig. 18. The overall
average across all time instants is 3.02 MB/s and is slightly
larger than the predicted value (2.85 MB/s: calculated using
the RUA functions defined in Sect. 5.5). We believe that this
is most probably due to the fact that extra data is added by
the lower layers of the OSI (Open Systems Interconnection)
network model—such as data link and physical—to the data
submitted by the application layer of the OSI model. Estimat-
ing such a difference requires a detailed analysis of packet
and frame structures in different layers of the OSI model as
discussed in Sect. 5.3. To predict worst case scenarios for
network traffic usage (upper bound values), one might esti-
mate the upper bound value of the overhead data added by
the lower layers of the OSI for a given system and add it to
the RUM values estimated using our approach.

As we can see in Fig. 18, the difference is small in our case
study, providing evidence that our estimates of data traffic

SEV_CA1

TC_YYZx

TC_YOWx

SEV_ON
SCE department

intranet

squall.sce.carleton.ca intranet

Plays the role
of Canada

Servers intranet

Plays the role
of Ontario

A router A router

A physical machine

Fig. 19 The actual network deployment of our case study

123

V. Garousi et al.

Table 2 OS and hardware configurations of the machines used in our case study

Machine hosting OS CPU RAM (GB) Network card

SEV_CA1 Windows 2000 2.8 GHz Intel Xeon 2 Intel PRO/1000 XT

SEV_ON Windows XP 2.8 GHz Intel Pentium 4 2 3COM Fast Ethernet Controller

TC_YOWx Windows 2000 863 MHz Intel Pentium III 1 3COM Fast Ethernet Controller

TC_YYZx Windows 2000 863 MHz Intel Pentium III 1 3COM Fast Ethernet Controller

are reasonably accurate. The close correspondence between
the predicted and observed values in the SCAPS case study
suggests that the proposed MBRUA approach is a promising
way of predicting network traffic in the early design stages.

Recall, however, that our approach takes in input a number
of estimates, e.g., regarding properties of messages in SDs
such as RTstart, RTend and data sizes. In our case study,
because the implementation was available, those properties
could be precisely measured and this lead to an accurate
prediction of data traffic. We should, however, consider the
observed accuracy to be an upper bound as our approach is
meant to be applicable during the design stage.

8.3 Detecting resource overuse

To demonstrate the capability of our MBRUA approach to
detect resource overuse, we apply it to SCAPS by attempting
to determine if any network traffic overuse occurs when trig-
gering a SDS consisting of TCCFPs from two SDs: OM_ON,
Fig. 15a, and DSPS_ON (Detection of Separated Power Sys-
tem), Fig. 15b.

Since both SDs OM_ON and DSPS_ON are initiated by
ASA and both query specific provincial power grid data
(load and connectivity, respectively), the entailed traffic goes
through the national network (Canada) (Fig. 15d). As a given
SDS, we consider sds = 〈(ρO M_O N , 0ms), (ρDS P S_O N ,

0ms)〉, meaning that the only CCFPs of both SDs start at the
same time. Our goal is to determine if any network overuse
situation occurs in the SCAPS national network (Canada)
during the execution of this SDS. According to Sect. 7.1,
we have to evaluate function DetectNetworkTrafficOveruse
(sds, “Canada”, C“Canada”), where C“Canada” = 100 Mbps
(mega bits per second)=12.5 MBps (mega bytes per
second).

As shown in Eq. 5, in order to do so, NetInsDL(sds,
“Canada”, t)should be analyzed first. This function is the
summation of NetInsDT function values across all CCFPs in
the SDS. An example of calculations for a NetInsDT func-
tion for different time values based on a given CCFP was
presented in Sect. 8.2, which corresponded to the only CCFP
(ρO M_O N) of SD OM_ON. By using a similar procedure, we
calculated the NetInsDT(ρDS P S_O N ,“Canada”, t) values as
shown in Fig. 20b. In order to calculate the predicted resource
usage values of ρDS P S_O N , in Fig. 20b, we assumed that the

size of the Ontario grid connectivity data (connectivityON
in Fig. 15b is 50 MB (a realistic estimation based on the
SCADA literature [55]). Therefore, the resource usage value
per time unit will be 50/3≈16.6 MB. 3 ms here is the dura-
tion of the return message from the queryONData interaction
occurrence in Fig. 15b.

Figure 20a corresponds to NetInsDT((ρO M_O N ,
“Canada”, t) and uses the predicted values from Fig. 18
(i.e., 2.85 MB/s). Using the definitions in Sect. 6 and based
on the definition of sds (above), the two NetInsDT functions
in Fig. 20a and b yield the NetInsDL function values shown
in Fig. 20c, where the values at each time instance from
each of the two NetInsDT functions have been added to yield
NetInsDL values.

Recall that our objective in this section was to determine
if any network traffic overuse occurs in the SCAPS national
network (Canada) during the execution of sds. By substi-
tuting the variables in Eq. 5 with the values in this section
(network name and its capacity), we can write:

Detect NetworkT ra f f icOveruse(sds, “Canada”,

12 M B)

=

true ; if ∃t |Net I ns DL(sds, “Canada”, t)
> 12.5 M B

f alse ; otherwise
= true because for t ∈ {8, 9, 10} : NetInsDL(sds,

“Canada′′, t) > 12.5 M B

The above function returns true (meaning that a network
traffic overuse is detected) since load values in three time
instances (8, 9 and 10 s) exceed C“Canada” = 12.5 MB (the
capacity of network Canada). Such an analysis is shown
graphically in Fig. 20c, where the 12.5 MB capacity is
depicted by a horizontal bold line. The resource overuse
region is marked by a dashed rectangle.

To investigate if the network traffic overuse detected by
our technique really occurs for a specific execution of
SCAPS, we executed SDs OM_ON and DSPS_ON
according to the schedule specified in sds. The entailed traf-
fic on network Canada by this execution was recorded using
a strategy similar to what we reported in Sect. 8.2. A com-
parison between the predicted values (from Fig. 20c) and
the observed network traffic load is reported in Fig. 20d.
Note the discrepancy (during time interval [8,12]) between

123

A UML-based quantitative framework

(Predicted) NetIns DT(pOM_ON ,”Canada”,t) (MB)

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11

(a)

(Predicted) NetIns DL(sds ,”Canada”,t) (MB)

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11

pOM_ON

pDSPS_ON

Network traffic overuse

(c)

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10
t (s)

t (s) t (s)

(Predicted) NetIns DT(pDSPS_ON ,”Canada”,t) (MB)

(b)

 NetIns DL(sds ,”Canada”,t) (MB)

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12
t (s)

Predicted

Observed

Discrepancy in network

traffic usage

(d)

Fig. 20 a–c Calculating NetInsDL(sds, “Canada”, t). d Comparison between predicted and observed network traffic load when an overuse occurs

the predicted and the observed values of traffic usage when
a resource overuse occurs. Since the network capacity is
100 Mbps, the network can not transmit more than 12.5 MB
of traffic per second. Therefore, data buffering techniques
are employed in the network (by routers and network inter-
faces) to prevent data loss. This leads to the discrepancy sit-
uation in time instances 11 and 12 as reported in Fig. 20d,
in which neither of the return messages in SD OM_ON nor
DSPS_ON complete in their specified time (i.e., time=12
and 11 s, respectively). In other words, we have found a net-
work traffic overuse situation which has led to a constraint
violation in SCAPS.

When detecting a network traffic overuse, the develop-
ers must take necessary actions to fix the problem. Typi-
cal suggestions are: (1) increase the capacity of the network
under investigation, (2) assess whether an increase in dura-
tion of relevant SD messages is acceptable, and (3) decrease
the amount of data exchanged. Such corrective actions are
however easier to undertake in early design stages, before
the implementation is completed.

8.4 Discussions and limitations

Let us recall from Sect. 2.1 the challenge of estimating
timing information in SD messages. Our case study was per-
formed over a local-area network and in controlled
conditions (Sect. 8.2) to alleviate this problem. However,
conducting the experiment over a wide-area network, where
the network delays are much more unpredictable and vari-
able, would probably make the results less predictable.

We would also like to note that, as discussed in Sect. 2.1,
even if message timing information is not predictable to a rea-
sonable level of precision, our resource usage and load pre-
diction framework can still be useful. For example, according
to another experiment we conducted regarding a UML-driven
stress test technique [42] in the presence of time uncertainty
of SD messages, the framework presented in this paper was
useful to increase the chances of detecting RT faults.

As we discuss throughout this paper, it is to be expected
that approximations, simplifications, and assumptions would
be required (e.g., timing information of messages) when per-
forming prediction that early in the design process. Our goal
in this work here is to provide designers with a tool to make
predictions based on what is known at design time. There are
certainly many things that are not known yet regarding the
implementation and execution that will affect resource usage
and load. But having a tool allowing designers/architects to
make early predictions based what they know is a way to
support early design decisions and identify potential bottle-
necks that will have to be carefully watched in the remainder
of development.

9 Conclusions

This paper presents a quantitative framework for the early,
model-based prediction of resource usage and load in DRTS
during the design phase. The prediction is based on an analy-
sis of UML 2.0 sequence diagrams, augmented with timing
information, to extract timed-control flow information. It is
aimed at improving the predictability of a DRTS by offering

123

V. Garousi et al.

a systematic approach, based on plausible and standard early
design models, to predict system behavior (usage and load of
network traffic as an example resource type in this work) in
each time instant during its execution. The results of a case
study on an actual DRTS have shown that the approach is
promising as it yields reasonably accurate results (estimates
are on average 6% below actual values). However, it should
also be noted that due to discrepancies between real and pre-
dicted timing behavior of a system, in practice one might
produce less accurate estimations of resource usage and load
in real situations, thus making any prediction framework like
the one we propose less accurate.

Based on our model-based resource usage analysis
(MBRUA) principles, we furthermore develop automated
techniques to perform two important activities in the context
of DRTSs: (1) Detecting resource overuse, and (2) Detect-
ing illegal access to mutually exclusive objects. The former
activity is applied to our case study system and we show how
it helps us to detect a network traffic overuse in the system
under analysis before its deployment.

Some of our future works include: (1) applying the
approach on more complex DRTSs and assess its effective-
ness in improving the predictability of DRTSs; (2) using the
load forecasting information to develop model-based load
balancing techniques; (3) investigating further the resource
usage analysis of other resource types; (4) developing a com-
plete RUA activity for CPU and memory resource types (sim-
ilar to the one presented for network traffic in this article)
which includes a set of time-based RUA functions based on
the presented RUDs and RUMs; and (5) developing more
accurate network usage measures which will account for the
extra data added by the lower layers of the OSI (Open Sys-
tems Interconnection) network model—such as data link and
physical—to the data submitted by the application layer of
the OSI model.

To perform more realistic RUA, we also plan to use Prob-
ability Density Functions (PDF), e.g., the beginning and the
end of a time interval, as start and end time measures of mes-
sages. It is expected that this would lead to increased com-
plexity in our formulas without changing the fundamental
ideas we convey in this paper.

Acknowledgments This work was in part supported by Siemens Cor-
porate Research, Princeton, NJ and a Canada research chair. Vahid
Garousi was further supported by the Discovery Grant no. 341511-07
from the Natural Sciences and Engineering Research Council of Canada
(NSERC), and also by the Alberta Ingenuity New Faculty Award no.
200600673.

References

1. Tsai, J.J.P., Bi, Y., Yang, S.J.H., Smith, R.A.W.: Distributed Real-
time Systems: Monitoring, Visualization, Debugging, and Analy-
sis. Wiley, London (1996)

2. Feiler, P., Lewis, B., Vestal, S.: Improving Predictability in
Embedded Real-time Systems. Technical Report CMU/SEI-
2000-SR-011, Carnegie Mellon Software Engineering Institute
(2000)

3. Buttazzo, G., Lipari, G., Abeni, L., Caccamo, M.: Soft Real-
Time Systems: Predictability vs. Efficiency. Springer, Heidelberg
(2005)

4. Yau, S.S., Zhou, X.: Schedulability in Model-based Software
Development for Distributed Real-Time Systems. In: Proc. of Int.
Workshop on Object-Oriented Real-Time Dependable Systems,
pp. 45–52 (2002)

5. Igarashi, A., Kobayashi, N.: Resource Usage Analysis. In:
Proc. of Symposium on Principles of Programming Languages,
pp. 331–342 (2002)

6. Marriott, K., Stuckey, P.J., Sulzmann, M.: Resource Usage Verifi-
cation. In: Proc. of Asian Symposium on Programming Languages
and Systems, pp. 212–229, (2003)

7. Cachera, D., Jensen, T., Pichardie, D., Schneider, G.: Certified
Memory Usage Analysis. In: Proc. of Formal Methods Conf.,
pp. 91–106, (2005)

8. Dinda, P., O’Hallaron, D.: An Extensible Toolkit for Resource
Prediction In Distributed Systems, Technical Report CMU-
CS-99-138, School of Computer Science, Carnegie Mellon Uni-
versity (1999)

9. Dinda, P.A., O’Hallaron, D.R.: An Evaluation of Linear Models
for Host Load Prediction. In: Proc. of Int. Symp. on High Perfor-
mance Distributed Computing, pp. 87–96 (1999)

10. Andreolini, M., Casolari, S.: Load Prediction Models in Web-
based Systems. In: Proc. of Int. Conf. on Performance Evaluation
Methodolgies and Tools, pp. 27–36 (2006)

11. Menascé, D.A., Almeida, V.A.F.: Capacity Planning for Web Ser-
vices: Metrics, Models, and Methods. Prentice Hall, Englewood
Cliffs (2001)

12. Jones, C.: Software change management. IEEE Comput
29(2), 80–82 (1996)

13. Smith, C.U., Williams, L.G.: Software performance engineering.
In: Marciniak, J.J. (ed) Encyclopedia of Software Engineering,
2nd edn. Wiley, London (2002)

14. Object Management Group (OMG) UML 2.1.1 Superstructure
Specification (2007)

15. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence
diagrams and statecharts to analysable petri-net models. In: Proc.
of Int. Workshop on Software and Performance, pp. 35–45 (2002)

16. Pasaje, J.L.M., Harbour, M.G., Drake, J.M.: MAST real-time
view: a graphic UML tool for modeling object-oriented real-
time systems. In: Proc. of Real-Time Systems Symposium,
pp. 245–256 (2001)

17. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-
based performance prediction in software development. IEEE
Trans. Softw. Eng. 30(5), 295–310 (2004)

18. Cortellessa, V., D’Ambrogio, A., Iazeolla, G.: Automatic deriva-
tion of software performance models from CASE documents. Per-
form. Eval. 45(2–3), 81–105 (2001)

19. Mirandola, R., Cortellessa, V.: UML based performance modeling
of distributed systems. In: Proc. of the Unified Modeling Language
(UML) Conference, pp. 178–193 (2000)

20. Smith, C.U., Williams, L.G.: Performance Solutions. Addison-
Wesley, Reading (2002)

21. Object Management Group (OMG) UML 2.0 Superstructure
Specification (2005)

22. Object Management Group (OMG) UML Profile for Schedulabil-
ity, Performance, and Time (v1.1) (2005)

23. Garousi, V., Briand, L., Labiche, Y.: Control flow analysis of UML
2.0 sequence diagrams. In: Proc. of the European Conf. on Model
Driven Architecture-Foundations and Applications, LNCS 3748,
pp. 160–174 (2005)

123

A UML-based quantitative framework

24. Paltor, I.P., Lilius, J.: Digital sound recorder: a case study on
designing embedded systems using the UML notation, Turku Cen-
tre for Computer Science, Finland TUCS Technical Report No.
234 (1999)

25. Douglass, B.: Doing Hard Time, Developing Real-Time Sys-
tems with UML Objects, Frameworks, and Patterns. Addison-
Wesley, Reading (1999)

26. Herzberg, D.: UML-RT as a candidate for modeling embedded
real-time systems in the telecommunication domain. In: Proc.
of Int. Conf. on the Unified Modeling Language, pp. 331–338
(1999)

27. Kabous, L., Neber, W.: Modeling hard real time systems with
UML: the OOHARTS approach. In: Proc. of Int. Conf. on the
Unified Modeling Language, pp. 339–355 (1999)

28. Lanusse, A., Gerard, S., Terrier, F.: Real-rime modeling with
UML: the ACCORD approach. In: Proc. of Int. Conf. on the Uni-
fied Modeling Language, pp. 319–335 (1998)

29. Object Management Group (OMG) UML Profile for Mod-
eling and Analysis of Real-time and Embedded Systems
(MARTE), Version 1.0 (Finalization Underway). http://www.
omg.org/cgi-bin/doc?ptc/2007-08-04 (2007)

30. Hakansson, J., Mokrushin, L., Pettersson, P., Yi, W.: An analysis
tool for UML models with SPT annotations. In: Int. Workshop on
Specification and Validation of UML Models for Real-Time and
Embedded Systems (2004)

31. Woodside, C.M., Petriu, D.C.: Capabilities of the UML profile for
schedulability performance and time (SPT). In: Workshop on the
Usage of the UML profile for Scheduling, Performance and Time
(2004)

32. Petriu, D.C.: Performance analysis based on the UML SPT profile.
Tutorial given at Int. Conf. on Quantitative Evaluation of Systems
(2004)

33. Douglass, B.P.: Rhapsody 5.0: Breakthroughs in Software and
Systems Engineering, I-Logix Corp. whitepaper (2003)

34. Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineer-
ing: Using UML, Patterns, and Java, 2nd edn. Prentice Hall,
Englewood Cliffs (2003)

35. Haugen, Ø.: From MSC-2000 to UML 2.0—the future of sequence
diagrams. In: Proc. of Int. System Design Languages (SDL)
Forum, pp. 38–51 (2001)

36. Ben-Abdallah, H., Leue, S.: Timing constraints in message
sequence chart specifications. In: Proc. of Int. Conf. on Formal
Description Techniques for Distributed Systems and Communi-
cation Protocols, pp. 91–106 (1997)

37. Damm, W., Harel, D.: LSCs: Breathing life into message sequence
charts. Formal Methods Syst. Des. 19(1), 45–80 (2001)

38. Tindell, K., Clark, J.: Holistic schedulability analysis for distrib-
uted hard real-time systems 40(2–3), 117–134 (1994)

39. Puschner, P.P., Nossal, R.: Testing the results of static worst-case
execution-time analysis. In: Proc. of IEEE Real-Time Systems
Symp., pp. 134–143 (1998)

40. Thane, H.: Monitoring, Testing and Debugging of Distributed
Real-Time Systems, PhD Thesis, Royal Institute of Technology
(2000)

41. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley, Reading (2000)

42. Garousi, V.: Traffic-aware stress testing of distributed real-time
systems based on UML models in the presence of time uncertainty.
In: Proc. IEEE Int. Conf. on Software Testing, Verification and
Validation (to appear) (2008)

43. Object Management Group (OMG) OCL 2.0 Specification (2005)
44. Muchnick, S.: Advanced Compiler Design and Implementation,

First ed. Morgan Kaufmann, Los Altos (1997)
45. Garousi, V., Briand, L., Labiche, Y.: Control Flow Analysis of

UML 2.0 Sequence Diagrams, Technical Report SCE-05-09,

Carleton University, http://squall.sce.carleton.ca/pubs/
tech_report/TR_SCE-05-09.pdf (2005)

46. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Applying
static WCET analysis to automotive communication software. In:
Proc. of Euromicro Conf. on Real-Time Systems, pp. 249–258
(2005)

47. Honeywell Inc., MetaH Product Information, http://www.htc.
honeywell.com/metah (1998)

48. Garousi, V., Briand, L., Labiche, Y.: A Quantitative Framework
for Predicting Resource Usage and Load in Distributed Real-Time
Systems based on UML Models, Technical Report SCE-06-05,
Carleton University (2006)

49. Garousi, V.: Traffic-aware Stress Testing of Distributed Systems
based on UML Models using Genetic Algorithms, PhD Thesis,
Carleton University (2006)

50. Avritzer, A., Ros, J.P., Weyuker, E.J.: Estimating the CPU uti-
lization of a rule-based system. ACM SIGSOFT Softw. Eng.
Notes 29(1), 1–12 (2004)

51. Wang, Y.F., Hsu, M.H., Chuang, Y.L.: Predicting CPU Utiliza-
tion by Fuzzy Stochastic Prediction. Comput. Inform. 20(1),
67–76 (2001)

52. Garousi, V., Briand, L., Labiche, Y.: Traffic-aware stress testing
of distributed systems based on UML models. In: Proceedings of
International Conference on Software Engineering, pp. 391–400
(2006)

53. Ganesh, A., O’Connell, N., Wischik, D.: Big Queues. Springer
, Heidelberg (2004)

54. Rak, J.: Priority-enabled optimization of resource utilization in
fault-tolerant optical transport networks. In: Proc. of Int. Conf. on
High Performance Computing and Communications, pp. 863–873
(2006)

55. Daneels, A., Salter, W.: What is SCADA? In: Proc. of Int. Conf.
on Accelerator and Large Experimental Physics Control Systems,
Trieste, pp. 339–343 (1999)

56. Garousi, V., Briand, L., Labiche, Y.: Traffic-aware Stress Testing
of Distributed Systems based on UML Models, Technical Report
SCE-05-13, Carleton University (2005)

57. Nico Cuppen Software, Network Traffic Monitor, http://www.
nicocuppen.com (2005)

58. Caceres, R., Duffield, N., Feldmann, A.: Measurement and
analysis of IP network usage and behaviour. IEEE Commun.
Mag. 38(5), 144–151 (2000)

Author Biographies

Vahid Garousi is an assistant
professor of software engineering
and an Alberta Ingenuity new fac-
ulty at the University of Calgary,
leading the software quality engi-
neering research group. He won
an Alberta Ingenuity new fac-
ulty award in June 2007. Vahid
received a PhD in software engi-
neering from Carleton University
in 2006. His MSc degree was
in electrical and computer engi-
neering from the University of
Waterloo in 2003. He earned his
software engineering undergradu-

ate degree from Sharif University of Technology (the first rank engi-
neering school in Iran) in 2000. Vahid has been on the program or
organization committees of many international, IEEE and ACM con-
ferences. He is a member of the IEEE and the IEEE Computer Society,

123

http://www.nicocuppen.com
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-05-09.pdf
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-05-09.pdf
http://www.htc.honeywell.com/metah
http://www.htc.honeywell.com/metah
http://www.nicocuppen.com

V. Garousi et al.

and is a registered professional engineer in Canada. His research inter-
ests include: model-driven development, testing and quality assurance,
and applications of optimization and evolutionary computation to soft-
ware testing.

Lionel C. Briand is a profes-
sor of software engineering at the
Simula Research laboratory and
University of Oslo, leading the
project on software verification
and validation. Before that, he
was on the faculty of the depart-
ment of Systems and Computer
Engineering, Carleton University,
Ottawa, Canada, where he was full
professor and held the Canada
Research Chair in Software Qual-
ity Engineering. He has also been
the software quality engineering
department head at the Fraunhofer

Institute for Experimental Software Engineering, Germany, and worked
as a research scientist for the Software Engineering Laboratory, a con-
sortium of the NASA Goddard Space Flight Center, CSC, and the
University of Maryland, USA. He has been on the program, steer-
ing, or organization committees of many international, IEEE and
ACM conferences. He is the coeditor-in-chief of Empirical Software
Engineering (Springer) and is a member of the editorial boards of
Systems and Software Modeling (Springer) and Software Testing,

Verification, and Reliability (Wiley). He was on the board of IEEE
Transactions on Software Engineering from 2000 to 2004. His research
interests include: model-driven development, testing and quality assur-
ance, and empirical software engineering.

Yvan Labiche is an Associate
Professor with the Department
of Systems and Computer Engi-
neering at Carleton University,
Ottawa, Canada. Yvan received
the BSc degree in computer sys-
tem engineering from the Gradu-
ate School of Engineering: CUST
(Centre Universitaire des Sci-
ence et Techniques, Clermont-
Ferrand), France. He received the
master’s degree in fundamental
computer science and produc-
tion systems in 1995 (Université
Blaise Pascal, Clermont-Ferrand,

France). While completing his PhD degree in software engineering,
received in 2000 from LAAS/CNRS in Toulouse, France, he worked
with Aerospatiale Matra Airbus (now EADS Airbus) on the defini-
tion of testing strategies for safety-critical, on-board software, devel-
oped using object-oriented technologies. His research interests include:
object-oriented analysis and design, software testing in the context of
object-oriented development, and technology evaluation. He is a mem-
ber of the IEEE.

123

	A UML-based quantitative framework for early predictionof resource usage and load in distributed real-time systems
	Abstract
	1 Introduction
	2 Background
	2.1 UML profile for schedulability, performance, and time
	2.2 Control flow analysis of UML 2.0 SDs

	3 Related work
	4 Model-based predictability analysis: an overview
	5 Resource usage analysis
	5.1 Definitions
	5.2 Resource usage definition
	5.3 Resource usage measure
	5.4 Resource usage query
	5.5 Resource usage analysis functions
	5.6 Resource usage analysis of other resource types
	5.7 Scalability of the approach

	6 Load forecasting
	6.1 Load forecasting query
	6.2 Load forecasting approach
	6.3 Load forecasting functions

	7 Reusing MBPA principles for additional applications
	7.1 Detecting resource overuse
	7.2 Predicting resource utilization

	8 Case study
	8.1 The case study system and its UML model
	8.2 Predicting resource usage pattern
	8.3 Detecting resource overuse
	8.4 Discussions and limitations

	9 Conclusions
	Acknowledgments

