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Abstract. Concurrency problems, such as deadlocks, should be identified early in the design process. This is made increasingly difficult as larger and more complex concurrent systems are being developed. We propose here an approach, based on the analysis of specific models expressed in the Unified Modeling Language (UML) that uses a specifically designed genetic algorithm to detect deadlocks. Our main motivations are (1) to devise practical solutions that are applicable in the context of UML design without requiring additional modeling and (2) to achieve scalable automation. All relevant concurrency information is extracted from systems’ UML models that comply with the UML Schedulability, Performance and Time profile, a standardized specialization of UML for real-time, concurrent systems. Our genetic algorithm is then used to search for execution sequences exhibiting deadlocks. Results on three case studies show that our approach can achieve efficient results. 
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1 Introduction

Concurrency problems, such as deadlocks, should be identified early in the design process. This is made increasingly difficult as larger and more complex concurrent systems are being developed. With the recent trend towards Model Driven Development (MDD) [15], the choice of using Unified Modeling Language (UML) models and their extensions as a source of concurrency information at the design level, is natural and practical. The analysis of concurrency properties should not require additional modeling or a high learning curve on the part of the designers, or should at least minimize it. We hence propose an approach for the detection of concurrency problems that is based on design models expressed in UML [12]. Because extension mechanisms serve to tailor UML to various applications, when the UML notation is not enough to completely model a system for a given purpose, the notation is extended via profiles. Of particular interest here is the standardization of the Schedulability, Performance and Time (SPT) profile [19] that addresses domain specific aspects of real-time, concurrent system modeling. Our aim is to develop an automated methodology that can be easily tailored to all types of concurrency faults, and that can be easily integrated into a Model Driven Architecture (MDA) approach, the UML-based MDD standard by the OMG [15]. A tailored genetic algorithm (GA) uses information available in the UML design models to search for conditions under which threads can result into deadlocks. The proposed methodology is also geared towards large, complex systems characterized by large search spaces.

Our methodology begins by automatically collecting all information relevant to deadlocks (e.g., thread/lock interaction) from the system’s UML design model extended with the SPT profile 
[19]. This step can be easily automated using one of various existing UML tools and the underlying UML/SPT metamodel. The extracted information is then fed to a GA tailored to deadlock detection. The GA searches for execution sequences exhibiting deadlocks. If a deadlock sequence is found, it is immediately reported and the search ends.

The approach we adopt is meant to be general and can be adapted to a variety of concurrency faults by tailoring the fitness function of our specifically designed GA in order to address problems such as deadlocks, starvation, data races and data flow problems. The current paper, however, focuses on the detection of deadlocks. Future work will address other types of problems.

We next provide an overview about deadlocks, highlighting the information needed as input to our methodology. Section 3 introduces the SPT profile and discusses the mapping between the profile and deadlock concepts. Section 4 describes our methodology in detail, while Section 5 presents our tool support. Section 6 discusses the results of a number of case studies. Related work is presented in Section 7 and we conclude in Section 8.

2 Deadlocks
Concurrency introduces the need for communication between executing threads, which require a means to synchronize their operations. One of these means is shared memory communication, which ensures that shared resources are accessed individually and appropriately [7]. The most common techniques for shared memory communication are semaphores and mutexes. Semaphores, or counting semaphores, represent multiple access locks: at most n tasks (n>1) will have access to a shared resource [7]. The resource’s capacity is the maximum number of threads executing within a shared resource. Mutexes are single access locks and are equivalent to a binary semaphore (n=1) [7]. Both types of shared memory communication will be referred to as locks in the remainder of this paper. Locks are first acquired before they are used, then later released when threads no longer need them. Threads waiting for access to a lock are placed in a conceptual wait queue. Wait queues define an access policy, e.g., FIFO, round robin, shortest-job-first, priority [2]. The various access policies require additional knowledge about threads. FIFO and round robin imply knowledge of thread access times of locks. These access times may be specified as ranges or definite values, although ranges are probably more common. Shortest-job-first implies knowledge of thread execution times within locks while the priority access policy implies knowledge of thread priorities.

Deadlocks occur when a thread is unable to continue its execution because it is blocked waiting for a lock that is held indefinitely by another thread [7]. In general, four conditions must be true before a deadlock occurs: 1. Threads share information that is placed under a lock, 2. Threads acquire a lock while waiting for more locks, 3. Locks are non preemptible, 4. There exists a circular chain of requests and locks (the circularity condition), as identified in a Resource Allocation Graph (RAG), i.e., a directed graph that depicts the allocation of resources to threads [2]. 

To proceed with our methodology, we must first map deadlock concepts, in particular those appearing in italics in this section, to UML and SPT concepts, as they form the input of the genetic algorithm. 

3 SPT Profile to Deadlock Mapping
In UML, active objects have their own thread of control, and can be regarded as concurrent threads [12]. Only extensions of the UML standard, such as the SPT profile [19], provide mechanisms to model detailed information pertaining to concur-rency. We next describe the aspects of the SPT profile that are relevant to our work. 
In the profile, concurrently executing entities are depicted with the <<CRconcurrent>> stereotype. As aforementioned, concurrency is also depicted in standard UML, but <<CRconcurrent>> enhances concurrent execution modeling. The profile also introduces two stereotypes that are of interest to us as they allow modeling the acquisition and release of resources: <<GRMacquire>> and <<GRMrelease>>, respectively. Protected resources, ones that are shared by concurrent threads, are stereotyped <<SAresource>>. Tags associated with this stereotype include SAcapacity (defines resource capacity) and SAaccessControl (access control policy, e.g., FIFO). During job execution, various actions take place that often have their own Quality of Service (QoS) characteristics. Stereotype <<SAaction>> depicts these actions, thereby allowing the specification of thread access times of locks, and thread execution times within locks. Tags for this stereotype include SApriority (the priority of the action), RTstart (the start time of the action), RTend (the end time of the action) and RTduration (the duration of the action). Start and end times, as well as durations could be specified as ranges.

The mappings between the deadlock concepts discussed in Section 2 and the profile are summarized in Table 1, illustrating the fact that we rely on three sub-profiles of the SPT profile. It is then clear that the information used by our GA can be automatically retrieved from UML/SPT models, in particular from sequence diagrams where those stereotypes and tags are used, as illustrated in Section 6 on an example.

4 Deadlock Detection
We proceed with describing how the input required for our methodology, as described in Section 3, is used for deadlock detection. 

Because we aim at trying to find a sequence of access times that will result in the worst possible scenario of thread executions—namely deadlocks—our objective is a form of optimization. Hence, the values to be optimized to try to reach a deadlock situation are the access times of threads to locks. A number of techniques abound for solving optimization problems. Where the search space is large, GAs are the preferred choices [6, 17]. GAs are based on concepts adopted from genetic and evolutionary theories [10]. They are comprised of several components: a representation of the solution (referred to as the chromosome), a fitness of each chromosome (referred to as the objective or fitness function), the genetic operations of crossover and mutation which generate new chromosomes, and selection operations which choose chromosomes fit for survival [10]. 

A GA first randomly creates an initial population of chromosomes, then selects a number of these chromosomes based on a selection policy, and performs crossover and mutation to create new chromosomes. The fitness of the newly generated chromosomes is compared to others in the population. Depending on the replacement policy, individuals from the original population and children populations are merged into a single new population. The common replacement policy is elitism, whereby fitter individuals of the older population and newly created chromosomes are retained while less fit ones are removed. The process of selection, crossover and mutation, fitness comparison and replacement continues until the stopping criterion, such as a maximum number of generations [10], is reached. 

We next introduce the various constituting components of our GA. It is important to note that these components are applicable to any concurrent system, as long as the input discussed previously is available. In other words, the GA components are only defined once. What varies from system to system are the input values.

Chromosome Representation

A chromosome is composed of genes and models a solution to the optimization problem. The collection of chromosomes used by the GA is dubbed population [10]. We want to optimize the access times of threads to locks. These are the values that will be altered by the GA to try to reach a deadlock situation. The access times must reflect schedulable scenarios. In other words, we need to ensure that all execution sequences represented by chromosomes are schedulable. This entails meeting system specifications of periods, minimum arrival times, etc. Thus, we need to encode threads, locks and access times, which are available in the input model: <<CRconcurrent>>, <<SAresource>> respectively (Table 1). A gene can be depicted as a 3-tuple (T, L, a), where T is a thread, L is a lock, and a is T’s access time of L. A tuple represents the execution of a thread when trying to access a lock. Tuples are defined for a user specified time interval, i.e., a time range during which the user wants to study the system’s behavior. The time interval controls how many times each thread attempts to access each lock: the greater the time interval, the more threads can access locks, hence adding more tuples/genes to the chromosome, thereby increasing its size. Without specifying a time interval, we cannot assume a fixed size for chromosomes, thus making crossover operations much more complex [13]. A heuristic for determining an appropriate time interval is given in Section 4.4. A special value of -1 is used to depict lock access times that lie outside this interval: (T, L, -1) represents a lock access that does not occur.

Because a chromosome models a solution to the optimization problem, it needs to be large enough to account for the scenario where all threads are accessing all locks during the time interval. Hence, the chromosome size (its number of genes) is equal to the total number of times all threads attempt to access all locks in the time interval. Notice that in this situation, a thread can appear more than once in the chromosome if it accesses more than one lock or if it accesses the same lock multiple times.
Three constraints must be met for the formation of valid chromosomes and to simplify the crossover operation discussed below. 1.) All genes within the chromosome are ordered according to increasing thread identifiers, then lock identifiers, then increasing access times. 2.) Lock access times must fall within the specified time interval or are set to -1. 3.) Consecutive genes for the same thread and lock identifiers must have access time differences equal to at least the minimum and at most the maximum access time range of the associated thread and lock, if start and end times are defined as ranges (Section 3). 

Consider, for example, a set of three threads T1 (access range [23-25] time units), T2 (access range [15-22]) and T3 (access range [25-35]) each accessing lock L1. In a time interval of [0-30] time units, the chromosome length would be three since each of the threads can access L1 at most once during this time interval. The following is then a valid chromosome: (T1,L1,24) (T2,L1,20) (T3,L1,-1) where T1 accesses L1 at time unit 24, T2’s access is at time 20 and T3 does not access the lock before time 30.

Crossover Operator

Crossover is the means by which desirable traits are passed on from parents to their offspring [10]. We use a one-point, sexual crossover operator: two parents are randomly split at the same location into two parts which are alternated to produce two children. For example, the two parents on the left of Figure 1(a) produce 

the offspring on the right. If, after crossover, any two consecutive genes of the same thread and lock no longer meet their lock access time requirements (constraint 3 is violated), the second gene’s access time is randomly generated such that constraint 3 is met. This is repeated until all occurrences of this situation satisfy constraint 3.

Mutation Operator

Mutation introduces new genetic information, hence further exploring the search space, while aiding the GA in avoiding getting caught in local optima [10]. Mutation proceeds as follows: each gene in the chromosome is mutated based on a mutation probability and the resulting chromosome is evaluated for its new fitness. Our mutation operator mutates a gene by altering its access time. The rationale is to move access times along the specified time interval, with the aim of finding the optimal times at which these access times will be more likely to cause deadlocks. When a gene is chosen for mutation, a new timing value is randomly chosen from the range of possible access range values. If the value chosen lies outside the time interval, the timing information is set to -1 to satisfy Constraint 2. Similar to the crossover operator, if, after mutation, two consecutive genes no longer meet their lock access time requirements, the affected genes are altered such that the requirements are met. For example, assume threads T1, T2 and T3 attempt to access a target lock, L1 with access times T1[4-7], T2[20-30], T3[12-15] and time interval [0-25]. The first chromosome of Figure 1(b) is then valid. When the second gene of the chromosome is chosen for mutation, a new value (say, 27) is chosen from its access time range [20-30]. Because this falls outside the time range specified, the mutated gene has value -1.

Objective Function
The objective function calculates the fitness of chromosomes. In our methodology, we define an objective function that uses information about threads, locks, and thread access times of locks: one that is based on how close a given chromosome is to representing a deadlock. Yet, a deadlock can only be determined after threads acquire their needed locks. We thus first schedule thread executions according to arrival times specified in chromosome data (i.e., genes) for the time interval defined: i.e., genes indicate at what time threads access locks and this information, along with execution times available (for instance) from the UML/SPT model, is used by a scheduler to schedule thread executions within locks. Then we calculate the fitness by examining the state of threads and locks (threads waiting on and executing within locks) at the end of the time interval. Since a deadlock appears when the involved threads cannot proceed with their executions, any deadlock that occurs early during the time interval will propagate to the end of the interval; the objective function therefore examines the state of threads and locks at the end of the time interval.

The chances of a deadlocked situation increase when the number of threads accessing locks at the same time increases: the more threads try to access locks at the same time, the greater the chance of a deadlock. Furthermore, to account for the aforementioned circularity condition of deadlocks (Section 2), the probability of a deadlock increases with the number of times threads execute in locks and wait on them. We use these heuristics to develop an appropriate fitness function. Because a deadlock situation can only arise when there is a cycle of requests and locks, at least two threads must be executing within two locks that are full to capacity, while also waiting interchangeably for access of those locks. 

This leads us to define a number of properties that the fitness function must possess: 1.) Because deadlocks involve at least two waiting threads, the fitness of scenarios where at least two threads are waiting on locks should always be superior than the fitness of scenarios where zero or one thread is waiting; 2.) The fitness function should be driven by the number of locks locked, i.e., an additional thread executing in a lock should increase the fitness; 3.) The fitness function should be driven by the number of threads waiting on locks, i.e., an additional thread waiting for access to a lock should increase the fitness. Property 1 ensures that situations where no deadlock is possible are penalized, whereas properties 2 and 3 guide the search towards situations where deadlocks are possible and increasingly likely.

Based on these premises, let us examine the fitness function of a chromosome c. Variables #T and #L represent the total number of threads and locks in the system, respectively. threadsWaiting is the total number of threads waiting on any lock. By definition, a thread waiting on a lock is blocked and its execution cannot resume until it gains access to the lock. Hence, this variable is in the range [0-#T].  #LockExecs is the total number of threads executing within all locks. It is the summation of the slots in all locks that are occupied. This variable is in the range [0 -lockCapacities], where lockCapacities is the summation of all lock capacities. threadsWaiting and #LocksExecs are obtained after scheduling and are calculated at the end of the time interval, whereas lockCapacities comes from the UML/SPT input (Table 1).

Our fitness function for chromosome c gives higher fitness values to situations where more threads are executing and waiting on more locks; larger values are therefore indicative of fitter individuals.



Showing that this fitness function satisfies the three aforementioned properties is straightforward and is omitted here due to space constraints (see [20]).

The fitness function is used by the GA after scheduling the threads according to their respective chromosomes. It is important to note that when there is a deadlock situation, the fitness function does not guarantee that the fitness value will be maximized. The fitness function is always a heuristic and cannot deterministically identify concurrency issues. For example, near deadlock situations where threadsWaiting>2 may overshadow a deadlock situation where threadsWaiting=2. To ensure that a deadlock is detected when there is one, a RAG (Section 2) is built after scheduling, i.e., once we know the allocation of resources to threads according to chromosome data, to detect deadlocks when threadsWaiting(2. Identifying cycles in such a graph is a well-known problem. Once a deadlock is detected from the RAG, the GA terminates and the chromosome yielding the deadlock is returned.

Consider the chromosomes of Figure 1(b). Recall the access times (T1[4-7], T2[20-30], T3[12-15]) and time interval ([0-25]). Further assume that lock execution times for each of the threads are 21, 5 and 10, respectively. L1 is assumed to have capacity 1 and a FIFO access policy. Figure 2 
depicts the scheduling of both the original chromosome (left) and the mutated chromosome (right): Threads accessing L1 are shown as squares and threads waiting in L1’s wait queue are shown as circles. According to the original chromosome, T1 accesses L1 at time unit 4 until time unit 4+21-1=24. During this period, T2 and T3 are waiting on L1, starting at times 21 and 13, respectively. The fitness value of the original chromosome is 2 (threadsWaiting<2, hence #LockExecs+threadsWaiting=1+1). The mutated chromosome has fitness 1 (#LockExecs+threadsWaiting=1+0 since threadsWaiting<2). Because in both situations threadsWaiting<2, no RAG check is needed. The original chromosome is thus closer to a deadlock situation than the mutated chromosome. This is logical since in the former case, one thread is waiting for access to the lock as opposed to the latter case where no thread is waiting.

For the fitness function to be effective, the time interval over which it is defined must be large enough so that deadlock situations have a chance to occur. Recall that the time interval determines the size of the chromosome. If the time interval is too large, chromosome size is affected and overall computation time of the GA increases. Hence, there is a tradeoff between having a long time interval to increase the likelihood of deadlock detection and overall GA computation time. A good range for the time interval is based on the longest thread execution time in all locks (lt) and the maximum lock access time of all threads (ll). These are obtained from the UML/SPT input, by looking at the RTstart and RTduration tags of all the threads stereotyped <<SAaction>> in sequence diagrams (Section 3). Our heuristic is to guarantee, using these two variables, that all thread accesses will occur at least twice, giving deadlocks a chance to occur. Therefore, the time interval equals: [0-(lt+ll)*2].

5 Tool and GA Parameters

We have built a prototype tool, Concurrency Fault Detector (CFD), supporting our methodology. CFD is an automated system that identifies potential concurrency faults in any concurrent application. Currently, it can identify deadlocks, and work is in progress for the detection of other types of concurrency faults. CFD involves a sequence of steps. Users first input two categories of information: (1) UML/SPT sequence diagrams for the analyzed system, and (2) the execution time interval during which the system is to be analyzed. CFD then extracts the required information from the inputted sequence diagrams. 

CFD is decomposed into three portions: a scheduler, a genetic algorithm, and a RAG evaluator. The GA, as described in Section 4, is used to determine whether an execution sequence exists that meets all input requirements and (potentially) results in a deadlock. CFD’s scheduler emulates single processor execution. Deadlock detection is performed using a RAG whenever a chromosome results in at least two threads waiting on locks (Section 2). If a cycle is found, CFD outputs the details of the chromosome causing it and the corresponding RAG

. If no deadlock is found after 1000 generations, CFD terminates.


Since collecting input data is easy to automate from a UML case tool, and all the other phases are automated, CFD is meant to be used interactively: the user is expected to fix the design of the system when CFD terminates with a detected deadlock situation. This is the main reason why we developed a strategy that only reports one deadlock scenario at a time, i.e., per run of CFD, allowing designers to fix the system’s design before running the modified design again on CFD. 

CFD is used to investigate whether scenarios can be generated where deadlocks occur. If no such scenario is found, this does not guarantee that none exist. However, one can still feel more confident that such a case is unlikely. 

Though various parameters of the GA must be specified, we can fortunately rely on a substantial literature reporting empirical results and making recommendations. Parameters include the type of GA used, population size, mutation and crossover rates and selection operator. We use a steady state GA, with a replacement percentage of 100%. The population size we apply is 200. This is higher than the size suggested in [10], but works more effectively for larger search spaces. The selection operator is rank selector, whereby chromosomes with higher fitness are more likely to be chosen than ones with lower fitness [18]. Mutation and crossover rates are 
 (where ( denotes the population size and l is the length of the chromosome) and 0.8, respectively. Both are based on the findings in [16] and [10], respectively.

All parameter values are based on findings reported in the literature, except population size, which was fine tuned after some experimentation. These parameter values have worked exceedingly well in all our case studies when considering both the detection rate and execution time to find a deadlock. The same parameter values can be used for other system designs, though further empirical investigation is required to ensure the generality of these parameter values in our application context. In the worst case, if one wants to be on the safe side and ensure fully optimal results, the parameters can be fine tuned once for each new system design: when the system design being checked is first analyzed. For further design modifications of the same system, the parameters need not be fine tuned.

6 Case Studies

Our case studies aim to evaluate the effectiveness and run-time efficiency of our GA at detecting deadlocks based on UML/SPT design models. We first describe the case studies and then discuss results.

The Dining Philosophers Problem (Phil)
The renowned n-dining philosophers problem has commonly been used to demonstrate deadlock detection and avoidance [8, 9]. The problem is summarized as follows: 40 philosophers are sitting at a round table either eating or thinking. Every two philosophers share one fork, yet only one can access a shared fork at a time. The forks are set so that each philosopher has one on their right and one on their left. When they are thinking, philosophers do not access forks. When they are hungry and attempt to eat, they pick up left forks first followed by right. When finished eating, forks are released in the same order.  This solution can be deadlocked if all philosophers attempt to eat at the same time and all pick up their left forks. The search space is approximately 1.2 * 1019.


Figure 3: Dining Philosophers 

Sequence Diagram
Concurrency aspects are depicted in Figure 3 for philosopher 1. This is an excerpt of the full sequence diagram. The complete sequence diagram would show the interactions of all philosophers and all forks. Philosopher 1 is depicted as a concurrently executing thread via <<CRconcurrent>>. It acquires two locks, Fork 17 and Fork 1, designated by <<SAresource>>. Fork 17 (left fork) and Fork 1 (right fork) each allow only one thread to execute at any given point in time, as indicated by SAcapacity. Each lock’s waiting threads are accessed on a first come first served basis as specified by SAaccessControl. The philosopher’s thinking time (access time range) is represented by RTduration in the first <<SAaction>>. Access times and lock execution times are both discrete uniform distributions between 1 and 100 seconds. The execution duration of Philosopher 1 (thread) in each of the locks is defined by RTduration on each lock’s SAaction, i.e., between 1 and 100 time units. 
Recall that CFD requires two inputs: sequence diagram and time interval. The first input for the case study is the complete sequence diagram. For the time interval, we used our 

heuristic (Section 4.4): the longest thread execution time is 100 (maximum eating time), and the longest lock access time (i.e., thinking time) is 100, hence the time interval is 400. 

The Bank Fund Transfer Problem (Bank)

The bank fund transfer is based on a simple banking functionality: fund transfer between accounts, and simulates multiple threads transferring funds among different accounts [5]. Ten threads, representing 10 account holders, repeatedly transfer funds between any two randomly generated accounts out of 50 available accounts. When transferring from account A to account B, account A is first locked, then checks on the amount bounds of A are performed. If A can transfer the amount, account B is locked, then the amount is validated before the transfer is complete. Account B is released first, followed by account A. The corresponding sequence diagram is not shown here due to space constraints but can be found in [20]. Again, all the necessary information used by the GA, including the time interval, can be retrieved from the UML/SPT model (see [20]).
With this design, a deadlock can occur if one thread is transferring from account A to B, while another is simultaneously transferring from B to A. 

The search space of this problem depends on the number of threads and the number of accounts, specifically (n2-n)t, where n is the number of accounts and t is the number of threads. For 10 threads and 50 accounts, the search space is approximately 7.7 * 1033.

The Cruise Control Problem (Cruise)

The cruise control problem emulates a car simulator along with its cruising controller. The system is divided into a number of classes: CarSimulator simulates the car engine, runs a thread while the car is started, and simulates car speed changes based on the throttle and brake settings as well as the controlled speed by the cruising system when it is enabled; CruiseControl is a container for both car simulator and cruise controller of the car. This is the entry class that receives commands and dispatches them to the car and the controller; SpeedControl is a thread that runs in the Controller to adjust car speed whenever cruising is enabled. When cruising is enabled, the current car speed is recorded and maintained for the duration of cruising time. When resuming cruising, the latest recorded speed is used as the speed to maintain during cruising; Controller simulates the cruise control of the car, disabling, enabling or resuming cruising according to the commands received by CruiseControl. It creates a new SpeedControl thread when cruising is enabled.

Unlike the other case studies, many different scenarios are available here for testing. Here, we limit it to the following test case scenario, as portrayed in the sequence diagram of [20]. This scenario tests a number of threads and locks: 

engine on

repeat

accelerate

cruise control on

brake
A deadlock can occur during breaking when the CarSimulator is executing the brake command and the SpeedControl is in its periodic run. Furthermore, in these particular states, a deadlock shows up only when the timing is just right so that both acquire two locks (brakepedal and throttle) at just the right times.

The search space here depends on the number of new SpeedControl threads created. For t new threads created, the search space is 6t+8. We create 2000 new threads in this case study.
Results
We first compare our results with randomly generated execution sequences (i.e., chromosomes). This is necessary in order to demonstrate that the detection of deadlocks is not easy in our case studies and that our GA really makes a useful contribution. In our GA, 200 sequences are first randomly generated as the initial population. Then, up to 200 new ones are generated using GA operations. These may replace up to all of the population. For 40 philosophers, the generation and replacement of sequences continues for 343 generations on average before a deadlock is detected. Hence, we randomly generated 68,800 sequences (200 + (200 * 343)) as a benchmark to assess the usefulness of our technique. (Note that in this case the evolution of the population is not driven by the fitness function.) Of the randomly generated sequences, none produced a valid sequence that leads to a deadlock situation. Similarly, 10,000 random sequences were generated for Bank and Cruise. The former produced no valid sequences yielding a deadlock, while the latter rarely did (roughly 0.05% of the time), owing to the significantly smaller search space in part compensated by more stringent requirements for a deadlock.
As GAs are a heuristic optimization technique, variance occurs in the results produced. To give an idea of the variability in results, each case study was run a number of times on an Intel Core 2 2.0 GHz processor. Results are presented in Table 2, with indications if a deadlock was detected (Error), the number of runs detecting the deadlock over the total number of runs, the total execution time, the average execution time per run, the search space, the number of random sequences generated and the percentage of time when random sequences detect a deadlock. The average execution time per run indicates, on average, how long it takes to execute any run, whether it finds the deadlock or not. 

Table 2: Results

	Case Study
	Error found?
	#Errors / #Runs
	Total Runtime (hrs)
	Average Execution Time per Run
	Search Space
	Number Random Sequences
	Random Detects Deadlock (%)

	Phil
	Yes
	12/25
	02:27:23
	1 min 27 sec
	1.2 * 1019
	68,800
	0

	Bank
	Yes
	50/50
	00:11:40
	14 sec
	7.7 * 1033
	10,000
	0

	Cruise
	Yes
	50/50
	00:01:15
	1.5 sec
	1.2 * 104
	10,000
	0.05


CFD consistently detects deadlocks in two of the case studies. But for the 40 philosophers problem, CFD is unable to detect a deadlock in 13 runs out of 25, with each run taking a maximum of 10 minutes. However, when CFD is able to detect a deadlock (12/25 runs or 48% of the time), it does so in approximately a minute and a half. This implies that CFD can be run several times for a few minutes and then be very likely to detect a deadlock when there is one, in a short time. For example, 10 runs would take roughly 15 minutes and have a probability of less than 2/1000 not to detect a deadlock. Though not targeted to UML, the Phil case study is also addressed in [9] using a model checker: DELFIN+. Because a heuristic is involved, we would expect some random variation in execution times and perhaps deadlock detection effectiveness across different runs, yet no mention is given as to how many runs were produced for 40 philosophers, implying that reports are for a single run [9]. It takes 10,000,000 msec for DELFIN+ to detect a deadlock. This is drastically longer than the average time taken by CFD. Execution time differences between DEFLIN+ and CFD may be partly explained by a difference in hardware (Intel Core 2 2.0 GHz processor versus Intel Pentium 4 2.80 GHz processor
). Though the way results are reported in [9] does not allow easy comparisons, such a large time difference still suggests CFD is comparatively very efficient.

It is interesting to note that CFD is able to detect a deadlock in all 50 runs of the Bank case study, even though it has a larger search space than that of the 40 philosophers. While the search space is smaller in the latter case study, the conditions for a deadlock are more stringent (all 40 philosophers must be accessing all left forks simultaneously, versus any two accounts with inverted source and destinations). This makes the search harder in the former case than the latter. 

7 Related Work

A substantial amount of work aims at testing or verifying concurrent systems. They cover areas such as model checking and code-based static analysis. They are also diverse in their underlying technology, using GAs, dedicated languages, temporal logic, and automata theory, for example. GAs have also been used for various testing purposes in sequential systems - such as input data generation and integration testing - as well as real time systems - such as performance testing. However, all these works lie out of the scope of the current paper.
Model checking has been used to test concurrent system requirements. Some checkers, such as UPPAAL [4], use models of the system under test while others, such as Verisoft [8], use the system’s source code. Others, such as DELFIN+ [9], combine heuristic searches with model checking. In UPPAAL [4], a system is modeled as a network of timed-automata that execute in parallel and may synchronize with each other. The overall state of the system is determined by the combined states of each of the automata, clock constraints as well as values of variables. System specifications that are to be verified are inputted via UPPAAL’s query language, which uses a version of Computation Tree Logic (CTL) [4]. Verisoft [8] relies on source code analysis and uses a GA, coupled with a model checker, to search for error states in the state space of a concurrent reactive system. The SPIN model checker [1] is based on automata theory where properties to be verified are expressed in Linear Temporal Logic (LTL) and the system under test is expressed using Process Meta Language (Promela) [1]. DELFIN+ [9] and HSF-SPIN [11] follow a directed model checking approach using heuristic searches (e.g., A*) to detect deadlocks in concurrent systems. 
With the current trend towards MDD [15], models are regarded as the essence of system development. While their development may be time consuming, they can be used to partially automate other activities. The methodology we propose is meant to be used in the context of the OMG MDA, hence our reliance on the UML standard and SPT profile, thereby reusing existing design models instead of developing specific models to be inputted to a model checker. As all information required by our methodology can be incorporated in the UML model of a system, this eliminates the need for additional modeling activities (e.g., using temporal logic). While the sequence diagrams required by CFD may not be as detailed as required when the system is initially designed, adding information to these pre-existing diagrams is easier than converting the whole model into a different model, such as timed-automata in the case of UPPAAL [4]. In essence, our methodology can be thought of as another user configurable model analyzer that is easier to use than a model checker because it does not require any additional knowledge than familiarity with UML/SPT. Moreover, our technique was shown in Section 6.4 to be effective in comparison to a model-checker for the 40 philosophers problem [9].
Another interesting and recent work that employs models to test concurrent systems is presented in [14]. The approach is to build a model - under the form of a UML state machine - that captures both the aspects of the system’s behavior that one wants to test and the underlying programming language concurrency mechanisms, specifically Java. The Symbolic Analysis Laboratory (SAL) model checker derives test sequences from the model, which are then executed with Concurrency Analyzer (ConAn), a deterministic, run-to-completion testing tool [14]. This differs from our approach as our goal is to reuse of existing UML design models rather than UML models created specifically for testing language specific implementations.
In the context of MDD, a number of works also utilize the SPT profile (e.g., [3]), yet they mostly focus on performance analysis rather than the analysis of model properties.
8 Conclusions and Future Work

Concurrency abounds in many software systems. Such systems usually involve threads that access shared resources, and complex thread communication. If not handled properly, such accesses can lead to many problems, such as deadlock situations, which may hinder system execution. The earlier any problem is detected, the better. In this paper, we describe a methodology and a tool for detecting deadlocks based on the analysis of design representations in UML and SPT. Since our goal is to provide an automated test methodology that can be applied in the context of model-driven, UML-based development, the choice of UML/SPT was natural as it is the de facto standard for the object-oriented modeling of concurrent, real-time applications. This is also practical in reducing the need for complex tooling and training, and additional modeling to what is already required for UML-based development. Being geared towards systems characterized by large search spaces, our methodology uses a tailored genetic algorithm for searching deadlocks. 

We presented three case studies that show very promising results. Even in the presence of large search spaces, the running time of our tool has shown to be quite reasonable. Therefore, even in the worst-case scenario, when the GA detection rate is at its worst, it can be run several times for a few minutes and then be nearly certain to detect a deadlock if one exists. 

Though we focus on deadlocks here, work is underway to tailor our GA fitness function to other concurrency problems, specifically ones associated with shared resources (namely data races, starvation, and livelocks) and thread communication. For example, the fitness function used for starvation is built on the assumption that the chances of starvation increase as the number of threads waiting for access to a lock increases. 
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Figure � SEQ Figure \* ARABIC �1�: Crossover (a) and mutation (b) examples�
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Figure � SEQ Figure \* ARABIC �2�: Fitness Calculation Example





Table � SEQ Table \* ARABIC �1�. Concept to SPT Mapping

Concept�
SPT Stereotype/Tag�
SPT sub-profile�
�
Thread�
<<CRconcurrent>>�
RTconcurrencyModeling�
�
Lock�
<<SAresource>>�
SAprofile�
�
Lock acquire�
<<GRMacquire>>�
RTresourceModeling�
�
Lock release�
<<GRMrelease>>�
RTresourceModeling�
�
Wait queue access policy�
<<SAresource>>/SAaccessControl�
SAprofile�
�
Thread priority�
<<SAaction>>/SApriority�
SAprofile�
�
Lock execution time�
<<SAaction>>/RTduration�
SAprofile�
�
Lock capacity�
<<SAresource>>/SAcapacity�
SAprofile�
�
Lock access time range�
<<SAaction>>/RTstart | RTduration�
SAprofile�
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� DELFIN+ is not available for download, so we could not run it on our same environment.



�Should we mention that Marte is now the standard approved by OMG and that the technique was researched at the time when Marte was yet a draft this can be adapted to Marte?

�By having the original chromosome above the mutated one in figure (b), we will be able to reduce the width of the right column in the table and better separate the two figures.

�Done

�Some figures were bold, others were not? I changed that. 

�Can we say that, I mean is this feasible, and easy? (To somehow please reviewer 2?)

�Yes and no. I can (and actually modified it so that I do) output the nodes that are involved in the deadlock from the RAG. I don’t have access to the actual RAG construct which relates the nodes to one another. We can build that, but it would be cumbersome.

�Is there any output data produced by CFD in this case?

�Yes, the chromosome with the highest fitness found is reported.



YL: could we say that? Could we say that there is useful output anyway in this case?

�With access to the (visio?) file I could reduce the space used by this figure, for instance:

by having more room between lifelines so that the two notes at the very top of the figure can fit between lifelines

by reducing the bottom of the combined fragment (to have it closer to the very bottom note)

�done

�Reviewer 1 wanted a chromosome for this problem. He also suggested we show a chromosome that represents a deadlock. Could we do this in a few lines?

�I chose to ignore the comment by the reviewer. We could show a chromosome representing a deadlock in a few lines, yes, but then we’d need to show how it represents a deadlock by showing how it is scheduled, which would require a diagram similar to Figure 2.



YL: I understand

�Reviewer 1 wanted to see the average number of iterations in the GA, but I guess we already show execution times…



LB: I also do not think this is necessary. 
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