
C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 289–301, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Self-reconfiguration in Highly Available Pervasive
Computing System

Hadi Hemmati1 and Rasool Jalili2

1 Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
hemmati@simula.no

2 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
jalili@sharif.edu

Abstract. High availability of software systems is an essential requirement for
pervasive computing environments. In such systems self-adaptation, using dy-
namic reconfiguration is also a key feature. However, dynamic reconfiguration
potentially decreases the system availability by making parts of the system tem-
porary frozen, especially during incomplete or faulty execution of the recon-
figuration process. In this paper, we propose Assured Dynamic Reconfiguration
Framework (ADRF), consisting of run-time analysis phases, assuring the de-
sired correctness and completeness of dynamic reconfiguration process. We
also specify factors that affect availability of reconfigurable software in perva-
sive computing systems. Observing the effects of these factors, we present
availability improvement of our method in comparison to the other reconfigura-
tion mechanisms.

Keywords: Dynamic Reconfiguration, Pervasive Computing, Autonomic Sys-
tems, Availability.

1 Introduction

Pervasive Computing Systems (PCSs) are going to change the focus of software
systems from information and services to users. In such user-centric PCSs,
availability and adaptability are parts of the software development fundamentals [1].
High availability of services in PCSs forces such systems to be self-adaptive. Self-
adaptation or adaptability is the software ability to change its architecture behavior in
the execution time whenever it is needed [2]. Changing software architecture in run-
time without shutting the system down is called dynamic reconfiguration [3].

Our perception of dynamic reconfiguration covers all kinds of run-time changes on
application in the level of software architecture such as upgrading, updating, bug
fixing, and adapting to a new situation. Mainly, dynamic reconfiguration is performed
to adapt a system to the new situation to improve system performance and software
qualities. One of the most important quality attributes, which is necessary in
distributed systems and much more in PCSs, is system availability. This is due to the
facts that unavailable systems can not (1) be invisible from users for a long time (2)
respond to user intent sufficiently (3) be trusted as secure systems and (4) be

290 H. Hemmati and R. Jalili

considered as dependable systems to be used anytime, anywhere, and from any
device. Reconfigurable software in PCSs has the following features [4]:

• PCS software potentially has the ability to perform many reconfigurations in
their life-time because of systems adaptiveness and reconfigurations context-
awareness.

• In ordinary systems, reconfigurations are usually simple such as upgrading a
component. But in PCSs, reconfigurations usually consist of several operations
to adapt the system to completely new situations. Reconfigurations with
several operations are called complex reconfiguration.

• Most of PCSs do not have any external administrator. This fact forces them
to be self-managed. From this point of view, PCSs are similar to autonomic
systems which need self-reconfigurablity.

• Wireless communication, device mobility, limited power, and other limited
resources make pervasive computing environments error-prone. Therefore,
the risk of failure during reconfiguration process in such environments is
very high.

Hence, if there is not any mechanism for correct execution of reconfiguration
process, dynamic reconfiguration decreases the system availability in the case of
reconfiguration failure.

Although adaptability in PCSs has been discussed in many papers, the problem of run-
time assurance for reconfiguration process has not been considered properly. Most of
current run-time monitoring, validation, and verification techniques are at the code level
[5, 6]. There exists some tools such as ArchStudio [7] and Mae [8] which manage
dynamic reconfiguration but they do not have enough run-time analysis. In [9] replicated
components have been used during reconfiguration, and after completion of reconfigura-
tion process. This solution suffers from having an extensive overhead for changing all
replicas of a component after a reconfiguration. In addition, the replicated component can
not be used, when the old version is functionally wrong or not applicable.

To achieve the assured reconfiguration, we need some assurance analyses in the
specification time and run-time. As the main focus of this paper is run-time analysis,
we assume that all reconfiguration specifications are correct. Having a verified
reconfiguration specification is not enough because of unexpected run-time errors and
unsuitable reconfiguration starting time [10]. In this paper, we propose a run-time
monitoring method in ADRF to ensure correct and complete execution of dynamic
reconfiguration in PCSs. Also, we demonstrate how much the PCS availability can be
improved by performing reconfiguration under ADRF supervision.

Section 2 introduces ADRF with its architecture and process. In sections 3
monitoring and analysis of reconfiguration in ADRF is demonstrated. Section 4
discusses some availability issues in ADRF, and section 5 evaluates ADRF in terms
of system availability.

2 Assured Dynamic Reconfiguration Framework

Assured Dynamic Reconfiguration Framework (ADRF) is aimed to provide correct
and complete reconfiguration in PCSs [11]. In addition, ADRF improves system

 Self-reconfiguration in Highly Available Pervasive Computing System 291

availability through reducing the risk of incomplete and faulty reconfigurations. In
this section ADRF architecture and its reconfiguration process are explained.

2.1 ADRF Architecture

ADRF, illustrated in Figure 1, is located between the middleware and the user
interface. It surrounds the application and monitors it in the reconfiguration period.
ADRF rules can be updated through the user interface. Utilizing the middleware
distribution facilities, ADRF can support distributed applications, which is out of the
scope of this paper. Inside ADRF, there are three main components for providing
assured reconfiguration process: A context-manager (CM), a reconfiguration-manager
(RM), and a service-manager (SM). CM is responsible for triggering RM and the
application when a related context changes. RM is responsible for performing assured
reconfigurations when preconditions are triggered by CM. SM is responsible for
preparing components and software for reconfiguring in a suitable manner by freezing
and unfreezing some components.

Fig. 1. The Architecture of ADRF

2.2 Reconfiguration Process in ARDF

In the ADRF component model, components are interconnected through messages and
messages are buffered in the source and destination components. Therefore, connectors
are just some pointers and do not have significant role in our view of the software
architecture. A UML-like state-chart is used for specifying component behavior.
Software configuration in ADRF is represented by a graph of components. The system
behavior is characterized using the components behavior in addition to its architectural
configuration. The reconfiguration process in ADRF consists of four steps:

292 H. Hemmati and R. Jalili

1. Detecting the need for a reconfiguration (or reconfiguration initiation)
2. Selecting a reconfiguration map
3. Performing the reconfiguration map
4. Analyzing the architecture after reconfiguration

The first step starts when a change in the system or environment occurs which satisfies a
reconfiguration’s pre-conditions. These pre-conditions in PCSs are context-aware. It
means that they are triggered by changes in the system, user, or environmental contexts.
In fact, system designers or architects use these pre-conditions to define situations
where system needs reconfiguring its architecture. The followings are some examples of
these situations in PCSs: the need for tolerating faults, using new services, adapting to
existing resources, automatic evolution, and supporting change in user intents.

In the second step the corresponding map for the pre-condition is fired. A
reconfiguration map is a set of reconfiguration operations which should be performed
sequentially. Each reconfiguration has a rule, which contain preconditions and
corresponding map. In ADRF, reconfiguration rules are specified in the design time
by the system designer or architect. Reconfiguration operations are:

• Add(Ci) which adds component Ci to an architecture,
• Delete(Ci) which deletes component Ci from an architecture,
• Attach(Ci,Cj) which attaches two components Ci and Cj to each other,
• Detach(Ci,Cj) which detaches two components Ci and Cj from each other, and
• Replace(Ci,Cj) which replaces two components Ci and Cj with each other.

The definition of reconfiguration rules can be defined in EBNF (Extended Backus-
Naur Form) as:

• <RecRule> ::= <Precond>, <Map>
• <Precond> ::= <Cond> {Λ <Cond>}*
• <Cond> ::= Context <Op> Context | Context <Op> Const
• <Op> ::= < | > | <= | => | == | ≠ | in | not in
• <Map> ::= <RecOp>+
• <RecOP> ::= Add(Ci) | Delete(Ci) | Attach(Ci, Cj) | Detach(Ci, Cj) | Replace(Ci,

Cj)

Where terminals are shown in bold and non-terminals are located between "<" and
">". The terminal Context can be one of the pre-defined contexts in the system or
environment. The terminal const is a constant value. In ADRF, software components
are attached together without specific connectors. Therefore, the connector role in the
reconfiguration operations is omitted.

In the third step of the reconfiguration process, the reconfiguration map is
performed by sequentially executing its reconfiguration operations on the software.
Executing these operations, it is necessary to block (freeze) some parts of the software
which are participated in the reconfiguration. It is due to the fact that in most cases
components can not be reconfigured, when they are being executed through a running
process. During freezing period, services which are provided by frozen components
are not available. Freezing has two problems which should be solved in the
reconfiguration process: finding the best time to freeze, and finding the minimum
components which should be frozen.

 Self-reconfiguration in Highly Available Pervasive Computing System 293

After freezing, the reconfiguration operations are performed and then the frozen
components are unfrozen. In the fourth step, some run-time analyses are carried out
before unfreezing the modified software architecture to check its conformance with
the architect anticipation.

3 Monitoring and Analysis of Reconfiguration Process in ARDF

Run-time assurance analysis in ADRF is performed in three phases: before, during,
and after reconfiguration. In the initialization phase of ADRF, the context-aware
application and each reconfiguration rule register themselves in CM. Each rule may
include some contexts in its pre-condition. Such pre-conditions are registered in CM
in the initialization phase as well as new rules insertion time. If all preconditions of a
reconfiguration are satisfied, CM will trigger RM to fire the reconfiguration. In the
following sub-sections, we explain the details of the three reconfiguration analysis
phases.

3.1 Freezing the Affected Area

The first phase of analyzing a reconfiguration, which is done before reconfiguration
execution, is freezing the affected area by SM. Affected area in a specific
reconfiguration, is the set of components affected by the reconfiguration. It consists of
all components which have been given as parameters to the reconfiguration
operations. For example, if a reconfiguration attempts to replace c1 with c2; c1 should
be frozen and added to the affected area of this reconfiguration. Unfrozen components
continue their execution regardless of the frozen part. If a running component sends a
message to one of the frozen components, the message will remain in the destination
component buffer, until the component is unfrozen.

After recognizing the affected area, SM should find the best time to freeze. When
components of the affected area are in their Safe Reconfiguration Points (SRPs) is the
best time. SRPs are states in the component state-chart where the component state can
be correctly transferred. In fact, components that are not in SRP states can not be
reconfigured. Recognizing SRPs in the state-chart can not be done completely
automatic due to the lack of some semantic information which should be given by the
architect. In ADRF we assume that the architect specifies SRPs in the component
state-chart. SRPs are defined per component without taking into account the
difference between reconfigurations. Therefore, we need additional restriction on
SRPs to find allowed starting states per reconfiguration. In ADRF this is done by a
Transfer Function, which corresponds some SRPs of the component to new states
after a specific reconfiguration. Transfer Function of a reconfiguration is given in a
table called T-Table. This table is a list of following pair states <Permissible SRP
from the reconfiguration point of view, Corresponding state after reconfiguration>.

In ADRF, each component is executed in a separate execution process and each
user instantiates the component in a separate execution thread. A reconfiguration
execution reaches to a break-point when all its threads are in their permissible SRPs
regarding T-Table. When the freeze instruction is invoked, execution threads will be
stopped by SM in the first break-point. If the affected area components can not reach

294 H. Hemmati and R. Jalili

to a break-point in a defined time, the reconfiguration is regarded as unsafe and
ADRF will reject it.

3.2 Structural Analysis

The second assurance analysis is structural correctness checking after performing the
reconfiguration. In ADRF this analysis is done by Assurance Automata. The
automaton is created during reconfiguration to model the intermediate architectures,
from the initial to the expected target architecture. In Assurance Automata, each state
represents the anticipated architectures during reconfiguration. ADRF continually
monitors current system configuration and compares it with the states of Assurance
Automata. There are some techniques and methods for capturing the current system
architecture such as [12]. Assurance Automata is defined more formally as
()Σ′ ,,,, FSS δ where:

∑ is the automaton alphabet and includes reconfiguration operations:

∑ = {Add(Ci), Delete(Ci), Attach(Ci, Cj), Detach(Ci, Cj), Replace(Ci, Cj)}∪ {Er, Hld},
Where Er indicates the incorrect execution and Hld shows the unexecuted operation.

iS represents a configuration (valid or invalid) of an architecure. The configuration is

shown by G(V,E). G is a directed graph, where its nodes are the architecture
components and its edges are connectores (links between attached components).
δ is the transition function defined by either correct execution of an operation
(destination: the next state) or incorrect execution in the case of run-time errors
(destination: other states or one trap state in online and offline methods respectively)
or unexecution, for any reason (destination: the current state).

S ′ is the initial state, equivalent to the system architecture just before reconfiguration.

F is the final state, equivalent to the target architecture.
Structural analysis by Assurance Automata can be done in offline or online

methods:

Offline Method: In the offline method, a snapshot of the system is captured and then
reconfiguration starts. After a predefined time, which depends on the number of
reconfiguration operations, RM compares the system state (current configuration)
with the target state in Assurance Automata. The reconfiguration execution is
structurally correct if those states match. Otherwise, the system state is compared to
the all intermediate states in Assurance Automata in the reverse order, until finding an
equal state. Afterward, the reconfiguration is re-executed from the discovered state
with remained operations. If none of the states are equal to the system state, the
system is in a trap state and it should be recovered from initial state, which is stored
in the captured snapshot, and then the reconfiguration is re-executed.

In this method, besides the timeout, the number of executed operations is another
stopping criterion for reconfiguration process. RM restricts the number of performed
operations to the number specified in the map.

Online Method: In the online method, when the expected time to execute an
operation is passed, RM compares the current system state with the expected state in
Assurance Automata. The expected states represent correct execution of each

 Self-reconfiguration in Highly Available Pervasive Computing System 295

reconfiguration operations. If the system state is equal to the next state of the
automaton, the execution has been performed correctly. If the system state is not
equal to the next state, but equal to the “before transition” (current) state, the last
operation must be re-executed. If the system state is not equal to either the next or
current state, system has gone to the other state. In this case, system must be
recovered from the current state and then the last operation should be re-executed.

The main advantage of this monitoring and control mechanism is online error
detection that is suitable when some repair mechanism is available.

3.3 Behavioral Analysis

The behavioral analysis is the third phase in assurance analysis which is performed at
the end of the reconfiguration process and before unfreezing the affected area. RM
checks component states which should match with the T-Table information. If
Assurance Automata passes the reconfiguration but a component is found in the
affected area which is not in its expected state, the behavioral assurance is not
satisfied and the state transfer should be repeated. In ADRF, the current state transfer
algorithm is simple but can be replaced without any change in the core of the
framework.

Finally, if the three assurance analysis phases are passed successfully, the
reconfiguration process is regarded as assured and SM can unfreeze the affected area.

4 Availability Issues of Reconfigurable Software in PCSs

The term availability is defined as the ratio of the total time a functional unit is
capable of being used during a given interval to the length of the interval. The most
simple representation for availability is as a ratio of the expected value of the uptime
of a system to the aggregate of the expected values of up and down time, or
MTTF/(MTTF+MTTR). Where MTTF is the mean time to failure and MTTR declares
the mean time to repair.

Although a successful reconfiguration can improve system availability by 1)
replacing faulty components with the debugged version and 2) adding extra
components to reply requests of overloaded components, but it has the possibility of
freezing some components at run-time, causing them to be unavailable for a while.
Replication of components seems to be a solution. However, it has problems such as
the overhead of reconfiguration of all replicas. In addition, in cases where the new
component functionality is not valid anymore, replicated components are
inapplicable. ADRF tries to minimize the mentioned unavailability time of the
affected area components.

4.1 Availability Definition in Reconfigurable Software

To define the system availability in ADRF, we assume the importance of all services
in the system is the same and freezing a component results in unavailability of only
that component services. Accordingly, we can define the system availability as the
simple average (instead of weighted) of its services or components availability. The
availability of each component itself is the average of all its instances availability.

296 H. Hemmati and R. Jalili

Component instances are instantiated from a base component for each user session
where the component is invoked. Reconfiguration process is performed on the base
components. By reconfiguring a base component all its instances should also be
reconfigured accordingly. When all instances of a component are frozen, the
component is frozen and ready to be reconfigured.

Putting all together, the system availability is the average availability of all system
component instances. Let call jth instance of ith component, Cij, so in a system having
n components and mi instances for each component Ci, the system availability is
defined as equation 1.a.

The availability of a component instance is equivalent to its up time (CIUT)
divided by its life time (CILT). CILT is the time between the instantiation of an
instance and its destruction. With respect to the reconfiguration process, CIUT is a
part of CILT that the component instance is not frozen, multiply by α . α is the
component’s normal availability without considering the reconfiguration process.
The freeze time of a component instance depends on the number of reconfigurations
performed on the instance during its life time (p) and the instance freeze time during
each reconfiguration (CIFT(Rk)). CIUT is obtained by subtracting the sum of all
freeze times of an instance from the instance life time, multiplying by α . The system
availability is obtained by the average value of Availability(Cij) for all component
instances in the system (replacing Availability(Cij) in equation 1.a by Availability(Cij)
from equation 1.b).

a)

imn
A vailability(C)ij

i=1 j=1
A vailab ility(system) =

n
m i

i=1

∑∑

∑

b)

p
α*(CILT - CIFT(R))k

CIUT k=1Availability(C) = ij CILT CILT
=

∑

(1)

4.2 Availability Factors for Reconfigurable Software in PCSs

We extracted factors that affect the system availability based on the above discussion.
The effective factors are defined as follows (concentrating on the reconfiguration
effects on availability, we assume that CILT and α are constants):

• Number of reconfigurations: As the number of reconfigurations is
increased, the component freeze time is increased. Therefore, the component
availability and consequently the system availability are decreased.

• Number of involved components: Since all involved components should be
frozen during reconfiguration, the more components involved in a
reconfiguration the less system availability. If a component instance does not
participate in any reconfiguration during its life time, its availability has the

 Self-reconfiguration in Highly Available Pervasive Computing System 297

maximum value (α). For each participation, an unavailability time (CIFT) is
added to the components down time and so decreases the system availability.

• Number of users: If the number of system users is increased, the number of
component instances involved in the reconfiguration is increased. Therefore,
available instances and the system availability will be decreased.

• Number of reconfiguration operations: The number of reconfiguration
operations directly affects the total execution time of the reconfiguration
process. Accordingly, long reconfigurations (including many operations)
decrease system availability.

• Error Rate: The more errors occurrence the more validity checks and
recovery done.

5 Availability Evaluation in ADRF

In our study, a simple PCS simulator was implemented to fill the absence of a real
pervasive system. The simulator takes an XML file describing a context-aware
application through its architectural component-diagram plus the state-chart of each
component. Contexts can be changed randomly in the simulator. A sample of context is
location and its change demonstrates the user mobility. Application execution is
simulated by transferring messages among components. A prototype of ADRF has also
been embedded in the PCS simulator implementation in order to manage reconfiguring
the applications running in the simulator.

To evaluate ADRF and its impacts on availability, a smart library case study has been
studied. Smart library provides a map-based guidance to books and collections on a
Smart Digital Assistants. Main components in the system architecture which are
distributed in the environment servers, gadgets, and user mobile devices are User Profile
Manager, User Interface, Library Books Manager, Search Engine, Positioning Engine,
Location Manager, Path Finder, and Map Manager. The reconfiguration which is used
here is replacing Location Manager (LM) component with a new location manager
(ULM) which supports updating the user current position while he is walking towards a
selected rack. The study focuses on comparing availability of the system when using
one of the following reconfiguration mechanisms:

• BASE: This mechanism ignores occurrence of errors. The system
administrator is responsible for recovering the system and re-executing the
reconfiguration. Involving the external human administrator in the
reconfiguration process makes this mechanism unsuitable for PCSs. Evaluating
this mechanism, the average recovery time by the external administrator is
added to the unavailability time of all involved instances in the unsuccessful
reconfiguration.

• OPTIMISTIC: This mechanism uses offline method of ADRF for structurally
analyzing the reconfiguration process. If the system falls into an error state, it
is automatically recovered after reconfiguration process and repeats the
reconfiguration with the hope of correct execution. In this approach, capturing
the system snapshot is done in the background while the system is available,
but automatic recovery time is considered as a part of component’s downtime.

298 H. Hemmati and R. Jalili

• ADRF: This mechanism uses online method of ADRF in the structural
analysis phase. The check and repair time for each operation, is important in
the online method. In ADRF, each reconfiguration operation should be
performed correctly. In the case of any error in the operation execution, it
should be detected and repaired on-line. The smaller check and repair time, the
quicker reconfiguration process and more available systems.

Our first observation is the effect of number of users on system availability. The
number of library users in this case varies from 1 to 36. As shown in Figure 2.a, the
availability in BASE mechanism is decreased more rapidly due to its long external
recovery time. While the system availability in ADRF and OPTIMISTIC mechanisms
are close to each other, ADRF provides more availability as the number of users
increases. The reason is dependence between the number of users and the number of
component instances. Therefore, OPTIMISTIC mechanism makes systems with many
users more unavailable.

The next experiment focuses on the number of reconfigurations. In this case, another
reconfiguration which replaces ULM with LM is defined. These two reconfigurations are
applied repeatedly on the software architecture by required context changes. Figure 2.b
depicts the effect of varying the number of reconfigurations on the system availability. As
shown, decline of the system availability in the BASE mechanism is very sharp, because
of the huge external overhead per reconfiguration. As the number of reconfigurations
increases, the re-execution overhead in the OPTIMISTIC mechanism results in less
availability in comparison to the ADRF mechanism. This experiment recommends ADRF
for adaptive context-aware systems which have many reconfigurations during their life-
cycle.

The effect of the number of reconfiguration operations on the system availability is
evaluated, as the next experiment. We increase the number of operations by replacing
more components and adding new components. As depicted in Figure 2.c, by increasing
the number of reconfiguration operations, the availability of ADRF against BASE and
OPTIMISTIC mechanism is less decreased. The BASE mechanism is the worst,
because of the higher chance of failure (when the number of operations increases) as
well as the high external recovery time. For long reconfigurations OPTIMISTIC
approach decreases the system availability more than ADRF, because of re-executing
the reconfiguration process from the beginning.

Our concentration in Figure 2.d, is the effect of error rate on availability. Generally,
when a fault happens it means that an error has happened before. This error could be in
communication links, computation, storage, or anywhere else. We assume no difference
between errors. Therefore, error rate is assumed as the rate of fault occurrence. By
changing the average error rate between 0.05 and 0.5, the difference among
availabilities gained in the three mechanisms is specified in error-prone environments.
As expected, the OPTIMISTIC mechanism is not suitable in such environments even
worse than the BASE mechanism because of its optimistic view on error occurrence and
its huge re-execution overhead. According to Figure 2.d, when the risk of falling into
error states in each operation execution is high, online detection and repair in ADRF is
the best.

Based on the level of decline on availability, the number of reconfigurations is the
most effective factor. Therefore, the mechanism tolerating this effect is more suitable
for PCSs. Our above-mentioned evaluations determined that ADRF is an appropriate

 Self-reconfiguration in Highly Available Pervasive Computing System 299

framework for reconfiguration in PCSs especially when the environment is error-prone,
the software is complex, context-aware, very adaptive with long reconfigurations, and
lots of users. This is because of ADRF assurance mechanism which provides not only
the correct and complete reconfiguration but also a highly available reconfiguration
process, in comparison to performing reconfigurations without any assurance checks or
simple offline optimistic validation mechanisms. Additionally, ADRF demonstrates
itself scalable in terms of the number of users, reconfiguration operations, and the error
rate.

Fig. 2. The Effect of a) Number of Users, b) Number of Reconfigurations, c) Number of Re-
configuration Operations, and d) Error Rate on system availability

6 Conclusions and Future Work

Software reconfiguration will play an important role in the future computing
environments. Most research on this domain and especially on the reconfiguration in
PCSs are restricted to finding the best change strategies. However, applying these

300 H. Hemmati and R. Jalili

reconfiguration strategies in a running system has problems such as reconfiguration
failure which affects service availability. Without monitoring and validating the
reconfiguration process at run-time, system invisibility and adaptability can be
damaged.

In this paper, we proposed an Assured Dynamic Reconfiguration Framework,
ADRF, capable of performing run-time reconfiguration on PCSs. Achieving three
assurance analysis phases (before, during, and after reconfiguration process), ADRF
ensures architect that his defined reconfigurations will be performed correctly and
completely. In addition, we defined the system availability with respect to
reconfiguration process and identify the effective factors on the PCSs availability. We
evaluated our developed framework, which uses an online assurance mechanism in
the reconfiguration process, based on the defined factors. Results confirmed that, our
framework provides more system availability especially for complex PCSs in error-
prone environments which perform long reconfigurations.

As future work, effects of other factors on reconfigurable software availability can
be investigated. Enhancing ADRF to perform secure and dependable reconfiguration
is also among the other topics of interest for future research.

References

1. Saha, D.: Pervasive Computing: A Paradigm for the 21st Century. IEEE Computer Soci-
ety, Los Alamitos (2003)

2. Cheng, S., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P., Hu, N.:
Software Architecture-based Adaptation for Pervasive Systems. In: Schmeck, H., Ungerer,
T., Wolf, L. (eds.) ARCS 2002. LNCS, vol. 2299, Springer, Heidelberg (2002)

3. Oreizy, P., Taylor, R.N.: on the role of software architectures in runtime system reconfigu-
ration. In: International Conference on Configurable Distributed Systems (1998)

4. Hemmati, H., Aliakbarian, S., Niamanesh, M., Jalili, R.: Structural and Behavioral Run-
Time Validation of Dynamic Reconfiguration in Pervasive Computing Environments. In:
4th Asian International Mobile Computing Conference (AMOC), Calcutta, India (2006)

5. Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, Springer, Heidelberg (2005)

6. Chen, F., Rosu, G.: Towards Monitoring-Oriented Programming: A Paradigm Combining
Specification and Implementation. Electronic Notes in Theoretical Computer Science,
vol. 89. Elsevier, Amsterdam (2003)

7. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software Evolu-
tion. In: The 20th International Conference on Software Engineering (ICSE 1998), Kyoto,
Japan, pp. 177–186 (April 1998)

8. Roshandel, R., Hoek, A.V., Mikic, M., Medvidovic, N.: Mae – A System Model and Envi-
ronment for Managing Architectural Evaluation. ACM Transactions on Software Engi-
neering and Methodology (April 2004)

9. Diaconescu, A., Murphy, J.: A Framework for Using Component Redundancy for self-
Optimising and self-Healing Component Based Systems. In: ICSE 2003 Workshop on
Software Architectures for Dependable Systems, Portland, Oregon, USA (May 3 2003)

10. Niamanesh, M., Jalili, R.: A Dynamic-Reconfigurable Architecture for Protocol Stacks of
Networked Systems. In: 31st Annual International Computer Software and Applications
Conference, Beijing, China (July 2007)

 Self-reconfiguration in Highly Available Pervasive Computing System 301

11. Hemmati, H., Niamanesh, M., Jalili, R.: A Framework to Support Run-Time Assured Dy-
namic Reconfiguration for Pervasive Computing Environments. In: The first IEEE Interna-
tional symposium on wireless pervasive computing ISWPC, Thailand (2006)

12. Hamou-Lhadj, A., Braun, E., Amyot, D., Lethbridge, T.: Recovering Behavioral Design
Models from Execution Traces. In: Ninth European Conference on Software Maintenance
and Reengineering (CSMR 2005), pp. 112–121 (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

