
1

Concurrent Contracts for Java in JML

Wladimir Araujo Lionel Briand Yvan Labiche
Juniper Networks

700 Silver Seven Road
Ottawa, ON, K2V 1C3, Canada

waraujo@juniper.net

Simula Research Laboratory
 and University of Oslo
P.O. Box 134, Lysaker

1325 Norway
briand@simula.no

Software Quality Eng. Lab.
Dept. of Systems and Computer Eng.

Carleton University
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada
labiche@sce.carleton.ca

Abstract

Design by Contract (DbC) is a software development
methodology that makes use of assertions to produce
better quality object-oriented software. The idea behind
DbC is that a method defines a contract stating the
requirements a client needs to fulfill to use it, the
precondition, and the properties it ensures after its
execution, the postcondition.

Though there exists ample support for DbC for
sequential programs, applying DbC to concurrent
programs presents several challenges. The first challenge
is interference, the product of multiple threads of
execution modifying and accessing shared data. The
second is the specification of thread-safety properties in
the presence of inheritance.

We present a solution to these challenges in the
context of Java programs by extending the Java Modeling
Language (JML) specification language. We experiment
our solution on a large size industrial software system.

1 Introduction

Including specifications of program behaviour together
with the source code is not a new idea. Design-by-
Contract (DbC) [17] is one of the most elaborate software
development methodologies that put such idea in practice.
Following DbC principles, a method defines a contract
stating the requirements a client needs to fulfill to use it,
the precondition, and the properties it ensures after its
execution, the postcondition. Contracts can be treated as
assertions about the state of a program at a certain point.
A program can be instrumented with code that checks the
validity of the assertions at runtime and upon failure
throws an exception indicating where it happened. DbC
also defines object invariants, properties that must hold in
all visible states of an object. The visible states of an
object are the states just after object construction, just
before a visible method execution, and just after a visible
method execution. Behavioural subtyping [2, 7, 16] is an
integral part of DbC. A subtype automatically inherits the

specification (contracts and invariants) from its super-
types [9]. The effective precondition of a method is the
disjunction of all the inherited preconditions and the
method’s declared preconditions. The effective
postcondition is the conjunction of all inherited
postconditions for which the associated precondition is
satisfied and the method’s declared postconditions if
associated preconditions are satisfied. The effective class
invariant is the conjunction of all inherited class invariants
with the object’s declared invariant. This guarantees that a
subtype can be properly used in place of its super-type(s).

The Java Programming Language [4] does not provide
native support for DbC. The Java Modeling Language
(JML) [13, 15] is a specification language used to write
contracts. It includes notations for pre- and
postconditions, invariants, and offers mechanisms for
specification inheritance, thus providing support for the
DbC paradigm. The JML toolset comes with a compiler
that translates specifications into runtime assertion
checking (RAC) code, producing Java classes
instrumented with executable assertions. The JML
compiler [7] produces RAC code that enforces
behavioural subtyping.

Most work on DbC focused on sequential programs,
and applying DbC to concurrent programs presents
several challenges. The first challenge is interference, the
product of multiple threads of execution modifying and
accessing shared state. As further discussed below, this
may cause RAC code to incorrectly report errors during
correct execution and vice-versa. Solving the issue of
interference with a focus on runtime assertion checking is
one major contribution of this work. The second challenge
is the specification of thread-safety properties in the
presence of inheritance. We argue that, contrary to what is
currently done in the literature, thread safety properties
cannot be specified in preconditions in the presence of
inheritance.

The rest of the paper is structured as follows. Section 2
describes these challenges in detail. Section 3 presents our
solutions. Related work is discussed in section 4. We then
present an industrial case study (section 5). We conclude
in section 6.

2

2 Contracts and Concurrency

This section presents the problems of using contracts to
specify behaviour and generate runtime assertion checking
code for concurrent programs. Although we use Java and
JML, the principles we introduce would likely, for the
most part, apply to other programming languages. We do
not describe JML in detail but briefly describe the
constructs we use to illustrate the challenges of concurrent
contract specification and verification.

2.1 The Problem of Interference

Two threads interfere when one unintentionally
changes data the other observes. This becomes a problem
if, due to an arbitrary interleaving, one thread’s perception
of the shared data is not true due to a modification made
by another thread and it relies on such perception for
future computations.

Before continuing the discussion, we must recall the
notions of a method’s pre-state and post-state [13]. “The
pre-state of a method call is the state just after the method
is called and parameters have been evaluated and passed,
but before execution of the method’s body. The post-state
of a method call is the state just before the method returns
or throws an exception; in JML we imagine that \result
and information about exception results is recorded in the
post-state” ([13], p. 8).

The method specification in Figure 1 (excerpt from
[19]), composed of two specification cases separated by
the keyword also (each with a precondition and the
corresponding expected postcondition, the postcondition
to be established if the precondition is satisfied), simply
tells that the head of the list will move to the next element
and the method will return the value of what used to be
the first element of the list if the list is not empty (lines 5-
9), and returns null otherwise (lines 1-4). In JML, the
preconditions of a method (i.e., the requires clauses), as
well as arguments to the \old operator in postconditions
are evaluated in the method’s pre-state. The method
postconditions (i.e., the ensures clauses) are evaluated in
the method’s post-state.

Although straightforward, this specification is not
correct in a multi-threaded environment. Suppose that
extract() is invoked by thread 1 and in the method’s
pre-state, head references the same object as last (i.e.,
the list is empty). Suppose, also, that thread 2 pre-empts
thread 1 right after thread 1 acquires the lock on this to
fully execute method insert(), which does not acquire
such lock for performance reasons. The postcondition of
insert() specifies that head is not referencing the same
object as last, i.e., the list is not empty. Once thread 1
resumes execution and acquires the lock on head, it will
return the first element of the list, violating the

postcondition of extract() for an (expected) empty list,
i.e., that it should have returned null.

This is an example of interference in the context of
DbC. This problem is not specific to Java or JML. Any
object-oriented language in which the scenario we
described above is realizable and provides support for
DbC via runtime assertion checking (RAC) is prone to this
problem. It is important to emphasize that such problem
arises due to the combination of DbC and the program
under execution. It is not due to erroneous concurrency
control on the part of the implementation either of the
client or the provider. Interference can also happen
between the contract evaluation point (pre- and post-state)
and the method entry and exit points. Since interleaving
occurs outside the method body, this is called external
interference. The previous case, where interleaving occurs
inside the method body is called internal interference.
public class LinkedQueue {
 protected /*@ spec_public @*/ LinkedNode head;
 protected /*@ spec_public @*/ LinkedNode last;
 //@ public invariant head.value == null;
1 /*@ public normal_behavior
2 @ requires head == last;
3 @ assignable \nothing;
4 @ ensures \result == null;
5 @ also public normal_behavior
6 @ requires head != last;
7 @ assignable head, head.next.value;
8 @ ensures head == \old(head.next) &&
9 @ \result == \old(head.next.value);
10 @*/
 public synchronized Object extract() {
 synchronized (head) {
 Object x = null;
 LinkedNode first = head.next;
 if (first != null) {
 x = first.value;
 first.value = null;
 head = first;
 }
 return x;
 }
 }
}
Figure 1. Method extract() of class LinkedQueue

2.2 Specification Inheritance

Specifications can be inherited from interfaces and
super-classes, and the issues of data abstraction and
concurrency in the context of inheritance are the same in
both cases. In the following we use an interface example
to illustrate those issues, without loss of generality.

Figure 2 shows the specification of interface Channel.
It declares two model fields (lines 2-3): A model field (a
field with the model modifier) is a field that does not have
to be implemented but can be used in a specification as
any other field. Model fields allow abstract modeling [8]
and play a vital role in information hiding, modular
reasoning and behavioural subtyping [14]. Both fields in
this example are marked instance: they are fields of the

3

object implementing the interface instead of static fields
of the interface (JML allows instance fields on interfaces).

Interface Channel can be implemented by class
PipedChannel (Figure 3) with the help of a Pipe (not
shown). The represents clause maps the value of a
model field to an expression based on concrete fields of
the class: e.g., the value of model field connected comes
from concrete fields closed and remoteClosed
according to the Boolean expression in line 3 (Figure 3).
 public interface Channel {
1 /*@
2 public instance model boolean connected;
3 public instance model int nPending;
4 public invariant nPending >= 0;
5 public constraint connected==>\old(connected);
6 @*/
7 /*@
8 public normal_behaviour
9 requires nPending>0 || (nPending==0 &&
connected);
10 ensures
(\result!=null==>nPending==\old(nPending)-1)
11 && (\result == null ==> \old(nPending)==0);
12 also
13 public exceptional_behaviour
14 requires !connected && nPending == 0;
15 signals_only NotConnectedException;
16 @*/
 public Message receive()throws …;
 }

Figure 2. Interface Channel (excerpt).

Since method receive() in class PipedChannel does
not declare any specification, it inherits the parent one
without any change (i.e., the one in Figure 2), which
specifies that receive() will return any Message objects
the channel contains even if it has already been closed
(line 10) or null if it is empty (line 11). The exceptional
specification (lines 14-15) states that receive() will
throw a NotConnectedException if the channel has
been closed and it is empty.

The problem in this case is very similar to the previous
ones: interference causes pre- and postconditions to be
evaluated at unsafe points since they reference the object’s
internal state. The difference is that such internal state is
made visible through model fields in the interface
specification. Although one might argue that such
specification is improper for a concurrent environment
because it was not designed with concurrency in mind,
nothing in the interface states that it actually is supposed
to be used only in a sequential environment. One might
implement it sequentially or concurrently offering the
same guarantees.

This issue is more subtle than in the previous cases.
Model fields are used to specify behaviour without giving
out implementation details. Model fields do not have
storage, i.e., their values are derived from the object’s
state (e.g., nPending’s value comes from the evaluation
of getSize() on field in).

A solution to the issue of contracts for concurrent
objects must accommodate the usage of model fields.

Unfortunately, as far as we know, the current literature
does not even acknowledge the existence of a problem.
Since clients do not have visibility on how the provider
realizes model fields, they cannot know which locks to
acquire, and might not even know that there are
concurrency control issues. Therefore, the client cannot be
required to perform additional concurrency control simply
to guarantee thread-safe access to fields present in
specifications, as suggested in [11, 12]. This, instead,
must be the responsibility of the provider.
 public class PipedChannel implements Channel {
 protected final Pipe in, out;
 private volatie boolean closed = false;
 private volatie boolean remoteClosed = false;
1 /*@
2 @ private represents connected <-
3 @ !closed && !remoteClosed;
4 @ private represents nPending <- in.getSize();
5 @*/
 public Message receive()throws … {
 if(closed)
 throw new NotConnectedException();
 if(in.isEmpty()) {
 synchronized(this) {
 if(remoteClosed) {
 closed = true;
 throw new NotConnectedException();
 }
 }
 return null;
 }
 return in.take();
 }
 }

Figure 3. Class PipedChannel (excerpt).

2.3 Thread Safety

The core idea behind thread safety is one of non-
interference [19]. Thread safety can be achieved in a
variety of ways, which all relate to the way data can be
accessed. Data that is local to a thread (i.e. not visible to
other threads) is not subject to any interference issue.
Access to shared data (i.e. visible to multiple threads)
must be protected by a lock. By doing so, one guarantees
the absence of interference when accessing such data.

JML provides several constructs to specify these
aspects of thread safety [19]: e.g., the \thread_safe
predicate specifies that a given object is thread-safe, i.e. it
is either local to a thread or access to it is protected by a
lock. JML provides a number of constructs to explicitly
deal with locks. The \lockset expression refers to the set
of locks held by the current thread. Although described in
[19], these constructs were not implemented in the JML
compiler, thus not producing any RAC code. Note that
stating thread safety using \thread_safe is equivalent to
stating it explicitly through locking requirements. The
choice is based on ease of specification only.

The contract for Pipe.get() can be extended to
include this clause as shown in Figure 4. In JML, locking
and thread-safety properties are currently specified in the

4

precondition of a method (e.g., lines 1 and 5 in Figure 4).
This presents two major problems. The first problem is
the evaluation point. DbC specifies that preconditions be
evaluated prior to the first statement of the method body.
In JML, this is done in the pre-state. Alternatively, a
design decision for JML could have been to check the pre-
condition as the first statement of the method. There is no
difference between these two approaches for sequential
programs, i.e., when verifying functional properties. For
concurrent programs, however, there is a difference. The
first statement of a method might already be protected by
a monitor lock (synchronized methods in Java), as
illustrated by method get() of class Pipe (Figure 4). Its
precondition specifies locking and functional properties. If
one decides to evaluate the precondition of get() in the
method pre-state it is subject to external interference
because the thread does not yet hold a lock on this,
which protects the access to the field closed from race
conditions. If, however, the evaluation happens just before
the first statement of the method, i.e., right after acquiring
the lock on this but before executing any statement of
the method body, interference is not a problem. However
the term !\lockset.has(this) (i.e., the thread must not
already hold a lock on the object) will evaluate to false,
which is not the desired behaviour. We argue that this
suggests that locking and thread-safety properties do not
belong in the precondition.

The second problem is related to specification
inheritance and behavioural subtyping. Since the actual
precondition of a method is the disjunction of the
inherited preconditions and the ones the method defines,
the actual precondition can be true even if the locking or
thread-safety requirements the method defines do not
hold, as long as the inherited preconditions (which may
not contain locking or thread-safety requirements) hold.
As a result, although the method requires some locking
mechanisms to exist (as defined in its precondition), no
locking may in fact exist but this will not be detected as a
precondition violation at run time. Conversely, a subtype
may weaken the inherited preconditions in a way that
inherited locking and thread safety properties are not
required to hold. We argue that this is the main point for
not having locking and thread safety properties in the
precondition. An analogous argumentation can be made
for postconditions.

The root cause of these problems is the combination of
thread safety behaviour specification with functional
specification. Functional specifications specify properties
that must hold on the states preceding and following a
method execution, i.e., on state transformations. Thread
safety specifications deal with the properties that must
hold to ensure that such state transformations occur as
specified in a concurrent environment. A program can,
then, be seen as the combination of two aspects: the
functional and the concurrent aspects. The functional

aspect is the one that deals with retrieving, processing and
outputting data, whereas the concurrent aspect is the one
that deals with the mechanisms to guarantee that such
manipulations of data by multiple threads is controlled.
These aspects are orthogonal, and one usually states
thread safety requirements independently from functional
properties. We believe that method specifications should
reflect this independence.
 /*@ public normal_behaviour
1 requires closed && !\lockset.has(this);
2 ensures \result == null;
3 also
4 public normal_behaviour
5 requires !closed && !\lockset.has(this);
6 ensures \result != null;
 */
public synchronized Message get() throws … {
 // Body omitted
}

Figure 4. Method get()of class Pipe.

3 Specifying Contracts in the Presence of
Concurrency

In this section we present our solution to the issues
discussed previously. The solution is decomposed into
two aspects: first we introduce the concept of safepoint,
that is, code locations where precondition or postcondition
predicates can be safely evaluated (section 3.1). Then we
show how concurrency related predicates can be specified
orthogonally to functional predicates (section 3.2).
Section 3.3 then shows that these two solutions address
the interference issue. All the new constructs introduced in
this section were incorporated into the JML toolset
including the JML compiler, which is the tool that
generates RAC code from JML annotations. However, we
do not discuss the techniques for generating RAC code for
the new constructs due to size constraints.

3.1 Safepoints

A safepoint is any point inside the method body where
it is safe to evaluate precondition, postcondition and
invariant predicates. A precondition safepoint is a point
where it is safe to evaluate preconditions and invariants,
and the pre-state predicates of postconditions. A
postcondition safepoint is a point where it is safe to
evaluate the expected postconditions and the invariants.
Notice that no guarantees are made with respect to
postcondition formulas, present in the method
specification, that are not safely evaluated at a given
postcondition safepoint. Any method execution path (from
the pre-state to the post-state) can have only one
precondition safepoint and only one postcondition
safepoint. If no precondition (resp. postcondition)
safepoint is explicitly specified for an execution path, it
defaults to the method pre-state (resp. post-state). In a

5

precondition safepoint, all preconditions, invariants and
pre-state predicates are required to be safely evaluated. In
a postcondition safepoint, the postconditions and all
invariants are required to be safely evaluated. We propose
the addition of the requires_safepoint and
ensures_safepoint labels to JML to demarcate those
safepoints.

3.1.1 Safepoints and Interference.
Figure 5 shows an example of their use (access to last

is also protected by a lock on head). At the precondition
safepoint (line 13), all the objects referenced by both
requires clauses (lines 2 and 6) and the contents of the
\old statements in the ensures clauses (lines 8-9) are
properly protected by locks. At the postcondition
safepoint (line 21), the field head, present in the ensures
clause at lines 8-9, is properly protected by a lock. Since
\result refers to local variable x, which in turn points to
an object no longer referenced by the list, it is also thread-
safe at the postcondition safepoint1. Finally, the object
invariant can be safely evaluated both in the pre- and
postcondition safepoints since it refers to head, which is
properly locked in both places.
public class LinkedQueue {
 protected /*@ spec_public @*/ LinkedNode head;
 protected /*@ spec_public @*/ LinkedNode last;
 //@ public invariant head.value == null;
1 /*@ public normal_behavior
2 @ requires head == last;
3 @ assignable \nothing;
4 @ ensures \result == null;
5 @ also public normal_behavior
6 @ requires head != last;
7 @ assignable head, head.next.value;
8 @ ensures head == \old(head.next) &&
9 @ \result == \old(head.next.value);
10 @*/
11 public synchronized Object extract() {
12 synchronized (head) {
13 //@requires_safepoint:
14 Object x = null;
15 LinkedNode first = head.next;
16 if (first != null) {
17 x = first.value;
18 first.value = null;
19 head = first;
20 }
21 //@ensures_safepoint:
22 return x;
23 }
24 }
25}
Figure 5. Method extract() of class LinkedQueue
using safepoints to avoid internal interference.

Having the precondition of a method evaluated inside
the method is counter-intuitive. A precondition, as initially
presented by Meyer, can be evaluated just before entering

1 The postcondition safepoint must be the return or throw
statement. Additionally, the return (or throw) expression must be side-
effect free, which can be easily checked at compilation time. In case the
method does not return a value, the ensures_safepoint can be
placed at the end of a block or just before the method returns.

the method or just after (i.e., before any statement of the
method body is executed). These two views are equivalent
because nothing significant to the evaluation of the
precondition predicates happens between these two stages.
The same idea applies to the precondition safepoint:
nothing significant to the evaluation of the precondition
predicate should happen between the method’s pre-state
and the safepoint. Then, the precondition can be evaluated
either in the pre-state or at the precondition safepoint
yielding the same result. The only difference is that at the
precondition safepoint the method is interference-free
(due to the acquisition of some locks, in this example).

Analogously, as long as nothing significant to the
evaluation of the postcondition happens between the
postcondition safepoint and the post-state, evaluating the
postcondition in those two places is equivalent but the
former is safer (no interference).

3.1.2 Safepoints and Specification Inheritance.
Recall that assertions checking specification

inheritance are subject to interference because of the
evaluation of model fields from concrete fields. To ensure
safe evaluation of inheritance contracts, the evaluation of
model fields needs to occur (i) at a location where the
concrete fields are protected from interference or (ii) after
their values have already been obtained and are
guaranteed not to change.

Figure 6 illustrates how safepoints can be used to
prevent external interference for method receive() of
class PipedChannel (Figure 3), which inherits its
specification from its interface (Figure 2).

An example of the first location is the safepoint at line
8 (Figure 6): Access to remoteClosed is protected by a
lock on this, which guarantees that the value observed by
the precondition is consistent with the one observed by the
method. An example of the second location is the
safepoint at line 3: It is located after closed evaluates to

 /* same specification as in Figure 3 */
1 public Message receive() throws …{
2 if(closed) {
3 //@ requires_safepoint:
4 throw new NotConnectedException();
5 }
6 if(in.isEmpty()) {
7 synchronized(this) {
8 //@ requires_safepoint:
9 if(remoteClosed) {
10 closed = true;
11 throw new NotConnectedException();
12 }
13 }
14 return null;
15 }
16 //@ requires_safepoint:
17 //@ ensures_safepoint:
18 return in.take();
19 }
Figure 6. Method receive() of class PipedChannel

equipped with safepoints.

6

true, which never changes afterwards.
Locking is not required in this case because Java

guarantees that accesses and assignments to variables of
type int and boolean are atomic. Furthermore, the
volatile modifier guarantees that the observed value is
the current value of the variable instead of a cached
image. Otherwise, some locking would be required to
guarantee atomic access to these fields.

3.1.3 Discussion.
Safepoints demarcate points in the code where the data

the pre- or postcondition predicates observe are the same
as the ones the method execution observes. The idea is not
to add extra concurrency control just for the sake of
evaluating contracts since it would cause the instrumented
code to execute differently, likely preventing harmful
interleavings present in the original code from occurring,
which could lead to undetected faults on the final
(uninstrumented) program. Instead, the idea is to find the
right place in the code to evaluate the contract following,
to the maximum extent possible, the intent of the designer,
who was certainly not thinking that such predicates were
all safely observable immediately before or after the
method execution. For instance, when one specifies the
behaviour of LinkedQueue.get() (Figure 1) to “return
null if the list is empty or the element at the head,
otherwise” one is implicitly thinking “once the list can be
safely manipulated, return null if it is empty or the element
at the head, otherwise”.

In this light, we consider safepoints not as part of the
contract but as being part of the implementation. For
example, notice that the contracts of receive() have not
changed from Figure 3 to Figure 6. Thus, correctly
placing the safepoint is an implementation problem not a
contract design problem. This approach is in line with the
idea behind DbC, namely that a contract specifies the
observable behaviour of a method without getting into the
details of its implementation.

Of course, the placement of safepoints needs to follow
the rules we defined earlier to guarantee the expected
semantics of a contract, i.e. that it would evaluate the
same in a sequential environment with or without
safepoints: preconditions and postconditions are evaluated
only once for a method execution and that nothing
significant (to the evaluation of the predicates) happens
between the beginning (end) of a method for precondition
(postcondition) safepoints. 2

Significant statements are those that can be observed
through changes on the program state. We, then, define
that only unobservable statements are allowed between
the beginning (end) of the method and the precondition
(postcondition) safepoint. Unobservable statements are

2 These constraints can be checked at compile time (e.g., by adapting
rules of definite assignment [4]).

assignment to local variables, pure method or constructor
calls, loops and branching statements, try blocks, JML
annotations, assignments to local ghost variables, and
acquiring and releasing a lock3.

3.2 Specification of Thread-Safe Behaviour

As we argued in section 2.3, thread safety behaviour
specification and functional specification are different.
Separating the two requires the introduction of new
constructs to JML (section 3.2.1) and revisiting
inheritance specification of concurrency aspects (section
3.2.2). An example is introduced in section 3.2.3.

3.2.1 New constructs for Thread-Safety Specification.
First, we add the concurrent_behaviour clause to a

method specification to separate functional (e.g., JML
normal_behavior and exceptional_behavior
clauses) from thread-safety property specifications. A
concurrent_behaviour specification can contain one or
more of the following clauses:

• requires_locked, requires_unlocked,
ensures_locked, ensures_unlocked: These
specify the set of lock objects that are held or not by
the current thread in the method pre-state and post-
state, respectively. Null references are ignored.
These replace the JML \lockset (part of the
functional aspect in JML).

• requires_thread_safe, ensures_thread_safe:
These specify that all the objects provided as
argument satisfy the \thread_safe predicate in the
method pre-state and post-state, respectively. Null
references are ignored.

These clauses take a spec-expression-list (see section
A.8 of [15]) as an argument (i.e. a comma-separated list of
JML expressions). Each such expression evaluates to an
object reference. These clauses all default to
\not_specified. The requires_... clauses must be
satisfied in the method’s pre-state. The ensures_...
clauses must be satisfied in the method’s post-state.

3.2.2 Inheritance Specification.
We showed in section 2.3 that specification inheritance

rules for concurrency aspects cannot be the same as for
functional aspects. The semantics of specification
inheritance on the concurrent aspect must be identical to
the one of invariants (conjunction). The effective
specification (in a subclass) of any of the new clauses is
the set of reference objects resulting from the union of the
argument set specified on the target object with the
argument sets of its immediate supertypes.
(\not_specified is treated as the empty set.) In other

3 Acquiring a lock is not observable because, in a deadlock-free
program, all lock acquisitions eventually succeed [3].

7

words, thread-safety specifications, like invariants, should
only be strengthened by sub-types.

At first, one might argue that such properties should
not be inherited at all since concurrency control is very
particular to a type. One would not see these properties as
exposed functionality but as implementation details.
However, we believe it should be possible for a class (or
interface) to specify these properties for extension
purposes. A typical example is a class in a messaging
framework. The framework could define a Message
interface and state locking and thread-safety properties for
implementers so that they can be handled without risk of
deadlocks or race conditions. Additionally, there are cases
where interfaces are purposefully underspecified with
respect to these properties to allow concrete
implementations the freedom to choose their concurrency
control strategy. This makes sense when there are two or
more interfaces to be implemented and these must work in
tandem. For instance, a particular message processor
(implementing interface Processor) processes RPC
messages (implementing interface Message). This
processor can require stronger properties than the ones
from Message since it knows it will only process RPC
messages.

The semantics of the new clauses allow the
specification of thread-safety and locking properties in the
presence of specification inheritance. It decouples
concurrency related properties from functional properties
giving concurrent contracts their intuitive (expected)
meaning. We do not make any claim with respect to the
modularity of the concurrent aspect. This is outside the
scope of this work. Our additions, however, do not disturb
modular reasoning on the functional aspect of a method
specification since we do not change the way specification
inheritance is implemented for this aspect.

3.2.3 An Example.
As an example, consider the declaration of method

sendAndWait() of class PipedChannel in Figure 7. It
shows examples of some of the new clauses in lines 8-10.
The requires_thread_safe clause specifies that object
r must be thread-safe in the method pre-state. Similarly,
ensures_thread_safe specifies that the object returned
by the method must be thread-safe on the method’s post-
state. (See below for additional comments on this
example.)

3.3 Thread Safety + Safepoints = No Interference

Due to space limitations this section presents an
informal justification that both the thread safety
mechanisms we introduced and safepoints are necessary to
avoid interference. For a complete justification see [3].
We analyze a single example that is representative of the

case in which predicates refer to method parameters and
internal state.

Figure 7 presents a simple contract in which the
effective precondition involves predicates on method
parameters. The effective precondition, accounting for
normal and exceptional behavior of the method is
r.isRequest() (the disjunction of preconditions from
both specification cases simplifies the terms connected
and !connected): it is not simply true. In this situation,
safepoints alone cannot guarantee the thread-safe
observation of this predicate since r is external to the
provider. Since it is the responsibility of the client to
establish such predicate, it is also reasonable to expect
that the client ensures the provider can safely evaluate it;
otherwise it would be pointless to establish a state
knowing it could asynchronously change before it could
be observed. This is reflected by the use of the
requires_thread_safe clause on all objects involved in
the effective precondition (line 9): r is required to be
thread-safe. Once such objects are thread-safe, predicates
involving them can be checked at precondition safepoints
since they will not change between the method pre-state
and the safepoints.

A similar discussion can be made for postconditions. If
such predicates involve any state, parameter or return
value that must be established by the provider and
observed by the client, the associated objects must be
flagged as thread-safe (Figure 7, line 10). This is required
because the normal postcondition (i.e., identified by
keyword normal_behaviour on line 3) refers to the
return value. For the client to observe this predicate
(\result.isResponse()), the provider needs to
guarantee that the referred object is interference free.

The precondition safepoint on Figure 7 demarcates the
interference-free evaluation point for the precondition
involving model field connected. Being protected by

/*@
1 normal_behaviour
2 requires connected && r.isRequest();
3 ensures \result.isResponse();
4 also
5 exceptional_behaviour
6 requires !connected && r.isRequest();
7 signals_only NotConnectedException;
8 concurrent_behaviour
9 requires_thread_safe r;
10 ensures_thread_safe \result;
 */
public Message sendAndWait(Message r) throws … {
11 synchronized(in) {
12 synchronized(this) {
13 //@ requires_safepoint:
14 if(closed || remoteClosed)
15 throw new NotConnectedException();
16 }
17 out.put(r);
18 return in.get();
19 }
}
Figure 7. Method declaration exemplifying the use

of thread-safety specification clauses.

8

locks on in and this, the safepoint can safely observe
fields closed and remoteClosed as well as guarantee
that in will not be asynchronously closed until the
execution of in.get(). The safepoint guarantees absence
of interference with respect to model field connected.
Thread-safety predicates alone cannot guarantee the safe
evaluation of these fields since this is achieved only
during a specific point inside the method body and these
predicates are applicable throughout the method execution
(see section 3.1.1). Postcondition safepoints are not
necessary since postconditions do not refer to any internal
state.

The *_thread_safe clauses guarantee freedom from
interference with respect to r from the method pre-state
up to the precondition safepoint and with respect to
\result on the post-state. Precondition safepoints
prevent interference related to model field connected.
As these are the only possible sources of interference, we
conclude that combining safepoints and thread-safety
predicates guarantees sendAndWait() and its contract are
interference-free.

The conclusions from this example can be generalized
since its contract possesses all features of JML relevant to
thread-safety. It uses safepoints, thus covering references
to internal state and interference, both internal and
external. It also contains multiple specification cases, thus
covering specification inheritance (specification
inheritance is a particular case in which specification
cases come from supertypes instead of being explicitly
placed on the target type). It specifies predicates on
method parameters and return value, thus covering
predicates on external state. We can then conclude that, in
general, the combination of thread-safety requirements on
data to be observed by the provider and the client with
safepoints (for safe evaluation of predicates referring to
internal state) is required to guarantee freedom from
interference.

4 Related Work

Flanagan and Freund [10] describe Atomizer, a
dynamic checker for Java programs. Atomizer checks for
atomicity, a fundamental property of concurrent programs.
“A method is atomic if its execution is not affected by and
does not interfere with the concurrently executing
threads.” They report on the use of atomizer on moderate
size (up to 90000 lines of code) programs. Agrawal et al
[1] describe a combination of runtime and static analysis
to check for atomicity.

Nienaltowsky and Meyer [18] present an interesting
proposition regarding the use of contracts in a concurrent
environment. They target SCOOP [5], an extension of the
Eiffel language to provide support for concurrency. They
transform preconditions referring to separate objects
(objects not owned by the current thread) in wait

conditions that must be eventually satisfied once the
current thread acquires a lock on such objects.
Postconditions are treated similarly: locks on separate
objects are not released until postconditions are satisfied.
The SCOOP model does not allow invariants to refer to
separate objects, so their evaluation does not cause
waiting. This is equivalent to specifying all such objects
as \thread_safe and requiring that all locks be acquired
prior to calling a method. Their proposal, however, does
not contemplate the full intricacies of the Java
concurrency model with its synchronized blocks, multiple
lock acquisitions and releases inside a method, and no
restrictions on method calls on objects accessible by
multiple threads.

Jacobs et al [11, 12] present a very interesting
approach to the problem of concurrency control of
aggregate objects. However, their solution implies that
preconditions and postconditions can only refer to thread-
safe data. Our approach solves this issue with the
introduction of safepoints, to allow the specification of the
internal behaviour of objects.

To the best of our knowledge, this work is the first to
allow the specification and dynamic verification (i.e.
runtime assertion checking) of thread-safety properties as
well as functional properties in a concurrent environment
without requiring atomicity to be established a priori. It is
also the first to propose a complete solution to the
problem of interference without limiting the use of
concurrency constructs, thus allowing concurrent
programs in Java-like languages to be completely
specified.

5 Case Study–Specification of an Industrial
Concurrent System

This section describes the application of the proposed
constructs in the specification of a portion of an industrial
system using JML and analyzes their suitability in terms
of the behaviours they can specify and the ones they
cannot. We take the approach of specifying the behaviour
presented by the code without introducing any changes to
improve its specifiability.

The target system is the Service Activation Engine
(SAE) component of the Session Resource Controller
product line of Juniper Networks. It is basically a platform
to design and deploy value-added services in an Internet
Protocol network. It does so by converting service
definitions specified as an abstract set of traffic
controlling policies for a particular subscriber into device
specific policies in the context of the interface the
subscriber uses to connect to the network. The SAE
currently supports various devices, and we focus here on
the subsystem that interfaces with Juniper’s JUNOSe
routers. This subsystem, called router driver, is
responsible for responding to asynchronous notifications

9

from the router regarding the state of each subscriber
interface and managing traffic policies for each interface.
Due to the large number of subscribers a router supports,
these requests are processed concurrently to maximize
system performance. The router driver is responsible for
the translation task above, the low-level communication
with the router and ensuring correctness in the presence of
concurrent processing. It does so by implementing a
transactional infrastructure to guarantee ACID (Atomicity,
Consistency, Isolation, and Durability) properties of
transactions. This system is capable of managing
approximately 520,000 active subscribers connected to
multiple JUNOSe routers. This amounts to executing
approximately 1,500 transactions per second. The
complex functionality of this system allows the use of
complex functional specification constructs, and its high
degree of concurrency with varied and intricate
concurrency control patterns allows for all proposed
constructs to be explored.

The router driver subsystem is composed of 54 classes
and interfaces (33509 LOC), all of which are used in a
concurrent environment. Of these, 34 present concurrent
behaviour. Table 1 summarizes the usage of the thread-
safety constructs we propose. The first column provides a
count of the methods considered. The second column lists
the number of methods subject to specification
inheritance. The third column provides a count of the
methods that use the requires_/ensures_thread_safe
constructs. The fourth column counts the use of locking
predicates. All columns show both the total number of
methods that require those constructs and the total number
of methods that were successfully specified with those
constructs. We consider a specification to be successful if
we are able to specify the method concurrent behaviour. A
method can require several of those constructs. The first
line lists the absolute numbers and the second one shows
percentages (the ones in the ‘Succ’ column are relative to
the adjacent ‘Total’ column to the left).

Table 1. Statistics on the usage of the proposed
thread-safety constructs for the case study.

 Number of
methods

Thread-
safety spec
inheritance

Thread-safe
uses

Lock
predicate

uses
 Total Succ Total Succ Total Succ Total Succ
Total 307 279 104 102 83 56 42 42
Percentage 100 90.9 33.9 98.1 27.0 67.5 13.7 100

Let us highlight some of the most important results in
Table 1. First, 33.9% of all methods require the
specification of inheritance with concurrency,
demonstrating the significance of representing this
situation properly. It also shows that our constructs are
able to specify 98.1% of these cases correctly. Second,
27.0% of all methods make use of thread-safety clauses

independently of specification inheritance, of which
67.5% are correctly specified by our constructs. Third,
this table shows that all cases involving the use of lock
predicates were correctly specified by our constructs.

The cases that could not be specified (i.e., 29
methods), including both specification inheritance and
thread-safe uses, were due to the fact that objects that
perform concurrency control internally (concurrent
objects) can never be entirely thread-safe but they can be
piecewise thread-safe. An object is piecewise thread-safe
if it can be partitioned into groups of methods or fields
that do not interfere within a group and for which
concurrency control across groups is taken care of
internally by the object. A producer-consumer scenario in
which up to one producer and one consumer threads are
allowed to execute disjoint sets of operations on an object
is one example. It is currently impossible to specify such
concurrent behaviour, either with JML or our extensions.
We are working on extending the thread-safety constructs
to accommodate this.

Table 2 summarizes the uses of safepoints. The second
column displays the total number of methods that
successfully use safepoints. Table 2 shows that 32.9% of
all methods required the use of safepoints to be correctly
specified and that our proposed constructs succeeded in
specifying 90.1% of these cases. The major limiting factor
was the fact that it is not always possible to have
safepoints in the method body due to the requirement of
not allowing observable statements to happen before
(after) a precondition (postcondition) safepoint. In such
cases, only limited predicates can be safely evaluated.

Table 2. Statistics regarding the use of safepoints.

Safepoints uses Number of
methods Total Success

Total 307 101 91
Percentage 100 32.9 90.1

This case study shows that our proposed constructs are
not only essential to the proper specification of concurrent
programs but that they are also capable of specifying most
behaviour. The thread safety constructs are not able to
specify what we call piecewise thread-safe behaviour of
objects, which amounts to 15.5% of the eligible methods
(187). This is a significant limitation which we are
working to overcome. The use of safepoints to specify
properties of a concurrent system proved to be not only
essential but also applicable to the vast majority of cases.
Most cases that could not be specified could have been so
by reorganizing the method’s code to allow for the
placement of safepoints, thus confirming that safepoints
are capable of specifying concurrent object-oriented
programs. Some failed to be specified due to the inherent
non-determinism of concurrent systems. For instance, it is
not always possible to guarantee that after taking an

10

element from a concurrently modified queue it will
contain one element less than it had prior to executing this
operation. This is a limitation of the (method)
implementation, not the DbC technique we propose, since
one can trivially eliminate all concurrency control issues
by externally acquiring all necessary locks prior to
executing a method to guarantee its sequential execution.

6 Conclusion

Applying Design by Contract to concurrent software
poses several challenges. We tackle interference with the
introduction of safepoints. We define their syntax and
semantics in the context of a concurrent method. Based on
this concept, we also derive minimum thread-safety
requirements for a method to be interference-free.

We address thread-safety specification by separating
the concurrent aspect of a contract, which houses clauses
to specify thread-safety properties, from the functional
aspect thus maintaining the usual notions of behavioural
subtyping for the specification of functional properties.

Freedom from interference allows the use of sequential
contracts in a concurrent environment. Not every
sequential contract can be expressed as a correct
concurrent contract, though. However, this is not a
limitation of our technique but of the method being
specified.

We implemented our proposed constructs on the JML
toolset, including the Runtime Assertion Checker,
although this is not discussed in this paper due to size
constraints. We validated these constructs with an
industrial case study. We identified some limitations but
we were nevertheless able to specify complex behaviours,
both functional and concurrent, that could not be specified
with the current JML constructs.

Our next step is to continue the work of Briand et al.
[6] to determine the effect of the complexity of contracts
used as test oracles in the detection of faults with an
emphasis on concurrent systems.

Acknowledgements. This research was supported by
Juniper Networks, Inc. Lionel Briand and Yvan Labiche
are supported by NSERC. Thanks to the JML community
for the many fruitful discussions and the great software
you produced. Special thanks to Gary Leavens and
Clément Hurlin for the extensive discussions about JML
and concurrency, which helped clarify fundamental points
in this work.

7 References

[1] Agrawal R., Sasturkar A., Wang L. and Stoller S. D.,
“Optimized Run-Time Race Detection And Atomicity
Checking Using Partial Discovered Types,” Proc. ASE, pp.
233-242, 2005.

[2] America P., “Inheritance and Subtyping in a Parallel
Object-Oriented Language,” Proc. ECOOP, LNCS 276,
pp. 234-242, 1987.

[3] Araujo W., Briand L. and Labiche Y., “Concurrent
Contracts for Java in JML,” Carleton University, Technical
Report SCE-07-11, http://squall.sce.carleton.ca/, 2007.

[4] Arnold K., Gosling J. and Holmes D., The Java
Programming Language, Addison-Wesley, 2000.

[5] Arslan V., Eugster P., Nienaltowski P. and Vaucouleur S.,
“SCOOP - concurrency made easy,” in B. Meyer, A.
Schiper, and J. Kohlas, Eds., Dependable Systems:
Software, Computing, Networks, vol. LNCS 4028, pp. 82-
102, 2006.

[6] Briand L. C., Labiche Y. and Sun H., “Investigating the
Use of Analysis Contracts to Improve the Testability of
Object-Oriented Code,” SPE, 33 (7), pp. 637-672, 2003.

[7] Cheon Y. and Leavens G. T., “A Runtime Assertion
Checker for the Java Modeling Language,” Proc. Software
Engineering Research and Practice, pp. 322-328, 2002.

[8] Cheon Y., Leavens G. T., Sitaraman M. and Edwards S.,
“Model Variables: Cleanly supporting Abstraction in
Design By Contract,” SPE, 35 (6), pp. 583-599, 2005.

[9] Dhara K. and Leavens G. T., “Forcing Behavioural
Subtyping Through Specification Inheritance,” Proc. ICSE,
pp. 258-267, 1996.

[10] Flanagan C. and Freund S. N., “Atomizer: a dynamic
atomicity checker for multithreaded programs,” Proc. ACM
SIGPLAN/SIGACT POPL, pp. 256-267, 2004.

[11] Jacobs B., Leino R. M., Piessens F. and Schulte W., “Safe
concurrency for aggregate objects with invariants,” Proc.
ICSE, pp. 137-147, 2005.

[12] Jacobs B., Leino R. M. and Schulte W., “Verification of
Multithreaded Object-Oriented Programs with Invariants,”
Proc. ACM Specification and Verification of Component
Based Systems, pp. 2-9, 2004.

[13] Leavens G. T., Baker A. L. and Ruby C., “Preliminary
design of JML: A behavioral interface specification
language for Java,” ACM SIGSOFT Software Engineering
Notes, vol. 31 (3), pp. 1-38, 2006.

[14] Leavens G. T. and Müller P., “Information Hiding and
Visibility in Interface Specifications,” Department of
Computer Science, Iowa State University, Technical Report
06-28, 2006.

[15] Leavens G. T., Poll E., Clifton C., Cheon Y., Ruby C., Cok
D., Müller P. and Kiniry J., “JML Reference Manual,”
Department of Computer Science, Iowa State University,
http://www.jmlspecs.org, 2007.

[16] Liskov B. H. and Wing J. M., “A Behavioral Notion of
Subtyping,” ACM Transactions on Programming
Languages and Systems, vol. 16 (6), pp. 1811-1841, 1994.

[17] Meyer B., “Design by Contracts,” IEEE Computer, vol. 25
(10), pp. 40-52, 1992.

[18] Nienaltowski P. and Meyer B., “Contracts for
concurrency,” Proc. International Symposium on
Concurrency, Real-Time and Distribution in Eiffel-like
Languages, 2006.

[19] Rodríguez E., Dwyer M., Flanagan C., Hatcliff J., Leavens
G. T. and Robby, “Extending JML for Modular
Specification and Verification of Multi-threaded
Programs,” Proc. ECOOP, LNCS 3586, pp. 551-576,
2005.

