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Abstract 

Design by Contract (DbC) is a software development 
methodology that makes use of assertions to produce 
better quality object-oriented software. The idea behind 
DbC is that a method defines a contract stating the 
requirements a client needs to fulfill to use it, the 
precondition, and the properties it ensures after its 
execution, the postcondition.  

Though there exists ample support for DbC for 
sequential programs, applying DbC to concurrent 
programs presents several challenges. The first challenge 
is interference, the product of multiple threads of 
execution modifying and accessing shared data. The 
second is the specification of thread-safety properties in 
the presence of inheritance. 

We present a solution to these challenges in the 
context of Java programs by extending the Java Modeling 
Language (JML) specification language. We experiment 
our solution on a large size industrial software system. 

1 Introduction 

Including specifications of program behaviour together 
with the source code is not a new idea. Design-by-
Contract (DbC) [17] is one of the most elaborate software 
development methodologies that put such idea in practice. 
Following DbC principles, a method defines a contract 
stating the requirements a client needs to fulfill to use it, 
the precondition, and the properties it ensures after its 
execution, the postcondition. Contracts can be treated as 
assertions about the state of a program at a certain point. 
A program can be instrumented with code that checks the 
validity of the assertions at runtime and upon failure 
throws an exception indicating where it happened. DbC 
also defines object invariants, properties that must hold in 
all visible states of an object. The visible states of an 
object are the states just after object construction, just 
before a visible method execution, and just after a visible 
method execution. Behavioural subtyping [2, 7, 16] is an 
integral part of DbC. A subtype automatically inherits the 

specification (contracts and invariants) from its super-
types [9]. The effective precondition of a method is the 
disjunction of all the inherited preconditions and the 
method’s declared preconditions. The effective 
postcondition is the conjunction of all inherited 
postconditions for which the associated precondition is 
satisfied and the method’s declared postconditions if 
associated preconditions are satisfied. The effective class 
invariant is the conjunction of all inherited class invariants 
with the object’s declared invariant. This guarantees that a 
subtype can be properly used in place of its super-type(s). 

The Java Programming Language [4] does not provide 
native support for DbC. The Java Modeling Language 
(JML) [13, 15] is a specification language used to write 
contracts. It includes notations for pre- and 
postconditions, invariants, and offers mechanisms for 
specification inheritance, thus providing support for the 
DbC paradigm. The JML toolset comes with a compiler 
that translates specifications into runtime assertion 
checking (RAC) code, producing Java classes 
instrumented with executable assertions. The JML 
compiler [7] produces RAC code that enforces 
behavioural subtyping. 

Most work on DbC focused on sequential programs, 
and applying DbC to concurrent programs presents 
several challenges. The first challenge is interference, the 
product of multiple threads of execution modifying and 
accessing shared state. As further discussed below, this 
may cause RAC code to incorrectly report errors during 
correct execution and vice-versa. Solving the issue of 
interference with a focus on runtime assertion checking is 
one major contribution of this work. The second challenge 
is the specification of thread-safety properties in the 
presence of inheritance. We argue that, contrary to what is 
currently done in the literature, thread safety properties 
cannot be specified in preconditions in the presence of 
inheritance. 

The rest of the paper is structured as follows. Section 2 
describes these challenges in detail. Section 3 presents our 
solutions. Related work is discussed in section 4. We then 
present an industrial case study (section 5). We conclude 
in section 6. 
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2 Contracts and Concurrency 

This section presents the problems of using contracts to 
specify behaviour and generate runtime assertion checking 
code for concurrent programs. Although we use Java and 
JML, the principles we introduce would likely, for the 
most part, apply to other programming languages. We do 
not describe JML in detail but briefly describe the 
constructs we use to illustrate the challenges of concurrent 
contract specification and verification.  

2.1 The Problem of Interference 

Two threads interfere when one unintentionally 
changes data the other observes. This becomes a problem 
if, due to an arbitrary interleaving, one thread’s perception 
of the shared data is not true due to a modification made 
by another thread and it relies on such perception for 
future computations.  

Before continuing the discussion, we must recall the 
notions of a method’s pre-state and post-state [13]. “The 
pre-state of a method call is the state just after the method 
is called and parameters have been evaluated and passed, 
but before execution of the method’s body. The post-state 
of a method call is the state just before the method returns 
or throws an exception; in JML we imagine that \result 
and information about exception results is recorded in the 
post-state” ([13], p. 8). 

The method specification in Figure 1 (excerpt from 
[19]), composed of two specification cases separated by 
the keyword also (each with a precondition and the 
corresponding expected postcondition, the postcondition 
to be established if the precondition is satisfied), simply 
tells that the head of the list will move to the next element 
and the method will return the value of what used to be 
the first element of the list if the list is not empty (lines 5-
9), and returns null otherwise (lines 1-4). In JML, the 
preconditions of a method (i.e., the requires clauses), as 
well as arguments to the \old operator in postconditions 
are evaluated in the method’s pre-state. The method 
postconditions (i.e., the ensures clauses) are evaluated in 
the method’s post-state. 

Although straightforward, this specification is not 
correct in a multi-threaded environment. Suppose that 
extract() is invoked by thread 1 and in the method’s 
pre-state, head references the same object as last (i.e., 
the list is empty). Suppose, also, that thread 2 pre-empts 
thread 1 right after thread 1 acquires the lock on this to 
fully execute method insert(), which does not acquire 
such lock for performance reasons. The postcondition of 
insert() specifies that head is not referencing the same 
object as last, i.e., the list is not empty. Once thread 1 
resumes execution and acquires the lock on head, it will 
return the first element of the list, violating the 

postcondition of extract() for an (expected) empty list, 
i.e., that it should have returned null. 

This is an example of interference in the context of 
DbC. This problem is not specific to Java or JML. Any 
object-oriented language in which the scenario we 
described above is realizable and provides support for 
DbC via runtime assertion checking (RAC) is prone to this 
problem. It is important to emphasize that such problem 
arises due to the combination of DbC and the program 
under execution. It is not due to erroneous concurrency 
control on the part of the implementation either of the 
client or the provider. Interference can also happen 
between the contract evaluation point (pre- and post-state) 
and the method entry and exit points. Since interleaving 
occurs outside the method body, this is called external 
interference. The previous case, where interleaving occurs 
inside the method body is called internal interference.  
public class LinkedQueue { 
    protected /*@ spec_public @*/ LinkedNode head; 
    protected /*@ spec_public @*/ LinkedNode last; 
    //@ public invariant head.value == null; 
1   /*@ public normal_behavior 
2     @  requires head == last; 
3     @  assignable \nothing; 
4     @  ensures \result == null; 
5     @ also public normal_behavior 
6     @  requires head != last; 
7     @  assignable head, head.next.value; 
8     @  ensures head == \old(head.next) &&  
9     @   \result == \old(head.next.value); 
10    @*/  
    public synchronized Object extract() { 
        synchronized (head) { 
            Object x = null; 
            LinkedNode first = head.next; 
            if (first != null) { 
                x = first.value; 
                first.value = null; 
                head = first; 
            } 
            return x; 
        } 
    } 
} 
Figure 1. Method extract() of class LinkedQueue  

2.2 Specification Inheritance 

Specifications can be inherited from interfaces and 
super-classes, and the issues of data abstraction and 
concurrency in the context of inheritance are the same in 
both cases. In the following we use an interface example 
to illustrate those issues, without loss of generality. 

Figure 2 shows the specification of interface Channel. 
It declares two model fields (lines 2-3): A model field (a 
field with the model modifier) is a field that does not have 
to be implemented but can be used in a specification as 
any other field. Model fields allow abstract modeling [8] 
and play a vital role in information hiding, modular 
reasoning and behavioural subtyping [14]. Both fields in 
this example are marked instance: they are fields of the 
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object implementing the interface instead of static fields 
of the interface (JML allows instance fields on interfaces). 

Interface Channel can be implemented by class 
PipedChannel (Figure 3) with the help of a Pipe (not 
shown). The represents clause maps the value of a 
model field to an expression based on concrete fields of 
the class: e.g., the value of model field connected comes 
from concrete fields closed and remoteClosed 
according to the Boolean expression in line 3 (Figure 3).  
   public interface Channel { 
1  /*@ 
2    public instance model boolean connected; 
3    public instance model int nPending; 
4    public invariant nPending >= 0; 
5    public constraint connected==>\old(connected); 
6    @*/ 
7  /*@ 
8    public normal_behaviour 
9     requires nPending>0 || (nPending==0 && 
connected); 
10    ensures 
(\result!=null==>nPending==\old(nPending)-1) 
11      && (\result == null ==> \old(nPending)==0); 
12   also 
13   public exceptional_behaviour 
14    requires !connected && nPending == 0; 
15    signals_only NotConnectedException; 
16   @*/ 
   public Message receive()throws …; 
   } 

Figure 2. Interface Channel (excerpt). 

Since method receive() in class PipedChannel does 
not declare any specification, it inherits the parent one 
without any change (i.e., the one in Figure 2), which 
specifies that receive() will return any Message objects 
the channel contains even if it has already been closed 
(line 10) or null if it is empty (line 11). The exceptional 
specification (lines 14-15) states that receive() will 
throw a NotConnectedException if the channel has 
been closed and it is empty. 

The problem in this case is very similar to the previous 
ones: interference causes pre- and postconditions to be 
evaluated at unsafe points since they reference the object’s 
internal state. The difference is that such internal state is 
made visible through model fields in the interface 
specification. Although one might argue that such 
specification is improper for a concurrent environment 
because it was not designed with concurrency in mind, 
nothing in the interface states that it actually is supposed 
to be used only in a sequential environment. One might 
implement it sequentially or concurrently offering the 
same guarantees. 

This issue is more subtle than in the previous cases. 
Model fields are used to specify behaviour without giving 
out implementation details. Model fields do not have 
storage, i.e., their values are derived from the object’s 
state (e.g., nPending’s value comes from the evaluation 
of getSize() on field in).  

A solution to the issue of contracts for concurrent 
objects must accommodate the usage of model fields. 

Unfortunately, as far as we know, the current literature 
does not even acknowledge the existence of a problem. 
Since clients do not have visibility on how the provider 
realizes model fields, they cannot know which locks to 
acquire, and might not even know that there are 
concurrency control issues. Therefore, the client cannot be 
required to perform additional concurrency control simply 
to guarantee thread-safe access to fields present in 
specifications, as suggested in [11, 12]. This, instead, 
must be the responsibility of the provider. 
  public class PipedChannel implements Channel { 
    protected final Pipe in, out; 
    private volatie boolean closed = false; 
    private volatie boolean remoteClosed = false;     
1  /*@ 
2    @ private represents connected <- 
3    @                    !closed && !remoteClosed; 
4    @ private represents nPending <- in.getSize(); 
5    @*/ 
   public Message receive()throws … { 
     if(closed) 
        throw new NotConnectedException(); 
     if(in.isEmpty()) { 
       synchronized(this) { 
         if(remoteClosed) { 
           closed = true; 
           throw new NotConnectedException(); 
         } 
       } 
       return null; 
     } 
     return in.take(); 
   } 
  } 

Figure 3. Class PipedChannel (excerpt). 

2.3 Thread Safety 

The core idea behind thread safety is one of non-
interference [19]. Thread safety can be achieved in a 
variety of ways, which all relate to the way data can be 
accessed. Data that is local to a thread (i.e. not visible to 
other threads) is not subject to any interference issue. 
Access to shared data (i.e. visible to multiple threads) 
must be protected by a lock. By doing so, one guarantees 
the absence of interference when accessing such data.  

JML provides several constructs to specify these 
aspects of thread safety [19]: e.g., the \thread_safe 
predicate specifies that a given object is thread-safe, i.e. it 
is either local to a thread or access to it is protected by a 
lock. JML provides a number of constructs to explicitly 
deal with locks. The \lockset expression refers to the set 
of locks held by the current thread. Although described in 
[19], these constructs were not implemented in the JML 
compiler, thus not producing any RAC code. Note that 
stating thread safety using \thread_safe is equivalent to 
stating it explicitly through locking requirements. The 
choice is based on ease of specification only. 

The contract for Pipe.get() can be extended to 
include this clause as shown in Figure 4. In JML, locking 
and thread-safety properties are currently specified in the 
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precondition of a method (e.g., lines 1 and 5 in Figure 4). 
This presents two major problems. The first problem is 
the evaluation point. DbC specifies that preconditions be 
evaluated prior to the first statement of the method body. 
In JML, this is done in the pre-state. Alternatively, a 
design decision for JML could have been to check the pre-
condition as the first statement of the method. There is no 
difference between these two approaches for sequential 
programs, i.e., when verifying functional properties. For 
concurrent programs, however, there is a difference. The 
first statement of a method might already be protected by 
a monitor lock (synchronized methods in Java), as 
illustrated by method get() of class Pipe (Figure 4). Its 
precondition specifies locking and functional properties. If 
one decides to evaluate the precondition of get() in the 
method pre-state it is subject to external interference 
because the thread does not yet hold a lock on this, 
which protects the access to the field closed from race 
conditions. If, however, the evaluation happens just before 
the first statement of the method, i.e., right after acquiring 
the lock on this but before executing any statement of 
the method body, interference is not a problem. However 
the term !\lockset.has(this) (i.e., the thread must not 
already hold a lock on the object) will evaluate to false, 
which is not the desired behaviour. We argue that this 
suggests that locking and thread-safety properties do not 
belong in the precondition.  

The second problem is related to specification 
inheritance and behavioural subtyping. Since the actual 
precondition of a method is the disjunction of the 
inherited preconditions and the ones the method defines, 
the actual precondition can be true even if the locking or 
thread-safety requirements the method defines do not 
hold, as long as the inherited preconditions (which may 
not contain locking or thread-safety requirements) hold. 
As a result, although the method requires some locking 
mechanisms to exist (as defined in its precondition), no 
locking may in fact exist but this will not be detected as a 
precondition violation at run time. Conversely, a subtype 
may weaken the inherited preconditions in a way that 
inherited locking and thread safety properties are not 
required to hold. We argue that this is the main point for 
not having locking and thread safety properties in the 
precondition. An analogous argumentation can be made 
for postconditions. 

The root cause of these problems is the combination of 
thread safety behaviour specification with functional 
specification. Functional specifications specify properties 
that must hold on the states preceding and following a 
method execution, i.e., on state transformations. Thread 
safety specifications deal with the properties that must 
hold to ensure that such state transformations occur as 
specified in a concurrent environment. A program can, 
then, be seen as the combination of two aspects: the 
functional and the concurrent aspects. The functional 

aspect is the one that deals with retrieving, processing and 
outputting data, whereas the concurrent aspect is the one 
that deals with the mechanisms to guarantee that such 
manipulations of data by multiple threads is controlled. 
These aspects are orthogonal, and one usually states 
thread safety requirements independently from functional 
properties. We believe that method specifications should 
reflect this independence.  
 /*@ public normal_behaviour 
1     requires closed && !\lockset.has(this); 
2     ensures \result == null; 
3    also 
4    public normal_behaviour 
5     requires !closed && !\lockset.has(this);      
6     ensures \result != null; 
 */ 
public synchronized Message get() throws … { 
    // Body omitted 
} 

Figure 4. Method get()of class Pipe. 

3 Specifying Contracts in the Presence of 
Concurrency 

In this section we present our solution to the issues 
discussed previously. The solution is decomposed into 
two aspects: first we introduce the concept of safepoint, 
that is, code locations where precondition or postcondition 
predicates can be safely evaluated (section 3.1). Then we 
show how concurrency related predicates can be specified 
orthogonally to functional predicates (section 3.2). 
Section 3.3 then shows that these two solutions address 
the interference issue. All the new constructs introduced in 
this section were incorporated into the JML toolset 
including the JML compiler, which is the tool that 
generates RAC code from JML annotations. However, we 
do not discuss the techniques for generating RAC code for 
the new constructs due to size constraints. 

3.1 Safepoints 

A safepoint is any point inside the method body where 
it is safe to evaluate precondition, postcondition and 
invariant predicates. A precondition safepoint is a point 
where it is safe to evaluate preconditions and invariants, 
and the pre-state predicates of postconditions. A 
postcondition safepoint is a point where it is safe to 
evaluate the expected postconditions and the invariants. 
Notice that no guarantees are made with respect to 
postcondition formulas, present in the method 
specification, that are not safely evaluated at a given 
postcondition safepoint. Any method execution path (from 
the pre-state to the post-state) can have only one 
precondition safepoint and only one postcondition 
safepoint. If no precondition (resp. postcondition) 
safepoint is explicitly specified for an execution path, it 
defaults to the method pre-state (resp. post-state). In a 
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precondition safepoint, all preconditions, invariants and 
pre-state predicates are required to be safely evaluated. In 
a postcondition safepoint, the postconditions and all 
invariants are required to be safely evaluated. We propose 
the addition of the requires_safepoint and 
ensures_safepoint labels to JML to demarcate those 
safepoints.  

3.1.1 Safepoints and Interference.  
Figure 5 shows an example of their use (access to last 

is also protected by a lock on head). At the precondition 
safepoint (line 13), all the objects referenced by both 
requires clauses (lines 2 and 6) and the contents of the 
\old statements in the ensures clauses (lines 8-9) are 
properly protected by locks. At the postcondition 
safepoint (line 21), the field head, present in the ensures 
clause at lines 8-9, is properly protected by a lock. Since 
\result refers to local variable x, which in turn points to 
an object no longer referenced by the list, it is also thread-
safe at the postcondition safepoint1. Finally, the object 
invariant can be safely evaluated both in the pre- and 
postcondition safepoints since it refers to head, which is 
properly locked in both places.  
public class LinkedQueue { 
    protected /*@ spec_public @*/ LinkedNode head; 
    protected /*@ spec_public @*/ LinkedNode last; 
    //@ public invariant head.value == null; 
1   /*@ public normal_behavior 
2     @  requires head == last; 
3     @  assignable \nothing; 
4     @  ensures \result == null; 
5     @ also public normal_behavior 
6     @  requires head != last; 
7     @  assignable head, head.next.value; 
8     @  ensures head == \old(head.next) &&  
9     @   \result == \old(head.next.value); 
10    @*/  
11    public synchronized  Object extract() { 
12        synchronized (head) { 
13            //@requires_safepoint: 
14            Object x = null; 
15            LinkedNode first = head.next; 
16            if (first != null) { 
17                x = first.value; 
18                first.value = null; 
19                head = first; 
20            } 
21            //@ensures_safepoint: 
22            return x; 
23        } 
24    } 
25} 
Figure 5. Method extract() of class LinkedQueue 
using safepoints to avoid internal interference. 

Having the precondition of a method evaluated inside 
the method is counter-intuitive. A precondition, as initially 
presented by Meyer, can be evaluated just before entering 
                                                                        
1 The postcondition safepoint must be the return or throw 
statement. Additionally, the return (or throw) expression must be side-
effect free, which can be easily checked at compilation time. In case the 
method does not return a value, the ensures_safepoint can be 
placed at the end of a block or just before the method returns. 

the method or just after (i.e., before any statement of the 
method body is executed). These two views are equivalent 
because nothing significant to the evaluation of the 
precondition predicates happens between these two stages. 
The same idea applies to the precondition safepoint: 
nothing significant to the evaluation of the precondition 
predicate should happen between the method’s pre-state 
and the safepoint. Then, the precondition can be evaluated 
either in the pre-state or at the precondition safepoint 
yielding the same result. The only difference is that at the 
precondition safepoint the method is interference-free 
(due to the acquisition of some locks, in this example). 

Analogously, as long as nothing significant to the 
evaluation of the postcondition happens between the 
postcondition safepoint and the post-state, evaluating the 
postcondition in those two places is equivalent but the 
former is safer (no interference).  

3.1.2 Safepoints and Specification Inheritance.  
Recall that assertions checking specification 

inheritance are subject to interference because of the 
evaluation of model fields from concrete fields. To ensure 
safe evaluation of inheritance contracts, the evaluation of 
model fields needs to occur (i) at a location where the 
concrete fields are protected from interference or (ii) after 
their values have already been obtained and are 
guaranteed not to change.  

Figure 6 illustrates how safepoints can be used to 
prevent external interference for method receive() of 
class PipedChannel (Figure 3), which inherits its 
specification from its interface (Figure 2).  

An example of the first location is the safepoint at line 
8 (Figure 6): Access to remoteClosed is protected by a 
lock on this, which guarantees that the value observed by 
the precondition is consistent with the one observed by the 
method. An example of the second location is the 
safepoint at line 3: It is located after closed evaluates to 

    /* same specification as in Figure 3 */ 
1   public Message receive() throws …{ 
2     if(closed) { 
3       //@ requires_safepoint: 
4       throw new NotConnectedException(); 
5     } 
6     if(in.isEmpty()) { 
7       synchronized(this) {               
8         //@ requires_safepoint:   
9         if(remoteClosed) { 
10          closed = true;                 
11          throw new NotConnectedException(); 
12        } 
13      } 
14      return null; 
15    } 
16    //@ requires_safepoint:  
17    //@ ensures_safepoint: 
18    return in.take(); 
19  } 
Figure 6. Method receive() of class PipedChannel 

equipped with safepoints. 
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true, which never changes afterwards.  
Locking is not required in this case because Java 

guarantees that accesses and assignments to variables of 
type int and boolean are atomic. Furthermore, the 
volatile modifier guarantees that the observed value is 
the current value of the variable instead of a cached 
image. Otherwise, some locking would be required to 
guarantee atomic access to these fields. 

3.1.3 Discussion.  
Safepoints demarcate points in the code where the data 

the pre- or postcondition predicates observe are the same 
as the ones the method execution observes. The idea is not 
to add extra concurrency control just for the sake of 
evaluating contracts since it would cause the instrumented 
code to execute differently, likely preventing harmful 
interleavings present in the original code from occurring, 
which could lead to undetected faults on the final 
(uninstrumented) program. Instead, the idea is to find the 
right place in the code to evaluate the contract following, 
to the maximum extent possible, the intent of the designer, 
who was certainly not thinking that such predicates were 
all safely observable immediately before or after the 
method execution. For instance, when one specifies the 
behaviour of LinkedQueue.get() (Figure 1) to “return 
null if the list is empty or the element at the head, 
otherwise” one is implicitly thinking “once the list can be 
safely manipulated, return null if it is empty or the element 
at the head, otherwise”.  

In this light, we consider safepoints not as part of the 
contract but as being part of the implementation. For 
example, notice that the contracts of receive() have not 
changed from Figure 3 to Figure 6. Thus, correctly 
placing the safepoint is an implementation problem not a 
contract design problem. This approach is in line with the 
idea behind DbC, namely that a contract specifies the 
observable behaviour of a method without getting into the 
details of its implementation.  

Of course, the placement of safepoints needs to follow 
the rules we defined earlier to guarantee the expected 
semantics of a contract, i.e. that it would evaluate the 
same in a sequential environment with or without 
safepoints: preconditions and postconditions are evaluated 
only once for a method execution and that nothing 
significant (to the evaluation of the predicates) happens 
between the beginning (end) of a method for precondition 
(postcondition) safepoints. 2 

Significant statements are those that can be observed 
through changes on the program state. We, then, define 
that only unobservable statements are allowed between 
the beginning (end) of the method and the precondition 
(postcondition) safepoint. Unobservable statements are 

                                                                        
2 These constraints can be checked at compile time (e.g., by adapting 
rules of definite assignment [4]). 

assignment to local variables, pure method or constructor 
calls, loops and branching statements, try blocks, JML 
annotations, assignments to local ghost variables, and 
acquiring and releasing a lock3.  

3.2 Specification of Thread-Safe Behaviour 

As we argued in section 2.3, thread safety behaviour 
specification and functional specification are different. 
Separating the two requires the introduction of new 
constructs to JML (section 3.2.1) and revisiting 
inheritance specification of concurrency aspects (section 
3.2.2). An example is introduced in section 3.2.3. 

3.2.1 New constructs for Thread-Safety Specification.  
First, we add the concurrent_behaviour clause to a 

method specification to separate functional (e.g., JML 
normal_behavior and exceptional_behavior 
clauses) from thread-safety property specifications. A 
concurrent_behaviour specification can contain one or 
more of the following clauses: 

• requires_locked, requires_unlocked, 
ensures_locked, ensures_unlocked: These 
specify the set of lock objects that are held or not by 
the current thread in the method pre-state and post-
state, respectively. Null references are ignored. 
These replace the JML \lockset (part of the 
functional aspect in JML). 

• requires_thread_safe, ensures_thread_safe: 
These specify that all the objects provided as 
argument satisfy the \thread_safe predicate in the 
method pre-state and post-state, respectively. Null 
references are ignored. 

These clauses take a spec-expression-list (see section 
A.8 of [15]) as an argument (i.e. a comma-separated list of 
JML expressions). Each such expression evaluates to an 
object reference. These clauses all default to 
\not_specified. The requires_... clauses must be 
satisfied in the method’s pre-state. The ensures_... 
clauses must be satisfied in the method’s post-state. 

3.2.2 Inheritance Specification.  
We showed in section 2.3 that specification inheritance 

rules for concurrency aspects cannot be the same as for 
functional aspects. The semantics of specification 
inheritance on the concurrent aspect must be identical to 
the one of invariants (conjunction). The effective 
specification (in a subclass) of any of the new clauses is 
the set of reference objects resulting from the union of the 
argument set specified on the target object with the 
argument sets of its immediate supertypes. 
(\not_specified is treated as the empty set.) In other 

                                                                        
3 Acquiring a lock is not observable because, in a deadlock-free 
program, all lock acquisitions eventually succeed [3]. 
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words, thread-safety specifications, like invariants, should 
only be strengthened by sub-types.  

At first, one might argue that such properties should 
not be inherited at all since concurrency control is very 
particular to a type. One would not see these properties as 
exposed functionality but as implementation details. 
However, we believe it should be possible for a class (or 
interface) to specify these properties for extension 
purposes. A typical example is a class in a messaging 
framework. The framework could define a Message 
interface and state locking and thread-safety properties for 
implementers so that they can be handled without risk of 
deadlocks or race conditions. Additionally, there are cases 
where interfaces are purposefully underspecified with 
respect to these properties to allow concrete 
implementations the freedom to choose their concurrency 
control strategy. This makes sense when there are two or 
more interfaces to be implemented and these must work in 
tandem. For instance, a particular message processor 
(implementing interface Processor) processes RPC 
messages (implementing interface Message). This 
processor can require stronger properties than the ones 
from Message since it knows it will only process RPC 
messages. 

The semantics of the new clauses allow the 
specification of thread-safety and locking properties in the 
presence of specification inheritance. It decouples 
concurrency related properties from functional properties 
giving concurrent contracts their intuitive (expected) 
meaning. We do not make any claim with respect to the 
modularity of the concurrent aspect. This is outside the 
scope of this work. Our additions, however, do not disturb 
modular reasoning on the functional aspect of a method 
specification since we do not change the way specification 
inheritance is implemented for this aspect. 

3.2.3 An Example.  
As an example, consider the declaration of method 

sendAndWait() of class PipedChannel in Figure 7. It 
shows examples of some of the new clauses in lines 8-10. 
The requires_thread_safe clause specifies that object 
r must be thread-safe in the method pre-state. Similarly, 
ensures_thread_safe specifies that the object returned 
by the method must be thread-safe on the method’s post-
state. (See below for additional comments on this 
example.) 

3.3 Thread Safety + Safepoints = No Interference 

Due to space limitations this section presents an 
informal justification that both the thread safety 
mechanisms we introduced and safepoints are necessary to 
avoid interference. For a complete justification see [3]. 
We analyze a single example that is representative of the 

case in which predicates refer to method parameters and 
internal state. 

Figure 7 presents a simple contract in which the 
effective precondition involves predicates on method 
parameters. The effective precondition, accounting for 
normal and exceptional behavior of the method is 
r.isRequest() (the disjunction of preconditions from 
both specification cases simplifies the terms connected 
and !connected): it is not simply true. In this situation, 
safepoints alone cannot guarantee the thread-safe 
observation of this predicate since r is external to the 
provider. Since it is the responsibility of the client to 
establish such predicate, it is also reasonable to expect 
that the client ensures the provider can safely evaluate it; 
otherwise it would be pointless to establish a state 
knowing it could asynchronously change before it could 
be observed. This is reflected by the use of the 
requires_thread_safe clause on all objects involved in 
the effective precondition (line 9): r is required to be 
thread-safe. Once such objects are thread-safe, predicates 
involving them can be checked at precondition safepoints 
since they will not change between the method pre-state 
and the safepoints.  

A similar discussion can be made for postconditions. If 
such predicates involve any state, parameter or return 
value that must be established by the provider and 
observed by the client, the associated objects must be 
flagged as thread-safe (Figure 7, line 10). This is required 
because the normal postcondition (i.e., identified by 
keyword normal_behaviour on line 3) refers to the 
return value. For the client to observe this predicate 
(\result.isResponse()), the provider needs to 
guarantee that the referred object is interference free. 

The precondition safepoint on Figure 7 demarcates the 
interference-free evaluation point for the precondition 
involving model field connected. Being protected by 

/*@  
1   normal_behaviour 
2    requires connected && r.isRequest(); 
3    ensures \result.isResponse(); 
4   also 
5   exceptional_behaviour 
6     requires !connected && r.isRequest(); 
7     signals_only NotConnectedException; 
8   concurrent_behaviour 
9     requires_thread_safe r; 
10    ensures_thread_safe \result; 
 */ 
public Message sendAndWait(Message r) throws … { 
11   synchronized(in) { 
12       synchronized(this) { 
13           //@ requires_safepoint: 
14           if(closed || remoteClosed) 
15               throw new NotConnectedException(); 
16       }          
17       out.put(r);              
18       return in.get(); 
19   } 
} 
Figure 7. Method declaration exemplifying the use 

of thread-safety specification clauses. 
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locks on in and this, the safepoint can safely observe 
fields closed and remoteClosed as well as guarantee 
that in will not be asynchronously closed until the 
execution of in.get(). The safepoint guarantees absence 
of interference with respect to model field connected. 
Thread-safety predicates alone cannot guarantee the safe 
evaluation of these fields since this is achieved only 
during a specific point inside the method body and these 
predicates are applicable throughout the method execution 
(see section 3.1.1). Postcondition safepoints are not 
necessary since postconditions do not refer to any internal 
state. 

The *_thread_safe clauses guarantee freedom from 
interference with respect to r from the method pre-state 
up to the precondition safepoint and with respect to 
\result on the post-state. Precondition safepoints 
prevent interference related to model field connected. 
As these are the only possible sources of interference, we 
conclude that combining safepoints and thread-safety 
predicates guarantees sendAndWait() and its contract are 
interference-free. 

The conclusions from this example can be generalized 
since its contract possesses all features of JML relevant to 
thread-safety. It uses safepoints, thus covering references 
to internal state and interference, both internal and 
external. It also contains multiple specification cases, thus 
covering specification inheritance (specification 
inheritance is a particular case in which specification 
cases come from supertypes instead of being explicitly 
placed on the target type). It specifies predicates on 
method parameters and return value, thus covering 
predicates on external state. We can then conclude that, in 
general, the combination of thread-safety requirements on 
data to be observed by the provider and the client with 
safepoints (for safe evaluation of predicates referring to 
internal state) is required to guarantee freedom from 
interference. 

4 Related Work 

Flanagan and Freund [10] describe Atomizer, a 
dynamic checker for Java programs. Atomizer checks for 
atomicity, a fundamental property of concurrent programs. 
“A method is atomic if its execution is not affected by and 
does not interfere with the concurrently executing 
threads.” They report on the use of atomizer on moderate 
size (up to 90000 lines of code) programs. Agrawal et al 
[1] describe a combination of runtime and static analysis 
to check for atomicity.  

Nienaltowsky and Meyer [18] present an interesting 
proposition regarding the use of contracts in a concurrent 
environment. They target SCOOP [5], an extension of the 
Eiffel language to provide support for concurrency. They 
transform preconditions referring to separate objects 
(objects not owned by the current thread) in wait 

conditions that must be eventually satisfied once the 
current thread acquires a lock on such objects. 
Postconditions are treated similarly: locks on separate 
objects are not released until postconditions are satisfied. 
The SCOOP model does not allow invariants to refer to 
separate objects, so their evaluation does not cause 
waiting. This is equivalent to specifying all such objects 
as \thread_safe and requiring that all locks be acquired 
prior to calling a method. Their proposal, however, does 
not contemplate the full intricacies of the Java 
concurrency model with its synchronized blocks, multiple 
lock acquisitions and releases inside a method, and no 
restrictions on method calls on objects accessible by 
multiple threads.  

Jacobs et al [11, 12] present a very interesting 
approach to the problem of concurrency control of 
aggregate objects. However, their solution implies that 
preconditions and postconditions can only refer to thread-
safe data. Our approach solves this issue with the 
introduction of safepoints, to allow the specification of the 
internal behaviour of objects.  

To the best of our knowledge, this work is the first to 
allow the specification and dynamic verification (i.e. 
runtime assertion checking) of thread-safety properties as 
well as functional properties in a concurrent environment 
without requiring atomicity to be established a priori. It is 
also the first to propose a complete solution to the 
problem of interference without limiting the use of 
concurrency constructs, thus allowing concurrent 
programs in Java-like languages to be completely 
specified. 

5 Case Study–Specification of an Industrial 
Concurrent System  

This section describes the application of the proposed 
constructs in the specification of a portion of an industrial 
system using JML and analyzes their suitability in terms 
of the behaviours they can specify and the ones they 
cannot. We take the approach of specifying the behaviour 
presented by the code without introducing any changes to 
improve its specifiability.  

The target system is the Service Activation Engine 
(SAE) component of the Session Resource Controller 
product line of Juniper Networks. It is basically a platform 
to design and deploy value-added services in an Internet 
Protocol network. It does so by converting service 
definitions specified as an abstract set of traffic 
controlling policies for a particular subscriber into device 
specific policies in the context of the interface the 
subscriber uses to connect to the network. The SAE 
currently supports various devices, and we focus here on 
the subsystem that interfaces with Juniper’s JUNOSe 
routers. This subsystem, called router driver, is 
responsible for responding to asynchronous notifications 
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from the router regarding the state of each subscriber 
interface and managing traffic policies for each interface. 
Due to the large number of subscribers a router supports, 
these requests are processed concurrently to maximize 
system performance. The router driver is responsible for 
the translation task above, the low-level communication 
with the router and ensuring correctness in the presence of 
concurrent processing. It does so by implementing a 
transactional infrastructure to guarantee ACID (Atomicity, 
Consistency, Isolation, and Durability) properties of 
transactions. This system is capable of managing 
approximately 520,000 active subscribers connected to 
multiple JUNOSe routers. This amounts to executing 
approximately 1,500 transactions per second. The 
complex functionality of this system allows the use of 
complex functional specification constructs, and its high 
degree of concurrency with varied and intricate 
concurrency control patterns allows for all proposed 
constructs to be explored. 

The router driver subsystem is composed of 54 classes 
and interfaces (33509 LOC), all of which are used in a 
concurrent environment. Of these, 34 present concurrent 
behaviour. Table 1 summarizes the usage of the thread-
safety constructs we propose. The first column provides a 
count of the methods considered. The second column lists 
the number of methods subject to specification 
inheritance. The third column provides a count of the 
methods that use the requires_/ensures_thread_safe 
constructs. The fourth column counts the use of locking 
predicates. All columns show both the total number of 
methods that require those constructs and the total number 
of methods that were successfully specified with those 
constructs. We consider a specification to be successful if 
we are able to specify the method concurrent behaviour. A 
method can require several of those constructs. The first 
line lists the absolute numbers and the second one shows 
percentages (the ones in the ‘Succ’ column are relative to 
the adjacent ‘Total’ column to the left).  

Table 1. Statistics on the usage of the proposed 
thread-safety constructs for the case study. 

 Number of 
methods 

Thread-
safety spec 
inheritance 

Thread-safe 
uses 

Lock 
predicate 

uses 
 Total Succ Total Succ Total Succ Total Succ 
Total 307 279 104 102 83 56 42 42 
Percentage 100 90.9 33.9 98.1 27.0 67.5 13.7 100 

Let us highlight some of the most important results in 
Table 1. First, 33.9% of all methods require the 
specification of inheritance with concurrency, 
demonstrating the significance of representing this 
situation properly. It also shows that our constructs are 
able to specify 98.1% of these cases correctly. Second, 
27.0% of all methods make use of thread-safety clauses 

independently of specification inheritance, of which 
67.5% are correctly specified by our constructs. Third, 
this table shows that all cases involving the use of lock 
predicates were correctly specified by our constructs. 

The cases that could not be specified (i.e., 29 
methods), including both specification inheritance and 
thread-safe uses, were due to the fact that objects that 
perform concurrency control internally (concurrent 
objects) can never be entirely thread-safe but they can be 
piecewise thread-safe. An object is piecewise thread-safe 
if it can be partitioned into groups of methods or fields 
that do not interfere within a group and for which 
concurrency control across groups is taken care of 
internally by the object. A producer-consumer scenario in 
which up to one producer and one consumer threads are 
allowed to execute disjoint sets of operations on an object 
is one example. It is currently impossible to specify such 
concurrent behaviour, either with JML or our extensions. 
We are working on extending the thread-safety constructs 
to accommodate this.  

Table 2 summarizes the uses of safepoints. The second 
column displays the total number of methods that 
successfully use safepoints. Table 2 shows that 32.9% of 
all methods required the use of safepoints to be correctly 
specified and that our proposed constructs succeeded in 
specifying 90.1% of these cases. The major limiting factor 
was the fact that it is not always possible to have 
safepoints in the method body due to the requirement of 
not allowing observable statements to happen before 
(after) a precondition (postcondition) safepoint. In such 
cases, only limited predicates can be safely evaluated.  

Table 2. Statistics regarding the use of safepoints. 

Safepoints uses  Number of 
methods Total Success 

Total 307 101 91 
Percentage 100 32.9 90.1 

This case study shows that our proposed constructs are 
not only essential to the proper specification of concurrent 
programs but that they are also capable of specifying most 
behaviour. The thread safety constructs are not able to 
specify what we call piecewise thread-safe behaviour of 
objects, which amounts to 15.5% of the eligible methods 
(187). This is a significant limitation which we are 
working to overcome. The use of safepoints to specify 
properties of a concurrent system proved to be not only 
essential but also applicable to the vast majority of cases. 
Most cases that could not be specified could have been so 
by reorganizing the method’s code to allow for the 
placement of safepoints, thus confirming that safepoints 
are capable of specifying concurrent object-oriented 
programs. Some failed to be specified due to the inherent 
non-determinism of concurrent systems. For instance, it is 
not always possible to guarantee that after taking an 
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element from a concurrently modified queue it will 
contain one element less than it had prior to executing this 
operation. This is a limitation of the (method) 
implementation, not the DbC technique we propose, since 
one can trivially eliminate all concurrency control issues 
by externally acquiring all necessary locks prior to 
executing a method to guarantee its sequential execution. 

6 Conclusion 

Applying Design by Contract to concurrent software 
poses several challenges. We tackle interference with the 
introduction of safepoints. We define their syntax and 
semantics in the context of a concurrent method. Based on 
this concept, we also derive minimum thread-safety 
requirements for a method to be interference-free.   

We address thread-safety specification by separating 
the concurrent aspect of a contract, which houses clauses 
to specify thread-safety properties, from the functional 
aspect thus maintaining the usual notions of behavioural 
subtyping for the specification of functional properties. 

Freedom from interference allows the use of sequential 
contracts in a concurrent environment. Not every 
sequential contract can be expressed as a correct 
concurrent contract, though. However, this is not a 
limitation of our technique but of the method being 
specified. 

We implemented our proposed constructs on the JML 
toolset, including the Runtime Assertion Checker, 
although this is not discussed in this paper due to size 
constraints. We validated these constructs with an 
industrial case study. We identified some limitations but 
we were nevertheless able to specify complex behaviours, 
both functional and concurrent, that could not be specified 
with the current JML constructs. 

Our next step is to continue the work of Briand et al. 
[6] to determine the effect of the complexity of contracts 
used as test oracles in the detection of faults with an 
emphasis on concurrent systems.  
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