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 

Abstract—Metaheuristic search techniques have been extensively used to automate the process of generating test cases 

and thus providing solutions for a more cost-effective testing process. This approach to test automation, often coined as 

“Search-based Software Testing” (SBST), has been used for a wide variety of test case generation purposes, differing in 

terms of test objectives, test levels, and other characteristics. Since SBST techniques are heuristic by nature, they must be 

empirically investigated in terms of how costly and effective they are at reaching their test objectives and whether they 

scale up to realistic development artifacts. However, approaches to empirically study SBST techniques have shown wide 

variation in the literature.  

This paper presents the results of a systematic, comprehensive review that aims at characterizing how empirical studies 

have been designed to investigate SBST cost-effectiveness and what empirical evidence is available in the literature 

regarding SBST cost-effectiveness and scalability. We also provide a framework that drives the data collection process of 

this systematic review and can be the starting point of guidelines on how SBST techniques can be empirically assessed. 

The intent is to aid future researchers doing empirical studies in SBST by providing an unbiased view of the body of 

empirical evidence and by guiding them in performing well designed and executed empirical studies. 

 

Index Terms— Evolutionary computing and genetic algorithms, Frameworks, Heuristics design, Review and 

evaluation, Test generation, Testing strategies, Validation.  

 

I. INTRODUCTION 

 

OFTWARE is being incorporated into an ever increasing number of systems and hence it is 

becoming increasingly important to thoroughly test these systems. One challenge to testing 

software systems is the effort involved in creating test cases that will systematically test the 

system and reveal faults in an effective manner. The overall testing cost has been estimated at 

being almost fifty percent of the entire development cost [3], if not more. Thus, a logical 

response is to automate the testing process as much as possible, and test case generation is 

naturally a key part of this automation. A possible strategy which has drawn great interest in the 

automation of test case generation is the application and tailoring of metaheuristic search (MHS) 
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algorithms [5]. The main reason for such an interest is that test case generation problems can 

often be re-expressed as optimization or search problems.  

There has been a tremendous amount of research in applying MHS algorithms to test case 

generation and a large body of research exists: a search of the most relevant databases (as 

detailed in Section IV.B.1) found 450 articles which after reading abstracts resulted in 122 

relevant articles published over the years 1996-2007 on this specific topic, often referred to as 

search-based software testing (SBST) [7]. 

Seeing the amount of research activity in this field, it is at this point in time, highly important 

to characterize what type of research has been performed and how it has been conducted. Among 

other things, it is crucial to appraise how much empirical evidence there is regarding the cost-

effectiveness of SBST and to determine whether there is room for improvement in the way 

studies are performed and reported. The ultimate goal is to improve the quality of future research 

in this important, emerging field of research. In order to assess the current state of the art in 

SBST, we decided to conduct a comprehensive systematic review of the current literature, as this 

is commonly done in other scientific fields of research such as medicine [10] and social science 

[11]. The purpose of this systematic review is to collect, classify, and assess the empirical studies 

on SBST in order to assess the current body of evidence regarding the cost and effectiveness of 

SBST. By identifying the strengths and weaknesses of the current literature we hope to suggest 

improved research practices and relevant future research directions.  

This paper is organized as follows: In Section II, we provide the background relevant to the 

material presented in this paper. Section III suggests a framework used to assess the empirical 

studies in SBST and Section IV presents the method used to conduct this systematic review. In 

Section V, we present the results of our review whilst Section VI outlines its validity threats. The 
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final conclusions that we can draw from this systematic review are presented in Section VII. 

II. BACKGROUND 

 

In this systematic review, we are analyzing which MHS algorithms have been used to address 

test case generation and what body of evidence exists regarding their cost-effectiveness. As a 

preliminary to the review itself, we introduce here the three main components involved in this 

paper: search-based software testing, systematic reviews, and empirical studies.  

A. Search-based Software Testing  

The main aim of software testing is to detect as many faults as possible, especially the most 

critical ones, in the system under test (SUT). To gain sufficient confidence that most faults are 

detected, testing should ideally be exhaustive. Since in practice this is not possible, testers resort 

to test models and coverage/adequacy criteria to define systematic and effective test strategies 

that are fault revealing. A test case normally consists of test data and the expected output [14]. 

The test data can take various forms such as values for input parameters of a function, values of 

input parameters for a sequence of method calls, or seeding times to trigger task executions. In 

the context of this review, we are not dealing with the expected outputs, but focus exclusively on 

the generation of test data as this has been the objective of papers making use of SBST. In order 

to perform test case generation, systematically and efficiently, automated test case generation 

strategies are employed. Bertolino [17] addresses the need for 100% automatic testing as a 

means to improve the quality of complex software systems that are becoming the norm of 

modern society. A comprehensive testing strategy must address many activities that should 

ideally be automated: the generation of test requirements, test case generation, test oracle 

generation, test case selection, or test case prioritization. In our current review, we are only 

dealing with test case generation. A promising strategy for tackling this challenge comes from 
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the field of search-based software engineering [19].  

Search-based software engineering attempts to solve a variety of software engineering 

problems by reformulating them as search problems [22]. A major research area in this domain is 

the application of MHS algorithms to test case generation. MHS algorithms are a set of generic 

algorithms that are used to find optimal or near optimal solutions to problems that have large 

complex search spaces [22]. There is a natural match between MHS algorithms and software test 

case generation. The process of generating test cases can be seen as a search or optimization 

process: there are possibly hundreds of thousands of test cases that could be generated for a 

particular SUT and from this pool we need to select, systematically and at a reasonable cost, 

those that comply to certain coverage criteria and are expected to be fault revealing, at least for 

certain types of faults. Hence, we can reformulate the generation of test cases as a search that 

aims at finding the required or optimal set of test cases from the space of all possible test cases. 

When software testing problems are reformulated into search problems, the resulting search 

spaces are usually very complex, especially for realistic or real-world SUTs. For example, in the 

case of white-box testing, this is due to the non-linear nature of software resulting from control 

structures such as if-statements and loops [26]. In such cases, simple search strategies may not be 

sufficient and global MHS algorithms
1
 may, as a result, become a necessity as they implement 

global search and are less likely to be trapped into local optima [29]. The use of MHS algorithms 

for test case generation is referred to as search-based software testing [7]. Mantere and Alander 

[32] discuss the use of MHS algorithms for software testing in general and McMinn [33] 

provides a survey of some of the MHS algorithms that have been used for test data generation. 

The most common MHS algorithms that have been employed for search-based software testing 

 
1 Global MHS algorithms are often contrasted with local MHS algorithms. The former are based on strategies for the search to avoid being 

stuck in local minima, thus being more effective in situations with complex search landscapes [27].  
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are evolutionary algorithms, simulated annealing, hill climbing, ant colony optimization, and 

particle swarm optimization [27]. Among these algorithms, hill climbing (HC) [27] is a simpler, 

local search algorithm [27]. The SBST techniques using more complex, global MHS algorithms 

are often compared with test case generation based on HC and random search to determine 

whether their complexity is warranted to address a specific test case generation problem. The use 

of the more complex MHS algorithm may only be justified if it performs significantly better than 

HC.  

B. Systematic Reviews 

Systematic reviews are a means of synthesizing existing research regarding a specific research 

question [12]. They are usually performed to summarize the existing evidence for a particular 

topic and aid in the identification of gaps in the current research and thus can form the basis of 

new research activity. A review protocol is created at the beginning of the review, which lays out 

the research questions being answered and the methodology that will be used to answer these 

questions. The protocol specifies a specific search strategy that is used to select as much of the 

relevant literature as possible and provides justification for why studies are included or excluded 

from the systematic review. The data to be collected to answer the research questions is also 

presented in the protocol. All this information is published so that readers can judge the 

completeness of the systematic review, and if necessary replicate it. These features distinguish 

the systematic review from the usual literature review or survey that is usually conducted at the 

beginning of a research activity. A systematic review synthesizes the existing work in a 

systematic, comprehensive, and unbiased manner. 

C. Empirical Studies for Search-based Software Testing  

Kitchenham et al. [34, 35] make the case for evidence-based software engineering that seeks to 
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help practitioners make informed decisions related to software development and maintenance by 

integrating current best evidence from research with practical experience. Thus, to determine if 

SBST techniques can be applied in practice, we need to conduct empirical studies to assess their 

cost-effectiveness and scalability. The cost-effectiveness of a SBST technique is normally 

measured in terms of the ability of the technique to generate test cases that achieve a certain 

testing objective at a reasonable cost. The testing objective, as is the case with any test case 

generation technique, is to detect faults of a type that is explicitly defined or implicitly 

determined by the test model (e.g., state transition faults for a state machine model). In this 

review, we have focused on empirical studies of SBST techniques in order to assess whether 

convincing evidence exists to show their cost-effectiveness and scalability. For this purpose, it 

was necessary to define what we mean by an empirical study in this context and what constitutes 

a well designed and reported empirical study. Empirical studies are usually divided into three 

different types: surveys, case studies or experiments [36]. For this review, we have used a broad 

definition of empirical study, to include any kind of empirical evaluation that has been done in 

the field of SBST in order to be comprehensive in our investigation.  

In order to determine what constitutes a proper empirical study in SBST, we looked at existing 

guidelines [36-38] for conducting empirical studies in software engineering, and those for 

evaluating SBST techniques in other fields. Wohlin et al. [36] and Kitchenham [38] present 

guidelines on how to conduct experimentation and empirical research in the specific context of 

software engineering whereas Johnson [37] presents a general guide for experimental analysis of 

algorithms. We have tailored and augmented some of these guidelines to create a specific 

framework for conducting and reporting empirical studies in the domain of SBST. This was 

necessary as SBST studies involve the analysis of automation techniques in which no human 
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subjects are involved and presents many specific challenges. In addition, the fact that SBST 

techniques are based on MHS algorithms makes it important to account for the inherent random 

variation that exists in their results. Furthermore, there should also be some means to show that a 

SBST technique is really necessary for the context that it is being applied in. This can be done, 

for example, by showing that other simpler search techniques do not perform as well. The reason 

for doing this is that we want to ensure that the problems being tackled by the SBST techniques 

do warrant their use.   

The framework was created for a dual purpose. First, it was used in this systematic review to 

direct the collection of data that was used to assess the current state of empirical research in 

SBST. Second, it can also be used as a set of guidelines for conducting and reporting future 

research in the field or at least as a starting point in the development of such guidelines. The next 

section will present the framework. 

III. FRAMEWORK 

As presented here, this framework is not intended to provide complete operational guidelines, 

but rather to justify the data collection that took place to perform the systematic review presented 

in the next sections and to highlight some of the most important concepts and issues.  

The framework is divided into four parts. First, the test problem addressed must be clearly 

specified. Second, the MHS algorithms adopted must be clearly defined. Third, since any SBST 

research should always include empirical studies aiming at assessing the cost and effectiveness 

of the proposed approaches, the design of such studies must be carefully described so that its 

validity can be assessed. Last, results must be carefully reported so as to be clearly interpretable 

and reproducible. Whenever relevant, we will refer to Johnson‘s general guidelines on the 

experimental analysis of algorithms [37], either to point the reader to further, more general 
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considerations, or to show that our more specific guidelines are a specialization of these more 

general ones.  

A. Test Problem Specification 

The test problem specification includes two main parts, the purpose of testing and the test 

strategy that will be employed. Each of these parts directly affects the form that the search-based 

software testing strategy will take. Fig 1 outlines the constituent parts of a test problem 

specification.  

Test Problem Specification

Test Purpose Test Strategy

Test Level Targeted Faults Test Model

Test Model RepresentationTest Model Source Coverage Criteria

1 1

1

applied to

1

 

Fig 1. : Concept diagram of test problem specification 

1) Test Purpose 
 

The general purpose of software testing is to gain sufficient confidence in the dependability of 

a software artifact by detecting as many (critical) faults as possible. However, testing strategies 

are usually not universal and normally target specific types of faults at different levels (such as 

unit, integration, and system testing). 

a) Test Level 

 

The Encyclopedia of Software Engineering [39] describes four major levels at which testing is 

conducted. These are unit testing, integration testing, system testing, and acceptance testing. 

Though standard definitions exist for the different levels of testing, clarifications should be 



Simula Technical Report Simula.SE.293 
 

9 

 

provided where necessary. For example, the definition of what constitutes a ‗unit‘ in unit testing 

may vary from one context to another. For instance, typical examples of a unit include: a method 

in a procedural program, a class in an object oriented program, and a component in a component 

based system.  

b) Targeted Faults 

Targeted faults can be categorized in many ways depending on the view one takes of a system. 

At the highest level, one differentiates functional from non-functional faults, e.g., faults related 

to performance, security, robustness, and safety requirements.  

2) Test Strategy 
 

A testing strategy is defined by a model of the SUT and some specific coverage criteria 

defined on that model. Such a model is typically referred to as a test model and the coverage 

criteria aim at systematically exercising the SUT based on the test model. This test model may be 

characterized by its source and representation (i.e., notation and semantics). Coverage criteria 

definitions depend on the test model representation. 

a) Test Model source 

This defines the source used by a testing strategy to create a test model. The source of the 

model implies constraints on the application of the testing strategy as it depends on the 

availability and reliability of precise information in a specific form. Possible sources for a test 

model are briefly described below: 

(1) SUT specification 

Black-box testing strategies use specifications as the model source and do not require 

knowledge about the internal structure of the SUT. For functional testing, these testing strategies 
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are typically based on input-output relationships. Inputs are fed to the SUT and outputs are 

observed to determine success or failure of test cases. Inputs and outputs are selected from 

specifications in a systematic manner, following a strategy aiming at effectively detecting faults.  

(2) SUT design  

Test models can be constructed from software design information, that is more precise 

information about the components of the SUT (i.e., subsystems, classes and their public 

interfaces), their state behavior (if any), and their interactions during the execution of use cases.  

For example, using a component diagram in component interaction testing or using a state 

machine for behavioral testing is considered using design information as a test model source. 

(3) SUT Source code 

White-box testing strategies use source code as the source for the test model. White-box 

testing strategies (also known as structural testing techniques) aim at generating test cases to 

cover structural properties of source code such as statements, branches, or conditions. Most of 

these techniques involve constructing control or data flow graphs for test case generation. 

Mutation-based testing techniques can use either the source code or design artifacts as the model 

source depending on how the mutation operators are defined and where the faults are seeded.  

b) Test model representation 

Based on the model source (specification, design or source code), different types of test models 

can be constructed. An example of the test model representation from specifications is ―Input 

domain representation‖. This includes value ranges of relevant input variables and constraints on 

them. Black-box test strategies such as boundary value analysis and equivalence partitioning 

have this type of representation. Some examples of notations used for defining test models based 
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on SUT design include state machines or Markov Usage models. Standard notations often have 

to be augmented to be test-ready, that is, to allow automated test case generation, e.g., guard 

conditions in a precise language for state machines. Typical examples of models derived from 

source code include control and data flow graphs. For mutation testing, the list of mutants 

generated from the mutation operators and to be detected by testing can be seen as the ―test 

model‖.  

c) Coverage criteria 

To be systematic, a test strategy generates test cases to cover certain features of the test model. 

For instance, in the case of state machines, typical coverage criteria include the coverage of all 

states or all transitions, the latter being a stronger requirement. In the case of control-flow 

graphs, a typical coverage criterion is branch coverage. For mutation testing, a typical coverage 

criterion is, after mutants are generated based on predefined operators, their detection by the test 

suite. It is important to clearly specify the coverage criteria as it is often used as an indirect way 

to measure the effectiveness of SBST techniques regarding test case generation.  

3) Automated test step 
 

A comprehensive testing strategy must address many activities that should ideally be 

automated: the generation of test requirements, test case generation, test oracle generation, test 

case selection, or test case prioritization. Since no SBST technique will address all of them at 

once, it is important to clearly highlight in a study which part of the testing process is being 

automated and what are the expected inputs and outputs. In our current review, we are only 

dealing with test case generation. However, this term is used to mean many different things in 

the literature. Amman and Offutt [40] define a test case to be composed of test case values, 

expected results, prefix values, and postfix values necessary for a complete execution and 
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evaluation of the software under test. In their definition, the test case values are the input data 

necessary to complete the execution, the prefix values are the inputs necessary to put the 

software into the appropriate state to receive the test case values and the postfix values are either 

the values necessary to see the results of the test case execution or the values needed to terminate 

the program or return it to a stable state. In the literature, a test case can include any one of these. 

In the review, we have accepted the broad definition of test case and so a test case may refer, for 

example, to a set of program inputs values, a sequence of method calls, a state-transition path, or 

a task/thread schedule.  

4) Why is this test problem addressed with a search-based software testing technique?  
 

It is very important that the authors describe why a specific testing problem warrants the use of 

an SBST technique. In order to assess the relevance of an empirical study involving the 

application of a MHS algorithm, the following information should be provided for the study: 

 Sound evidence that current non-SBST techniques do not perform well. This can be done 

by showing scenarios in which state-of-the-art techniques either fail or show poor 

performance. 

 The authors should mention some specific characteristics of the problem that justify the 

usage of the proposed search-based software technique. Examples include a large number 

of possible test cases (possibly infinite), complex or multiple fitness/optimization 

objectives. Certain search-based software techniques have some well known 

characteristics or limitations. For instance, multi-objective approaches have scalability 

concerns or simulated annealing techniques may get stuck in local optima. In these cases, 

the authors should mention why these techniques are expected to still be appropriate for 

the problem at hand and how they have dealt with the limitations. 
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B. Metaheuristic Search Algorithm Specification 

    MHS algorithms are general strategies that need to be adapted to the problem at hand. When 

reporting a study, this implies describing and justifying the customizations and parameter 

settings for each specific algorithm. This will be required for replicating the study and also for 

comparisons with other SBST techniques and future studies. Each type of MHS algorithm has 

specific parameter settings to be reported, but the general idea is to report all settings and 

adjustments that may have an effect on the performance of the algorithm or are needed for 

replicating the study. In Fig. 2 we show how a typical genetic algorithm can be used for test case 

generation. We also present a description of the possible different customizations and parameter 

settings of the genetic algorithm because this is the most commonly used algorithm for search-

based software testing. 

Formulate Test Objectives

 as Search Problem
Define Fitness Function Define GA Operators and Settings

Generate Initial Population 

 of Test Cases
Evaluate Fitness

Select Parents of

Next Generation

Recombine Parents to 

Generate New Test Cases

Mutate Some Test Cases
Create New Generation  

of Test Cases

Define Encoding of 

Chromosomes (Test Cases)

[Stopping 

Criteria Met]No Yes

 

Fig. 2. : Test case generation using genetic algorithms 

 

1) Value encoding and chromosome definition 
 

Re–expressing the testing problem as a search problem includes the definition of a mapping 

from the solution space into the search space. This involves defining an encoding for the genes 

and the chromosomes. The genes are a constituent part of chromosomes. The chromosome 

encoding is dependent on the kind of problem being solved and for test case generation it can be, 

for example, the data for a specific test case. Other examples of encodings are binary, gray code, 

and decimal, as described in [41]. Attention must be paid to the kind of encoding being used 

because the subsequent operators (mutation and crossover) will also be based on the chosen 
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encoding. This representation, which leads the SBST technique to the best solution, is an 

important part of the paper and shows the ability of the SBST technique to tackle the problem in 

an improved way. Therefore, it is suggested that authors precisely explain and justify the: 

 Construction of genes and chromosomes, 

 Mapping from solutions to chromosomes, and  

 Constraints on the chromosomes, if any 

2) Fitness (cost) function and search problem formulation 

The fitness function is probably the main part of any genetic algorithm because it is 

responsible for guiding the genetic algorithm in its search for an optimal solution. An efficient 

fitness function, will select fit individuals for reproduction that will in turn result in achieving the 

search objective faster. How the fitness function is derived from the search problem, its 

assumptions and limitations, and how it guides the search algorithm in reaching its objective 

should be clearly explained, in order to help assessing its suitability in other contexts.  

3) Initial population 

The authors should explicitly mention whether they use a random initial population or a 

specific strategy to select the initial population because the selection of the initial population has 

a direct impact on the performance of the algorithm. In any case, if a selection strategy other than 

random is used then it should be justified because it may increase the complexity of the 

technique and its cost, even though it is expected to yield benefits as well in terms of speeding up 

the search. One simple strategy for justifying a specific selection strategy for the initial 

population may be to just compare its results with those of an initial population selected at 

random. 
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4) Selection strategy 

Since several strategies can be used for selecting parents for recombination, the authors should 

mention the employed selection strategy. Typical examples include: random pairing [42], 

roulette wheel [29], or tournament selection [29]. The justification of using a particular selection 

strategy should also be provided. 

5) Recombination  

The authors should describe the GA operators used for recombination along with the reasons 

for selecting particular operators. Especially, if a new operator is used, the reason for choosing it 

or a comparison between the results with simple operators and the new ones should be reported.  

Such an explanation is useful because the recombination operators are the means by which a 

search algorithm exhaustively explores the search space without getting stuck in local minima or 

maxima. The operators also have to be chosen carefully so that invalid chromosomes are 

impossible to generate or at least a rare occurrence [43]. The most commonly used 

recombination operators are crossover and mutation operators. However, there also exist some 

advanced recombination operators such as inversion and other reordering operators specific to 

certain situations [44]. Information about the following two commonly used operators should be 

mentioned in the paper: 

a) Crossover 

Different types of crossover operators are defined based on the number, the locus, and the 

probability (or rate) of choosing the chromosome for crossover. The authors should precisely 

define the crossover operator(s) used. The crossover operator along with the probability of 

crossover helps a genetic algorithm to move towards an optimal solution. Increasing the 

crossover probability too much does not help because this may result in losing some good 
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individuals in a generation. It is therefore necessary to chose appropriate crossover operators 

with appropriate probabilities that help a genetic algorithm to efficiently find the solution. The 

commonly used crossover operators include single point and two-point crossover operators [27].    

b) Mutation 

The authors should mention mutation operators along with their probabilities (or rates). The 

mutation operator helps a genetic algorithm to avoid getting stuck in a local optimal solution by 

sampling new random points in the search space. If the mutation probability is increased too 

much, the genetic algorithm starts working like random search. It is therefore important to 

choose appropriate mutation operators with probabilities that aid a genetic algorithm in 

efficiently exploring the search space to find the global optimal solution. The most commonly 

used mutation operator is the bit-flip operator [27].   

c) Reinsertion strategy 

Two points should be mentioned in this regard: How many individuals are retained from the 

previous population (i.e., not replaced by offspring) and what is the selection strategy for 

deciding which individuals should be retained. Sometimes this is referred to as a replacement 

strategy because then we talk about how many individuals are replaced (generation gap) and how 

do we select which individuals to replace with the new offspring. The reason for mentioning this 

is that the reinsertion strategy can lead to a fast and global search by balancing the exploration of 

the search space and the exploitation of discoveries made within the space. Some of the common 

reinsertion strategies are delete-all, steady-state and steady-state-no-duplicates [27].   

6) Elitism 

Elitism is a mechanism to ensure that the traits of the fittest individuals are transferred to the 

next generation. This is achieved by selecting some of the fittest individuals and keeping them as 
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part of the next generation. These chromosomes are not affected by mutation and crossover. In 

many cases, the employment of elitism can produce better search results. The authors should 

mention whether elitism is used with the genetic algorithm. 

7) Stopping criteria 

Selecting the stopping criteria for a genetic algorithm is one of the challenging issues. Typical 

stopping criteria are: a maximum number of generations, a limit on the number of generations 

that do not show improvement in fitness values. On the one hand, one does not want to stop the 

genetic algorithm too early before it has found a solution. On the other hand, it is a waste of 

resources to continue if there is no possibility of finding a (better) solution. Hence the stopping 

criterion plays an important role in a SBST technique that uses genetic algorithms and should be 

carefully selected.  

C. Empirical Study Design  

This section will define the most important items that should be reported about the study 

definition (through its objectives and hypotheses), design, and results.   

1) Objectives and experimental hypotheses 
 

One must define what is going to be empirically assessed and compared. The objective is 

usually to compare various SBST techniques and alternatives in terms of code coverage, fault 

detection, test suite size, or test case generation time. The empirical study can be an assessment 

of a single SBST technique, a comparison of two or more SBST techniques, or a comparison of 

SBST techniques versus non-SBST techniques (i.e., not relying on meta-heuristic search 

algorithms). The latter includes, for example, random search, static analysis, greedy algorithms 

or some other specific technique for the test problem under consideration, e.g., schedulability 

analysis in the case of real-time systems. In any case, what is going to be compared should be 
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precisely specified through formal test hypotheses, thus leading to appropriate statistical 

significance testing. One notion important here is to state the kind of hypothesis that will be 

used: either a one-tailed hypothesis or a two-tailed hypothesis [45]. This has an impact on how 

we interpret the results in terms of p-values (probability of type I errors). In the context of SBST, 

a one-tailed hypothesis would be used in the case when, based on the properties of the fitness 

function, we have a theoretical basis to assert the direction of the expected outcome. For 

example, when comparing a guided search algorithm such as genetic algorithm with random 

search, we may, based on an analysis of the fitness function, expect the genetic algorithm to be 

equally or more effective at hitting the search target – but not worse – and as such we would use 

a one-tailed hypothesis. However, as an example, when comparing two genetic algorithms with 

different fitness functions, where we cannot state upfront which one would fare better in terms of 

cost or effectiveness, we would use a two-tailed hypothesis. In other words, when the theory 

regarding the search algorithms under study allows us to be a priori confident regarding the 

possible direction of differences in cost or effectiveness, then we should use a one-tailed test as 

this will increase our chances to uncover a statistically significant difference.  

2) Target application domain  
 

Empirical studies should specify a target application domain in which their results are intended 

to be generalized. Example application domains are: real-time, concurrent, distributed, 

embedded, and safety-critical. Testing techniques typically target specific faults that are more 

relevant in certain application domains, e.g., slow response time in real-time systems. Moreover, 

assumptions are typically made regarding the availability of information required to build the test 

model. Such assumptions tend to be more or less realistic depending on the application domain. 

For example, if one assumes the use of the MARTE UML profile [46] to design a system and 

then derive a test model, this is of course more realistic in the context of embedded, real-time 
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applications. Further, the selection of subject systems for empirical studies will then be partly 

determined by the target application domain.  

3) Subject systems (Software Under Test or SUT) specification  
 

After identifying the target application domain, specific SUTs fitting that domain are selected. 

It is important to carefully select SUTs and precisely justify why the selected SUTs are adequate 

matches for the target application domain as this will help the reader determine the extent to 

which the experimental results will generalize to this domain. This discussion should be in terms 

of the inherent properties of the SUT such as its size, complexity, or structure. This is 

particularly important when one is creating artificial SUTs specifically for the experiment, a 

common situation when one is trying to account for SUTs of varying size and complexity. For 

each SUT in the empirical study, the function of the SUT together with relevant properties 

affecting its representativeness of the domain should be carefully reported in order to ensure the 

reproducibility of the experiment and help future comparisons of cost-effectiveness results. 

Johnson [37] discusses the general problem of instance selection (i.e., SUTs here) in experiments 

(Principle 3: Use instance testbeds that can support general conclusions) and defines 

reproducibility (Principle 6: Ensure Reproducibility) when experimenting with algorithms as the 

capacity to ―perform similar experiments that would lead to the same basic conclusions‖. The 

goal is to make it possible to confirm the results of an original experiment independently from 

the precise settings and details of the experiment. In addition to SUT properties, the hardware 

platform that the SUT executes on is also important to specify. Johnson [37] provides an in-depth 

discussion of the latter issue (Principle 7: Ensuring Comparability), which is not specific to 

SBST, and suggestions to address it. In its Principle 9, about well-justified conclusions, Johnson 

[37] also discusses the danger of drawing conclusions from small instances that are then 

generalized to much larger instances, as the former do not always predict well the latter, and 
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recommends to use instances that are as large as possible.  

4) Measures of cost and effectiveness for SBST techniques 
 

Measuring effectiveness and more particularly cost in our context is inherently difficult and the 

validity of measures is very often context-dependent. As discussed by Johnson in [37] (Principle 

6: Ensure Reproducibility), just reporting effectiveness and cost values is not very informative as 

it does not provide direct insights into what these values actually imply. It is nevertheless crucial, 

in order to draw useful conclusions from studies involving SBST techniques, to be able to use 

appropriate comparison baselines. In our context, one usually resorts to comparing the 

investigated technique to simpler, existing techniques (see Section 5 on baselines of 

comparisons) in order to assess the relative goodness of a search. The measures should be 

relevant for the particular study and comparable across the different techniques being 

investigated. Studies may use slight variations of an existing measure or introduce new ones, 

hence, it is important to explain the reasoning behind the effectiveness and cost measures and 

justify why they are applicable in the context they are being used. Along with the measure, the 

method used to collect the data related to the measures should be thoroughly explained. In the 

context of SBST, the effectiveness of a test case generation technique is closely related to the 

―quality‖ of the test suite generated by the technique. A good test suite can be characterized by 

its ability to uncover faults or to give confidence in the SUT by fulfilling a certain coverage 

criterion. Thus we can say that, in practice, there are two main categories of measures of 

effectiveness, which can be referred to as coverage-based measures and fault-based measures. In 

the former category, there may be many different types of measures depending on the adequacy 

criteria being used, for example, control-flow coverage criteria like branch or path coverage may 

be used. The fault-based measures are typically fault detection scores. They can be computed 

based on real, known faults or are estimated through mutation analysis[47]. In the latter case, the 
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program is seeded with faults based on mutation operators and techniques are assessed upon 

whether they are successful in detecting these faults. Depending on the number of faults caught, 

a so-called mutation score is calculated.  

Cost measures are generally related to the speed of the technique to converge towards the test 

objective (in some cases it is referred to as the search technique‘s ―efficiency‖). Some common 

cost measures used in the SBST domain are: (a) the number of iterations, which shows how 

many times an SBST technique needed to iterate in order to find its best solution, e.g., the 

number of generations in genetic algorithms, or cycles in ant colony optimization algorithms, (b) 

the cumulative number of individuals in all iterations (usually each individual represents a test 

case in SBST), (c) the number of fitness evaluations an algorithm needs, to find the final 

solution, which depends on the number of newly generated individuals (usually each new 

population is made up of some individuals from the previous iteration and some newly generated 

ones), (d) the time spent by a MHS algorithm to find test cases meeting the targeted test 

objective which is sometimes referred to as ―test case generation time‖. This time can be either 

measured using clock time or CPU cycles. Clock time is the time from the ―wall‖ clock and not 

easily comparable across different hardware architectures. However it is a practical measure that 

can be used to assess if a technique can be used in practice. CPU cycles on the other hand is a 

measure that can be used across techniques for comparison on other hardware architectures as 

well, and (e) the size of the resulting test suite, which is a surrogate measure for the cost of the 

time it would take to execute the resulting test suite since a larger test suite would require more 

resources to execute. Fig. 3 shows a simple example with four generations, 10 individuals in 

each population and in each new generation, four best individuals are selected from the previous 

generation and six new individuals are produced. The white circles inside each generation 
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represent newly created individuals, whereas black circles represent the individuals that are taken 

from the previous generation. Based on this simple specification and definitions of these cost 

measures, we can calculate the values for the first three cost measures as follows. The first 

measure, the number of iterations, is easy to calculate because it is simply equal to the number of 

generations, which is four in this example. The number of individuals is the total number of 

individuals across all generations, which is equal to 40. The total number of fitness evaluations is 

calculated based on newly created individuals in each generation. In the first generation, the 

fitness of all 10 individuals is evaluated, in the second generation the fitness of only six 

individuals. Across all four generations, the number of fitness evaluations will be 28 in this case. 

Generation: 1 Generation: 2 Generation: 3 Generation: 4

Number of iterations: 4, Number  of individuals: 40, Number of fitness evaluations: 28

 

Fig. 3.  : Example of different cost measures 

 

Among the first three cost measures, the number of iterations is a very coarse grained measure 

and is not as precise as the number of individuals, which in turn is not as precise as the number 

of fitness evaluations. The number of fitness evaluations is more precise than the number of 

individuals because, in each iteration there are some individuals which are kept from the 

previous population and there is no cost for generating them. Therefore, the number of 

evaluations can more precisely estimate the real cost of a SBST technique. All these three 

measures are surrogate measures for the time used to generate the final test suite but none is 

perfect, because different search techniques may require a different amount of time per iteration, 

per creation of an individual (test case), or per fitness evaluation. For instance, it would not be a 
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good idea to compare simulated annealing (SA) and genetic algorithms (GA) based on the 

number of iterations because the amount of time required for each iteration in GA and SA is 

likely to differ significantly.  

The cost of a technique is generally measured for one of two purposes: either to compare two 

techniques to assess which one will cost less for the same effectiveness or to assess whether a 

technique can be used in practice given expected time constraints. From the measures discussed 

above, ―test case generation time‖, if it has been measured under similar conditions, is the only 

measure that can give users an intuitive idea of whether they can apply a particular technique to 

their situation within the time constraints that they have. When comparing the cost of different 

techniques, it is also necessary to make sure that any other required resources are kept equal 

amongst the techniques. The fact that two techniques require the same amount of time does not 

mean that they have the same cost if one technique consumes much more memory than the other. 

Therefore all relevant types of resources must be accounted for when comparing the cost of 

SBST techniques.  

5) Measures for scalability assessment 
 

Scalability assessment is the process of assessing how the cost-effectiveness of a SBST 

technique evolves as a function of the size of the test case generation problem to be addressed. 

This involves one or more measures of SUT size and the analysis of their relationships with the 

cost or effectiveness of the SBST techniques under investigation. Some examples of measures 

that can be scaled up include the size of the SUT in terms of lines of code or the size of search 

space in terms of number and range of input data parameters. The effect of this scaling is then 

observed on different cost and effectiveness measures to see if the SBST technique is still cost-

effective as the SUT gets larger and more complex. 
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6) Baselines for comparison 
 

 A SBST technique can only be assessed if it is compared with a carefully selected, meaningful 

baseline since the optimal solution is normally not known. As it is difficult to assess SBST 

techniques in absolute terms, it is therefore important to show, as a minimum, that the problem at 

hand could not be addressed by some simpler means. In other words, every study should have 

one or more baselines of comparison when assessing SBST techniques and the minimum to be 

expected is a comparison with random search. The SUT investigated, may for example, be small 

and simple, and the fact that a SBST technique performs well may not mean much. Random 

search can then serve as a basic verification that the search problem cannot be addressed by a 

simple random search and warrants the use of a SBST technique. It is also preferable to use other 

simple SBST techniques, such as HC, as a comparison baseline for other more expensive SBST 

techniques. This further demonstrates that the use of a SBST technique is justified given the test 

case generation problem at hand. In addition—but this is context dependent—other SBST 

techniques, previously published or considered plausible alternatives, can also be used as 

baselines of comparisons for the proposed SBST techniques.  

As discussed in [37], once baseline techniques are selected, one must ensure that reasonably 

efficient implementations are used for all techniques in order for cost and effectiveness to be 

comparable. Documentation, source code, URLs for downloadable tools, or at the very least a 

careful description of the implementation, should be provided.  

7) Parameter settings 
 

Most SBST techniques require parameter settings which tend to have a significant impact on 

their performance. In many studies, alternative parameter settings are investigated and compared.  

It is therefore highly important, to make any study reproducible, to specify these parameters in a 

precise manner. It is also interesting to justify their values based on existing studies, when 
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possible, as this provides insights into how cost and effectiveness could be affected if they were 

changed or if a different SUT with different properties was used. One particularly important 

parameter in our context is the stopping criterion of the search (Principle 6: Ensure 

Reproducibility). It can be based on whether the search objective has been reached (or one is 

sufficiently close), execution time or surrogate (due to practical constraints), or any significant 

progress is observed over a period of time.  

8) Accounting for random variation in SBST results 

  

Since SBST techniques use MHS algorithms; their results can vary from one execution to 

another. So, it is important to ensure that we run the algorithms a sufficient number of times to 

capture the random variation of results and be able to perform statistical comparisons with other 

search techniques. It is difficult to precisely specify the number of runs required in general but, 

as a ballpark number, it should probably be above ten, so as to allow the use of basic statistical 

hypothesis testing and obtain a reasonable statistical power to detect large differences [36]. 

Based on the expected (minimum) difference between techniques (if this can be estimated) and 

the statistical tests used to compare cost and effectiveness across techniques, the minimum 

required number of runs can be estimated using power analysis [48].  

When dealing with multiple runs, in our context, we are often interested in the best run, 

yielding the best test suite or test case according to some fitness function (e.g., bring the 

execution time of task as close as possible to its deadline). Another frequent case is when we are 

interested in the frequency with which a certain target was reached across runs (e.g., test input 

data satisfying certain constraints). In both cases, it is important to report the execution time and 

other cost measures of all runs and, when relevant, information about their fitness distribution. 

The basic principle is that it should be possible to estimate the total cost of achieving the best 
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solution or, depending on what is relevant, the expected cost to achieve the search target. From a 

more general standpoint, Johnson (Principle 6: Ensure Reproducibility) [37] warns against 

reporting only effectiveness and cost data for the best run.  

9) Data Analysis 
 

During the design of an empirical study, it is important to decide about the data analysis 

methods that will be applied to cost-effectiveness and scalability results.  

(1) Data analysis methods for comparing cost-effectiveness  

Performance in the case of SBST usually relates to measuring the cost-effectiveness of the 

various search techniques. The cost and effectiveness of a SBST technique are used together for 

assessing its performance. For example, a technique that has higher coverage than another 

technique may not be considered to have better performance, because it uses significantly more 

fitness evaluations (higher cost) to achieve that effectiveness, thus making it impractical for 

larger SUTs. Any claims of better performance should be backed by empirical evidence 

demonstrating lower cost or higher effectiveness when compared to the baseline and alternative 

techniques. In the ideal case, a study that is concentrating on measuring cost, should keep the 

effectiveness measures constant. For example, the study may measure the number of fitness 

evaluations needed to achieve 100% branch coverage. If, however, the aim is to measure 

effectiveness, then this can be done by keeping the cost constant, for example, by measuring how 

much branch coverage is achieved in some constant amount of time or number of fitness 

evaluations. The reported performance results should include the results of the comparison 

baselines. At a high level, reported results should follow the structure below: 
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(a) Reporting descriptive statistics  

Both cost and effectiveness distributions should be reported (e.g., as a table with descriptive 

statistics) and analyzed. Looking at their standard deviation may indicate the level of uncertainty 

in terms of cost and effectiveness associated with a SBST technique. This in turn may help 

determine how many runs would in practice be necessary to guarantee that we obtain a 

satisfactory result, i.e., achieve the objective.  

(b) Results of hypothesis testing  

The purpose of statistical testing is to determine whether differences across SBST techniques 

in terms of central tendencies for cost and effectiveness can be attributed to chance or whether 

they really capture a trend. Statistical hypothesis testing is necessary as SBST techniques are 

always associated with a certain level of random variation in terms of cost or effectiveness. 

Because statistical testing is a standard practice, we will not detail it further here and interested 

readers may consult reference [49] for more details.  

Statistical hypothesis testing should be used to accept/reject research hypotheses related to the 

cost-effectiveness analysis of SBST techniques and comparison baselines. The choice of a 

specific statistical test depends on the specific objective of SBST. In our context, hypothesis 

testing falls into three broad categories: (1) Comparing samples of runs in terms of effectiveness 

and cost. For example, comparing average or maximum branch coverage achieved across runs of 

alternative SBST techniques and baselines of comparison. (2) Comparing samples of runs in 

terms of ―successful‖ runs. For example, comparing the proportion of runs that find a deadlock 

across alternative SBST techniques and baselines of comparison. (3) Comparing samples of 

targets (e.g., control flow branches) in terms of cost (e.g., iterations) or effectiveness (e.g., 

percentage of runs reaching that branch). In this last case, the samples are not independent, 
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because observations in each sample are paired (identical targets). This leads to the application 

of specific statistical tests for paired samples. Moreover, though this is a standard issue, there can 

be two or more samples, and this will also affect the specific statistical test to be used. Moreover, 

as usual in other contexts, specific statistical tests have to be selected and justified based on the 

data distributions of the samples being compared to avoid drawing incorrect conclusions from 

the analysis. Statistical tests are usually classified as parametric and non-parametric [36].  When 

the sample follows a specific distribution (e.g., normal), certain parametric tests are applicable 

(e.g., t-test). Alternatively, non-parametric statistical tests are used when no appropriate 

assumptions can be made about the sample distributions. The issues related to selecting 

appropriate tests are however discussed in standard textbooks and will not be further addressed 

here. In Table I, as a guideline, we provide a mapping between the analysis situations we have 

encountered in SBST studies and the type of statistical tests that are suitable (for the sake of 

simplicity, we are assuming two samples, that is, the comparison of two techniques). This 

mapping is illustrated with examples. 

 

Data analysis should both address statistical and practical significance of differences among 

alternative search techniques. The former assesses whether differences among search techniques 

TABLE I 
MAPPING OF SBST PROBLEMS TO STATISTICAL TESTS  

SBST Analysis Type Type of Statistical 
Comparison 

Example in the Context of SBST Type of Statistical Test 
(assuming two samples) 

Comparing samples of runs in 

terms of effectiveness and 
cost 

Comparing central tendencies 

of two or more independent 
samples, each corresponding 

to a SBST technique 

Comparing maximum branch coverage 

achieved across all runs between two 
SBST techniques  

 

Parametric t-tests or 

Non-Parametric Mann-
Whitney U test 

Comparing samples of runs in 

terms of ―successful‖ runs 

Comparing proportions in 

independent samples, each 
corresponding to a SBST 

technique 

Comparing the proportion of runs finding 

deadlocks across different SBST 
techniques 

z-score test for 

proportions  
 

Comparing samples of target 

in terms of cost to reach them 

or frequency at which runs 

reach them  

Comparing central tendencies 

of matched pairs across 

samples 

Comparing the frequency, across 

samples of runs matching each SBST 

technique, according to which a branch 

(target) is covered. Note that the 
observations across samples are paired as 

they correspond to identical branches.  

Parametric Paired t-tests 

or Non-Parametric 

Wilcoxon or Sign test  
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can be due to chance. The latter assesses whether the difference can be considered of practical 

significance, that is, whether they would make any difference in the day-to-day practice of test 

case generation given the specific test objectives being considered. For example, if statistical 

testing based on a large number of runs show that there is a significant difference between the 

cost of two search techniques in terms of time required for finding the best test suite, the actual 

difference may not be of practical importance if it is in the range of a few minutes. On the other 

hand, a lack of statistical significance despite a visible difference may be due to small samples, 

and therefore a lack of statistical power, which in our context means that the number of runs for 

each compared search technique may be too small. The larger the number of runs, the more 

likely oneis to obtain statistical significance when observing differences. 

(2) Data analysis methods for scalability  

 

Scalability is used to assess whether a SBST technique can be applied to either larger or more 

complex SUTs and still have satisfactory effectiveness and cost. If the aim of the empirical study 

is to show the scalability of a SBST technique then appropriate measures of size and complexity 

should be clearly defined. There will be at least two measures involved – one size measure that 

will be scaled up through successive SUTs and the other that will measure the corresponding 

performance (cost and effectiveness). Then the effect of scaling up a particular measure can be 

reported in terms of a statistical relationship (recall the unavoidable random variation). For 

example, we may investigate several SUTs of variable sizes in terms of lines of code and then 

assess whether a SBST technique can still reach a certain level of coverage at acceptable cost 

(e.g., measured as the number of generations) for larger SUTs and analyze how this cost evolves 

with the size of the SUT. A positive, exponential relationship between size and cost might then 

be problematic, for example, as it would undermine the applicability of the technique for large 
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scale test models and systems. Similarly, if effectiveness (e.g., in terms of achieved coverage) is 

strongly decreasing as a function of SUT size, we also have a scalability problem.  

As for scalability analysis, we need to characterize relationships between SUT size variables 

and measures of the SBST technique‘s cost and effectiveness. Such techniques are typically 

analyzed through regression analysis, though in practice, because the number of SUTs under 

study is likely to be small, such analysis is more likely to be qualitative, that is simply based on 

observing scatter plots in the cost-effectiveness and size space.    

10) Discussion on validity threats  
 

Validity threats should be considered throughout any empirical study, right from the study 

definition and design up to the analysis and interpretation of results [36]. The following types of 

threats can be discussed:  

a) Construct validity threats 

Measures of cost, effectiveness, and SUT size should be appropriate and justified given the 

context and objectives of investigation. No measure is expected to be perfect as the above 

concepts are usually not readily measurable. But in practice, by using several, complementary 

measures of cost, effectiveness, and SUT size, one is in a position to compare the cost-

effectiveness and scalability of alternative search techniques.  

b) Internal validity threats 

If a SBST technique performs better than another one, whether regarding effectiveness or cost, 

can it be due to something other than the SBST technique? This could possibly be due to the 

following: 1) poor parameter settings of one or more of the SBST techniques, 2) the biased 

selection of SUTs that have certain characteristics that can favor a certain SBST technique.  



Simula Technical Report Simula.SE.293 
 

31 

 

c) Conclusion validity threats 

 Has random variation been properly accounted for? Since SBST techniques use MHS 

algorithms, randomness in results (inherent to metaheuristic approaches) should be 

accounted for, as discussed above. Has it been done in such a way as to enable 

statistical comparisons? It implies that a sufficient number of independent runs be 

performed to obtain a sufficient number of observations. 

 Was the right statistical test employed? Statistical test procedures should be carefully 

selected given the hypothesis method (e.g. one-tailed vs. two tailed hypothesis) and the 

data collected (distributions of cost and effectiveness). Otherwise, certain required 

properties of a particular statistical test could be inadvertently violated leading to 

incorrect conclusions. For example, many statistical tests assume that data distributions 

be normal [36].  

 Is there any practically significant difference? To answer this question, the magnitude of 

the differences must be reported– this is known as the effect size and determines the 

practical significance of the results.  

d) External validity threats 

This is a difficult issue, as whether results can be generalized depends on whether the SUTs 

under investigation are representative of the targeted application domain and whether the faults 

considered (if used to assess test effectiveness) are representative of real faults. Ideally, SBST 

empirical studies should also be run on many different SUTs of the target type, but every 

research endeavor faces limitations in terms of time and resources. At the very least, the issue 

should be carefully discussed and a good case should be made as to why one should be able to 

trust that the observed results can be generalized.  
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IV. RESEARCH METHOD 

In this section, we will explain our review protocol. We define the research questions that this 

review attempts to answer, along with how we selected papers for inclusion and the data that we 

extracted.  

A. Research Questions  

The most important stage of any systematic review is to precisely define research questions. 

Once the research questions have been specified, the systematic review can then proceed with 

the search strategy to identify relevant studies and extract the data required to answer the 

questions [50]. In this paper, we are interested in investigating empirical studies in the domain of 

SBST. To proceed with our investigation, we defined the following three research questions: 

RQ1: What is the research space of search-based software testing?  

The objective of this question is to characterize the research that has been undertaken so far. 

Though the research space can be identified from different angles, because our systematic review 

is about search-based software testing, basic features of software testing (such as test level, 

targeted faults, test model, type of test cases, and application domain) and the type of MHS 

algorithms seem relevant characteristics to define the research space. Therefore, the first research 

question can be divided into the following sub-questions: 

RQ1.1:  Which metaheuristic search algorithms have been used for test case generation?  

RQ1.2:  Which types of test cases have been generated? 

RQ1.3: For which test levels and targeted faults has search-based software testing been used 

more frequently? 

RQ1.4: For which test strategies has search-based software testing been used more frequently? 

RQ1.5: For which application domains have empirical studies in search-based software testing 

been conducted? 
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All the above questions describe various aspects of the research space and in order to fully 

answer these questions we will use specific classifications, for example the types of MHS 

algorithms, the types of test cases and so forth. In the interest of not overloading the reader with 

too many details in this section, these classifications have been presented together with the 

results in Section V.  

RQ2: How are the empirical studies in search-based software testing designed and reported? 

A study that has been properly designed and reported (as discussed in Section III) is easy to 

assess and replicate. The following sub-questions aim at characterizing some of the most 

important aspects of the study design and how well studies are designed and reported:  

RQ2.1: How well is the random variation inherent in search-based software testing, accounted 

for in the design of empirical studies? 

RQ2.2: What are the most common alternatives to which SBST techniques are compared? 

RQ2.3: What are the measures used for assessing cost and effectiveness of search-based 

software testing? 

RQ2.4: What are the main threats to the validity of empirical studies in the domain of search-

based software testing? 

RQ2.5: What are the most frequently omitted aspects in the reporting of empirical studies in 

search-based software testing? 

RQ3: How convincing are the reported results regarding the cost, effectiveness, and scalability 

of search-based software testing techniques?  

This research question attempts to synthesize the actual results reported in the studies in order 

to assess how much empirical evidence we currently have. To answer this question, we address 

the following sub-questions: 
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RQ3.1: For which metaheuristic search algorithms, test levels, and fault types, is there credible 

evidence for the study of cost-effectiveness? 

RQ3.2: How convincing is the evidence of cost and effectiveness of search-based software 

testing techniques, based on empirical studies that report credible results? 

RQ3.3: Is there any evidence regarding the scalability of the metaheuristic search algorithms 

for test case generation? 

B. Study selection strategy 

This is the step of a systematic review that aims at ensuring the completeness of the selection 

of papers on which the review is based. Study selection involves two main steps: (1) selection of 

the source repositories and identification of the search keywords (2) inclusion or exclusion of 

studies based on certain inclusion and exclusion criteria.  

1) Source selection and search keywords 
 

The process of selecting papers is started by executing a search query on the source 

repositories, which provides a set of papers. Since this set of papers is then subsequently used for 

all manual inclusions and exclusions, the selection of appropriate repositories and search strings 

is of utmost importance as it directly affects the completeness of the systematic review. The 

repositories that we used are: IEEE Xplore, The ACM Digital Library, Science Direct (including 

Elsevier Science), Wiley Interscience, Springer, and MIT press. The first two repositories 

covered almost all important conferences, workshops, and journal papers, which are published 

either by IEEE or ACM. The next four repositories were mostly used for finding papers that are 

published in leading software engineering journals. We selected the following journals based on 

[50]: IEEE Transactions on Software Engineering (TSE), ACM Transactions on Software 

Engineering and Methodologies (TOSEM), IEEE Software (SW), Springer: Software Testing 
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Verification and Reliability (STVR), Springer: Empirical Software Engineering, Elsevier 

Science: Information and Software Technology (IST), and Elsevier Science: Journal of Systems 

and Software (JSS). Since our review is about SBST, we also included journals relating to 

software quality assurance and evolutionary computing:  Springer: Software Quality Journal, 

Springer: Genetic Programming and Evolvable Machines, IEEE: Transactions on Evolutionary 

Computation, and MIT press: Evolutionary Computation. Another important source of 

publications that we included was the Genetic and Evolutionary Computation Conference 

(GECCO). Based on the impact factor, GECCO is one of the top conferences in the fields of 

artificial intelligence, machine learning, robotics, and human-computer interaction[51] and is 

directly related to the field of genetic and evolutionary computation. GECCO‘s proceedings were 

published by Springer in 2003 and 2004 and afterwards by ACM. 

A systematic way of formulating the search string includes (1) identifying the major search 

keywords based on the research questions (2) finding alternative words and synonyms for the 

major keywords and (3) creating a search string by joining major keywords with Boolean AND 

operators, and the alternative words and synonyms with Boolean OR operators. 

Based on our main research focus, which is investigating empirical studies in the domain of 

SBST, the following major search keywords are used in this paper: software testing and 

metaheuristic search algorithm.  

We did not use empirical study as a keyword because we realized that not all papers that 

perform an empirical study, in the broad sense that we have defined it, use this keyword. 

To formulate our search query we tried a number of search strings and came to the conclusion 

that ‘software testing’ as an expression is not a good keyword because there are many papers 

which don‘t use these two words together but are nevertheless related to software testing. These 
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papers may use terms such as testing, test case, test data and so on. On the other hand if we used 

the term testing alone, we would find too many unrelated papers. So we decided to use the terms 

software and test linked together with a Boolean AND instead of using ‘software testing’ as an 

expression. Using ‘software’ and ‘test’ will find almost all related papers to software testing, but 

to make sure that we do not miss any interesting papers in test case generation we used the 

expression of ‘test case generation’ as an alternative for software testing.  

Metaheuristic search algorithm is the second major term and also has many alternatives. We 

used general terms such as ‘evolutionary algorithm’, ‘meta-heuristic’, and ‘search based’ to 

explore the domain. Also, names of different MHS algorithms were used to make sure that no 

related papers were missed. 

We also wanted to make sure that we do not miss any papers that have explicitly used the 

widely used term ‘evolutionary testing’, and thus included the expression of ‘evolutionary 

testing’ as a separate search string joined with the main string by an OR Boolean operator. The 

above decisions lead to the following search string shown in Fig. :  

The whole string is searched in each repository in all titles, keywords, and abstracts. The 

expression ‘evolutionary testing’ is searched in the entire contents of all papers in the 

repositories as well. 

One problem that we realized after some manual checking of the results of the search query 

was the fact that some search engines, such as IEEE Xplore, differentiate between the singular 

and plural form of words. To deal with this, we had to add some more alternative words and 

expressions to the search string by adding a ‘s’ to the end of all the words we already had. For 

example, we added ‘evolutionary algorithms’, ‘meta-heuristics’, ‘genetic algorithms’ and so on. 

After finalizing the search string, the search query was run on the search engines of different 
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repositories.  

 
Fig. 4: The search string used for selecting the papers from repositories 

 

2) Study selection based on inclusion and exclusion criteria  
 

Metaheuristic search algorithms have been used to automate a variety of software testing 

activities such as test case generation, test case selection, test case prioritization, and optimum 

allocation of testing resources. Since the focus of this systematic review is on test case 

generation, it is therefore necessary to define suitable inclusion and exclusion criteria for 

selecting relevant papers. In this section, we will discuss and justify the inclusion and exclusion 

criteria that were used.  

We executed our search query on all selected databases and found 450 (after removing 

duplicates from different repositories) research papers in total. We only included papers up to the 

year 2007. In order to select the relevant papers to answer our research questions, we applied a 

two-stage selection process. At the first stage, we excluded papers based on abstracts and titles. 

All the papers were divided into three sets and each set was read by a researcher. We applied the 

following exclusion criteria:  

 Abstracts or titles that do not discuss test case generation or any of the alternate terms 

that we used were excluded.  

 Abstracts or titles that do not discuss the application of any MHS algorithm to automate 
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test case generation were excluded. 

If a researcher was unsure about a paper after reading its title and abstract, then the paper was 

included for the second phase of selection. After applying the inclusion criteria for the first 

phase, we were left with 122 papers.   

At the second stage, we again divided the papers into three equal sets and divided among three 

researchers to check contents of the papers. We excluded papers based on the following 

exclusion criteria: 

 Posters, extended abstracts, technical reports, PhD dissertations, and papers with less 

than three pages were excluded. Our goal was to account only for peer-reviewed, 

published papers that presented sufficient technical details.  

 The papers that do not automate test case generation were excluded because this is the 

scope of our review. 

 The papers that do not report any empirical study (see Section II.C for details on what 

we mean by empirical studies) were excluded.  

In the cases where a researcher could not decide whether to keep or exclude a paper, then the 

paper was discussed with other researchers and a decision was made, by consensus. It is 

important to mention that we didn‘t exclude papers based on the realism of SUTs used in their 

case studies. The reason is that exclusion would then be subjective as no precise criterion can be 

defined and would probably lead to a very small number of selected papers. After applying the 

second phase of selection, we remained with 68 papers that contained empirical studies about 

test case generation using MHS algorithms. However, four of these 68 papers, presented 

empirical studies that had already been reported in some other paper. This occurred, for example, 

when the journal version of a conference paper was found. In these cases we extracted data about 
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the study from both the conference and journal versions of the paper and reported them as one 

study. Thus in the rest of the review we mention only 64 papers in total, even though we did 

analyze 68 papers. Details on the number of papers found in each database and number of papers 

included after applying inclusion and exclusion criteria are listed in Table II.        

 

3) Data extraction 
 

We designed a data extraction form in Microsoft Excel to gather data from the research papers. 

We collected two sets of information from each paper. The first set included standard 

information [52] such as name of the paper, authors‘ names, a brief summary, researcher‘s name, 

and additional comments by the researcher. The second set included the information directly 

related to answering the research questions (see Table III for a summary list and Section III for 

details on each data item). To assess and improve consistency of data extraction among the 

researchers, a sample of papers were selected and read by all researchers and the relevant data 

extracted. The extracted data was then discussed by the researchers to ensure a common 

understanding of all data items being extracted and where necessary, the data collection 

procedure was refined. The final set of selected papers from each repository was then divided 

amongst three researchers. Each researcher read the allocated papers and extracted the data from 

the papers. In order to mitigate data collection errors, the data extraction forms of each 

researcher were read and discussed by two others. All ambiguities were clarified by discussion 

among the researchers. 

TABLE II 

DISTRIBUTION OF PAPERS AFTER APPLYING INCLUSION AND EXCLUSION CRITERIA 

Repository 
Number of Included Papers 

After Applying Search Query 

Number of Papers After 

Stage 1 Exclusion Criteria 

Number of Papers After 

Stage 2 Exclusion Criteria 

IEEE Xplore 297 77 33 

ACM Digital Library 117 27 22 

Wiley  Interscience 8 2 2 

Science Direct 8 3 2 

Springer 19 12 8 

MIT Press 1 1 1 

Total 450 122 68 
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TABLE III  

RESEARCH QUESTIONS AND TYPE OF DATA COLLECTED 

Research Questions Type of Data Collected 

RQ 1 

RQ 1.1 Type of MHS algorithm 

RQ 1.2 Type of test cases 

RQ 1.3 Test level, targeted faults, test model source, and test model representation 

RQ 1.4 Application domain 

RQ 2 

RQ 2.1 Number of runs, analysis method 

RQ 2.2 Comparison baseline 

RQ 2.3 Measures of cost, measures of effectiveness 

RQ 2.4 Conclusion, external, internal, and construct validity threats 

RQ 2.5 
All of the information from RQ2.1 to RQ2.4 is used, formal hypothesis, object 

selection strategy, data collection method 

RQ 3 

 

RQ 3.1 Test level, fault type, MHS algorithm 

RQ 3.2 Test purpose, comparison baseline, cost and effectiveness results 

RQ 3.3 Scalability results 

V. RESULTS 

The following section outlines the results related to the research questions. No formal meta-

analysis of the results of the empirical studies could be performed because of the variations in the 

way empirical studies are conducted and reported, and as such, results are compiled in 

structured, tabular form to provide a structured overview. 

A. RQ1:  What is the research space of search-based software testing?  

The purpose of this research question is to identify and classify the overall research space of 

SBST. To answer this, we further sub-divided the research question into five sub-questions. The 

main research question is answered based on the findings of each sub-question.  

1) RQ1.1:  Which metaheuristic search algorithms have been used for test case generation?  
 

Evolutionary testing techniques employ metaheuristic search algorithms for test case 

generation. The more popular MHS algorithms found in the literature are: genetic algorithms, 

simulated annealing, particle swarm optimization, ant colony optimization, and genetic 

programming. These were the algorithms used to create an initial classification for all the MHS 

algorithms that have been used for test case generation. Whilst reading the papers, we came 

across many instances, whereby the standard MHS algorithms were tailored to achieve better 

performance, e.g., bacteriologic algorithm [53] [54] which is based on genetic algorithm. We put 



Simula Technical Report Simula.SE.293 
 

41 

 

these papers into extensions of the standard MHS algorithms. The category ‗other‘ was created 

for any algorithm that may have been introduced that was not an extension of the commonly 

used MHS algorithms.   

Table IV shows the distribution of the various algorithms that we encountered for test case 

generation. Some papers had more than one empirical study in them and hence there are more 

uses of the MHS algorithms than the total number of papers. Within the 64 papers that we read, 

the genetic algorithm was used 46 times. This refers to the standard genetic algorithm, where 

well-known crossover and mutation operators are used. However, there were 16 additional 

empirical studies that attempted to extend the genetic algorithm to specific situations.  Simulated 

annealing was used in seven cases and there were five cases where it was extended. The ant 

colony algorithm was used three times; hill climbing was also used three times, while there were 

three empirical studies that used genetic programming or an extension of it and two that used 

particle swarm optimization or its extensions. In some cases, there were attempts to use less 

known approaches for test case generation such as using tabu search, evolutionary strategies 

[55], or an algorithm called the great flood algorithm [56]. Such algorithms have been listed 

under ‗Other‘. 

The results show that the most commonly used algorithm is the genetic algorithm, followed by 

a more limited use of simulated annealing. The other algorithms are under-represented with three 

or less papers. There could be several reasons for this frequent use of genetic algorithms. First, 

there are numerous publications on the application of GA to various problems [57]. Furthermore, 

substantial empirical data is available for the different parameter settings required by GAs and 

this greatly helps the choice of appropriate parameters for a specific problem to be solved [58]. 

This together with the many books [29, 42] that exist on genetic algorithms makes it easier for 
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researchers to learn how to adapt genetic algorithms to their context. Second, being a global 

search algorithm, GAs are proven to be better than local search algorithms [31], though there is 

no evidence showing that GA is better than other global search algorithm [57]. Last, GAs have 

many well known implementations in the form of commercial tools [59] and frameworks [60], 

which greatly facilitate their practical application. 

 

2) RQ1.2:  Which types of test cases have been generated? 

As mentioned before, for this review, we did not use a very strict definition of the term ‗test 

case‘; we included papers that generated a variety of different types of test cases. Hence a test 

case could be in the form of test data for some function of a system, it could be a sequence of 

method calls and their parameters, or even complete test drivers in some instances [53, 54, 61]. 

We have used the term test driver when a complete program that can be executed to test the SUT 

is generated. The term interaction sets is used to describe the situation where test cases are 

generated to cover all t-way interactions of different configuration parameters. We classified all 

the papers using combinatorial designs [14] for testing into the category of ‗interaction tests‘.  In 

some papers, a test case is a very specific combination of data and procedure that is nevertheless 

used to exercise the functionality of the system. For example, in [15] a test case is a sequence of 

arrival times for aperiodic tasks – these types of test cases have been collected under the heading 

‗other‘ [15, 16, 43, 62]. 

TABLE IV 

DISTRIBUTION OF PAPERS ACCORDING TO METAHEURISTIC SEARCH 

ALGORITHM USED 

Metaheuristic Search Algorithm Number of Uses 

Genetic Algorithms 46 

Genetic Algorithm Extensions 16 

Simulated Annealing 7 

Simulated Annealing Extensions 5 

Ant Colony Optimization 3 

Hill Climbing 3 

Genetic Programming and its extensions 3 

Particle Swarm Optimization and its extensions 2 

Other 3 
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From the 64 papers that we examined, we found that most deal with the generation of test 

inputs or data – 46 papers in total. This is perhaps due to the fact that test data generation is a 

common problem and one that is more easily amenable to automation. Also, initial research has 

focused on test data generation and it is natural for SBST techniques to follow this trend. For the 

object-oriented paradigm, it is not enough to just generate test data for a method, and in this case 

MHS algorithms have been used to generate sequences of method calls and their parameters or 

tackle other interesting aspects such as runtime exceptions [63] – in total we found seven such 

papers. Table V shows the different types of test cases generated using MHS algorithms. 

From the results, we can conclude that test inputs or test data have been the most common type 

of test cases generated by MHS algorithms. 

 

3) RQ1.3: For which test levels and targeted faults has search-based software testing been used 

more frequently? 

The Encyclopedia of Software Engineering [39] describes four major levels at which testing is 

conducted. These are unit testing, integration testing, system testing, and acceptance testing. For 

this review, we are mainly concerned with the first three. Acceptance testing is used to prove that 

the system is ready for operational use (validation) rather than finding faults in it (verification). It 

is normally performed on the behalf of users to see if the system meets their requirements.  

During our systematic review, we found that the majority of the papers have focused on unit 

testing - 48 papers. The term unit testing can refer to different types of units such as functions, 

TABLE V 

DISTRIBUTION OF PAPERS ACCORDING TO THE TYPE OF TEST CASE 

Type of Test Case Number of Uses 

Test input/Test Data 46 

Sequence of method calls and parameters 7 

Interaction sets 5 

Test drivers 3 

Other 3 

Total 64 
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components, or small programs consisting of a few functions. Any paper using one of these 

terms was classified under unit testing. There seems to be less attention on system and 

integration testing: system testing was tackled only by 11 papers and there were only five papers 

for integration testing. Table VI summarizes these results. 

 

It is also useful to know which MHS algorithms have been used at which testing level. We 

found that for unit testing, genetic algorithms and its different extensions have been used the 

most. There were 38 papers that used genetic algorithms for test case generation at the unit 

testing level and 14 other papers that used extensions of genetic algorithms. The use of all other 

MHS algorithms for test case generation at the unit testing level is very low as shown in Table 

VII. An important point to note here is that since in each paper different MHS algorithms may 

have been used, the total numbers for all MHS algorithms at each test level differs from the total 

number of papers at each level as reported in Table VII. For integration testing, we didn‘t see 

much variety in the use of different MHS algorithms. Simulated annealing and its extensions 

were used in three papers, whereas genetic algorithm was used in two papers. For system testing, 

it was once again genetic algorithm and its extensions that were used the most. Genetic 

algorithms and its extensions were used in eight papers, whereas simulated annealing and its 

extensions were used in three papers.  

 TABLE VI 

DISTRIBUTION OF PAPERS USING DIFFERENT TEST LEVELS 

Test Level Number of Papers 

Unit 48 

Integration 5 

System 11 

Total 64 
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At a high level, software requirements can be classified into two types: functional and non-

functional requirements. Based on the type of requirements, we could also classify faults into 

either functional faults or non-functional faults as discussed in the framework. During the 

systematic review, we found nine papers specifically targeting functional faults, whereas five 

papers targeted non-functional faults. Different papers deal with different types of non-functional 

faults. Three papers focused on performance related faults [43, 64, 65], two papers on stress 

related faults [15, 64], and one paper specifically targeted faults related to robustness [66]. Apart 

from these papers, the remaining 50 papers didn‘t specifically target any type of faults; rather 

they focused on achieving coverage of a test model. Using a test model is, however, often an 

indirect way of finding certain types of faults but is not explicit in doing so. Hence these papers 

were listed under the category ‗Not Discussed‘. For example, if an SBST technique uses a state 

machine as a test model, then the technique may be implicitly targeting state transition faults. 

Another example of such papers is an SBST technique aiming to achieve branch coverage in the 

source code, it could be said that it is implicitly targeting control flow faults at the code level. 

Table VIII shows the summarized results.        

 

TABLE VII 

DISTRIBUTION OF PAPERS FOR EACH EVOLUTIONARY ALGORITHM FOR EVERY TEST LEVEL 

SBST/Test 

Level 

GA Extended 

GA 

SA Extended 

SA 

GP and 

Extensions 

PSO and 

extensions 

ACO and 

extensions 

Hill 

Climbing 

Other 

Unit 38 14 3 3 3 1 1 2 1 

Integration 2 0 2 1 0 0 0 1 2 

System 6 2 2 1 0 1 2 0 0 

Total 46 16 7 5 3 3 3 3 3 

GA: Genetic Algorithm, SA: Simulated Annealing, GP: Genetic Programming, PSO: Particle Swarm Intelligence, ACO: Ant 

Colony Optimization.  

 

 

TABLE VIII 
DISTRIBUTION OF PAPERS ACCORDING TO FAULT TYPES 

Fault Type Number of Papers 

Functional 9 

Non-Functional 5 

Not Discussed 50 

Total 64 
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We can draw the following conclusions based on the above evidence:  

 Most efforts for test case generation using MHS algorithms have focused on unit 

testing. 

 Amongst all the testing levels, genetic algorithms and simulated annealing together 

with their extensions are used the most for SBST. 

 The majority of the papers do not target any specific faults or do not make this decision 

explicit.  

4) RQ1.4: For which test strategies has search-based software testing been used more 

frequently? 

Section III.A reported that a test strategy is defined by the source used to create the test model, 

the representation of the test model, and the coverage criteria used to derive test cases from the 

test model. This is the information that we collected for each paper. A test model can be based on 

the artifacts that are created during the different phases of the software development life cycle. 

We chose to use a simple classification for model sources that turned out to be good enough 

when reading the papers: specification, design artifacts, and source code.  

The classification used for the model representation is derived from the common test models 

representations used in the literature. For specification-based test models, we found Simulink 

models [21], input domain representation (see Section III.A), and some problem specific 

representations, which are listed as ‗other‘ in Fig. 5 [66, 67]; for test models based on design 

artifacts, we included state machines [68], markov usage models [62], hypergraphs [69], and 

other proprietary model representations [15, 16] and for the source-code based representations 

we found control flow graphs, data flow graphs, abstract syntax trees, lists of mutants (see 

Section III.A), and program dependence graphs. We define a test model as any software 
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representation from which test cases are derived. Based on this definition, we also have model 

representations such as input domain representation and lists of mutants because the test cases 

are derived from these representations. 

The final important aspect of the test strategy is the coverage criterion that is used to create test 

cases from the model. We used the classification defined in [70] for the coverage criterion. This 

includes control flow oriented, data flow oriented, fault-based, requirements-based, and N-wise 

coverage. Requirements-based coverage is based on covering a set of system requirements and is 

usually applied to test models whose source is specifications. In this case, traceability between 

requirements and the specification must be established. For example, a state machine 

specification can be annotated with requirements identifiers. N-wise coverage requires test cases 

to cover all possible combinations of N configurations, e.g., N=2 corresponds to pair-wise 

coverage [70]. In addition to this, we found papers that aim to find test inputs having the best 

case and worst case execution time. These papers have proposed test strategies that use test 

inputs as the test model representation. These papers cannot be classified into any of the above 

categories. In order to classify such papers, we created a new category of coverage criteria called 

execution time-based coverage. 

During our systematic review, we found 44 papers that used source code based test models, 17 

papers that used specification-based models and only four papers that used design artifacts. In 

the following sections, we report on the different test model representations that we encountered 

based on their source. We also report on the coverage criteria that were applied to different test 

models. 

a) Source code   

 

From our data we observed that control flow graphs are very commonly used as the model 
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representation in the domain of SBST, it was used in 36 papers. Naturally, control flow oriented 

criteria are used on control flow graphs. The most common coverage criteria that we observed 

were branch coverage (24 papers) and path coverage (seven papers). Branch coverage is one of 

the most widely used coverage criterion and is recommended by many standards as the minimum 

testing requirement such as by ANSI/IEEE 1008-1987 [71]. Other control flow based criteria that 

we found were: loop coverage, condition coverage, and statement coverage. Other less observed 

test model representations are shown in Fig. 5 along with the coverage criteria applied to them. 

b) Specifications  

 

For specification-based models, we found that the input domain representation has been used 

the most as the model representation (14 papers). Other model representations that are used 

infrequently are shown in Fig. 5 along with their frequency of occurrence. In the 14 papers that 

used input domain representation as the test model representation, six papers applied 

execution-time based coverage, five papers applied n-wise coverage, two papers applied 

requirements-based coverage, and one paper applied data flow coverage.   

c) Design artifacts  

 

We observed only four papers that used design artifacts as the model source (see Fig. 5). 

Different control flow-oriented coverage criteria were applied on each of these test models such 

as arc coverage on markov usage models and all-states and all-transitions coverage on state 

machines.    

Based on the above evidence, we can draw the following conclusions regarding the test 

strategies used in SBST: 

 The most commonly used source of test models is source code and the least frequently 

used is design artifacts. 



Simula Technical Report Simula.SE.293 
 

49 

 

 Control flow graphs are the most frequently used test model representation (36 papers) 

and input domain representation is the second most frequently used test model 

representation (14 papers).  

 The most widely used coverage criterion across all test model sources is control flow 

oriented criterion. In total, 40 papers used control flow oriented coverage criteria on 

different test model representations.  

Test Strategy

Source code (44)

Design artifacts(4)

Specifications (17)

Control Flow Graph (36)

Data Flow Graph (2)

Abstract Syntax Tree (2)

Program Dependence Graph (1)

List of Mutants (3)

Control Flow Oriented Criteria (36)

Data Flow Oriented Criteria (2)

Fault Based Criteria (2)

Data Flow Oriented Criteria (1)

Fault Based Criteria (3)

Hypergraph (1)

Markov Usage Model (1)

Other (1)

Control Flow Oriented Criteria (1)

State machines (1)

Control Flow Oriented Criteria (1)

Other (1)

Control Flow Oriented Criteria (1)

Simulink models (1)

Input Domain Representation (14)

Other (2) Other (2)

Execution Time Based Coverage (6)

Requirements Based Coverage (2)

N-wise Coverage(5)

Data Flow Oriented Coverage (1)

Control Flow Oriented Coverage (1)

Test model 

source

Test model 

representation

Coverage 

criteria

 

Fig. 5. : Classification of test strategies 

 

 

5) RQ1.5: For which application domains have empirical studies in search-based software 

testing been conducted? 

Software is prevalent in almost all industries, and to completely address RQ1, it is also 

necessary to address the different application domains in which the SBST research has 

concentrated on. We picked some initial domain characteristics to describe some of the domains 

with the intention that we would add on more characteristics as we encountered them in the 
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various papers that we read. However as can be seen from Table IX, we found that most papers 

do not generally describe the domain that they are targeting. From the 64 papers that we read, for 

45 of them we could not derive any data that would indicate which domain the test case 

generation was intended for. When we could derive this information, it seems that most of the 

papers dealt with embedded or real-time systems, with the occasional paper on safety-critical 

systems. However, some of the 45 paper for which we could not distinguish the domain, dealt 

with general software development areas – they may have dealt with test case generation for 

object-oriented programs or test cases were generated for some form of control flow in 

procedural programs. In these cases it was just not possible to derive a specific targeted 

application domain since the information would be applicable to a large variety of domains. The 

domain characteristics are not mutually exclusive, a paper can target multiple domains, for 

example, a paper may generate test cases for an embedded, real-time system. Hence it is 

important to mention that three papers fell into both the embedded systems and safety critical 

categories and therefore the total number of uses (67) in Table IX is greater than the total number 

of papers that we included for this systematic review (64). 

 
 

 

6) Conclusion  

Based on the findings in each sub-research question, we can answer the main research question 

as follows: 

In the context of search-based software testing, most of empirical studies have used genetic 

TABLE IX 
DISTRIBUTION OF PAPERS ACCORDING TO APPLICATION DOMAIN 

Application Domain Number of Uses 

Real-Time 8 

Embedded Systems 10 

Safety-Critical 3 

Distributed Systems 1 

Not Discussed 45 
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algorithms, simulating annealing, and their various extensions to automate test case generation at 

the unit testing level. A few of the papers target specific application domains and most the 

frequently observed domains were real-time and embedded systems. Most of the papers defined 

test cases as test data (or test input) [72] and didn‘t target any specific faults. The papers that 

didn‘t target any specific faults, aimed to achieve a specific coverage of a test model, thus 

indirectly targeting certain types of faults. The most frequently observed test model was the 

control flow graph where a variety of control flow-based criteria were applied to generate test 

cases.  

B. RQ2: How are the empirical studies in search-based software testing designed and reported?  

The purpose of this research question is to investigate and assess the design and reporting of 

empirical studies in the domain of search-based software testing. To answer this question, we 

further divided this question into five sub-questions. By answering each sub-question 

individually, we will answer the main research question.  

1) RQ2.1: How well is the random variation inherent in search-based software testing, 

accounted for in the design of empirical studies? 
 

We discussed the necessity and importance of accounting for random variation and using 

appropriate data analysis methods in Section III.C. To assess whether random variation has been 

accounted for, we classified the papers into two main categories: (1) papers which accounted for 

random variation in their design and reported this information and (2) papers which either did 

not account for random variation or did not report it well. To be classified in the first category, 

the study in the paper had to report the number of times the MHS algorithm was executed, 

sufficient information to determine whether the runs were independent, and report the data 

analysis methods used to compare alternative algorithms and baseline solutions. The 

independence of different runs can be determined in different ways in different MHS algorithms. 



Simula Technical Report Simula.SE.293 
 

52 

 

For instance, in the case of the HC algorithm, if it is started from the same starting point in each 

run using the same strategy to select neighbors, then all the runs will not be independent and 

hence every time the algorithm will find the same solution. Different runs in HC are normally 

made independent by choosing different starting points in each run or by using a random strategy 

to select neighbors. Additionally, the number of runs for each MHS algorithm had to be at least 

ten, a ballpark figure to enable the application of statistical hypothesis testing with minimal 

statistical power. Papers that did not report the number of runs or were executed less than ten 

times were placed in the second category (Random Variation Not Accounted). 

Within the first category, we further divided the papers according to the type of data analysis 

that had been performed. If only the average of the results or the percentage of successful runs 

over all runs was reported, then these papers were classified as having ―poor‖ descriptive 

statistics (the definition of successful run varies across papers, but generally speaking, if the test 

target to be covered is found, then the run is considered successful. A test target, for example, 

could be a branch to cover). This is because the average does not convey any information about 

the dispersion of the results being examined. Papers which report the level of variation as well as 

the measures of central tendency are counted in the sub-category ―good‖ descriptive statistics. 

The final category is the set of papers that in addition to reporting ―good‖ descriptive statistics 

also reported the results of statistical hypothesis tests comparing MHS algorithms and baselines 

and establishing the statistical significance of differences. However, most of the papers did not 

have detailed information on sample distributions and the validity of statistical test assumptions. 

It was therefore usually not possible to determine if a paper used the correct statistical procedure 

for a particular problem and data set.  

The results in Table X show that 25 papers did not account for random variation. Most of 
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these, 20 papers, either did not provide any information about the number of runs or just reported 

the result of one unknown run (the best or the only run). In five papers, the study was repeated 

less than ten times. Consult Table XVII in Appendix A to exactly see which papers belong to 

each category.    

 

Amongst 39 papers which accounted for random variation, 24 papers reported only the average 

of the cost or effectiveness results across all runs, for example, the average number of killed 

mutants as an effectiveness result or the average number of iterations as a cost result. In some 

cases, the percentage of successful runs amongst all runs is reported instead of, or along with the 

average of the effectiveness results (e.g., average coverage or average mutation score). At least 

one measure of dispersion like standard deviation, variance, or the variation interval ([Min, 

Max]) was reported for eight papers. These papers are categorized as having ―good‖ descriptive 

statistics. There were seven papers that reported statistical tests as well as good descriptive 

statistics. One or more of the following statistical tests were used: t-test, paired t-test, Mann-

Whitney test, F-test, ANOVA, and Tukey test [49, 73]. There was one paper in this sub-category, 

which reported the use of statistical tests, but did not specify the specific test being used and did 

not provide any descriptive statistics. From the results, we can see that 39% of the papers did not 

account for random variation at all, and 38% of the papers only had ―poor‖ descriptive statistics, 

so in total 77% of papers either did not account for random variation or reported it poorly. The 

remaining 23% of papers are divided between 12% providing only good descriptive statistics and 

just 11% performing some kind of statistical hypothesis testing to assess the statistical 

TABLE X 

RESULTS OF HOW RANDOM VARIATION IS ACCOUNTED FOR IN EMPIRICAL STUDIES 

Random Variation Accounted Random Variation Not Accounted 

Poor Descriptive 

Statistics 

Good Descriptive 

Statistics 

Statistical Data 

Analysis 

Random variation not 

discussed or accounted for 

Insufficient 

number of runs 

24 8 7 20 5 

38% 12% 11% 31% 8% 
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significance of differences that is whether they can be due to chance. To answer RQ2.1, this 

review suggests that SBST would greatly benefit from paying more attention to accounting for 

random variation in search heuristics and applying more rigor in analyzing and reporting cost 

and effectiveness results.   

2) RQ2.2: What are the most common alternatives to which SBST techniques are compared? 
 

In assessing the cost-effectiveness of any technique, the comparison baseline is an important 

factor. In order to classify the papers we defined four categories of comparison baselines: (1) 

‗Global SBST‘, where the baseline of comparison is a SBST technique using a global MHS 

algorithm, (2) ‗Local SBST‘ includes the techniques that use a local MHS algorithm such as HC, 

(3) ‗Non-SBST‘ baselines do not use a SBST technique and feature baselines such as random 

search, and (4) ‗Not discussed‘ addresses papers that do not report any comparison baseline.  

The comparison to non-SBST techniques or local SBST techniques serves a dual purpose: it 

helps determine if the problem at hand is simple enough to be satisfactorily solved by a simple 

search algorithm; otherwise it provides justification for why a more complex SBST technique is 

necessary. In addition, a simple baseline of comparison is necessary to assess the benefits of 

using complex SBST techniques. 

As shown in Table XI, 16 studies did not discuss the comparison baseline at all. These studies 

did not include any kind of comparison; they usually introduced the use of a MHS algorithm for 

test case generation and performed an empirical study to show that the technique does indeed 

generate satisfactory test cases. These papers are missing the justification for why the SBST 

technique was necessary to address the test case generation problem at hand and how much 

better it actually is compared to other existing, simpler techniques that are available to solve the 

problem at hand.  

There were 34 studies that reported ‗Non-SBST‘ baselines within which random search is used 
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in 24 studies, static analysis in three, greedy algorithm in three, constraint solving in one study 

and three studies used some other technique specific to their context. We see that random search 

is the most commonly used comparison baseline amongst Non-SBST techniques. There is 

limited use of ‗Local SBST‘ baselines with only three studies using HC. There are many studies 

(33) that used Global SBST techniques as comparison baselines. This is usually done when 

investigating the effects of different parameter settings of MHS algorithms. This is most evident 

within GA and SA where 22 studies used either GA or its extensions as baselines and six studies 

used SA and its extensions. Consult Table XVIII in Appendix A to exactly see which papers 

belong to each category.    

 

 

3) RQ2.3: What are the measures used for assessing cost and effectiveness of search-based 

software testing? 
 

Assessing the cost-effectiveness of SBST techniques for test case generation is the main 

objective of empirical studies in our context. Therefore, measuring cost and effectiveness in a 

valid manner is a basic requirement for all empirical studies.  

a) Effectiveness Measures 

 

As it is discussed in Section III, effectiveness measures are categorized into two main classes: 

coverage-based and fault-based measures. Under the coverage-based category, we found three 

main sub-categories: (1) control flow based coverage criteria such as branch, statement, path, 

condition, and condition-decision coverage (2) data flow based coverage criteria such as all-DU 

TABLE XI 
COMPARISON BASELINES USED IN SBST IN TERMS OF NUMBER OF PAPERS 

Global SBST baselines Local 

SBST 
baselines 

Non-SBST baselines Not 

Discussed 

GA and 

Extensions 

SA and 

Extensions 

Others Hill 

Climbing 

Random 

Search 

Static 

Analysis 

Greedy 

Algorithm 

Constraint 

Solving  

Others 

22 6 5 3 24 3 3 1 3 16 
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coverage, and (3) N-wise coverage criteria, when SBST techniques are used for testing 

combinatorial designs [14]. In the category of fault-based measures, mutation analysis is the core 

strategy and mutation score and the number of mutants killed are measures that were found in 

this review. 

We found some other measures for effectiveness, which are still related to the quality of the 

generated test cases, but do not fit into any of the above categories. In this review, these 

measures are labeled ―Others‖. Based on the papers included in this review, we identified two 

sub-classes among them and labeled the rest as miscellaneous. Papers in the first sub-category 

use different kinds of measures related to the execution time of test cases and we called these 

time-based measures. The second sub-category addresses the distribution of fitness values of 

individuals (solutions) as the measure of effectiveness (e.g., average, maximum fitness). Such a 

measure is usually used when the goal of a search algorithm is not finding a targeted solution, 

but the goal is to be as close as possible to the targeted solution. An example of such papers is in 

[15, 16], where the goal was stressing the real-time systems by scheduling input sequences to 

maximize delays in the execution of targeted aperiodic tasks. In this study, the cost is measured 

by fitness values, which shows how close the completion time of a specific task is to its deadline.  

Table XII presents the number of papers in our review per the category of effectiveness 

measures. 

 

The data we collected revealed 61 papers using one or more effectiveness measures in a total 

of 72 different effectiveness measurements across reported studies. There were three papers that 

TABLE XII 

DISTRIBUTION OF EFFECTIVENESS MEASURES ACROSS EMPIRICAL STUDIES 

Coverage-based measures 

Fault -based 

measures 

Others  

No effectiveness 

measure  Control 

flow 

Data 

flow 
N-wise 

Time-
based 

measures 

Fitness value 
of 

individuals 

Miscellaneous 

43 2 2 11 6 5 3 3 
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did not discuss the effectiveness of the SBST technique at all. There were 47 instances (65%) 

that used some type of coverage criterion as the measure of effectiveness. The most often used 

criteria were control flow based criteria with 43 instances (60%). Among them, 23 instances 

(32%) used branch coverage, which is the most frequently used effectiveness measure. All-DU 

coverage, which is based on data flow analysis, was used in two instances and two instances used 

N-wise coverage as the coverage criterion.  

There were 11 instances (15%) that used fault detection rate as the measure of effectiveness, 

where mutation analysis is used so as to report the mutation score or the number of killed 

mutants. In some cases, the fault-based measures are reported along with other effectiveness 

measures. Among the 14 instances (19%), which used the other measures for the quality of test 

cases, five papers used the fitness value of individuals and six papers used different kinds of 

execution-time based measures. Most of the time-based measures were related to CPU cycles 

spent for test case execution. They are used in studies which try to use SBST techniques to 

generate test cases that will find the best/worst case execution time of a program. Consult Table 

XIX in Appendix A to exactly see which papers belong to each category.    

Looking at the results in Table XII, we can see that control flow based coverage criteria 

targeted at white-box testing are the most often used effectiveness measures and as we 

mentioned in the above discussion, branch coverage is the criterion that has received the most 

attention. As a result, this problem is now pretty well understood and there is a widely accepted, 

standard way of calculating fitness values based on approximation level and branch distance [33] 

on control flow graphs. Fault-based effectiveness measures received relatively little attention in 

the literature reporting SBST studies as compared to coverage-based measures. Similarly, the 

applications of SBST techniques to artifacts other than code are rare as white-box testing seems 
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to have been by far the main focus.  

b) Cost Measures 

Based on the definition of cost measures in Section III and what we found in this review, we 

categorized cost measures into two main classes (1) ‗cost of finding the target‘, which is related 

to the cost of automating test case generation and (2) ‗cost of executing the generated test suite‘, 

which is related to the cost of test case execution. These are both relevant and complementary. 

Based on the measures found in the studies, the first category is classified into four sub-

categories: (a) the number of iterations, (b) the cumulative number of individuals in all iterations, 

(c) the number of fitness evaluations an algorithm needs to find the final solution, and (d) test 

case generation time. The only measure for the category of ‗the cost of executing generated test 

suite‘ that we found in the papers was the size of the test suite, which is a surrogate measure for 

test execution time.  

Table XIII shows that among 64 papers, seven papers did not perform any cost analysis and in 

the remaining 57 papers most empirical studies reported at least one cost measure in 70 different 

cost measurements reported across studies. 

 

Based on the abovementioned classification, 62 instances (86%) used measures in the category 

―Cost of finding the target‖. The most often used measure among them was the number of 

iterations, which is used in 27 instances (39%). A total of six instances (4%) used the number of 

individuals (test cases) and the number of fitness evaluations is used by 14 instances (20%) as 

the measure of cost. Finally, there were 15 instances (21%) that used the ‗test case generation 

TABLE XIII 

DISTRIBUTION OF COST MEASURES ACROSS EMPIRICAL STUDIES 

Cost of finding the target  
Cost of executing 

the final test suite No cost  

Measure Number of  
iterations  

Number of  
individuals  

Number  
of fitness evaluations 

Test case generation time  Size of test suite 

27 6 14 15 8 7 
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time‘ measure. 

In the second main category, ‗cost of executing the final test suite‘, the size of test suite was 

the only measure that we found and it was used in eight instances. Some of these instances, 

which report the number of test cases in the final solution, reported the cost of finding the target 

as well. In some of these instances, the target of the SBST technique was actually creating test 

suites with minimum size for covering a specific criterion such as a minimal test suite that 

exhibits pair-wise coverage [74].  Consult Table XX in Appendix A to exactly see which papers 

belong to each category.    

Summarizing the results of cost measures, we can see that the most commonly used measure is 

the number of iterations. This measure is, however, the least precise measure based on the 

discussion in the framework in Section III.  Another conclusion is that most studies use cost 

measures only for comparison purposes with other alternative techniques. There are just 15 

instances (21%) that used measures such as test case generation time, which conveys whether a 

particular technique is likely to be practical and scale up.  

4) RQ2.4: What are the main threats to the validity of empirical studies in the domain of search-

based software testing? 
 

In order to answer this question, we carefully assessed the studies using the proposed 

framework in Section III. For the construct validity threats, we looked at the validity of the cost 

and effectiveness measures. The most frequently observed threat was using some measures of 

cost that have severe limitations as they are not precise. As discussed in the framework, the 

imprecision of cost measures such as ‗the number of iterations‘ makes the comparison between 

different SBST techniques very coarse grained. In addition, measures such as the number of 

iterations, the number of individuals, and the number of fitness evaluations can only be used for 

comparison across SBST techniques and cannot demonstrate the practicality of SBST 
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techniques.  On the other hand, cost measures such as ‗test case generation time‘, if measured as 

clock time, are suitable for showing the practicality of a technique under time constraints. Such 

measures are, however, platform dependent and therefore not easy to use for comparisons across 

techniques and studies.    

The most frequently encountered conclusion validity threat is related to accounting for the 

random variation that exists in the results obtained from SBST techniques. As discussed in 

RQ2.1, 39% of the papers did not take the random variation of results into account and 38% did 

not analyze or report it properly. This leads to a frequent threat regarding the statistical 

significance of the results. Therefore, not accounting for randomness and not applying proper 

data analysis (Section III.C and RQ 2.1) makes it very difficult to confidently draw practical 

conclusions from the results reported in most studies. Moreover, among the 11% of papers that 

discussed statistical hypothesis tests, just one paper has discussed the practical significance of 

differences that is whether differences among techniques justify the use of more complex 

techniques. 

Regarding internal validity threats, the most important concern is the instrumentation of code 

and the use of different tools for data collection without reporting sufficient information about 

them. If the data collection and code instrumentation is not done through a well-identified and 

available tool, then detailed information about the process of data collection should be reported. 

An example of this would be the use of a tool that instruments the code to collect, for instance, 

branch coverage information. If the tool is developed for experimentation purposes only and has 

not been thoroughly tested, then the coverage information generated by the tool might not be 

reliable and hence lead to an internal validity threat. A possible way to deal with this validity 

threat is to use readily available (open source, downloadable, or commercial) tools for this 
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purpose.  

The lack of clearly defining the target SUTs and having a clear object selection strategy are the 

most common threats to external validity. Usually the algorithms are executed on very small 

programs and no clear justification is provided for their choice and why they may be 

representative of the target domain, if specified. This can result in invalid generalization of the 

results.  

5) RQ2.5: What are the most frequently omitted aspects in the reporting of empirical studies in 

search-based software testing? 
 

In the previous sections, we have discussed the lack of properly reported descriptive statistics 

and statistical hypothesis testing (statistical significance) as the most commonly missing aspects 

in many empirical studies. Only 23% of the reviewed papers reported proper descriptive statistics 

or statistical significance results. In addition to this aspect, as discussed in the framework, there 

are other aspects that are also important and should be reported. These aspects are: discussion of 

validity threats, specification of formal test hypotheses, object selection strategy, parameter 

settings, and data collection method. For validity threats, 10% discussed conclusion validity, 6% 

discussed external validity, 3% discussed construct validity, and only 3% of the papers discussed 

internal validity threats. We found that only two papers out of 64 specified formal hypotheses, 

44% of the papers discussed object selection strategies, and 39% of the papers described their 

data collection methods. Parameter settings (see Section III.B) were discussed by most, but not 

all of the papers (88%). However, all papers did not discuss all parameters required for their 

study; usually there is only a partial discussion.  In some cases the authors provide justification 

of why they chose particular values for the parameters but this was rare. 

Summarizing the above information, Table XIV depicts the most frequently omitted aspects in 

the reporting of empirical studies. Not reporting this information makes the full interpretation of 
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the results very difficult. For example, poor reporting may make it difficult to determine whether 

differences are statistically significant, and whether differences are expected to matter in 

practice. It is also usually difficult to determine if results can be generalized and to what domain. 

1) Conclusion 
 

In our context, defining good and relevant cost and effectiveness measures is a prerequisite for 

a useful empirical study. Almost all of the papers use appropriate (though not perfect) cost and 

effectiveness measures to perform empirical studies. However, there were two major problems in 

the majority of the papers. First, most of the papers do not account for the random variation in 

cost and effectiveness of SBST techniques. Even the majority of the papers that did account for 

the random variation didn‘t use proper data analysis and reporting methods (descriptive statistics 

and statistical hypothesis testing). Thus, there is a general lack of rigor in the statistical analysis 

and reporting of results in most empirical studies assessing the use of MHS algorithms for test 

case generation. Second, most of the papers didn‘t demonstrate the benefits of SBST by 

comparing it with simpler, techniques such as random search or HC. These two factors are 

highly important for yielding interpretable empirical studies in the context of test case generation 

using SBST techniques. Furthermore, many other relevant aspects of empirical studies such as 

the reporting of validity threats, the definition of formal hypotheses, the object selection strategy, 

and data collection methods are not reported by most of the papers. We can therefore conclude 

that most empirical studies in the context of test case generation using SBST techniques are still 

not properly conducted and reported and that improving this situation should be an important 

objective of the research community for future studies. 
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C. RQ3: How convincing are the reported results regarding the cost, effectiveness, and 

scalability of search-based software testing techniques? 

There is a lot of research being conducted on test case generation based on MHS algorithms. In 

order to draw general conclusions from the current body of work, we need to assess how 

convincing is the evidence regarding the cost, effectiveness, and scalability of SBST techniques. 

The first step is to clearly identify studies that provide complete and credible evidence from an 

empirical standpoint. Credible results are the consequence of a well designed and conducted 

empirical study. Based on the discussions in section III, a well designed study in the context of 

SBST should account for the random variation present in the results and have a meaningful 

comparison baseline to show that the targeted test problem benefits from a MHS approach. 

Therefore, in order to answer this research question, we first selected papers that at a minimum 

account for the random variation of results and compare their technique with the results of a 

simpler, non-SBST technique (such as random search, static source code analysis, or some other 

technique applicable to the test problem under consideration) or with HC. The first sub question, 

RQ3.1, will provide an overview of these papers. The second step to answer RQ3 is to select 

those papers that performed and reported proper data analysis. To satisfy this criterion, we expect 

TABLE XIV 

THE MOST OMITTED ASPECTS OF EMPIRICAL STUDIES  

The most omitted aspects in the reporting of 

empirical studies 

Number of 

papers 
Percentage 

Good descriptive statistics and statistical test 15 23% 

Validity threats 

Construct 2 3% 

Internal 2 3% 

Conclusion 7 10% 

External 4 6% 

Formal Hypothesis 2 3% 

Object selection strategy 28 44% 

Data collection method 25 39% 
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papers to report descriptive statistics on the variation in the results (cost, effectiveness), where 

relevant or results of statistical hypothesis testing comparing alternative test case generation 

algorithms, and in particular MHS algorithms with simpler baseline alternatives. We deemed this 

set of papers as having credible evidence regarding the cost, effectiveness, and scalability of 

SBST. In sub question RQ3.2, we provide detailed information about the cost and effectiveness 

results presented in these papers along with a short description of the test problem that they 

tackled.  

1) RQ3.1: For which metaheuristic search algorithms, test levels, and fault types is there 

credible evidence for the study of cost-effectiveness? 
 

This sub-question provides a summary of the research papers that met the minimum criteria of 

accounting for random variation in results and performing comparisons with a simpler non-SBST 

or local SBST techniques. Out of the 64 papers that we analyzed, we found 39 that accounted for 

random variation of results. This number was reduced to 18, after selection of only those papers 

that also had either a non-SBST or a simple, local MHS comparison baseline. Thus, based on the 

criteria that we used, we had to exclude 46 papers as not being applicable for answering our 

research question. It is worth mentioning that there were 14 papers among those 46 discounted 

papers that had the minimum requirement of accounting for random variation, but did not have a 

non-SBST or local MHS comparison baseline. For example, they may have proposed an 

extension to a genetic algorithm that would possibly enhance its capacity for test case generation 

and compared their results to a genetic algorithm not having this extension. In this review, those 

studies are not considered as credible evidence, since they do not show, in any way, that a simple 

non-SBST technique such as random search or a local MHS such as HC could not, in this 

particular context, equal or outperform their technique. This is an important consideration, since 

there is no a priori reason to believe that a MHS algorithm is more cost-effective and efficient 
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than simpler algorithms in all test case generation contexts. The size of the search space is only a 

weak indicator of the extent of the search challenge as the search difficulty also depends on the 

search space landscape and distribution of satisfactory solutions across this space. Table XV 

summarizes this set of 18 papers in terms of the MHS algorithms used, the testing levels, and the 

fault types targeted in the empirical studies. These papers are referred to as ‗Minimum Criteria 

papers‘ in Table XV. 

As can be seen in Table XV, amongst the 18 papers that report credible evidence, most papers 

(13 out of 18) applied a SBST technique at the unit testing level. The most commonly 

investigated MHS algorithm is the genetic algorithm with 12 papers out of 18, followed by 

simulated annealing with just four papers. This trend is the same as that observed in the full set 

of 64 papers in Section V.A. There are also only two papers that target specific faults, one 

targeting functional faults and the other non-functional faults.  

1) RQ3.2: How convincing is the evidence of cost and effectiveness of search-based software 

testing techniques, based on empirical studies that report credible results? 
 

Along with accounting for random variation in the results and having a non-SBST or local 

MHS comparison baseline, studies must also report proper descriptive statistics or statistical 

hypothesis testing results in order to present credible and interpretable evidence. After the 

application of these criteria, there were just eight papers left and the results of these papers, 

referred to as ‗Sufficient Criteria Papers‘, are summarized in Table XVI followed by more 

detailed information on each of these papers.  
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a) Using Genetic Algorithms for Early Schedulability Analysis and Stress Testing in Real-Time Systems (Briand et. 

al., 2005 and 2006) 

Briand et. al  [15, 16] proposed a GA-based approach for stressing real-time systems by 

scheduling input sequences to maximize delays in the execution of target aperiodic tasks. The 

technique was applied on three SUTs: the first two were artificial tasks with given execution 

time priority (tasks from the second SUT were interdependent). The last SUT was a real-time 

avionics application, where eight high priority schedulable tasks were examined by the 

technique. The results showed that there are cases where their technique can schedule tasks to 

TABLE XV 

TEST LEVELS, FAULT TYPES, AND THE TYPE OF METAHEURISTIC ALGORITHMS USED BY ‗MINIMUM CRITERIA  PAPERS‘  

 Test Level Fault Type Type of Metaheuristic Search Algorithm 

Paper Unit  Integration System 

Non-

Functional Functional GA EGA SA ESA ACO GP PSO 

Jones et. al. [1] √ – – – – √ – – – – – – 

Puschnerand 
Nossal [4] √ – – – – √ – – – – – – 

Tracey et. al. 

[6] √ – – – – -  – √ – – – – 

Bueno and Jino 

[8] √ – – – – √ – – – – – – 

Michael et. al. 

[9] √ – – – –   √ – – – – – 

Wegener et. al. 

[12] √ – – – – √ – – – – – – 

Shiba et. al. 
[13] – – √ – – √ – – – √ – – 

Briand et. al. 

[15, 16]  – – √ √ – √ – – – – – – 

Miller et. al.  
[18] √ – – – – √ – – – – – – 

Watkins and. 

Hufnagel [20] √ – – – – √ –   – – – – 

Zhan and Clark 

[21] – – √ – √ – – √ – – – – 

Zhan and Clark 

[23]  – – √ – – – – √ √ – – – 

Bueno et. al. 

[24] – – √ – – – – – – – – √ 

Harman et. al. 
[25] √ – – – – – √ – – – – – 

Harman and 

McMinn [2] √ – – – – √ – – – – – – 

Harman et. al. 

[28] √ – – – – √ – – – – – – 

Wappler and 

Schieferdecker  

[30]  √ – – – – √ – – – – – – 

Xiao et. al. [31] √ – – – – √ – √ √ – – – 

GA: GENETIC ALGORITHM, EGA: EXTENDED GA, SA: SIMULATED ANNEALING, ESA: EXTENDED SA, GP: GENETIC PROGRAMMING, 

PSO:PARTICLE SWARM INTELLIGENCE, ACO: ANT COLONY OPTIMIZATION.  
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miss the deadline(s) even though schedulability analysis (Generalized Completion Time 

Theorem-GCTT) identified them as schedulable. The cost of the technique is evaluated by the 

average execution time which was between one to 46.5 minutes. A weak point that is seen in the 

study is the lack of comparison of their technique with random test data generation to see if a GA 

is warranted to solve the targeted test case generation problem. 

b) Automatic Test Data Generation Using Genetic Algorithm and Program Dependence Graphs (Miller et. al., 

2006)  

 

This paper [18] presents an automatic test data generation approach that uses genetic 

algorithms along with program dependence graphs (PDGs). The premise is that branch coverage 

is influenced by the paths that are executed in the SUT. Hence, it is important to select those 

paths that will lead to the covering of the target branch. Static analysis, using the PDGs together 

with two new metrics, is used to select the appropriate paths to cover a particular branch. Once 

the appropriate path has been selected, constraint information linked to that path is used in the 

fitness function of a genetic algorithm in order to guide the search to cover the targeted branch 

(the whole approach is called TDGen). An empirical study to test the premise is presented that 

compares the results of using the static analysis with genetic algorithm to random search and to 

the previous work done by Michael et al. [9] using the GADGET framework for genetic 

algorithms. The technique was applied on six small programs such as bubble sort, quadratic 

formula and triangle classification.  

The results showed that, for the simpler programs there is little difference in the results 

between random and TDGen. The difference is seen in larger programs where even though both 

random and TDGen obtain close to 100% statement and branch coverage, TDGen requires a 

much smaller number of generations, which is reported by mean, minimum, and maximum 

values across 10 runs. It is also observed that for some SUTs, TDGen can achieve 100% 
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coverage, where random generation and GADGET cannot. The empirical study compares the 

three approaches based on the time taken by the search algorithms to reach the target, however 

the amount of time involved in performing the static analysis is not presented and this could be a 

factor in the cost of using the TDGen system. Even if the analysis is very fast and would not 

affect the results, lack of this information makes it difficult to interpret the cost results. 

c) Evolutionary Test Data Generation: A Comparison of Fitness Functions (Watkins et. al., 2005)  

 Watkins et. al. in [20] evaluated the cost and effectiveness of SBST for path coverage using 

seven different fitness functions proposed in previous studies and compared the results with 

random search. The comparison is performed on: (a) one small (30 LOC and 3 integer input 

variables) SUT with three different paths (one very easy or two very difficult to find in the 

search space) as test objectives, and (b) one program from industry (a tax benefit optimization) 

with around 300 LOC, a series of Boolean conditions, 31 input variables and thousands of paths. 

The mean, median, and standard deviation of the number of unique test cases generated across 

all generations is reported in addition to the completed runs (the number of times the GA 

succeeded in producing a test case that traversed the targeted path) and the average number of 

paths found for the cases, where the target is covering all paths. The statistical significance of 

differences between results is also examined using ANOVA on a path-by-path basis and 

wherever the F-test was significant, pair-wise comparisons using Tukey test were performed. 

Results show that there is no best fitness function for all SUTs and paths. Even though there is 

always at least one fitness function that works better than random search. Therefore, the 

conclusion was identifying the best two fitness functions in most cases and suggesting a two-step 

method using the two best fitness functions.  
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d) A Theoretical and Empirical Analysis of Evolutionary Testing and Hill Climbing for Structural Test Data 

Generation (Harman and McMinn, 2007) 

An empirical evaluation of SBST was presented in [2] to answer the questions such as when 

and why SBST works and how it compares with other search techniques. The royal road theory 

for GA [2] was used as the basis to derive research questions. This theory states that GA with 

royal road fitness function will outperform local search algorithms such as hill climbing because 

of the way GA uses crossover operators. Based on this theory, the following research questions 

were formulated: 1) Does GA perform better than HC and random search for the branches 

having royal road functions? According to the theory, GA should perform better than HC and 

random search. 2) How does GA performs on the branches with royal road functions if crossover 

operators are removed? According to the theory, GA shouldn‘t perform well if crossover 

operators are removed. 3) How does GA performs in comparison with HC for the branches that 

do not have royal road functions?  According to the theory, GA should perform worst or no 

better than HC in this case. In order to confirm the stated theory, an empirical study was 

performed on six test objects chosen from real world applications. The size of the test objects 

ranged from 183 LOC to 2210 LOC. The total number of branches in all test objects was 640 and 

the search space of all test objects ranged from 10
7
 to 10

544.
 In order to answer the first research 

question, branches having royal road features were selected as the targets for the search 

algorithms. GA was always able to find inputs to exercise these branches, whereas HC and 

random were never successful. For the second research question, the study was repeated with 

crossover operators removed for GA. In that case, GA wasn‘t successful in finding any inputs to 

exercise any of the branches. For the third research question, the branches that did not have royal 

road features were selected as the targets. In this instance, in almost all of the cases, HC was 

either better or equally as successful as GA. The study was repeated 30 times and t-tests were 



Simula Technical Report Simula.SE.293 
 

70 

 

applied to determine the statistical significance of results.  

e) The Impact of Input Domain Reduction on Search-Based Test Data Generation (Harman et. al., 2007) 

In search-based test input data generation, the input domain is the search space of the system 

under test. The work in [28] investigates the relationship between the size of the search space 

and the effectiveness of search algorithms for test data generation. A theoretical analysis is 

presented regarding the effect of domain reduction on random, local, and global search, and four 

hypotheses are presented that predict the effects of input domain reduction on random search, 

hill climbing, and genetic algorithms. The study is conducted on six real world objects taken 

from industry and open source projects. The test objects consist of two embedded controllers, 

several functions selected from three open-source graphics manipulation packages, and one test 

object specifically designed for this empirical study that has a large input domain and branches 

that incrementally include all the variables of the input domain. The SUTs‘ size vary from 138 to 

867 LOCs and the input domain size varies from 10
10

 to 10
126.

 The search space is reduced by 

removing the irrelevant variables for every target branch in the programs. The impact is 

measured by measuring the percentage of branch coverage achieved before and after input 

domain reductions.  

The results indicate that for random search there is no relationship between search space 

reduction and reduction in cost. There is significant reduction in cost in terms of the number of 

fitness evaluations for 82 branches for hill climbing and for 86 branches for the genetic 

algorithm out of 360 branches in total. The improvement in the genetic algorithm is more than 

that seen in hill climbing and the percentage of improvement increases as the number of 

irrelevant variables removed increases. There is no relationship between search space reduction 

and search effectiveness in terms of coverage for any of the search algorithms. The success rate 
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fluctuation is also reported for branches where there was a +/-5% change in the average number 

of fitness evaluations as well as the results of branches which differed significantly using paired 

t-tests. Cost information is also reported as the average number of fitness evaluations and the 

standard deviation per branch. 

f) Improving Evolutionary Class Testing in the Presence of Non-Public Methods (Wappler and Schieferdecker, 

2007) 

A challenge in the unit testing of object-oriented systems is the testing of the non-public 

methods and attributes of classes without breaking the encapsulation rules of the class. Wappler 

and Schieferdecker [30] presented an approach for testing non-public methods without breaking 

encapsulation of the class by using only the public interfaces of the class under test. A new 

objective function for genetic programming is proposed for this purpose. A search space 

representation that includes both the method call sequences as well as the method parameters 

was also proposed. The accompanying empirical study compared their technique with the genetic 

programming system called ECJ [75] and random search on 34 real-world classes taken from 

open source Java projects. The details of only seven test objects are presented due to space 

restrictions. The size of the classes varies from 30 to 317 executable lines of code; the number of 

total branches to cover is from seven to 110 and the number of branches in non-public methods 

to cover varies from 1 to 70.  

The results for the seven test objects show that their proposed technique achieved higher 

branch coverage than random search and the difference is statistically significant. The average of 

50 runs is shown for the branch coverage of non-public methods with the proposed technique 

and standard Genetic Programming. Their technique had higher coverage for five of the test 

objects while for the others the results were the same. However, it would have been useful to 
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know the cost of the random search and how this cost compares to that of the genetic 

programming algorithm. It would also be useful to know specifically which statistical tests were 

applied for hypothesis testing. 

g) Empirical Evaluation of Optimization Algorithms When Used in Goal-oriented Automated Test Data Generation 

Techniques (Xiao et. al., 2007) 

Different MHS algorithms were empirically evaluated for automated test case generation in 

[31]. The study was conducted on five small test objects written in C/C++. There were 36 to 87 

test requirements to achieve full condition-decision coverage for all test objects and the size of 

the search space ranged from 2
6
 to 2

32.
 The study was performed using different algorithms 

including GA, SA, Genetic Simulating Annealing (GSA), SA with Advanced Adaptive 

Neighbors (SA/AAN), and random search. In all 10 runs of the study, GA outperformed all other 

search techniques in terms of achieving condition-decision coverage in lesser number of fitness 

evaluations. SA/ANN was the second best after GA. For two of the test objects, the study was 

further extended to observe performance of SBST for two different search spaces. Based on the 

study, it was concluded that SA and GSA performed well only for small search spaces. 

Generally, GSA performed slightly better than random search. The practical significance of  

differences between results is analyzed using Cohen‘s d for measuring effect size and the 

possible threats to validity were discussed and addressed. This empirical study was however 

performed on test objects that were small and simple, thus presenting an external validity threat.  

Based on the information presented in Table XVI, it is apparent that there is a scarcity of 

convincing evidence regarding the cost-effectiveness of SBST techniques. Nevertheless, these 

papers are a representative sample from the different types of investigations that are performed 

with MHS algorithms for test case generation. MHS algorithms have been recently applied to 
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increasingly diverse types of problems and this is seen in this sample of papers by comparing the 

content of the ―test purpose‖ column across papers. This ranges from specialized purposes such 

as testing the performance of real time systems to more general purposes such as testing non-

public methods in object-oriented programs. Despite the diversity of objectives, we can see that 

in most of these papers, MHS algorithms, mostly GA, were compared with random search and 

the results show that GA outperformed random search for the test case generation problems at 

hand. This suggests that this type of problems indeed requires guided search algorithms. 

It would also be interesting to see how the quality of the empirical studies that have been 

performed in this field have improved over the years. In order to investigate this, we compare 

three series as shown in Fig. 6. The ‗All papers‘ series shows the number of papers per year 

expressed as a percentage of the total number of papers (64 papers). The ‗Minimum Criteria 

papers‘ series shows the percentage per year of the papers satisfying our minimum criterion of 

accounting for random variation (as reported in Table XV) and the ‗Sufficient Criteria papers‘ 

series shows the percentage per year of papers satisfying our secondary criteria of having an 

appropriate baseline and proper descriptive statistics or results of statistical hypothesis testing (as 

reported in Table XVI. From Fig. 6 we can see that 40% of all papers, 55% of all minimum 

criteria papers and 88% of all sufficient criteria papers were published in recent years (2006 and 

2007). The trends that become apparent are that firstly, the number of SBST publications has 

been steadily growing over the years, and secondly, that the quality of empirical studies has 

increased dramatically in recent years.  
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TABLE XVI 

TEST PURPOSES, COMPARISON BASELINES, AND RESULT HIGHLIGHTS FOR THE ‗SUFFICIENT CRITERIA PAPERS‘ 

Paper Test purpose Comparison 

baseline 

Result highlights  

Puschner and 

Nossal, 1998 

Creating an input data set 
with the worst-case program 

execution time 

RS 
BEDG 

StA 

In most cases, GA performed equal to or better than RS in terms of 
effectiveness measured as execution time of the SUT. For smaller 

size SUTs, GA had results as good as BEDG and StA  

Briand et. al., 

2005 and 2006  

Stressing a real-time system 

by creating input sequences 
that maximize delays in the 

execution of target tasks and 

increase chances of missing 
deadlines. 

ScA The technique can schedule tasks to miss the deadline(s) even 

though schedulability analysis identified them as schedulable. The 
GA is successful in bringing task completion times closer to their 

deadlines, thus leading to stressing the system in that respect.  

 

Miller et. al., 

2006 

Test case generation using 

genetic algorithms and 
program dependence graphs. 

RS, GA 1) The results showed that, for simple programs there is little 

difference in the results (branch coverage) between RS and their 
proposed GA approach (TDGen). 

2) The difference is seen in larger programs, where a much smaller 

number of generations are required to achieve 100% branch 

coverage. 

3) It is also observed that for some SUTs, TDGen can achieve 100% 

branch coverage, where RS and GADGET cannot.  

Watkins et. al., 
2005 

Comparison of different 
fitness functions for path 

coverage 

RS Based on the study, it was concluded that there is no single fitness 
function that works well in all cases. A two-step method using two 

best fitness functions is therefore suggested in the paper. 

Harman and 

McMinn, 2007 
 

Test data generation to 

answer three research 
questions formulated based 

on royal road theory (see [2]) 
for GA  

RS, HC 1) GA was able to find inputs to exercise the branches that have 

royal road features and HC and RT were not successful at all. 
2) GA was unable to find the inputs to exercise the branches that 

have royal road features if crossover operators were removed.   
3) HC performed better or no worse than GA for the branches that 

do not have royal road features. 

Harman et. al., 

2007 

Investigation of the 

relationship between the size 
of the search space 

(consisting of test inputs) and 

the performance of search 
algorithms measured as the 

number of fitness evaluations 

to cover a branch   

RS, HC 1) There is no relationship between search space reduction and 

reduction in cost for random search. 
2) There is significant improvement in cost reduction for both hill 

climbing and the genetic algorithm. 

3) The reduction in cost is more for the genetic algorithm than for 
hill climbing. 

4) There is no relationship between search space reduction and 

search effectiveness in terms of coverage for any of the search 
algorithms.  

Wappler and 

Schieferdecker, 

2007 

An approach for testing non-

public methods without 

breaking the encapsulation of 
the class, using an objective 

function specifically 

designed to cover non-public 
methods via public methods.  

RS, GP The new GP technique achieved higher overall branch coverage than 

RS and higher coverage of non-public methods than their existing 

GP based approach. 

Xiao et. Al. , 

2007 

Empirical evaluation of 

different MHS algorithms 
and RS for test data 

generation. 

GA, SA, two 

extensions of 
SA 

(SA/AAN, 

GSA), RS 

GA performed better than all other algorithms including random 

search. After GA, SA/AAN performed better in terms of both cost 
(number of SUT executions) and effectiveness (condition decision 

coverage). 

 

HC: Hill Climbing, RS: Random Search, GA: Genetic Algorithm, SA: Simulated Annealing, GP: Genetic Programming, SA/AAN: SA with 

Advanced Adaptive Neighbors, GSA: Genetic SA, ScA: Schedulability Analysis, BEDG: Best Effort Data Generation, StA: Static Analysis 
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Fig. 6. : Quality trends of SBST empirical studies based on the publication year 

   
2) RQ3.3: Is there any evidence regarding the scalability of metaheuristic search algorithms for 

test case generation? 
 

During our systematic review, we did not find any paper specifically targeting the scalability 

of the MHS algorithm in the context of SBST. However, there was one paper where the authors 

performed a small scale scalability analysis [31]. The study was conducted on five small test 

objects written in C/C++. There were 36 to 87 test requirements to achieve full condition-

decision coverage for all test objects and the size of the search space ranged from 2
6
 to 2

32
. The 

study was performed using different algorithms including GA, SA, Genetic Simulating 

Annealing (GSA), SA with Advanced Adaptive Neighbors (SA/AAN), and random search. In 

two of the SUTs used for the study, two different search spaces (one small and one large) were 

used to measure the performance (condition-decision coverage vs. the number of SUT iterations) 

of different MHS algorithms and random search. Based on the empirical evaluation, it was 

concluded that GA performed well for both the small and the large search space. SA/ANN was 

the second best. SA and GSA performed well only for the small search space. All MHS 

algorithms performed better than random search. As a result, we can say that scalability analyses 

of SBST techniques in the domain of test case generation are very rare and there is a need to 
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focus more on scalability analysis in future studies.  

3) Conclusion 
 

Based on the discussions in the three sub-questions above, the number of papers which contain 

well-designed and reported empirical studies in the domain of test case generation using SBST is 

very small.  As a result, there is a limited body of credible evidence that demonstrates the 

usefulness of SBST techniques for test case generation. This evidence is, in addition, very partial 

as it mostly focuses on the use of genetic algorithms at the unit testing level. This evidence, 

however, consistently shows that the genetic algorithms outperform random search in terms of 

structural coverage. However, this evidence is just based on eight papers and cannot be 

generalized to state that genetic algorithms at the unit testing level will always outperform 

random search regardless of the test objectives. More empirical studies must be conducted to 

provide strong and generalizable evidence about the suitability and applicability of different 

MHS algorithms for test case generation at different testing levels and for test objectives other 

than structural coverage.  

VI. THREATS TO THE VALIDITY OF THIS REVIEW 

The main validity threats to our review are related to the possible incomplete selection of 

publications, inaccuracy of data extraction, and bias in quality assessment of studies. 

A. Incomplete selection of publications 

 

In Section IV.B, we have discussed and justified the systematic and unbiased selection strategy 

of publications. However, it is still possible to miss some relevant literature. One such instance is 

the existence of grey literature such as technical reports and PhD theses. In our case, this 

literature can be important if the authors report the complete study which is briefly reported in 

the corresponding published paper. In this review, we did not include such information. 
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Another instance that may lead to an incomplete selection of publications is the difficulty of 

finding an appropriate search string. In Section IV.B we provide justification for the repositories 

that we selected and the search string that we used. However, there may still be some papers, 

which have used some other related terms other than our keywords. We refined our search string 

several times because we found a paper missing from our selected papers, which was in the 

reference list of another paper. In order to deal with this problem, we refined our search string 

until it included all such papers and we were sure that our set of selected papers did not miss any 

paper that is referred to and relevant for this review.    

B. Inaccuracy in data extraction 

 

Inaccurate data can be the result of subjective and unsystematic data extraction or invalid 

classification of data items. In our review, we tried to deal with this problem by two means. First, 

we defined a framework, which clearly identified the data items that should be extracted. 

Second, all the data extracted was reviewed by three researchers and all discrepancies were 

settled by discussion to make sure that the extraction was as objective as possible. Therefore, the 

remaining problem is the validity of the framework itself. We have defined the framework based 

on the current guidelines for empirical studies in software engineering and adapted them to our 

domain of interest based on experience. Hence, we believe that it is a good starting point, but it 

can be further improved by feedback and discussion from other researchers in the domain. 

C. Unbiased quality assessment  

Assessing the quality of the papers for answering RQ3 was a challenging issue. Even though 

the data extracted from the papers to judge their quality was detailed and based on a well thought 

framework, the criteria used to select the papers themselves could be thought of as subjective. 

Our justification for the validity of this criterion is discussed in the Section V.C and we re-
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emphasize the fact that this is the minimum requirement for having a valid empirical study in the 

domain of SBST.  

VII. CONCLUSION 

The automation of test case generation has been a long-standing problem in software 

engineering. Search-based software testing, or in other words the application of metaheuristic 

search (MHS) algorithms for test case generation, has shown to be a very promising approach for 

solving this problem by re-expressing test case generation problems as search problems. As a 

result, a great deal of research has been conducted and published. The time was therefore ripe to 

perform a systematic review of the state of the art and appraise the evidence regarding the cost-

effectiveness of such an approach.  A systematic review is very different from more informal, 

traditional surveys, in the sense that it aims at being comprehensive in its coverage and 

repeatability by relying on well-defined paper selection and analysis procedures. This systematic 

review focuses, due to space constraints, on one specific but crucial aspect: the way SBST 

techniques have been empirically assessed. This aspect is highly important as all MHS 

algorithms are heuristics and therefore cannot guarantee their success in solving a test case 

generation problem or any other problem for that matter. Only an empirical investigation can 

provide the necessary confidence that a specific MHS algorithm is appropriate for a given test 

case generation problem.  

In addition to a large-scale, systematic review, our contribution also includes guidelines, in the 

form of a framework, on how to conduct empirical studies in search-based software testing. 

Results of our review have shown that the research reported so far has mostly focused on 

structural coverage and unit testing. However, the research is increasingly more diversified in the 

types of topics being tackled. Results also show that empirical studies in this field would benefit 
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from more standardized and rigorous ways to perform and report studies. More specifically, 

three important empirical issues stand out from our analysis. Studies need to, more 

systematically and rigorously, account for the random variation in the results generated by any 

MHS algorithm. Such random variation implies that alternative techniques can only be compared 

by statistical means, that is, statistical hypothesis testing. This, unfortunately, is not performed 

well in most published papers and our framework provides guidelines about which statistical test 

to perform in which circumstance. Last, another important issue is that it is impossible to assess 

how a MHS technique performs in absolute terms: to be able to conclude on its usefulness to 

tackle a specific test case generation problem, a proposed technique needs to be compared with 

simpler and existing alternatives to determine whether it brings any advantage. This is again 

missing in an important number of papers and needs to be carefully addressed by all studies in 

the future.   

Despite the above limitations, credible results are available and existing results confirm that 

MHS algorithms are indeed promising for solving a wide variety of test case generation 

problems. Future research work will have to better establish their limitations and the types of 

problems for which they are applicable and required.  
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APPENDIX A: REFERENCES TO PAPERS SUMMARIZED IN TABLES X, XI, XII, AND XIII 

TABLE XVII 

EXTENSION TO TABLE X 

 Random Variation Accounted Random Variation Not Accounted 

 Poor Descriptive Statistics Good Descriptive 

Statistics 

Statistical Data 

Analysis 

Random variation not discussed 

or accounted for 

Insufficient 

number of runs 

[76]    √  

[1] √      

[77]    √  

[4]  √     

[8] √      

[78]  √     

[79, 80] √   √  

[9] √      

[81]    √  

[82]    √  

[83]    √  

[84]    √  

[74]    √  

[85] √      

[86]  √     

[69]    √  

[87]      √ 

[13] √      

[88]    √  

[89] √      

[53, 54]  √     

[90]    √  

[43]      √ 

[91] √      

[92]  √     

[63]    √  

[93] √      

[55] √      

[94]    √  

[68] √      

[95] √      

[65]    √  

[12]       

[96]    √  

[97]    √  

[62]    √  

[98] √      

[99] √      

[18]  √     

[20]   √    

[100] √      

[31]   √   

[6] √      

[101]   √    

[41]    √  

[15, 16]  √     

[102] √      

[103, 104] √      

[61]    √  

[21] √      

[105] √      

[106]  √     

[67]      √ 

[107]      √ 

[23] √      

[108] √      

[56]      √ 

[24] √      

[25] √      

[2]   √    

[28]   √    

[66]    √  

[30]   √    

[109]   √   
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 TABLE XVIII 

EXTENSION TO TABLE XI 

 Global SBST  Local 

SBST  

Non-SBST  Not 

Discussed 

 GA and 

Extensions 

SA and 

Extensions 

Others Hill 

Climbing 

Random 

Search 

Static 

Analysis 

Greedy 

Algorithm 

Constraint 

Solving  

Others 

[76] √          

[1] √    √      

[77]      √     

[4]     √ √     

[8]     √      

[78]          √ 

[79, 80]          √ 

[9] √    √      

[81] √          

[82]     √      

[83]          √ 

[84]   √        

[74]          √ 

[85]          √ 

[86]          √ 

[69]     √ √     

[87] √          

[13]  √     √  √  

[88]     √      

[89] √          

[53, 54] √          

[90] √          

[43]          √ 

[91] √ √         

[92] √          

[63]     √      

[93]   √        

[55] √          

[94] √    √      

[68]          √ 

[95] √          

[65]     √      

[12]     √      

[96]          √ 

[97] √          

[62]   √    √    

[98]          √ 

[99]          √ 

[18]     √      

[20]     √      

[100]          √ 

[31] √ √   √      

[6]     √      

[101] √          

[41]          √ 

[15, 16]         √  

[102] √          

[103, 104] √          

[61]     √      

[21]     √      

[105] √          

[106] √          

[67]          √ 

[107]          √ 

[23]  √   √   √   

[108] √          

[56]  √ √ √ √  √    

[24]     √      

[25]     √      

[2]    √ √      

[28]    √ √      

[66]          √ 

[30]     √      

[109] √          

 



Simula Technical Report Simula.SE.293 
 

85 

 

Table XIX 

Extension to Table XII 

 Coverage-based measures 

Fault 

based 

Others 

No effectiveness 

measure  

 

Control flow Data flow N wise Time based 

Fitness  

value of individuals  Miscellaneous 

[76] √               

[1] √     √         

[77]         √       

[4]         √       

[8] √               

[78] √               

[79, 80]       √         

[9] √               

[81]       √         

[82]         √       

[83] √               

[84]               √ 

[74]     √           

[85] √               

[86]               √ 

[69] √               

[87] √               

[13]               √ 

[88]       √         

[89] √               

[53, 54]       √         

[90] √               

[43]       √         

[91] √               

[92]         √       

[63] √               

[93]   √             

[55] √         √     

[94] √               

[68]       √         

[95]           √     

[65]         √       

[12] 2               

[96] 3         √     

[97] √               

[62] √               

[98] √               

[99]           √     

[18] 2               

[20] √               

[100] √               

[31] √        

[6]       √         

[101] √               

[41] √               

[15, 16]         √       

[102] √               

[103, 104] √               

[61]             √   

[21]       √         

[105] √               

[106] √               

[67]           √     

[107] √               

[23] √               

[108] √               

[56]     √           

[24]   √   √         

[25] √           √   

[2] √               

[28] √               

[66]             √   

[30] √               

[109] √        
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Table XX 

Extension to Table XIII 

 Cost of finding the target Cost of executing the 

final test suite 

Not Discussed 

 number of  

iterations  

Number  

of individuals  

Number  

of fitness evaluations  

Test case  

generation time  

Size of test suite 

[76] √   √   

[1]  √     

[77]      √ 

[4]  √     

[8] √   √   

[78]      √ 

[79, 80]    √   

[9]   √    

[81] √   √   

[82]     √  

[83] √      

[84]     √  

[74] √      

[85]     √  

[86]     √  

[69] √      

[87]   √    

[13]    √ √  

[88]     √  

[89]  √     

[53, 54] √   √   

[90]      √ 

[43] √      

[91] √      

[92] √      

[63]      √ 

[93]    √ √  

[55] √      

[94] √      

[68] √      

[95]   √    

[65]  √     

[12]  √  √   

[96] √ √     

[97] √      

[62] √      

[98] √      

[99]   √ √   

[18] √      

[20] √      

[100] √           

[31]   √    

[6] √           

[101]     √       

[41]       √ √   

[15, 16]       √     

[102]     √       

[103, 104]     √       

[61] √           

[21]     √ √     

[105]     √       

[106] √           

[67] √           

[107] √           

[23]       √     

[108] √     √     

[56] √     √     

[24]           √ 

[25]           √ 

[2]     √       

[28]     √       

[66]           √ 

[30]     √       

[109]     √       

 


