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Abstract. Understanding, managing and reducing costs and risks inherent in change are key 
challenges of software maintenance and evolution, addressed in empirical studies with many different 
research approaches. Change-based studies analyze data that describes the individual changes that are 
made to software systems. This approach can be effective in order to discover cost and risk factors that 
are hidden at more aggregated levels.  However, it is not trivial to derive appropriate measures of 
individual changes for specific measurement goals. The purpose of this review is to improve change-
based studies by 1) summarizing how attributes of changes have been measured to reach specific 
measurement goals, and 2) describing validity issues, and hence improvement areas, for change-based 
studies. Thirty-four papers conformed to the inclusion criteria. Forty-three attributes of changes were 
identified, and classified according to a conceptual model that we developed for the purpose of this 
classification. The goal of each study was to either characterize the evolution process, to assess causal 
factors of cost and risk, or to predict costs and risks. Effective accumulation of knowledge across 
change-based studies requires precise definitions of attributes and measures of change. We 
recommend that new change-based studies base such definitions on the proposed conceptual model. 

1.  INTRODUCTION 

Software systems that are used actively need to be changed continuously [1, 2]. 
Understanding, managing and reducing costs and risks of software maintenance and evolution 
are important goals for both research and practice in software engineering. However, it is 
challenging to collect and analyze data in a manner that exposes the intrinsic features of 
software maintenance and evolution, and a number of different approaches have been taken in 
empirical investigations. A key differentiator between classes of software maintenance and 
evolution studies is the selection of entities and attributes to measure and analyze: 

 
• Lehman’s laws of software evolution were developed on the basis of measuring new 

and affected components in subsequent releases of a software system, c.f., [2, 3]. 
• Investigations into cost drivers during software maintenance and evolution have 

investigated the effects of project properties such as maintainer skills, team size, 
development practices, execution environment and documentation, c.f., [4-7]. 

• Measures of structural attributes of the system source code have been used to assess 
and compare the ease with which systems can be maintained and evolved, c.f., [8-10]. 

An alternative perspective is to view software maintenance and evolution as the aggregate of 
the individual changes that are made to a software system throughout its lifecycle. An 
individual change involves a change request, a change task and a set of revisions to the 
components of the system. With this perspective, software maintenance and evolution can be 
assessed from attributes that pertain to the individual changes. Such attributes are henceforth 
referred to as change attributes, the measures that operationalize the change attributes are 
referred to as change measures, and the studies that base the analysis on change attributes and 
change measures are referred to as change-based studies. Two examples of topics that can be 
addressed in a change-based study are: 

 
• Identify and understand factors that affect change effort during maintenance and 

evolution. This knowledge would contribute to the understanding of software 
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maintenance and evolution in general, because the total effort expended by developers 
to perform changes normally constitutes a substantial part of the total lifecycle cost. 
For a particular project, it is essential to know the factors that drive costs in order to 
make effective improvements to the process or product. For example, if system 
components that are particularly costly to change are identified, better decisions can be 
made regarding refactoring. 

• Measure performance trends during maintenance and evolutions.  Projects should be 
able to monitor and understand performance trends in order to plan evolution and take 
corrective actions if negative trends are observed.  

 
A central challenge is to identify change attributes and change measures that are effective in 
order to perform such analyses. For example, in order to assess and compare changes with 
respect to the man-hours that was needed to perform them, it is necessary to characterize the 
changes in some way, e.g., by measuring their size and complexity. This paper addresses this 
challenge by performing a comprehensive literature review of change-based studies. 
Conducting a comprehensive literature review is a means of identifying, evaluating and 
interpreting all available research relevant to a particular research question, or topic area, or 
phenomenon of interest [11]. This review describes the change attributes that have been used 
in empirical investigations, and we propose a conceptual model for change-based studies that 
enables us to classify them. We will argue that future change-based studies can benefit from 
using this model as a basis for classifications and definitions of change attributes and change 
measures.  

To sum up, the objective of this literature review is to facilitate more effective 
investigations into the costs and risks of software maintenance and evolution, whether they 
are conducted by empirical researchers or by practitioners who are implementing a 
measurement-based improvement program. The approach is to summarize and critically 
review the state of the practice in change-based studies. We address two research questions:  

 
RQ1. Which overall measurement goals have been set in change-based studies, and which 
attributes were measured to achieve these goals?  
 
RQ2. How can change-based studies be improved over the current state of practice? 
 
The remainder of this paper is organized as follows: Section 2 provides a summary of related 
work. Section 3 describes the review procedures, including the criteria for inclusion and 
exclusion of primary papers for the review. Section 4 describes the conceptual model for 
change-based studies. Sections 5 and 6 answer RQ1 and RQ2, respectively. Section 7 
discusses limitations to the review. Section 8 concludes. 

2.  RELATED WORK 

We are not aware of other attempts to provide a comprehensive review of change-based 
studies of software maintenance and evolution. Graves and Mockus summarized three of their 
own studies that showed that time of change, tool usage, and subsystem affected by change 
affected change effort [12]. They also recommended that statistical models of change effort 
should control for developer effects, change size and maintenance type. Niessink listed six 
change attributes that affect change effort that have been identified in empirical work by other 
authors [13]. Of these, maintenance type and change size matched the change attributes 
identified by Graves and Mockus.  
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Kagdi et al. conducted a literature review of studies that have mined data from software 
repositories for the purpose of investigating changes to software components [14]. Their 
perspective is complementary to ours, because automated extraction of data from software 
repositories can be an attractive method for obtaining certain change measures. 

One contribution of this paper is a proposed conceptual model for change-based studies. 
Existing conceptual models that describe software maintenance and evolution [15-17] 
constituted a foundation for the model. Relationships between these models and our model are 
further described in Section 4.  

3.  REVIEW PROCEDURES 

3.1.  Criteria for inclusion and exclusion 

The following top-level criterion for inclusion of papers was derived from the objective of the 
review that was stated above: 

 
Peer reviewed papers that report on case studies that assessed or predicted maintenance 
and evolution activities on the basis of properties of individual changes, in the context of 
managed development organizations. 
 
Assessment and prediction are two broad purposes of measurement [18]. They are highly 
interdependent and we chose to include studies that involved one or both purposes. Due to our 
primary interest in the management of costs and risks of software maintenance and evolution, 
we focused on studies that have been conducted within managed development organizations, 
and chose to exclude investigations on distributed, volunteer based development, commonly 
used in open source software development. Our review targeted both quantitative and 
qualitative studies. Candidate papers were identified using the following procedure: 

 
1. Send queries based on the inclusion criterion to search engines using full-text search 
2. Read identified papers to the extent necessary to determine whether they conformed to the 

criterion 
3. Follow references to and from included papers; then repeat from step 2 
 
Step 1 was piloted in several iterations in order to increase the sensitivity and precision of the 
search. A discussion of the tradeoffs between sensitivity and precision in the context of 
research on software engineering is provided by Dieste and Padua [19]. We arrived at the 
following search criterion for the first step, from which we derived search strings in the query 
languages that is supported by the selected search engines: 
 
( ( size | type | complexity of [a] change | modification | maintenance [ task | request ] ) OR 
( change | modification | maintenance [ task | request ] size | complexity | type ) ) AND  
project | projects AND software 

 
We used Google Scholar (http://scholar.google.com) and IEEExplore 
(http://ieeexplore.ieee.org) because full-text search was required to obtain reasonable 
sensitivity. The queries returned 446 results from Google Scholar and 169 results from 
IEEExplore on the 19 April 2007. In total, 261 papers remained after excluding papers on the 
basis of the title alone, i.e., non-software engineering work, definitely off topic, or not a peer 
reviewed paper. After merging the two sources, 230 papers remained. These underwent Steps 
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2 and 3 above. Sixty-two papers were judged as “included” or “excluded, but under some 
doubt”. These were re-examined by the second and third author, resulting in 33 included 
papers. Disagreements were resolved by discussion and by further clarifying and documenting 
the criteria for inclusion and exclusion. As a final quality assurance, the search criterion was 
applied to all papers from 27 leading software engineering journals and conference 
proceedings (1993 to 2007 volumes), see [20] for details of this source. One additional study 
was identified by this step, resulting in a total of 34 included papers. 

In order to convey the criteria for inclusion or exclusion more explicitly, the remainder of 
this section summarizes studies of software maintenance and evolution that were excluded, 
but were considered to lie on the boundaries of the criteria.  

An influential body of research on software evolution has based analysis on software 
releases and the components, i.e., the system parts of some type and at some level of 
granularity, that were present in successive releases. Belady and Lehman [3] measured the 
number of components that were created or affected in successive releases of the same 
system. Using this study as a basis, they postulated the law of continuing change, the law of 
increasing entropy, and the law of statistically smooth grow. Kemerer and Slaughter [21] 
provided an overview of empirical studies that have followed this line of research. The studies 
that used another unit of analysis than the individual change, e.g., releases or components, 
were excluded from this review. 

Based on an industrial survey on maintenance of application software, Lientz et al. 
quantified the amount of new development versus maintenance, and how work was 
distributed over types of maintenance [22]. This work has been influential in that it has drawn 
attention to later phases of the software lifecycle, and via the adoption of the change 
classification scheme of corrective, perfective and adaptive changes, originally described by 
Swanson [23], and frequently used as a change attribute in the body of research included in 
this review. This work is not included in the review, because it was based on a survey rather 
than a case study. 

Measures of structural attributes (code metrics) have been conjectured to provide 
inexpensive and possibly early assessments and predictions of system qualities. Measures 
have normally been extracted from individual source code components, or from succeeding 
versions of source code components. Briand and Wüst [24] provided an overview of empirical 
work on relationships between structural measures of object-oriented software, and process 
and product qualities. In order to identify erroneous components when building fault 
prediction models, some studies identified the components that were affected by a corrective 
change request, c.f., [25-27]. However, we did not consider these studies to be change-based, 
because the unit of analysis was the individual component. 

Studies on the analysis of software defects have attempted to understand the causes and 
origins of defects. Generally, these studies have analyzed and extracted measures from 
individual components. Some of the studies collected data about corrective change tasks, e.g., 
[28-30]. We chose to exclude studies that analyzed the causes of defects retrospectively, but 
to include studies that analyzed the change tasks that were performed to isolate or correct 
defects. 

 Research on cognitive aspects of software engineering has attempted to understand the 
mental processes that are involved in software engineering tasks. Some of these studies have 
been conducted in the context of change tasks that are performed during software 
maintenance and evolution, c.f., [31]. We chose to exclude these studies, because Détienne 
and Bott [32] have provided a comprehensive summary of this specialized line of research. 
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3.2.  Extraction of data 

Goals, change attributes, and study context (RQ1) were described and classified by combining 
existing description frameworks with data-driven analysis similar to the constant comparison 
method of qualitative analysis [33]. In particular, for measurement goals, passages of relevant 
text were identified, condensed, and rephrased using terms consistent with the description 
template for measurement goals under the Goal Questions Metrics (GQM) paradigm [34]. 
These procedures resulted in the taxonomy listed in Table 1. In order to describe and classify 
conceptual change attributes, we extracted information about the concrete change measures 
that were used in the studies. Key information was names, definitions, value ranges, and 
methods for data collection. This information was then compared and grouped with respect to 
the conceptual model in Figure 1, and with respect to a set of more detailed measurement 
questions, as listed in Tables 2 and 3. The procedures for developing the conceptual model for 
change-based studies are described in Section 4.  

For study context, we describe the business context, measurement procedures and extent of 
data collection. We identified two measures for each of these attributes by using information 
that was available in the reviewed papers. The results are shown in Table A4. 

Our approach to assessing the quality of change-based studies (RQ2) was to assess the 
studies in light of recurring validity issues, as described by Shadish et al. [35]. In order to 
identify areas for improvement for change-based studies, we focused on those validity issues 
that we judged to be particularly relevant in the context of such studies. 

4.  A CONCEPTUAL MODEL FOR CHANGE-BASED STUDIES 

Our proposed conceptual model for change-based studies is depicted in Figure 1. The goals 
for the design of the model were 1) to create a minimal model that 2) facilitates the 
understanding and definition of entities, attributes and measures that were used in the 
reviewed body of research, while 3) maintaining compatibility with existing concepts that 
have been used to discuss software maintenance and evolution.  

We developed and refined the model iteratively during the course of the review, in order to 
capture the change attributes that were used in the reviewed studies. Tables 2 and 3 list the 
relationships between these attributes and the entities in the model. Wherever possible we 
reused concepts from existing conceptual models of software maintenance. In particular, the 
entities Development organization, Human resources, Change task, Change request, 
Component, System and Release, some of them with different names, were reused from the 
proposed ontology of software maintenance by Kitchenham et al. [16]. Similar conceptual 
frameworks have been defined by Dias et al. [15] and Ruiz et al. [17]. We used terms in our 
model that were 1) commonly used in the reviewed body of research, 2) neutral with respect 
to specific technologies, practices or disciplines in software engineering, and 3) internally 
consistent. For example, we used the term change task for the entity that is named 
maintenance task in [16]. Compared to the existing frameworks, the entities Change set, 
Version and Revision and their interrelationships were added, because they are necessary to 
describe and classify the change attributes that concerns changes to the system components. 
The relationships between some of the reused entities were changed, in order to better 
represent the change-oriented perspective taken in this paper.  
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Figure 1. A conceptual model for change-based studies 

 
Standard UML syntax is used in the diagram. A role multiplicity of 1 should be assumed 
when role multiplicity is not shown. Role names are assigned in one direction only, in order to 
avoid cluttering. For compositions, indicated by filled diamonds, the roles in the two 
directions can be read as composed by and part of. 

The perspective adopted in this paper is that a change task constitutes the fundamental 
activity around which software maintenance and evolution is organized. A change task is a 
coherent and self-contained unit of work that is triggered by a change request. A change 
request describes the requirements for the change task. A change task is manifested in a 
corresponding change set. A change set consists of a set of revisions, where each revision 
creates a new version of a component of the system. The new version can be based on an 
existing version of the component, or it can be the first version of the component. A 
component can, in principle, be any kind of work product that is considered to be part of the 
system, although the reviewed studies focused primarily on measurement of source code 
components. Components can form a hierarchy in where a large component can be composed 
by components of finer granularity. A system is deployed to its users through releases. A 
release is composed by a set of versions of components. A release can also be described by 
the change sets or the corresponding change requests that the release incorporates.  

It is convenient to use the term change as an aggregating term for the change task, the 
originating change request, and the resulting change set. Changes, in this sense, involve 
human resources, and are managed and resolved by a development organization. Large 
changes, sometimes referred to as new features in the reviewed body of research, can be 
broken down into smaller changes that are more manageable to the development organization.  

A change attribute is a property of a change task, of the originating change request, or of 
the resulting change set. A change attribute can also be derived from attributes of other 
entities in the conceptual model. For example, the sizes of all components that were involved 
in a change may be averaged, or otherwise combined, in order to form a change attribute that 
represent the size of changed components. Change measures can be extracted from change 
management systems, which are tools that manage the kind of information that is defined by 
our conceptual model. Such systems include tools that are used to manage and track change 
requests and change tasks, and tools that are used to support controlled change of the system 
components. A change outcome is a change attribute that represents the primary quality focus 
of the study, e.g., change effort. A change outcome measure is the operationalization of a 
change outcome, and is typically used as the dependent variable in statistical analyses. 
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It is beyond the scope of this paper to provide operational definitions of all variations of 
specific change measures used in the reviewed body of research. However, the conceptual 
model in Figure 1 can be utilized further in a specific measurement context to facilitate 
precise definitions of change measures. For example, the span of a change could be 
operationalized as “the number of revisions that are part of a change set”, while a measure of 
the size of affected components can be defined as “the arithmetic mean of lines of code in 
versions that revisions in the change set are based on”. Such definitions can be expressed 
formally using the Object Constraint Language (OCL) [36].  

5.  GOALS AND MEASURED CHANGE ATTRIBUTES (RQ1) 

By following the procedures described in Section 3.2, three main categories and 10 sub-
categories of studies were identified, as shown in Table 1. Key properties of each individual 
study are listed in Tables A1, A2 and A3, in Appendix A.  

 
Table 1. Goals and sub-goals for change-based studies. 

Main category Sub-category References 
Goal 1.1:  Understand and improve the maintenance and 
evolution process in a development organization 

[37-42] 

Goal 1.2: Manage and control the maintenance and 
evolution process in a development organization 

[43-45] 

Goal 1.3:  Investigate selected elements in the maintenance 
and evolution process 

[46-49] 

Goal 1: 
Characterize the 
work performed 
on evolving 
systems  
(Table A1) 

Goal 1.4: Understand the general nature of maintenance and 
evolution work 

[21, 50-52] 

Goal 2.1: Identify change attributes that influence change 
outcome 

[53, 54] 

Goal 2.2: Assess effects of a specific process element [55-58] 

Goal 2: Assess 
change attributes 
that explain 
change outcome 
(Table A2) 

Goal 2.3: Validate change measures [59, 60] 

Goal 3.1: Propose methodology for building predictive 
models 

[61-64] 

Goal 3.2: Assess prediction frameworks [65, 66] 

Goal 3: Predict 
the outcome of 
changes  
(Table A3) Goal 3.3: Investigate predictive power of change measures [13, 67, 68] 
 

Goal 2 and Goal 3 studies employed quantitative models that related independent change 
measures to the change outcome measure of interest. Goal 2 studies attempted to identify 
causal relationships for the purpose of understanding and assessment, while Goal 3 studies 
focused on correlations and predictions. Conversely, most Goal 1 studies used summary 
statistics to provide a bird’s eye view of the work that was performed during maintenance and 
evolution. They focused on observing trends in the values for selected change attributes, 
rather than attempting to explain the observations. 

5.1.  Summary of characterization studies (Goal 1) 

Goal 1 studies were split according to the sub-categories listed in Table 1. Goal 1.1 and Goal 
1.2 studies are characterized by close involvement with the measured development 
organization. The measurement programs were planned in advance, e.g., following the GQM 
paradigm [34]. They are similar with respect to goals, the difference being that Goal 1.1 
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studies had the overall goal of improving the maintenance and evolution process, while Goal 
1.2 studies focused on improving management control in ongoing projects. 

The four earliest Goal 1.1 studies are from the space domain, characterized by a long-
lasting mutual commitment between the development organization and software engineering 
researchers. A certain amount of overhead for data collection was accepted in these 
environments. The studies appear to follow a tendency over time from studies for assessment 
and insight [41, 42], via studies for understanding and improved predictability [37], towards 
studies that took concrete actions in the form of process improvements [39]. Lam and 
Shankararaman [40] showed that these measurement goals were also feasible in projects that 
are managed less strictly. While the above studies focused on analyzing a comprehensive set 
of real changes, Bergin and Keating [38] used a benchmarking approach that evaluated the 
outcome of artificial changes that were designed to be representative of actual changes. 

The Goal 1.2 studies were conducted within strictly managed development organizations. 
Arnold and Parker [44] involved management in setting threshold values on a set of selected 
indicators. This was an early attempt to use change measures to support decisions made by 
managers in a development organization. Likewise, Abran and Hguyenkim [43] focused on 
management decision support, and  provided upfront and careful considerations about validity 
issues that pertain to change-based studies. Finally, Stark [45] suggested a rich set of 
indicators that provided answers to questions about the services provided by the development 
organization to its clients. 

Goal 1.3 and Goal 1.4 studies collected data from change management systems, and 
attempted to provide insight into software maintenance and evolution that was generalizable 
beyond the immediate study context. Generalizability to other contexts was claimed on the 
basis of recurring characteristics of systems and development organizations. 

Goal 1.3 studies investigated the effect or intrinsic properties of specific process elements. 
Ng [46] investigated change effort in the domain of Enterprise Resource Planning (ERP) 
implementation. The remaining three studies addressed three different process topics: the 
intrinsic properties of parallel changes [48], instability in requirements [47], and the intrinsic 
properties of small changes [49].  

Goal 1.4 studies addressed the nature of the software evolution and maintenance process in 
general. Kemerer and Slaughter [21] categorized change logs that had been written by 
developers that maintained 23 systems within one development organization in order to 
identify patterns in the types of change that occurred during the investigated period of 20 
years. Mohagheghi [52] analyzed a smaller set of change requests to answer specific 
questions about who requested changes, which quality aspects that were improved by the 
changes, time/phase at which the requests were created, and to what extent change requests 
were accepted by the development organization.  

5.2.  Change attributes in characterization studies (Goal 1) 

Change attributes, typical questions and typical values used during data collection in Goal 1 
studies are shown in Table 2. The leftmost column indicates the part of the conceptual model 
in Figure 1 that normally provides the data for change measures derived from the listed 
change attributes.  

 
Table 2: Change attributes that were measured in Goal 1 studies, ordered by number of studies 
Entity 
providing 
information 

Change 
attribute 

Question asked Typical values # 

Change Maintenance What was the purpose of the Fix/enhance/adapt 12 
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request type change? 
Change 
request 

Change count Was it a change? Simple count of 
changes 

11 

Change 
request 

Time (period) When did the change occur? Date, year, time since 
first deployment 

8 

Change task Change effort How much effort was expended 
on the change task? 

Person hours, ordinal or 
ratio 

9 

System System name To which system or project did 
the change belong? 

Nominal measure 4 

Change 
request 

Quality focus Which system quality was 
improved by the change? 

Functionality/security/ 
efficiency/reliability 

4 

Change 
request 

Status What is the current state of the 
change request? 

New/accepted/rejected/ 
solved 

4 

Change 
request 

Origin In what context or by which 
party was the change request 
made? 

Internal test/external 
users 

3 

Change task Change interval How long did it take to resolve 
the change request? 

Days, ordinal or ratio 3 

Revision Change size  How much content was added, 
deleted or changed? 

Lines of code, ordinal 
or ratio 

3 

Change task Activity Which activities were involved 
in the change task? 

Requirements/analysis/ 
design/coding/test 

2 

Change 
request 

Change/defect 
source 

Which activity caused the 
defect or the need for change?  

Requirements/analysis/ 
design/coding/test 

2 

Revision Change span How many components were 
affected? 

Count of components 2 

Change 
request 

Defect type What kind of coding error was 
committed? 

Initialization/logic/data/ 
interface/computational 

2 

Change 
request 

Artifact type What kind of component was 
affected? 

Query/report/field/ 
layout/data 

1 

Change 
request 

Detection By which technique was the 
defect/need for change 
detected? 

Inspection/test-run/ 
proof techniques 

1 

Change task Delayed Was the change task resolved 
later than scheduled? 

Delayed/not delayed 1 

 
In summary, all Goal 1 studies attempted to characterize the work performed by development 
organizations. A predominant principle of measurement was to categorize changes according 
to selected characteristics. The proportion of changes that belonged to each category was 
compared to organizational standards, to other projects/systems, and between releases or time 
periods. Maintenance type, originally described by Swanson et al. [23], was the criterion for 
classification that was applied most frequently. In particular, the proportion of corrective 
change versus other types of change was frequently used as an indicator of quality, the 
assumption being that corrective work is a symptom of deficiencies in process or product. In 
most cases, observations and conclusions were based on descriptive statistics. In four studies, 
the statistical significance of proportions was investigated [21, 37, 51, 52]. Change effort, 
measured in person hours, was a key change measure for studies that focused on resource 
consumption. The number of changes was sometimes used as a surrogate measure when data 
on effort was not available. Some studies suggested using the average change effort per 
maintenance type as a rough prediction for the effort required to perform future change tasks 
of the same type.  
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5.3.  Summary of studies that assess change attributes (Goal 2) 

Goal 2 studies were split according to the goal sub-categories listed in Table 1. The studies 
used correlation analysis at different levels of complexity in order to identify relationships 
between change measures used as independent variables and the change outcome measure. An 
overview of change outcome measures is given in Section 5.5. 

Goal 2.1 studies attempted to identify causal relationships between change attributes and 
change outcome, while Goal 2.2 studies investigated the effect of specific process elements. 
Graves and Mockus [53] controlled for variations due to maintenance type and change size, 
and showed that change effort increased with system age. They automated the extraction of 
change measures from change management systems in order to minimize measurement 
overhead. Schneidewind [54] used historical change requests to investigate correlations 
between change attributes and the presence of defects. Atkins et al. [55] showed that 
introducing a new tool to support the development of parallel versions of the same 
components had a positive effect on effort. Hersleb and Mockus [57] showed that 
decentralization prolonged the change interval. Rostkowycz, Rajlich et al. [58] showed that  
re-documenting a system reduced subsequent change effort, and demonstrated that the 
breakeven point for investment in re-documentation versus saved change effort was reached 
after 18 months. 

Goal 2.3 studies attempted to find appropriate change measures of concepts that are 
commonly assumed to influence change outcome. Maya, Abran et al. [60] described how 
function point analysis could be adapted to the measurement of small functional 
enhancements. They tested whether the function point measure could predict change effort, 
and they observed a weak correlation in their study. Arisholm [59] showed that aggregation of 
certain measures of structural attributes of changed components could be used to assess the 
ease with which object-oriented systems could be changed. 

5.4.  Summary of prediction studies (Goal 3) 

While Goal 2 studies attempted to identify change attributes that influence change outcome, 
the Goal 3 studies attempted to predict that outcome. These studies used various prediction 
frameworks in order to build development organization specific prediction models of change 
outcome. The studies can be split according to the sub-categories listed in Table 1. 

Goal 3.1 studies investigated methods and processes for building prediction models. In 
[61], Briand and Basili suggested and validated a process for building predictive models that 
classified corrective changes into different categories of effort. Evanco [62] used similar 
procedures to predict effort for isolating and fixing defects, and validated the prediction 
model by comparing the results with the actual outcomes in new projects. Xu et al. [64] 
employed decision tree techniques to predict the change interval. The predictions from the 
model were given to the clients to set their expectations, and the authors quantified the 
approach’s effect on customer satisfaction. Mockus and Weiss [63] predicted the risk of 
system failures as a consequence of changes that were made to the system. They automated 
the statistical analysis required to build the models, and integrated the predictions into the 
change process that was used by the developers. 

Goal 3.2 studies compared prediction frameworks with respect to their predictive power 
and the degree to which the frameworks exposed explanations for the predictions. In [65], 
Jørgensen assessed and compared neural networks, pattern recognition and regression models 
for predicting change effort. He concluded that models can assist experts in making 
predictions, especially when the models expose explanations for the predictions. In [66], 
Reformat and Wu compared Bayesan networks, IF-THEN rules and decision trees for 



Simula Research Laboratory Technical Report 2008-05 
 

 11

predicting change effort on an ordinal scale. They concluded that the methods complemented 
each other, and suggested that practitioners should use multi-method analysis to obtain more 
confidence in the predictions. 

Goal 3.3 studies attempted to identify change measures that could operationalize the 
conceptual change attribute of interest. Niessink and van Vliet [13] created and compared 
models for predicting change effort in two different development organizations. They 
suggested that the large difference in explanatory power between the organizations were due 
to the differences in the degree to which the development organizations applied a consistent 
change process. In [67], the same authors investigated variants of function point analysis to 
predict change effort. Although the regression models improved when the size of affected 
components was accounted for, the authors suggested that analogy-based predictions might be 
more appropriate for heterogeneous data sets. Using data on change requests and measures of 
system size from 55 banking systems, Polo et al. [68] attempted to build predictive models 
that could assist in the early determination of the value of maintenance contracts. 
Considerable predictive power was obtained from rudimentary measures, a finding that the 
authors contributed to the homogeneity of context (banking systems) and maturity of 
technology (Cobol). 

5.5.  Change attributes in assessment and prediction studies (Goal 2 and Goal 3) 

Although Goal 2 and Goal 3 studies have very different goals, they are quite similar from the 
perspective of measurement, and they are therefore described together in this section.  

The choice of dependent variable, i.e., the change outcome measure, is a key discriminator 
with respect to the focus and goal of a study. The dependent variables in the reviewed studies 
are derived from four change attributes: 

Change effort. The number of person hours expended on performing the change task is used 
as a change outcome measure in studies on change attributes that may influence productivity, 
and in studies on the estimation of effort for change tasks. Twelve of 17 studies had these 
foci. In most cases, the measure was reported explicitly per change task by developers. Graves 
and Mockus proposed an algorithm that made it possible to infer change effort from more 
aggregated effort data [12]. This algorithm was put to use in, e.g., [55].  

Change interval. While change effort is a measure of the internal cost of performing a 
change task, the time interval between receiving and resolving the change request can be a 
relevant dependent variable for stakeholders external to the development organization. This 
change measure was used in studies that focused on customer service and customer 
satisfaction [57, 64], where the measure could be extracted from information resident in 
change management systems. 

Defects and failures. Historical data of defects and failures were used to identify change 
attributes that caused or correlated with defects and failures, to assess probabilities of defects 
or failures, and to assess the effect on defect proneness or failure proneness of a specific 
product improvement program. Such change measures are not straightforward to collect, 
because it can be difficult to establish a link from an observed defect or failure to the change 
that caused it. The two studies that have used this dependent variable analyze relatively large 
changes [54, 63]. 

Change attributes, typical questions and typical values used during data collection in Goal 2 
and 3 studies are shown in Table 3. The leftmost column indicates the parts of the conceptual 
model in Figure 1 that provide data for deriving change measures from the listed change 
attributes. Measures of the change request, the change task and the revisions that are part of a 
change set occurred most frequently. Size, structure and age were the most frequently 
measured change attributes that used information from changed components and their 
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versions. Information about revisions, versions and components that were involved in a 
change set could only be measured after the change had been made. For the prediction goals, 
such change measures needed to be predicted first. The degree of collaboration (developer 
span) was the most frequently measured change attribute that used information about the 
human resources involved. No attribute of the development organization was used more than 
once.  

 
Table 3. Change attributes measured in Goal 2 and 3 studies, ordered by category 

Entity providing 
data 

Change 
attribute 

Question asked Typical values/scale # 

Change request Maintenance 
type 

What was the purpose of the 
change? 

Fix/enhance/adapt 9 

Change request Criticality What would be the effect of not 
accepting the change request? 

Minor/major 
inconvenience/stop 

4 

Change request Change/defec
t source 

Which activity caused the 
defect or the need for change? 

Requirements/analysis/ 
design/coding 

2 

Change request Defect type What kind of coding error was 
committed? 

Init/logic/interface/data 2 

Change request Requirements 
instability 

To what extent were change 
requirements changed? 

Number of requirement 
changes 

2 

Change request Quality focus Which system quality was 
improved by the change? 

Security/efficiency/ 
reliability 

1 

Change task Change effort How much effort was expended 
on performing the change task? 

Person hours, ordinal or 
ratio 

15 

Change task Change 
interval  

How long did it take to resolve 
the change request? 

Days, ordinal or ratio 5 

Change task Subjective 
complexity 

How complex was the change 
perceived to be? 

3-point ordinal scale 3 

Change task Test effort What was the test effort 
associated with the change? 

# test runs 1 

Revision Change span How many components were 
affected? 

# components changed 9 

Revision Change size How much content was 
changed? 

Added + deleted LOC 7 

Revision Function 
points 

How many logical units will be 
changed, added or deleted by 
the change? 

Count of changed, 
added and deleted 
units, weighted by 
complexity  

2 

Revision Coding mode Was content changed or added? Changed/added 1 
Revision Execution 

resources 
How much (added) 
computational resources were 
required by the change? 

CPU-cycles, bytes of 
memory 

1 

Version Size 
 

How large were the changed 
components?  

Lines of code, number 
of components affected 

4 

Version Structural 
attributes 

What was the profile of the 
structural attributes of the 
changed components? 

Count of structural 
elements (coupling, 
branching statements) 

3 

 
Table 3. Continued 

Version Data 
operation 

Which data operation did the 
affected components perform?  

Read/update/process 2 

Version Criticality How critical was the affected 
component? 

Is mission critical? 1 

Version Code quality Had the changed components Refactored/not 1 
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been refactored? refactored  
Component Age  How old were the changed 

components? 
Years since 
deployment, version 
number, date  

3 

Component Documentati
on quality 

How well was the changed 
components documented? 

Was documentation 
rewritten? 

1 

Component Code 
volatility 

How frequently had the 
affected components been 
changed? 

Total number of 
changes 

1 

Component Component 
kind 

What kind of component was 
affected? 

Batch/online program 1 

Component Component 
id  

Which specific components 
were changed? 

Class or subsystem 
name 

1 

Component Technology Which technology was applied 
in the changed components? 

3GL/4GL 1 

Human resource Developer 
span 

How many developers were 
involved in performing the 
change task? 

Number of people 3 

Human resource System 
experience 

For how long time had the 
developers been involved in 
developing or maintaining the 
system? 

Number of years 1 

Human resource Developer id Who performed the change 
task? 

Nominal measure 1 

Human resource Maintenance 
experience 

For how long had the 
developers performed software 
maintenance work? 

Number of years 1 

Human resource Objective 
change 
experience 

How many changes had earlier 
been performed by the 
developers on affected 
components? 

Number of previous 
check-ins in version 
control system 

1 

Human resource Subjective 
experience 

How was experience with 
respect to the affected 
components perceived? 

3-point ordinal scale 1 

Development 
organization 

Team id Which team was responsible for 
the change task? 

Nominal measure 1 

Development 
organization 

Location Where were human resources 
located physically? 

Distributed/not 
distributed 

1 

Development 
organization 

Tool use Which tool was involved in the 
change task? 

Tool used/not used 1 

6.  VALIDITY ISSUES AND IMPROVEMENTS TO CHANGE-BASED STUDIES 
(RQ2) 

Study validity refers to the truth of propositions about correlations (conclusion validity) and 
causal relationships (internal validity) between variables within the studied context, whether 
these variables captured the intended aspects of real worlds concepts (construct validity), and 
whether results are applicable beyond the studied context (external validity), c.f., [35]. The 
following more specific validity issues were investigated in order to identify possible 
improvements to change-based studies:  

1. Did the measured entities and change attributes adequately represent the main 
phenomenon or quality under study (construct validity)? 
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An assumption that underlies most change-based studies is that software maintenance and 
evolution can be viewed as the aggregation of changes applied to the evolving system. 
However, if change effort constitutes a small proportion of the total cost of maintenance, the 
validity of this assumption is questionable. Furthermore, if study questions are about the 
effects of factors at the project level, such as principles of project management or contract 
regimes, a change-based study is not necessarily appropriate. Abran and Hguyenkim [43] 
stated and handled the former threat explicitly, by comparing change effort data to activity-
based effort reports. This procedure verified the appropriateness of using change measures to 
characterize the activities of the development organization. We recommend comparing the 
effort expended on individual changes to the total cost of maintenance, and using this 
proportion as a rough indicator of the relevance of a change-based study.  

2. Was a clear rationale applied when deriving change measures from change attributes 
(construct validity)? 
This question concerns construct validity of the individual change measures. An illustrative 
example is the use of the term change size. Investigators should make clear whether the 
change measure is supposed to capture the amount of affected code in the change set, or 
whether it is supposed to capture the amount of work involved in resolving a change request. 
Only four of the reviewed studies discussed such issues [48, 49, 52, 59]. A plausible 
explanation is the lack of use of conceptual frameworks from which to derive change 
measures. The extracted change attributes that are listed in Tables 2 and 3 and that refer to the 
conceptual model in Figure 1 are intended to be a framework that is useful for deriving 
change measures in new change-based studies. 

3. Were all change attributes that could contribute to observed outcome considered (internal 
validity)? 
It is challenging to identify causal relationships in change-based studies, due to the presence 
of and interactions between the multitudes of change attributes that might influence change 
outcome. Even with a coarse grouping of change attributes, as in Tables A2 and A3, very few 
studies considered change measures from every group. We recommend that new studies 
consider a broader set of change measures. The summaries in Tables 2 and 3 are intended to 
be helpful in this respect. In addition, accumulation of knowledge of causal relationships 
through continuously improved conceptual frameworks and theories would support new 
studies in the selection of appropriate change attributes and corresponding operational change 
measures.  

4. Did the study have sufficient power to detect relationships in the population (conclusion 
validity)? 

In statistical hypothesis testing, power is defined as the probability of discovering a 
relationship that exists in the population. The power of an analysis increases as the number of 
data points increases. Table A4 summarizes the extent of data collection in the reviewed 
studies. One factor that might have affected the extent of data collection in the studies is 
whether data was created by the change process that the development organization applied, 
i.e., naturally created, or created for the purpose of measurement. The median numbers of 
analyzed changes in the reviewed studies were 1724 and 129 for naturally created and 
purpose-created data, respectively. The median durations of data collection were 48 and 21 
months for the same categories. These observations support the intuitive idea that relying on 
data that occurs naturally not only reduces organizational overhead, but also facilitates 
prolonged and more extensive measurement programs. We therefore recommend that 
investigators look for naturally created data that can be used as alternatives to purpose-created 
data.  
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5. Did the study collect appropriate kinds of data for the research questions (internal 
validity)? 
The ability to discover causal relationships also depends on the type of data that was 
collected, and the method of analysis. In the reviewed studies, the data collected and analysis 
are primarily quantitative, and qualitative methods are used to a limited degree. Briand et al. 
[39] elicited root causes for changes by interviewing developers and by inspecting change 
artifacts. Nurmuliani and Williams [47] employed qualitative methods, such as interviews and 
observations, in order to extract quantitative change measures. Indeed, many studies relied on 
interpretations of qualitative data. For example, reading change requests for the purpose of 
classifying changes is a simple use of qualitative procedures. The study by Lam and 
Shankararaman [40] went one step further by creating a system specific hierarchy of types of 
changes, based on the changes that actually occurred in the system. In studies that attempt to 
explain why and how effects occur, the use of systematic qualitative procedure can be 
appropriate. The review shows that there is a potential for change-based studies to utilize such 
procedures. 

6. Could change measures be reliably collected (conclusion validity)? 
Some of the change measures defined in Table 3 (criticality, subjective experience, subjective 
complexity and maintenance type) depend on human judgement. The potential unreliability 
inherent in such change measures can be a threat to conclusion validity, because it may 
weaken or strengthen an observed effect beyond the true effect.  Abran and Hguyenkim [43] 
used a pilot study to verify that change data could be classified reliably. Remedies for 
unreliability include improved training and use of change measures that are adapted to the 
local context. Graves and Mockus [53] applied techniques to automatically deduce the 
maintenance type from information in change management systems. Such techniques improve 
reliability and reduce measurement overhead, but may introduce other validity issues. 

7. Were the study results generalizable to situations beyond the studied context (external 
validity)? 
Case studies rely on analytic generalization, which means that the investigator attempts to 
determine whether or not results are applicable to other contexts through the application of 
theory [69]. A case study can confirm or refute an existing theory, or indicate that the theory 
needs to be modified in some way. A strengthened or modified theory can subsequently be 
applied in other contexts in order to make predictions or explain observed phenomena. 
Kemerer and Slaughter  [21] intended to study and develop a theory of the process of software 
evolution. No other study discusses theory in the sense described above. This finding is not 
surprising, because it is known that the use of theory in software engineering research is weak 
[70]. The result is that many of the studies provide results that are useful within the studied 
context, while their applicability to other contexts is more questionable. A basic practice to 
improve generalizability is to select and report context attributes that may have affected the 
results. Whenever possible, the rationale for selecting specific context attributes should also 
be reported.  
 

7.  LIMITATIONS 

The process by which papers where selected balanced the use of systematic, repeatable 
procedures with the intent to identify a comprehensive set of change-based studies. A more 
repeatable process could have been achieved by limiting searches to abstracts and titles only, 
by omitting traversal of literature references, and by excluding the Google Scholar search 
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engine, which yielded low precision for paper retrieval. However, a more repeatable process 
may have failed to retrieve many of the included papers.  Given that meeting the objective and 
answering the research questions of this study relied on identifying a broad set of change-
based studies we chose to assign lower priority to repeatability. As a consequence, the 
procedures we followed did not fully comply with the procedures for systematic reviews that 
were suggested by Kitchenham et al. [11]. It is worth noting that the challenges experienced 
in attempting to follow systematic procedures stem from the lack of common conceptual 
frameworks. A common conceptual basis would clearly improve sensitivity and precision 
during the selection of papers. 

The elicitation of measurement goals, change attributes and study contexts (RQ1) was 
based partly on the coding of qualitative information; hence, decisions regarding coding that 
were made on the basis of subjective judgment could have influenced the results. The use of 
existing description frameworks mitigated this effect to some extent, and contributed to a 
relatively straightforward coding process.  

The validity issues that were investigated in the quality assessment (RQ2) were identified 
by the judgment of the authors. They should therefore not be taken as comprehensive. 
However, we do believe that key issues for change-based studies are addressed. 

8.  CONCLUSIONS AND FURTHER WORK 

Change-based studies assume that software maintenance and evolution is organized around 
change tasks that transform change requests into sets of modifications to the components of 
the system. This review of change-based studies has shown that specific study goals have 
been to characterize projects, to understand the factors that drive costs and risks during 
software maintenance and evolution, and to predict costs and risks. Change management 
systems constitute the primary source for extracting change measures. Several of the reviewed 
studies have demonstrated how measurement and analysis can be automated and integrated 
seamlessly into the maintenance and evolution process. 

Although this review includes examples of successful measurement programs, it was 
difficult to determine whether and how insights into software maintenance and evolution 
could be transferred to situations beyond the immediate study context. On the basis of our 
discussion on generalizability and other selected study qualities, we recommend that new 
change-based studies should base measurement on conceptual models and, eventually, 
theories. This observation may be seen as an instance of a general need for an improved 
theoretical basis for empirical software engineering research. In order to make progress along 
this line, we anchored this review in a minimal, empirically based, conceptual model with the 
intention of supporting change-based studies. We built the model by ensuring compatibility 
with existing ontologies of software maintenance, and by extracting and conceptualizing the 
change measures applied in 34 change-based studies from a period of 25 years. In future 
work, we will conduct a change-based multiple-case study with the aim of understanding 
more about the factors that drive costs of software maintenance and evolution. The results 
from this review constitute important elements of the study design. We believe that this 
review will be useful by other research and measurement programs, and will facilitate a more 
effective accumulation of knowledge from empirical studies of software maintenance and 
evolution. 
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APPENDIX A. SUMMARY OF EXTRACTED DATA 
 
The three main classes of included studies are listed in Tables A1, A2 and A3. Within each 
class, the studies are listed in chronological order. In Tables A2 and A3, an asterisk (*) is used 
as an indication that the variable was statistically significant, at the level applied by the 
authors of the papers, in multivariate statistical models. Table A4 summarizes business 
context, measurement procedures and extent of data collection in the reviewed studies. 
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Table A1. Characterize the work performed on evolving systems (Goal 1). 
Study Study goal Indicators and change attributes 
Arnold and 
Parker [44] 
 

Manage the  
maintenance 
process 

Change count by: 
• Maintenance type (fix, enhance, restructure) 
• Status (solved requests vs. all requests), per maintenance type 
• Change effort (little/moderate vs. extensive) per maintenance 

type 
Measures were compared to local threshold values for several 
systems 

Weiss and 
Basili [42] 
 

Assess 
maintenance 
performance in 
ways that 
permit 
comparisons 
across systems 

Change count by: 
• Defect source (req. specification, design, language, …) 
• Change effort (<1hr, <1day, >1day) 
• Quality focus (clarity, optimization, user services, unknown) 
• Maintenance type (change, fix non-clerical error, fix clerical 

error) 
• Change span (number and identity of changed components) 
• Detection (test runs, proof techniques, and more) 
• Change effort (design, code: <1hr, <1day, >1day, unknown) 
Measures were compared between projects/systems 

Rombach, 
Ulery et al. 
[41] 
 

Understand 
maintenance 
processes, in 
order to 
improve initial 
development 
and 
management of 
maintenance 
projects 
 

Change count by: 
• Maintenance type (adapt, correct, enhance, other) 
• Change effort (<1hr, <1day, >1day) 
Average number of  
• Change size (source lines + modules added, changed and 

deleted) 
Compare development to maintenance with respect to proportion of 
• Change effort (<1hr, <1day, >1 day) per activity  
• Defect type (initialization, logic, interface, data, computational) 
• Defect source (specification, design, code, previous change) 

Abran and 
Hguyenkim 
[43] 

Analyze and 
manage 
maintenance 
effort  

• Distribution of change effort by maintenance type (corrective, 
adaptive, perfective, user) by system and year 

• Average change effort, per maintenance type, system and time 
 

Basili, 
Briand  al. 
[37]  

Improve 
understanding 
and 
predictability 
of software 
release effort  

Distribution of change effort by 
• Activity (analysis, design, implementation, test, other) 
• Activity, for costliest projects/systems 
• Activity, compared between maintenance types (correct, 

enhance)  
• Maintenance type (adapt, correct, enhance, other) 
• Origin (user, tester) 
 
• Compare change count and change size (LOC), between origins 

(internal tester, user) 
Stark [45] Control 

customer 
satisfaction, 
maintenance 
cost and 
schedule 

Time trend in proportions of  
• Delayed (delayed vs. not delayed) 
• Status (solved vs. not yet solved)  
• Status (rejected vs. not rejected) 
• Change interval used to close urgent requests 
• Change count and change effort by defect type/maintenance 

type/quality focus (computational, logic, input, data handling, 
output, interface, operations, performance, specification, 
improvement) 
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Table A1. Continued. 
Study Study goal Indicators and change attributes 
Gefen and 
Schneberger 
[51] 

Investigate the 
homogeneity of 
the maintenance 
phase, with 
respect to the 
amount of change 

• Time trend in change count 
• Time trend in change count, by maintenance type 

(requirement change, programming related fix) 
• p-value and coefficient value in regression models of 

time vs. change count in time period, and per 
maintenance type 

• p-value in t-test of difference between time periods with 
respect to maintenance type (correct, adapt) and change 
count 

Burch and Kung 
[50] 

Understand time  
trends of changes 

• Time trend in change count, by maintenance type 
(support, fix, enhance), using statistical models 

Briand, Kim et 
al. [39] 

Assess and 
improve quality 
and productivity 
of maintenance 

• Qualitative summaries, based on interviews and 
questionnaires, of factors that influence maintenance 
performance (focused on product defects), related to 
development organization, process, product and people 

Lam and 
Shankararaman 
[40] 

Assess trends in 
maintenance 
performance 

• Average change effort, by artifact type (domain specific) 
• Change count, by type and time period 
• Change count that resulted in defect, by time period 

Kemerer and 
Slaughter [21] 

Identify and 
understand the 
phases through 
which software 
systems evolve 

• p-values and coefficient in regression model of time vs. 
change count 

• Degree to which certain maintenance types occur 
together over time, by using gamma analysis [71]. 31 
sub-types of corrective, adaptive, enhancive and new 
changes were used 

Ng [46] Understand ERP 
maintenance 
effort 

• Change effort and change count by origin (service 
provider, end-client) and maintenance type (fix, enhance, 
master data) 

Perry, Siy et 
al.[48] 

Understand 
parallelism in 
large-scale 
evolution 

Change (at three levels of granularity) count by 
• Change interval (number of days) 
• Status (being worked on, not being worked on) 
• Change span (number of files) 
• Developer span (see Table 3) 

Bergin and 
Keating [38] 

Assess 
changeability of a 
software system 

• Change size (percentage change to the software required 
by seven typical changes) 

Mohagheghi, 
Conradi et al. 
[52] 

Investigate the 
nature of change 
requests in a 
typical project 
 

Proportions, and p-value for one-proportion tests of  
• Quality focus (functional vs. non-functional changes) 
• Origin (inside vs. outside development organization) 
• Time (before vs. after implementation and verification) 
• Status (accepted vs. not accepted), in total and per 

release 
 

Nurmuliani and 
Zowghi [47] 

Measure 
requirements 
volatility in a 
time-limited 
project 

• Time trend in maintenance type (add, delete, modify 
requirement) 

• Time trend in quality focus  
• Change interval, by maintenance type and quality focus 
• Mean predicted change effort, by maintenance type and 

quality focus 
Purushothaman 
and Perry [49] 

Understand the 
nature of small 
code changes 

• Change count by maintenance type (corrective, adaptive, 
perfective, inspect) compared between small and larger 
changes 
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Table A2. Assess change attributes that explain change outcome (Goal 2). 
Study Study goal and dependent 

variables (DV) 
Independent variables 
of change request, 
change task, change 
set and revision 

Independent 
variables of 
system,  
components or 
versions 

Independent 
variables of  
human 
resources/ 
organization 

Maya, 
Abran et al. 
[60] 

Propose and validate 
function points as 
measure of change size, 
for the purpose of 
productivity assessment 
and prediction 
DV: Change effort 

Function points (fine 
granularity for 
complexity) 
 

Not used Not used 

Graves and 
Mockus [53]   

Identify change attributes 
that influence change 
effort and to find 
evidence of code decay 
DV: Change effort 

Maintenance type* 
Change span (check-
ins)* 
Change interval 

Not used 
Age* 

Developer id 
 

Schneide- 
wind [54] 

Understand how change 
request attributes relate to 
process and product 
quality, and build quality 
prediction models 
 
DV: Software defect and 
failure as a consequence 
of change 
 

Maintenance type 
Subjective 
complexity 
Change size * 
Change span ( 
# requirements 
affected, modules 
affected)  
Change effort (code, 
test) 
Execution resources* 
Criticality* 

Criticality  
Code volatility 
Data operation 
 

Developer span 
Requirement 
instability 
Test effort 
 

Atkins, Ball 
et al. [55] 

Evaluate the impact of a 
tool (version editor) 
DV: Change effort 
 

Maintenance type* 
Change size 
Change span (# 
check-ins) 

Not used Tool use* 
(version editor 
used) 

Herbsleb 
and Mockus 
[57] 

Evaluate the impact of 
project decentralization  
 
DV: Change interval 

Maintenance type* 
Change span (check-
ins, modules)* 
Criticality* 

Not used Developer 
span*  
Time (date)* 
Location*  

Rostkowycz, 
Rajlich et al. 
[58] 

Assess the cost-benefit of 
re-documenting software 
components 
DV: Change effort 

Change span Not used Time (date)* 

Geppert, 
Mockus et 
al.[56] 

Assess effect of 
refactoring 
DV: Defects, change 
effort, change size, 
change span 

Not used Code quality 
(affected code 
was 
refactored?)* 

Not used 

Arisholm 
[59] 

Validate measures of 
structural attributes, 
adapted for changes, as 
indicators of 
changeability 
DV: Change effort 

Change size 
 

Structural 
attributes 
weighted by 
change size 
Export 
coupling* 
Class size* 

Not used 
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Table A3. Predict the outcome of changes (Goal 3). 
Study Study goal and dependent 

variables (DV) 
Independent variables 
of change request, 
change task, change set 
and revision 

Independent 
variables of 
system,  
components or 
versions 

Independent 
variables of  
human 
resources/ 
organization 

Briand and 
Basili [61] 

Validate a proposed 
process for constructing 
customized prediction 
models of change effort, 
DV: Change effort 

Maintenance type* 
Change source* 
Defect type* 
Change size  
Change span 

Not used Not used 

Jørgensen 
[65] 

Assess and compare 
modelling frameworks 
and change measures in 
predictive models  
DV: Change effort 

Change size* 
Maintenance type* 
Subjective complexity* 
Coding mode* 
Criticality 

Technology 
(3GL/4GL) 
Age 
Size 

System 
experience 
Maintenance 
experience 

Niessink 
and van 
Vliet [67] 

Assess feasibility of using 
function points to predict 
change effort 
DV: Change effort 

Function points* 
Subjective complexity* 

Size (LOC)* Not used 

Niessink 
and van 
Vliet [13] 

Identify cost drivers that 
can be used in models for 
prediction change effort, 
in two development 
organizations 
DV: Change effort 

Change size* 
Change span (screens, 
lists, components, db 
entities, db attributes, 
temporary programs)* 
Subjective complexity* 
Change source* 

 

Size* 
Structural 
attributes  
(# GOTO’s)* 
Component 
kind* 
Documentation 
quality* 

Subjective 
experience * 
Team id* 
Requirement 
instability* 

Mockus 
and Weiss 
[63] 

Investigate attributes that 
influence failure-
proneness  
Construct a usable 
failure-prediction model 
DV: Software failure as a 
consequence of change 

Maintenance type* 
Change size* 
Change span 
(subsystems, modules, 
files, check-ins, sub-
tasks)* 
Change interval* 

Structural 
attributes (size 
of changed 
files) 

Developer 
span (# 
developers) 
Objective 
change 
experience* 

Evanco 
[62] 

Develop and assess a 
prediction model for 
corrective changes 
DV: Change effort 

Change span 
(subsystems, 
components, 
compilation units 
affected)* 
Change span * 

Structural 
attributes  
(# parameters, 
cyclomatic 
complexity,  
# compilation 
units)* 

Not used 

Polo, 
Piattini et 
al.[68] 

Early prediction of 
maintenance effort 
DV: High/low change 
effort 

 
Maintenance type* 
Criticality* 

 
Size(LOC, 
modules)* 
 

Not used 

Reformat 
and Wu 
[66] 

Assess AI techniques to 
construct predictive 
modes of corrective 
change effort, DV: 
Change effort 

 
Defect type* 
Subjective complexity* 
 

 
Data operation 
(accessing, 
computational)
* 

Not used 

Xu, Yang 
et al. [64] 

Manage customer 
satisfaction 
DV: Change interval 

 
Maintenance type* 
Change effort* 

 
Age (Task id, 
system id, 
version id) 

Not used 
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Table A4. Business context, measurement procedures and extent of data collection. 

Category Sub-
category 

Value Value explanation References 

In-house 
Embedded 

Embedded system developed 
for  internal use 

[37, 39, 41, 42, 44, 
54, 61, 62, 65, 66] 

In-house IS Information system 
developed for internal use 

[13, 21, 43, 46, 60] 

Multi-client System developed for 
multiple business clients 

[40, 45, 47-49, 52, 
53, 55-59, 63, 64, 68] 

Business 
model 

Single-client System developed for one 
business client 

[38, 50, 51, 67] 

Aero-space NASA [37, 39, 41, 42, 44, 
54, 61, 62] 

Telecom Switching, billing [38, 48, 49, 52, 53, 
55-57, 63, 65] 

Finance Banking, insurance [43, 58, 60, 67, 68] 
Government - [13, 46] 
Other Retail, hotel management [21, 40, 64] 
R&D SW/research tools [59, 66] 

Business 
context 

Business 
domain 

Not reported - 
 

[45, 47, 50, 51] 

Natural Measurements relied on 
footprints of change process  

[13, 37, 39, 41-44, 
54, 59, 61, 65, 66] 

Purpose Data was created for the 
purpose of measurement 

[21, 38, 40, 46-50, 
52, 53, 55-57, 62, 63, 
67, 68] 

Data origin 

Mixed Combination of Natural and 
Purpose  

[45, 51, 58, 60, 64] 

Expert Expert resources required for 
measure extraction 

[13, 21, 38, 44, 47, 
54, 60, 66-68] 

Clerical Non-expert resources 
required for measure 
extraction 

[37, 39-43, 45, 51, 
58, 61, 65] 

Measurement 
procedures 

Extraction 
of 
measures 

Automated Measure extraction  was 
automated 
 

[46, 48-50, 52, 53, 
55-57, 59, 62-64] 

< 25 
percentile 

 # changes <=  127 [13, 38, 41, 47, 54, 
58, 59, 65] 

25 to 75 
prcntl. 

127 < # changes <= 2945 [37, 42-46, 50-53, 56, 
60-62, 66, 67] 

75 to 95 
prcntl. 

2945 < # changes <= 20902 [48, 55, 57, 63, 64, 
68] 

> 95 prcntl. # changes > 20902 [21, 49] 

Change 
count 

Not reported  [39, 40] 
< 25 
percentile 

# months <= 18 [13, 37, 59, 64, 65, 
67, 68] 

25 to 75 
prcntl. 

18 < # months <= 60 [41-43, 45, 46, 51-53, 
55, 57, 58, 60] 

75 to 95 
prcntl. 

60 < # months <=195 [48-50, 63] 

> 95 prcntl. # months > 195 [21, 54] 

Extent of data 
collection 

Duration 

Not reported  [38-40, 44, 56, 61, 
62, 66] 
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