
Simula Research Laboratory Technical Report 2008-05

 1

A systematic review of empirical software engineering studies that
analyze individual changes

Hans Christian Benestad, Bente Anda and Erik Arisholm
Simula Research Laboratory/University of Oslo

Abstract. Understanding, managing and reducing costs and risks inherent in change are key
challenges of software maintenance and evolution, addressed in empirical studies with many different
research approaches. Change-based studies analyze data that describes the individual changes that are
made to software systems. This approach can be effective in order to discover cost and risk factors that
are hidden at more aggregated levels. However, it is not trivial to derive appropriate measures of
individual changes for specific measurement goals. The purpose of this review is to improve change-
based studies by 1) summarizing how attributes of changes have been measured to reach specific
measurement goals, and 2) describing validity issues, and hence improvement areas, for change-based
studies. Thirty-four papers conformed to the inclusion criteria. Forty-three attributes of changes were
identified, and classified according to a conceptual model that we developed for the purpose of this
classification. The goal of each study was to either characterize the evolution process, to assess causal
factors of cost and risk, or to predict costs and risks. Effective accumulation of knowledge across
change-based studies requires precise definitions of attributes and measures of change. We
recommend that new change-based studies base such definitions on the proposed conceptual model.

1. INTRODUCTION

Software systems that are used actively need to be changed continuously [1, 2].
Understanding, managing and reducing costs and risks of software maintenance and evolution
are important goals for both research and practice in software engineering. However, it is
challenging to collect and analyze data in a manner that exposes the intrinsic features of
software maintenance and evolution, and a number of different approaches have been taken in
empirical investigations. A key differentiator between classes of software maintenance and
evolution studies is the selection of entities and attributes to measure and analyze:

• Lehman’s laws of software evolution were developed on the basis of measuring new

and affected components in subsequent releases of a software system, c.f., [2, 3].
• Investigations into cost drivers during software maintenance and evolution have

investigated the effects of project properties such as maintainer skills, team size,
development practices, execution environment and documentation, c.f., [4-7].

• Measures of structural attributes of the system source code have been used to assess
and compare the ease with which systems can be maintained and evolved, c.f., [8-10].

An alternative perspective is to view software maintenance and evolution as the aggregate of
the individual changes that are made to a software system throughout its lifecycle. An
individual change involves a change request, a change task and a set of revisions to the
components of the system. With this perspective, software maintenance and evolution can be
assessed from attributes that pertain to the individual changes. Such attributes are henceforth
referred to as change attributes, the measures that operationalize the change attributes are
referred to as change measures, and the studies that base the analysis on change attributes and
change measures are referred to as change-based studies. Two examples of topics that can be
addressed in a change-based study are:

• Identify and understand factors that affect change effort during maintenance and

evolution. This knowledge would contribute to the understanding of software

Simula Research Laboratory Technical Report 2008-05

 2

maintenance and evolution in general, because the total effort expended by developers
to perform changes normally constitutes a substantial part of the total lifecycle cost.
For a particular project, it is essential to know the factors that drive costs in order to
make effective improvements to the process or product. For example, if system
components that are particularly costly to change are identified, better decisions can be
made regarding refactoring.

• Measure performance trends during maintenance and evolutions. Projects should be
able to monitor and understand performance trends in order to plan evolution and take
corrective actions if negative trends are observed.

A central challenge is to identify change attributes and change measures that are effective in
order to perform such analyses. For example, in order to assess and compare changes with
respect to the man-hours that was needed to perform them, it is necessary to characterize the
changes in some way, e.g., by measuring their size and complexity. This paper addresses this
challenge by performing a comprehensive literature review of change-based studies.
Conducting a comprehensive literature review is a means of identifying, evaluating and
interpreting all available research relevant to a particular research question, or topic area, or
phenomenon of interest [11]. This review describes the change attributes that have been used
in empirical investigations, and we propose a conceptual model for change-based studies that
enables us to classify them. We will argue that future change-based studies can benefit from
using this model as a basis for classifications and definitions of change attributes and change
measures.

To sum up, the objective of this literature review is to facilitate more effective
investigations into the costs and risks of software maintenance and evolution, whether they
are conducted by empirical researchers or by practitioners who are implementing a
measurement-based improvement program. The approach is to summarize and critically
review the state of the practice in change-based studies. We address two research questions:

RQ1. Which overall measurement goals have been set in change-based studies, and which
attributes were measured to achieve these goals?

RQ2. How can change-based studies be improved over the current state of practice?

The remainder of this paper is organized as follows: Section 2 provides a summary of related
work. Section 3 describes the review procedures, including the criteria for inclusion and
exclusion of primary papers for the review. Section 4 describes the conceptual model for
change-based studies. Sections 5 and 6 answer RQ1 and RQ2, respectively. Section 7
discusses limitations to the review. Section 8 concludes.

2. RELATED WORK

We are not aware of other attempts to provide a comprehensive review of change-based
studies of software maintenance and evolution. Graves and Mockus summarized three of their
own studies that showed that time of change, tool usage, and subsystem affected by change
affected change effort [12]. They also recommended that statistical models of change effort
should control for developer effects, change size and maintenance type. Niessink listed six
change attributes that affect change effort that have been identified in empirical work by other
authors [13]. Of these, maintenance type and change size matched the change attributes
identified by Graves and Mockus.

Simula Research Laboratory Technical Report 2008-05

 3

Kagdi et al. conducted a literature review of studies that have mined data from software
repositories for the purpose of investigating changes to software components [14]. Their
perspective is complementary to ours, because automated extraction of data from software
repositories can be an attractive method for obtaining certain change measures.

One contribution of this paper is a proposed conceptual model for change-based studies.
Existing conceptual models that describe software maintenance and evolution [15-17]
constituted a foundation for the model. Relationships between these models and our model are
further described in Section 4.

3. REVIEW PROCEDURES

3.1. Criteria for inclusion and exclusion

The following top-level criterion for inclusion of papers was derived from the objective of the
review that was stated above:

Peer reviewed papers that report on case studies that assessed or predicted maintenance
and evolution activities on the basis of properties of individual changes, in the context of
managed development organizations.

Assessment and prediction are two broad purposes of measurement [18]. They are highly
interdependent and we chose to include studies that involved one or both purposes. Due to our
primary interest in the management of costs and risks of software maintenance and evolution,
we focused on studies that have been conducted within managed development organizations,
and chose to exclude investigations on distributed, volunteer based development, commonly
used in open source software development. Our review targeted both quantitative and
qualitative studies. Candidate papers were identified using the following procedure:

1. Send queries based on the inclusion criterion to search engines using full-text search
2. Read identified papers to the extent necessary to determine whether they conformed to the

criterion
3. Follow references to and from included papers; then repeat from step 2

Step 1 was piloted in several iterations in order to increase the sensitivity and precision of the
search. A discussion of the tradeoffs between sensitivity and precision in the context of
research on software engineering is provided by Dieste and Padua [19]. We arrived at the
following search criterion for the first step, from which we derived search strings in the query
languages that is supported by the selected search engines:

((size | type | complexity of [a] change | modification | maintenance [task | request]) OR
(change | modification | maintenance [task | request] size | complexity | type)) AND
project | projects AND software

We used Google Scholar (http://scholar.google.com) and IEEExplore
(http://ieeexplore.ieee.org) because full-text search was required to obtain reasonable
sensitivity. The queries returned 446 results from Google Scholar and 169 results from
IEEExplore on the 19 April 2007. In total, 261 papers remained after excluding papers on the
basis of the title alone, i.e., non-software engineering work, definitely off topic, or not a peer
reviewed paper. After merging the two sources, 230 papers remained. These underwent Steps

Simula Research Laboratory Technical Report 2008-05

 4

2 and 3 above. Sixty-two papers were judged as “included” or “excluded, but under some
doubt”. These were re-examined by the second and third author, resulting in 33 included
papers. Disagreements were resolved by discussion and by further clarifying and documenting
the criteria for inclusion and exclusion. As a final quality assurance, the search criterion was
applied to all papers from 27 leading software engineering journals and conference
proceedings (1993 to 2007 volumes), see [20] for details of this source. One additional study
was identified by this step, resulting in a total of 34 included papers.

In order to convey the criteria for inclusion or exclusion more explicitly, the remainder of
this section summarizes studies of software maintenance and evolution that were excluded,
but were considered to lie on the boundaries of the criteria.

An influential body of research on software evolution has based analysis on software
releases and the components, i.e., the system parts of some type and at some level of
granularity, that were present in successive releases. Belady and Lehman [3] measured the
number of components that were created or affected in successive releases of the same
system. Using this study as a basis, they postulated the law of continuing change, the law of
increasing entropy, and the law of statistically smooth grow. Kemerer and Slaughter [21]
provided an overview of empirical studies that have followed this line of research. The studies
that used another unit of analysis than the individual change, e.g., releases or components,
were excluded from this review.

Based on an industrial survey on maintenance of application software, Lientz et al.
quantified the amount of new development versus maintenance, and how work was
distributed over types of maintenance [22]. This work has been influential in that it has drawn
attention to later phases of the software lifecycle, and via the adoption of the change
classification scheme of corrective, perfective and adaptive changes, originally described by
Swanson [23], and frequently used as a change attribute in the body of research included in
this review. This work is not included in the review, because it was based on a survey rather
than a case study.

Measures of structural attributes (code metrics) have been conjectured to provide
inexpensive and possibly early assessments and predictions of system qualities. Measures
have normally been extracted from individual source code components, or from succeeding
versions of source code components. Briand and Wüst [24] provided an overview of empirical
work on relationships between structural measures of object-oriented software, and process
and product qualities. In order to identify erroneous components when building fault
prediction models, some studies identified the components that were affected by a corrective
change request, c.f., [25-27]. However, we did not consider these studies to be change-based,
because the unit of analysis was the individual component.

Studies on the analysis of software defects have attempted to understand the causes and
origins of defects. Generally, these studies have analyzed and extracted measures from
individual components. Some of the studies collected data about corrective change tasks, e.g.,
[28-30]. We chose to exclude studies that analyzed the causes of defects retrospectively, but
to include studies that analyzed the change tasks that were performed to isolate or correct
defects.

 Research on cognitive aspects of software engineering has attempted to understand the
mental processes that are involved in software engineering tasks. Some of these studies have
been conducted in the context of change tasks that are performed during software
maintenance and evolution, c.f., [31]. We chose to exclude these studies, because Détienne
and Bott [32] have provided a comprehensive summary of this specialized line of research.

Simula Research Laboratory Technical Report 2008-05

 5

3.2. Extraction of data

Goals, change attributes, and study context (RQ1) were described and classified by combining
existing description frameworks with data-driven analysis similar to the constant comparison
method of qualitative analysis [33]. In particular, for measurement goals, passages of relevant
text were identified, condensed, and rephrased using terms consistent with the description
template for measurement goals under the Goal Questions Metrics (GQM) paradigm [34].
These procedures resulted in the taxonomy listed in Table 1. In order to describe and classify
conceptual change attributes, we extracted information about the concrete change measures
that were used in the studies. Key information was names, definitions, value ranges, and
methods for data collection. This information was then compared and grouped with respect to
the conceptual model in Figure 1, and with respect to a set of more detailed measurement
questions, as listed in Tables 2 and 3. The procedures for developing the conceptual model for
change-based studies are described in Section 4.

For study context, we describe the business context, measurement procedures and extent of
data collection. We identified two measures for each of these attributes by using information
that was available in the reviewed papers. The results are shown in Table A4.

Our approach to assessing the quality of change-based studies (RQ2) was to assess the
studies in light of recurring validity issues, as described by Shadish et al. [35]. In order to
identify areas for improvement for change-based studies, we focused on those validity issues
that we judged to be particularly relevant in the context of such studies.

4. A CONCEPTUAL MODEL FOR CHANGE-BASED STUDIES

Our proposed conceptual model for change-based studies is depicted in Figure 1. The goals
for the design of the model were 1) to create a minimal model that 2) facilitates the
understanding and definition of entities, attributes and measures that were used in the
reviewed body of research, while 3) maintaining compatibility with existing concepts that
have been used to discuss software maintenance and evolution.

We developed and refined the model iteratively during the course of the review, in order to
capture the change attributes that were used in the reviewed studies. Tables 2 and 3 list the
relationships between these attributes and the entities in the model. Wherever possible we
reused concepts from existing conceptual models of software maintenance. In particular, the
entities Development organization, Human resources, Change task, Change request,
Component, System and Release, some of them with different names, were reused from the
proposed ontology of software maintenance by Kitchenham et al. [16]. Similar conceptual
frameworks have been defined by Dias et al. [15] and Ruiz et al. [17]. We used terms in our
model that were 1) commonly used in the reviewed body of research, 2) neutral with respect
to specific technologies, practices or disciplines in software engineering, and 3) internally
consistent. For example, we used the term change task for the entity that is named
maintenance task in [16]. Compared to the existing frameworks, the entities Change set,
Version and Revision and their interrelationships were added, because they are necessary to
describe and classify the change attributes that concerns changes to the system components.
The relationships between some of the reused entities were changed, in order to better
represent the change-oriented perspective taken in this paper.

Simula Research Laboratory Technical Report 2008-05

 6

Figure 1. A conceptual model for change-based studies

Standard UML syntax is used in the diagram. A role multiplicity of 1 should be assumed
when role multiplicity is not shown. Role names are assigned in one direction only, in order to
avoid cluttering. For compositions, indicated by filled diamonds, the roles in the two
directions can be read as composed by and part of.

The perspective adopted in this paper is that a change task constitutes the fundamental
activity around which software maintenance and evolution is organized. A change task is a
coherent and self-contained unit of work that is triggered by a change request. A change
request describes the requirements for the change task. A change task is manifested in a
corresponding change set. A change set consists of a set of revisions, where each revision
creates a new version of a component of the system. The new version can be based on an
existing version of the component, or it can be the first version of the component. A
component can, in principle, be any kind of work product that is considered to be part of the
system, although the reviewed studies focused primarily on measurement of source code
components. Components can form a hierarchy in where a large component can be composed
by components of finer granularity. A system is deployed to its users through releases. A
release is composed by a set of versions of components. A release can also be described by
the change sets or the corresponding change requests that the release incorporates.

It is convenient to use the term change as an aggregating term for the change task, the
originating change request, and the resulting change set. Changes, in this sense, involve
human resources, and are managed and resolved by a development organization. Large
changes, sometimes referred to as new features in the reviewed body of research, can be
broken down into smaller changes that are more manageable to the development organization.

A change attribute is a property of a change task, of the originating change request, or of
the resulting change set. A change attribute can also be derived from attributes of other
entities in the conceptual model. For example, the sizes of all components that were involved
in a change may be averaged, or otherwise combined, in order to form a change attribute that
represent the size of changed components. Change measures can be extracted from change
management systems, which are tools that manage the kind of information that is defined by
our conceptual model. Such systems include tools that are used to manage and track change
requests and change tasks, and tools that are used to support controlled change of the system
components. A change outcome is a change attribute that represents the primary quality focus
of the study, e.g., change effort. A change outcome measure is the operationalization of a
change outcome, and is typically used as the dependent variable in statistical analyses.

Simula Research Laboratory Technical Report 2008-05

 7

It is beyond the scope of this paper to provide operational definitions of all variations of
specific change measures used in the reviewed body of research. However, the conceptual
model in Figure 1 can be utilized further in a specific measurement context to facilitate
precise definitions of change measures. For example, the span of a change could be
operationalized as “the number of revisions that are part of a change set”, while a measure of
the size of affected components can be defined as “the arithmetic mean of lines of code in
versions that revisions in the change set are based on”. Such definitions can be expressed
formally using the Object Constraint Language (OCL) [36].

5. GOALS AND MEASURED CHANGE ATTRIBUTES (RQ1)

By following the procedures described in Section 3.2, three main categories and 10 sub-
categories of studies were identified, as shown in Table 1. Key properties of each individual
study are listed in Tables A1, A2 and A3, in Appendix A.

Table 1. Goals and sub-goals for change-based studies.

Main category Sub-category References
Goal 1.1: Understand and improve the maintenance and
evolution process in a development organization

[37-42]

Goal 1.2: Manage and control the maintenance and
evolution process in a development organization

[43-45]

Goal 1.3: Investigate selected elements in the maintenance
and evolution process

[46-49]

Goal 1:
Characterize the
work performed
on evolving
systems
(Table A1)

Goal 1.4: Understand the general nature of maintenance and
evolution work

[21, 50-52]

Goal 2.1: Identify change attributes that influence change
outcome

[53, 54]

Goal 2.2: Assess effects of a specific process element [55-58]

Goal 2: Assess
change attributes
that explain
change outcome
(Table A2)

Goal 2.3: Validate change measures [59, 60]

Goal 3.1: Propose methodology for building predictive
models

[61-64]

Goal 3.2: Assess prediction frameworks [65, 66]

Goal 3: Predict
the outcome of
changes
(Table A3) Goal 3.3: Investigate predictive power of change measures [13, 67, 68]

Goal 2 and Goal 3 studies employed quantitative models that related independent change
measures to the change outcome measure of interest. Goal 2 studies attempted to identify
causal relationships for the purpose of understanding and assessment, while Goal 3 studies
focused on correlations and predictions. Conversely, most Goal 1 studies used summary
statistics to provide a bird’s eye view of the work that was performed during maintenance and
evolution. They focused on observing trends in the values for selected change attributes,
rather than attempting to explain the observations.

5.1. Summary of characterization studies (Goal 1)

Goal 1 studies were split according to the sub-categories listed in Table 1. Goal 1.1 and Goal
1.2 studies are characterized by close involvement with the measured development
organization. The measurement programs were planned in advance, e.g., following the GQM
paradigm [34]. They are similar with respect to goals, the difference being that Goal 1.1

Simula Research Laboratory Technical Report 2008-05

 8

studies had the overall goal of improving the maintenance and evolution process, while Goal
1.2 studies focused on improving management control in ongoing projects.

The four earliest Goal 1.1 studies are from the space domain, characterized by a long-
lasting mutual commitment between the development organization and software engineering
researchers. A certain amount of overhead for data collection was accepted in these
environments. The studies appear to follow a tendency over time from studies for assessment
and insight [41, 42], via studies for understanding and improved predictability [37], towards
studies that took concrete actions in the form of process improvements [39]. Lam and
Shankararaman [40] showed that these measurement goals were also feasible in projects that
are managed less strictly. While the above studies focused on analyzing a comprehensive set
of real changes, Bergin and Keating [38] used a benchmarking approach that evaluated the
outcome of artificial changes that were designed to be representative of actual changes.

The Goal 1.2 studies were conducted within strictly managed development organizations.
Arnold and Parker [44] involved management in setting threshold values on a set of selected
indicators. This was an early attempt to use change measures to support decisions made by
managers in a development organization. Likewise, Abran and Hguyenkim [43] focused on
management decision support, and provided upfront and careful considerations about validity
issues that pertain to change-based studies. Finally, Stark [45] suggested a rich set of
indicators that provided answers to questions about the services provided by the development
organization to its clients.

Goal 1.3 and Goal 1.4 studies collected data from change management systems, and
attempted to provide insight into software maintenance and evolution that was generalizable
beyond the immediate study context. Generalizability to other contexts was claimed on the
basis of recurring characteristics of systems and development organizations.

Goal 1.3 studies investigated the effect or intrinsic properties of specific process elements.
Ng [46] investigated change effort in the domain of Enterprise Resource Planning (ERP)
implementation. The remaining three studies addressed three different process topics: the
intrinsic properties of parallel changes [48], instability in requirements [47], and the intrinsic
properties of small changes [49].

Goal 1.4 studies addressed the nature of the software evolution and maintenance process in
general. Kemerer and Slaughter [21] categorized change logs that had been written by
developers that maintained 23 systems within one development organization in order to
identify patterns in the types of change that occurred during the investigated period of 20
years. Mohagheghi [52] analyzed a smaller set of change requests to answer specific
questions about who requested changes, which quality aspects that were improved by the
changes, time/phase at which the requests were created, and to what extent change requests
were accepted by the development organization.

5.2. Change attributes in characterization studies (Goal 1)

Change attributes, typical questions and typical values used during data collection in Goal 1
studies are shown in Table 2. The leftmost column indicates the part of the conceptual model
in Figure 1 that normally provides the data for change measures derived from the listed
change attributes.

Table 2: Change attributes that were measured in Goal 1 studies, ordered by number of studies
Entity
providing
information

Change
attribute

Question asked Typical values #

Change Maintenance What was the purpose of the Fix/enhance/adapt 12

Simula Research Laboratory Technical Report 2008-05

 9

request type change?
Change
request

Change count Was it a change? Simple count of
changes

11

Change
request

Time (period) When did the change occur? Date, year, time since
first deployment

8

Change task Change effort How much effort was expended
on the change task?

Person hours, ordinal or
ratio

9

System System name To which system or project did
the change belong?

Nominal measure 4

Change
request

Quality focus Which system quality was
improved by the change?

Functionality/security/
efficiency/reliability

4

Change
request

Status What is the current state of the
change request?

New/accepted/rejected/
solved

4

Change
request

Origin In what context or by which
party was the change request
made?

Internal test/external
users

3

Change task Change interval How long did it take to resolve
the change request?

Days, ordinal or ratio 3

Revision Change size How much content was added,
deleted or changed?

Lines of code, ordinal
or ratio

3

Change task Activity Which activities were involved
in the change task?

Requirements/analysis/
design/coding/test

2

Change
request

Change/defect
source

Which activity caused the
defect or the need for change?

Requirements/analysis/
design/coding/test

2

Revision Change span How many components were
affected?

Count of components 2

Change
request

Defect type What kind of coding error was
committed?

Initialization/logic/data/
interface/computational

2

Change
request

Artifact type What kind of component was
affected?

Query/report/field/
layout/data

1

Change
request

Detection By which technique was the
defect/need for change
detected?

Inspection/test-run/
proof techniques

1

Change task Delayed Was the change task resolved
later than scheduled?

Delayed/not delayed 1

In summary, all Goal 1 studies attempted to characterize the work performed by development
organizations. A predominant principle of measurement was to categorize changes according
to selected characteristics. The proportion of changes that belonged to each category was
compared to organizational standards, to other projects/systems, and between releases or time
periods. Maintenance type, originally described by Swanson et al. [23], was the criterion for
classification that was applied most frequently. In particular, the proportion of corrective
change versus other types of change was frequently used as an indicator of quality, the
assumption being that corrective work is a symptom of deficiencies in process or product. In
most cases, observations and conclusions were based on descriptive statistics. In four studies,
the statistical significance of proportions was investigated [21, 37, 51, 52]. Change effort,
measured in person hours, was a key change measure for studies that focused on resource
consumption. The number of changes was sometimes used as a surrogate measure when data
on effort was not available. Some studies suggested using the average change effort per
maintenance type as a rough prediction for the effort required to perform future change tasks
of the same type.

Simula Research Laboratory Technical Report 2008-05

 10

5.3. Summary of studies that assess change attributes (Goal 2)

Goal 2 studies were split according to the goal sub-categories listed in Table 1. The studies
used correlation analysis at different levels of complexity in order to identify relationships
between change measures used as independent variables and the change outcome measure. An
overview of change outcome measures is given in Section 5.5.

Goal 2.1 studies attempted to identify causal relationships between change attributes and
change outcome, while Goal 2.2 studies investigated the effect of specific process elements.
Graves and Mockus [53] controlled for variations due to maintenance type and change size,
and showed that change effort increased with system age. They automated the extraction of
change measures from change management systems in order to minimize measurement
overhead. Schneidewind [54] used historical change requests to investigate correlations
between change attributes and the presence of defects. Atkins et al. [55] showed that
introducing a new tool to support the development of parallel versions of the same
components had a positive effect on effort. Hersleb and Mockus [57] showed that
decentralization prolonged the change interval. Rostkowycz, Rajlich et al. [58] showed that
re-documenting a system reduced subsequent change effort, and demonstrated that the
breakeven point for investment in re-documentation versus saved change effort was reached
after 18 months.

Goal 2.3 studies attempted to find appropriate change measures of concepts that are
commonly assumed to influence change outcome. Maya, Abran et al. [60] described how
function point analysis could be adapted to the measurement of small functional
enhancements. They tested whether the function point measure could predict change effort,
and they observed a weak correlation in their study. Arisholm [59] showed that aggregation of
certain measures of structural attributes of changed components could be used to assess the
ease with which object-oriented systems could be changed.

5.4. Summary of prediction studies (Goal 3)

While Goal 2 studies attempted to identify change attributes that influence change outcome,
the Goal 3 studies attempted to predict that outcome. These studies used various prediction
frameworks in order to build development organization specific prediction models of change
outcome. The studies can be split according to the sub-categories listed in Table 1.

Goal 3.1 studies investigated methods and processes for building prediction models. In
[61], Briand and Basili suggested and validated a process for building predictive models that
classified corrective changes into different categories of effort. Evanco [62] used similar
procedures to predict effort for isolating and fixing defects, and validated the prediction
model by comparing the results with the actual outcomes in new projects. Xu et al. [64]
employed decision tree techniques to predict the change interval. The predictions from the
model were given to the clients to set their expectations, and the authors quantified the
approach’s effect on customer satisfaction. Mockus and Weiss [63] predicted the risk of
system failures as a consequence of changes that were made to the system. They automated
the statistical analysis required to build the models, and integrated the predictions into the
change process that was used by the developers.

Goal 3.2 studies compared prediction frameworks with respect to their predictive power
and the degree to which the frameworks exposed explanations for the predictions. In [65],
Jørgensen assessed and compared neural networks, pattern recognition and regression models
for predicting change effort. He concluded that models can assist experts in making
predictions, especially when the models expose explanations for the predictions. In [66],
Reformat and Wu compared Bayesan networks, IF-THEN rules and decision trees for

Simula Research Laboratory Technical Report 2008-05

 11

predicting change effort on an ordinal scale. They concluded that the methods complemented
each other, and suggested that practitioners should use multi-method analysis to obtain more
confidence in the predictions.

Goal 3.3 studies attempted to identify change measures that could operationalize the
conceptual change attribute of interest. Niessink and van Vliet [13] created and compared
models for predicting change effort in two different development organizations. They
suggested that the large difference in explanatory power between the organizations were due
to the differences in the degree to which the development organizations applied a consistent
change process. In [67], the same authors investigated variants of function point analysis to
predict change effort. Although the regression models improved when the size of affected
components was accounted for, the authors suggested that analogy-based predictions might be
more appropriate for heterogeneous data sets. Using data on change requests and measures of
system size from 55 banking systems, Polo et al. [68] attempted to build predictive models
that could assist in the early determination of the value of maintenance contracts.
Considerable predictive power was obtained from rudimentary measures, a finding that the
authors contributed to the homogeneity of context (banking systems) and maturity of
technology (Cobol).

5.5. Change attributes in assessment and prediction studies (Goal 2 and Goal 3)

Although Goal 2 and Goal 3 studies have very different goals, they are quite similar from the
perspective of measurement, and they are therefore described together in this section.

The choice of dependent variable, i.e., the change outcome measure, is a key discriminator
with respect to the focus and goal of a study. The dependent variables in the reviewed studies
are derived from four change attributes:

Change effort. The number of person hours expended on performing the change task is used
as a change outcome measure in studies on change attributes that may influence productivity,
and in studies on the estimation of effort for change tasks. Twelve of 17 studies had these
foci. In most cases, the measure was reported explicitly per change task by developers. Graves
and Mockus proposed an algorithm that made it possible to infer change effort from more
aggregated effort data [12]. This algorithm was put to use in, e.g., [55].

Change interval. While change effort is a measure of the internal cost of performing a
change task, the time interval between receiving and resolving the change request can be a
relevant dependent variable for stakeholders external to the development organization. This
change measure was used in studies that focused on customer service and customer
satisfaction [57, 64], where the measure could be extracted from information resident in
change management systems.

Defects and failures. Historical data of defects and failures were used to identify change
attributes that caused or correlated with defects and failures, to assess probabilities of defects
or failures, and to assess the effect on defect proneness or failure proneness of a specific
product improvement program. Such change measures are not straightforward to collect,
because it can be difficult to establish a link from an observed defect or failure to the change
that caused it. The two studies that have used this dependent variable analyze relatively large
changes [54, 63].

Change attributes, typical questions and typical values used during data collection in Goal 2
and 3 studies are shown in Table 3. The leftmost column indicates the parts of the conceptual
model in Figure 1 that provide data for deriving change measures from the listed change
attributes. Measures of the change request, the change task and the revisions that are part of a
change set occurred most frequently. Size, structure and age were the most frequently
measured change attributes that used information from changed components and their

Simula Research Laboratory Technical Report 2008-05

 12

versions. Information about revisions, versions and components that were involved in a
change set could only be measured after the change had been made. For the prediction goals,
such change measures needed to be predicted first. The degree of collaboration (developer
span) was the most frequently measured change attribute that used information about the
human resources involved. No attribute of the development organization was used more than
once.

Table 3. Change attributes measured in Goal 2 and 3 studies, ordered by category

Entity providing
data

Change
attribute

Question asked Typical values/scale #

Change request Maintenance
type

What was the purpose of the
change?

Fix/enhance/adapt 9

Change request Criticality What would be the effect of not
accepting the change request?

Minor/major
inconvenience/stop

4

Change request Change/defec
t source

Which activity caused the
defect or the need for change?

Requirements/analysis/
design/coding

2

Change request Defect type What kind of coding error was
committed?

Init/logic/interface/data 2

Change request Requirements
instability

To what extent were change
requirements changed?

Number of requirement
changes

2

Change request Quality focus Which system quality was
improved by the change?

Security/efficiency/
reliability

1

Change task Change effort How much effort was expended
on performing the change task?

Person hours, ordinal or
ratio

15

Change task Change
interval

How long did it take to resolve
the change request?

Days, ordinal or ratio 5

Change task Subjective
complexity

How complex was the change
perceived to be?

3-point ordinal scale 3

Change task Test effort What was the test effort
associated with the change?

test runs 1

Revision Change span How many components were
affected?

components changed 9

Revision Change size How much content was
changed?

Added + deleted LOC 7

Revision Function
points

How many logical units will be
changed, added or deleted by
the change?

Count of changed,
added and deleted
units, weighted by
complexity

2

Revision Coding mode Was content changed or added? Changed/added 1
Revision Execution

resources
How much (added)
computational resources were
required by the change?

CPU-cycles, bytes of
memory

1

Version Size

How large were the changed
components?

Lines of code, number
of components affected

4

Version Structural
attributes

What was the profile of the
structural attributes of the
changed components?

Count of structural
elements (coupling,
branching statements)

3

Table 3. Continued

Version Data
operation

Which data operation did the
affected components perform?

Read/update/process 2

Version Criticality How critical was the affected
component?

Is mission critical? 1

Version Code quality Had the changed components Refactored/not 1

Simula Research Laboratory Technical Report 2008-05

 13

been refactored? refactored
Component Age How old were the changed

components?
Years since
deployment, version
number, date

3

Component Documentati
on quality

How well was the changed
components documented?

Was documentation
rewritten?

1

Component Code
volatility

How frequently had the
affected components been
changed?

Total number of
changes

1

Component Component
kind

What kind of component was
affected?

Batch/online program 1

Component Component
id

Which specific components
were changed?

Class or subsystem
name

1

Component Technology Which technology was applied
in the changed components?

3GL/4GL 1

Human resource Developer
span

How many developers were
involved in performing the
change task?

Number of people 3

Human resource System
experience

For how long time had the
developers been involved in
developing or maintaining the
system?

Number of years 1

Human resource Developer id Who performed the change
task?

Nominal measure 1

Human resource Maintenance
experience

For how long had the
developers performed software
maintenance work?

Number of years 1

Human resource Objective
change
experience

How many changes had earlier
been performed by the
developers on affected
components?

Number of previous
check-ins in version
control system

1

Human resource Subjective
experience

How was experience with
respect to the affected
components perceived?

3-point ordinal scale 1

Development
organization

Team id Which team was responsible for
the change task?

Nominal measure 1

Development
organization

Location Where were human resources
located physically?

Distributed/not
distributed

1

Development
organization

Tool use Which tool was involved in the
change task?

Tool used/not used 1

6. VALIDITY ISSUES AND IMPROVEMENTS TO CHANGE-BASED STUDIES
(RQ2)

Study validity refers to the truth of propositions about correlations (conclusion validity) and
causal relationships (internal validity) between variables within the studied context, whether
these variables captured the intended aspects of real worlds concepts (construct validity), and
whether results are applicable beyond the studied context (external validity), c.f., [35]. The
following more specific validity issues were investigated in order to identify possible
improvements to change-based studies:

1. Did the measured entities and change attributes adequately represent the main
phenomenon or quality under study (construct validity)?

Simula Research Laboratory Technical Report 2008-05

 14

An assumption that underlies most change-based studies is that software maintenance and
evolution can be viewed as the aggregation of changes applied to the evolving system.
However, if change effort constitutes a small proportion of the total cost of maintenance, the
validity of this assumption is questionable. Furthermore, if study questions are about the
effects of factors at the project level, such as principles of project management or contract
regimes, a change-based study is not necessarily appropriate. Abran and Hguyenkim [43]
stated and handled the former threat explicitly, by comparing change effort data to activity-
based effort reports. This procedure verified the appropriateness of using change measures to
characterize the activities of the development organization. We recommend comparing the
effort expended on individual changes to the total cost of maintenance, and using this
proportion as a rough indicator of the relevance of a change-based study.

2. Was a clear rationale applied when deriving change measures from change attributes
(construct validity)?
This question concerns construct validity of the individual change measures. An illustrative
example is the use of the term change size. Investigators should make clear whether the
change measure is supposed to capture the amount of affected code in the change set, or
whether it is supposed to capture the amount of work involved in resolving a change request.
Only four of the reviewed studies discussed such issues [48, 49, 52, 59]. A plausible
explanation is the lack of use of conceptual frameworks from which to derive change
measures. The extracted change attributes that are listed in Tables 2 and 3 and that refer to the
conceptual model in Figure 1 are intended to be a framework that is useful for deriving
change measures in new change-based studies.

3. Were all change attributes that could contribute to observed outcome considered (internal
validity)?
It is challenging to identify causal relationships in change-based studies, due to the presence
of and interactions between the multitudes of change attributes that might influence change
outcome. Even with a coarse grouping of change attributes, as in Tables A2 and A3, very few
studies considered change measures from every group. We recommend that new studies
consider a broader set of change measures. The summaries in Tables 2 and 3 are intended to
be helpful in this respect. In addition, accumulation of knowledge of causal relationships
through continuously improved conceptual frameworks and theories would support new
studies in the selection of appropriate change attributes and corresponding operational change
measures.

4. Did the study have sufficient power to detect relationships in the population (conclusion
validity)?

In statistical hypothesis testing, power is defined as the probability of discovering a
relationship that exists in the population. The power of an analysis increases as the number of
data points increases. Table A4 summarizes the extent of data collection in the reviewed
studies. One factor that might have affected the extent of data collection in the studies is
whether data was created by the change process that the development organization applied,
i.e., naturally created, or created for the purpose of measurement. The median numbers of
analyzed changes in the reviewed studies were 1724 and 129 for naturally created and
purpose-created data, respectively. The median durations of data collection were 48 and 21
months for the same categories. These observations support the intuitive idea that relying on
data that occurs naturally not only reduces organizational overhead, but also facilitates
prolonged and more extensive measurement programs. We therefore recommend that
investigators look for naturally created data that can be used as alternatives to purpose-created
data.

Simula Research Laboratory Technical Report 2008-05

 15

5. Did the study collect appropriate kinds of data for the research questions (internal
validity)?
The ability to discover causal relationships also depends on the type of data that was
collected, and the method of analysis. In the reviewed studies, the data collected and analysis
are primarily quantitative, and qualitative methods are used to a limited degree. Briand et al.
[39] elicited root causes for changes by interviewing developers and by inspecting change
artifacts. Nurmuliani and Williams [47] employed qualitative methods, such as interviews and
observations, in order to extract quantitative change measures. Indeed, many studies relied on
interpretations of qualitative data. For example, reading change requests for the purpose of
classifying changes is a simple use of qualitative procedures. The study by Lam and
Shankararaman [40] went one step further by creating a system specific hierarchy of types of
changes, based on the changes that actually occurred in the system. In studies that attempt to
explain why and how effects occur, the use of systematic qualitative procedure can be
appropriate. The review shows that there is a potential for change-based studies to utilize such
procedures.

6. Could change measures be reliably collected (conclusion validity)?
Some of the change measures defined in Table 3 (criticality, subjective experience, subjective
complexity and maintenance type) depend on human judgement. The potential unreliability
inherent in such change measures can be a threat to conclusion validity, because it may
weaken or strengthen an observed effect beyond the true effect. Abran and Hguyenkim [43]
used a pilot study to verify that change data could be classified reliably. Remedies for
unreliability include improved training and use of change measures that are adapted to the
local context. Graves and Mockus [53] applied techniques to automatically deduce the
maintenance type from information in change management systems. Such techniques improve
reliability and reduce measurement overhead, but may introduce other validity issues.

7. Were the study results generalizable to situations beyond the studied context (external
validity)?
Case studies rely on analytic generalization, which means that the investigator attempts to
determine whether or not results are applicable to other contexts through the application of
theory [69]. A case study can confirm or refute an existing theory, or indicate that the theory
needs to be modified in some way. A strengthened or modified theory can subsequently be
applied in other contexts in order to make predictions or explain observed phenomena.
Kemerer and Slaughter [21] intended to study and develop a theory of the process of software
evolution. No other study discusses theory in the sense described above. This finding is not
surprising, because it is known that the use of theory in software engineering research is weak
[70]. The result is that many of the studies provide results that are useful within the studied
context, while their applicability to other contexts is more questionable. A basic practice to
improve generalizability is to select and report context attributes that may have affected the
results. Whenever possible, the rationale for selecting specific context attributes should also
be reported.

7. LIMITATIONS

The process by which papers where selected balanced the use of systematic, repeatable
procedures with the intent to identify a comprehensive set of change-based studies. A more
repeatable process could have been achieved by limiting searches to abstracts and titles only,
by omitting traversal of literature references, and by excluding the Google Scholar search

Simula Research Laboratory Technical Report 2008-05

 16

engine, which yielded low precision for paper retrieval. However, a more repeatable process
may have failed to retrieve many of the included papers. Given that meeting the objective and
answering the research questions of this study relied on identifying a broad set of change-
based studies we chose to assign lower priority to repeatability. As a consequence, the
procedures we followed did not fully comply with the procedures for systematic reviews that
were suggested by Kitchenham et al. [11]. It is worth noting that the challenges experienced
in attempting to follow systematic procedures stem from the lack of common conceptual
frameworks. A common conceptual basis would clearly improve sensitivity and precision
during the selection of papers.

The elicitation of measurement goals, change attributes and study contexts (RQ1) was
based partly on the coding of qualitative information; hence, decisions regarding coding that
were made on the basis of subjective judgment could have influenced the results. The use of
existing description frameworks mitigated this effect to some extent, and contributed to a
relatively straightforward coding process.

The validity issues that were investigated in the quality assessment (RQ2) were identified
by the judgment of the authors. They should therefore not be taken as comprehensive.
However, we do believe that key issues for change-based studies are addressed.

8. CONCLUSIONS AND FURTHER WORK

Change-based studies assume that software maintenance and evolution is organized around
change tasks that transform change requests into sets of modifications to the components of
the system. This review of change-based studies has shown that specific study goals have
been to characterize projects, to understand the factors that drive costs and risks during
software maintenance and evolution, and to predict costs and risks. Change management
systems constitute the primary source for extracting change measures. Several of the reviewed
studies have demonstrated how measurement and analysis can be automated and integrated
seamlessly into the maintenance and evolution process.

Although this review includes examples of successful measurement programs, it was
difficult to determine whether and how insights into software maintenance and evolution
could be transferred to situations beyond the immediate study context. On the basis of our
discussion on generalizability and other selected study qualities, we recommend that new
change-based studies should base measurement on conceptual models and, eventually,
theories. This observation may be seen as an instance of a general need for an improved
theoretical basis for empirical software engineering research. In order to make progress along
this line, we anchored this review in a minimal, empirically based, conceptual model with the
intention of supporting change-based studies. We built the model by ensuring compatibility
with existing ontologies of software maintenance, and by extracting and conceptualizing the
change measures applied in 34 change-based studies from a period of 25 years. In future
work, we will conduct a change-based multiple-case study with the aim of understanding
more about the factors that drive costs of software maintenance and evolution. The results
from this review constitute important elements of the study design. We believe that this
review will be useful by other research and measurement programs, and will facilitate a more
effective accumulation of knowledge from empirical studies of software maintenance and
evolution.

ACKNOWLEDGEMENTS

Simula Research Laboratory Technical Report 2008-05

 17

We thank Simon Andresen for our discussions on conceptual models of software change, the
anonymous reviewers for useful feedback, Chris Wright for proofreading the paper, and Aiko
Fallas Yamashita for her comments that improved the readability of this paper.

APPENDIX A. SUMMARY OF EXTRACTED DATA

The three main classes of included studies are listed in Tables A1, A2 and A3. Within each
class, the studies are listed in chronological order. In Tables A2 and A3, an asterisk (*) is used
as an indication that the variable was statistically significant, at the level applied by the
authors of the papers, in multivariate statistical models. Table A4 summarizes business
context, measurement procedures and extent of data collection in the reviewed studies.

Simula Research Laboratory Technical Report 2008-05

 18

Table A1. Characterize the work performed on evolving systems (Goal 1).
Study Study goal Indicators and change attributes
Arnold and
Parker [44]

Manage the
maintenance
process

Change count by:
• Maintenance type (fix, enhance, restructure)
• Status (solved requests vs. all requests), per maintenance type
• Change effort (little/moderate vs. extensive) per maintenance

type
Measures were compared to local threshold values for several
systems

Weiss and
Basili [42]

Assess
maintenance
performance in
ways that
permit
comparisons
across systems

Change count by:
• Defect source (req. specification, design, language, …)
• Change effort (<1hr, <1day, >1day)
• Quality focus (clarity, optimization, user services, unknown)
• Maintenance type (change, fix non-clerical error, fix clerical

error)
• Change span (number and identity of changed components)
• Detection (test runs, proof techniques, and more)
• Change effort (design, code: <1hr, <1day, >1day, unknown)
Measures were compared between projects/systems

Rombach,
Ulery et al.
[41]

Understand
maintenance
processes, in
order to
improve initial
development
and
management of
maintenance
projects

Change count by:
• Maintenance type (adapt, correct, enhance, other)
• Change effort (<1hr, <1day, >1day)
Average number of
• Change size (source lines + modules added, changed and

deleted)
Compare development to maintenance with respect to proportion of
• Change effort (<1hr, <1day, >1 day) per activity
• Defect type (initialization, logic, interface, data, computational)
• Defect source (specification, design, code, previous change)

Abran and
Hguyenkim
[43]

Analyze and
manage
maintenance
effort

• Distribution of change effort by maintenance type (corrective,
adaptive, perfective, user) by system and year

• Average change effort, per maintenance type, system and time

Basili,
Briand al.
[37]

Improve
understanding
and
predictability
of software
release effort

Distribution of change effort by
• Activity (analysis, design, implementation, test, other)
• Activity, for costliest projects/systems
• Activity, compared between maintenance types (correct,

enhance)
• Maintenance type (adapt, correct, enhance, other)
• Origin (user, tester)

• Compare change count and change size (LOC), between origins

(internal tester, user)
Stark [45] Control

customer
satisfaction,
maintenance
cost and
schedule

Time trend in proportions of
• Delayed (delayed vs. not delayed)
• Status (solved vs. not yet solved)
• Status (rejected vs. not rejected)
• Change interval used to close urgent requests
• Change count and change effort by defect type/maintenance

type/quality focus (computational, logic, input, data handling,
output, interface, operations, performance, specification,
improvement)

Simula Research Laboratory Technical Report 2008-05

 19

Table A1. Continued.
Study Study goal Indicators and change attributes
Gefen and
Schneberger
[51]

Investigate the
homogeneity of
the maintenance
phase, with
respect to the
amount of change

• Time trend in change count
• Time trend in change count, by maintenance type

(requirement change, programming related fix)
• p-value and coefficient value in regression models of

time vs. change count in time period, and per
maintenance type

• p-value in t-test of difference between time periods with
respect to maintenance type (correct, adapt) and change
count

Burch and Kung
[50]

Understand time
trends of changes

• Time trend in change count, by maintenance type
(support, fix, enhance), using statistical models

Briand, Kim et
al. [39]

Assess and
improve quality
and productivity
of maintenance

• Qualitative summaries, based on interviews and
questionnaires, of factors that influence maintenance
performance (focused on product defects), related to
development organization, process, product and people

Lam and
Shankararaman
[40]

Assess trends in
maintenance
performance

• Average change effort, by artifact type (domain specific)
• Change count, by type and time period
• Change count that resulted in defect, by time period

Kemerer and
Slaughter [21]

Identify and
understand the
phases through
which software
systems evolve

• p-values and coefficient in regression model of time vs.
change count

• Degree to which certain maintenance types occur
together over time, by using gamma analysis [71]. 31
sub-types of corrective, adaptive, enhancive and new
changes were used

Ng [46] Understand ERP
maintenance
effort

• Change effort and change count by origin (service
provider, end-client) and maintenance type (fix, enhance,
master data)

Perry, Siy et
al.[48]

Understand
parallelism in
large-scale
evolution

Change (at three levels of granularity) count by
• Change interval (number of days)
• Status (being worked on, not being worked on)
• Change span (number of files)
• Developer span (see Table 3)

Bergin and
Keating [38]

Assess
changeability of a
software system

• Change size (percentage change to the software required
by seven typical changes)

Mohagheghi,
Conradi et al.
[52]

Investigate the
nature of change
requests in a
typical project

Proportions, and p-value for one-proportion tests of
• Quality focus (functional vs. non-functional changes)
• Origin (inside vs. outside development organization)
• Time (before vs. after implementation and verification)
• Status (accepted vs. not accepted), in total and per

release

Nurmuliani and
Zowghi [47]

Measure
requirements
volatility in a
time-limited
project

• Time trend in maintenance type (add, delete, modify
requirement)

• Time trend in quality focus
• Change interval, by maintenance type and quality focus
• Mean predicted change effort, by maintenance type and

quality focus
Purushothaman
and Perry [49]

Understand the
nature of small
code changes

• Change count by maintenance type (corrective, adaptive,
perfective, inspect) compared between small and larger
changes

Simula Research Laboratory Technical Report 2008-05

 20

Table A2. Assess change attributes that explain change outcome (Goal 2).
Study Study goal and dependent

variables (DV)
Independent variables
of change request,
change task, change
set and revision

Independent
variables of
system,
components or
versions

Independent
variables of
human
resources/
organization

Maya,
Abran et al.
[60]

Propose and validate
function points as
measure of change size,
for the purpose of
productivity assessment
and prediction
DV: Change effort

Function points (fine
granularity for
complexity)

Not used Not used

Graves and
Mockus [53]

Identify change attributes
that influence change
effort and to find
evidence of code decay
DV: Change effort

Maintenance type*
Change span (check-
ins)*
Change interval

Not used
Age*

Developer id

Schneide-
wind [54]

Understand how change
request attributes relate to
process and product
quality, and build quality
prediction models

DV: Software defect and
failure as a consequence
of change

Maintenance type
Subjective
complexity
Change size *
Change span (
requirements
affected, modules
affected)
Change effort (code,
test)
Execution resources*
Criticality*

Criticality
Code volatility
Data operation

Developer span
Requirement
instability
Test effort

Atkins, Ball
et al. [55]

Evaluate the impact of a
tool (version editor)
DV: Change effort

Maintenance type*
Change size
Change span (#
check-ins)

Not used Tool use*
(version editor
used)

Herbsleb
and Mockus
[57]

Evaluate the impact of
project decentralization

DV: Change interval

Maintenance type*
Change span (check-
ins, modules)*
Criticality*

Not used Developer
span*
Time (date)*
Location*

Rostkowycz,
Rajlich et al.
[58]

Assess the cost-benefit of
re-documenting software
components
DV: Change effort

Change span Not used Time (date)*

Geppert,
Mockus et
al.[56]

Assess effect of
refactoring
DV: Defects, change
effort, change size,
change span

Not used Code quality
(affected code
was
refactored?)*

Not used

Arisholm
[59]

Validate measures of
structural attributes,
adapted for changes, as
indicators of
changeability
DV: Change effort

Change size

Structural
attributes
weighted by
change size
Export
coupling*
Class size*

Not used

Simula Research Laboratory Technical Report 2008-05

 21

Table A3. Predict the outcome of changes (Goal 3).
Study Study goal and dependent

variables (DV)
Independent variables
of change request,
change task, change set
and revision

Independent
variables of
system,
components or
versions

Independent
variables of
human
resources/
organization

Briand and
Basili [61]

Validate a proposed
process for constructing
customized prediction
models of change effort,
DV: Change effort

Maintenance type*
Change source*
Defect type*
Change size
Change span

Not used Not used

Jørgensen
[65]

Assess and compare
modelling frameworks
and change measures in
predictive models
DV: Change effort

Change size*
Maintenance type*
Subjective complexity*
Coding mode*
Criticality

Technology
(3GL/4GL)
Age
Size

System
experience
Maintenance
experience

Niessink
and van
Vliet [67]

Assess feasibility of using
function points to predict
change effort
DV: Change effort

Function points*
Subjective complexity*

Size (LOC)* Not used

Niessink
and van
Vliet [13]

Identify cost drivers that
can be used in models for
prediction change effort,
in two development
organizations
DV: Change effort

Change size*
Change span (screens,
lists, components, db
entities, db attributes,
temporary programs)*
Subjective complexity*
Change source*

Size*
Structural
attributes
(# GOTO’s)*
Component
kind*
Documentation
quality*

Subjective
experience *
Team id*
Requirement
instability*

Mockus
and Weiss
[63]

Investigate attributes that
influence failure-
proneness
Construct a usable
failure-prediction model
DV: Software failure as a
consequence of change

Maintenance type*
Change size*
Change span
(subsystems, modules,
files, check-ins, sub-
tasks)*
Change interval*

Structural
attributes (size
of changed
files)

Developer
span (#
developers)
Objective
change
experience*

Evanco
[62]

Develop and assess a
prediction model for
corrective changes
DV: Change effort

Change span
(subsystems,
components,
compilation units
affected)*
Change span *

Structural
attributes
(# parameters,
cyclomatic
complexity,
compilation
units)*

Not used

Polo,
Piattini et
al.[68]

Early prediction of
maintenance effort
DV: High/low change
effort

Maintenance type*
Criticality*

Size(LOC,
modules)*

Not used

Reformat
and Wu
[66]

Assess AI techniques to
construct predictive
modes of corrective
change effort, DV:
Change effort

Defect type*
Subjective complexity*

Data operation
(accessing,
computational)
*

Not used

Xu, Yang
et al. [64]

Manage customer
satisfaction
DV: Change interval

Maintenance type*
Change effort*

Age (Task id,
system id,
version id)

Not used

Simula Research Laboratory Technical Report 2008-05

 22

Table A4. Business context, measurement procedures and extent of data collection.

Category Sub-
category

Value Value explanation References

In-house
Embedded

Embedded system developed
for internal use

[37, 39, 41, 42, 44,
54, 61, 62, 65, 66]

In-house IS Information system
developed for internal use

[13, 21, 43, 46, 60]

Multi-client System developed for
multiple business clients

[40, 45, 47-49, 52,
53, 55-59, 63, 64, 68]

Business
model

Single-client System developed for one
business client

[38, 50, 51, 67]

Aero-space NASA [37, 39, 41, 42, 44,
54, 61, 62]

Telecom Switching, billing [38, 48, 49, 52, 53,
55-57, 63, 65]

Finance Banking, insurance [43, 58, 60, 67, 68]
Government - [13, 46]
Other Retail, hotel management [21, 40, 64]
R&D SW/research tools [59, 66]

Business
context

Business
domain

Not reported -

[45, 47, 50, 51]

Natural Measurements relied on
footprints of change process

[13, 37, 39, 41-44,
54, 59, 61, 65, 66]

Purpose Data was created for the
purpose of measurement

[21, 38, 40, 46-50,
52, 53, 55-57, 62, 63,
67, 68]

Data origin

Mixed Combination of Natural and
Purpose

[45, 51, 58, 60, 64]

Expert Expert resources required for
measure extraction

[13, 21, 38, 44, 47,
54, 60, 66-68]

Clerical Non-expert resources
required for measure
extraction

[37, 39-43, 45, 51,
58, 61, 65]

Measurement
procedures

Extraction
of
measures

Automated Measure extraction was
automated

[46, 48-50, 52, 53,
55-57, 59, 62-64]

< 25
percentile

 # changes <= 127 [13, 38, 41, 47, 54,
58, 59, 65]

25 to 75
prcntl.

127 < # changes <= 2945 [37, 42-46, 50-53, 56,
60-62, 66, 67]

75 to 95
prcntl.

2945 < # changes <= 20902 [48, 55, 57, 63, 64,
68]

> 95 prcntl. # changes > 20902 [21, 49]

Change
count

Not reported [39, 40]
< 25
percentile

months <= 18 [13, 37, 59, 64, 65,
67, 68]

25 to 75
prcntl.

18 < # months <= 60 [41-43, 45, 46, 51-53,
55, 57, 58, 60]

75 to 95
prcntl.

60 < # months <=195 [48-50, 63]

> 95 prcntl. # months > 195 [21, 54]

Extent of data
collection

Duration

Not reported [38-40, 44, 56, 61,
62, 66]

Simula Research Laboratory Technical Report 2008-05

 23

REFERENCES

1. Beck K. Embracing change with extreme programming. Computer 1999; 32(10):70-77.
2. Lehman MM, Ramil JF, Wernick PD, Perry DE, and Turski WM. Metrics and laws of software

evolution - the nineties view. Proceedings of the 4th International Symposium on Software Metrics.
IEEE Computer Society Press: Los Alamitos CA, 1997; 20-32.

3. Belady LA and Lehman MM. A model of large program development. IBM Systems Journal 1976;
15(3):225-252.

4. Banker RD, Datar SM, Kemerer CF, and Zweig D. Software complexity and maintenance costs.
Communications of the ACM 1993; 36(11):81-94.

5. Bhatt P, Shroff G, Anantaram C, and Misra AK. An influence model for factors in outsourced software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice 2006; 18(6):385-
423.

6. Krishnan MS, Kriebel CH, Kekre S, and Mukhopadhyay. T. An empirical analysis of productivity and
quality in software products. Management Science 2000; 46(6):745-759.

7. Lientz BP. Issues in software maintenance. ACM Computing Surveys 1983; 15(3):271-278.
8. Hayes JH, Patel SC, and Zhao L. A metrics-based software maintenance effort model. Proceedings of

the 8th European Conference on Software Maintenance and Reengineering. IEEE Computer Society
Press: Los Alamitos CA, 2004; 254-258.

9. Kemerer C. Software complexity and software maintenance: A survey of empirical research. Annals of
Software Engineering 1995; 1(1):1-22.

10. Munson JC and Elbaum SG. Code churn: A measure for estimating the impact of code change.
Proceedings of the 14th International Conference on Software Maintenance. IEEE Computer Society
Press: Los Alamitos CA, 1998; 24-31.

11. Kitchenham BA. Procedures for performing systematic reviews. Technical report EBSE-2007-01, Keele
University, 2007.

12. Graves TL and Mockus A. Identifying productivity drivers by modeling work units using partial data.
Technometrics 2001; 43(2):168-179.

13. Niessink F and van Vliet H. Two case studies in measuring software maintenance effort. Proceedings of
the 14th International Conference on Software Maintenance. IEEE Computer Society Press: Los
Alamitos CA, 1998; 76–85.

14. Kagdi H, Collard M, and Maletic JI. A survey and taxonomy of approaches for mining software
repositories in the context of software evolution. Journal of Software Maintenance and Evolution:
Research and Practice 2007; 19(2):77-131.

15. Dias MGB, Anquetil N, and de Oliveira KM. Organizing the knowledge used in software maintenance.
Journal of Universal Computer Science 2003; 9(7):641-658.

16. Kitchenham BA, Travassos GH, von Mayrhauser A, Niessink F, Schneidewind NF, Singer J, Takada S,
Vehvilainen R, and Yang H. Towards an ontology of software maintenance. Journal of Software
Maintenance: Research and Practice 1999; 11(6):365-389.

17. Ruiz F, Vizcaíno A, Piattini M, and García F. An ontology for the management of software
maintenance projects. International Journal of Software Engineering and Knowledge Engineering
2004; 14(3):323-349.

18. Fenton N. Software measurement: A necessary scientific basis. IEEE Transactions on Software
Engineering 1994; 20(3):199-205.

19. Dieste O and Padua AG. Developing search strategies for detecting relevant experiments for systematic
reviews. Proceedings of the 1st International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society Press: Los Alamitos CA, 2007; 215-224.

20. Sjøberg DIK, Hannay JE, Hansen O, Kampenes VB, Karahasanovic A, Liborg N, and Rekdal AC. A
survey of controlled experiments in software engineering. IEEE Transactions on Software Engineering
2005; 31(9):733-753.

21. Kemerer CF and Slaughter S. An empirical approach to studying software evolution. IEEE
Transactions on Software Engineering 1999; 25(4):493-509.

22. Lientz BP, Swanson EB, and Tompkins GE. Characteristics of application software maintenance.
Communications of the ACM 1978; 21(6):466-471.

23. Swanson EB. The dimensions of maintenance. Proceedings of the 2nd International Conference on
Software Engineering. IEEE Computer Society Press: Los Alamitos CA, 1976; 492-497.

24. Briand LC and Wüst J. Empirical studies of quality models in object-oriented systems. Advances in
Computers 2002; 59(1):97-166.

Simula Research Laboratory Technical Report 2008-05

 24

25. Arisholm E and Briand LC. Predicting fault-prone components in a java legacy system. Proceedings of
the 5th International Symposium on Empirical Software Engineering. IEEE Computer Society Press:
Los Alamitos CA, 2006; 8-17.

26. Graves TL, Karr AF, Marron JS, and Siy H. Predicting fault incidence using software change history.
IEEE Transactions on Software Engineering 2000; 26(7):653-661.

27. Lindvall M. Monitoring and measuring the change-prediction process at different granularity levels.
Software Process: Improvement and Practice 1998; 4(1):3-10.

28. Basili VR and Perricone BT. Software errors and complexity: An empirical investigation.
Communications of the ACM 1984; 27(1):42-52.

29. Leszak M, Perry DE, and Stoll D. Classification and evaluation of defects in a project retrospective. The
Journal of Systems & Software 2002; 61(3):173-187.

30. Perry DE and Stieg CS. Software faults in evolving a large, real-time system: A case study.
Proceedings of the 4th European Software Engineering Conference. Springer-Verlag:Berlin /
Heidelberg, 1993; 48-67.

31. von Mayrhauser A and Vans AM. Program comprehension during software maintenance and evolution.
Computer 1995; 28(8):44-55.

32. Détienne F and Bott F, Software design - cognitive aspects: Springer-Verlag:London, 2002.
33. Glaser BG. The constant comparative method of qualitative analysis. Social Problems 1965; 12(4):436-

445.
34. Basili VR, Caldiera G, and Rombach HD. Encyclopedia of software engineering. 2002; 578-583.
35. Shadish WR, Cook TD, and Campbell DT. Experimental and quasi-experimental designs. Houghton

Mifflin:Boston, 2002; 33-102.
36. OMG, "OCL 2.0 specification," in http://www.omg.org/docs/ptc/03-10-14.pdf, 2005.
37. Basili V, Briand LC, Condon S, Kim YM, Melo WL, and Valett JD. Understanding and predicting the

process of software maintenance releases. Proceedings of the 18th International Conference on
Software Engineering. IEEE Computer Society Press: Los Alamitos CA, 1996; 464–474.

38. Bergin S and Keating J. A case study on the adaptive maintenance of an internet application. Journal of
Software Maintenance and Evolution: Research and Practice 2003; 15(4):245-264.

39. Briand LC, Kim YM, Melo W, Seaman C, and Basili VR. Q-MOPP: Qualitative evaluation of
maintenance organizations, processes and products. Journal of Software Maintenance: Research and
Practice 1998; 10(4):249-278.

40. Lam W and Shankararaman V. Managing change in software development using a process
improvement approach. Proceedings of the 24th Euromicro Conference. IEEE Computer Society Press:
Los Alamitos CA, 1998; 779-786.

41. Rombach HD, Ulery BT, and Valett JD. Toward full life cycle control: Adding maintenance
measurement to the SEL. Journal of Systems and Software 1992; 18(2):125-138.

42. Weiss DM and Basili VR. Evaluating software development by analysis of changes - some data from
the software engineering laboratory. IEEE Transactions on Software Engineering 1985; 11(2):157-168.

43. Abran A and Hguyenkim H. Measurement of the maintenance process from a demand-based
perspective. Journal of Software Maintenance: Research and Practice 1993; 5(2):63-90.

44. Arnold RS and Parker DA. The dimensions of healthy maintenance. Proceedings of the 6th
International Conference on Software engineering. IEEE Computer Society Press: Los Alamitos CA,
1982; 10-27.

45. Stark GE. Measurements for managing software maintenance. Proceedings of the 1996 International
Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 1996; 152-
161.

46. Ng CSP. A decision framework for enterprise resource planning maintenance and upgrade: A client
perspective. Journal of Software Maintenance and Evolution: Research and Practice 2001; 13(6):431-
468.

47. Nurmuliani N and Zowghi D. Characterising requirements volatility: An empirical case study.
Proceedings of the 4th International Symposium on Empirical Software Engineering. IEEE Computer
Society Press: Los Alamitos CA, 2005; 427-436.

48. Perry DE, Siy HP, and Votta LG. Parallel changes in large-scale software development: An
observational case study. ACM Transactions on Software Engineering and Methodology 2001;
10(3):308-337.

49. Purushothaman R and Perry DE. Toward understanding the rhetoric of small source code changes.
IEEE Transactions on Software Engineering 2005; 31(6):511-526.

50. Burch E and Kung H. Modeling software maintenance requests: A case study. Proceedings of the 1997
International Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA,
1997; 40-47.

Simula Research Laboratory Technical Report 2008-05

 25

51. Gefen D and Schneberger SL. The non-homogeneous maintenance periods: A case study of software
modifications. Proceedings of the 1996 International Conference on Software Maintenance. IEEE
Computer Society Press: Los Alamitos CA, 1996; 134-141.

52. Mohagheghi P and Conradi R. An empirical study of software change: Origin, acceptance rate, and
functionality vs. Quality attributes. Proceedings of the 3rd International Symposium on Empirical
Software Engineering. IEEE Computer Society Press: Los Alamitos CA, 2004; 7-16.

53. Graves TL and Mockus A. Inferring change effort from configuration management databases.
Proceedings of the 5th International Symposium on Software Metrics. IEEE Computer Society Press:
Los Alamitos CA, 1998; 267–273.

54. Schneidewind NF. Investigation of the risk to software reliability and maintainability of requirements
changes. Proceedings of the 2001 International Conference on Software Maintenance. IEEE Computer
Society Press: Los Alamitos CA, 2001; 127-136.

55. Atkins DL, Ball T, Graves TL, and Mockus A. Using version control data to evaluate the impact of
software tools: A case study of the version editor. IEEE Transactions on Software Engineering 2002;
28(7):625-637.

56. Geppert B, Mockus A, and Rößler F. Refactoring for changeability: A way to go? Proceedings of the
11th International Symposium on Software Metrics. IEEE Computer Society Press: Los Alamitos CA,
2005;

57. Herbsleb JD and Mockus A. An empirical study of speed and communication in globally distributed
software development. IEEE Transactions on Software Engineering 2003; 29(6):481-494.

58. Rostkowycz AJ, Rajlich V, and Marcus A. A case study on the long-term effects of software
redocumentation. Proceedings of the 2004 International Conference on Software Maintenance IEEE
Computer Society Press: Los Alamitos CA, 2004; 92-101.

59. Arisholm E. Empirical assessment of the impact of structural properties on the changeability of object-
oriented software. Information and Software Technology 2006; 48(11):1046-1055.

60. Maya M, Abran A, and Bourque P. Measuring the size of small functional enhancements to software.
Proceedings of the 6th International Workshop on Software Metrics. University of Regensburg, 1996;

61. Briand LC and Basili VR. A classification procedure for the effective management of changes during
the maintenance process. Proceedings of the 1992 Conference on Software Maintenance. IEEE
Computer Society Press: Los Alamitos CA, 1992; 328-336.

62. Evanco WM. Prediction models for software fault correction effort. Proceedings of the 5th European
Conference on Software Maintenance and Reengineering. IEEE Computer Society Press: Los Alamitos
CA, 2001; 114-120.

63. Mockus A and Weiss DM. Predicting risk of software changes. Bell Labs Technical Journal 2000;
5(2):169-180.

64. Xu B, Yang M, Liang H, and Zhu H. Maximizing customer satisfaction in maintenance of software
product family. Proceedings of the 18th Canadian Conference on Electrical and Computer
Engineering. IEEE Computer Society Press: Los Alamitos CA, 2005; 1320-1323.

65. Jørgensen M. Experience with the accuracy of software maintenance task effort prediction models.
IEEE Transactions on Software Engineering 1995; 21(8):674-681.

66. Reformat M and Wu V. Analysis of software maintenance data using multi-technique approach.
Proceedings of the 15th International Conference on Tools with Artificial Intelligence. IEEE Computer
Society Press: Los Alamitos CA, 2003; 53-59.

67. Niessink F and van Vliet H. Predicting maintenance effort with function points. Proceedings of the
1997 International Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos
CA, 1997; 32-39.

68. Polo M, Piattini M, and Ruiz F. Using code metrics to predict maintenance of legacy programs: A case
study. Proceedings of the 2001 International Conference on Software Maintenance. IEEE Computer
Society Press: Los Alamitos CA, 2001; 202-208.

69. Yin RK. Case study research: Design and methods. Sage Publications:Thousand Oaks, CA, 2003; 19-
53.

70. Hannay JE and Sjøberg D. A systematic review of theory use in software engineering experiments.
IEEE Transactions on Software Engineering 2007; 33(2):87-107.

71. Pelz DC. Innovation complexity and the sequence of innovating stages. Science Communication 1985;
6(3):261-291.

