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Abstract Making changes to software systems can prove costly and it remains a challenge to 
understand the factors that affect the costs of software evolution. This study sought to identify 
such factors by investigating the effort expended by developers to perform 336 change tasks in two 
different software organizations. We quantitatively analyzed data from version control systems 
and change trackers to identify factors that correlated with change effort. In-depth interviews with 
the developers about a subset of the change tasks further refined the analysis. Two central 
quantitative results found that dispersion of changed code and volatility of the requirements for the 
change task correlated with change effort. The analysis of the qualitative interviews pointed to two 
important, underlying cost drivers: Difficulties in comprehending dispersed code and difficulties in 
anticipating side effects of changes. This study demonstrates a novel method for combining 
qualitative and quantitative analysis to assess cost drivers of software evolution. Given our 
findings, we propose improvements to practices and development tools to manage and reduce the 
costs. 
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1 Introduction 
Software systems must adapt to continuously changing environments (Belady and Lehman 1976). 
With a greater understanding of the cost of software evolution, technologies and practices could be 
improved to act against typical cost drivers. Development organizations could also make more 
targeted process improvements and predict cost more accurately in their specific context. 
Researchers have used varied approaches to understand the cost of software evolution. One class 
of studies has investigated project factors, such as maintainer skills, the size of teams, development 
practices, and documentation practices, (Lientz 1983; Banker et al. 1993; Krishnan et al. 2000; 
Bhatt et al. 2006). Other studies have examined how system factors, such as structural attributes of 
source code, relate to the ease of changing software (Kemerer 1995; Munson and Elbaum 1998; 
Hayes et al. 2004). A third class of studies has focused on human factors and probed individual 
cognitive processes of developers attempting to comprehend and change software (Détienne and 
Bott 2002b). 

A premise set forth in this paper is that software evolution consists of change tasks that 
developers perform to resolve change requests, and that change effort, i.e., the effort expended to 
perform these tasks, is a meaningful measure of software evolution cost. Thus, by identifying the 
drivers of change effort, we can better understand the cost of software evolution. 

Change effort might be affected by such factors as type of change, developer experience and 
task size. This study distinguishes between a confirmatory analysis testing the effect of factors 
important in earlier change-based studies, and an explorative analysis identifying factors that best 
explain change effort in the data at hand. This is also the first study we are aware of that combines 
quantitative and qualitative analysis of change tasks in a systematic manner. The purpose was to 
paint a rich picture of factors involved when developers spend effort to perform change tasks. 
Ultimately, our goal is to aggregate evidence from change-based studies into theories of software 
evolution. 

The main contributions of this paper are threefold: First, from a local perspective the study 
results can improve practices in the two investigated projects. For example, the study identifies 
specific factors that were insufficiently accounted for when the projects estimated change effort. 
Second, from the software engineering perspective, it clarifies factors that drive cost of software 
evolution. For example, the study identifies commonly used design practices with an unfavorable 
effect on change effort. Third, from the empirical software engineering perspective the paper 
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demonstrates a methodology of qualitative and quantitative analysis of software changes to assess 
factors that affect the cost of software evolution. 

The remainder of this paper is organized as follows: Section 2 describes the design of the study, 
and includes a measurement model based on a literature review of empirical studies of software 
change. Sections 3 and 4 provide the results from the quantitative analysis, while Section 5 
provides the results from the qualitative analysis. Section 6 summarizes the results of the analysis 
and discusses the consequences. Section 7 discusses threats to validity, and Section 8 concludes. 
 
2 Design of the study 

2.1 Research question 
The study addresses the following overall research question:  
 
From the perspective of developers handling incoming change requests during software evolution, 
which factors affect the effort required to complete the change tasks? 
 
In principle, a change can be viewed as a small project involving analysis, design, coding, testing 
and integration. The projects under study used lightweight development practices, and did not, for 
example, maintain the requirements or high-level design documents used for initial development. 
Most of the factors under study therefore pertain to coding-centric activities. Change trackers and 
version control systems were essential tools in order to maintain traceability and control of the 
evolving software. The regression models built for the quantitative analysis used data collected 
from such systems. 

Because regression analysis essentially models statistical relationships between variables, 
evidence from such analysis is not sufficient to claim causal effects of the modeled factors. Also, 
there are many sources of unexplained variability in models of change effort, due to activities that 
leave no traces in change management systems. Examples of such activities can be informal 
discussions among developers, code comprehension activities and the maintenance of artifacts that 
are not fully traced in change management systems. To identify complementary factors affecting 
change effort, we therefore interviewed developers about effort expenditure for recently completed 
change tasks. Also, we relied on the interview data to reveal more about the involved causal 
effects.  

2.2 Related work and open issues 
A systematic literature review performed by the authors identified 34 studies analyzing properties 
of change tasks and their outcome (Benestad et al. 2008). A significant and related research 
program in the area of change-based analysis was the code decay project based at Bell Labs, using 
change management data from the evolution of a large telecom switching system. Important 
findings were effects of the type and size of changes, a time-related effect contributed to code 
decay (Graves and Mockus 1998), effects of change experience (Mockus and Weiss 2000), tool 
effects (Atkins et al. 2002), and effects of refactorings (Geppert et al. 2005). Other closely related 
studies have found effects of structural attributes of changed components (Evanco 2001; Polo et 
al. 2001; Arisholm 2006). Subjectively assessed complexity and the size increase are other factors 
found to be important (Jørgensen 1995b; Niessink and van Vliet 1998).Still, the evidence on 
factors that affect change effort is scattered, and it is unclear whether factors investigated in earlier 
change-based studies capture the most important cost drivers. The moderate or poor accuracy 
obtained in prediction models of change effort (Jørgensen 1995b; Niessink and van Vliet 1997; 
Niessink and van Vliet 1998) indicate that important factors are not fully captured by quantitative 
data on changes. To attempt to clarify these issues, we established the comprehensive literature-
based measurement model described in Section 2.6, wanting to answer: 
 
1. Did the factors identified from earlier change-based studies consistently affect change effort? 
2. How accurate were change effort models built from change management data? 
3. What was the added value of using a larger number of candidate measures in the models? 
 
Change-based studies have shown consistent correlations between change effort and change set 
dispersion, typically measured by the number of source code components affected by a change 
(Niessink and van Vliet 1998; Eick et al. 2001; Evanco 2001). This recurring statistical correlation, 
also expected in this study, may simply capture an effect of size. Mockus and Graves found that 
measures of change set dispersion explained more variability than did counts of changed lines of 
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code (Graves and Mockus 1998), indicating that dispersion might be a separate factor. This study 
explores the following questions about change set dispersion: 
 
4. Did change set dispersion affect change effort, beyond what could be explained by size alone?  
5. What explained the effect of change set dispersion on change effort, e.g., how was dispersion 

related to the comprehension activity?  
 
These questions are closely related to research on the effect of delocalized plans (Soloway et al.), 
and of different control styles in object-oriented designs (Arisholm and Sjøberg 2004). This 
research suggests that dispersed code hinders comprehension. 

Some researchers have investigated the effects of technologies and tools on change effort. 
Jørgensen found that productivity was almost identical for changes to 3GL code versus changes to 
4GL code (Jørgensen 1995b). Atkins et al. found that less effort was required when developers 
used a tool that supported changes to parallel versions of the system (Atkins et al. 2002). Apart 
from these studies, the effects of using different languages and technologies have not received 
much focus in change-based studies. Given an effect of change dispersion in the quantitative 
models of change effort, we wanted to answer: 
 
6. Was the effect of change set dispersion stronger when several languages or technologies were 

involved in changes?  
 
Schneidewind focused on factors that can be assessed early in the change cycle, and found that the 
number of modifications to a proposed change was significantly correlated with fault proneness 
(Schneidewind 2001). Iterative and agile processes take a different viewpoint, recommending that 
changes to requirements should be considered useful (Beck 1999). A relevant issue is therefore 
whether software organizations must differentiate between types of volatility in requirements. The 
study explores the following question: 
 
7. Under which circumstances did change request volatility have the largest effect on change 

effort? 
 
A large body of research exists on how structural attributes affect change activity (Briand and 
Wüst 2002). Eick et al. found that the history of code changes was more responsible for problems 
than measurable aspects of code complexity (Eick et al. 2001). On the other hand, Niessink and 
van Vliet showed that change effort correlated with size of the changed components (Niessink and 
van Vliet 1997). Likewise Arisholm found a relationship between structural attributes of affected 
Java classes, and change effort (Arisholm 2006). We wanted to answer: 
  
8. Which structural properties of source code had the largest effect on change effort?  
 
Several studies have shown that change effort differs between types of changes, c.f. (Polo et al. 
2001; Xu et al. 2005). Most studies used one category for corrective changes and one or more 
categories for non-corrective changes, e.g., perfective and adaptive changes (Swanson 1976). 
Some researchers (Briand and Basili 1992; Reformat and Wu 2003) used fine-grained categories 
for corrective changes, similar to those proposed by Chillarege et al. (Chillarege et al. 1992). In 
this study we wanted to use a bottom-up approach, generating categories for changes on the basis 
of the data at hand. We wanted to answer: 
 
9. What kind of changes required most effort? 
 
Differences in developer skills may potentially overshadow any other phenomenon in software 
development (Curtis et al. 1989). Mockus and Weiss used historical change management data to 
measure developers’ experience objectively (Mockus and Weiss 2000), while Jørgensen used 
subjective measures of skill and experience (Jørgensen 1995b). This study explores the question: 
 
10. Which particular skill shortages had the largest effect on change effort? 
 
Summarized answers to the questions are provided in Section 6. Most of the analyses for the 
questions above required that change management data was complemented with interview data.  
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2.3 Overview of case study procedures 
Fig.1 summarizes the case study procedures. Proposals for the case study were generated on the 
basis of empirical evidence from a systematic review of change-based studies (Benestad et al. 
2008). Quantitative data to describe change tasks, including change effort, was extracted from 
change trackers and version control system in two software projects, henceforth labeled project A 
and B.  

An evidence-driven analysis tested whether a small set of pre-selected measures contributed to 
change effort in statistical regression models. These measures captured cost factors important in 
earlier change-based studies. In the data-driven analysis, a wider set of factors and measures were 
input to statistical procedures designed to identify the models that best explained variations in 
change effort.  

Roughly once a month, we interviewed the developers about recent change tasks and any 
circumstances making the task easier or more difficult. The interviews aimed to identify additional 
or more fundamental cost factors than those identified by the quantitative analysis. To achieve this 
goal, the analysis focused on the changes that had required considerably more or less effort than 
predicted from the regression models, i.e., the residuals were large.  

The evidence from the different parts of the analysis was compared and integrated into a set of 
joint results. This constitutes the basis for discussing consequences from the three perspectives 
mentioned in the introduction. 

With this design, we move towards a theory on software change effort that would be valuable 
both for researchers and practitioners within software engineering.  

 
Fig. 1 Overview of analyses 

2.4 Generalization of case study results 
The case study paradigm is appropriate when investigating complex phenomena, especially when 
it is difficult to separate the investigated factors from their context (Yin 2003). In software 
development and software evolution, social and human factors interact with technological 
characteristics of the software. We chose the case study method because we wanted to consider the 
full complexity of factors affecting change effort in a realistic context. 

A main concern with case studies is whether it is possible to generalize results beyond the 
immediate study context. Case study methodologists recommend that studies are designed to build 
or test theories. Theories can then explain, predict and manage the investigated phenomenon in 
some future situation, and are therefore useful to generalize from case studies. Because we are not 
aware of theories that are directly relevant to the research question, the proposals for this study 
were based on a systematic review of relevant empirical evidence. In other words, the systematic 
review of empirical evidence takes the place of theories in this study.  

In particular, the evidence-driven analysis was essential to generalize from this study because it 
was designed to confirm, refute or modify the current empirically based knowledge about factors 
that correlate with or affect change effort. The role of the data-driven analysis was to discover 
additional relationships within the investigated projects, and to generate proposals for further 
confirmatory studies. 

The qualitative analysis aimed at refining the quantitative results. For example, while regression 
analysis could show that more effort is expended when a particular programming language was 
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used, interviews could reveal that developers used this programming language for a particular type 
of task, say, to interface with hardware. This allows appropriate use of the study results in other 
contexts. 

 The results of this study are inevitably influenced by context factors pertaining to the 
development organizations in the data collection period. Understanding these factors makes it 
easier to judge the applicability of the results in a new context. By replicating the study across two 
development organizations, and comparing the results and the organizations, we were able to 
evaluate some of these context factors. Data was collected over a relatively short period of time. 
Although this was a pragmatic choice, analyzing data in a relatively narrow time span can make 
cost factors more clearly visible, see, e.g., (Atkins et al. 2002). 

2.5 Case selection and data collection 
We approached medium and large-sized software development organizations in the geographic 
area of our research group during 2006, using procedures that conformed to those described in 
(Benestad et al. 2005). The participants had to grant access to the planned sources for quantitative 
and qualitative data, to use object-oriented programming languages, to have planned development 
for at least 12 months ahead, and to use a well-defined change process that included some basic 
data collection procedures. The recruitment phase ended when we made agreements with two 
projects, henceforth named project A and project B. 

Project A develops and maintains a Java-based system that handles the lifecycle of research 
grants for the Research Council of Norway. A publicly available web interface provides 
functionality for people in academia and industry to apply for research grants, and to report 
progress and financial status from ongoing projects (RCN 2008). Council officials use a Java 
client to review the research grant applications and reports. The system integrates with a number 
of other systems, such as a web publishing system. The consultancy company that we cooperated 
with was subcontracted by the Council to make improvements and add functionality to the system. 
For the most part, the contractor was paid per hour of development effort. Most change requests 
originated from the users at the Council. Roughly once a month, the development group agreed 
with user representatives and the product owner on changes for the next release.  

Project B develops and maintains a Windows PocketPC system written in Java and C++. The 
system allows passengers on the Norwegian State Railways (NSB 2008) to purchase tickets on-
board, and offers electronic tickets and credit card payment. The system integrates with a back-end 
accounting system that is shared with other sales channels. The consultancy company that we 
cooperated with had been subcontracted by the Norwegian State Railways to develop the system. 
Most change requests originated from the product owner and user representatives. The members of 
the development group prioritized and assigned development tasks directly in the change tracker, 
or as part of short and frequent meetings. New versions of the system were released roughly once a 
month. For the most part, the contractor was paid per hour of development effort. 

Both projects were medium-sized with extensive change activity. Three to six developers were 
making code changes to the systems in each of the projects. Fig. 2 and Fig. 3 illustrate change 
activity and system size over a period of 30 months. Project A deployed the first version of their 
system in Q1 2003, while project B deployed the system in Q1 2005. The apparent dip in system 
size for project A around Q3 in 2005 was due to a major reorganization of the software that 
included a change in the technology platform. According to the developers, this change eased 
further development, and they perceived the project to be in a relatively healthy state during the 
period of measurement. 

Fig. 2 Accumulated number of check-ins 
 
Fig. 3 System size, in lines of code 
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Table 1 Key information about collected data 

 Project A Project B 
Number of analyzed changes 136 200 
Total effort of analyzed changes  1425 hours 1115 hours 
Changes discussed in interviews 120 65 
Period for data collection Jan 2007-Jul 2007  Aug 2006 – Jul 2007 
Version control system IBM Rational Clearcase LT 

(IBM 2008) 
CVS (GNU 2008) 

Change tracker Jira (Atlassian 2008) Jira (Atlassian 2008) 
Total duration of interviews 20 hours 10 hours 
Total time charged for data collection 18 hours 14 hours 
 
It was crucial for the analysis that changes to source components could be traced to change 
requests, and that data on change effort was available. The developers recorded the identifier of the 
change request on every check-in to the version control system. During and after each change task, 
the effort expended on detailed design, coding, unit testing and integration was recorded in the 
change tracker. Interviews were conducted on a monthly basis, discussing each change according 
to the interview guide shown in Appendix A.  

The interview sessions allowed us to remind the developers to accurately report code changes 
and change effort according to the agreed procedures (question 3 in the interview guide). To 
further increase commitment to data collection, the companies could charge their normal hourly 
rate for data collection time. In sum, we believe these steps resulted in accurate and reliable 
quantitative data, although some measurement noise is inherent to this kind of data.  

Prior to the analysis, four and six data points were removed from project A and B, respectively, 
because they corresponded to continuously ongoing maintenance activities, rather than 
independent and cohesive tasks. 

2.6 Measurement model 

 
Fig. 4 Key terms and concepts 

This study’s perspective is that software evolution is organized around the change task. A 
conceptual model for change-based studies is given in Fig. 4. A change task is a cohesive and self-
contained unit of work triggered by a change request. In these projects, a change task consists of 
detailed design, coding, unit testing and integration. A change task is manifested in a 
corresponding change set. A change set consists of revisions, each of which creates a new version 
of a component of the system. The new version can be based on a pre-existing version of the 
component, or it can be the first version of an entirely new component.  

A system is deployed to its users through releases. A release is built from particular versions of 
the components of the system. A release can also be described by the change sets or corresponding 
change requests that it incorporates. The term change aggregates the change task, the originating 
change request, and the resulting change set. Changes involve human resources, and are managed 
and resolved by the development organization. Changes can be hierarchical, because large changes 
may be broken down into smaller changes that are more manageable for the development 
organizations. 

The measures used as explanatory variables in quantitative models of change effort captured 
factors pertaining to the entities of the model shown in Fig. 4. Table 2 provides a summary of the 
relationships between entities, factors and measures. For each factor, we select one primary 
measure and zero or more alternative measures. The primary measures are used as explanatory 
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variables in models for the evidence-driven analysis. These models are a reference point allowing 
us to assess the added value of the data-driven analysis, where we build optimized, project-specific 
models using all the described measures as candidate variables. We preferred primary measures 
that were likely to be robust to variations in measurement context, that have been used and 
validated in previous empirical studies, and that were measurable or assessable at an early stage in 
the change cycle. Measures are written in italics, while primary measures are marked with an 
additional asterisk (*). 

Table 2 Summary of measures 

Entity Factor Measure Explanation of measure 
Change task Change effort  ceffort Time expended to design, code, test, and 

integrate change, tracked by developers 
Used as response variable in the study. 

Change 
request 

Change request 
volatility 

crTracks* 
crWords 
crInitWords 
crWait 

-Change tracks for CR before first check-in 
-Words in CR before first check-in 
-Words in original CR  
-Calendar time before first check-in 

Change type isCorrective* -Classification + text scanning 
Change set Change set size components* 

addLoc 
chLoc 
delLoc 
newLoc 
segments 

-Changed components 
-Measures collected by  
parsing side-by-side  
output (-y) 
of unix/linux diff 
-diff –y v2 v1 |  cut –c65 | tr –d ‘\n’  | wc –w 

Change set 
complexity 

addCC 
delCC 
addRefs 
delRefs 

Parse output of diff to measure the number of 
structural elements added and deleted. 
Measures control-flow statements and reference 
symbols (. -> ) 

Component 
version 

Structural attrib.: 
Size 
 
Coupling 
 
Control flow 

 
avgSize* 
cpSize 
avgRefs 
cpRefs 
avgCC 
cpCC 

 
-Average/weighted (by segments) size of 
changed components 
-Average/weighted (by segments) number of 
references to members of imported components  
-Average/weighted (by segments) number of 
control flow statements 

Component Language 
heterogeneity 

filetypes -Unique file types that were changed  

Specific 
technology  

hasCpp (A) 
hasWorkflow (B) 

-Change concerns C++ code 
-Change concerns the workflow engine 

Code volatility avgRevs -Average number of earlier revisions 
Human 
resource and 
Revision 

Change 
experience 
 
 

systExp* -Avg. previous check-ins by developers 
techExp -Avg. previous check-ins on same file types 
packExp -Avg. previous check-ins in same package 
compExp -Avg. previous check-ins in same components 
devspan -Number of developers participating in change 

Development 
organization 

Project identity isA* 1 if change belongs to project A 
0 if change belongs to project B 

Summary statistics and correlations for the measures are provided in (Benestad et al. 2009). 

2.6.1 Change request volatility 

Modifications or additions that the developers or other stakeholders make to the original change 
request, the change request volatility, can indicate uncertainty or other problems in envisioning the 
change incorporated into the system. Such problems could propagate to the coding phase and 
affect change effort. In (Schneidewind 2001), the number of modifications to change requests 
correlated with fault proneness. In (Niessink and van Vliet 1998), the number of new requirements 
to change requests loaded on a principal component that correlated with change effort. A 
straightforward measure of change request volatility is the number of modifications to the original 
change request, as recorded in the change tracker (crTracks*). Related, candidate measures include 
the number of words in the original change request (crInitWords), the number of words in all 
modifications to the change requests (crWords), and the elapsed time from when a stakeholder 
created the change request until a developer started the change task (crWait). 
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2.6.2 Change set size 

The change set size reflects the differences between the current and preceding versions of changed 
source components. The intuitive notion that this affects change effort is verified by previous 
studies (Jørgensen 1995b; Graves and Mockus 1998; Niessink and van Vliet 1998; Evanco 1999). 
Other studies have shown that after controlling for change type or structural complexity of 
changed components, discussed below, change set size is not necessarily a significant factor 
(Briand and Basili 1992; Atkins et al. 2002; Arisholm 2006). A coarse-grained measure of change 
set size is the number of source components that were changed during the change task 
(components*). Finer granularity measures use text difference algorithms (Hunt and McIlroy 
1975) to measure the number of lines of code (LOC) that were added (addLoc), deleted (delLoc) 
and changed (chLoc). Added code in existing components can be differentiated from code in 
newly created components (newLoc). Comments and whitespace were removed before computing 
these measures. 

We selected a coarse-grained measure of change set size because there is evidence that these 
perform equally well or better than LOC-based measures (Graves and Mockus 1998). LOC counts 
are less meaningful in technologically heterogeneous environments, and when tools that generate 
code automatically are used. Furthermore, LOC counts may become high for conceptually trivial 
changes, such as when program variables or methods are renamed. For estimation of change effort, 
it is probably easier to estimate the number of components to change than the number of lines of 
code to change. An alternative, medium-grained measure counts the number of disjointed places in 
the existing code where changes were made (segments). 

2.6.3 Change set complexity 

If the structural complexity of the change set is high, e.g., if there are many changes to the control-
flow, an increase in change effort beyond the effect of change set size could be expected. Except 
for one study in the authors’ research group (Moløkken-Østvold et al. 2008), we are not aware of 
any studies investigating this effect of change set complexity on change effort. Fluri and Gall 
showed that measures of edits to the abstract syntax trees of individual components predict ripple 
effects better than measures of textual differences (Fluri and Gall 2006). We constructed two 
measures to capture the number of added control-flow statements and added references to 
members of external components, addCC and addRefs. Corresponding measures were constructed 
for deleted control-flow statements and deleted references to members of external components, 
delCC and delRefs. Because these are likely to correlate with measures of change set size, and they 
are experimental in nature, we only used these measures in the data-driven analysis.  

2.6.4 Change type 

Changes can be described according to their origin, importance, quality focus, and other criteria. In 
change-based studies, the change type has been important in order to understand change effort 
(Briand and Basili 1992; Jørgensen 1995b; Graves and Mockus 1998; Polo et al. 2001; Atkins et 
al. 2002). Corrective, adaptive or perfective change types, as suggested by Swanson (Swanson 
1976), was the most commonly used classification schema. A recurring result from existing 
change-based studies is that corrective changes are more time consuming than other types of 
change, after controlling for change set size (Jørgensen 1995a; Graves and Mockus 1998). This 
does not contradict results that have shown that the mean effort for corrective changes is lower 
than for other change types (Polo et al. 2001), because corrective changes tend to have smaller 
change set size (Purushothaman and Perry 2005).  

Corrective and non-corrective changes (isCorrective*) are the primary measure of classification 
in the analysis. This decision was based on the results from a field experiment in one of the 
projects, which showed that developers’ classification into fine-grained change types was 
unreliable (Benestad 2008). To further increase reliability of the measures, we combined the 
categorizations performed by the developers with textual search for words like “bug”, “fails” and 
“crash” (in the native language) in change request descriptions. 

2.6.5 Structural attributes of changed components 

The structural attributes of code relevant to the change may affect comprehension effort involved 
in a change task. (Rajaraman and Lyu 1992; Etzkorn et al. 1999). Many change-based studies have 
investigated whether the size of changed modules (avgSize*) correlate with change effort 
(Jørgensen 1995b; Niessink and van Vliet 1997; Niessink and van Vliet 1998; Arisholm 2006; 
Fluri and Gall 2006). Arisholm showed that size and certain other structural properties of the 
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changed source components were correlated with change effort (Arisholm 2006). We constructed 
alternative measures of control flow complexity and coupling in the changed components. The 
first measure takes the average number of control-flow statements (avgCC) in the changed 
components, while the second takes the average number of references to members of imported 
components, of each changed component (avgRefs). Variations of the measures were constructed 
by weighting the measures by the relative amount of change in each component (cpSize, cpCC and 
cpRefs), as proposed in (Arisholm 2006).  

2.6.6 Code volatility 

While many components rarely change, some are involved in a large proportion of the change 
tasks. We propose that the code volatility or change proneness will affect change effort, and that 
change prone components require less effort, simply because developers are more experienced 
with changing these components. Conversely, changes to infrequently changed components 
represent unfamiliarity, and may also indicate more fundamental changes. Higher code volatility 
could also result in increased change effort, because frequently changed modules may experience 
code decay (Eick et al. 2001). However, in the investigated projects, components believed to have 
decayed due to frequent changes were re-factored, and we therefore expected this effect to be 
limited. The number of historical revisions, averaged over all changed components (avgRevisions), 
captures code volatility of changed components. Several researchers have used volatility of 
individual components as a predictor of failure proneness, see e.g., (Graves et al. 2000). However, 
we are not aware of studies that have investigated the relationships between code volatility and 
change effort. Due to this lack of existing empirical evidence we only used this measure in the 
data-driven analysis. 

2.6.7 Language heterogeneity  

Language heterogeneity refers to the number of different programming languages involved in a 
change. Using many languages may increase change effort, because it sets higher demands on 
developer skills and integration challenges may arise. One simple way to measure language 
heterogeneity is to count the number of unique file name extensions among the changed 
components (filetypes). For example, changing one java-file and one properties-file would give a 
count of two. We are not aware of studies that have investigated how language heterogeneity 
affects change effort. Due to the lack of existing empirical evidence we only used this measure in 
the data-driven analysis. 

2.6.8 Specific technology 

Use of a specific technology can affect change effort. For example, Atkins et al. showed that when 
developers used a tool that supported evolution of system variants, change effort was significantly 
reduced (Atkins et al. 2002). In project B, functionality interfacing with hardware was written in 
C++. We propose that changes that involve C++ will be more expensive to change than other 
code, which was predominantly written in Java. One rationale is that more specialized knowledge 
is required to develop code that interfaces to hardware. An effect of the lower abstraction level in 
C++ as compared to Java would work in the same direction. The binary measure hasCpp evaluates 
to true if any of the changed components were written in C++. Project A used a Java-based 
workflow engine as an important part of the technological basis. Although the project assumed that 
they benefited from the high abstraction level of this technology, we wanted to investigate whether 
the changes involving the workflow engine were different with respect to change effort. The 
binary measure hasWorkflow evaluates to true if any of the changed components were based on the 
technology of the Java-based workflow engine. 

2.6.9 Change experience 

Experiments have shown that there can be large productivity differences between individual 
developers (Sackman et al. 1968; DeMarco and Lister 1985). Because we were not allowed to 
assess individuals, we used measures of change experience to assess one important source of 
individual differences. A basic measure is the total number of previous check-ins by the developer 
who performed the change (systExp*). Other measures include the average number of earlier 
check-ins of the changed components (compExp), packages (packExp) or technologies (techExp). 
If several developers were involved in the change, the averages of the measures were used, 
weighted by the number of components changed by each developer. Similar measures were used in 
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(Mockus and Weiss 2000). In that study, the coarsest-grained measure (systExp) significantly 
affected the response variable capturing failure proneness, while the other measures did not. 

2.7 Analysis of quantitative data 

2.7.1 Statistical procedures 

Change effort was used as the response variable for all statistical models. The measures discussed 
in Section 2.6 were used as candidate explanatory variables. The regression model framework was 
Generalized Linear Models (GLM) with a gamma response variable distribution (sometimes called 
the error structure) and a log link-function, see (Myers et al. 2001). One reason to assume gamma-
distributed responses was that the effort data distribution has a natural lower bound of zero and 
was right-skewed with a long right tail. A log link function ensures that predicted values are 
always positive, which is appropriate for wait-time data. The size of effect of a specific 
explanatory variable xn is assessed by the proportional change in expected change effort that 
results from a change to xn. Because a log link-function is used, the proportional change in 
expected change effort becomes: 

nß
e

nCnß1-nC1-nß..1C1ß 0ß
e

1)n(Cnß1-nC1-nß..1C1ß 0ß
e

)nCnx,1nC1nx..1C1x(ceffort
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+++++
=
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Cross-project models were constructed to identify effects that were present in both projects, and to 
formally test for project differences. Project-specific models were constructed to identify effects 
specific to each project, and to quantify those effects. 

The p-values, sign and magnitude of the coefficients are inspected to interpret the models. The 
significance level is set to 0.05. This means that for a variable to be assessed as significant, the 
probability that the variable has no impact must be less than 5%. It is difficult to interpret 
coefficients when there is a high degree of multicollinearity between the explanatory variables. In 
the evidence-driven analysis we attempted to reduce multicollinearity by selecting primary 
measures designed to capture independent factors. In the data-driven analysis, the results from a 
principal component analysis identified orthogonal factors in the data sets. The actual amount of 
multicollinearity in the fitted models was measured by the variance inflation factor (VIF). If the 
VIF is 1, there is no multicollinearity. If VIF is very large, such as 10 or more, multicollinearity is 
a serious problem according to existing rules-of-thumb (Ott and Longnecker 2001).  

2.7.2 Measures of model fit 

We chose the cross-validated mean and median magnitude of relative error to assess the fit of 
models. The basis for these measures is the magnitude of relative error (MRE) which is the 
absolute value of the difference between the actual and the predicted effort, divided by the actual 
effort. The measures were calculated by n-fold cross-validation. With this procedure, the variable 
subset was fitted in n iterations on n-1 data points. In each iteration, the fitted model predicted the 
last data point. The mean MRE forms MMREcross, while the median of the values forms 
MDMREcross. The cross-validated measures are more realistic measures of the predictive ability 
of regression models than measures not based on cross-validated predictions. This was particularly 
important during the data-driven analysis, where models were selected on the basis of the 
MMREcross-measure.  

Another measure to assess model fit is the percentage of data points with an MRE of less than a 
particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of the data 
points that have a MRE of less than 0.25 and 0.50, respectively. The Pearson and Spearman 
correlations between actual and predicted effort are also provided. 

As a reference point to assess the model performance, we calculated the measures of model fit 
for the constant model, i.e. the model that uses a constant value as predictor for all data points. A 
commonly used criteria for accepting a model as “good” is a value of less than 0.25 for MMRE or 
MdMRE, and higher than 0.75 from Pred(25) (Conte et al. 1986). 

2.8 Collection and analysis of qualitative data 
We prepared for interviews by studying data about each change request in the change trackers and 
version control systems, and attempted to understand how the changed code fulfilled the changes. 
Appendix A shows the interview guide. The interviews focused on phenomena that developers 
perceived to have affected change effort.  
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The changes with the largest magnitude of relative error (MRE) from the data-driven analysis 
were selected for in depth analysis. We limited the analysis to data points with an MRE of more 
than 0.5 for underestimated changes and more than 1.3 for overestimated changes. These limits 
were set somewhat arbitrarily.  

The interviews were transcribed and analyzed in the tool Transana (Woods 2008), which allows 
navigation between transcripts and audio data. This made it feasible to re-listen to the original 
voice recordings throughout the analysis. The interviews were coded in two phases. In phase 1, 
immediately after each interview session, the interviews were transcribed and coded according to a 
scheme that evolved as more data became available. In phase 2, when the quantitative models had 
been constructed, we selected changes to be analyzed in depth. The focus was narrowed to 
categories and codes that suggested a relationship with change effort. Finally, the exact naming 
and meaning of codes and categories was reconsolidated to make them more straightforward and 
easy to understand. The coding schema that resulted from this process is described in Section 5. 
 
3 Evidence-driven analysis 

3.1 Models fitted in evidence-driven analysis 
Cross-project models were constructed to identify effects in both projects, and to formally test for 
project differences: 

isA
6
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The model M1 includes one explanatory variable for each of the primary measures. It also includes 
a project indicator (isA) allowing for a constant multiplicative between the projects. Model 2 adds 
interaction terms between the project indicator and each of the primary measures, allowing for 
different coefficients for each factor in each project. Two project specific models were also fitted, 
one for each of the two data sets: 

veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß  0ßt)log(ceffor +++++=  (M3)

The constant models were used as yardsticks for the assessment of model fit: 

isA1ß  0ßt)log(ceffor +=  (M4)

3.2 Results from evidence-driven analysis 
Key information about coefficients in the fitted models is provided in Table 3. A p-value lower 
than 0.05* (the chosen significance level), 0.01** and 0.001*** are indicated with one, two and 
three asterisks, respectively.  

Solving M4 for ceffort, and dividing by 3600 (because the underlying measurement unit is 
seconds) gives an expected change effort of 5.6 hours for project B. The intercept is higher 
(statistically significant) by 0.63 in project A, which gives an expected change effort of 10.5 hours. 
The significant interaction terms in M2 indicate that isCorrective and systExp are project specific 
effects. The project specific models M3 show: 
 
• The variable crTracks had a significant effect on change effort in all models. A 8% increase in 

change effort could be expected for each additional track in the change tracker. This size of 
effect was similar in the two projects. 

• The variable components had a significant effect on change effort in the models from both 
projects. When one additional component was changed, a 13% and 8% increase in effort could 
be expected in project A and B, respectively.  

• In project A, corrective changes were expected to require slightly less than half the effort 
compared to that required by non-corrective changes (e-0.780=46%), after controlling for 
differences in other variables.  

• In project B, systExp was significantly related to change effort. It was expected to decrease by 
16% for every 1000th check-in performed by a developer. In project A, the effect was small 
and statistically insignificant. 
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• The estimated coefficients for avgSize indicate that change effort was slightly lower when 
large components are changed, but the effects are very small and statistically insignificant. 

• The standardized regression coefficients show that relative to the statistical variability of each 
variable, components had the largest effect on change effort. For example, one standard 
deviation change in components had double (project B) and quadruple effect (project A) than 
did one standard deviation change in crTracks. 

Table 3 Coefficient values, significance and model fit in evidence-driven analysis 

 Cross 
project 
constant 
model 
M4 

Cross 
project 
w. project 
indicator 
M1 

Cross 
project 
w. 
interactions 
M2 
 

Project A 
M3 
(standardized 
coefficients in 
parentheses) 

Project B 
M3 
(standardized 
coefficients in 
parentheses) 

Intercept (β0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30*** 
crTracks . 0.075** 0.076** 0.08* (0.18) 0.076** (0.26) 
components . 0.098*** 0.12*** 0.076*** (0.76) 0.12*** (0.51) 
systExp . -0.000039 -0.00018** 0.000026 (0.0719) -0.00018** (-0.23) 
avgSize . -0.000033 -0.000061 -0.000011 (-0.0082) -0.000061 (-0.038) 
isCorrective . -0.28* -0.11 -0.78*** (-0.38) -0.11 (-0.050) 
isA 0.63*** 0.18 0.14 . . 
crTracks*isA . . 0.0044 . . 
components*isA . . -0.043 . . 
systExp*isA . . 0.00020** . . 
avgSize*isA . . 0.000051 . . 
isCorrective*isA . . -0.67* . . 
MMREcross 3.29 1.52 1.5192 1.86 1.32 
MdMREcross 1.43 0.69 0.6786 0.72 0.60 
Pred(25) 0.095 0.20 0.23 0.21 0.25 
Pred(50) 0.24 0.36 0.40 0.35 0.43 
Pearson corr. 0.20 0.53 0.63 0.64 0.51 
Spearman corr. 0.091 0.59 0.59 0.66 0.56 

 
The variance inflation factor was less than 1.34 for all the coefficients in all models. The principal 
component analysis in Section 4.2.1 and the correlations reported in (Benestad et al. 2009) further 
confirmed that multicollinearity was not a threat to the above interpretation of the coefficients. 

Plots of actual versus predicted change effort of projects A and B are provided in Fig. 5 and Fig. 
6, respectively. MdMREcross was down from 1.43 for the constant model to between 0.60 and 
0.72 for the rest of the models. However, judged by commonly used standard (Conte et al. 1986), 
the model fit was relatively poor. 
 

Fig. 5 Predicted vs. actual effort, project A Fig. 6 Predicted vs. actual effort, project B 

3.3 Discussion of evidence-driven analysis 
It is interesting from a practical perspective that a relatively coarse grained, easily collectable and 
early assessable measure of change set size (components) represented a significant independent 
variable in the models. Code changes dispersed among many components could possibly require 
more effort than changing the same number of lines in fewer components. The data-driven analysis 
and the qualitative analysis investigate this topic in more depth. 



 13

The number of updates to change requests (crTracks) prior to the coding phase consistently 
contributed to change effort, and can therefore be useful for estimating effort in later phases of the 
change process. The qualitative analysis investigates the result in more depth, aiming at actions 
that could reduce the impact of change request volatility.  

In project A, corrective changes required less effort than non-corrective changes. The data 
indicates the same effect in project B, although not statistically significant. The indicated effect is 
opposite to that of earlier studies. A possible explanation is that the processes involved in 
corrective vs. non-corrective changes are indeed different, but the direction of the difference 
depends on the developers, system and change tasks of a given project. A negative coefficient for 
isCorrective indicates that it is relatively easy to correct defects compared to making other types of 
changes. We consider this to be a favorable situation where it is important to quickly correct 
defects or where defects are associated with undesirable noise.  

The measure of system experience, systExp, was statistically significant for project B, but not 
for project A. One problem with systExp as a measure of system experience is that it may be 
confounded with system decay: The favorable effects of more experienced developers can be 
counteracted by an effect of system decay, because systExp and system decay may be inversely 
related to the underlying factor of time. 

We did not obtain any significant effect of the size of changed components. There are several 
possible explanations for this. First, because larger components probably are more change-prone, 
due to the effect of size, developers will have more experience in changing these components. 
Second, the class or the file is not necessarily the natural unit for code comprehension during 
change tasks, as discussed in the qualitative analysis in Section 5. 
 
4 Data-driven analysis 
In the data-driven analysis we explored relationships that were not originally proposed, assessed 
factors that have a weaker foundation in theory and empirical evidence, and evaluated the 
predictive power of alternative measures of the same underlying factor. 

4.1 Procedures for data-driven analysis 
The measures from Table 2 were used as candidate variables in the statistical procedures described 
below. The goal was to identify the models that explained the most possible change effort 
variability, under the constraint that each model variable captured relatively orthogonal cost 
factors. We used: 

 
• Principal component analysis (PCA) to identify candidate variable subsets, consisting of 

uncorrelated or moderately correlated variables. Selecting among variables on the basis of a 
PCA is a common approach, see, e.g., (Pinches and Mingo 1973) and (Briand and Wüst 2001b). 

• Exhaustive search among variable subsets to identify the best models, described by (Miller 
2002). 

• A cross-validated measure of model fit (MMRECross) as a selection criterion (Stone 1974; Shin 
and Goel 2000). 

• Decision trees to identify interaction effects and non-continuous effects (Briand and Wüst 
2001a) 

4.1.1 Identification of main effects 

The structure of the correlations between the candidate variables was analyzed by principal 
component analysis (PCA). Each principal component (PC) resulting from a PCA is a linear 
combination of the original variables, constructed so that the first PC explains the maximum of the 
variance in the data set, while each of the next PC’s explains the maximum of the variance that 
remains, under the constraint that the PC is orthogonal to all the previously constructed PC’s. The 
loading of each variable in PC indicates the degree to which it is associated with that PC. In order 
to interpret a PC, we inspected the variables that loaded higher than 0.5, after the varimax rotation 
(Jolliffe 2002) had been applied. The results from the analysis are provided in Section 4.2.1. 

The results from the PCA were used to construct all possible subsets of candidate variables that 
contained exactly one variable from each PC. This constraint prevents high multicollinearity in the 
models, making them easier to interpret. For each of the constructed variable subsets, regression 
models of change effort were fitted. The models with the lowest cross-validated MMRE 
(MMREcross) in the two projects were selected as the best.  
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We also performed a principal component regression (PCR) (Christensen 1996), which is an 
alternative approach for data-driven analysis. With this approach, the linear combinations that 
define each principal component produce new variables used in the regression in place of the 
original variables. The new variables are uncorrelated, which completely eliminates the problem of 
interpreting the coefficients of correlated regression variables. This comes at the cost that it can be 
difficult to interpret the meaning of the regression variables. Because information from all 
variables is used in the regression, the approach can yield models that are well fitted to the data. 

The best models resulting from the PCR were compared to the models obtained from using a 
single variable as a representative for a principal component. We preferred to use the latter models 
for interpretation, but only if multicollinearity in those models was acceptable (measured by the 
variance inflation factor) and if model performance was similar to or better than the PCR models. 

4.1.2 Identification of decision tree rules 

The goal of this step was to identify possible interaction effects and effects applying only to parts 
of the value ranges for the explanatory variables. We used a hybrid regression technique that 
combines the explorative nature of decision trees with the formality of statistical regression 
(Briand and Wüst 2001a).  

A decision tree splits the data set at an optimal value for one of the explanatory variables. The 
split is performed so that the significance of the difference between the two splits is maximized. 
This step is performed recursively on the splits, until a stop criterion is reached. The stop criterion 
was that a leaf node should contain no less than 15 data points.  

For use in GLM regression, a binary indicator variable was created for each of the leaf nodes in 
the resulting decision tree. Since this procedure partitions the dataset, every change task had the 
value 1 for one of the indicator variables, and 0 for the rest. Candidate variable subsets were 
generated from all possible combinations of the indicator variables and the main effects. The 
models with the lowest MMREcross were selected as the best. 

4.2 Results from data-driven analysis 

4.2.1 Factors identified by PCA 

The summary of results from the principal component analyses for project A and B are shown in 
Table 4 and Table 5, respectively.  

Table 4 Summary of principal component analysis, project A 

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A 
Load 
> 0.5 
after 
varimax 
rotation 

avgSize 
avgRefs 
avgCC 
cpRefs 
cpCC 
cpSize 

hasWorkflow 
addCC 
addRefs 
newLoc 
components 
filetypes 
devspan 

delLoc 
delCC 
delRefs 
crWait 

addLoc 
chLoc 
segments 

crWords 
crInitWords 
crTracks 

systExp 
techExp 
packExp 

avgRevs isCorrective

Entity 
 
Factor 

Component 
version 
Size 

Change set 
 
Dispersion 

Change set: 
 
Rework 

Change set  
 
Size 

Change 
request 
Volatility 

Human 
resource 
Change 
experience 

Component 
version 
Code 
volatility  

Change 
request  
Change 
type 

 

Table 5 Summary of principal component analysis, project B 

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B 
Load 
> 0.5 
after 
varimax 
rotation 

addLoc 
delLoc 
chLoc 
segments 
addCC  
delCC 
addRefs 
delRefs 

avgSize 
avgRefs 
avgCC 
avgRevs 
cpRefs 
cpCC 
cpSize 

components 
filetypes 
devspan 
packExp 
hasCpp 

crWords 
crInitWords 
crTracks 
crWait 

systExp 
techExp 

newLoc 
components 

isCorrective

Entity 
 
Factor 
 

Change set 
 
Size  

Component 
version 
Size  

Change set 
 
Dispersion 
 

Change request 
 
Volatility 

Human resource 
 
Change 
experience 

Change set 
 
Design 
mismatch 

Change 
request 
Change 
type 
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We made the following observations about the match between the conceptual measurement model 
and the PCA: 
• The factors in italics match factors described in Section 2.6. The collected measures for these 

factors are consistent with the measurement model, and capture five orthogonal factors in the 
data set: Change set size, Component version size, Change request volatility, Change 
experience and Change type. 

• PC1A and PC2B show that the suggested measures for control-flow and coupling belong to the 
same principal component as the LOC-based measures of size. The underlying factor captured 
by all these measures is the size of changed components. 

• Likewise, PC1B shows that the suggested measures of change set complexity belong to the 
same principal component as the LOC-based measures of change set size, in project B. 

• PC2A and PC3B contain measures that capture the dispersion of changed code over 
components, types of components and developers. We label this dimension change set 
dispersion. It is interesting that this captures a factor that is orthogonal to change set size. 

• PC3A contains measures of removed code. This principal component captures the amount of 
rework, apparently distinguishable from the concept of change set size in project A.  

• In project A, the measure of code volatility belongs to a distinct principal component (PC7A), 
while in project B, it belongs to the principal component that captures size (PC2B). The latter 
result indicates that large components are more prone to change, simply due to size. 

• PC6B contains a measure of lines of code in new components, and the change set dispersion. 
One possible interpretation is that these measures capture the degree of mismatch between the 
current design and the design required by the change. 

These observations are accounted for when the models are interpreted, in Sections 4.3 and 6. 

4.2.2 Regression models for the data-driven analysis 

The models resulting from the procedures described in 4.1 are shown in Table 6.  

Table 6 Coefficient values, significance and model fit in data-driven analysis, discussed results are in bold 

Model Variable Coefficient 
(standardized  
coeff. in parenthesis) 

MMREcr. 
MdMREcr. 
 

Pred(25) 
Pred(50) 

Pearson  
Spearman 
correl. 

Project A 
Main 
effects 

Intercept 
crWords 
filetypes 
chLoc 
isCorrective 

9.06*** 
0.00187** (0.25) 
0.279*** (0.72) 
0.005111** (0.31) 
-0.503*  (-0.25) 

1.52 
0.63 

0.23 
0.40 

0.58 
0.72 

Project B 
Main 
effects 

Intercept 
crTracks 
addCC 
components 
systExp 

9.06***  
0.0879***  
0.00949** 
0.1027*** 
-0.000161** 

1.12 
0.60 

0.24 
0.42 

0.46 
0.58 

Project A 
with 
decision 
tree rules  

Intercept 
crWords 
filetypes 
isCorrective 
filetypes=1&crWords<24   
filetypes=1&crWords>23&chLoc < 2 
filetypes=1&crWords>23&chLoc>=2   
filetypes>=3&chLoc>= 48 

9.64*** 
0.00109* (0.14) 
0.178*** (0.46) 
-0.376* (-0.18) 
-1.145*** (-0.36) 
-0.831*** (-0.28) 
-0.653**  (-0.22) 
0.963*** (0.32) 

1.37 
0.57 

0.24 
0.46 

0.70 
0.77 

Project B 
with 
decision 
tree rules 

Intercept 
crTracks 
components 
systExp 
addCC>=23    

9.15*** 
0.0839*** 
0.0798*** 
-0.000153** 
0.7877** 

1.12 
0.62 

0.22 
0.40 

0.59 
0.54 

Project A 
PCR 
 

PC2A 
PC3A 
PC4A 
PC5A 

0.9686*** 
0.2252* 
0.4058*** 
0.3492*** 

1.71 
0.66 

0.24 
0.42 

0.53 
0.78 

Project B 
PCR 

PC1B 
PC2B 
PC3B 
PC4B 
PC5B 
PC6B 
PC7B 

0.3529*** 
-0.1659* 
0.2640*** 
0.4928*** 
-0.2143*** 
-0.1682*** 
1.4008* 

1.33 
0.55 

0.275 
0.48 

0.39 
0.59 
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For project A, the results show that: 
• The indicator of change type isCorrective recurred from the evidence-driven analysis  
• The measure filetypes, capturing language heterogeneity, had a strong effect. Change effort is 

expected to increase by around 30 % with one additional file type changed.  
• The number of change lines of code, chLoc, also entered the model. An increase of 30 % can be 

expected when around 50 additional lines of code were changed.  
• Three of the decision tree rules handle cases where only one filetype is affected. The 

coefficients show that change effort is particularly low in such cases, beyond the continuous 
effect of the variable. Fifty of the 136 changes were covered by these rules. 

• The last rule indicates a particularly strong effect of changes that span three or more languages 
and at the same time involve a large change set (48 or more code lines changed). The 
coefficient shows that 2.6 times more effort can be expected for such changes.  

 
For project B, the results show that: 
• Compared with the results from the evidence-based analysis, the data-driven analyses identified 

the additional factor addCC (row 2 in Table 6). This measure was intended to capture structural 
complexity of the change set, but the PCA showed that addCC captures change set size in this 
data set. The expected change effort increases by 10% when addCC increases by 10.  

• Allowing for decision tree rules (row 4 in Table 6), a simple binary rule replaced a continuous 
effect of addCC: The expected change effort doubles if 23 or more control-flow statements are 
added. This rule applies to 12% of the changes. 

 
The models that combined regression with decision rules performed better than the models from 
principal component regression, shown in the two last rows of Table 6. The variance inflation 
factor was lower than 1.88 for all the coefficients in the models. This verifies that multicollinearity 
is not a problem for the interpretability of the coefficients.  

4.3 Discussion of data-driven analysis 
In project A, fewer filetypes involved in a change strongly contributed to reduced change effort. A 
particularly favorable effect occurred when a change involved only one file type. Because such 
changes often can be identified before the coding phase, this result can be useful to improve 
change effort estimates. 

In project B, addCC and components had significant effects on change effort. The PCA showed 
that these measures captured orthogonal factors in the data set. We conclude that change set 
dispersion affected change effort, beyond the effect of LOC-based size. For effort prediction 
purposes, the simple decision rule (addCC>=23) indicates that even a very coarse grained estimate 
of change set size is useful. 

For project A, the data-driven analysis resulted in models that had better model fit than those 
from the evidence-based analysis. This was mainly due to the measure of language heterogeneity. 
For project B, the model fit did not improve, as the primary measures already seemed to capture 
the important factors. The total amount of explained change effort variability was moderate. 

The plots in Fig. 7 and Fig. 8 show MRE boundaries for overestimated and underestimated 
changes. The changes that fell outside the area formed by these lines received particular attention 
during the qualitative analysis. In total, 32 underestimated changes and 16 overestimated changes 
(those with MRE limits of 0.5 for underestimated changes and 1.3 for overestimated changes, see 
Fig. 7 and Fig. 8) were analyzed in depth. 

Fig. 7 Predicted vs. actual effort, project A 
 

Fig. 8 Predicted vs. actual effort, project B 
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5 Results from the qualitative analysis  
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48 selected 
changes. Four changes were excluded from the analysis because the interviews showed that code 
changes had not been properly tracked.  

The three first columns in Table 7 define the coding schema resulting from the coding process. 
Each code captures a factor that was perceived by the interviewees to drive or save effort. For 
example, T0 could drive effort if the developer was unfamiliar with a relevant technology, and 
save effort if the developer had particularly good knowledge about the technology.  

The rightmost column shows the number of times a code was used in underestimated and 
overestimated changes, respectively. The numbers can be interpreted as the degree of presence of a 
phenomenon in the projects, but we do not consider evidence from exceptional cases to be any less 
valid or important than frequent cases. Consequently, no statistical analyses of the qualitative 
results are provided. More detailed results from the qualitative analysis can be found in (Benestad 
et al. 2009). 

Table 7 Summary of factors from qualitative analysis 

Category Code Description of code Occurrences in 
underestimated/over
estimated changes 

Understanding 
requirements 

R1 
 

Clarification of change request was needed/not needed  
 

9/2 

Identifying and 
understanding 
relevant code 

U1 
U2 
U3 

It was difficult/easy to understand the relevant source code 
It was difficult/easy to identify the relevant system states 
The developer was unfamiliar/familiar with relevant source code 

7/1 
3/3 
3/2 

Learning relevant 
technologies and 
resolving 
technology issues 

T0 
T1 
T2 
T3 

Developer was unfamiliar/familiar with the relevant technology 
The features of the technology did not/did suite the task 
Technology had/did not have defects that affected the task 
Technology had limited/good debugging support 

3/0 
1/2 
4/0 
5/0 

Designing and 
applying changes 
to source code 

D1 
D2 
D3 

Change required deep/shallow understanding of user scenario 
The needed mechanisms were not/were in place  
Changes were made to many/very few parts of the code 

0/9 
13/2 
0/8 

Verifying change V1 It was necessary/not necessary to establish test conditions  2/1 
Cause of change 
(analyzed for all 
changes) 

C1 
C2 
C3 
C4 

Error by omission – failed to handle a system state 
Error by commission – erroneous handling of a system state 
Improve existing functionality – within current system scope 
Planned expansion of functionality – extend the system scope 

11/5 
1/3 
4/9 
6/5 

 
Many of the codes and categories coincide with concepts studied within the field of software 
comprehension. For example, Von Mayrhauser and Vans suggested lists of activities involved in 
change tasks that largely conform to our categories (von Mayrhauser and Vans 1995). In our case, 
a separate category was justified for technology properties. Also, the design activity was difficult 
to distinguish from the coding activity; hence we used a common category. We chose to use a 
common coding schema for all types of changes, and let the cause of change be part of the coding 
schema.  

5.1 Understanding requirements 
R1. For nine of the underestimated changes, the developers mentioned that the need to clarify 
requirements resulted in increased change effort. For two of the overestimated changes, they 
mentioned that a concise and complete specification made it easier to perform the change. This 
supports the results from quantitative analysis, which showed a consistent relationship between the 
number of updates to the original change request, and change effort. For the nine underestimated 
changes, the requirement clarifications were only partially documented in the change tracker. This 
explains the large residuals for these changes. The need to clarify requirements occurred more 
frequently in project A than in project B. However, six of nine underestimated changes for project 
B were fixes of errors due to missed requirements, see Section 5.6. Hence, incomplete 
requirements had an unfavorable effect in both projects. 

In some cases, the developers said that the user representatives deliberately failed to provide 
complete specifications, in particular for changes that concerned the look and feel of the user 
interface. However, the strongest effect on effort occurred when unanticipated side effects of a 
change needed to be clarified during detailed design and coding. In most cases, this meant that 
existing functionality was somehow impacted by the change, but that the developer was uncertain 
how to deal with these impacts.  
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5.2 Identifying and understanding relevant source code 
A substantial portion of the total change effort can be comprehension effort. Koenemann and 
Robertson suggested that the comprehension process involves code of direct, intermediate and 
strategic relevance (Koenemann and Robertson 1991). Directly relevant is code that has to be 
modified. Code that is perceived to interact with directly relevant code has intermediate relevance. 
Strategic code acts as a pointer towards other relevant parts of the code.  

U1: Typically, the change requests were described by referencing a user scenario, i.e. a 
sequence of interactions between the user and the system, and by requesting a change to that 
scenario. For seven of the underestimated changes, the developers claimed considerable time was 
spent understanding relevant, intermediate code when it was dispersed among many files. The 
dispersion of changed code had a strong and consistent effect on change effort in the quantitative 
models. The time developers spend to comprehend dispersed code might be a more fundamental 
factor that in many cases explains the apparent effect of making dispersed changes.  

The effort involved in comprehending code along the lines of user scenarios can also explain 
why the measures of structural attributes of changed components did not have an effect on change 
effort in the quantitative models. First, only directly affected components were captured by these 
measures, even though the structural attributes of intermediate code were likely to be important. 
Second, the measures capture the structural attributes of architectural units rather than of user 
scenarios. This suggests that it would be useful to collect measures of structural attributes along 
the execution path of the changed user scenarios. These measures could be based on models such 
as UML sequence diagrams, which would also aid in comprehension (Dzidek et al. 2008), or 
dynamic code measurement (e.g., by executing each user scenario), as proposed in (Arisholm et al. 
2004).  

U2: For three of the underestimated changes, the developers expressed that it was difficult to 
identify and understand the system states relevant to the change task. One developer stated: “All 
the states that need to be handled in the GUI make the code mind-blowing.” This indicates that the 
perceived code complexity is caused by a complex underlying state model. It also suggests that in 
order to understand the code from the functional view discussed above, it is a prerequisite that the 
underlying state model is understood. An obvious proposal is to make it easier to understand the 
most complex underlying state models, e.g., by the use of diagramming techniques such as UML 
state diagrams. 

U3: The degree of familiarity with relevant code was said to have affected change effort in five 
cases. The quantitative results for change experience showed that relatively little of the variations 
in change effort can be explained by familiarity with the systems. The qualitative analysis showed 
that experience was indeed important in both projects, in the few extreme cases when it was either 
very high or very low. 

5.3 Learning relevant technologies and resolving technology issues 
T0. Lack of familiarity with relevant technology was perceived to increase change effort for three 
of the changes. The measure of the effect of technology experience (techexp) was not significant in 
the quantitative analysis. One possible explanation is that familiarity with the involved technology 
affected change effort in the relatively few cases where the familiarity was particularly low or 
high. 

T1, T2, T3: The degree of match between the actual and required features of the development 
tools and technologies was considered important in 12 cases. If the functionality required by the 
change task was provided out of the box, the technology was considered to save effort. Reversely, 
if the technology was incompatible with the change task, or had defects, considerable effort was 
required to create workarounds. Unsatisfactory facilities for debugging were considered to 
increase change effort in five cases. 

5.4 Designing and applying changes to source code 
D1: Empirical studies have shown that the nature of a given task determines the comprehension 
process (Détienne and Bott 2002a). Indeed, the interview data showed that the developers 
associated a certain degree of superficiality or shallowness with a change task. A change was 
perceived as shallow when the developer assumed that it was not necessary to understand the 
details of the code involved in the changed user scenario. Typically, shallow changes were 
performed by textual search in intermediate code to identify the direct code to change. Examples 
of shallow changes were those that concerned the appearance in the user interface, user messages, 
logging behaviour and simple refactoring. Deep changes, on the other hand, required full 
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comprehension of the code involved in the changed user scenario. The comprehension activities 
described in the previous section are therefore primarily relevant for deep changes. 

D2: Reusable mechanisms solve recurring needs in the system. Typically, formalized design 
patterns (Gamma et al. 1995) can be used directly or as part of such code. In the investigated 
projects, examples are handling of runtime exceptions and transfer of data between the physical 
and logical layers of the system. In 13 cases, the change was perceived to be particularly 
challenging because reusable code had to be created. According to the developers, it was 
challenging to create this code, for two reasons. First, the code had to be carefully designed for 
reusability. Second, when the purpose was to hide peculiarities of specific technologies, these 
needed to be well understood by the developer. 

D3: The developers expressed that eight of the overestimated changes were easy to perform 
because they were concentrated in one or few parts in the code. This observation supports the 
results for change set dispersion from the quantitative analysis, and suggests a particularly strong 
effect for the most localized changes. However, this explanation is contradicted by data from 50 
other change tasks that affected only one segment of the code without resulting in particularly low 
change effort. An alternative explanation is that the developers perceived the change to be 
particularly local because the code of intermediate relevance was not dispersed among many 
components, as elaborated in Section 5.2 

5.5 Verifying change 
V1: The effort expended to test the developers’ own code changes was discussed in the interviews. 
For a large majority of the changes, the developers found it quite easy to verify that the change 
was correctly coded. In two cases, verification was perceived to be difficult because the change 
task affected time-dependent behavior simulated in the test environment. In project A, some extra 
time was needed to generate and execute the system on the target mobile platform. In project B, 
extra time was needed when the technology necessitated deployment on a dedicated test server. 

5.6 Cause of change 
The cause of each change, i.e. the events that triggered the change request, was discussed in the 
interviews. Based on this, we classified all changes according to the codes shown in the last row of 
Table 7. In order to better understand the results for change type from the quantitative analysis, we 
measured the agreement between the automated classification into change types, and the 
classification from qualitative analysis. Sufficient data was available for 87 and 61 changes, for 
project A and B, respectively. When mapping C1 and C2 to corrective change, and C3 and C4 to 
non-corrective change, the agreement was good (Cohen’s kappa=0.64) for project A, but less than 
what could be expected by pure chance (Cohen’s kappa=-0.038) for project B. This result shows 
that the automated classification for project B did not appropriately reflect real differences in 
change type, which can explain why there was no effect of change type in the quantitative models. 
From the qualitative analysis of project B, it can be seen that six out of nine of the underestimated 
changes were fixes of error by omission. A typical reason for such an error was not recognizing a 
side effect of a change. We conclude that for project B, fixes of errors by omission were associated 
with underestimated changes. In line with the conclusion in Section 5.1, we recommend practices 
that help to identify side effects of change requirements, because they are likely to reduce 
occurrences of errors by omission. 
 
6 Joint results and discussion 
The results from the different parts of the analysis are summarized as answers to the questions 
posed in Section 2.2: 

1. Did the factors identified from earlier change-based studies consistently affect change effort? 
Overall, the selected variables proved to be useful predictors in models of change effort. A notable 
exception was variables capturing structural properties of affected code, which could partly be 
explained by item 8 below. 

2. How accurate were change effort models built from change management data? The 
explained variability was quite poor (best MdMREcross was 0.57) in the quantitative models. The 
qualitative analysis focusing on change tasks that corresponded to large model residuals was 
therefore justified. 

3. What was the added value of using a larger number of candidate measures in the models? In 
project A, the model fit substantially improved when a larger number of candidate variables were 
used (MdMREcross was reduced from 0.72 to 0.57). Improvement was due to the use of one 
additional variable, capturing language heterogeneity (see item 6 below). 
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4. Did change set dispersion affect change effort, beyond what could be explained by size 
alone? The principal component analysis showed that measures of change set dispersion captured 
a factor different from pure size. The measure components consistently and strongly contributed to 
change effort in the quantitative models: The standardized coefficients were 0.76 and 0.51.  

5. What explained the effect of change set dispersion on change effort, e.g., how was dispersion 
related to the comprehension activity? The qualitative analysis suggested that the developers’ 
effort to comprehend highly dispersed code was a more fundamental factor than the effort 
involved in making dispersed changes. However, comprehending and modifying code seemed to 
be closely intertwined processes, and therefore difficult to separate. 

6. Was the effect of change set dispersion stronger when several languages or technologies 
were involved in changes? Language heterogeneity substantially contributed to change effort, as 
one additional affected language implies 30% more effort. A plausible explanation is that the 
effect of dispersion (see item 4 and 5) was amplified when comprehended and modified code 
spanned multiple technologies and languages.  

7. Under which circumstances did change request volatility have the largest effect on change 
effort? Change request volatility, measured by updates in the change tracker, consistently 
contributed to change effort in the quantitative models. One additional update in the change tracker 
implied a 8% increase in change effort. The qualitative analysis showed that when change request 
volatility was due to difficulties in anticipating functional side effects of a change, the effect was 
particularly large. A possible underlying cause for these difficulties was insufficient knowledge in 
the interface between the software and the business domain. 

8. Which structural properties of source code had the largest effect on change effort? The 
qualitative analysis showed that change effort was affected by code properties along the changed 
user scenarios. In particular, the complexity of the underlying state model of the user scenario was 
important, as was the dispersion of code that implemented the changed user scenario. The 
developers’ focus on functional cross-cuts can explain why structural attributes of architectural 
units, such as files and classes, proved inefficient in explaining change effort variability. 

9. What kind of changes required most effort? In project A, corrective changes required only 
46% of the effort compared with non-corrective changes, after accounting for other factors. No 
significant difference was found for project B. The qualitative analysis for both projects showed 
that a sub-class of corrective changes (fixes of errors by omission) required additional effort. This 
analysis also showed that certain other characteristics of the change task, such as the need for 
innovation, was an important factor that is difficult to capture from change management data. 

10. Which particular skill shortages had the largest effect on change effort? A moderate effect 
of developers’ experience was identified in project B. A 16% decrease in change effort could be 
expected for every 1000th check-in. The qualitative analysis showed that familiarity with the 
changed functional and technological areas was indeed important in both projects, in particular in 
the extreme cases when the familiarity was either very high or very low. This effect of experience 
was not appropriately captured by the quantitative models. 

In the following, we discuss consequences of these results from the perspective of software 
engineering, the projects, and that of research methods within empirical software engineering. 

6.1 Consequences for software engineering 
Earlier change-based studies have assumed that measures such as components, or number of 
check-ins for a change task, can be considered coarse-granularity measures of size. An alternative 
interpretation is that such measures capture delocalization or dispersion. Controlled experiments 
and research into the cognitive processes of programmers have demonstrated difficulties in 
comprehending and changing dispersed code. An important contribution of this study is that it 
found clear evidence of the effect of dispersion in a real project setting with real change tasks. 
More refined results, and related consequences, are:  
 
• Comprehension typically occurred along functional cross-cuts of the system. Hence, to mitigate 

the effect of dispersion, tools should have the capability of presenting change-friendlier views 
of the system based on such functional cross-cuts. Automatic generation of sequence diagrams 
is one possible implementation, c.f. (Briand et al. 2003; TPTP 2008). 

• The results indicate that the effect of dispersion depends on the heterogeneity of the involved 
components, and cannot be fully captured by a simple count of components. It seems 
particularly important that tools aimed at mitigating the effect of dispersion are able to handle 
technological heterogeneous environments. 

• The results point to design practices that minimize dispersion for future change tasks. A 
recommended practice could be that functionally cohesive code should be localized rather than 
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dispersed. However, the concern about change effort should be balanced against other concerns, 
such as potentials for reuse and constraints set by the physical architecture.  

• Comprehending and changing dispersed code seemed to be intertwined processes. Hence, 
measures of affected components retrieved from version control systems can be expected to 
capture the phenomenon of dispersion reasonably well, though not perfectly. If estimates of 
dispersion are used as input to prediction models, estimates of components to inspect can be just 
as effective as estimates of components to change. 

 
Earlier change-based studies have shown a relationship between the number of modifications to 
change requests, and change effort. The confirmatory analysis in this study consistently supported 
the results. From the perspective of effort estimation, it is useful insight that measures retrieved 
early in the change process were significant contributors to change effort.  

Software organizations need to make trade-offs between enforcing well-defined upfront 
requirements and allowing for the flexibility of evolving requirements. This study contributes with 
the insight that volatility has the most serious effect on change effort when it is caused by lack of 
knowledge in the interface between software and business domain. In consequence, organizations 
should try to cultivate such knowledge, to avoid inefficient iterations towards the final 
requirements. Other kinds of volatility, such as refining a user interface based on customer 
feedback, have inherent advantages and do not seem to have severe effects. We believe that such 
results provide important insights to the on-going debates on plan-driven versus agile development 
principles. 

Due to the wide prediction intervals implied by the relatively poor model fit obtained in this and 
similar studies (Jørgensen 1995b; Niessink and van Vliet 1997), it seems infeasible to build 
models that are sufficiently accurate to be accepted as a black-box method for estimating 
individual change tasks. Model-based estimates may still play a role to support projects in 
planning releases during software evolution, where the primary interest is in the aggregate of 
change effort estimates. A reasonable starting point for creating organization specific models is to 
use measures of change request volatility, developers’ experience, type of change, and dispersion.  

6.2 Consequences for the investigated projects 
In project A, effort estimation was a team activity performed on a regular basis as part of release 
planning. To judge the potential for more accurate effort estimates, we calculated the accuracy of 
the current estimation process, on the basis of effort estimates and actual effort for the 107 change 
tasks where this data was available. The effort estimates were given in units of relative size, see 
(Cohn 2006), and were scaled according to the factor that minimized MdMRE. The resulting 
MMRE and MdMRE was 1.47 and 0.54, respectively. Even though these values roughly 
correspond to the accuracy of the models from the data-driven analysis, we did not recommend 
replacing judgement-based estimates with model-based estimates, for two reasons. First, change 
set size or change set dispersion would have to be subjectively assessed to obtain the required 
input measures. This would likely decrease the model accuracy, and preclude fully automated 
procedures. Second, the team estimation of change tasks was perceived to be important to share 
knowledge, to build team spirit in the project, and to constitute an initial step of design for a 
solution to the change request. 

To assess whether insight obtained from our analysis was already accounted for by the 
developers, we fitted regression models that included the significant quantitative factors and the 
developers’ estimate as explanatory variables. Measures of change request volatility, change set 
dispersion and change type became statistically insignificant, indicating that these factors were 
already sufficiently accounted for by the subjective estimates. The number of different 
technologies involved, on the other hand, had a significant effect on actual effort. The model was: 

 
log(ceffort)= 9.25 + 0.13*relativeEffortEstimate + 0.14*filetypes 

 
We recommended that the developers put more emphasis on language heterogeneity when they 
made effort estimates. On the basis of the qualitative analysis we also advised more awareness of 
the effect of particularly strong familiarity or lack of familiarity with code of intermediate and 
direct relevance. On the basis of the results, we were also able to give the following 
recommendations: 
 
• To reduce the most severe effects of change request volatility, actions should be taken to 

cultivate knowledge in the interface between the software and business domains. However, 



 22

change request volatility should be accepted when solutions are iteratively optimized on the 
basis of immediate feedback, such as in the case of GUI design.  

• Identify the user scenarios that are most frequently changed, and that involve many components 
and languages. Look for opportunities to refactor these, aiming at reducing the dispersion. 

• Evaluate tools that make it easier to trace and understand the code involved in user scenarios. 
For example, emerging tools for dynamic code analysis for the Eclipse platform might have 
some of the desired qualities (TPTP 2008). 

• Document the underlying state models in areas where those models are particularly complex 

6.3 Consequences for empirical software engineering 
This study included a number of design elements that we believe constitute a step forward for 
change-based studies: 

Foundation in a systematic review. The use of systematic reviews in software engineering was 
suggested as an important element of evidence-driven software engineering (Kitchenham et al. 
2004). The factors and measures for the quantitative analysis were selected on the basis of a 
systematic literature review of earlier change-based studies. Systematic reviews are particularly 
useful when study proposals cannot be derived from established theories. Currently, this is the 
situation for most topics investigated within the empirical software engineering community. 

Combined confirmatory and explorative analysis. Strong conclusions can only be drawn from 
confirmatory studies, while explorative studies are important to generate hypothesis and guide 
further research (Kitchenham et al. 2002). The evidence-driven analysis largely confirmed existing 
evidence. The data-driven analysis explored and identified additional factors to be investigated in 
future confirmatory studies.  

Procedures for performing data-driven analysis. The data-driven analysis combined known 
sub-strategies for variable selection into an overall procedure for selecting the models, based on 
well-defined criteria. This was shown to perform better than a more traditional approach based on 
principal component regression. It is future work to attempt to improve this approach by, e.g., 
using alternative prediction frameworks. 

Qualitative analysis to explain large model residuals. Even though the role of qualitative 
methods in this field has long been recognized, see e.g., (Seaman 1999), empirical researchers 
have developed and used quantitative methods to a larger extent (Perry et al. 2000). Because we 
used the individual change as a common unit of analysis, and change effort as the dependent 
variable, we were able to tightly integrate the quantitative analysis of data from version control 
systems and change trackers with the qualitative analyses of developer interviews. This method 
also focuses the more expensive qualitative analysis on the most interesting data. This can be 
particularly important for practitioners who use lightweight empirical methods to evaluate their 
own practices such as Postmortem analysis (Birk et al. 2002) or Agile Retrospectives (Derby and 
Larsen 2006).  
 
7 Threats to validity 
Construct validity. Quantitative measures were based on data from version control systems and 
change trackers. Such data will not perfectly capture the factors of interest. For example, change 
request volatility may not be fully documented in the change tracker. In this and other cases, we 
were able to use the qualitative data to compensate for these threats to construct validity. There 
were also threats to construct validity in the qualitative coding schema. We attempted to mitigate 
this by reconsolidating the coding schema to reflect commonly used concepts within our field.  

Code complexity cannot be fully captured by one or a few measures (Fenton 1994). To judge, in 
a meaningful and repeatable manner, whether a piece of code is “more complex than” another 
piece of code, very specific criteria must be defined. Therefore, there were obvious construct 
validity threats in the measurement of complexity of change sets and changed components. As 
indicated from the qualitative analysis, the apparent insignificance of code complexity could be 
due to problems with operationalizing the concept. For change experience, it is obviously a 
simplification to associate one check-in with one unit of experience. Moreover, averaging 
experience measures over developers does not perfectly capture the concept of joint experience. 
Measurement noise due to unreliable collection of change effort data could also have affected the 
results, although random noise would normally weaken the conclusions rather than incorrectly 
strengthening them.  

In sum, it is likely that some of the unexplained variability in the quantitative models was due to 
the inability to fully capture the intended factors by measures retrieved from version controls 
systems. 
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Internal validity. Internal validity refers to the degree to which causal relationships can be 
claimed. Issues of internal validity are important when the context, tasks and procedures for 
allocating study units to groups cannot be controlled, which is the case with data that occurs 
naturally in software development projects. Qualitative data from developer interviews was useful 
to evaluate such threats. For example, the qualitative analysis suggested that a more fundamental, 
causal factor than the effect of dispersion of changed code was the effect of dispersion of 
intermediate code that needed to be comprehended.  

Another threat to internal validity was the possibility of shotgun correlations. In the data-driven 
analysis, a large number of factors and measures were tested. This increased the likelihood that 
one or more of the significant effects occurred due to chance, rather than to a true underlying 
effect. It would have been possible to perform multiple testing adjustment in this analysis, using 
procedures such as Bonferroni correction. However, due to the explorative nature of this part of 
the analysis, aiming at identifying additional relationships in the data, we considered such 
adjustment to be overly conservative. This risk of identifying shotgun correlations was lower in 
the evidence-driven analysis, because this analysis investigated the effect of a small set of factors 
and measures selected on the basis of existing empirical evidence.  

A third type of threat to internal validity was the potential bias introduced by missing data 
points in the data set, see (Mockus 2000). For project A, change effort was not recorded for around 
10% of the actual changes that were performed. For project B, it was not recorded for 25% of the 
changes. Most of the missing data points were due to challenges with establishing the routines to 
track change effort and code changes. Because the data points that we did collect from the initial 
periods can be considered randomly selected, we do not expect the missing data points to 
constitute a serious threat to internal validity. 

The use of interviews introduced the possibility of researcher bias, consciously or 
unconsciously skewing the investigation to conform to the competencies, opinions, values or 
interests of the involved researchers. Although such threats apply to quantitative research as well, 
they can be particularly difficult to assess handle when subjectivity is involved. Imperfect 
memory, lack of trust or other communication barriers between the interviewer and the 
interviewee may also introduce biases. We believe that the strict focus on relatively small, 
cohesive tasks recently performed by the interviewee helped to mitigate such biases. To mitigate 
communication barriers, the interviewer made extensive efforts to be prepared for the interviews, 
and data from the version control systems and change trackers was readily available during the 
interviews to help the developers recollect details. 

External validity. The ability to generalize results beyond the study context is one of the key 
concerns with case studies. Section 2.4 described the design elements introduced to interpret the 
results in a wider context. We believe that the lack of relevant theories on which to base the study 
proposals is a major obstacle to generalizing the results. In this situation, we chose to base the 
study proposals on a comprehensive review of earlier empirical studies with similar research 
questions.  
 
8 Conclusion, consequences and further work 
Software engineering practices can be improved if they address factors that have been shown 
empirically to affect developers’ effort during software evolution. In this study, we identified such 
factors by analyzing data about changes in two software organizations. Regression models were 
constructed to identify factors that correlated with change effort, and developer interviews 
explored additional factors at play when the developers expended effort to perform change tasks. 
Two central results were: 
 
• Change request volatility had a consistent effect on effort in the quantitative models. The effect 

was particularly large when volatility resulted from difficulties in anticipating side effects of a 
change. Such difficulties also resulted in errors by omission, which in turn were particularly 
expensive to correct.  

• The dispersion of modified code also had a large and consistent effect on change effort in the 
quantitative models, beyond the effect of size alone. The qualitative analysis indicated that the 
dispersion of comprehended code was a more fundamental factor. 

 
Because these results are also consistent with results from earlier empirical studies, we suggest that 
these (admittedly quite course-grained) factors should be considered when attempting to improve 
software engineering practices.  

The specific analyses of the two projects provided additional and more fine-grained results. In 
one project, changes that concerned only one language required considerably less effort. The 
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analysis of estimation accuracy indicated that this factor was not sufficiently accounted for when 
developers made their estimates. This exemplifies how projects can benefit from analyzing data 
from their version control systems and change trackers to improve their estimation practices.  

One important direction for further work is to investigate further the causal relationships 
occurring when developers perform change tasks. Interviewing developers about recent changes 
was an effective method for making tentative suggestions about such relationships. However, 
studies that control possibly confounding factors should be conducted before firm conclusions are 
drawn. It is also necessary to paint a richer picture of how context factors, such as size and type of 
the system, influence change effort. Ultimately, the empirical results could be aggregated into a 
theory on software change effort, which would define invariant knowledge about software 
evolution, and be immediately useful for practitioners within the field.  
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Appendix A  
Interview guide 
Part 1. (Only in first interview with each developers - Information about the purpose of the 
research. Agree on procedures, confidentiality voluntariness, audio-recording).  
Question: Can you describe your work and your role in the project? 
Part 2. Project context (factors intrinsic to the time period covered by the changes under 
discussion) 
How would you describe the project and your work in the last time period? Did any particular 
event require special focus in the period?  
For each change (CR-nnnn, CR-nnnn, CR-nnnn….,) 
Part 3. Measurement control (change effort and name of changed components shown to the 
interviewee) 
Are change effort and code changes correctly registered? 
Part 4. Change request characteristics (change tracker information shown on screen to support 
discussion) 
Can you describe the change from the viewpoint of the user? Why was the change needed? 
Part 5. General cost factors 
Can you roughly indicate how the X hours were distributed on different activities?  
Part 6. Properties of relevant code (output from windiff showed on screen to support the 
discussions)  
Can you summarize the changes that you made to the components?  
What can you say about the code that was relevant for the change? Was it easy or difficult to 
understand and make changes to the code?  
Part 7. Stability 
Did you go through several iterations before you reached the final solution? If so, why? 
Did anything not go as expected?  
How did you proceed to test the change? 
Go to Part 3 for next change 
Part 8. Concluding remarks 
Do you think this interview covered your activities during the last period? 
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