

Authors
Institution, Address
e-mail:

Understanding cost drivers of software evolution: A quantitative
and qualitative investigation of change effort in two evolving
software systems

Authors

Abstract Making changes to software systems can prove costly and it remains a challenge to
understand the factors that affect the costs of software evolution. This study sought to identify
such factors by investigating the effort expended by developers to perform 336 change tasks in two
different software organizations. We quantitatively analyzed data from version control systems
and change trackers to identify factors that correlated with change effort. In-depth interviews with
the developers about a subset of the change tasks further refined the analysis. Two central
quantitative results found that dispersion of changed code and volatility of the requirements for the
change task correlated with change effort. The analysis of the qualitative interviews pointed to two
important, underlying cost drivers: Difficulties in comprehending dispersed code and difficulties in
anticipating side effects of changes. This study demonstrates a novel method for combining
qualitative and quantitative analysis to assess cost drivers of software evolution. Given our
findings, we propose improvements to practices and development tools to manage and reduce the
costs.

Keywords Change effort; Software evolution cost; Quantitative and qualitative methods

1 Introduction
Software systems must adapt to continuously changing environments (Belady and Lehman 1976).
With a greater understanding of the cost of software evolution, technologies and practices could be
improved to act against typical cost drivers. Development organizations could also make more
targeted process improvements and predict cost more accurately in their specific context.
Researchers have used varied approaches to understand the cost of software evolution. One class
of studies has investigated project factors, such as maintainer skills, the size of teams, development
practices, and documentation practices, (Lientz 1983; Banker et al. 1993; Krishnan et al. 2000;
Bhatt et al. 2006). Other studies have examined how system factors, such as structural attributes of
source code, relate to the ease of changing software (Kemerer 1995; Munson and Elbaum 1998;
Hayes et al. 2004). A third class of studies has focused on human factors and probed individual
cognitive processes of developers attempting to comprehend and change software (Détienne and
Bott 2002b).

A premise set forth in this paper is that software evolution consists of change tasks that
developers perform to resolve change requests, and that change effort, i.e., the effort expended to
perform these tasks, is a meaningful measure of software evolution cost. Thus, by identifying the
drivers of change effort, we can better understand the cost of software evolution.

Change effort might be affected by such factors as type of change, developer experience and
task size. This study distinguishes between a confirmatory analysis testing the effect of factors
important in earlier change-based studies, and an explorative analysis identifying factors that best
explain change effort in the data at hand. This is also the first study we are aware of that combines
quantitative and qualitative analysis of change tasks in a systematic manner. The purpose was to
paint a rich picture of factors involved when developers spend effort to perform change tasks.
Ultimately, our goal is to aggregate evidence from change-based studies into theories of software
evolution.

The main contributions of this paper are threefold: First, from a local perspective the study
results can improve practices in the two investigated projects. For example, the study identifies
specific factors that were insufficiently accounted for when the projects estimated change effort.
Second, from the software engineering perspective, it clarifies factors that drive cost of software
evolution. For example, the study identifies commonly used design practices with an unfavorable
effect on change effort. Third, from the empirical software engineering perspective the paper

 2

demonstrates a methodology of qualitative and quantitative analysis of software changes to assess
factors that affect the cost of software evolution.

The remainder of this paper is organized as follows: Section 2 describes the design of the study,
and includes a measurement model based on a literature review of empirical studies of software
change. Sections 3 and 4 provide the results from the quantitative analysis, while Section 5
provides the results from the qualitative analysis. Section 6 summarizes the results of the analysis
and discusses the consequences. Section 7 discusses threats to validity, and Section 8 concludes.

2 Design of the study

2.1 Research question
The study addresses the following overall research question:

From the perspective of developers handling incoming change requests during software evolution,
which factors affect the effort required to complete the change tasks?

In principle, a change can be viewed as a small project involving analysis, design, coding, testing
and integration. The projects under study used lightweight development practices, and did not, for
example, maintain the requirements or high-level design documents used for initial development.
Most of the factors under study therefore pertain to coding-centric activities. Change trackers and
version control systems were essential tools in order to maintain traceability and control of the
evolving software. The regression models built for the quantitative analysis used data collected
from such systems.

Because regression analysis essentially models statistical relationships between variables,
evidence from such analysis is not sufficient to claim causal effects of the modeled factors. Also,
there are many sources of unexplained variability in models of change effort, due to activities that
leave no traces in change management systems. Examples of such activities can be informal
discussions among developers, code comprehension activities and the maintenance of artifacts that
are not fully traced in change management systems. To identify complementary factors affecting
change effort, we therefore interviewed developers about effort expenditure for recently completed
change tasks. Also, we relied on the interview data to reveal more about the involved causal
effects.

2.2 Related work and open issues
A systematic literature review performed by the authors identified 34 studies analyzing properties
of change tasks and their outcome (Benestad et al. 2008). A significant and related research
program in the area of change-based analysis was the code decay project based at Bell Labs, using
change management data from the evolution of a large telecom switching system. Important
findings were effects of the type and size of changes, a time-related effect contributed to code
decay (Graves and Mockus 1998), effects of change experience (Mockus and Weiss 2000), tool
effects (Atkins et al. 2002), and effects of refactorings (Geppert et al. 2005). Other closely related
studies have found effects of structural attributes of changed components (Evanco 2001; Polo et
al. 2001; Arisholm 2006). Subjectively assessed complexity and the size increase are other factors
found to be important (Jørgensen 1995b; Niessink and van Vliet 1998).Still, the evidence on
factors that affect change effort is scattered, and it is unclear whether factors investigated in earlier
change-based studies capture the most important cost drivers. The moderate or poor accuracy
obtained in prediction models of change effort (Jørgensen 1995b; Niessink and van Vliet 1997;
Niessink and van Vliet 1998) indicate that important factors are not fully captured by quantitative
data on changes. To attempt to clarify these issues, we established the comprehensive literature-
based measurement model described in Section 2.6, wanting to answer:

1. Did the factors identified from earlier change-based studies consistently affect change effort?
2. How accurate were change effort models built from change management data?
3. What was the added value of using a larger number of candidate measures in the models?

Change-based studies have shown consistent correlations between change effort and change set
dispersion, typically measured by the number of source code components affected by a change
(Niessink and van Vliet 1998; Eick et al. 2001; Evanco 2001). This recurring statistical correlation,
also expected in this study, may simply capture an effect of size. Mockus and Graves found that
measures of change set dispersion explained more variability than did counts of changed lines of

 3

code (Graves and Mockus 1998), indicating that dispersion might be a separate factor. This study
explores the following questions about change set dispersion:

4. Did change set dispersion affect change effort, beyond what could be explained by size alone?
5. What explained the effect of change set dispersion on change effort, e.g., how was dispersion

related to the comprehension activity?

These questions are closely related to research on the effect of delocalized plans (Soloway et al.),
and of different control styles in object-oriented designs (Arisholm and Sjøberg 2004). This
research suggests that dispersed code hinders comprehension.

Some researchers have investigated the effects of technologies and tools on change effort.
Jørgensen found that productivity was almost identical for changes to 3GL code versus changes to
4GL code (Jørgensen 1995b). Atkins et al. found that less effort was required when developers
used a tool that supported changes to parallel versions of the system (Atkins et al. 2002). Apart
from these studies, the effects of using different languages and technologies have not received
much focus in change-based studies. Given an effect of change dispersion in the quantitative
models of change effort, we wanted to answer:

6. Was the effect of change set dispersion stronger when several languages or technologies were

involved in changes?

Schneidewind focused on factors that can be assessed early in the change cycle, and found that the
number of modifications to a proposed change was significantly correlated with fault proneness
(Schneidewind 2001). Iterative and agile processes take a different viewpoint, recommending that
changes to requirements should be considered useful (Beck 1999). A relevant issue is therefore
whether software organizations must differentiate between types of volatility in requirements. The
study explores the following question:

7. Under which circumstances did change request volatility have the largest effect on change

effort?

A large body of research exists on how structural attributes affect change activity (Briand and
Wüst 2002). Eick et al. found that the history of code changes was more responsible for problems
than measurable aspects of code complexity (Eick et al. 2001). On the other hand, Niessink and
van Vliet showed that change effort correlated with size of the changed components (Niessink and
van Vliet 1997). Likewise Arisholm found a relationship between structural attributes of affected
Java classes, and change effort (Arisholm 2006). We wanted to answer:

8. Which structural properties of source code had the largest effect on change effort?

Several studies have shown that change effort differs between types of changes, c.f. (Polo et al.
2001; Xu et al. 2005). Most studies used one category for corrective changes and one or more
categories for non-corrective changes, e.g., perfective and adaptive changes (Swanson 1976).
Some researchers (Briand and Basili 1992; Reformat and Wu 2003) used fine-grained categories
for corrective changes, similar to those proposed by Chillarege et al. (Chillarege et al. 1992). In
this study we wanted to use a bottom-up approach, generating categories for changes on the basis
of the data at hand. We wanted to answer:

9. What kind of changes required most effort?

Differences in developer skills may potentially overshadow any other phenomenon in software
development (Curtis et al. 1989). Mockus and Weiss used historical change management data to
measure developers’ experience objectively (Mockus and Weiss 2000), while Jørgensen used
subjective measures of skill and experience (Jørgensen 1995b). This study explores the question:

10. Which particular skill shortages had the largest effect on change effort?

Summarized answers to the questions are provided in Section 6. Most of the analyses for the
questions above required that change management data was complemented with interview data.

 4

2.3 Overview of case study procedures
Fig.1 summarizes the case study procedures. Proposals for the case study were generated on the
basis of empirical evidence from a systematic review of change-based studies (Benestad et al.
2008). Quantitative data to describe change tasks, including change effort, was extracted from
change trackers and version control system in two software projects, henceforth labeled project A
and B.

An evidence-driven analysis tested whether a small set of pre-selected measures contributed to
change effort in statistical regression models. These measures captured cost factors important in
earlier change-based studies. In the data-driven analysis, a wider set of factors and measures were
input to statistical procedures designed to identify the models that best explained variations in
change effort.

Roughly once a month, we interviewed the developers about recent change tasks and any
circumstances making the task easier or more difficult. The interviews aimed to identify additional
or more fundamental cost factors than those identified by the quantitative analysis. To achieve this
goal, the analysis focused on the changes that had required considerably more or less effort than
predicted from the regression models, i.e., the residuals were large.

The evidence from the different parts of the analysis was compared and integrated into a set of
joint results. This constitutes the basis for discussing consequences from the three perspectives
mentioned in the introduction.

With this design, we move towards a theory on software change effort that would be valuable
both for researchers and practitioners within software engineering.

Fig. 1 Overview of analyses

2.4 Generalization of case study results
The case study paradigm is appropriate when investigating complex phenomena, especially when
it is difficult to separate the investigated factors from their context (Yin 2003). In software
development and software evolution, social and human factors interact with technological
characteristics of the software. We chose the case study method because we wanted to consider the
full complexity of factors affecting change effort in a realistic context.

A main concern with case studies is whether it is possible to generalize results beyond the
immediate study context. Case study methodologists recommend that studies are designed to build
or test theories. Theories can then explain, predict and manage the investigated phenomenon in
some future situation, and are therefore useful to generalize from case studies. Because we are not
aware of theories that are directly relevant to the research question, the proposals for this study
were based on a systematic review of relevant empirical evidence. In other words, the systematic
review of empirical evidence takes the place of theories in this study.

In particular, the evidence-driven analysis was essential to generalize from this study because it
was designed to confirm, refute or modify the current empirically based knowledge about factors
that correlate with or affect change effort. The role of the data-driven analysis was to discover
additional relationships within the investigated projects, and to generate proposals for further
confirmatory studies.

The qualitative analysis aimed at refining the quantitative results. For example, while regression
analysis could show that more effort is expended when a particular programming language was

Empirical evidence

Quantitative analysis

Evidence-driven Data-driven Joint results

Residuals

Qualitative
Analysis

New evidence

Partial results

Interview data
project A&B

Change data
project A&B

Proposals generated from review

Results A
Results B

Results A
Results B

Results A
Results B

 5

used, interviews could reveal that developers used this programming language for a particular type
of task, say, to interface with hardware. This allows appropriate use of the study results in other
contexts.

 The results of this study are inevitably influenced by context factors pertaining to the
development organizations in the data collection period. Understanding these factors makes it
easier to judge the applicability of the results in a new context. By replicating the study across two
development organizations, and comparing the results and the organizations, we were able to
evaluate some of these context factors. Data was collected over a relatively short period of time.
Although this was a pragmatic choice, analyzing data in a relatively narrow time span can make
cost factors more clearly visible, see, e.g., (Atkins et al. 2002).

2.5 Case selection and data collection
We approached medium and large-sized software development organizations in the geographic
area of our research group during 2006, using procedures that conformed to those described in
(Benestad et al. 2005). The participants had to grant access to the planned sources for quantitative
and qualitative data, to use object-oriented programming languages, to have planned development
for at least 12 months ahead, and to use a well-defined change process that included some basic
data collection procedures. The recruitment phase ended when we made agreements with two
projects, henceforth named project A and project B.

Project A develops and maintains a Java-based system that handles the lifecycle of research
grants for the Research Council of Norway. A publicly available web interface provides
functionality for people in academia and industry to apply for research grants, and to report
progress and financial status from ongoing projects (RCN 2008). Council officials use a Java
client to review the research grant applications and reports. The system integrates with a number
of other systems, such as a web publishing system. The consultancy company that we cooperated
with was subcontracted by the Council to make improvements and add functionality to the system.
For the most part, the contractor was paid per hour of development effort. Most change requests
originated from the users at the Council. Roughly once a month, the development group agreed
with user representatives and the product owner on changes for the next release.

Project B develops and maintains a Windows PocketPC system written in Java and C++. The
system allows passengers on the Norwegian State Railways (NSB 2008) to purchase tickets on-
board, and offers electronic tickets and credit card payment. The system integrates with a back-end
accounting system that is shared with other sales channels. The consultancy company that we
cooperated with had been subcontracted by the Norwegian State Railways to develop the system.
Most change requests originated from the product owner and user representatives. The members of
the development group prioritized and assigned development tasks directly in the change tracker,
or as part of short and frequent meetings. New versions of the system were released roughly once a
month. For the most part, the contractor was paid per hour of development effort.

Both projects were medium-sized with extensive change activity. Three to six developers were
making code changes to the systems in each of the projects. Fig. 2 and Fig. 3 illustrate change
activity and system size over a period of 30 months. Project A deployed the first version of their
system in Q1 2003, while project B deployed the system in Q1 2005. The apparent dip in system
size for project A around Q3 in 2005 was due to a major reorganization of the software that
included a change in the technology platform. According to the developers, this change eased
further development, and they perceived the project to be in a relatively healthy state during the
period of measurement.

Fig. 2 Accumulated number of check-ins

Fig. 3 System size, in lines of code

0

100000

200000

300000

400000

500000

Q4-
04

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Start of study

0

5000

10000

15000

20000

25000

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Start of study

 6

Table 1 Key information about collected data

 Project A Project B
Number of analyzed changes 136 200
Total effort of analyzed changes 1425 hours 1115 hours
Changes discussed in interviews 120 65
Period for data collection Jan 2007-Jul 2007 Aug 2006 – Jul 2007
Version control system IBM Rational Clearcase LT

(IBM 2008)
CVS (GNU 2008)

Change tracker Jira (Atlassian 2008) Jira (Atlassian 2008)
Total duration of interviews 20 hours 10 hours
Total time charged for data collection 18 hours 14 hours

It was crucial for the analysis that changes to source components could be traced to change
requests, and that data on change effort was available. The developers recorded the identifier of the
change request on every check-in to the version control system. During and after each change task,
the effort expended on detailed design, coding, unit testing and integration was recorded in the
change tracker. Interviews were conducted on a monthly basis, discussing each change according
to the interview guide shown in Appendix A.

The interview sessions allowed us to remind the developers to accurately report code changes
and change effort according to the agreed procedures (question 3 in the interview guide). To
further increase commitment to data collection, the companies could charge their normal hourly
rate for data collection time. In sum, we believe these steps resulted in accurate and reliable
quantitative data, although some measurement noise is inherent to this kind of data.

Prior to the analysis, four and six data points were removed from project A and B, respectively,
because they corresponded to continuously ongoing maintenance activities, rather than
independent and cohesive tasks.

2.6 Measurement model

Fig. 4 Key terms and concepts

This study’s perspective is that software evolution is organized around the change task. A
conceptual model for change-based studies is given in Fig. 4. A change task is a cohesive and self-
contained unit of work triggered by a change request. In these projects, a change task consists of
detailed design, coding, unit testing and integration. A change task is manifested in a
corresponding change set. A change set consists of revisions, each of which creates a new version
of a component of the system. The new version can be based on a pre-existing version of the
component, or it can be the first version of an entirely new component.

A system is deployed to its users through releases. A release is built from particular versions of
the components of the system. A release can also be described by the change sets or corresponding
change requests that it incorporates. The term change aggregates the change task, the originating
change request, and the resulting change set. Changes involve human resources, and are managed
and resolved by the development organization. Changes can be hierarchical, because large changes
may be broken down into smaller changes that are more manageable for the development
organizations.

The measures used as explanatory variables in quantitative models of change effort captured
factors pertaining to the entities of the model shown in Fig. 4. Table 2 provides a summary of the
relationships between entities, factors and measures. For each factor, we select one primary
measure and zero or more alternative measures. The primary measures are used as explanatory

 7

variables in models for the evidence-driven analysis. These models are a reference point allowing
us to assess the added value of the data-driven analysis, where we build optimized, project-specific
models using all the described measures as candidate variables. We preferred primary measures
that were likely to be robust to variations in measurement context, that have been used and
validated in previous empirical studies, and that were measurable or assessable at an early stage in
the change cycle. Measures are written in italics, while primary measures are marked with an
additional asterisk (*).

Table 2 Summary of measures

Entity Factor Measure Explanation of measure
Change task Change effort ceffort Time expended to design, code, test, and

integrate change, tracked by developers
Used as response variable in the study.

Change
request

Change request
volatility

crTracks*
crWords
crInitWords
crWait

-Change tracks for CR before first check-in
-Words in CR before first check-in
-Words in original CR
-Calendar time before first check-in

Change type isCorrective* -Classification + text scanning
Change set Change set size components*

addLoc
chLoc
delLoc
newLoc
segments

-Changed components
-Measures collected by
parsing side-by-side
output (-y)
of unix/linux diff
-diff –y v2 v1 | cut –c65 | tr –d ‘\n’ | wc –w

Change set
complexity

addCC
delCC
addRefs
delRefs

Parse output of diff to measure the number of
structural elements added and deleted.
Measures control-flow statements and reference
symbols (. ->)

Component
version

Structural attrib.:
Size

Coupling

Control flow

avgSize*
cpSize
avgRefs
cpRefs
avgCC
cpCC

-Average/weighted (by segments) size of
changed components
-Average/weighted (by segments) number of
references to members of imported components
-Average/weighted (by segments) number of
control flow statements

Component Language
heterogeneity

filetypes -Unique file types that were changed

Specific
technology

hasCpp (A)
hasWorkflow (B)

-Change concerns C++ code
-Change concerns the workflow engine

Code volatility avgRevs -Average number of earlier revisions
Human
resource and
Revision

Change
experience

systExp* -Avg. previous check-ins by developers
techExp -Avg. previous check-ins on same file types
packExp -Avg. previous check-ins in same package
compExp -Avg. previous check-ins in same components
devspan -Number of developers participating in change

Development
organization

Project identity isA* 1 if change belongs to project A
0 if change belongs to project B

Summary statistics and correlations for the measures are provided in (Benestad et al. 2009).

2.6.1 Change request volatility

Modifications or additions that the developers or other stakeholders make to the original change
request, the change request volatility, can indicate uncertainty or other problems in envisioning the
change incorporated into the system. Such problems could propagate to the coding phase and
affect change effort. In (Schneidewind 2001), the number of modifications to change requests
correlated with fault proneness. In (Niessink and van Vliet 1998), the number of new requirements
to change requests loaded on a principal component that correlated with change effort. A
straightforward measure of change request volatility is the number of modifications to the original
change request, as recorded in the change tracker (crTracks*). Related, candidate measures include
the number of words in the original change request (crInitWords), the number of words in all
modifications to the change requests (crWords), and the elapsed time from when a stakeholder
created the change request until a developer started the change task (crWait).

 8

2.6.2 Change set size

The change set size reflects the differences between the current and preceding versions of changed
source components. The intuitive notion that this affects change effort is verified by previous
studies (Jørgensen 1995b; Graves and Mockus 1998; Niessink and van Vliet 1998; Evanco 1999).
Other studies have shown that after controlling for change type or structural complexity of
changed components, discussed below, change set size is not necessarily a significant factor
(Briand and Basili 1992; Atkins et al. 2002; Arisholm 2006). A coarse-grained measure of change
set size is the number of source components that were changed during the change task
(components*). Finer granularity measures use text difference algorithms (Hunt and McIlroy
1975) to measure the number of lines of code (LOC) that were added (addLoc), deleted (delLoc)
and changed (chLoc). Added code in existing components can be differentiated from code in
newly created components (newLoc). Comments and whitespace were removed before computing
these measures.

We selected a coarse-grained measure of change set size because there is evidence that these
perform equally well or better than LOC-based measures (Graves and Mockus 1998). LOC counts
are less meaningful in technologically heterogeneous environments, and when tools that generate
code automatically are used. Furthermore, LOC counts may become high for conceptually trivial
changes, such as when program variables or methods are renamed. For estimation of change effort,
it is probably easier to estimate the number of components to change than the number of lines of
code to change. An alternative, medium-grained measure counts the number of disjointed places in
the existing code where changes were made (segments).

2.6.3 Change set complexity

If the structural complexity of the change set is high, e.g., if there are many changes to the control-
flow, an increase in change effort beyond the effect of change set size could be expected. Except
for one study in the authors’ research group (Moløkken-Østvold et al. 2008), we are not aware of
any studies investigating this effect of change set complexity on change effort. Fluri and Gall
showed that measures of edits to the abstract syntax trees of individual components predict ripple
effects better than measures of textual differences (Fluri and Gall 2006). We constructed two
measures to capture the number of added control-flow statements and added references to
members of external components, addCC and addRefs. Corresponding measures were constructed
for deleted control-flow statements and deleted references to members of external components,
delCC and delRefs. Because these are likely to correlate with measures of change set size, and they
are experimental in nature, we only used these measures in the data-driven analysis.

2.6.4 Change type

Changes can be described according to their origin, importance, quality focus, and other criteria. In
change-based studies, the change type has been important in order to understand change effort
(Briand and Basili 1992; Jørgensen 1995b; Graves and Mockus 1998; Polo et al. 2001; Atkins et
al. 2002). Corrective, adaptive or perfective change types, as suggested by Swanson (Swanson
1976), was the most commonly used classification schema. A recurring result from existing
change-based studies is that corrective changes are more time consuming than other types of
change, after controlling for change set size (Jørgensen 1995a; Graves and Mockus 1998). This
does not contradict results that have shown that the mean effort for corrective changes is lower
than for other change types (Polo et al. 2001), because corrective changes tend to have smaller
change set size (Purushothaman and Perry 2005).

Corrective and non-corrective changes (isCorrective*) are the primary measure of classification
in the analysis. This decision was based on the results from a field experiment in one of the
projects, which showed that developers’ classification into fine-grained change types was
unreliable (Benestad 2008). To further increase reliability of the measures, we combined the
categorizations performed by the developers with textual search for words like “bug”, “fails” and
“crash” (in the native language) in change request descriptions.

2.6.5 Structural attributes of changed components

The structural attributes of code relevant to the change may affect comprehension effort involved
in a change task. (Rajaraman and Lyu 1992; Etzkorn et al. 1999). Many change-based studies have
investigated whether the size of changed modules (avgSize*) correlate with change effort
(Jørgensen 1995b; Niessink and van Vliet 1997; Niessink and van Vliet 1998; Arisholm 2006;
Fluri and Gall 2006). Arisholm showed that size and certain other structural properties of the

 9

changed source components were correlated with change effort (Arisholm 2006). We constructed
alternative measures of control flow complexity and coupling in the changed components. The
first measure takes the average number of control-flow statements (avgCC) in the changed
components, while the second takes the average number of references to members of imported
components, of each changed component (avgRefs). Variations of the measures were constructed
by weighting the measures by the relative amount of change in each component (cpSize, cpCC and
cpRefs), as proposed in (Arisholm 2006).

2.6.6 Code volatility

While many components rarely change, some are involved in a large proportion of the change
tasks. We propose that the code volatility or change proneness will affect change effort, and that
change prone components require less effort, simply because developers are more experienced
with changing these components. Conversely, changes to infrequently changed components
represent unfamiliarity, and may also indicate more fundamental changes. Higher code volatility
could also result in increased change effort, because frequently changed modules may experience
code decay (Eick et al. 2001). However, in the investigated projects, components believed to have
decayed due to frequent changes were re-factored, and we therefore expected this effect to be
limited. The number of historical revisions, averaged over all changed components (avgRevisions),
captures code volatility of changed components. Several researchers have used volatility of
individual components as a predictor of failure proneness, see e.g., (Graves et al. 2000). However,
we are not aware of studies that have investigated the relationships between code volatility and
change effort. Due to this lack of existing empirical evidence we only used this measure in the
data-driven analysis.

2.6.7 Language heterogeneity

Language heterogeneity refers to the number of different programming languages involved in a
change. Using many languages may increase change effort, because it sets higher demands on
developer skills and integration challenges may arise. One simple way to measure language
heterogeneity is to count the number of unique file name extensions among the changed
components (filetypes). For example, changing one java-file and one properties-file would give a
count of two. We are not aware of studies that have investigated how language heterogeneity
affects change effort. Due to the lack of existing empirical evidence we only used this measure in
the data-driven analysis.

2.6.8 Specific technology

Use of a specific technology can affect change effort. For example, Atkins et al. showed that when
developers used a tool that supported evolution of system variants, change effort was significantly
reduced (Atkins et al. 2002). In project B, functionality interfacing with hardware was written in
C++. We propose that changes that involve C++ will be more expensive to change than other
code, which was predominantly written in Java. One rationale is that more specialized knowledge
is required to develop code that interfaces to hardware. An effect of the lower abstraction level in
C++ as compared to Java would work in the same direction. The binary measure hasCpp evaluates
to true if any of the changed components were written in C++. Project A used a Java-based
workflow engine as an important part of the technological basis. Although the project assumed that
they benefited from the high abstraction level of this technology, we wanted to investigate whether
the changes involving the workflow engine were different with respect to change effort. The
binary measure hasWorkflow evaluates to true if any of the changed components were based on the
technology of the Java-based workflow engine.

2.6.9 Change experience

Experiments have shown that there can be large productivity differences between individual
developers (Sackman et al. 1968; DeMarco and Lister 1985). Because we were not allowed to
assess individuals, we used measures of change experience to assess one important source of
individual differences. A basic measure is the total number of previous check-ins by the developer
who performed the change (systExp*). Other measures include the average number of earlier
check-ins of the changed components (compExp), packages (packExp) or technologies (techExp).
If several developers were involved in the change, the averages of the measures were used,
weighted by the number of components changed by each developer. Similar measures were used in

 10

(Mockus and Weiss 2000). In that study, the coarsest-grained measure (systExp) significantly
affected the response variable capturing failure proneness, while the other measures did not.

2.7 Analysis of quantitative data

2.7.1 Statistical procedures

Change effort was used as the response variable for all statistical models. The measures discussed
in Section 2.6 were used as candidate explanatory variables. The regression model framework was
Generalized Linear Models (GLM) with a gamma response variable distribution (sometimes called
the error structure) and a log link-function, see (Myers et al. 2001). One reason to assume gamma-
distributed responses was that the effort data distribution has a natural lower bound of zero and
was right-skewed with a long right tail. A log link function ensures that predicted values are
always positive, which is appropriate for wait-time data. The size of effect of a specific
explanatory variable xn is assessed by the proportional change in expected change effort that
results from a change to xn. Because a log link-function is used, the proportional change in
expected change effort becomes:

nß
e

nCnß1-nC1-nß..1C1ß 0ß
e

1)n(Cnß1-nC1-nß..1C1ß 0ß
e

)nCnx,1nC1nx..1C1x(ceffort
)1nCnx,1nC1nx..1C1x(ceffort

=++++

+++++
=

=−=−=
+=−=−=

Cross-project models were constructed to identify effects that were present in both projects, and to
formally test for project differences. Project-specific models were constructed to identify effects
specific to each project, and to quantify those effects.

The p-values, sign and magnitude of the coefficients are inspected to interpret the models. The
significance level is set to 0.05. This means that for a variable to be assessed as significant, the
probability that the variable has no impact must be less than 5%. It is difficult to interpret
coefficients when there is a high degree of multicollinearity between the explanatory variables. In
the evidence-driven analysis we attempted to reduce multicollinearity by selecting primary
measures designed to capture independent factors. In the data-driven analysis, the results from a
principal component analysis identified orthogonal factors in the data sets. The actual amount of
multicollinearity in the fitted models was measured by the variance inflation factor (VIF). If the
VIF is 1, there is no multicollinearity. If VIF is very large, such as 10 or more, multicollinearity is
a serious problem according to existing rules-of-thumb (Ott and Longnecker 2001).

2.7.2 Measures of model fit

We chose the cross-validated mean and median magnitude of relative error to assess the fit of
models. The basis for these measures is the magnitude of relative error (MRE) which is the
absolute value of the difference between the actual and the predicted effort, divided by the actual
effort. The measures were calculated by n-fold cross-validation. With this procedure, the variable
subset was fitted in n iterations on n-1 data points. In each iteration, the fitted model predicted the
last data point. The mean MRE forms MMREcross, while the median of the values forms
MDMREcross. The cross-validated measures are more realistic measures of the predictive ability
of regression models than measures not based on cross-validated predictions. This was particularly
important during the data-driven analysis, where models were selected on the basis of the
MMREcross-measure.

Another measure to assess model fit is the percentage of data points with an MRE of less than a
particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of the data
points that have a MRE of less than 0.25 and 0.50, respectively. The Pearson and Spearman
correlations between actual and predicted effort are also provided.

As a reference point to assess the model performance, we calculated the measures of model fit
for the constant model, i.e. the model that uses a constant value as predictor for all data points. A
commonly used criteria for accepting a model as “good” is a value of less than 0.25 for MMRE or
MdMRE, and higher than 0.75 from Pred(25) (Conte et al. 1986).

2.8 Collection and analysis of qualitative data
We prepared for interviews by studying data about each change request in the change trackers and
version control systems, and attempted to understand how the changed code fulfilled the changes.
Appendix A shows the interview guide. The interviews focused on phenomena that developers
perceived to have affected change effort.

 11

The changes with the largest magnitude of relative error (MRE) from the data-driven analysis
were selected for in depth analysis. We limited the analysis to data points with an MRE of more
than 0.5 for underestimated changes and more than 1.3 for overestimated changes. These limits
were set somewhat arbitrarily.

The interviews were transcribed and analyzed in the tool Transana (Woods 2008), which allows
navigation between transcripts and audio data. This made it feasible to re-listen to the original
voice recordings throughout the analysis. The interviews were coded in two phases. In phase 1,
immediately after each interview session, the interviews were transcribed and coded according to a
scheme that evolved as more data became available. In phase 2, when the quantitative models had
been constructed, we selected changes to be analyzed in depth. The focus was narrowed to
categories and codes that suggested a relationship with change effort. Finally, the exact naming
and meaning of codes and categories was reconsolidated to make them more straightforward and
easy to understand. The coding schema that resulted from this process is described in Section 5.

3 Evidence-driven analysis

3.1 Models fitted in evidence-driven analysis
Cross-project models were constructed to identify effects in both projects, and to formally test for
project differences:

isA
6

ß veisCorrecti
5

ß avgSize
4

ß systExp
3

ß components
2

ß crTracks
1

ß
0

ßt)log(ceffor ++++++= (M1)

isA11ßisAveisCorrecti10ßisA avgSize9ßisA systExp8ßisA components7ß

isA crTracks6ß veisCorrecti
5

ß avgSize
4

ß systExp
3

ß components
2

ß crTracks
1

ß
0

ßt)log(ceffor

+∗+∗+∗+∗

+∗++++++= (M2)

The model M1 includes one explanatory variable for each of the primary measures. It also includes
a project indicator (isA) allowing for a constant multiplicative between the projects. Model 2 adds
interaction terms between the project indicator and each of the primary measures, allowing for
different coefficients for each factor in each project. Two project specific models were also fitted,
one for each of the two data sets:

veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß 0ßt)log(ceffor +++++= (M3)

The constant models were used as yardsticks for the assessment of model fit:

isA1ß 0ßt)log(ceffor += (M4)

3.2 Results from evidence-driven analysis
Key information about coefficients in the fitted models is provided in Table 3. A p-value lower
than 0.05* (the chosen significance level), 0.01** and 0.001*** are indicated with one, two and
three asterisks, respectively.

Solving M4 for ceffort, and dividing by 3600 (because the underlying measurement unit is
seconds) gives an expected change effort of 5.6 hours for project B. The intercept is higher
(statistically significant) by 0.63 in project A, which gives an expected change effort of 10.5 hours.
The significant interaction terms in M2 indicate that isCorrective and systExp are project specific
effects. The project specific models M3 show:

• The variable crTracks had a significant effect on change effort in all models. A 8% increase in

change effort could be expected for each additional track in the change tracker. This size of
effect was similar in the two projects.

• The variable components had a significant effect on change effort in the models from both
projects. When one additional component was changed, a 13% and 8% increase in effort could
be expected in project A and B, respectively.

• In project A, corrective changes were expected to require slightly less than half the effort
compared to that required by non-corrective changes (e-0.780=46%), after controlling for
differences in other variables.

• In project B, systExp was significantly related to change effort. It was expected to decrease by
16% for every 1000th check-in performed by a developer. In project A, the effect was small
and statistically insignificant.

 12

• The estimated coefficients for avgSize indicate that change effort was slightly lower when
large components are changed, but the effects are very small and statistically insignificant.

• The standardized regression coefficients show that relative to the statistical variability of each
variable, components had the largest effect on change effort. For example, one standard
deviation change in components had double (project B) and quadruple effect (project A) than
did one standard deviation change in crTracks.

Table 3 Coefficient values, significance and model fit in evidence-driven analysis

 Cross
project
constant
model
M4

Cross
project
w. project
indicator
M1

Cross
project
w.
interactions
M2

Project A
M3
(standardized
coefficients in
parentheses)

Project B
M3
(standardized
coefficients in
parentheses)

Intercept (β0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30***
crTracks . 0.075** 0.076** 0.08* (0.18) 0.076** (0.26)
components . 0.098*** 0.12*** 0.076*** (0.76) 0.12*** (0.51)
systExp . -0.000039 -0.00018** 0.000026 (0.0719) -0.00018** (-0.23)
avgSize . -0.000033 -0.000061 -0.000011 (-0.0082) -0.000061 (-0.038)
isCorrective . -0.28* -0.11 -0.78*** (-0.38) -0.11 (-0.050)
isA 0.63*** 0.18 0.14 . .
crTracks*isA . . 0.0044 . .
components*isA . . -0.043 . .
systExp*isA . . 0.00020** . .
avgSize*isA . . 0.000051 . .
isCorrective*isA . . -0.67* . .
MMREcross 3.29 1.52 1.5192 1.86 1.32
MdMREcross 1.43 0.69 0.6786 0.72 0.60
Pred(25) 0.095 0.20 0.23 0.21 0.25
Pred(50) 0.24 0.36 0.40 0.35 0.43
Pearson corr. 0.20 0.53 0.63 0.64 0.51
Spearman corr. 0.091 0.59 0.59 0.66 0.56

The variance inflation factor was less than 1.34 for all the coefficients in all models. The principal
component analysis in Section 4.2.1 and the correlations reported in (Benestad et al. 2009) further
confirmed that multicollinearity was not a threat to the above interpretation of the coefficients.

Plots of actual versus predicted change effort of projects A and B are provided in Fig. 5 and Fig.
6, respectively. MdMREcross was down from 1.43 for the constant model to between 0.60 and
0.72 for the rest of the models. However, judged by commonly used standard (Conte et al. 1986),
the model fit was relatively poor.

Fig. 5 Predicted vs. actual effort, project A Fig. 6 Predicted vs. actual effort, project B

3.3 Discussion of evidence-driven analysis
It is interesting from a practical perspective that a relatively coarse grained, easily collectable and
early assessable measure of change set size (components) represented a significant independent
variable in the models. Code changes dispersed among many components could possibly require
more effort than changing the same number of lines in fewer components. The data-driven analysis
and the qualitative analysis investigate this topic in more depth.

 13

The number of updates to change requests (crTracks) prior to the coding phase consistently
contributed to change effort, and can therefore be useful for estimating effort in later phases of the
change process. The qualitative analysis investigates the result in more depth, aiming at actions
that could reduce the impact of change request volatility.

In project A, corrective changes required less effort than non-corrective changes. The data
indicates the same effect in project B, although not statistically significant. The indicated effect is
opposite to that of earlier studies. A possible explanation is that the processes involved in
corrective vs. non-corrective changes are indeed different, but the direction of the difference
depends on the developers, system and change tasks of a given project. A negative coefficient for
isCorrective indicates that it is relatively easy to correct defects compared to making other types of
changes. We consider this to be a favorable situation where it is important to quickly correct
defects or where defects are associated with undesirable noise.

The measure of system experience, systExp, was statistically significant for project B, but not
for project A. One problem with systExp as a measure of system experience is that it may be
confounded with system decay: The favorable effects of more experienced developers can be
counteracted by an effect of system decay, because systExp and system decay may be inversely
related to the underlying factor of time.

We did not obtain any significant effect of the size of changed components. There are several
possible explanations for this. First, because larger components probably are more change-prone,
due to the effect of size, developers will have more experience in changing these components.
Second, the class or the file is not necessarily the natural unit for code comprehension during
change tasks, as discussed in the qualitative analysis in Section 5.

4 Data-driven analysis
In the data-driven analysis we explored relationships that were not originally proposed, assessed
factors that have a weaker foundation in theory and empirical evidence, and evaluated the
predictive power of alternative measures of the same underlying factor.

4.1 Procedures for data-driven analysis
The measures from Table 2 were used as candidate variables in the statistical procedures described
below. The goal was to identify the models that explained the most possible change effort
variability, under the constraint that each model variable captured relatively orthogonal cost
factors. We used:

• Principal component analysis (PCA) to identify candidate variable subsets, consisting of

uncorrelated or moderately correlated variables. Selecting among variables on the basis of a
PCA is a common approach, see, e.g., (Pinches and Mingo 1973) and (Briand and Wüst 2001b).

• Exhaustive search among variable subsets to identify the best models, described by (Miller
2002).

• A cross-validated measure of model fit (MMRECross) as a selection criterion (Stone 1974; Shin
and Goel 2000).

• Decision trees to identify interaction effects and non-continuous effects (Briand and Wüst
2001a)

4.1.1 Identification of main effects

The structure of the correlations between the candidate variables was analyzed by principal
component analysis (PCA). Each principal component (PC) resulting from a PCA is a linear
combination of the original variables, constructed so that the first PC explains the maximum of the
variance in the data set, while each of the next PC’s explains the maximum of the variance that
remains, under the constraint that the PC is orthogonal to all the previously constructed PC’s. The
loading of each variable in PC indicates the degree to which it is associated with that PC. In order
to interpret a PC, we inspected the variables that loaded higher than 0.5, after the varimax rotation
(Jolliffe 2002) had been applied. The results from the analysis are provided in Section 4.2.1.

The results from the PCA were used to construct all possible subsets of candidate variables that
contained exactly one variable from each PC. This constraint prevents high multicollinearity in the
models, making them easier to interpret. For each of the constructed variable subsets, regression
models of change effort were fitted. The models with the lowest cross-validated MMRE
(MMREcross) in the two projects were selected as the best.

 14

We also performed a principal component regression (PCR) (Christensen 1996), which is an
alternative approach for data-driven analysis. With this approach, the linear combinations that
define each principal component produce new variables used in the regression in place of the
original variables. The new variables are uncorrelated, which completely eliminates the problem of
interpreting the coefficients of correlated regression variables. This comes at the cost that it can be
difficult to interpret the meaning of the regression variables. Because information from all
variables is used in the regression, the approach can yield models that are well fitted to the data.

The best models resulting from the PCR were compared to the models obtained from using a
single variable as a representative for a principal component. We preferred to use the latter models
for interpretation, but only if multicollinearity in those models was acceptable (measured by the
variance inflation factor) and if model performance was similar to or better than the PCR models.

4.1.2 Identification of decision tree rules

The goal of this step was to identify possible interaction effects and effects applying only to parts
of the value ranges for the explanatory variables. We used a hybrid regression technique that
combines the explorative nature of decision trees with the formality of statistical regression
(Briand and Wüst 2001a).

A decision tree splits the data set at an optimal value for one of the explanatory variables. The
split is performed so that the significance of the difference between the two splits is maximized.
This step is performed recursively on the splits, until a stop criterion is reached. The stop criterion
was that a leaf node should contain no less than 15 data points.

For use in GLM regression, a binary indicator variable was created for each of the leaf nodes in
the resulting decision tree. Since this procedure partitions the dataset, every change task had the
value 1 for one of the indicator variables, and 0 for the rest. Candidate variable subsets were
generated from all possible combinations of the indicator variables and the main effects. The
models with the lowest MMREcross were selected as the best.

4.2 Results from data-driven analysis

4.2.1 Factors identified by PCA

The summary of results from the principal component analyses for project A and B are shown in
Table 4 and Table 5, respectively.

Table 4 Summary of principal component analysis, project A

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A
Load
> 0.5
after
varimax
rotation

avgSize
avgRefs
avgCC
cpRefs
cpCC
cpSize

hasWorkflow
addCC
addRefs
newLoc
components
filetypes
devspan

delLoc
delCC
delRefs
crWait

addLoc
chLoc
segments

crWords
crInitWords
crTracks

systExp
techExp
packExp

avgRevs isCorrective

Entity

Factor

Component
version
Size

Change set

Dispersion

Change set:

Rework

Change set

Size

Change
request
Volatility

Human
resource
Change
experience

Component
version
Code
volatility

Change
request
Change
type

Table 5 Summary of principal component analysis, project B

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B
Load
> 0.5
after
varimax
rotation

addLoc
delLoc
chLoc
segments
addCC
delCC
addRefs
delRefs

avgSize
avgRefs
avgCC
avgRevs
cpRefs
cpCC
cpSize

components
filetypes
devspan
packExp
hasCpp

crWords
crInitWords
crTracks
crWait

systExp
techExp

newLoc
components

isCorrective

Entity

Factor

Change set

Size

Component
version
Size

Change set

Dispersion

Change request

Volatility

Human resource

Change
experience

Change set

Design
mismatch

Change
request
Change
type

 15

We made the following observations about the match between the conceptual measurement model
and the PCA:
• The factors in italics match factors described in Section 2.6. The collected measures for these

factors are consistent with the measurement model, and capture five orthogonal factors in the
data set: Change set size, Component version size, Change request volatility, Change
experience and Change type.

• PC1A and PC2B show that the suggested measures for control-flow and coupling belong to the
same principal component as the LOC-based measures of size. The underlying factor captured
by all these measures is the size of changed components.

• Likewise, PC1B shows that the suggested measures of change set complexity belong to the
same principal component as the LOC-based measures of change set size, in project B.

• PC2A and PC3B contain measures that capture the dispersion of changed code over
components, types of components and developers. We label this dimension change set
dispersion. It is interesting that this captures a factor that is orthogonal to change set size.

• PC3A contains measures of removed code. This principal component captures the amount of
rework, apparently distinguishable from the concept of change set size in project A.

• In project A, the measure of code volatility belongs to a distinct principal component (PC7A),
while in project B, it belongs to the principal component that captures size (PC2B). The latter
result indicates that large components are more prone to change, simply due to size.

• PC6B contains a measure of lines of code in new components, and the change set dispersion.
One possible interpretation is that these measures capture the degree of mismatch between the
current design and the design required by the change.

These observations are accounted for when the models are interpreted, in Sections 4.3 and 6.

4.2.2 Regression models for the data-driven analysis

The models resulting from the procedures described in 4.1 are shown in Table 6.

Table 6 Coefficient values, significance and model fit in data-driven analysis, discussed results are in bold

Model Variable Coefficient
(standardized
coeff. in parenthesis)

MMREcr.
MdMREcr.

Pred(25)
Pred(50)

Pearson
Spearman
correl.

Project A
Main
effects

Intercept
crWords
filetypes
chLoc
isCorrective

9.06***
0.00187** (0.25)
0.279*** (0.72)
0.005111** (0.31)
-0.503* (-0.25)

1.52
0.63

0.23
0.40

0.58
0.72

Project B
Main
effects

Intercept
crTracks
addCC
components
systExp

9.06***
0.0879***
0.00949**
0.1027***
-0.000161**

1.12
0.60

0.24
0.42

0.46
0.58

Project A
with
decision
tree rules

Intercept
crWords
filetypes
isCorrective
filetypes=1&crWords<24
filetypes=1&crWords>23&chLoc < 2
filetypes=1&crWords>23&chLoc>=2
filetypes>=3&chLoc>= 48

9.64***
0.00109* (0.14)
0.178*** (0.46)
-0.376* (-0.18)
-1.145*** (-0.36)
-0.831*** (-0.28)
-0.653** (-0.22)
0.963*** (0.32)

1.37
0.57

0.24
0.46

0.70
0.77

Project B
with
decision
tree rules

Intercept
crTracks
components
systExp
addCC>=23

9.15***
0.0839***
0.0798***
-0.000153**
0.7877**

1.12
0.62

0.22
0.40

0.59
0.54

Project A
PCR

PC2A
PC3A
PC4A
PC5A

0.9686***
0.2252*
0.4058***
0.3492***

1.71
0.66

0.24
0.42

0.53
0.78

Project B
PCR

PC1B
PC2B
PC3B
PC4B
PC5B
PC6B
PC7B

0.3529***
-0.1659*
0.2640***
0.4928***
-0.2143***
-0.1682***
1.4008*

1.33
0.55

0.275
0.48

0.39
0.59

 16

For project A, the results show that:
• The indicator of change type isCorrective recurred from the evidence-driven analysis
• The measure filetypes, capturing language heterogeneity, had a strong effect. Change effort is

expected to increase by around 30 % with one additional file type changed.
• The number of change lines of code, chLoc, also entered the model. An increase of 30 % can be

expected when around 50 additional lines of code were changed.
• Three of the decision tree rules handle cases where only one filetype is affected. The

coefficients show that change effort is particularly low in such cases, beyond the continuous
effect of the variable. Fifty of the 136 changes were covered by these rules.

• The last rule indicates a particularly strong effect of changes that span three or more languages
and at the same time involve a large change set (48 or more code lines changed). The
coefficient shows that 2.6 times more effort can be expected for such changes.

For project B, the results show that:
• Compared with the results from the evidence-based analysis, the data-driven analyses identified

the additional factor addCC (row 2 in Table 6). This measure was intended to capture structural
complexity of the change set, but the PCA showed that addCC captures change set size in this
data set. The expected change effort increases by 10% when addCC increases by 10.

• Allowing for decision tree rules (row 4 in Table 6), a simple binary rule replaced a continuous
effect of addCC: The expected change effort doubles if 23 or more control-flow statements are
added. This rule applies to 12% of the changes.

The models that combined regression with decision rules performed better than the models from
principal component regression, shown in the two last rows of Table 6. The variance inflation
factor was lower than 1.88 for all the coefficients in the models. This verifies that multicollinearity
is not a problem for the interpretability of the coefficients.

4.3 Discussion of data-driven analysis
In project A, fewer filetypes involved in a change strongly contributed to reduced change effort. A
particularly favorable effect occurred when a change involved only one file type. Because such
changes often can be identified before the coding phase, this result can be useful to improve
change effort estimates.

In project B, addCC and components had significant effects on change effort. The PCA showed
that these measures captured orthogonal factors in the data set. We conclude that change set
dispersion affected change effort, beyond the effect of LOC-based size. For effort prediction
purposes, the simple decision rule (addCC>=23) indicates that even a very coarse grained estimate
of change set size is useful.

For project A, the data-driven analysis resulted in models that had better model fit than those
from the evidence-based analysis. This was mainly due to the measure of language heterogeneity.
For project B, the model fit did not improve, as the primary measures already seemed to capture
the important factors. The total amount of explained change effort variability was moderate.

The plots in Fig. 7 and Fig. 8 show MRE boundaries for overestimated and underestimated
changes. The changes that fell outside the area formed by these lines received particular attention
during the qualitative analysis. In total, 32 underestimated changes and 16 overestimated changes
(those with MRE limits of 0.5 for underestimated changes and 1.3 for overestimated changes, see
Fig. 7 and Fig. 8) were analyzed in depth.

Fig. 7 Predicted vs. actual effort, project A

Fig. 8 Predicted vs. actual effort, project B

 17

5 Results from the qualitative analysis
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48 selected
changes. Four changes were excluded from the analysis because the interviews showed that code
changes had not been properly tracked.

The three first columns in Table 7 define the coding schema resulting from the coding process.
Each code captures a factor that was perceived by the interviewees to drive or save effort. For
example, T0 could drive effort if the developer was unfamiliar with a relevant technology, and
save effort if the developer had particularly good knowledge about the technology.

The rightmost column shows the number of times a code was used in underestimated and
overestimated changes, respectively. The numbers can be interpreted as the degree of presence of a
phenomenon in the projects, but we do not consider evidence from exceptional cases to be any less
valid or important than frequent cases. Consequently, no statistical analyses of the qualitative
results are provided. More detailed results from the qualitative analysis can be found in (Benestad
et al. 2009).

Table 7 Summary of factors from qualitative analysis

Category Code Description of code Occurrences in
underestimated/over
estimated changes

Understanding
requirements

R1

Clarification of change request was needed/not needed

9/2

Identifying and
understanding
relevant code

U1
U2
U3

It was difficult/easy to understand the relevant source code
It was difficult/easy to identify the relevant system states
The developer was unfamiliar/familiar with relevant source code

7/1
3/3
3/2

Learning relevant
technologies and
resolving
technology issues

T0
T1
T2
T3

Developer was unfamiliar/familiar with the relevant technology
The features of the technology did not/did suite the task
Technology had/did not have defects that affected the task
Technology had limited/good debugging support

3/0
1/2
4/0
5/0

Designing and
applying changes
to source code

D1
D2
D3

Change required deep/shallow understanding of user scenario
The needed mechanisms were not/were in place
Changes were made to many/very few parts of the code

0/9
13/2
0/8

Verifying change V1 It was necessary/not necessary to establish test conditions 2/1
Cause of change
(analyzed for all
changes)

C1
C2
C3
C4

Error by omission – failed to handle a system state
Error by commission – erroneous handling of a system state
Improve existing functionality – within current system scope
Planned expansion of functionality – extend the system scope

11/5
1/3
4/9
6/5

Many of the codes and categories coincide with concepts studied within the field of software
comprehension. For example, Von Mayrhauser and Vans suggested lists of activities involved in
change tasks that largely conform to our categories (von Mayrhauser and Vans 1995). In our case,
a separate category was justified for technology properties. Also, the design activity was difficult
to distinguish from the coding activity; hence we used a common category. We chose to use a
common coding schema for all types of changes, and let the cause of change be part of the coding
schema.

5.1 Understanding requirements
R1. For nine of the underestimated changes, the developers mentioned that the need to clarify
requirements resulted in increased change effort. For two of the overestimated changes, they
mentioned that a concise and complete specification made it easier to perform the change. This
supports the results from quantitative analysis, which showed a consistent relationship between the
number of updates to the original change request, and change effort. For the nine underestimated
changes, the requirement clarifications were only partially documented in the change tracker. This
explains the large residuals for these changes. The need to clarify requirements occurred more
frequently in project A than in project B. However, six of nine underestimated changes for project
B were fixes of errors due to missed requirements, see Section 5.6. Hence, incomplete
requirements had an unfavorable effect in both projects.

In some cases, the developers said that the user representatives deliberately failed to provide
complete specifications, in particular for changes that concerned the look and feel of the user
interface. However, the strongest effect on effort occurred when unanticipated side effects of a
change needed to be clarified during detailed design and coding. In most cases, this meant that
existing functionality was somehow impacted by the change, but that the developer was uncertain
how to deal with these impacts.

 18

5.2 Identifying and understanding relevant source code
A substantial portion of the total change effort can be comprehension effort. Koenemann and
Robertson suggested that the comprehension process involves code of direct, intermediate and
strategic relevance (Koenemann and Robertson 1991). Directly relevant is code that has to be
modified. Code that is perceived to interact with directly relevant code has intermediate relevance.
Strategic code acts as a pointer towards other relevant parts of the code.

U1: Typically, the change requests were described by referencing a user scenario, i.e. a
sequence of interactions between the user and the system, and by requesting a change to that
scenario. For seven of the underestimated changes, the developers claimed considerable time was
spent understanding relevant, intermediate code when it was dispersed among many files. The
dispersion of changed code had a strong and consistent effect on change effort in the quantitative
models. The time developers spend to comprehend dispersed code might be a more fundamental
factor that in many cases explains the apparent effect of making dispersed changes.

The effort involved in comprehending code along the lines of user scenarios can also explain
why the measures of structural attributes of changed components did not have an effect on change
effort in the quantitative models. First, only directly affected components were captured by these
measures, even though the structural attributes of intermediate code were likely to be important.
Second, the measures capture the structural attributes of architectural units rather than of user
scenarios. This suggests that it would be useful to collect measures of structural attributes along
the execution path of the changed user scenarios. These measures could be based on models such
as UML sequence diagrams, which would also aid in comprehension (Dzidek et al. 2008), or
dynamic code measurement (e.g., by executing each user scenario), as proposed in (Arisholm et al.
2004).

U2: For three of the underestimated changes, the developers expressed that it was difficult to
identify and understand the system states relevant to the change task. One developer stated: “All
the states that need to be handled in the GUI make the code mind-blowing.” This indicates that the
perceived code complexity is caused by a complex underlying state model. It also suggests that in
order to understand the code from the functional view discussed above, it is a prerequisite that the
underlying state model is understood. An obvious proposal is to make it easier to understand the
most complex underlying state models, e.g., by the use of diagramming techniques such as UML
state diagrams.

U3: The degree of familiarity with relevant code was said to have affected change effort in five
cases. The quantitative results for change experience showed that relatively little of the variations
in change effort can be explained by familiarity with the systems. The qualitative analysis showed
that experience was indeed important in both projects, in the few extreme cases when it was either
very high or very low.

5.3 Learning relevant technologies and resolving technology issues
T0. Lack of familiarity with relevant technology was perceived to increase change effort for three
of the changes. The measure of the effect of technology experience (techexp) was not significant in
the quantitative analysis. One possible explanation is that familiarity with the involved technology
affected change effort in the relatively few cases where the familiarity was particularly low or
high.

T1, T2, T3: The degree of match between the actual and required features of the development
tools and technologies was considered important in 12 cases. If the functionality required by the
change task was provided out of the box, the technology was considered to save effort. Reversely,
if the technology was incompatible with the change task, or had defects, considerable effort was
required to create workarounds. Unsatisfactory facilities for debugging were considered to
increase change effort in five cases.

5.4 Designing and applying changes to source code
D1: Empirical studies have shown that the nature of a given task determines the comprehension
process (Détienne and Bott 2002a). Indeed, the interview data showed that the developers
associated a certain degree of superficiality or shallowness with a change task. A change was
perceived as shallow when the developer assumed that it was not necessary to understand the
details of the code involved in the changed user scenario. Typically, shallow changes were
performed by textual search in intermediate code to identify the direct code to change. Examples
of shallow changes were those that concerned the appearance in the user interface, user messages,
logging behaviour and simple refactoring. Deep changes, on the other hand, required full

 19

comprehension of the code involved in the changed user scenario. The comprehension activities
described in the previous section are therefore primarily relevant for deep changes.

D2: Reusable mechanisms solve recurring needs in the system. Typically, formalized design
patterns (Gamma et al. 1995) can be used directly or as part of such code. In the investigated
projects, examples are handling of runtime exceptions and transfer of data between the physical
and logical layers of the system. In 13 cases, the change was perceived to be particularly
challenging because reusable code had to be created. According to the developers, it was
challenging to create this code, for two reasons. First, the code had to be carefully designed for
reusability. Second, when the purpose was to hide peculiarities of specific technologies, these
needed to be well understood by the developer.

D3: The developers expressed that eight of the overestimated changes were easy to perform
because they were concentrated in one or few parts in the code. This observation supports the
results for change set dispersion from the quantitative analysis, and suggests a particularly strong
effect for the most localized changes. However, this explanation is contradicted by data from 50
other change tasks that affected only one segment of the code without resulting in particularly low
change effort. An alternative explanation is that the developers perceived the change to be
particularly local because the code of intermediate relevance was not dispersed among many
components, as elaborated in Section 5.2

5.5 Verifying change
V1: The effort expended to test the developers’ own code changes was discussed in the interviews.
For a large majority of the changes, the developers found it quite easy to verify that the change
was correctly coded. In two cases, verification was perceived to be difficult because the change
task affected time-dependent behavior simulated in the test environment. In project A, some extra
time was needed to generate and execute the system on the target mobile platform. In project B,
extra time was needed when the technology necessitated deployment on a dedicated test server.

5.6 Cause of change
The cause of each change, i.e. the events that triggered the change request, was discussed in the
interviews. Based on this, we classified all changes according to the codes shown in the last row of
Table 7. In order to better understand the results for change type from the quantitative analysis, we
measured the agreement between the automated classification into change types, and the
classification from qualitative analysis. Sufficient data was available for 87 and 61 changes, for
project A and B, respectively. When mapping C1 and C2 to corrective change, and C3 and C4 to
non-corrective change, the agreement was good (Cohen’s kappa=0.64) for project A, but less than
what could be expected by pure chance (Cohen’s kappa=-0.038) for project B. This result shows
that the automated classification for project B did not appropriately reflect real differences in
change type, which can explain why there was no effect of change type in the quantitative models.
From the qualitative analysis of project B, it can be seen that six out of nine of the underestimated
changes were fixes of error by omission. A typical reason for such an error was not recognizing a
side effect of a change. We conclude that for project B, fixes of errors by omission were associated
with underestimated changes. In line with the conclusion in Section 5.1, we recommend practices
that help to identify side effects of change requirements, because they are likely to reduce
occurrences of errors by omission.

6 Joint results and discussion
The results from the different parts of the analysis are summarized as answers to the questions
posed in Section 2.2:

1. Did the factors identified from earlier change-based studies consistently affect change effort?
Overall, the selected variables proved to be useful predictors in models of change effort. A notable
exception was variables capturing structural properties of affected code, which could partly be
explained by item 8 below.

2. How accurate were change effort models built from change management data? The
explained variability was quite poor (best MdMREcross was 0.57) in the quantitative models. The
qualitative analysis focusing on change tasks that corresponded to large model residuals was
therefore justified.

3. What was the added value of using a larger number of candidate measures in the models? In
project A, the model fit substantially improved when a larger number of candidate variables were
used (MdMREcross was reduced from 0.72 to 0.57). Improvement was due to the use of one
additional variable, capturing language heterogeneity (see item 6 below).

 20

4. Did change set dispersion affect change effort, beyond what could be explained by size
alone? The principal component analysis showed that measures of change set dispersion captured
a factor different from pure size. The measure components consistently and strongly contributed to
change effort in the quantitative models: The standardized coefficients were 0.76 and 0.51.

5. What explained the effect of change set dispersion on change effort, e.g., how was dispersion
related to the comprehension activity? The qualitative analysis suggested that the developers’
effort to comprehend highly dispersed code was a more fundamental factor than the effort
involved in making dispersed changes. However, comprehending and modifying code seemed to
be closely intertwined processes, and therefore difficult to separate.

6. Was the effect of change set dispersion stronger when several languages or technologies
were involved in changes? Language heterogeneity substantially contributed to change effort, as
one additional affected language implies 30% more effort. A plausible explanation is that the
effect of dispersion (see item 4 and 5) was amplified when comprehended and modified code
spanned multiple technologies and languages.

7. Under which circumstances did change request volatility have the largest effect on change
effort? Change request volatility, measured by updates in the change tracker, consistently
contributed to change effort in the quantitative models. One additional update in the change tracker
implied a 8% increase in change effort. The qualitative analysis showed that when change request
volatility was due to difficulties in anticipating functional side effects of a change, the effect was
particularly large. A possible underlying cause for these difficulties was insufficient knowledge in
the interface between the software and the business domain.

8. Which structural properties of source code had the largest effect on change effort? The
qualitative analysis showed that change effort was affected by code properties along the changed
user scenarios. In particular, the complexity of the underlying state model of the user scenario was
important, as was the dispersion of code that implemented the changed user scenario. The
developers’ focus on functional cross-cuts can explain why structural attributes of architectural
units, such as files and classes, proved inefficient in explaining change effort variability.

9. What kind of changes required most effort? In project A, corrective changes required only
46% of the effort compared with non-corrective changes, after accounting for other factors. No
significant difference was found for project B. The qualitative analysis for both projects showed
that a sub-class of corrective changes (fixes of errors by omission) required additional effort. This
analysis also showed that certain other characteristics of the change task, such as the need for
innovation, was an important factor that is difficult to capture from change management data.

10. Which particular skill shortages had the largest effect on change effort? A moderate effect
of developers’ experience was identified in project B. A 16% decrease in change effort could be
expected for every 1000th check-in. The qualitative analysis showed that familiarity with the
changed functional and technological areas was indeed important in both projects, in particular in
the extreme cases when the familiarity was either very high or very low. This effect of experience
was not appropriately captured by the quantitative models.

In the following, we discuss consequences of these results from the perspective of software
engineering, the projects, and that of research methods within empirical software engineering.

6.1 Consequences for software engineering
Earlier change-based studies have assumed that measures such as components, or number of
check-ins for a change task, can be considered coarse-granularity measures of size. An alternative
interpretation is that such measures capture delocalization or dispersion. Controlled experiments
and research into the cognitive processes of programmers have demonstrated difficulties in
comprehending and changing dispersed code. An important contribution of this study is that it
found clear evidence of the effect of dispersion in a real project setting with real change tasks.
More refined results, and related consequences, are:

• Comprehension typically occurred along functional cross-cuts of the system. Hence, to mitigate

the effect of dispersion, tools should have the capability of presenting change-friendlier views
of the system based on such functional cross-cuts. Automatic generation of sequence diagrams
is one possible implementation, c.f. (Briand et al. 2003; TPTP 2008).

• The results indicate that the effect of dispersion depends on the heterogeneity of the involved
components, and cannot be fully captured by a simple count of components. It seems
particularly important that tools aimed at mitigating the effect of dispersion are able to handle
technological heterogeneous environments.

• The results point to design practices that minimize dispersion for future change tasks. A
recommended practice could be that functionally cohesive code should be localized rather than

 21

dispersed. However, the concern about change effort should be balanced against other concerns,
such as potentials for reuse and constraints set by the physical architecture.

• Comprehending and changing dispersed code seemed to be intertwined processes. Hence,
measures of affected components retrieved from version control systems can be expected to
capture the phenomenon of dispersion reasonably well, though not perfectly. If estimates of
dispersion are used as input to prediction models, estimates of components to inspect can be just
as effective as estimates of components to change.

Earlier change-based studies have shown a relationship between the number of modifications to
change requests, and change effort. The confirmatory analysis in this study consistently supported
the results. From the perspective of effort estimation, it is useful insight that measures retrieved
early in the change process were significant contributors to change effort.

Software organizations need to make trade-offs between enforcing well-defined upfront
requirements and allowing for the flexibility of evolving requirements. This study contributes with
the insight that volatility has the most serious effect on change effort when it is caused by lack of
knowledge in the interface between software and business domain. In consequence, organizations
should try to cultivate such knowledge, to avoid inefficient iterations towards the final
requirements. Other kinds of volatility, such as refining a user interface based on customer
feedback, have inherent advantages and do not seem to have severe effects. We believe that such
results provide important insights to the on-going debates on plan-driven versus agile development
principles.

Due to the wide prediction intervals implied by the relatively poor model fit obtained in this and
similar studies (Jørgensen 1995b; Niessink and van Vliet 1997), it seems infeasible to build
models that are sufficiently accurate to be accepted as a black-box method for estimating
individual change tasks. Model-based estimates may still play a role to support projects in
planning releases during software evolution, where the primary interest is in the aggregate of
change effort estimates. A reasonable starting point for creating organization specific models is to
use measures of change request volatility, developers’ experience, type of change, and dispersion.

6.2 Consequences for the investigated projects
In project A, effort estimation was a team activity performed on a regular basis as part of release
planning. To judge the potential for more accurate effort estimates, we calculated the accuracy of
the current estimation process, on the basis of effort estimates and actual effort for the 107 change
tasks where this data was available. The effort estimates were given in units of relative size, see
(Cohn 2006), and were scaled according to the factor that minimized MdMRE. The resulting
MMRE and MdMRE was 1.47 and 0.54, respectively. Even though these values roughly
correspond to the accuracy of the models from the data-driven analysis, we did not recommend
replacing judgement-based estimates with model-based estimates, for two reasons. First, change
set size or change set dispersion would have to be subjectively assessed to obtain the required
input measures. This would likely decrease the model accuracy, and preclude fully automated
procedures. Second, the team estimation of change tasks was perceived to be important to share
knowledge, to build team spirit in the project, and to constitute an initial step of design for a
solution to the change request.

To assess whether insight obtained from our analysis was already accounted for by the
developers, we fitted regression models that included the significant quantitative factors and the
developers’ estimate as explanatory variables. Measures of change request volatility, change set
dispersion and change type became statistically insignificant, indicating that these factors were
already sufficiently accounted for by the subjective estimates. The number of different
technologies involved, on the other hand, had a significant effect on actual effort. The model was:

log(ceffort)= 9.25 + 0.13*relativeEffortEstimate + 0.14*filetypes

We recommended that the developers put more emphasis on language heterogeneity when they
made effort estimates. On the basis of the qualitative analysis we also advised more awareness of
the effect of particularly strong familiarity or lack of familiarity with code of intermediate and
direct relevance. On the basis of the results, we were also able to give the following
recommendations:

• To reduce the most severe effects of change request volatility, actions should be taken to

cultivate knowledge in the interface between the software and business domains. However,

 22

change request volatility should be accepted when solutions are iteratively optimized on the
basis of immediate feedback, such as in the case of GUI design.

• Identify the user scenarios that are most frequently changed, and that involve many components
and languages. Look for opportunities to refactor these, aiming at reducing the dispersion.

• Evaluate tools that make it easier to trace and understand the code involved in user scenarios.
For example, emerging tools for dynamic code analysis for the Eclipse platform might have
some of the desired qualities (TPTP 2008).

• Document the underlying state models in areas where those models are particularly complex

6.3 Consequences for empirical software engineering
This study included a number of design elements that we believe constitute a step forward for
change-based studies:

Foundation in a systematic review. The use of systematic reviews in software engineering was
suggested as an important element of evidence-driven software engineering (Kitchenham et al.
2004). The factors and measures for the quantitative analysis were selected on the basis of a
systematic literature review of earlier change-based studies. Systematic reviews are particularly
useful when study proposals cannot be derived from established theories. Currently, this is the
situation for most topics investigated within the empirical software engineering community.

Combined confirmatory and explorative analysis. Strong conclusions can only be drawn from
confirmatory studies, while explorative studies are important to generate hypothesis and guide
further research (Kitchenham et al. 2002). The evidence-driven analysis largely confirmed existing
evidence. The data-driven analysis explored and identified additional factors to be investigated in
future confirmatory studies.

Procedures for performing data-driven analysis. The data-driven analysis combined known
sub-strategies for variable selection into an overall procedure for selecting the models, based on
well-defined criteria. This was shown to perform better than a more traditional approach based on
principal component regression. It is future work to attempt to improve this approach by, e.g.,
using alternative prediction frameworks.

Qualitative analysis to explain large model residuals. Even though the role of qualitative
methods in this field has long been recognized, see e.g., (Seaman 1999), empirical researchers
have developed and used quantitative methods to a larger extent (Perry et al. 2000). Because we
used the individual change as a common unit of analysis, and change effort as the dependent
variable, we were able to tightly integrate the quantitative analysis of data from version control
systems and change trackers with the qualitative analyses of developer interviews. This method
also focuses the more expensive qualitative analysis on the most interesting data. This can be
particularly important for practitioners who use lightweight empirical methods to evaluate their
own practices such as Postmortem analysis (Birk et al. 2002) or Agile Retrospectives (Derby and
Larsen 2006).

7 Threats to validity
Construct validity. Quantitative measures were based on data from version control systems and
change trackers. Such data will not perfectly capture the factors of interest. For example, change
request volatility may not be fully documented in the change tracker. In this and other cases, we
were able to use the qualitative data to compensate for these threats to construct validity. There
were also threats to construct validity in the qualitative coding schema. We attempted to mitigate
this by reconsolidating the coding schema to reflect commonly used concepts within our field.

Code complexity cannot be fully captured by one or a few measures (Fenton 1994). To judge, in
a meaningful and repeatable manner, whether a piece of code is “more complex than” another
piece of code, very specific criteria must be defined. Therefore, there were obvious construct
validity threats in the measurement of complexity of change sets and changed components. As
indicated from the qualitative analysis, the apparent insignificance of code complexity could be
due to problems with operationalizing the concept. For change experience, it is obviously a
simplification to associate one check-in with one unit of experience. Moreover, averaging
experience measures over developers does not perfectly capture the concept of joint experience.
Measurement noise due to unreliable collection of change effort data could also have affected the
results, although random noise would normally weaken the conclusions rather than incorrectly
strengthening them.

In sum, it is likely that some of the unexplained variability in the quantitative models was due to
the inability to fully capture the intended factors by measures retrieved from version controls
systems.

 23

Internal validity. Internal validity refers to the degree to which causal relationships can be
claimed. Issues of internal validity are important when the context, tasks and procedures for
allocating study units to groups cannot be controlled, which is the case with data that occurs
naturally in software development projects. Qualitative data from developer interviews was useful
to evaluate such threats. For example, the qualitative analysis suggested that a more fundamental,
causal factor than the effect of dispersion of changed code was the effect of dispersion of
intermediate code that needed to be comprehended.

Another threat to internal validity was the possibility of shotgun correlations. In the data-driven
analysis, a large number of factors and measures were tested. This increased the likelihood that
one or more of the significant effects occurred due to chance, rather than to a true underlying
effect. It would have been possible to perform multiple testing adjustment in this analysis, using
procedures such as Bonferroni correction. However, due to the explorative nature of this part of
the analysis, aiming at identifying additional relationships in the data, we considered such
adjustment to be overly conservative. This risk of identifying shotgun correlations was lower in
the evidence-driven analysis, because this analysis investigated the effect of a small set of factors
and measures selected on the basis of existing empirical evidence.

A third type of threat to internal validity was the potential bias introduced by missing data
points in the data set, see (Mockus 2000). For project A, change effort was not recorded for around
10% of the actual changes that were performed. For project B, it was not recorded for 25% of the
changes. Most of the missing data points were due to challenges with establishing the routines to
track change effort and code changes. Because the data points that we did collect from the initial
periods can be considered randomly selected, we do not expect the missing data points to
constitute a serious threat to internal validity.

The use of interviews introduced the possibility of researcher bias, consciously or
unconsciously skewing the investigation to conform to the competencies, opinions, values or
interests of the involved researchers. Although such threats apply to quantitative research as well,
they can be particularly difficult to assess handle when subjectivity is involved. Imperfect
memory, lack of trust or other communication barriers between the interviewer and the
interviewee may also introduce biases. We believe that the strict focus on relatively small,
cohesive tasks recently performed by the interviewee helped to mitigate such biases. To mitigate
communication barriers, the interviewer made extensive efforts to be prepared for the interviews,
and data from the version control systems and change trackers was readily available during the
interviews to help the developers recollect details.

External validity. The ability to generalize results beyond the study context is one of the key
concerns with case studies. Section 2.4 described the design elements introduced to interpret the
results in a wider context. We believe that the lack of relevant theories on which to base the study
proposals is a major obstacle to generalizing the results. In this situation, we chose to base the
study proposals on a comprehensive review of earlier empirical studies with similar research
questions.

8 Conclusion, consequences and further work
Software engineering practices can be improved if they address factors that have been shown
empirically to affect developers’ effort during software evolution. In this study, we identified such
factors by analyzing data about changes in two software organizations. Regression models were
constructed to identify factors that correlated with change effort, and developer interviews
explored additional factors at play when the developers expended effort to perform change tasks.
Two central results were:

• Change request volatility had a consistent effect on effort in the quantitative models. The effect

was particularly large when volatility resulted from difficulties in anticipating side effects of a
change. Such difficulties also resulted in errors by omission, which in turn were particularly
expensive to correct.

• The dispersion of modified code also had a large and consistent effect on change effort in the
quantitative models, beyond the effect of size alone. The qualitative analysis indicated that the
dispersion of comprehended code was a more fundamental factor.

Because these results are also consistent with results from earlier empirical studies, we suggest that
these (admittedly quite course-grained) factors should be considered when attempting to improve
software engineering practices.

The specific analyses of the two projects provided additional and more fine-grained results. In
one project, changes that concerned only one language required considerably less effort. The

 24

analysis of estimation accuracy indicated that this factor was not sufficiently accounted for when
developers made their estimates. This exemplifies how projects can benefit from analyzing data
from their version control systems and change trackers to improve their estimation practices.

One important direction for further work is to investigate further the causal relationships
occurring when developers perform change tasks. Interviewing developers about recent changes
was an effective method for making tentative suggestions about such relationships. However,
studies that control possibly confounding factors should be conducted before firm conclusions are
drawn. It is also necessary to paint a richer picture of how context factors, such as size and type of
the system, influence change effort. Ultimately, the empirical results could be aggregated into a
theory on software change effort, which would define invariant knowledge about software
evolution, and be immediately useful for practitioners within the field.

Acknowledgements We are indebted to the managers and developers at Esito and Know IT who provided us
with high quality empirical data. The research was funded by the Simula School of Research and Innovation.

Appendix A
Interview guide
Part 1. (Only in first interview with each developers - Information about the purpose of the
research. Agree on procedures, confidentiality voluntariness, audio-recording).
Question: Can you describe your work and your role in the project?
Part 2. Project context (factors intrinsic to the time period covered by the changes under
discussion)
How would you describe the project and your work in the last time period? Did any particular
event require special focus in the period?
For each change (CR-nnnn, CR-nnnn, CR-nnnn….,)
Part 3. Measurement control (change effort and name of changed components shown to the
interviewee)
Are change effort and code changes correctly registered?
Part 4. Change request characteristics (change tracker information shown on screen to support
discussion)
Can you describe the change from the viewpoint of the user? Why was the change needed?
Part 5. General cost factors
Can you roughly indicate how the X hours were distributed on different activities?
Part 6. Properties of relevant code (output from windiff showed on screen to support the
discussions)
Can you summarize the changes that you made to the components?
What can you say about the code that was relevant for the change? Was it easy or difficult to
understand and make changes to the code?
Part 7. Stability
Did you go through several iterations before you reached the final solution? If so, why?
Did anything not go as expected?
How did you proceed to test the change?
Go to Part 3 for next change
Part 8. Concluding remarks
Do you think this interview covered your activities during the last period?

 25

References

Arisholm E (2006) Empirical assessment of the impact of structural properties on the changeability of object-

oriented software. Information and Software Technology 48(11):1046-1055
Arisholm E, Briand LC&Føyen A (2004) Dynamic coupling measurement for object-oriented software. IEEE

Transactions on Software Engineering 30(8):491-506
Arisholm E&Sjøberg DIK (2004) Evaluating the effect of a delegated versus centralized control style on the

maintainability of object-oriented software. IEEE Transactions on Software Engineering 30(8):521-
534

Atkins DL, Ball T, Graves TL&Mockus A (2002) Using version control data to evaluate the impact of
software tools: A case study of the version editor. IEEE Transactions on Software Engineering
28(7):625-637

Atlassian, Jira bug and issue tracker. Available at: http://www.atlassian.com/software/jira/. Accessed Sep 26
2008

Banker RD, Datar SM, Kemerer CF&Zweig D (1993) Software complexity and maintenance costs.
Communications of the ACM 36(11):81-94

Beck K (1999) Embracing change with extreme programming. Computer 32(10):70-77
Belady LA&Lehman MM (1976) A model of large program development. IBM Systems Journal 15(3):225-

252
Benestad HC (2008) Technical report 12-2008: Assessing the reliability of developers’ classification of

change tasks: A field experiment, Simula Research Laboratory
Benestad HC, Anda B&Arisholm E (2009) Technical report 02-2009: An investigation of change effort in

two evolving software systems, Simula Research Laboratory
Benestad HC, Anda BC&Arisholm E (2008) Technical report 10-2008: A systematic review of empirical

software engineering studies that analyze individual changes, Simula Research Laboratory
Benestad HC, Arisholm E&Sjøberg D (2005) How to recruit professionals as subjects in software engineering

experiments. Information Systems Research in Scandinavia (IRIS), Kristiansand, Norway
Bhatt P, Shroff G, Anantaram C&Misra AK (2006) An influence model for factors in outsourced software

maintenance. Journal of Software Maintenance and Evolution: Research and Practice 18(6):385-
423

Birk A, Dingsøyr T&Stålhane T (2002) Postmortem: Never leave a project without it. IEEE Software
19(3):43-45

Briand LC&Basili VR (1992) A classification procedure for the effective management of changes during the
maintenance process. In: Proceedings of 1992 Conference on Software Maintenance, IEEE
Computer Society Press: Los Alamitos CA, pp 328-336

Briand LC, Labiche Y&Miao Y (2003) Towards the reverse engineering of UML sequence diagrams. In:
Proceedings of 10th Working Conference on Reverse Engineering, WCRE 2003, pp 57-66

Briand LC&Wüst J (2001a) The impact of design properties on development cost in object-oriented systems.
IEEE Transactions on Software Engineering 27(11):963-986

Briand LC&Wüst J (2001b) Integrating scenario-based and measurement-based software product assessment.
The Journal of Systems & Software 59(1):3-22

Briand LC&Wüst J (2002) Empirical studies of quality models in object-oriented systems. Advances in
Computers 59(1):97-166

Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK&Wong MY (1992) Orthogonal
defect classification-a concept for in-process measurements. Software Engineering, IEEE
Transactions on 18(11):943-956

Christensen R (1996) Principal component regression. In: Analysis of variance, design and regression. 446-
451

Cohn M (2006) Agile estimating and planning. Pearson Education, Inc. Boston, MA
Conte SD, Dunsmore HE&Shen VY (1986) Software engineering metrics and models. Benjamin-Cummings

Publishing Co., Inc. Redwood City, CA, USA
Curtis B, Sheppard SB, Kruesi-Bailey E, Bailey J&Boehm-Davis DA (1989) Experimental evaluation of

software documentation formats. Journal of Systems and Software 9(2):167-207
DeMarco T&Lister T (1985) Programmer performance and the effects of the workplace. In: Proceedings of

Proceedings of the 8th international conference on Software engineering, pp 268-272
Derby E&Larsen D (2006) Agile retrospectives: Making good teams great. Raleigh, NC: Pragmatic

Bookshelf
Détienne F&Bott F (2002a) Influence of the task. In: Software design - cognitive aspects. Springer-Verlag,

London.pp 105-110
Détienne F&Bott F (2002b) Software design - cognitive aspects. Springer-Verlag London
Dzidek WJ, Arisholm E&Briand LC (2008) A realistic empirical evaluation of the costs and benefits of UML

in software maintenance. IEEE Transactions on Software Engineering 34(3):407-432
Eick SG, Graves TL, Karr AF, Marron JS&Mockus A (2001) Does code decay? Assessing the evidence from

change management data. IEEE Transactions on Software Engineering 27(1):1-12
Etzkorn L, Bansiya J&Davis C (1999) Design and code complexity metrics for OO classes. Journal of

Object-Oriented Programming 12(1):35-40
Evanco WM (1999) Analyzing change effort in software during development. In: Proceedings of 6th

International Symposium on Software Metrics (METRICS99), pp 179-188

 26

Evanco WM (2001) Prediction models for software fault correction effort. In: Proceedings of 5th European
Conference on Software Maintenance and Reengineering, IEEE Computer Society Press: Los
Alamitos CA, pp 114-120

Fenton N (1994) Software measurement: A necessary scientific basis. IEEE Transactions on Software
Engineering 20(3):199-205

Fluri B&Gall HC (2006) Classifying change types for qualifying change couplings. In: Proceedings of 14th
International Conference on Program Comprehension (ICPC), Athens, Greece, pp 35-45

Gamma E, Helm R, Johnson R&Vlissides J (1995) Design patterns: Elements of reusable object-oriented
software. Addison-Wesley

Geppert B, Mockus A&Rößler F (2005) Refactoring for changeability: A way to go? In: Proceedings of 11th
International Symposium on Software Metrics, IEEE Computer Society Press: Los Alamitos CA, pp

GNU, Concurrent Versions System. Available at: http://www.nongnu.org/cvs/. Accessed Sep 26 2008
Graves TL, Karr AF, Marron JS&Siy H (2000) Predicting fault incidence using software change history.

IEEE Transactions on Software Engineering 26(7):653-661
Graves TL&Mockus A (1998) Inferring change effort from configuration management databases. In:

Proceedings of 5th International Symposium on Software Metrics, pp 267–273
Hayes JH, Patel SC&Zhao L (2004) A metrics-based software maintenance effort model. In: Proceedings of

8th European Conference on Software Maintenance and Reengineering, IEEE Computer Society
Press: Los Alamitos CA, pp 254-258

Hunt JW&McIlroy MD (1975) An algorithm for differential file comparison. Computing Science Technical
Report 41, Bell Laboratories

IBM, Rational ClearCase LT. Available at: http://www-306.ibm.com/software/awdtools/clearcase/cclt/.
Accessed Sep 26 2008

Jolliffe IT (2002) Principal component analysis. Springer-Verlag New York
Jørgensen M (1995a) An empirical study of software maintenance tasks. Journal of Software Maintenance:

Research and Practice 7(1):27-48
Jørgensen M (1995b) Experience with the accuracy of software maintenance task effort prediction models.

IEEE Transactions on Software Engineering 21(8):674-681
Kemerer C (1995) Software complexity and software maintenance: A survey of empirical research. Annals of

Software Engineering 1(1):1-22
Kitchenham BA, Dybå T&Jørgensen M (2004) Evidence-based software engineering. In: Proceedings of 26th

International Conference on Software Engineering (ICSE), Edinburgh, Scotland, IEEE Computer
Society, pp 273-281

Kitchenham BA, Pleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K&Rosenberg J (2002)
Preliminary guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering 12(4):1106-1125

Koenemann J&Robertson SP (1991) Expert problem solving strategies for program comprehension. In:
Proceedings of SIGCHI conference on Human factors in computing systems: Reaching through
technology, pp 125-130

Krishnan MS, Kriebel CH, Kekre S&Mukhopadhyay. T (2000) An empirical analysis of productivity and
quality in software products. Management Science 46(6):745-759

Lientz BP (1983) Issues in software maintenance. ACM Computing Surveys 15(3):271-278
Miller A (2002) Generating all subsets. In: Subset selection in regression. 48-52
Mockus A (2000) Missing data in software engineering. In: Guide to advanced empirical software

engineering. 185-200
Mockus A&Weiss DM (2000) Predicting risk of software changes. Bell Labs Technical Journal 5(2):169-180
Moløkken-Østvold K, Haugen NC&Benestad HC (2008) Using planning poker for combining expert

estimates in software projects. Accepted for publication in Journal of Systems and Software
Munson JC&Elbaum SG (1998) Code churn: A measure for estimating the impact of code change. In:

Proceedings of 14th International Conference on Software Maintenance, IEEE Computer Society
Press: Los Alamitos CA, pp 24-31

Myers RH, Montgomery DC&Vining GG (2001) The generalized linear model. In: Generalized linear
models with applications in engineering and the sciences. Wiley Series in Probability and Statistics,
4-6

Niessink F&van Vliet H (1997) Predicting maintenance effort with function points. In: Proceedings of 1997
International Conference on Software Maintenance, IEEE Computer Society Press: Los Alamitos
CA, pp 32-39

Niessink F&van Vliet H (1998) Two case studies in measuring software maintenance effort. In: Proceedings
of 14th International Conference on Software Maintenance, IEEE Computer Society Press: Los
Alamitos CA, pp 76–85

NSB, Norwegian State Railways. Available at: http://www.nsb.no/about_nsb/. Accessed Sep 26 2008
Ott RL&Longnecker M (2001) Inferences in multiple regression. In: Statistical methods and data analysis.

Duxbury, 646-657
Perry DE, Porter AA&Votta LG (2000) Empirical studies of software engineering: A roadmap. In:

Proceedings of Conference on The Future of Software Engineering, pp 345-355
Pinches GE&Mingo KA (1973) A multivariate analysis of industrial bond ratings. Journal of Finance

28(1):1-18

 27

Polo M, Piattini M&Ruiz F (2001) Using code metrics to predict maintenance of legacy programs: A case
study. In: Proceedings of 2001 International Conference on Software Maintenance, IEEE
Computer Society Press: Los Alamitos CA, pp 202-208

Purushothaman R&Perry DE (2005) Toward understanding the rhetoric of small source code changes. IEEE
Transactions on Software Engineering 31(6):511-526

Rajaraman C&Lyu MR (1992) Reliability and maintainability related software coupling metrics in C++
programs. In: Proceedings of Third International Symposium on Software Reliability Engineering,
pp 303-311

RCN, Research Council of Norway, My RCN Web. Available at:
https://www.forskningsradet.no/mittNettstedWeb/common/security/login.jsp?setLocale=en.
Accessed Sep 26 2008

Reformat M&Wu V (2003) Analysis of software maintenance data using multi-technique approach. In:
Proceedings of 15th International Conference on Tools with Artificial Intelligence, IEEE Computer
Society Press: Los Alamitos CA, pp 53-59

Sackman H, Erikson WJ&Grant EE (1968) Exploratory experimental studies comparing online and offline
programming performance. Communications of the ACM 11(1):3-11

Schneidewind NF (2001) Investigation of the risk to software reliability and maintainability of requirements
changes. In: Proceedings of 2001 International Conference on Software Maintenance, IEEE
Computer Society Press: Los Alamitos CA, pp 127-136

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Transactions on
Software Engineering 25(4):557-572

Shin M&Goel AL (2000) Empirical data modeling in software engineering using radial basis functions. IEEE
Transactions on Software Engineering 26(6):567-576

Soloway E, Pinto J&Letovsky S Designing documentation to compensate for delocalized plans.
Communications of the ACM 31(11):1259–1267

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the Royal
Statistical Society 36(2):111-133

Swanson EB (1976) The dimensions of maintenance. In: Proceedings of 2nd International Conference on
Software Engineering, San Francisco, California, United States, IEEE Computer Society Press: Los
Alamitos CA, pp 492-497

TPTP, Eclipse Test&Performance Tools Platform Project. Available at:
http://www.eclipse.org/tptp/home/documents/tutorials/profilingtool/profilingexample_32.html.
Accessed Feb 02 2009

von Mayrhauser A&Vans AM (1995) Program comprehension during software maintenance and evolution.
Computer 28(8):44-55

Woods D, Transana - Qualitative analysis software for video and audio data. Developed at the University of
Wisconsin-Madison Center for Education Research. Available at: http://www.transana.org/.
Accessed Sep 26 2008

Xu B, Yang M, Liang H&Zhu H (2005) Maximizing customer satisfaction in maintenance of software
product family. In: Proceedings of 18th Canadian Conference on Electrical and Computer
Engineering, IEEE Computer Society Press: Los Alamitos CA, pp 1320-1323

Yin RK (2003) Designing case studies. In: Case study research: Design and methods. Sage
Publications:Thousand Oaks, CA, 19-53

