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a b s t r a c t

This paper describes a study performed in an industrial setting that attempts to build predictive models
to identify parts of a Java system with a high fault probability. The system under consideration is con-
stantly evolving as several releases a year are shipped to customers. Developers usually have limited
resources for their testing and would like to devote extra resources to faulty system parts. The main
research focus of this paper is to systematically assess three aspects on how to build and evaluate
fault-proneness models in the context of this large Java legacy system development project: (1) compare
many data mining and machine learning techniques to build fault-proneness models, (2) assess the
impact of using different metric sets such as source code structural measures and change/fault history
(process measures), and (3) compare several alternative ways of assessing the performance of the models,
in terms of (i) confusion matrix criteria such as accuracy and precision/recall, (ii) ranking ability, using
the receiver operating characteristic area (ROC), and (iii) our proposed cost-effectiveness measure (CE).
The results of the study indicate that the choice of fault-proneness modeling technique has limited

impact on the resulting classification accuracy or cost-effectiveness. There is however large differences
between the individual metric sets in terms of cost-effectiveness, and although the process measures
are among the most expensive ones to collect, including them as candidate measures significantly
improves the prediction models compared with models that only include structural measures and/or
their deltas between releases – both in terms of ROC area and in terms of CE. Further, we observe that
what is considered the best model is highly dependent on the criteria that are used to evaluate and com-
pare the models. And the regular confusion matrix criteria, although popular, are not clearly related to the
problem at hand, namely the cost-effectiveness of using fault-proneness prediction models to focus ver-
ification efforts to deliver software with less faults at less cost.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

A significant research effort has been dedicated to defining spe-
cific quality measures and building quality models based on those
measures (Briand and Wuest, 2002). Such models can then be used
to help decision-making during development of software systems.
Fault-proneness or the number of defects detected in a software
component (e.g., class) are the most frequently investigated depen-
dent variables (Briand andWuest, 2002). In this case, we may want
to predict the fault-proneness of classes in order to focus validation
and verification effort, thus potentially finding more defects for the
same amount of effort. Assuming a class is predicted as very likely
to be faulty, one would take corrective action by investing addi-

tional effort to inspect and test the class. Given that software
development companies might spend between 50% and 80% of
their software development effort on testing (Collofello and Wood-
field, 1989), research on fault-proneness prediction models can be
motivated by its high cost-saving potential.

As a part of this study, we have reviewed a selection of relevant
publications within the field of fault-proneness prediction models.
Due to space constraints, details are not provided in this paper but
are summarized in the related works section and are presented in
Arisholm et al. (2008). The review revealed that a vast number of
modeling techniques have been used to build such prediction mod-
els. However, there has been no comprehensive and systematic ef-
fort on assessing the impact of selecting a particular modeling
technique.

To construct fault-proneness prediction models, most studies
use structural measures such as coupling and cohesion as indepen-
dent variables. Although some studies have investigated the possi-
ble benefits of including other measures such the number of
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changes performed on components and their fault history in previ-
ous releases, none of the studies assess in a systematic way the im-
pact of using various sets of measures, entailing different data
collection costs, on the cost-effectiveness of the prediction models.

A large number of evaluation criteria have been used to evalu-
ate and compare fault-proneness prediction models,. Among the
most popular evaluation criteria are the ones that can be derived
from the confusion matrix such as accuracy, precision, and recall.
There is little consistency across the reviewed studies with respect
to the criteria and methods that are used to evaluate the models,
making it hard to draw general conclusions on what modeling
technique or sets of independent variables seems the most appro-
priate. In addition, the popular confusion matrix criteria are some-
what abstract as they do not clearly and directly relate to the cost-
effectiveness of using fault-proneness prediction models to focus
verification and validation activities such as testing. Because there
exists very little evidence of the economic viability of fault-prone-
ness prediction models (Briand and Wuest, 2002), there is a need
for evaluating and comparing fault-proneness prediction models
not only by considering their prediction accuracy, but also by
assessing the potential cost-effectiveness of applying such models.

To compare the potential cost-effectiveness of alternative pre-
diction models, we need to consider (surrogate) measures of addi-
tional verification cost for the selected, faulty classes. For many
verification activities, such as structural coverage testing or even
simple code inspections, the cost of verification is likely to be
roughly proportional to the size of the class.1 What we want are
models that capture other fault factors in addition to size, so that
the model would select a subset of classes with high fault density.

To build fault-proneness prediction models there are a large
number of modeling techniques to choose from, including standard
statistical techniques such as logistic regression, and data mining
techniques such as decision trees (Witten and Frank, 2005). The
data mining techniques are especially useful since we have little
theory to work with and we want to explore many potential factors
(and their interactions) and compare many alternative models so
as to optimize cost-effectiveness.

Although there are a large number of publications that have
built and evaluated methods for building fault-proneness predic-
tion models, it is not easy to draw practical guidelines from them
in terms of what modeling techniques to use, what data to collect,
and what practical gains to expect. This paper investigates in a sys-
tematic way three practical aspects of the building and evaluation
of fault-proneness prediction models; (i) choice of modeling tech-
niques, (ii) choice of independent variables (sets of measures), and
(iii) choice of evaluation criteria. This assessment is performed by
building a range of fault-proneness prediction models using a
selection of relevant modeling techniques. The models are built
using different sets of independent variables entailing different
data collection costs. This allows us to assess the possible benefits
of collecting certain sets of measures. The resulting models are
then systematically compared and evaluated using a number of
the most popular evaluation criteria such as accuracy, precision
and recall. To assess the potential cost-effectiveness in applying
the models to focus verification activities, we also compare the
models according to a proposed measure of cost-effectiveness
within this particular industrial context.

The remainder of this paper is organized as follows: Section 2
provides an overview of related works, whereas Section 3 presents
our study design. In Section 4 we report our results, comparing
several modeling techniques and sets of measures using a number
of different evaluation criteria. Section 5 discusses what we con-

sider the most important threats to validity, whereas Section 6
concludes and outlines directions for future research.

2. Related work

A literature review of existing studies on building fault-prone-
ness prediction models are given in Arisholm et al. (2008). In this
section we focus on those studies that have attempted to compare
techniques, measures or evaluation criteria to build the best possi-
ble fault-proneness prediction models.

Briand et al. (2002) compared traditional regression techniques
with multivariate adaptive regression splines (MARS) (Friedman,
1991). The MARS model performed slightly better in terms of accu-
racy, completeness and correctness, compared to logistic regres-
sion. Also, the authors did a cost/benefit analysis, which
suggested the MARS model outperformed the model built using lo-
gistic regression. Khoshgoftaar and Seliya (2004) compared seven
models that were built using a variety of tools. The models were
built using different regression and classification trees including
C4.5, CHAID, Sprint-Sliq and different versions of CART. Also in-
cluded in the study were logistic regression and case-based reason-
ing. The techniques were evaluated against each other by
comparing a measure of expected cost of misclassification. The dif-
ferences between the techniques were at best moderate. Van-
decruys et al. (2008) compared Ant Colony Optimization against
well-known techniques like C4.5, support vector machine (SVM),
logistic regression, K-nearest neighbour, RIPPER and majority vote.
In terms of accuracy, C4.5 was the best technique. However, the
differences between the techniques in terms of accuracy, sensitiv-
ity and specificity were moderate. Kanmani et al. (2007) compared
two variants of artificial neural networks against logistic regression
and discriminant analysis. Neural network outperformed the tradi-
tional statistical regression techniques in terms of precision and re-
call. Gondra (2008) assessed the possible benefits of neural
networks versus SVMs to perform simple classification. When con-
sidering fault-proneness as a binary classification problem (i.e.
faulty vs. non-faulty) using a threshold of 0.5, the accuracy was
87.4% when using SVM compared to 72.61% when using neural
networks – suggesting that SVM is a promising technique for clas-
sification within the domain of fault-proneness prediction. Elish
and Elish (2008) compared SVM against eight other modeling tech-
niques, among them Random Forest. The modeling techniques
were evaluated in terms of accuracy, precision, recall and the F-
measure using four data sets from the NASA Metrics Data Program
Repository. All techniques achieved an accuracy ranging from
approximately 0.83 to 0.94. As with the other studies reviewed
here, there were some differences, but no single modeling tech-
nique was significantly better than the others across data sets.
Guo et al. (2004) compared 27 modeling techniques including lo-
gistic regression and 20 techniques available through the WEKA
tool. The study compared the techniques using five different data-
sets from the NASA MDP program, and although the results
showed that Random Forests perform better than many other clas-
sification techniques in terms of accuracy and specificity, the re-
sults were not significant in four of the five data sets. Arisholm
et al. (2007) evaluated the possible cost-effectiveness and classifi-
cation accuracy (precision, recall, ROC) of eight data mining tech-
niques. The results suggested that C4.5 classification trees
performed well, and somewhat better than other techniques such
as SVM and neural networks.

Most existing studies only considered code structural metrics
and only a subset of studies (Arisholm et al., 2007; Khoshgoftaar
and Kehan, 2007; Khoshgoftaar and Seliya, 2003; Kim et al.,
2008; Nagappan and Ball, 2007; Ostrand and Weyuker, 2007; Os-
trand et al., 2005; Ostrand et al., 2007; Weyuker et al., 2007;

1 Depending on the specific verification undertaken on classes predicted as fault
prone, one may want to use a different size measure that would be proportional to the
cost of verification.
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Nagappan and Ball, 2005; Graves et al., 2000) have included other
measures like deltas of structural metrics between subsequent re-
leases, or measures related to fault history and the software devel-
opment process itself (process metrics). Nagappan and Ball (2007,
2005) used code churn together with dependency metrics to pre-
dict fault-prone modules. Code churn is a measure of the amount
of code change within a component over time. Kim et al. (2008)
used deltas from 61 complexity metrics and a selection of process
metrics, and achieved an accuracy ranging from 64% to 92% on
twelve open source applications. Graves et al. (2000) counted the
number of changes done in a module as well as the average age
of the code. Weyuker et al. (2007) constructed a fault-count predic-
tion model using a number of process measures in addition to
structural measures. They accounted for the number of developers
who modified a file during the prior release, and the number of
new developers involved on a particular file. In addition, they
counted the cumulative number of distinct developers who have
modified a file during its lifetime. The model using these process
measures showed only slight improvements compared with a
model using only structural measures. Khoshgoftaar and Seliya
(2003) considered 14 process metrics, such as the number of up-
dates done by designers who had 10 or less total updates in their
entire company career, the number of different designers making
changes to a particular module, and the net increase in lines of
code (LOC) for each module. Khoshgoftaar and Seliya did not study
the impact of the individual measures on fault-proneness, but their
prediction models achieved a balance of Types I and II misclassifi-
cation rates of 25–30%.

In summary, there exist a few studies that have compared a
comprehensive set of data mining techniques for building fault-
proneness prediction models to assess which techniques are more
likely to be accurate in various contexts. Most models were evalu-
ated through different confusion matrix criteria and, as a result, it
is difficult to provide general conclusions. However, it appears that
the differences between modeling techniques might be relatively
small. Most existing studies have used structural measures as can-
didate predictors whereas only a subset have also included other
more expensive measures, such as code churn and process mea-
sures. However, no studies have so far attempted to evaluate the
benefits of including such measures in comparison with models
that contain only structural code measures. In this paper, we as-
sess, in a systematic way, how both the choice of modeling tech-
nique and the selection of different categories of candidate
measures affect the accuracy and cost-effectiveness of the result-
ing prediction models based on a complete set of evaluation crite-
ria. We furthermore assess how the choice of evaluation criteria
affects what is deemed to be the ‘‘best” prediction model.

3. Design of study

When building fault-proneness prediction models, many deci-
sions have to be made regarding the choice of dependent and inde-
pendent variables, modeling technique, evaluation method and
evaluation criteria. At present, no systematic study has been per-
formed to assess the impact of such decisions on the resulting pre-
diction models (Arisholm et al., 2008). This paper compares
alternative fault-proneness prediction models where we systemat-
ically vary three important dimensions of the modeling process:
modeling technique (e.g., C4.5, neural networks, logistic regres-
sion), categories of independent variables (e.g., process measures,
object-oriented code structural measures, code churn measures)
and evaluation criteria (e.g., accuracy, ROC, and cost-effectiveness).
We assess (i) to what extent different data mining techniques af-
fect prediction accuracy and cost-effectiveness, (ii) the effects of
using different sets of measurements (with different data collec-

tion costs) on the accuracy and cost-effectiveness of the fault-
proneness predictions models, and (iii) how our decisions in terms
of selecting the ‘‘best” model would be affected by using the differ-
ent evaluation criteria. This section describes the development
project, study variables, data collection, and model building and
evaluation procedures.

3.1. The development project

The legacy system studied is a Java middleware system called
COS, serving the mobile division in a large telecom company.
COS provides more than 40 client systems with a consistent view
across multiple back-end systems, and has evolved through 22 ma-
jor releases during the past eight years. At any point in time, be-
tween 30 and 60 software engineers were involved in the
project. The core system currently consists of more than 2600 Java
classes amounting to about 148 KSLOC. In addition to this, the sys-
tem consists of a large number of test classes, library classes, and
about 1000 KSLOC of generated code, but this code is not consid-
ered in our study. As the system expanded in size and complexity,
QA engineers felt they needed more sophisticated techniques to fo-
cus verification activities on fault-prone parts of the system. We
used 13 recent releases of this system for model building and eval-
uation. As a first step, the focus was on unit testing in order to
eliminate as many faults as possible early on in the verification
process by applying more stringent test strategies to code pre-
dicted as fault-prone.

3.2. Data collection procedures

Perl scripts were developed to collect file-level change data for
the studied COS releases through the configuration management
system (MKS). In our context, files correspond to Java public clas-
ses. The data model is shown in Fig. 1. Each change is represented
as a change request (CR). The CR is related to a given releaseId and
has a given changeType, defining whether the change is a critical or
non-critical fault correction, a small, intermediate, or large require-
ment change, or a refactoring change. An individual developer can
work on a given CR through a logical work unit called a change
package (CP), for which the developer can check in and out files
in relation to the CR. For a CP, we record the number of CRs that
the responsible developer has worked on prior to opening the gi-
ven CP, and use this information as a surrogate measure of that
person’s coding experience on the COS system. For each Class (file)
modified in a CP, we record the number of lines added and deleted,
as modeled by the association class CP_Class. Data about each file
in the COS system is collected for each release, and is identified
using a unique MKSId, which ensures that the change history of a
class can be traced even in cases where it changes location (pack-
age) from one release to the next. This traceability turned out to be
crucial in our case because we wanted to keep track of historic
changes and faults for each class, and there were quite a few refac-
toring changes in the project that would result in loss of historic
data if we did not use the MKDId to uniquely identify each class.
Finally, for each release, a code parser (JHawk) is executed to col-
lect structural measures for the class, which are combined with
the MKS change information. Independent (change, process, and
code structure measurements) and dependent variables (Faults in
the next release) were computed on the basis of the data model
presented in Fig. 1.

3.3. Dependent variable

The dependent variable in our analysis was the occurrences of
corrections in classes of a specific release which are due to field
error reports. Since our main current objective was to facilitate
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unit testing and inspections, the class was a logical unit of anal-
ysis. Given that our aim was to capture the fault-proneness of a
class in a specific release n, and that typically a fault correction
involved several classes, we decided to count the number of dis-
tinct fault corrections that was required in each class for develop-
ing release n + 1. Furthermore, in this project, only a very small
portion of classes contained more than one fault for a given re-
lease, so class fault-proneness in release n is therefore treated
as a classification problem and is estimated as the probability
that a given class will undergo one or more fault corrections in
release n + 1.

3.4. Explanatory variables

Though many studies on predicting fault-prone classes on the
basis of the structural properties of object-oriented systems have
been reported (Arisholm et al., 2008), a specificity of the study pre-
sented here is the fact that we needed to predict fault-proneness
for a changing legacy system. Thus, in addition to structural mea-
sures, similar to other studies (Arisholm et al., 2007; Khoshgoftaar
and Kehan, 2007; Khoshgoftaar and Seliya, 2003; Kim et al., 2008;
Nagappan and Ball, 2007, 2005; Ostrand and Weyuker, 2007; Os-
trand et al., 2005, 2007; Weyuker et al., 2007; Graves et al.,
2000) we also use data on changes and fault corrections for specific
releases and their impact on the code. In our context, past change
and fault data could be useful to help predicting fault-proneness by
identifying what subset of classes have shown to be inherently
fault and change prone in the past. Our explanatory variables can
be classified into three categories:

! Object-oriented (OO) code measures, i.e., measures of structural
properties derived from the source code. In this study, the
JHawk tool was used to collect such measures, as shown in Table
1.

! Delta measures: These measures capture the amount of change
– sometimes called churn – in a file between two successive
releases. In this study, the delta measures were computed from
the JHawk measures given in Table 1.

! Process measures: In this study, the process measures were col-
lected from the configuration management system (MKS), and
included a surrogate measure of the experience of each devel-
oper performing each change, the number of developers that
have made changes to a file, the number of faults in previous
release(s) and simpler measures such as the accumulated num-
ber of lines added and/or removed in a given release.

The fundamental hypothesis underlying our work is that the
fault-proneness of classes in a legacy, object-oriented system can
be affected by these measures. Furthermore, it is also likely that
these factors interact in the way they affect fault-proneness. For
example, changes may be more fault-prone on larger, more com-
plex classes. The data mining techniques used to build the models
will account for such interactions.

The three categories of measures (OO, Delta and Process) incur
different costs in terms of data collection effort and process instru-
mentation requirements. OO measures can be collected from sim-
ple code snapshots, Deltas require that different versions of the
system be available, whereas Process measures require that devel-
opers record detailed information about their work (e.g., changes
and fault corrections, developer info, time of changes, whether a
change passed certain test procedures) in a systematic and consis-
tent way in configuration management or change management
systems. To assess the relative importance of the individual catego-
ries of explanatory variables (OO, Delta and Process), they were
combined to construct seven different candidate metric sets (OO,
Delta, Process, OO + Delta, Process + OO, Process + Delta, Total). In
Section 4.2 we will show how the many different measures of
accuracy and cost-effectiveness of the fault-proneness prediction
models are affected by the choice of metric set. In this way, we will
not only be able to compare individual categories of measures (e.g.,
Process vs. OO) but also assess the potential impact of combining
measures (e.g., Process + OO) with regards to a comprehensive set
of evaluation criteria (Section 3.7). Based on such analyses, we will
be in a better position to determine whether the added cost of col-
lecting, for example, process measures will result in payoffs in
terms of better fault-proneness prediction models.

1

1..*

0..*0..'

CR

releaseId:string
changeType:string
description:string
openDate:int
closeDate:int
numberDevInvolved:int
numberCps:int
numberFilesChanged:int
numberTestFailed:int
<additional info related to
branching and merging> CP_Class

nLinesIn:int
nLinesOut:int

CP

numberPastCR:int
openDate: date
openTime: time
closeDate: date
closeTime: time

Class

MKSId:string
packageName:string
fileName:string
releaseId:string
<JHAWK data>

Fig. 1. Data model.
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3.5. Model building techniques

A detailed description of many of the most popular techniques
for building fault-proneness prediction models can be found in
Arisholm et al. (2008). In this study we compared one classification
tree algorithm (C4.5) as it is the most studied in its category, the
most recent coverage rule algorithm (PART) which has shown to
outperform older algorithms such as Ripper (Witten and Frank,
2005), Logistic Regression as a standard statistical technique for
classification, Back-propagation neural networks as it is a widely
used technique in many fields, and SVM.

For C4.5, we also applied the AdaBoost and Decorate metalear-
ners (Witten and Frank, 2005), because decision trees are inher-
ently unstable due to the way their learning algorithms work,
and thus we wanted to assess the impact of using metalearners
on C4.5. We included Decorate in addition to Adaboost because it
is supposed to outperform boosting on small training sets and riv-
als it on larger ones.

Furthermore, as the outputs of leaves and rules are directly
comparable, we combined C4.5 and PART predictions by selecting,

for each class instance to predict, the rule or leaf that yields a fault
probability distribution with the lowest entropy (i.e., the fault
probability the furthest from 0.5, in either direction). This allows
us to use whatever technique works best for each prediction
instance.

For each metric set, we also used Correlation-based Feature
Selection (CFS) (Hall, 2000) to pre-select variables, as further de-
scribed in Arisholm et al. (2008), to assess the effect of such vari-
able pre-selection on the prediction model performance.

All of the above techniques were applied using the WEKA tool
and are described in Witten and Frank (2005). An attempt was
made to optimize the parameters of various techniques, but in
most cases the impact of varying these parameters was small
and we resorted to using the WEKA default parameters.

3.6. Training and evaluation datasets

To build and evaluate the prediction models, class-level struc-
tural and change/fault data from 13 recent releases of COS were
used. The data was divided into four separate subsets, as follows.

Table 1
Summary of the explanatory variables.

Variable Description Source

OO
No_Methods|NOQ|NOC Number of [implemented|query | command] methods in the class JHawk
LCOM Lack of cohesion of methods JHawk
TCC|MAXCC|AVCC [Total|Max|Avg] cyclomatic complexity in the class JHawk
NOS | UWCS Class size in [number of Java statements | number of attributes + number of methods] JHawk
HEFF Halstead effort for this class JHawk
EXT/LOC Number of [external | local] methods called by this class JHawk
HIER Number of methods called that are in the class hierarchy for this class JHawk
INST Number of instance variables JHawk
MOD Number of modifiers for this class declaration JHawk
INTR Number of interfaces implemented JHawk
PACK Number of packages imported JHawk
RFC Total response for the class JHawk
MPC Message passing coupling JHawk
FIN The sum of the number of unique methods that call the methods in the class JHawk
FOUT Number of distinct non-inheritance related classes on which the class depends JHawk
R–R|S–R [Reuse|Specialization] Ratio for this class JHawk
NSUP|NSUB Number of [super|sub] classes JHawk
MI|MINC Maintainability Index for this class[including|not including] comments JHawk
Delta

For each OO measure X above:
delta_<X> The difference in each OO measure X between two successive releases Calculated
Process
[nm1|nm2|nm3]_CLL_CR The number of large requirement changes for this class in release [n " 1|n " 2|n " 3] MKS
[nm1|nm2|nm3]_CFL_CR The number of medium requirement changes for this class in release [n " 1|n " 2|n " 3] MKS
[nm1|nm2|nm3]_CKL_CR The number of small requirement changes for this class in release [n " 1|n " 2|n " 3] MKS
[nm1|nm2|nm3]_M_CR The number of refactoring changes for this class in release [n " 1|n " 2|n " 3] MKS
[nm1|nm2|nm3]_CE_CR The number of critical fault corrections for this class in release [n " 1|n " 2|n " 3] MKS
[nm1|nm2|nm3]_E_CR The number of noncritical fault corrections for this class in release [n " 1|n " 2|n " 3] MKS
numberCRs Number of CRs in which this class was changed MKS
numberCps Total number of CPs in all CRs in which this class was changed MKS
numberCpsForClass Number of CPs that changed the class MKS
numberFilesChanged Number of classes changed across all CRs in which this class was changed MKS
numberDevInvolved Number of developers involved across all CRs in which this class was changed MKS
numberTestFailed Total number of system test failures across all CRs in which this class was changed MKS
numberPastCr Total developer experience given by the accumulated number of prior changes MKS
nLinesIn Lines of code added to this class (across all CPs that changed the class) MKS
nLinesOut Lines of code deleted from this class (across all CPs that changed the class) MKS

For CRs of type Y = {CLL, CFL, CKL, M, CE, E}:
<Y>_CR Same def as numberCRs but only including the subset of CR’s of type Y MKS
<Y>_CPs Same def as numberCpsForClass but only including the subset of CR’s of type Y MKS
<Y>numberCps Same def as numberCps but only including the subset of CR’s of type Y MKS
<Y>numberFilesChanged Same def as numberFilesChanged but only including the subset of CR’s of type Y MKS
<Y>numberDevInvolved Same def as numberDevInvolved but only including the subset of CR’s of type Y MKS
<Y>numberTestFailed Same def as numberTestFailed but only including the subset of CR’s of type Y MKS
<Y>numberPastCr Same def as numberPastCr but only including the subset of CR’s of type Y MKS
<Y>nLinesIn Same def as nLinesIn but only including the subset of CR’s of type Y MKS
<Y>nLinesOut Same def as nLinesOut but only including the subset of CR’s of type Y MKS
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The data from the 11 first releases was used to form two datasets,
respectively a training set to build the model and a test set to eval-
uate the predictions versus actual class faults. More specifically,
following the default setting of most tools, two thirds of the data
(16004 instances) were randomly selected as the Training dataset,
whereas the remaining one third (8002 instances) formed the Ex-
cluded test dataset. Our data set was large enough to follow this
procedure to build and evaluate the model without resorting to
cross-validation, which is much more computationally intensive.
Also, the random selection of the training set across 11 releases re-
duced the chances for the prediction model to be overly influenced
by peculiarities of any given release. Note that in the training set,
there were only 303 instances representing faulty classes (that is,
the class had at least one fault correction in the next release). This
is due to the fact that, in a typical release, a small percentage of
classes turn out to be faulty. Thus, to facilitate the construction
of unbiased models, we created a balanced subset (606 rows) from
the complete training set, consisting of the 303 faulty classes and a
random selection of 303 rows representing non-faulty classes. The
proportions of faulty and correct classes were therefore exactly
50% in the training set and the probability decision threshold for
classification into faulty and correct classes for the test sets can
therefore be set to 0.5. Nearly all the techniques we used per-
formed better (sometimes very significantly) when run on this bal-
anced dataset. Consequently, the models reported in this paper
were built using this subset of 606 instances.

Finally, the two most recent of the 13 selected releases formed
the third and forth distinct datasets, hereafter referred to as the
COS 20 and COS 21 datasets, which we also used as test sets. The
Excluded test set allows us to estimate the accuracy of the model
on the current (release 19) and past releases whereas the COS 20
and COS 21 test sets indicate accuracy on future releases. This will
give us insights on any decrease in accuracy, if any, when predict-
ing the future. The results given in Section 4 were obtained using
only the test set (Excluded) and the two evaluation sets (COS 20
and COS 21), i.e., the training set was not included. By not including
the training set, the results can be interpreted as what one could
expect when applying the models on a new set of classes or a
new system version.

3.7. Model evaluation criteria

Having described our model evaluation procedure, we now
need to explain what model accuracy criteria we used. The alterna-
tive prediction models were assessed on the basis of all of the fol-
lowing criteria in order to (1) provide a comprehensive comparison
of the models and (2) to assess how the choice of criteria affects the
ranking of models.

First, we used several popular confusion matrix criteria (Witten
and Frank, 2005), including accuracy, precision and recall, and Type
I/II misclassification rates. Each of these measures can be defined on
the basis of the confusionmatrix given in Fig. 2. For example, in our
context, accuracy is the percentage of classes correctly classified as
either faulty or non-faulty ((TP + TN)/N). Precision is the percent-
age of classes classified as faulty that are actually faulty (TP/

(TP + FP)) and is a measure of how effective we are at identifying
where faults are located. Recall is the percentage of faulty classes
that are predicted as faulty (TP/(TP + FN)) and is a measure of
how many faulty classes we are likely to miss if we use the predic-
tion model. Type I/II misclassification rates are the ratio of Type I
errors (FP/N) and Type II errors (FN/N), respectively, as proposed
in Khoshgoftaar and Allen (2001).

All the measures described up to this point are evaluation crite-
ria for classifiers. That is, in the context of fault-proneness models,
these measures assess the accuracy (or inaccuracy) of a particular
model with regards to fault classification. These measures require
that one predefines a cut-off value for predicted probabilities, and
although these measures are useful, the intent of fault-proneness
prediction models is not only to classify instances. For example,
if the prediction model was to be used to focus testing of fault-
prone components, we would be more interested in the ranking
of the components, and use the ranking to select a certain subset
of components to test. Consequently, it would be preferable to be
able to assess how well a particular model is at ranking instances
in a correct manner. Further, it would be preferable to evaluate
the performance of a prediction model without first having to
choose a specific cut-off value. This is the objective of the receiver
operating characteristic (ROC) curve. The ROC curve depicts the
benefits of using the model (true positives) versus the costs of
using the model (false positives) at different thresholds. The ROC
curve allows one to assess performance of a prediction model in
general – regardless of any particular cut-off value. The area under
the ROC curve can be used as a descriptive statistic, and is the esti-
mated probability that a randomly selected positive instance will
be assigned a higher predicted p by the prediction model than an-
other randomly selected negative instance (Hanley and McNeil,
1982). Hence, this statistic quantifies a model’s ability to correctly
rank instances. The larger the area under the ROC curve (the ROC
area) the better the model. A perfect prediction model, that classi-
fies all instances correctly, would have a ROC area of 100%.

The problemwith the general confusion matrix criteria and ROC
is that they are designed to apply to all classification problems and
they do not clearly and directly relate to the cost-effectiveness of
using class fault-proneness prediction models in our or any other
given application context. Assuming a class is predicted as very
likely to be faulty, one would take corrective action by investing
additional effort to inspect and test the class. In our context, we
consider the cost of such activities to be roughly proportional to
the size of the class. For example, regarding control flow testing,
many studies show that cyclomatic complexity (number of inde-
pendent control flow paths) is strongly correlated with code size
(Nagappan and Ball, 2005). Though this remains to be empirically
investigated, this suggests that control flow testing over a large
number of classes should be roughly proportional to the size of
those classes.

Given the above assumption, if we are in a situation where the
only thing a prediction model does is to model the fact that the
number of faults is proportional to the size of the class, we are
not likely to gain much from such a model. What we want are
models that capture other fault factors in addition to size. There-
fore, to assess cost-effectiveness, we compare two curves as exem-
plified in Fig. 3. Classes are first ordered from high to low fault
probabilities. When a model predicts the same probability for
two classes, we order them further according to size so that larger
classes are selected last. The solid curve represents the actual per-
centage of faults given a percentage of lines of code of the classes
selected to focus verification according to the abovementioned
ranking procedure (referred to as the model cost-effectiveness
(CE) curve). The dotted line represents a line of slope 1 where
the percentage of faults would be identical to the percentage of
lines of code (% NOS) included in classes selected to focus verifica-

Actual 

Positive Negative 

Predicted 

by model 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

Fig. 2. The confusion matrix.

E. Arisholm et al. / The Journal of Systems and Software 83 (2010) 2–17 7



Author's personal copy

tion. This line is what one would obtain, on average, if randomly
ranking classes and is therefore a baseline of comparison (referred
to as the baseline). Based on these definitions and the assumptions
above, the overall cost-effectiveness of fault predictive models
would be proportional to the surface area between the CE curve
and the baseline. This is practical as such a surface area is a unique
score according to which we can compare models in terms of cost-
effectiveness regardless of a specific, possibly unknown, NOS per-
centage to be verified. If the model yields a percentage of faults
roughly identical to the percentage of lines of code, then no gain
is to be expected from using such a fault-proneness model when
compared to chance alone. The exact surface area to consider
may depend on a realistic, maximum percentage of lines of code
that is expected to be covered by the extra verification activities.
For example, if only 5% of the source code is the maximum target
considered feasible for extra testing, only the surface area below
the 5% threshold should be considered.

For a given release, it is impossible to determine beforehand
what would be the surface area of an optimal model. For each re-
lease, we compute it by ordering classes as follows: (1) we place
all faulty classes first and then order them so that larger classes
are tested last, and (2) we place fault-free classes afterwards also
in increasing order of size. This procedure is a way to maximize
the surface area for a given release and set of faulty classes, assum-
ing the future can be perfectly predicted. Once computed, we can
compare, for a specific NOS percentage, the maximum percentage
of faults that could be obtained with an optimal model and use this
as an upper bound to further assess a model, as shown by the
dashed line in Fig. 3.

To compare CE areas we need to account for the fact that the
optimal model might differ across test sets. Thus, we compute a
normalized cost-effectiveness measure as

CEp ¼ ðCEpðmodelÞ " CEpðbaselineÞÞ=ðCEpðoptimalÞ
" CEpðbaselineÞÞ

where CEp(x) is the area under the curve x (baseline, model, or opti-
mal) for a given p percentage of NOS. This measure can be inter-
preted as a proportion of the optimal cost-effectiveness, a
measure which is comparable across evaluation datasets. Depend-
ing on the amount of resources available for testing, the percentage
of NOS to be tested will vary, so we compute CE for respectively 1%,
5% and 20% of the NOS (CE0.01, CE0.05, CE0.20). Computing a CE area is
also a way to compare models without any specific percentage of
classes in mind and based on a unique score. This is why we also
choose to include the cost-effectiveness at 100% NOS (CE1.00).

Admittedly such CE values may not be easy to interpret but their
purpose is to facilitate the comparison among models based on a
measure that should be directly proportional to cost-effectiveness
in the context of focusing verification and validation efforts.

3.8. Model assessment procedure

We built a total of 112 different fault-proneness models on the
basis of our training dataset, i.e., individual prediction models for
each of the seven metric sets presented in Section 3.4 (OO, Delta,
Process, OO + Delta, Process + OO, Process + Delta, Total) with and
without CFS, using each of the eight candidate mining techniques
presented in Section 3.5 (Neural network, C4.5, Decorate C4.5, Boost
C4.5, SVM, Logistic regression, PART, C4.5 + PART). Each of the 112
models was evaluated on the three distinct evaluation datasets
presented in Section 3.6 (Excluded, COS 20, COS 21) and using the
evaluation criteria presented in Section 3.7 (Accuracy, Precision, Re-
call, Type I/II misclassification rate, ROC, CE0.01, CE0.05, CE0.20, CE1.00).

To assess the magnitude of the differences between the model
building techniques and the metric sets, we report a number of sta-
tistics including the mean, the minimum, and maximum of each
criterion. As it is difficult to make any assumptions about the
underlying distribution for many of the evaluation criteria we
use non-parametric tests to assess the significance of the differ-
ences. More specifically, for each evaluation criterion, we report
p-values from a matched pair Wilcoxon’s signed rank test for

! all pairs of techniques aggregated across metric sets, and
! all pairs of metric sets aggregated across techniques.

Given the large number of tests being performed, we set the le-
vel of significance to a = 0.001. In practice it is useful to not only
know the p-values, but also the size of the effect. Thus, in addition
to the Wilcoxon p-value on the difference between respectively all
pairs of techniques and all pairs of metric sets, we also report effect
sizes on these differences using Cohen’s d (Cohen, 1988).

4. Results

This section reports the results from the assessment procedure
that was summarized in Section 3.8. As mentioned in Sections 3.4
and 3.5, a number of different models were built; both using a
complete set of independent variables and using a CFS-reduced
version of the same metric sets. Surprisingly, the performance of
the models that were built using the reduced set of metrics were
consistently but marginally poorer than the complete set of met-
rics across most of the evaluation criteria considered. Conse-
quently, to simplify the already quite complex analyses, and
since the results would anyway be very similar, we do not provide
separate results for respectively the CFS-reduced models and the
non-reduced models, but instead combine the two in one analysis.

First, we give an evaluation of the metric sets and modeling
techniques using ROC and CE as we consider these criteria the most
appropriate to evaluate prediction models in our context. Then, we
show the results when considering a selection of the most popular
confusion matrix criteria: accuracy, precision and recall, and Type
I- and Type II-misclassification rates. At the end of this section we
summarize and discuss the results.

The detailed results are reported in tables that form the basis
for our discussion in the following subsections. The tables compare
metric sets and modeling techniques against one another in terms
of the different evaluation criteria. In the tables we report the
mean, standard deviation, minimum and maximum value for each
metric set and technique. These descriptive statistics are shown in
the leftmost columns of the tables – next to the name of the metric

Fig. 3. Surrogate measure of cost-effectiveness.
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set or modeling technique. In the right part of the tables we report
the difference between each combination of metric set/modeling
technique in terms of effect size and theWilcoxon test. The latter
appears in the upper right side of the diagonal, while the effect size
appears in the lower left side of the diagonal. The effect size is
shown in bold face if the corresponding Wilcoxon test is significant
at a = 0.001. The results for metric sets and techniques are sorted
according to their mean values in each table; either descending
or ascending depending on whether higher or lower values are bet-
ter. Finally, the technique and metric set with the highest average
rank when considering the ROC area and the four CE measures in
combination are included as the ‘‘best technique” and ‘‘best metric
set”, respectively. The average results for the best technique are in-
cluded in the tables that compare the metric sets, whereas the
average results for the best metric set is included in the tables that
compare the techniques.

4.1. Evaluation of modeling techniques using ROC and CE

Table 2 shows that the differences among techniques in terms
of mean ROC area are in most cases very small, or at least too small
to be of practical significance. If we were to use the median as a

ranking criterion instead, the ranking of the techniques would be
similar. The average ROC area ranges from 0.70 for C4.5 to above
0.75 using Decorate C4.5 and Neural network. That is, the probabil-
ity that a faulty class will be assigned a higher fault probability
than a non-faulty one is on average above 0.7, for all modeling
techniques. Decorate C4.5 is the data mining technique which
has the lowest standard deviation, and thus yields the most stable
results regardless of metric set; the minimum is right below 0.6
while the maximum is 0.9, and the standard deviation is 0.08.
C4.5 and PART and the combination of the two are perhaps the
techniques that yield the models that are the easiest to interpret,
as further explained in Arisholm et al. (2008). At the same time,
C4.5 and PART are also the ones that yield the smallest ROC area
among the techniques assessed in this study; the mean ROC area
for C4.5 and PART is significantly smaller than the mean ROC area
of the two best techniques. Although C4.5 has the lowest average
ROC area overall, the ROC area when using C4.5 in combination
with the Process metrics is similar to the mean ROC area using
Neural network when not considering any particular metric set,
suggesting that C4.5 is in fact a technique that may give fairly good
results given that the optimal set of metrics (Process) is used. Con-
sidering the ease of interpretation of decision trees, one might

Table 2
Area under ROC curve for the modeling techniques.

Mean Std. Dev. Min Max Best metricset
(Process)

Neural
network

Decorate C4.5 SVM Logistic
regression

Boost
C4.5

PART C4.5 + PART C4.5

Effectsize (Wilcoxon (a = 0.001))
Neural network 0.756 0.091 0.543 0.935 0.826 – 0.902 0.811 0.045 0.036 0.001 0.000 0.000
Decorate C4.5 0.752 0.077 0.598 0.899 0.779 0.048 – 0.515 0.109 0.006 0.000 0.000 0.000
SVM 0.749 0.112 0.453 0.942 0.724 0.072 0.034 – 0.556 0.164 0.011 0.004 0.001
Logistic regression 0.737 0.097 0.454 0.919 0.722 0.205 0.174 0.114 – 0.551 0.026 0.013 0.009
Boost C4.5 0.732 0.085 0.510 0.856 0.806 0.279 0.252 0.173 0.057 – 0.006 0.000 0.005
PART 0.708 0.086 0.468 0.861 0.776 0.548 0.543 0.412 0.317 0.280 – 0.661 0.467
C4.5 + PART 0.703 0.087 0.468 0.862 0.778 0.599 0.599 0.459 0.370 0.336 0.059 – 0.579
C4.5 0.699 0.091 0.470 0.873 0.762 0.629 0.630 0.489 0.403 0.372 0.099 0.041 –

Table 3
Cost-effectiveness for modeling techniques at p = 0.01 NOS.

Mean Std. Dev. Min Max Best metricset
(Process)

Logistic
regression

Neural
network

Decorate
C4.5

Boost
C4.5

C4.5 +
PART

PART C4.5 SVM

Effectsize (Wilcoxon (a = 0.001))
Logistic regression 0.137 0.161 "0.043 0.665 0.185 – 0.012 0.024 0.052 0.074 0.025 0.012 0.007
Neural network 0.104 0.197 "0.043 0.807 0.142 0.186 – 0.421 0.724 0.848 0.700 0.661 0.292
Decorate C4.5 0.101 0.230 "0.043 0.870 0.339 0.179 0.010 – 0.445 0.347 0.130 0.833 0.427
Boost C4.5 0.099 0.161 "0.043 0.556 0.254 0.236 0.026 0.013 – 0.742 0.821 0.715 0.361
C4.5 + PART 0.090 0.129 "0.043 0.371 0.160 0.319 0.079 0.059 0.058 – 0.853 0.505 0.510
PART 0.087 0.120 "0.043 0.371 0.139 0.353 0.103 0.080 0.085 0.030 – 0.618 0.349
C4.5 0.080 0.135 "0.043 0.371 0.152 0.383 0.139 0.114 0.126 0.079 0.052 – 0.873
SVM 0.079 0.162 "0.043 0.689 0.153 0.358 0.135 0.112 0.122 0.077 0.053 0.006 –

Table 4
Cost-effectiveness for modeling techniques at p = 0.05 NOS.

Mean Std. Dev. Min Max Best metricset
(Process)

Logistic
regression

Boost
C4.5

PART Neural
network

C4.5 +
PART

Decorate
C4.5

C4.5 SVM

Effectsize (Wilcoxon (a = 0.001))
Logistic regression 0.099 0.082 "0.029 0.255 0.160 – 0.055 0.095 0.003 0.130 0.029 0.001 0.000
Boost C4.5 0.076 0.088 "0.037 0.301 0.143 0.272 – 0.878 0.763 0.954 0.584 0.230 0.134
PART 0.074 0.070 "0.037 0.202 0.096 0.333 0.027 – 0.688 0.855 0.274 0.124 0.113
Neural network 0.073 0.085 "0.035 0.263 0.134 0.309 0.029 0.004 – 0.897 0.456 0.225 0.027
C4.5 + PART 0.070 0.085 "0.037 0.239 0.127 0.347 0.066 0.045 0.038 – 0.449 0.138 0.208
Decorate C4.5 0.062 0.085 "0.037 0.294 0.174 0.443 0.160 0.150 0.134 0.097 – 0.518 0.230
C4.5 0.052 0.072 "0.037 0.184 0.097 0.607 0.293 0.302 0.270 0.228 0.302 – 0.924
SVM 0.051 0.083 "0.035 0.220 0.113 0.583 0.291 0.296 0.268 0.229 0.131 0.017 –
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choose this technique if the goal is not only to predict fault-prone-
ness, but also to interpret the model and explain it to practitioners.
If the results from using C4.5 are not sufficient, Adaboost can be
applied to further improve the model, as the combination of C4.5
and boosting is the technique that yields the best overall ranking
across all evaluation criteria.

In Tables 3–6 the data mining techniques are compared using
the surrogate measure of cost-effectiveness described in Section
3.7. The difference in average cost-effectiveness between the most
and least cost-effective techniques ranges from 0.04 to 0.08 per-
centage points depending on which threshold p is used. Although
there is to some degree a significant difference between the ex-
tremes, the differences are negligible considering the uncertainty
in the data. Using the optimal set of measures (Process), all tech-
niques yield a cost-effectiveness of approximately 30% of the opti-
mal model at p = 0.20 NOS. Although there is still room for
improvement, this is more than three times as cost-effective com-
pared to a model based on random selection.

4.2. Evaluation of metric sets using ROC and CE

As shown in Table 7, the differences in average ROC area be-
tween the metric sets (across techniques) are moderate. The aver-
age ROC area ranges from 0.65 for Deltas up to 0.77 when using the
Process metric set. The Delta metric set is significantly worse than
the other combinations of metrics. The ROC area for all but the Del-
ta set is above 0.7.

Though the smallest ROC area (0.45) is obtained when using the
Process metrics,2 this set of metrics is at the same time best in terms
of mean and maximum ROC area. Compared to the Process metrics
alone, there seems to be no immediate gain by combining them with
the OO metrics. However, as can be seen from Table 7, by adding the
OO metrics, the minimum ROC area is lifted above 0.6, and the stan-
dard deviation is lower.

If we turn to cost-effectiveness, the results for the metric sets
are quite different. In Tables 8–11 we compare the metric sets in
terms of cost-effectiveness.

Looking back at (Table 7), we can see that the OO metrics are on
par with the Process metrics when considering the ROC area. How-
ever from Tables 8–11, we observe that in terms of cost-effective-
ness the difference between these two sets of metrics is much
larger. At p = 0.20 NOS (Table 10), the cost-effectiveness using
OO metrics are not even 1% of the optimal model, while the cost-
effectiveness by using the Process metrics alone are one third of
the optimal model, and over three times as cost-effective than
the baseline (random model).

As explained in Section 3.8, a number of models were built by
using different data mining techniques. Because three separate test
sets were applied to the each of these prediction models, we ob-
tained a fairly large number of observations for each metric set.
These samples form distributions which we can compare. Fig. 4 de-
picts the distribution in cost-effectiveness for the prediction mod-
els built and evaluated using the Process metrics and the OO
metrics, respectively. The plot shows the median cost-effectiveness
for each group of prediction models. In addition to the median
shown as a solid line, the area between the 25 and 75 percentile
is shaded. This visualization can be interpreted as simplified box-
plots of the cost-effectiveness when using the two metric sets at
discrete levels of NOS. As can be seen from the figure, the distribu-
tion in cost-effectiveness using the process metrics is far from the
baseline, and nearly not overlapping with the corresponding distri-
bution obtained from using the OO metrics. Looking at the plot for
the process metrics, we observe that the 25 percentile for the pro-
cess metrics are close to 50% Total faults at CE0.20. This shows that
among the models using the process metrics alone, a majority of
them (3/4) located more than 50% of the faults in 20% of the most
fault-prone classes as predicted by the model. Further, the 75 per-
centile at CE0.20 for the process metrics is at 70% Total faults, indi-
cating that 25% of the most cost-effective models in fact
identified over 70% of the faults in the 20% most fault-prone clas-
ses. This is comparable to the results obtained by Ostrand and
Weyuker (2007) and Ostrand et al. (2007, 2005).

Table 5
Cost-effectiveness for modeling techniques at p = 0.20 NOS.

Mean Std. Dev. Min Max Best metricset
(Process)

Boost
C4.5

PART Decorate
C4.5

Logistic
regression

C4.5 +
PART

Neural
network

C4.5 SVM

Effectsize (Wilcoxon (a = 0.001))
Boost C4.5 0.168 0.132 "0.061 0.389 0.289 – 0.956 0.576 0.137 0.717 0.010 0.046 0.017
PART 0.162 0.140 "0.078 0.382 0.302 0.051 – 0.494 0.326 0.463 0.093 0.031 0.068
Decorate C4.5 0.156 0.119 "0.052 0.377 0.300 0.096 0.040 – 0.936 0.897 0.072 0.186 0.021
Logistic regression 0.155 0.154 "0.111 0.458 0.274 0.090 0.041 0.007 – 0.763 0.002 0.464 0.064
C4.5 + PART 0.152 0.148 "0.079 0.423 0.326 0.119 0.068 0.035 0.025 – 0.199 0.063 0.213
Neural network 0.130 0.150 "0.097 0.524 0.286 0.274 0.219 0.196 0.169 0.148 – 0.735 0.518
C4.5 0.129 0.139 "0.092 0.398 0.273 0.294 0.237 0.215 0.183 0.162 0.009 – 0.745
SVM 0.123 0.152 "0.090 0.511 0.230 0.316 0.261 0.241 0.209 0.189 0.042 0.035 –

Table 6
Cost-effectiveness for modeling techniques at p = 1.0 NOS.

Mean Std. Dev. Min Max Best metricset
(Process)

Boost
C4.5

Decorate
C4.5

Neural
network

Logistic
regression

PART SVM C4.5 C4.5 +
PART

Effectsize (Wilcoxon (a = 0.001))
Boost C4.5 0.272 0.208 "0.259 0.607 0.536 – 0.320 0.049 0.037 0.037 0.033 0.000 0.001
Decorate C4.5 0.259 0.236 "0.294 0.650 0.526 0.062 – 0.083 0.051 0.098 0.005 0.007 0.019
Neural network 0.227 0.235 "0.249 0.720 0.535 0.205 0.135 – 0.441 0.839 0.487 0.985 0.584
Logistic regression 0.217 0.247 "0.262 0.674 0.362 0.241 0.171 0.040 – 0.849 0.130 0.907 0.735
PART 0.213 0.243 "0.216 0.656 0.499 0.262 0.191 0.058 0.017 – 0.681 0.441 0.208
SVM 0.200 0.281 "0.331 0.742 0.342 0.292 0.225 0.103 0.064 0.048 – 0.745 0.839
C4.5 0.196 0.252 "0.202 0.636 0.515 0.333 0.259 0.129 0.087 0.071 0.018 – 0.811
C4.5 + PART 0.192 0.237 "0.214 0.654 0.510 0.359 0.281 0.147 0.103 0.086 0.031 0.013 –

2 It is worth noting that all ROC areas below 0.5 were obtained using the CFS-
reduced data sets.
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Table 8
Cost-effectiveness for the metric sets at p = 0.01 NOS.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process Process + Delta Process + OO Total Delta OO OO + Delta

Wilcoxon (a = 0.001)
Process 0.190 0.209 "0.043 0.775 0.254 – 0.402 0.030 0.078 0.000 0.000 0.000
Process + Delta 0.175 0.212 "0.043 0.870 0.157 0.072 – 0.279 0.279 0.002 0.000 0.000
Process + OO 0.123 0.151 "0.043 0.511 0.129 0.367 0.281 – 0.630 0.004 0.000 0.000
Total 0.116 0.176 "0.043 0.689 0.109 0.388 0.307 0.048 – 0.068 0.000 0.000
Delta 0.049 0.088 "0.043 0.360 0.008 0.879 0.774 0.597 0.475 – 0.263 0.000
OO 0.025 0.071 "0.043 0.208 0.009 1.061 0.950 0.832 0.676 0.306 – 0.017
OO + Delta 0.001 0.070 "0.043 0.362 0.025 1.215 1.102 1.036 0.856 0.605 0.335 –

Table 9
Cost-effectiveness for the metric sets at p = 0.05 NOS.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process Process + Delta Total Delta Process + OO OO + Delta OO

Effectsize (Wilcoxon (a = 0.001))
Process 0.130 0.075 "0.029 0.301 0.143 – 0.227 0.001 0.000 0.000 0.000 0.000
Process + Delta 0.116 0.079 "0.027 0.289 0.117 0.185 – 0.019 0.001 0.004 0.000 0.000
Total 0.083 0.085 "0.037 0.255 0.105 0.590 0.404 – 0.479 0.177 0.000 0.000
Delta 0.071 0.070 "0.026 0.201 0.027 0.817 0.606 0.156 – 1.000 0.000 0.000
Process + OO 0.071 0.081 "0.037 0.258 0.102 0.761 0.566 0.147 0.001 – 0.000 0.000
OO + Delta 0.009 0.044 "0.037 0.163 0.035 1.957 1.669 1.087 1.048 0.938 – 0.939
OO 0.006 0.035 "0.037 0.101 0.000 2.121 1.810 1.192 1.177 1.042 0.096 –

Table 7
Area under ROC curve for the metric sets.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process Process + OO Total Process + Delta OO + Delta OO Delta

Effectsize (Wilcoxon (a = 0.001))
Process 0.772 0.097 0.453 0.942 0.806 – 0.968 0.852 0.034 0.041 0.004 0.000
Process + OO 0.768 0.072 0.608 0.915 0.763 0.041 – 0.438 0.004 0.000 0.000 0.000
Total 0.759 0.089 0.546 0.884 0.761 0.132 0.108 – 0.011 0.000 0.000 0.000
Process + Delta 0.736 0.086 0.510 0.929 0.703 0.387 0.402 0.264 – 0.880 0.103 0.000
OO + Delta 0.720 0.080 0.562 0.840 0.736 0.578 0.627 0.460 0.192 – 0.003 0.000
OO 0.702 0.085 0.532 0.849 0.690 0.761 0.834 0.654 0.398 0.220 – 0.001
Delta 0.648 0.079 0.468 0.821 0.665 1.397 1.584 1.317 1.069 0.910 0.659 –

Table 10
Cost-effectiveness for the metric sets at p = 0.20 NOS.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process Process + Delta Delta Total Process + OO OO + Delta OO

Effectsize (Wilcoxon (a = 0.001))
Process 0.285 0.088 0.102 0.524 0.289 – 0.000 0.000 0.000 0.000 0.000 0.000
Process + Delta 0.233 0.092 0.041 0.389 0.276 0.574 – 0.005 0.000 0.000 0.000 0.000
Delta 0.183 0.140 "0.030 0.458 0.147 0.874 0.426 – 0.936 0.141 0.000 0.000
Total 0.170 0.112 "0.071 0.387 0.207 1.143 0.619 0.103 – 0.023 0.000 0.000
Process + OO 0.129 0.121 "0.076 0.331 0.192 1.476 0.971 0.410 0.348 – 0.000 0.000
OO + Delta 0.022 0.091 "0.106 0.261 0.057 2.933 2.303 1.356 1.440 0.997 – 0.320
OO 0.007 0.078 "0.111 0.222 0.011 3.343 2.652 1.550 1.683 1.202 0.184 –

Table 11
Cost-effectiveness for the metric sets at p = 1.0 NOS.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process Process + Delta Delta Total Process + OO OO + Delta OO

Effectsize (Wilcoxon (a = 0.001))
Process 0.478 0.165 "0.122 0.742 0.536 – 0.000 0.000 0.000 0.000 0.000 0.000
Process + Delta 0.394 0.107 0.119 0.669 0.372 0.604 – 0.000 0.000 0.000 0.000 0.000
Delta 0.236 0.195 "0.216 0.674 0.236 1.343 1.008 – 0.400 0.701 0.000 0.000
Total 0.224 0.219 "0.213 0.531 0.318 1.308 0.984 0.054 – 0.479 0.000 0.000
Process + OO 0.199 0.194 "0.223 0.470 0.273 1.552 1.247 0.190 0.125 – 0.000 0.000
OO + Delta 0.037 0.185 "0.306 0.357 0.137 2.512 2.358 1.045 0.925 0.853 – 0.004
OO "0.013 0.178 "0.331 0.294 0.036 2.863 2.774 1.334 1.191 1.139 0.275 –
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Fig. 4 supports the results in the tables comparing metric sets,
showing that the cost-effectiveness obtained by using the OO met-
rics is close to zero. It is worth noting that there are in fact a large
number of models using the OO metrics that have negative cost-
effectiveness: the median of the OO metrics is close to the baseline
with slope 1 indicating that 50% of the observations are below this
baseline, and thus these models are not more cost-effective than a
completely random model. It is interesting that the average cost-
effectiveness for OO metrics is close to zero across all thresholds.
Turning back to Tables 8–11, note also that the cost-effectiveness
of the models built using other metric sets decreases when the
OO metrics are added. For example, this is visible when comparing
the cost-effectiveness of the process metrics with that of the pro-
cess metrics in combination with the OO metrics (Process + OO):
The process metrics are consistently more cost-effective, but when
adding the OO metrics, this combination is consistently ranked
among the least cost-effective. That is, adding the OO metrics con-
sistently degrades the cost-effectiveness of a model. Further, we
observe that although the deltas have the smallest average ROC
area, these metrics are consistently more cost-effective than the
OO metrics. The low cost-effectiveness of the OO metrics may be
due to their correlation with size measures, which has been re-
ported in many other papers (El Emam et al., 2001).

If we were to use the prediction models to focus verification and
validation efforts by, say, inspecting the 20% most fault-prone clas-
ses – the gain from using the process metrics (finding 60% of the
faults on average) compared to the average of what would be ob-
tained with random orders (finding 20% of the faults) is substantial.
Of course, this is a somewhat simplified view for both scenarios, as
we probably cannot expect to find all faults by applying a particular
fault-pronenessmodel to focus verification and validation.3 Still, the
gain from using a prediction model based on process metrics is sub-
stantial compared with the baseline model. On the other hand, we
also see that there is much room for improvement when compared
to an optimal ranking of the classes: the best model is approximately
50% of the optimal model in terms of cost-effectiveness.

The results show that the OO metrics are good predictors of
faulty classes (i.e., large ROC area), but these metrics do not result
in cost-effective prediction models. Many OO metrics have been
shown to be associated with size (El Emam et al., 2001), and this
fact might explain the low cost-effectiveness of the OO metrics, be-
cause the surrogate measure for cost-effectiveness penalize models

which mostly capture a size effect. Although the process metrics
are presumably more expensive to collect, the results show that
collecting process metrics is likely to be cost-effective.

4.3. Evaluating techniques and metric sets using other evaluation
criteria

In the two previous subsections, metric sets and modeling tech-
niques were compared using two evaluation criteria: ROC area and
cost-effectiveness (CE). This section presents the results when
using some of the more commonly used evaluation criteria. More
specifically, we will consider the most popular measures that can
be derived from the confusion matrix as explained in Section 3.7.
We did not investigate in detail how these classification accuracy
measures are affected by different probability cut-off values. Still,
the results given in this section are comparable to most studies,
which in most cases do not vary the threshold, but rather use the
default value of 0.5 (Arisholm et al., 2008). We first consider accu-
racy as it is the most prominent measure in the studies reviewed.
Then, we show our results for precision, recall and Type I- and Type
II-misclassification rates as these evaluation criteria are also widely
used (Arisholm et al., 2008).

One of the conclusions in the two previous subsections was that
the Process metrics set seems to be the overall best metric set and
Boost C4.5 the best modeling technique in terms of average ROC
area and cost-effectiveness. Consequently, to facilitate compari-
sons with the previous subsections, we still show the Process/Boost
C4.5 results in a separate column.

4.3.1. Accuracy
Tables 12 and 13 show the accuracy for modeling techniques

and metric sets, respectively. As higher accuracy is considered bet-
ter than lower accuracy, the tables are sorted in descending order
according to the mean values.

The differences in accuracy among modeling techniques are
smaller than the differences among metric sets. If one were to se-
lect a particular modeling technique based on the average accu-
racy, one would probably select SVM or logistic regression,
although these techniques yield lower accuracy when used in con-
junction with the optimal metric set (Process).

It is worth pointing that the Delta metric set yields the highest
accuracy. Looking at the results for ROC area in Table 7 in Section
4.2, Delta was the metric set giving the smallest average ROC area,
and thus one would probably conclude that using these metrics to
predict fault-proneness is not optimal, thus running counter to
what one would conclude when considering the accuracy measure.

Furthermore, what is considered the best metric set is highly
dependent on which cut-off that is used. Here we have used a
threshold of 0.5 because it is commonly used in the existing liter-
ature, however, it is difficult to give a rule of thumb as to what cut-
off to use because there would probably be large variations across
studies as these results are highly dependent on properties of the
data set. In our case, the most accurate models are obtained when
using cut-off values above 0.8. This is due to the highly unbalanced
nature of our data sets: only a small percentage of the classes are
faulty. Although high accuracy is intuitively a desired property,
our results suggest that accuracy is not necessarily an appropriate
measure for evaluating how useful fault-proneness prediction
models are.

4.3.2. Precision and recall
Two other evaluation criteria that are widely used are the pre-

cision and recall measures, as explained in Section 3.7. Tables 14
and 15 show the results for these measures using the different
metric sets. The metric sets are sorted in descending order accord-
ing to their mean precision/recall.

Fig. 4. Median and 25 percentile/75 percentile for process metrics and object-
oriented metrics.

3 A suitable cost-benefit model that accounts for the percentage of faults that are
not discovered during verification efforts is given in Briand and Wust (2002).
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From Table 14 we see that the precision ranges from 3% to
approximately 10%. This indicates that when using a cut-off of
0.5 to distinguish faulty classes from non-faulty ones, only a small
part of the fault-prone classes identified by the prediction model is
in fact faulty – that is, most of the classes predicted as faulty are
false positives. Although the maximum for Delta is above 0.4, the
precision of our models is much lower than comparable studies
who typically achieved precision in the range of 0.7 to 0.95 (Elish
and Elish, 2008; Pai and Dugan, 2007; Denaro and Pezze, 2002).
The reason we get a relatively low precision is probably because

only 0.5–2% of the classes in our data sets are in fact faulty. Thus,
even a few false positives have a huge impact on the precision of
the prediction models.

Table 15 shows the corresponding results for recall. We see that
the models typically capture somewhere between 36% and 62% of
the faulty classes on average using a cut-off equal to 0.5. This is
comparable to other studies, e.g. (Kim et al., 2008; Pai and Dugan,
2007; Denaro and Pezze, 2002), while other studies achieved recall
close to 1 (Elish and Elish, 2008). With respect to recall, the Total
metric set is best, and looking at the results when using the overall

Table 12
Accuracy of modeling techniques.

Mean Std. Dev. Min Max Best metricset
(Process)

SVM Logistic
regression

C4.5 + PART Neural
network

Decorate
C4.5

C4.5 Boost
C4.5

PART

Effectsize (Wilcoxon (a = 0.001))
SVM 0.863 0.061 0.744 0.985 0.869 – 0.000 0.145 0.007 0.000 0.000 0.000 0.000
Logistic regression 0.845 0.060 0.753 0.983 0.867 0.295 – 0.830 0.265 0.007 0.004 0.000 0.000
C4.5 + PART 0.838 0.105 0.650 0.970 0.934 0.287 0.077 – 0.806 0.000 0.000 0.000 0.000
Neural network 0.830 0.090 0.681 0.986 0.916 0.432 0.199 0.089 – 0.017 0.014 0.000 0.000
Decorate C4.5 0.807 0.104 0.634 0.970 0.915 0.652 0.443 0.298 0.230 – 0.059 0.002 0.000
C4.5 0.793 0.125 0.568 0.969 0.912 0.709 0.527 0.391 0.334 0.122 – 0.494 0.270
Boost C4.5 0.783 0.107 0.658 0.961 0.903 0.925 0.719 0.528 0.477 0.234 0.092 – 0.452
PART 0.771 0.125 0.526 0.964 0.901 0.932 0.750 0.582 0.537 0.314 0.177 0.099 –

Table 13
Accuracy of metric sets.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Delta Process Process + Delta Total Process + OO OO + Delta OO

Effectsize (Wilcoxon (a = 0.001))
Delta 0.908 0.085 0.739 0.986 0.889 – 0.367 0.000 0.000 0.000 0.000 0.000
Process 0.902 0.050 0.744 0.982 0.903 0.089 – 0.000 0.000 0.000 0.000 0.000
Process + Delta 0.871 0.070 0.760 0.971 0.868 0.475 0.504 – 0.000 0.000 0.000 0.000
Total 0.797 0.084 0.612 0.945 0.684 1.319 1.519 0.959 – 0.351 0.000 0.000
Process + OO 0.776 0.070 0.642 0.899 0.711 1.697 2.065 1.354 0.267 – 0.031 0.000
OO + Delta 0.744 0.085 0.526 0.896 0.745 1.925 2.252 1.622 0.620 0.408 – 0.037
OO 0.715 0.074 0.568 0.834 0.680 2.420 2.947 2.156 1.029 0.845 0.364 –

Table 14
Precision for the metric sets.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Delta Process Process + Delta Total Process + OO OO + Delta OO

Effectsize (Wilcoxon (a = 0.001))
Delta 0.104 0.094 0.040 0.429 0.076 – 0.288 0.000 0.000 0.000 0.000 0.000
Process 0.082 0.047 0.020 0.273 0.082 0.294 – 0.000 0.000 0.000 0.000 0.000
Process + Delta 0.067 0.035 0.019 0.160 0.061 0.521 0.362 – 0.000 0.000 0.000 0.000
Total 0.044 0.021 0.014 0.101 0.030 0.871 1.024 0.768 – 0.486 0.000 0.000
Process + OO 0.039 0.020 0.013 0.110 0.031 0.941 1.162 0.942 0.223 – 0.000 0.000
OO + Delta 0.032 0.014 0.013 0.061 0.031 1.063 1.426 1.288 0.671 0.432 – 0.012
OO 0.029 0.013 0.013 0.058 0.025 1.108 1.520 1.411 0.854 0.620 0.227 –

Table 15
Recall (or Sensitivity, TP rate) for the metric sets.

Mean Std. Dev. Min Max Best technique
(Boost C4.5)

Process + OO Total OO OO + Delta Process + Delta Process Delta

Effectsize (Wilcoxon (a = 0.001))
Process + OO 0.623 0.113 0.389 0.889 0.677 – 0.689 0.925 0.252 0.000 0.000 0.000
Total 0.612 0.138 0.278 0.833 0.723 0.087 – 0.752 0.490 0.000 0.000 0.000
OO 0.609 0.117 0.333 0.781 0.597 0.122 0.023 – 0.408 0.001 0.000 0.000
OO + Delta 0.593 0.137 0.361 0.833 0.609 0.235 0.134 0.122 – 0.005 0.000 0.000
Process + Delta 0.518 0.175 0.167 0.755 0.556 0.712 0.595 0.611 0.480 – 0.203 0.000
Process 0.492 0.162 0.139 0.833 0.554 0.936 0.794 0.826 0.674 0.151 – 0.000
Delta 0.362 0.160 0.056 0.616 0.429 1.884 1.671 1.762 1.552 0.929 0.810 –
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best modeling technique (Boost C4.5) in combination with the total
set of metrics, we observe that 72% of the faults are captured on
average by these models.

Among the modeling techniques, the differences in average pre-
cision are small, typically in the range from 0.05 to 0.07 (Table
16).The rule- and tree-based modeling techniques are techniques
that seem to yield low precision, whereas these techniques are at
the same time those that yield higher recall than SVM, neural net-
work and logistic regression (Table 17).

4.3.3. Types I and II misclassification rates
Ostrand and Weyuker argue that Type II errors are the most

expensive, and that prediction models should be selected and eval-
uated by their Type II misclassification rate (Ostrand and Weyuker,
2007). This measure is also used by Khoshgoftaar and Seliya
(2004, 2003). In Table 18 we report the average Type II misclassi-
fication rate for each technique using a default cut-off equal to
0.5. As smaller numbers are considered better (less errors in pre-
dictions), the table is sorted in ascending order according to the
average for each technique.

The Type II misclassification rate is typically small, suggesting
that a large part of the prediction models assigns a predicted fault
probability above 0.5 to most of the faulty classes. Our Type II mis-

classification rates are slightly smaller (better) than those reported
in earlier studies, where this rate typically ranged from 0.01 (Os-
trand and Weyuker, 2007) to 0.3 (Kanmani et al., 2007). Although
the differences among the modeling techniques presented here are
small, if we were to select a particular technique based on the re-
sults in this table, we would conclude that the decision trees or
rule-based techniques, i.e., C4.5 (with or without boosting) or
PART, yield the best prediction models in terms of Type II mis-
classification rates. This contradicts our conclusion based on the
ROC area in Section 4.1.

Because the Types I and II misclassification rates are inversely
correlated – that is, in most cases decreasing the number of Type
II errors leads to an increase in the number of Type I errors – it
is useful to compare the results in Table 18 with the Type I mis-
classification rates given in Table 19. Table 19 clearly illustrates
that modeling techniques that have lower Type II misclassification
rates have higher Type I misclassification rates. If we were to select
the modeling technique that would yield best results in terms of
Type I misclassification rates, we would probably choose another
modeling technique than when considering Type II misclassifi-
cation rates. That is, considering Type II misclassification rates
we concluded that the rule- or decision tree-based techniques
were best, while from Table 19 we conclude that these are signif-

Table 16
Precision for each of the modeling techniques.

Mean Std. Dev. Min Max Best metricset
(Process)

SVM Neural
network

C4.5 +
PART

Logistic
regression

Decorate
C4.5

C4.5 Boost C4.5 PART

Effectsize (Wilcoxon (a = 0.001))
SVM 0.073 0.081 0.019 0.429 0.069 – 0.009 0.290 0.007 0.005 0.021 0.000 0.000
Neural network 0.064 0.074 0.016 0.429 0.107 0.125 – 0.471 0.954 0.378 0.132 0.014 0.001
C4.5 + PART 0.059 0.037 0.015 0.175 0.097 0.226 0.078 – 0.526 0.051 0.000 0.000 0.000
Logistic regression 0.058 0.050 0.020 0.316 0.062 0.233 0.095 0.033 – 0.300 0.267 0.025 0.006
Decorate C4.5 0.053 0.037 0.014 0.150 0.084 0.316 0.176 0.155 0.097 – 0.138 0.001 0.000
C4.5 0.052 0.033 0.013 0.143 0.078 0.341 0.201 0.198 0.129 0.035 – 0.171 0.139
Boost C4.5 0.048 0.032 0.014 0.131 0.082 0.412 0.278 0.326 0.233 0.160 0.131 – 0.363
PART 0.047 0.036 0.013 0.148 0.075 0.416 0.284 0.329 0.241 0.171 0.143 0.019 –

Table 17
Recall for each of the modeling techniques.

Mean Std. Dev. Min Max Best metricset
(Process)

Boost
C4.5

PART C4.5 Decorate
C4.5

Neural
network

Logistic
regression

SVM C4.5 +
PART

Effectsize (Wilcoxon (a = 0.001))
Boost C4.5 0.592 0.155 0.222 0.833 0.554 – 0.492 0.268 0.055 0.000 0.000 0.000 0.000
PART 0.571 0.151 0.278 0.833 0.482 0.139 – 0.706 0.694 0.022 0.015 0.003 0.000
C4.5 0.570 0.161 0.194 0.795 0.488 0.140 0.005 – 0.776 0.014 0.007 0.001 0.000
Decorate C4.5 0.567 0.158 0.167 0.781 0.465 0.163 0.027 0.021 – 0.003 0.013 0.003 0.000
Neural network 0.522 0.194 0.056 0.778 0.467 0.399 0.280 0.269 0.251 – 0.426 0.134 0.918
Logistic regression 0.519 0.164 0.167 0.778 0.548 0.461 0.331 0.317 0.298 0.020 – 0.379 0.904
SVM 0.507 0.192 0.111 0.889 0.494 0.487 0.368 0.355 0.338 0.078 0.065 – 0.356
C4.5 + PART 0.505 0.155 0.194 0.775 0.440 0.561 0.428 0.410 0.392 0.096 0.083 0.010 –

Table 18
Type II misclassification rates for each modeling technique.

Mean Std. Dev. Min Max Best metric set
(Process)

Boost
C4.5

PART Decorate
C4.5

C4.5 Neural
network

Logistic
regression

C4.5 +
PART

SVM

Effectsize (Wilcoxon (a = 0.001))
Boost C4.5 0.005 0.003 0.001 0.011 0.006 – 0.758 0.144 0.132 0.000 0.000 0.000 0.000
PART 0.006 0.003 0.001 0.010 0.007 0.072 – 0.350 0.272 0.012 0.034 0.000 0.006
Decorate C4.5 0.006 0.003 0.002 0.011 0.007 0.118 0.045 – 0.598 0.011 0.020 0.000 0.002
C4.5 0.006 0.003 0.002 0.011 0.007 0.142 0.071 0.027 – 0.034 0.032 0.000 0.001
Neural network 0.006 0.003 0.002 0.013 0.007 0.311 0.247 0.208 0.181 – 0.831 0.965 0.061
Logistic regression 0.006 0.003 0.002 0.012 0.006 0.337 0.271 0.231 0.203 0.015 – 0.961 0.062
C4.5 + PART 0.006 0.003 0.002 0.011 0.008 0.411 0.342 0.301 0.269 0.069 0.055 – 0.203
SVM 0.007 0.003 0.002 0.012 0.007 0.420 0.358 0.320 0.292 0.106 0.094 0.045 –
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icantly worse than SVM. In practice, one would probably consider a
trade-off between these types of misclassification rates. One option
is to investigate the consistency in ranking for each technique
across the evaluation criteria. Then, neural networks would per-
haps be a good compromise.

As can be seen from the results above, which modeling tech-
nique or metric set can be considered ‘‘best” is highly dependent
on the criteria used for evaluation. The prediction models in this
case study yield a recall and accuracy comparable to recent studies.
However, the precision of our models is very low due to the unbal-
anced nature of our data sets, and choosing another cut-off than
0.5 can possibly yield very different results.

4.4. Discussion

In the subsections above we have evaluated and compared sev-
eral carefully selected modeling techniques and metric sets that
entail different data collection costs. Our goal was to assess what
measures are necessary to achieve practically useful predictions,
what modeling techniques seem to be more helpful, and how our
conclusions differ depending on the evaluation criteria used.

We observe that the Processmeasures on average yield the most
cost-effective prediction models, whereas the OO metrics on aver-
age is no better than a model based on random selection of classes.
Although the Deltameasures alone does not yield particularly large
ROC areas, these measures still yield more cost-effective prediction
models than the OO metrics.

Turning to the evaluation criteria, a first observation is that
using general confusion matrix criteria raises a number of issue:
(i) it is difficult to assess if the default cut-off of 0.5 is appropriate
and if not, what other cut-off value should be used; (ii) none of
these criteria strongly relate to the main goal in our context, that
is ranking classes according to their fault-proneness to prioritize
and increase the cost-effectiveness of verification; (iii) none of
these criteria are clearly related to the possible cost-effectiveness
of applying a particular prediction model.

Further, another issue when evaluating prediction models is
that what can be considered the best modeling technique or set
of measures is highly dependent on the evaluation criteria used
for evaluation. Consequently, it is crucial that the criteria used to
evaluate fault-proneness prediction models are closely linked to
the intended, practical application of the prediction models.

We argue that ROC and CE capture two properties that are of
high importance within our context, namely class ranking and
cost-effectiveness: The area under the ROC curve reflects the prob-
ability that a faulty class is assigned a higher fault probability than
a non-faulty one, while the CE measure allows us to compare pre-
diction models according to their cost-effectiveness based on a
number of assumptions. As shown in Section 4.2, these two mea-
sures capture two different dimensions of model performance:
The difference between the Process and the OO metric sets was
not clearly visible when only considering the ROC area, whereas

the differences considering CE were relatively large. The results
showed that an apparently accurate model is not necessarily
cost-effective. Consequently, we emphasize the importance of con-
sidering not only measures such as the ones that can be derived
from the confusion matrix, but also specific measures that are
more closely related to the possible cost-effectiveness of applying
fault-proneness prediction models to focus verification efforts.

5. Threats to validity

The evaluation of techniques and metric sets were done using
data from one single environment. The data collected were from
13 major releases over a period of several years. The system has
endured a large extent of organizational and personnel change.
Thus, it is unlikely that the results are heavily affected by individ-
ual developers and their experience, or the traits of certain releases
of the system. Still, as with most case studies, one should be careful
to generalize the specific results to all systems or environments.
However, at a more general level, we believe that many methodo-
logical lessons can be learned from this study, including the need
for doing systematic and comprehensive evaluations to ensure that
the prediction models have the desired properties (e.g., cost-effec-
tiveness) for the purpose at hand. Moreover, in many ways, the
environment we worked in has the typical characteristics of tele-
com software development: parallel patches and new feature
development, configuration management and fault reporting sys-
tems, Java technologies, and a significant level of personnel
turnover.

In this study, we have not accounted for the actual cost of mak-
ing the measures available and collecting them. Consequently,
there are some initial costs associated with this process improve-
ment activity that we do not account for. In particular, the Process
metric set, being most cost-effective, is at the same time the mea-
sures that have the highest cost with respect to data reporting and
collection.

The prediction models built in this case study were built using
default parameters. That is, we have not systematically investi-
gated how the models are affected by varying the parameters.
There are possibly a large number of potential combinations of
parameters for each modeling technique and optimizing the
parameters with respect to some criteria for each technique would
be very computational intensive. Furthermore, optimizing the
modeling parameters might also lead to overfitted models that is
highly specific to the training set. One way to alleviate this poten-
tial threat would be to apply evolutionary programming to opti-
mize the parameters with respect to some property, e.g., cross-
validated measures of ROC or CE.

Note also that the use of statistical tests in this study to test the
differences between techniques and metric sets are somewhat
exploratory in nature. In particular, from a formal standpoint, the
notion of p-values is questionable in our context, because we have
not taken a random sample from a target population, but rather

Table 19
Type I misclassification rates for each modeling technique.

Mean Std. Dev. Min Max Best metric set
(Process)

SVM Logistic
regression

C4.5 +
PART

Neural
network

Decorate
C4.5

C4.5 Boost
C4.5

PART

Effectsize (Wilcoxon (a = 0.001))
SVM 0.130 0.061 0.003 0.248 0.125 – 0.000 0.162 0.006 0.000 0.000 0.000 0.000
Logistic regression 0.149 0.061 0.005 0.242 0.127 0.297 – 0.839 0.276 0.006 0.004 0.000 0.000
C4.5 + PART 0.155 0.106 0.020 0.346 0.058 0.287 0.075 – 0.787 0.000 0.000 0.000 0.000
Neural network 0.164 0.091 0.002 0.311 0.078 0.433 0.198 0.090 – 0.019 0.016 0.000 0.000
Decorate C4.5 0.187 0.105 0.020 0.362 0.077 0.657 0.445 0.302 0.233 – 0.060 0.002 0.000
C4.5 0.201 0.126 0.021 0.426 0.081 0.712 0.528 0.394 0.336 0.120 – 0.452 0.259
Boost C4.5 0.212 0.108 0.029 0.336 0.091 0.933 0.724 0.534 0.481 0.236 0.095 – 0.483
PART 0.223 0.126 0.026 0.470 0.092 0.935 0.750 0.585 0.537 0.312 0.177 0.095 –
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used all the data we had available and computed p-values on dif-
ferences between subsets of our data. For this reason we have also
reported effect sizes, which are not problematic in this regard.

6. Conclusions and further work

Our review of recent studies (Arisholm et al., 2008) revealed
that many studies do not comprehensively and systematically
compare modeling techniques and types of measures to build fault
prediction models. Many works also do not apply suitable evalua-
tion methods and show little consistency in terms of criteria and
methods that are used to evaluate the prediction models. Thus, it
is hard to draw general conclusions on which measures and mod-
eling techniques to use to build fault-proneness prediction models
based on the existing body of studies. Further, most studies evalu-
ate their models using confusion matrix criteria while we have
shown that the metric set or technique that is put forward as the
best is highly dependent on the specific criteria used.

Except for a few studies, i.e. (Elish and Elish, 2008; Guo et al.,
2004), there has been no systematic and comprehensive effort on
comparing modeling techniques to build accurate and useful
fault-proneness prediction models. In this paper, we do not only
compare a carefully selected set of modeling techniques in a sys-
tematic way, but we also compare the impact of using different
types of measures as predictors, based on different evaluation cri-
teria. By doing so, we also propose a systematic process and asso-
ciated data analysis procedures for the rigorous comparison of
models in terms of their cost-effectiveness.

More precisely, we have empirically evaluated all combinations
of three distinct sets of candidate measures (OO structural mea-
sures, code churn measures, and process change and fault mea-
sures) and eight, carefully selected modeling techniques, using a
number of evaluation criteria. Overall, the findings are that the
measures and techniques that are put forward as the ‘‘best” is
highly dependent on the evaluation criteria applied. Thus, it is
important that the evaluation criteria used to evaluate the predic-
tion models are clearly justified in the context in which the models
are to be applied.

Within the field of software verification we propose a surro-
gate measure of cost-effectiveness (CE) that enables us to assess
and compare the possible benefits of applying fault-proneness
prediction models to focus software verification efforts, e.g., by
ranking the classes according to fault-proneness and focusing unit
testing on the p% most fault-prone components. Using this CE
measure to evaluate the prediction models in our case study re-
vealed that using OO metrics to build fault-proneness prediction
models does not necessarily yield cost-effective models – possibly
because these metrics show strong correlation with size related
measures, and prediction models that merely capture size are
not cost-effective under the assumption that verification costs
are proportional to size. Further, this case study clearly suggests
that one should consider process-related measures, such as mea-
sures related to the history of changes and faults, to improve pre-
diction model cost-effectiveness. Regarding the choice of
modeling technique, the differences appear to be rather small in
terms of cost-effectiveness, although Adaboost combined with
C4.5 overall gave the best results. Note however that we have
only compared techniques using default parameters, and as fu-
ture work we will try to optimize the parameters while attempt-
ing to avoid overfitting.

The CE measure proposed in this paper is a surrogatemeasure to
facilitate comparisons of prediction models using a criterion that is
directly linked to the assumed cost-effectiveness of using such
models to focus verification efforts. In order to assess the real
cost-effectiveness and possible return on investment, we have re-

cently performed a pilot study where the C4.5 prediction model
was applied in a new release of the COS system. In this pilot study,
developers spent an additional week of unit testing on the most
fault-prone classes and several serious faults that otherwise would
have slipped through to later testing phases or even the production
systemwas discovered and corrected. Preliminary results suggest a
return of investment of about 100% by preventing these faults from
slipping through to later phases where they would have been more
expensive to correct (Fuglerud, 2007). Due to these promising pre-
liminary results, plans are underway to perform large-scale evalu-
ations of the costs and benefits of using the prediction models to
focus testing in the COS project.
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