
Simula Technical Report TR-2008-06

 1

A Systematic and Comprehensive Investigation of Methods to Build
and Evaluate Fault Prediction Models

Erik Arisholm1,2, Lionel C. Briand1,2 and Eivind B. Johannessen1,2
1Simula Research Laboratory, PO Box 134, NO-1325 Lysaker, Norway

2Dept. of Informatics, University of Oslo, Norway
erika@simula.no; briand@simula.no, eivindjo@ifi.uio.no

Abstract.
This paper describes a study performed in an industrial setting that attempts to build predictive
models to identify parts of a Java system with a high fault probability. The system under
consideration is constantly evolving as several releases a year are shipped to customers.
Developers usually have limited resources for their testing and would like to devote extra
resources to faulty system parts. The main research focus of this paper is to systematically assess
three aspects on how to build and evaluate fault-proneness models in the context of this large
Java legacy system development project: (1) compare many data mining and machine learning
techniques to build fault-proneness models, (2) assess the impact of using different metric sets
entailing different data collection costs, such as source code structural measures and historic
change/fault (process) measures, and (3) compare several alternative ways of assessing the
performance of the models, in terms of (i) confusion matrix criteria such as accuracy and
precision/recall, (ii) ranking ability, using the receiver operating characteristic area (ROC), and
(iii) our proposed cost-effectiveness measure (CE).

The results of the study indicate that the choice of fault-proneness modeling technique
has limited impact on the resulting classification accuracy or cost-effectiveness. There is
however large differences between the individual metric sets in terms of cost-effectiveness, and
although the process measures are among the most expensive ones to collect, including them as
candidate measures significantly improves the prediction models compared with models that
only include structural measures and/or their deltas across releases – both in terms of ROC area
and cost-effectiveness. Further, we observe that what is considered the best model is highly
dependent on the criteria that are used to evaluate and compare the models. The regular
confusion matrix criteria, although popular, are not clearly related to what we consider to be a
crucial aspect, namely the cost-effectiveness of using fault-proneness prediction models to focus
verification effort where it is the most needed.

1 Introduction

A significant research effort has been dedicated to defining specific quality measures and
building quality models based on those measures [1]. Such models can then be used to help
decision-making during development of software systems. Fault-proneness or the number of
defects detected in a software component (usually a module, class, or file) are the most
frequently investigated dependent variables [1]. In this case, we may want to predict the fault-
proneness of components in order to focus validation and verification effort, thus potentially
finding more defects for the same amount of effort. For example, assuming a class is predicted as
very likely to be faulty, one would take corrective action by investing additional effort to inspect

Simula Technical Report TR-2008-06

 2

and test this class. Given that software development companies might spend between 50 to 80
percent of their software development effort on testing [2], research on fault-proneness
prediction models can be motivated by its high cost-saving potential.

As a part of this study, we have reviewed a selection of relevant publications within the
field of fault-proneness prediction models (details are provided in Section 2). The review
revealed that a vast number of modeling techniques have been used to build such prediction
models. However, there has been no comprehensive and systematic effort on assessing the
impact of selecting a particular modeling technique.

To construct fault-proneness prediction models, most studies use structural measures such
as coupling and cohesion as independent variables. Although some studies have investigated the
possible benefits of including other measures such the number of changes performed on
components and their fault history in previous releases, none of the studies assess in a systematic
way the impact of using various sets of measures, entailing different data collection costs, on the
cost-effectiveness of the prediction models.

A large number of evaluation criteria have been used to evaluate and compare fault-
proneness prediction models,. Among the most popular evaluation criteria are the ones that can
be derived from the confusion matrix such as accuracy, precision, and recall. There is little
consistency across the reviewed studies with respect to the criteria and methods that are used to
evaluate the models, making it hard to draw general conclusions on what modeling technique or
sets of independent variables seems the most appropriate. In addition, the popular confusion
matrix criteria are somewhat abstract as they do not clearly and directly relate to the cost-
effectiveness of using fault-proneness prediction models to focus verification and validation
activities such as testing. Because there exists very little evidence of the economic viability of
fault-proneness prediction models [1], there is a need for evaluating and comparing fault-
proneness prediction models not only by considering their prediction accuracy, but also by
assessing the potential cost-effectiveness of applying such models.

To compare the potential cost-effectiveness of alternative prediction models, we need to
consider (surrogate) measures of additional verification cost for the selected, faulty classes. For
many verification activities, such as structural coverage testing or even simple code inspections,
the cost of verification is likely to be roughly proportional to the size of the class.1 What we want
are models that capture other fault factors in addition to size, so that the model would select a
subset of classes with high fault density.

To build fault-proneness prediction models there are a large number of modeling
techniques to choose from, including standard statistical techniques such as logistic regression,
and data mining techniques such as decision trees [3]. The data mining techniques are especially
useful since we have little theory to work with and we want to explore many potential factors
(and their interactions) and compare many alternative models so as to optimize cost-
effectiveness.

Although there are a large number of publications that have built and evaluated methods
for building fault-proneness prediction models, it is not easy to draw practical guidelines from
them in terms of what modeling techniques to use, what data to collect, and what practical gains
to expect. This paper investigates in a systematic way three practical aspects of the building and
evaluation of fault-proneness prediction models; (i) choice of modeling techniques, (ii) choice of

1 Depending on the specific verification undertaken on classes predicted as fault prone, one may want to use a different size measure

that would be proportional to the cost of verification.

Simula Technical Report TR-2008-06

 3

independent variables (sets of measures), and (iii) choice of evaluation criteria. This assessment
is performed by building a range of fault-proneness prediction models using a selection of
relevant modeling techniques. The models are built using different sets of independent variables
entailing different data collection costs. This allows us to assess the possible benefits of
collecting certain sets of measures. The resulting models are then systematically compared and
evaluated using a number of the most popular evaluation criteria such as accuracy, precision and
recall. To assess the potential cost-effectiveness in applying the models to focus verification
activities, we also compare the models according to a proposed measure of cost-effectiveness
within this particular industrial context.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive
overview of related works, whereas Section 3 presents our study design. In Section 4 we report
our results, comparing several modeling techniques and sets of measures using a number of
different evaluation criteria. Section 5 discusses what we consider the most important threats to
validity, whereas Section 6 concludes and outlines directions for future research.

2 Fault-proneness Prediction Models

In this section, we first elaborate on the concept of fault-proneness; how it is defined, and
possible ways of measuring it. Then, we describe factors that may have an impact on fault-
proneness, and thus are candidate predictor variables. We continue by giving a brief summary on
how various statistical methods and data-mining techniques have been used in existing fault-
proneness studies. Furthermore, we discuss how fault-proneness prediction models have been
evaluated. Throughout the following subsections we summarize existing work according to the
abovementioned dimensions and discuss implications for our work.

The discussions in the following sections are frequently referring to Appendix A, which
gives a summary of this field of research in recent years. Each study is categorized in terms of
dependent variable, unit of analysis, selection of measures, modeling techniques and evaluation
criteria used, validation method and type of system (see Appendix A). Many of the findings prior
to 2002 are summarized in [4], and we therefore focus on empirical research reported since 2001.
To obtain this set of papers, we proceeded as follows:

We searched ISI Web of Knowledge and Inspec for papers that matched the following
logical expression:

((software OR object‐oriented) AND (metrics) AND
(prediction) AND (defect OR fault OR error))

First, ISI returned 40 hits. Out of these, 12 papers were included after reading the title and
abstract to determine whether they were indeed related to the topic of fault-proneness prediction
models. Second, using Inspec, we performed the same search but limited to journal papers only.
This search resulted in 32 hits, of which 8 additional papers were included on the basis of
reading the title and abstract.

Given that this search was probably not complete, we furthermore checked the included
papers for references to additional work on the topic of fault-proneness prediction models. As a
result, an additional 13 papers were included leading to a total of 33 papers.

Simula Technical Report TR-2008-06

 4

A more comprehensive systematic literature review is certainly possible but we still
believe, because of the systematic nature of our search, that the selected papers reflect the current
state of the art in a reasonably unbiased way.

2.1 Fault-proneness

Fault-proneness is a difficult concept to define in precise terms and can be measured in many
ways. In pragmatic terms, fault-proneness is the probability that a component, e.g., a class,
contains a fault. A fault is a (possibly undetected) incorrect program step, process, or data
definition in a computer program [5]. In many situations, a more practical definition of fault-
proneness that is commonly used is the probability of detecting one or more faults in a
component. A fault may be detected as a result of any form of verification and validation
activities at different stages of development and maintenance. Some faults remain undetected
while others are detected as field failures. A field failure is a systems inability to perform its
required functions during operation. Faults that manifest themselves through field failures may
be different from those found before the system is deployed. Thus, one may distinguish between
pre-release and post-release faults, the latter possibly resulting in field failures. Furthermore,
some faults are more severe than others, and thus one may classify faults according to their
severity level to distinguish fault-proneness with critical implications. Column 2 in Appendix A
gives an overview of the kinds of faults that have been considered in the reviewed studies.

A common conception is that some components are intrinsically more fault-prone than
others due to some (possibly unknown) property. For example, components that are fault-prone
during system test may continue to be fault-prone during future operation. Thus, the distribution
of faults found during pre-release testing may reflect the future distribution of post-release faults.
However, a study by Fenton et al. suggests that the number of pre-release faults is inversely
correlated to the number of post-release faults, i.e., components that are among the most fault-
prone during pre-release testing are among the most reliable during field operation [6]. This is, to
some degree, further supported by Ostrand et al.[7]. It is important to note that these findings do
not imply a causal relationship; the fact that post-release fault-proneness is inversely correlated
to pre-release fault-proneness might be attributed to the distribution of effort spent during pre-
release testing across various components.

When measuring and predicting faults in object-oriented systems, the unit of analysis may
be the individual changes done on a particular component, a class, a file, a package or module,
executable component or subsystem. Some studies investigating fault-proneness models in the
context of object-oriented systems use a class as their unit of analysis, e.g., [8-14] . However,
because most revision control systems operate at the file-level, many studies use files as the unit
of analysis, e.g., [15-18]. Others aggregate data to a higher level and use collections of related
files (modules) as the unit of analysis, e.g., [19], while others analyze on a more detailed level
such as methods or procedures , e.g., [20, 21]. Some studies, such as [22], have used the change
itself, i.e., each commit to the source code repository, as the unit of analysis.

In addition to the choice of the unit of analysis, there are also different options for
constructing the dependent variable to be predicted: binary measures of whether the unit contains
one or more faults, counts of faults and fault density. The choice of dependent variable varies
across studies, as shown in Column 2 in Appendix A. Nearly half of the studies reviewed in this
thesis use the number of faults as the dependent variable [11, 13-18, 23-27]. However, in many
cases, the number of faults in a component is small, making it more practical (from a data

Simula Technical Report TR-2008-06

 5

analysis perspective) to use a dichotomous variable to indicate the absence or presence of faults
rather than fault counts. Half of the studies reviewed in this thesis use a binary dependent
variable [9, 25]. Although this recoding allows the use of classification techniques and facilitates
analysis, it is a more coarse-grained measure, thus potentially limiting the discriminatory power
of the prediction model.

Some studies divide the number of faults by some size measure, e.g., lines of code, and
thus obtain a measure of fault density [28]. However, the use of fault density might be
problematic as the denominator of the dependent variable is a size measure while certain
explanatory variables are also strongly correlated with size. Rosenberg [29] showed that such
situations may lead to spurious relationships which are pure mathematical artifacts. It also results
in models that are difficult to interpret. Finally, some studies account for the severity of faults.
For example, Zhou et al. [10] built three prediction models; one to predict the probability of high
severity faults, one to predict the probability of low severity faults, and finally a model where the
severity of faults was not accounted for.

The choice of dependent variable also depends on how the resulting prediction model is to
be used. If the purpose is merely to provide some indicator of quality of each component in a
system, then using the number of faults as a dependent variable might be a reasonable choice,
assuming that one can find an appropriate modeling technique for the distribution at hand.
Conversely, if differentiating components with one fault from components with many faults does
not affect decision making (e.g., as in deciding whether or not to spend extra effort to verify that
a class does not contain faults), one may be better off to choose a binary dependent variable, in
which case the prediction model can provide a ranking of the classes according to fault
probabilities.

2.2 Fault-proneness Factors

There are a number of factors that are likely to have an impact on fault-proneness. We divide
these factors into three categories:

• Structural measures: They are measures of structural properties derived from
the source code. This category includes popular coupling metrics, size metrics
and other measures that can be collected from a snapshot of a file (revision).

• Delta measures: These measures capture the amount of change – sometimes
called churn – in a file, e.g., by taking the difference between structural
measures between to successive releases.

• Process measures: They are not derived from the source code, but are collected
from meta data in the revision control system or through human intervention,
e.g., by assessing the experience of each developer, the number of developers
that have made changes to a file, the number of faults in previous release(s) and
simpler measures such as the number of lines added and/or removed.

Our classification of measures into three categories is motivated by practical
considerations. Collecting structural measures requires no revision control system or historical
data. They are simply derived from a particular snapshot of the code base. The delta measures,
on the other hand, require release management and a revision control system to compute the
difference between two successive releases for a particular measure. However, if revision control
and release management is in place, such measures are inexpensive to collect because it requires

Simula Technical Report TR-2008-06

 6

no additional human intervention. Some of the process measures, on the other hand, require
intervention from the developers; they need to record the reason for each change in a coherent
manner. In addition, the process measures are somewhat domain and process specific, and their
definitions are coupled to the way the development team works: how the system is evolving, how
the developers locate and record faults, and how they remove them.

One of the underlying hypotheses in building fault-proneness models is that structural
properties, such as coupling between object classes [30] and cyclomatic complexity [31], affect
fault-proneness. The assumption is that such properties affects the cognitive complexity of the
code, which in turn may affect how prone a programmer is to commit errors when developing or
changing the code. There are numerous structural property measures proposed in the literature.
Important sources in this field of research are the work by McCabe [31], Chidamber & Kemerer
[30], Briand et al. [32, 33], and Li & Henry [34]. The metrics given in [30] are among the
measures most widely used [4]. Many of these measures are, to various degrees, correlated with
the size of the components being measured. This is not necessarily a problem depending on how
the prediction model is intended to be used [1].

Studies have shown that not only structural properties are important predictors of fault-
proneness, but also the history of an individual component and the experience of the developers
should be considered when building fault-proneness prediction models. Graves et al. suggested
that the mere change of a file itself is associated with fault-proneness [35]. Yu et al. showed that
a component with a previous history of faultiness will continue to be faulty in the future due to
possibly unknown underlying factors [36]. There are studies that include the number of distinct
developers that have made changes to a component during its lifetime, assuming that one can
expect more faults when developers share responsibility on a particular component with other
developers, perhaps because (some of) the developers lack of understanding of the changes made
by other developers. Further, it is reasonable to assume that it is easiest to make reliable changes
to the code if the developer is familiar with the complete history of a component’s functionality
and code [18]. However, Graves et al. showed that the number of developers that had made
changes to a module were not associated with fault-proneness [35].

There are a number of studies investigating if and how the three different categories of
measures relate to fault-proneness. From Appendix A we can see that two thirds of the reviewed
studies built prediction models using structural measures. The Chidamber and Kemerer metrics
[30] are among the measures most often used. Only a few of the studies included process
metrics, e.g., [16, 18, 25, 37]. Below, we briefly summarize how the various types of measures
have typically been used in the reviewed studies.

Tomaszewski et al. [23] selected eight metrics out of 14 through a correlation analysis
using Spearman Rho. Among the measures selected were WMC and RFC [30], maximum
cyclomatic complexity [31] and some size metrics. In addition, the number of lines added or
modified since the previous release was used. In fact, this change metric was the best individual
predictor of fault density and number of faults.

In [38], the authors used fault and code measures data from the NASA Metrics Data
Program (MDP). There were 21 measures available as candidate predictors. Four different data
sets were used, and the most important metrics in each data set were selected using correlation-
based feature selection (CFS) [39]. Depending on the data set used, the number of variables was
reduced from 21 to three to seven. Among the variables selected were McCabe's cyclomatic
complexity and Halstead's intelligent count and difficulty metrics [40]. Also included were
several line count metrics: the number of lines including comments and number of blank lines.

Simula Technical Report TR-2008-06

 7

Vandecruys et al. [41] also used data from the NASA MDP. By using a χ²-based filter,
they selected only a subset of the metrics available – reducing the number of metrics to around
12 depending on the data set that was filtered. Among the metrics selected were Halstead volume
and error estimate [40], cyclomatic complexity [31], as well as several size-related metrics such
as the total lines of code and lines of comments.

Data available from the NASA MDP was also used in studies by Pai et al. [13] and Gondra
[42]. Pai et al. used the subset of the metrics which are associated with the work of Chidamber
and Kemerer: WMC, DIT, RFC, NOC, CBO, LCOM [30]. Their result showed that four metrics
were significant in predicting fault-proneness: WMC, CBO, RFC and lines of code. DIT, NOC
and to some degree LCOM, were not found to be significant. In [42], the system under study was
a system written in C. Thus, we consider the metrics investigated in this study of less importance
as our focus in this study is mainly on object-oriented systems. Gondra focused on the Halstead
metrics suite and a selection of size metrics and the prediction models yielded an accuracy
ranging from 0.73 to 0.87. Elish et al. [38] used the metrics available through NASA MDP to
compare several data mining techniques. The models yielded an accuracy ranging from 0.83 to
0.93, and nearly all of the precision and recall measures were above 0.9.

Briand et al. [43] investigated the impact of a large number of metrics on fault-proneness;
28 coupling measures, 10 cohesion measures, 11 inheritance-related measures and 6 size
measures. Each measure's impact on fault-proneness was evaluated through univariate logistic
regression. Three multivariate models were built; one using size metrics alone, one including
object-oriented measures like cohesion, coupling and inheritance, and one including both the size
measures and the object-oriented metrics as candidate predictors. The best model in terms of
correctness and completeness were the model based on object-oriented metrics alone, i.e.,
without the size metrics. This model obtained 92% completeness and 78% correctness using 10-
fold cross validation, as apposed to 94% completeness and 81% correctness when assessing
goodness-of-fit. The cross-validated accuracy of the model was 80%. Among the findings from
the univariate analyses were that coupling measures related to the number of method invocations
on a class X initiated from a class C, i.e., import coupling, have a significant impact on fault-
proneness for class C. That is, measures like RFC [30] and the ICP measures defined in [44]
seem to be related to fault-proneness. However, the fact that a class C is used by many other
classes, i.e., high export coupling, seems to have little effect on C’s fault-proneness. Both of
these findings are also supported in [45] and, to some extent, in [46] and [47]. Contradicting
evidence were found in [48], where export coupling measures were significantly associated with
fault-proneness. Further findings in [43] were that some of the cohesion measures were
significant with respect to fault-proneness (α=0.05). However, there is some disagreement on
what constitute a proper cohesion measure and the mathematical properties with which a
cohesion measures should comply [49] [50] [51]. All the inheritance measures were significant
predictors of fault-proneness (α =0.05); that is, the more ancestors a class inherits from, or the
deeper the class is in the inheritance hierarchy, the higher its fault-proneness. Further, as a class
overrides more methods or adds new methods, its fault-proneness also increases [43].

In [9], Olague et al. evaluated three metric suites; 1) the metrics proposed by Chidamber
and Kemerer [30], 2) the metrics proposed by Bansiya et al. [52], and 3) the metrics suite given
by Brito e Abreau et al. [53]. Of the three metric sets, the Chidamber and Kemerer metrics
resulted in the best models in terms of accuracy. Further, the only measures that were
significantly associated with faults across 6 successive releases of the Rhino system [54] were
RFC, CBO and WMC. The findings in [9] runs counter to [43]. In the former, the inheritance

Simula Technical Report TR-2008-06

 8

measures were not significantly associated with fault-proneness, while significant results were
found in the latter. However, the study by Briand et al. was performed in an academic setting at
an undergraduate/graduate level. Lack of experience might have influenced the understanding
and use of inheritance by the experiment subjects. The fact that inheritance measures DIT and
NOC are not a significantly associated with fault-proneness is further supported in [46]. In a
study by El Emam et al. [48] DIT was significantly associated with fault-proneness, while NOC
was not.

The regression analysis done by Subramanyam et al. [24] suggested that the interaction
between CBO and DIT has a significant impact on fault-proneness. A somewhat interesting
result was the impact that CBO had at different depths in the inheritance hierarchy (DIT). In the
C++ based system under study, the fault-proneness of classes with higher CBO values was
significantly larger for classes deeper down in the inheritance hierarchy.

Zhou et al. [10] distinguished between low and high severity faults. The results showed
that design metrics like CBO, DIT, WMC, RFC and LCOM were highly effective in predicting
low severity faults. However, none of the metrics led to suitable models to predict high severity
faults.

Although most of the research done in recent years focused on the impact of structural
properties on fault-proneness, a number of studies investigated other types of fault-proneness
factors. For example, Nagappan et al. [25, 28] used code churn together with dependency
metrics to predict fault-prone modules. Code churn is a measure of the amount of code change
within a component over time. Graves et al. [35] counted the number of changes done in a
module as well as the average age of the code. Referring to Graves et al., Weyuker et al.
constructed a fault-count prediction model using a number of process measures in addition to
structural measures. Weyuker et al. accounted for the number of developers who modified a file
during the prior release, and the number of new developers involved on a particular file. In
addition, they counted the cumulative number of distinct developers who have modified a file
during its lifetime. The model using these process measures showed only slight improvements
compared with a model using only structural measures.

Khoshgoftaar et al. [37] considered 14 process metrics, such as a variable counting the
number of updates done by designers who had 10 or less total updates in their entire company
career, the number of different designers making changes to a particular module, and the net
increase in lines of code (LOC) for each module. Khoshgoftaar et al. did not study the impact of
the individual measures on fault-proneness, but their prediction models achieved Type I and
Type II misclassification rates ranging within 25-30%. In [22], Kim et al. used deltas from 61
complexity metrics and a selection of process metrics, and achieved an accuracy ranging from
64% to 92% on twelve open source applications.

Most of the studies reviewed here considered structural measures, and there is considerable
evidence that coupling measures (such as CBO [30]) have an impact on fault-proneness. Further,
there is conflicting evidence on how inheritance measures affect fault-proneness although the
overall trend indicates that inheritance measures (such as DIT and NOC [30]) alone are not
strongly associated with fault-proneness. However, as there might be interaction effects between
inheritance measures and other metrics, this should be investigated further. As for cohesion
metrics, there is some empirical evidence suggesting that low cohesion is associated with fault-
proneness, but the results is not nearly as clear and strong as for coupling. Some of the studies
use process measures and deltas to assess fault-proneness. Most of the studies combine these

Simula Technical Report TR-2008-06

 9

measures with structural measures. Thus, based on the results of the reviewed studies, it is
difficult to assess the impact that process measures and deltas alone have on fault-proneness.

Although there is some empirical evidence regarding what factors drive fault-proneness,
building prediction models will remain an exploratory process as we have to expect wide
variations across datasets.

2.3 Data Modeling Techniques

Building fault-proneness prediction models has been a field of research for decades, but there is
still a need for an exploratory process as the number of variables often is large and their inter-
relationship and impact on fault-proneness is currently unknown. The field of data mining and
knowledge discovery facilitates the exploratory nature of building fault-proneness prediction
models.

There exists a large number of data analysis and mining techniques to build a fault-
proneness model, such as classification models determining whether classes or files are faulty. A
classical statistical technique used in many existing papers is logistic regression [55]. But many
techniques are also available from the fields of data mining, machine learning, and neural
networks [3]. One important category of machine learning techniques focuses on building
decision trees, which recursively partition a data set, and the most well-known algorithm is
probably C4.5 [56]. In our context, each leaf of a decision tree would then correspond to a subset
of the data set available (e.g., characterized by components’ source code characteristics and their
fault/change history, as described in Section 3.4) and this leaf’s fault frequency distribution can
be used for prediction when all the conditions leading to that leaf are met. Another similar
category involves coverage algorithms that generate independent rules where a number of
conditions are associated with a probability for a component to contain a fault based on the
instances each rule covers in the data set. As opposed to the divide-and-conquer strategy of
decision trees, these algorithms iteratively identify attribute-value pairs that maximize the
probably of the desired classification and, after each rule is generated, remove the instances that
it covers before identifying the next optimal rule.

Both decision tree or coverage rule algorithms generate models that are easy to interpret
(logical rules associated with probabilities) and therefore tend to be easier to adopt in practice as
practitioners can then understand why they get a specific prediction. Furthermore they are easy
to build (many freely available tools exist) and apply as they only involve checking the truth of
certain conditions. Another advantage is that, instead of relying on model-level accuracy (e.g.,
like for Logistic Regression), each rule or leaf has a specific expected accuracy. The level of
expected accuracy associated with a prediction therefore varies across predictions depending on
which rule or leaf is applied.

Other common techniques include Neural networks, for example the classical back-
propagation algorithm [57], which can also be used for classification purposes. A more recent
technique that has received increased attention in recent years across various scientific fields [58-
60] is the Support Vector Machine classifier (SVM) [3], which attempts to identify optimal
hyperplanes with nonlinear boundaries in the variable space in order to minimize
misclassification.

Machine learning techniques, such as classification trees, can be improved in terms of
accuracy by using metalearners. For example, decision trees are inherently unstable due to the
way their learning algorithms work: a few instances can dramatically change variable selection

Simula Technical Report TR-2008-06

 10

and the structure of the tree. The Boosting [3] method combines multiple trees, implicitly
seeking trees that complement one another in terms of the data domain where they work best.
Then it uses voting based on the classifications yielded by all trees to decide about the final
classification of an instance. How the trees are generated differ depending on the specific
algorithm, and one of the well-know algorithm is AdaBoost [61], which is designed specifically
for classification algorithms. It iteratively builds models by encouraging successive models to
handle instances that were incorrectly handled in previous models. It does so by re-weighting
instances after building each new model and builds the next model on the new set of weighted
instances. Another metalearner worth mentioning is named Decorate [3]. This recent technique is
claimed [62] to consistently improve not only the base model but also outperform other
techniques such as Bagging and Random forest. It is also supposed to outperform boosting on
small training sets and rival it on larger ones [3].

Another way to improve classifier models is to use techniques to pre-select variables or
features, to eliminate most of the irrelevant variables before the learning process starts. When
building models to predict fault-prone components, we often do not have a strong theory to rely
on and the process is rather exploratory. As a result, we often consider a large number of
possible predictors, many of which turn out not to be useful or strongly correlated. Though in
theory the more information one uses to build a model, the better the chances to build an accurate
model, studies have shown that adding random information tends to deteriorate the performance
of C4.5 classifiers [3]. This happens because as the tree gets built, the algorithm works with a
decreasing amount of data, which may increasingly lead to chance selection of irrelevant
variables. The number of training instances needed for instance-based learning increases
exponentially with the number of irrelevant variables present in the data set. Strong inter-
correlations among variables also affect variable selection heuristics in regression analysis [55].
A recent paper [63] compared various variable selection schemes. The authors concluded by
recommending a number of techniques which vary in terms of their computational complexity.
Among them, two efficient techniques were reported to do well: CFS [39] and ReliefF [64].

Because it is a standard and well-established approach, multivariate logistic regression
seems to be one of the most popular techniques for building fault-proneness models, e.g., [65],
[43], [48], [23], [25], [9] and [45]. In these studies, the dependent variable is dichotomous: it
reflects whether or not a component contains a fault that was uncovered either during system test
or operation. Such models output the probability that a given component contains one or more
faults. Other studies count the number of faults that has previously occurred in a component, and
use this count as a dependent variable, e.g., [15, 17] and [11]. Ostrand et al. [15, 17] applied
negative binomial regression, which is a suitable regression technique when dealing with skewed
right-tail count distributions with low averages. The output of a negative binomial regression
model is a conditional probability that a component contains n faults, e.g., “given that a
component has a coupling equal to 3 and a cyclomatic complexity equal to 8, what is the
probability that the component contains 2 faults?”. Because in most cases, a majority of classes
do not contain faults and many fault count distributions show a median close to zero, zero
inflated regression models might be more appropriate [11]. Janes et al. compared regular Poisson
regression with negative binomial regression, with and without the zero-inflated version [11].
The zero-inflated approach yielded the best results in terms of what percentage of classes needed
to be inspected to find 80% of the faults.

As discussed in Section 2.2, object-oriented structural measures are among the most
frequently used predictors of fault-proneness. A possible problem using these measures in the

Simula Technical Report TR-2008-06

 11

context of regression techniques is that they often are correlated [4]. When this correlation is
extreme, the estimation of coefficients in logistic regression becomes difficult and inaccurate, a
problem referred to as multicollinearity [55]. One way of dealing with multicollinearity is to
apply principal component analysis (PCA) [66]. Principal component analysis creates a number
of orthogonal (uncorrelated) principal components (PCs) that are linear combinations of the
original independent variables. These PCs may be applied directly as new independent variables
in a regression model. Alternatively, PCA can be used to select a subset of the variables, e.g., by
selecting the variable with the highest loading within each PC, and use these variables as
independent variables. Also, PCA can be used simply to analyze the dimensions captured by a
set of measures and help understand what these measures really capture [46].

Another way of dealing with multicollinearity is to examine the variance inflation factor
(VIF). For each coefficient, VIF measures how much of the variance is inflated due to
collinearity compared to what the variance would have been if there was no multicollinearity.
Although one should be careful to use specific thresholds as a rule of thumb [67], VIF values
greater than 10 may indicate multicollinearity problems and these variables should be
investigated further [68],.

Though extreme multicollinearity among independent variables may lead to unstable
coefficients, misleading statistical tests, and unexpected coefficient signs [6], in the context of
prediction models the main purpose is not to interpret the coefficients to explain why a class has
a certain fault-proneness. Thus, multicollinearity is not a major problem if it remains at moderate
levels. Nonetheless, one should be aware that testing the significance of the independent
variables in a multivariate model is unreliable when multicollinearity is present.

Some of the studies applying multivariate regression, e.g., [25, 26], used PCA to alleviate
multicollinearity issues. Others, such as [9, 48], applied univariate analysis on each measure, and
built a prediction model using those measures that are significant with respect to fault-proneness.
Others again, used either forward or backward stepwise regression to select significant variables
[46].

Lately, there has been an increasing interest in alternatives to logistic regression. Briand et
al. discussed the downsides on using traditional regression techniques, and suggested using
multivariate adaptive regression splines (MARS) [69], because MARS suites the exploratory
nature of building prediction models [46]. The MARS model performed slightly better in terms
of accuracy, completeness and correctness, compared to logistic regression. Also, the authors did
a cost/benefit analysis similar to those of an Alberg-diagram [70], which suggested the MARS
model outperformed the model built using logistic regression in terms of cost-effectiveness.

Khoshgoftaar et al. [19] compared seven models that were built using a variety of tools.
The models were built using different regression and classification trees including C4.5, CHAID,
Sprint-Sliq and different versions of CART. Also included in the study were logistic regression
and case-based reasoning. The techniques were evaluated against each other by comparing a
measure of expected cost of misclassification. The differences between the techniques were at
best moderate.

Vandecruys et al. compared Ant Colony Optimization against well-known techniques like
C4.5, support vector machine (SVM), logistic regression, K-nearest neighbour, RIPPER and
majority vote [41]. In terms of accuracy, C4.5 was the best technique. However, the differences
between the techniques in terms of accuracy, sensitivity and specificity were moderate.

Kanmani et al. [12] compared two variants of artificial neural networks against logistic
regression and discriminant analysis. Neural network outperformed the traditional statistical

Simula Technical Report TR-2008-06

 12

regression techniques in terms of correctness and completeness. The possible benefits of neural
networks was also explored by Gondra [42]. In addition, Gondra studied the usefulness of
support vector machines (SVMs) to perform simple classification. When considering fault-
proneness as a binary classification problem (i.e. faulty vs. non-faulty) using a threshold of 0.5,
the accuracy was 87,4% when using SVM compared to 72,61% when using neural networks –
suggesting that SVM is a promising technique for classification within the domain of fault-
proneness prediction. Success in using SVMs is also reported in [38], where SVM was evaluated
against eight other data mining techniques; logistic regression, neural network, radial basis
function, Bayesian belief network, naïve Bayes, Random Forest and the C4.5 decision tree
algorithm. There were some statistically significant differences between the techniques, but the
differences were quite small from a practical standpoint.

Guo et al. [21] compared Random Forest [71] with 26 other modeling techniques including
logistic regression and 20 techniques available through the WEKA tool. The study compared the
techniques using five different datasets from the NASA MDP program, and although the results
showed that Random Forests perform better than many other classification techniques in terms of
accuracy and specificity, the results were not significant in four of the five data sets. In Elish
[38], the authors compared SVM against eight other modeling techniques, among them Random
Forest. The modeling techniques were evaluated in terms of accuracy, precision, recall and the F-
measure using four data sets from the NASA MDP program. All techniques achieved an
accuracy ranging from approximately 0.83 to 0.94. As with the other studies reviewed here, there
were some differences, but no single modeling technique was significantly better than the others
across data sets.

In this section, we have elaborated on the model building techniques that typically have
been used to build fault proneness prediction models. Seven of the studies reviewed compared
several modeling techniques [10, 19, 21, 38, 41, 72, 73]. The overall trend seem to be that there
are some differences between techniques, but there are wide variations across datasets and
studies in terms of which technique yield the best models. In addition, there is little consistency
on how the models are evaluated, a topic elaborated in the next section. Thus, it is difficult to
compare the results and draw conclusions from these studies.

2.4 Evaluation Criteria and Methods

In this section we describe how fault-proneness prediction models should be evaluated, in terms
of evaluation criteria and evaluation methods. First, in terms of evaluation criteria, there are three
main aspects of the “quality” of prediction models that we may want to assess:

• Goodness-of-fit tells us how well the model explains the data that were used to
build the model. Among the most popular measures for models with a
continuous dependent variable is the coefficient of determination, R², which is
the amount of variability in the dependent variable that is explained by the
model.

• Predictive power is an assessment of how the model performs when predicting
based on data that was not used to build the model and that may represent more
recent observations.

• Cost/benefits assessments tells us what are the costs accompanied with
applying a particular prediction model, e.g., the costs of data collection and

Simula Technical Report TR-2008-06

 13

model building, and what benefits can be drawn from using this model, e.g.,
less latent faults and improved quality using less resources. Measures of costs
and benefits tend to be context-dependent.

In many cases, fault-proneness is measured on a continuous scale, for example as a fault
count or fault density. However, many of the model building techniques described in the
previous subsection are classifiers. That is, they classify software components as faulty or non-
faulty. Or rather than a mere classification, most of the classifiers output a probability for a
component to be faulty. To distinguish, based on such probabilities, faulty classes from non-
faulty-ones, one is required to predefine a certain threshold, or cut-off probability value. By
default, this cut-off is 0.5, i.e., components having a probability p>0.5 are classified as faulty
whereas the remaining classes are classified as non-faulty. Since we cannot expect a classifier to
be 100% accurate, some instances will not be correctly classified. These instances fall into two
categories: Type I errors and Type II errors, or false positives and false negatives, respectively. A
false positive is a non-faulty class erroneously classified as fault-prone, while a false negative is
a faulty class that is misclassified as non-faulty. By varying the cut-off value, one can to some
degree control the ratio of false positives versus false negatives.

In the context of software development and testing, the later you discover a fault the more
expensive it is to fix. Hence, if the scope of a fault-proneness prediction model is to focus testing
activities, the cost of missing a faulty class (i.e., a false negative) will in most cases outweigh the
cost of testing a non-faulty class (i.e., a false positive). A confusion matrix, shown in Figure 1,
can be used to show to relative frequency or number of false positives and false negatives
compared to the ratio or number of correctly classified instances, i.e., true positives and true
negatives. Many of the measures that are used to evaluate classifiers can be derived from the
confusion matrix. A selection of these measures are explained below. However, although they
give an indication as to how well a particular prediction model performs in terms of
classification accuracy, they are not directly linked to the possible cost-effectiveness of using
such models. Towards the end of this section we elaborate on some criteria that can be used to
assess the cost-effectiveness of prediction models.

 Actual
 Positive Negative

Predicted
by model

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Figure 1: The confusion matrix

One of the popular measures in the literature that can be derived from the confusion matrix

is accuracy. Accuracy is the ratio of correctly classified instances.

Accuracy = TP+TN / (TP + FP + TN + FN)

Simula Technical Report TR-2008-06

 14

However, the accuracy measure is somewhat ambiguous; although an accuracy of exactly 1
indicates that all instances are correctly classified, an accuracy of 0.8 reflect that 80% of the
instances are correctly classified; it does not state whether the remaining 20% are mainly false
positives or false negatives. Thus, if we want to determine an appropriate trade-off between type
I and type II errors, accuracy is not a suitable measure.

Sensitivity and specificity are fine-grained measures that enable us to assess the trade-off
between type I and type II errors. The former measure is the percentage of actual positives that
are correctly classified, i.e., in our context, the percentage of faulty components classified as
such. Sensitivity serves as a measure of how many faulty components we are likely to find (or
conversely miss) if we use the prediction model.

Sensitivity = TP / (TP + FN)
Specificity = TN / (FP +TN)

Specificity is the number of non-faulty components correctly classified. Sensitivity is also
referred to as recall, and is not to be confused with the term completeness, which in our context
would be defined as the number of faults found in the components classified as fault-prone
divided by the total number of faults in the system [4].

Precision is often used in conjunction with recall (sensitivity). It is the number of instances
correctly classified as fault-prone (true positives) divided by the total number of instances
classified as fault-prone.

Precision = TP / (TP + FP)

It is possible to increase recall by lowering the cut-off value described earlier. In practice,
however, this often results lower precision; as we are lowering the threshold, more classes are
erroneously predicted as faulty (false positives) and precision drops.

Khoshgoftaar et al. suggested that fault-proneness models should be evaluated using two
additional evaluation criteria allowing one to assess the inaccuracy of prediction models [74].
The authors defined Type I and Type II misclassification rates as the ratio of Type I and Type II
errors respectively.

Type I misclassification rate = FP / N
Type II misclassification rate = FN / N

 A major part of the studies reviewed use a number of the measures derived from the
confusion matrix to evaluate their models. Although most studies use the standard cut-off of 0.5
to distinguish the fault-prone components from the less faulty ones, some studies vary the cut-off
to find an optimal trade-off between Type I and Type II errors, e.g., [37, 72]. Because the Type II
errors are considered the most expensive of the two types of errors, the importance of
considering Type II misclassification rates is emphasized by Ostrand et al. [16].

All the measures described up to this point are evaluation criteria for classifiers. That is, in
the context of fault-proneness models, these measures assess the accuracy of a particular model
with regards to component fault-proneness classification. These measures require that one
predefines a cut-off probability value, and although these measures are useful, the intent of fault-
proneness prediction models is not only to classify instances. For example, if the prediction
model was to be used to focus testing on fault-prone components, we would be more interested
in the ranking of the component, and use the ranking to prioritize their testing. Consequently, it
would be preferable to be able to assess how well a particular model is at ranking instances in a
correct manner. Further, it would be preferable to evaluate the performance of a prediction model

Simula Technical Report TR-2008-06

 15

without first having to choose a specific cut-off value. This is the objective of the receiver
operating characteristic (ROC) curve. The ROC curve is a plot of sensitivity versus 1-specificity.
Thus, the ROC curve depicts the benefits of using the model (true positives) versus the costs of
using the model (false positives) at different thresholds. The ROC curve allows one to assess
performance of a prediction model in general – regardless of any particular cut-off value. The
area under the ROC curve can be used as a descriptive statistic, and is the estimated probability
that a randomly selected positive instance will be assigned a higher predicted p by the prediction
model than another randomly selected negative instance [75]. Hence, this statistic quantifies a
model’s ability to correctly rank instances. Not many studies use ROC curves to assess the
performance of their models. Khoshgoftaar et al. used the ROC curve to optimize the models by
selecting an appropriate probability cut-off used to distinguish between faulty and non-faulty
components [48]. Arisholm et al. used the area under the ROC curve to compare prediction
models [73].

In addition to the regular confusion matrix criteria, some studies assess the usefulness of
their prediction models using measures of a more practical nature. One example is the expected
cost of misclassification [76]. However, as stated in [19], one should be careful about using this
measure for model selection purposes. Another evaluation method is the Alberg-diagram [70], in
which the components first are sorted in descending order according to their (predicted) fault
probability. The x-axis shows the cumulative number of components, whereas the y-axis shows
the cumulative number of faults. This curve can then be compared with an optimal curve, in
which the components are sorted according to the actual number of faults instead of the fault
probability. Three studies [11, 13, 65] evaluate their prediction models using Alberg-diagrams in
addition to some of the confusion matrix criteria and R2. Ostrand et al. propose another measure
to assess the usefulness of their models; the percentage of faults included in the 5% to 20% of the
most fault-prone components as predicted by the model [15, 16, 18]. Tomaszewski et al.
proposed a measure of the presumed cost reduction in terms of percentage of faults found
compared to not using any model at all, and a model based on size, i.e., where the fault-prone
components are selected according to their size as larger components (are assumed) to be more
fault-prone [23]. Further, Tomaszewski et al. compared their prediction models against an
optimal model. Ostrand et al. assess their models by investigating whether the percentage of
LOC in 20% of the files predicted as most fault-prone is smaller than the percentage of faults
[17].

Though relevant, the problem with most existing evaluation criteria is that they do not
clearly and directly relate to the cost effectiveness of using fault-proneness prediction models.
For example, assuming a class is predicted as very likely to be faulty, one would take corrective
action by investing additional effort to inspect and test the class. Furthermore, if we assume that
the cost of such activities might be roughly proportional to some property of that class, e.g., its
size or complexity, such properties can be used as surrogate measures of the verification cost.
The choice of surrogate measure will depend on the specific verification activities undertaken. In
our previous work we proposed such a cost-effectiveness measure that not only considers the
accuracy of the predictions, but also accounts for the assumed cost of using the model to focus
verification and validation activities [72, 73]. Further details will be elaborated in Section 3.7.

The above discussions focused on the evaluation criteria that can be used. How the
prediction model is applied for the purpose of model assessment is also of crucial importance.
Many studies evaluate their fault-proneness models by applying it to the same data set that was
used to build the model, e.g., [11, 16, 20, 23, 24]. These studies are merely doing a goodness-of-

Simula Technical Report TR-2008-06

 16

fit analysis, that is, they assess how well the model is at explaining the data that were used to
build the model. If the intent is to use these fault-proneness models to predict fault-proneness on
new and unknown data, this procedure is not suitable. Rather, a prediction model should be
evaluated on new data to obtain more sensible measures of the predictive power of a particular
model. Mainly, there are two ways of validating a prediction model; either by (1) dividing the
data set in two parts; one training set and one test set (hold-out validation), or (2) by doing what
is called k-fold cross-validation. In hold-out validation, typically 2/3 of the data forms the
training set, while 1/3 is used as a test set to validate the model. This procedure is suitable when
the data set is large enough to allow a proper training set to be formed. If the data set is small,
one may resort to k-fold cross validation, where the data set is divided into k parts. Then, k
models are built where each of the k subsets is successively used as a test set, while the other k-1
subsets form the training set. As k models have to be built, k-fold cross-validation is more
computationally intensive than a simple hold-out cross-validation. Ultimately, in the context of
fault-proneness prediction models, the training set should consist of one or several releases of a
software system, while the training set should consists of later releases of the same system or
even releases of another system. Nearly a third of the studies reviewed use later releases as
separate test sets [8, 9, 15, 17-19, 27, 73]. Two of these studies apply the prediction models on
another system [8, 17].

A major issue in the studies reviewed, is the fact that the models are evaluated using
criteria that are not directly linked to the possible costs and benefits of using the prediction
models in different contexts, e.g., focusing verification and validation efforts. Further, many
studies only considers goodness-of-fit, and do not assess the predictive power of their models on
new data, and thus they run the risk of having models that are overfitted, giving optimistic
estimates of predictive power. Further, as each study use different evaluation criteria,
comparisons of results across studies are difficult.

2.5 Types of System

There are many different types of system that have been investigated in recent studies, ranging
from large industry systems consisting of hundreds of thousands lines of code, to small systems
developed by students in an academic setting. All of the studies reviewed are case studies. So far,
there exists no experiment in a controlled environment, although this presumably could be
beneficial to obtain a more in-depth understanding of the causal relationships between candidate
predictors and fault-proneness, as illustrated by the somewhat inconsistent results reported in
Section 2.2.

A large part of the studies reviewed here collected data from large commercial or legacy
software projects [8, 11, 14-20, 23-27, 37, 72, 73]. Many studies [10, 13, 21, 38, 41, 42] used the
data sets available through NASA MDP, making it possible to compare results across studies.
With the increasing popularity and availability of open source software projects, some studies [9,
22, 65] rely on open source system repositories. However, a study by Chen et al. [77] uncovered
large deficiencies in such repositories. Thus, researchers need to take great care in using open
source software as research subjects.

Two thirds of the studies reviewed investigate object-oriented systems, while a minor part
of the studies investigate systems written in a procedural language. Others again, investigate
systems developed using both paradigms; mainly those studies that use the data available
through NASA MDP.

Simula Technical Report TR-2008-06

 17

2.6 Summary

In summary, few studies have compared a comprehensive set of data mining techniques for
building fault-proneness prediction models to assess which techniques are more likely to be
accurate in various contexts. Most models were evaluated through different confusion matrix
criteria and, as a result, it is difficult to provide general conclusions. However, results suggest
that the differences between modeling techniques might be relatively small. Most existing
studies have used structural measures as candidate predictors whereas only a subset have also
included other measures, usually more expensive to collect, such as code churn and process
measures. However, no studies have so far attempted to evaluate the benefits of including such
measures in comparison with models that contain only structural code measures. In this paper,
we assess, in a systematic way, how both the choice of modeling technique and the selection of
different categories of candidate measures affect the accuracy and cost-effectiveness of the
resulting prediction models based on a complete set of evaluation criteria. We furthermore assess
how the choice of evaluation criteria affects what is deemed to the “best” prediction model.

3 Design of Study
When building fault-proneness prediction models, many decisions have to be made regarding the
choice of dependent and independent variables, modeling technique, evaluation method and
evaluation criteria. As discussed in the previous section, no systematic study has been performed
to assess the impact of such decisions on the resulting prediction models. This paper compares
alternative fault-proneness prediction models where we systematically vary three important
dimensions of the modeling process: modeling technique (e.g., C4.5, neural networks, logistic
regression), categories of independent variables (e.g., process measures, object-oriented code
structural measures, code churn measures) and evaluation criteria (e.g., accuracy, ROC, and cost-
effectiveness). We assess (i) to what extent different data mining techniques affect prediction
accuracy and cost effectiveness, (ii) the effects of using different sets of measurements (with
different data collection costs) on the accuracy and cost-effectiveness of the fault-proneness
predictions models, and (iii) how our decisions in terms of selecting the “best” model would be
affected by using the different evaluation criteria. This section describes the development
project, study variables, data collection, and model building and evaluation procedures.

3.1 The Development Project

The legacy system studied is a Java middleware system called COS, serving the mobile division
in a large telecom company. COS provides more than 40 client systems with a consistent view
across multiple back-end systems, and has evolved through 22 major releases during the past
eight years. At any point in time, 30 to 60 software engineers were involved in the project. The
core system currently consists of more than 2600 Java classes amounting to about 148 KSLOC.
In addition to this, the system consists of a large number of test classes, library classes, and about
1000 KSLOC of generated code, but this code is not considered in our study. As the system
expanded in size and complexity, QA engineers felt they needed more sophisticated techniques
to focus verification activities on fault-prone parts of the system. We used 13 recent releases of
this system for model building and evaluation. As a first step, the focus was on unit testing in
order to eliminate as many faults as possible early on in the verification process by applying
more stringent test strategies to code predicted as fault-prone.

Simula Technical Report TR-2008-06

 18

3.2 Data Collection Procedures

Perl scripts were developed to collect file-level change data for the studied COS releases through
the configuration management system (MKS). In our context, files correspond to Java public
classes. The data model is shown in Figure 2. Each change is represented as a change request
(CR). The CR is related to a given releaseId and has a given changeType, defining whether the
change is a critical or non-critical fault correction, a small, intermediate, or large requirement
change, or a refactoring change. An individual developer can work on a given CR through a
logical work unit called a change package (CP), for which the developer can check in and out
files in relation to the CR. For a CP, we record the number of CRs that the responsible developer
has worked on prior to opening the given CP, and use this information as a surrogate measure of
that person’s coding experience on the COS system. For each Class (file) modified in a CP, we
record the number of lines added and deleted, as modeled by the association class CP_Class.
Data about each file in the COS system is collected for each release, and is identified using a
unique MKSId, which ensures that the change history of a class can be traced even in cases
where it changes location (package) from one release to the next. This traceability turned out to
be crucial in our case because we wanted to keep track of historic changes and faults for each
class, and there were quite a few refactoring changes in the project that would result in loss of
historic data if we did not use the MKDId to uniquely identify each class. Finally, for each
release, a code parser (JHawk [78]) is executed to collect structural measures for the class, which
are combined with the MKS change information. Independent (change, process, and code
structure measurements) and dependent variables (Faults in the next release) were computed on
the basis of the data model presented in Figure 2.

3.3 Dependent Variable

The dependent variable in our analysis was the occurrences of corrections in classes of a specific
release which are due to field error reports. Since our main current objective was to facilitate unit
testing and inspections, the class was a logical unit of analysis. Given that our aim was to capture
the fault-proneness of a class in a specific release n, and that typically a fault correction involved
several classes, we decided to count the number of distinct fault corrections that was required in
each class for developing release n+1. Furthermore, in this project, only a very small portion of
classes contained more than one fault for a given release, so class fault-proneness in release n is
therefore treated as a classification problem and is estimated as the probability that a given class
will undergo one or more fault corrections in release n+1.

Simula Technical Report TR-2008-06

 19

3.4 Explanatory Variables

Though many studies on predicting fault-prone classes on the basis of the structural properties of
object-oriented systems have been reported (Section 2), a specificity of the study presented here
is the fact that we needed to predict fault-proneness for a changing legacy system. Thus, in
addition to structural measures, similar to other studies [16-18, 22, 25, 28, 35, 37, 73, 79, 80] we
also use data on changes and fault corrections for specific releases and their impact on the code.
In our context, past change and fault data could be useful to help predicting fault-proneness by
identifying what subset of classes have shown to be inherently fault and change prone in the past.
Our explanatory variables can be classified into three categories:

• Object-oriented (OO) code measures, i.e., measures of structural properties
derived from the source code. In this study, the JHawk tool was used to collect
such measures, as shown in Table 1.

• Delta measures: These measures capture the amount of change – sometimes called
churn – in a file between two successive releases. In this study, the delta measures
were computed from the JHawk measures given in Table 1.

• Process measures: In this study, the process measures were collected from the
configuration management system (MKS), and included a surrogate measure of
the experience of each developer performing each change, the number of
developers that have made changes to a file, the number of faults in previous
release(s) and simpler measures such as the accumulated number of lines added
and/or removed in a given release.

The fundamental hypothesis underlying our work is that the fault-proneness of classes in a
legacy, object-oriented system can be affected by these measures. Furthermore, it is also likely

Figure 2: Data Model

1

1..*

0..*0..'

CR
releaseId:string
changeType:string
description:string
openDate:int
closeDate:int
numberDevInvolved:int
numberCps:int
numberFilesChanged:int
numberTestFailed:int
<additional info related to
branching and merging> CP_Class

nLinesIn:int
nLinesOut:int

CP
numberPastCR:int
openDate: date
openTime: time
closeDate: date
closeTime: time

Class
MKSId:string
packageName:string
fileName:string
releaseId:string
<JHAWK data>

Simula Technical Report TR-2008-06

 20

that these factors interact in the way they affect fault-proneness. For example, changes may be
more fault-prone on larger, more complex classes. The data mining techniques used to build the
models will account for such interactions.

The three categories of measures (OO, Delta and Process) incur different costs in terms of
data collection effort and process instrumentation requirements. OO measures can be collected
from simple code snapshots, Deltas require that different versions of the system be available,
whereas Process measures require that developers record detailed information about their work
(e.g., changes and fault corrections, developer info, time of changes, whether a change passed
certain test procedures) in a systematic and consistent way in configuration management or
change management systems. To assess the relative importance of the individual categories of
explanatory variables (OO, Delta and Process), they were combined to construct seven different
candidate metric sets (OO, Delta, Process, OO + Delta, Process + OO, Process + Delta, Total).
In Section 4.2 we will show how the many different measures of accuracy and cost effectiveness
of the fault-proneness prediction models are affected by the choice of metric set. In this way, we
will not only be able to compare individual categories of measures (e.g., Process vs. OO) but
also assess the potential impact of combining measures (e.g., Process + OO) with regards to a
comprehensive set of evaluation criteria (Section 3.7). Based on such analyses, we will be in a
better position to determine whether the added cost of collecting, for example, process measures
will result in payoffs in terms of better fault-proneness prediction models.

3.5 Model Building Techniques

A detailed description of many of the most popular techniques for building fault-proneness
prediction models was provided in Section 2. In this study we compared one classification tree
algorithm (C4.5) as it is the most studied in its category, the most recent coverage rule algorithm
(PART) which has shown to outperform older algorithms such as Ripper [3], Logistic Regression
as a standard statistical technique for classification, Back-propagation neural networks as it is a
widely used technique in many fields, and SVM.

For C4.5, we also applied the AdaBoost and Decorate metalearners [3], because decision
trees are inherently unstable due to the way their learning algorithms work, and thus we wanted
to assess the impact of using metalearners on C4.5. We included Decorate in addition to
Adaboost because it is supposed to outperform boosting on small training sets and rivals it on
larger ones.

Furthermore, as the outputs of leaves and rules are directly comparable, we combined C4.5
and PART predictions by selecting, for each class instance to predict, the rule or leaf that yields a
fault probability distribution with the lowest entropy (i.e., the fault probability the furthest from
0.5, in either direction). This allows us to use whatever technique works best for each prediction
instance.

For each metric set, we also used CFS (Correlation-based Feature Selection) [39] to pre-
select variables, as further described in Section 2, to assess the effect of such variable pre-
selection on the prediction model performance.

All of the above techniques were applied using the WEKA tool and are described in [3].
An attempt was made to optimize the parameters of various techniques, but in most cases the
impact of varying these parameters was small and we resorted to using the WEKA default
parameters.

Simula Technical Report TR-2008-06

 21

Table 1: Summary of the explanatory variables

Variable Description Source
O

O

No_Methods | NOQ | NOC Number of [implemented | query | command] methods in the class JHawk

LCOM Lack of cohesion of methods JHawk

TCC | MAXCC | AVCC [Total|Max|Avg] cyclomatic complexity in the class JHawk

NOS | UWCS Class size in [number of Java statements | number of attributes + number of methods] JHawk

HEFF Halstead effort for this class JHawk

EXT/LOC Number of [external | local] methods called by this class JHawk

HIER Number of methods called that are in the class hierarchy for this class JHawk

INST Number of instance variables JHawk

MOD Number of modifiers for this class declaration JHawk

INTR Number of interfaces implemented JHawk

PACK Number of packages imported JHawk

RFC Total response for the class JHawk

MPC Message passing coupling JHawk

FIN The sum of the number of unique methods that call the methods in the class JHawk

FOUT Number of distinct non-inheritance related classes on which the class depends JHawk

R-R | S-R [Reuse | Specialization] Ratio for this class JHawk

NSUP | NSUB Number of [super | sub] classes JHawk

MI | MINC Maintainability Index for this class [including | not including] comments JHawk

D
el

ta
 For each OO measure X above:

delta_<X> The difference in each OO measure X between two successive releases. Calculated

Pr
oc

es
s

[nm1|nm2|nm3]_CLL_CR The number of large requirement changes for this class in release [n-1 | n-2 | n-3] MKS

[nm1|nm2|nm3]_CFL_CR The number of medium requirement changes for this class in release [n-1 | n-2 | n-3] MKS

[nm1|nm2|nm3]_CKL_CR The number of small requirement changes for this class in release [n-1 | n-2 | n-3] MKS

[nm1|nm2|nm3]_M_CR The number of refactoring changes for this class in release [n-1 | n-2 | n-3] MKS

[nm1|nm2|nm3]_CE_CR The number of critical fault corrections for this class in release [n-1 | n-2 | n-3] MKS

[nm1|nm2|nm3]_E_CR The number of noncritical fault corrections for this class in release [n-1 | n-2 | n-3] MKS

numberCRs Number of CRs in which this class was changed MKS

numberCps Total number of CPs in all CRs in which this class was changed MKS

numberCpsForClass Number of CPs that changed the class MKS

numberFilesChanged Number of classes changed across all CRs in which this class was changed MKS

numberDevInvolved Number of developers involved across all CRs in which this class was changed MKS

numberTestFailed Total number of system test failures across all CRs in which this class was changed MKS

numberPastCr Total developer experience given by the accumulated number of prior changes MKS

nLinesIn Lines of code added to this class (across all CPs that changed the class) MKS

nLinesOut Lines of code deleted from this class (across all CPs that changed the class) MKS

 For CRs of type Y={CLL, CFL, CKL, M, CE, E}:

<Y>_CR Same def as numberCRs but only including the subset of CR’s of type Y MKS

<Y>_CPs Same def as numberCpsForClass but only including the subset of CR’s of type Y MKS

<Y>numberCps Same def as numberCps but only including the subset of CR’s of type Y MKS

<Y>numberFilesChanged Same def as numberFilesChanged but only including the subset of CR’s of type Y MKS

<Y>numberDevInvolved Same def as numberDevInvolved but only including the subset of CR’s of type Y MKS

<Y>numberTestFailed Same def as numberTestFailed but only including the subset of CR’s of type Y MKS

<Y>numberPastCr Same def as numberPastCr but only including the subset of CR’s of type Y MKS

<Y>nLinesIn Same def as nLinesIn but only including the subset of CR’s of type Y MKS

<Y>nLinesOut Same def as nLinesOut but only including the subset of CR’s of type Y MKS

Simula Technical Report TR-2008-06

 22

3.6 Training and Evaluation Datasets

To build and evaluate the prediction models, class-level structural and change/fault data from 13
recent releases of COS were used. The data was divided into four separate subsets, as follows.
The data from the 11 first releases was used to form two datasets, respectively a training set to
build the model and a test set to evaluate the predictions versus actual class faults. More
specifically, following the default setting of most tools, two thirds of the data (16004 instances)
were randomly selected as the Training dataset, whereas the remaining one third (8002
instances) formed the Excluded test dataset. Our data set was large enough to follow this
procedure to build and evaluate the model without resorting to cross-validation, which is much
more computationally intensive. Also, the random selection of the training set across 11 releases
reduced the chances for the prediction model to be overly influenced by peculiarities of any
given release. Note that in the training set, there were only 303 instances representing faulty
classes (that is, the class had at least one fault correction in the next release). This is due to the
fact that, in a typical release, a small percentage of classes turn out to be faulty. Thus, to facilitate
the construction of unbiased models, we created a balanced subset (606 rows) from the complete
training set, consisting of the 303 faulty classes and a random selection of 303 rows representing
non-faulty classes. The proportions of faulty and correct classes were therefore exactly 50% in
the training set and the probability decision threshold for classification into faulty and correct
classes for the test sets can therefore be set to 0.5. Nearly all the techniques we used performed
better (sometimes very significantly) when run on this balanced dataset. Consequently, the
models reported in this paper were built using this subset of 606 instances.

Finally, the two most recent of the 13 selected releases formed the third and forth distinct
datasets, hereafter referred to as the COS 20 and COS 21 datasets, which we also used as test
sets. The Excluded test set allows us to estimate the accuracy of the model on the current (release
11) and past releases whereas the COS 20 and COS 21 test sets indicate accuracy on future
releases. This will give us insights on any decrease in accuracy, if any, when predicting the
future. The results given in Section 4 were obtained using only the test set (Excluded) and the
two evaluation sets (COS 20 and COS 21), i.e., the training set was not included. By not
including the training set, the results can be interpreted as what one could expect when applying
the models on a new set of classes or a new system version.

3.7 Model Evaluation Criteria

Having described our model evaluation procedure, we now need to explain what model accuracy
criteria we used. The alternative prediction models were assessed on the basis of all of the
following criteria in order to 1) provide a comprehensive comparison of the models and 2) to
assess how the choice of criteria affects the ranking of models.

First, we used several confusion matrix criteria [3], including accuracy, precision and
recall and Type I/II misclassification rates. For example, in our context, precision is the
percentage of classes classified as faulty that are actually faulty and is a measure of how
effective we are at identifying where faults are located. Recall is the percentage of faulty classes
that are predicted as faulty and is a measure of how many faulty classes we are likely to miss if
we use the prediction model. We also used the Receiver Operating Characteristic (ROC) area [3].
The larger the area under the ROC curve (the ROC area), the better the model. A perfect
prediction model, that classifies all instances correct, would have a ROC area of 100%. See
Section 2.4 for further details.

Simula Technical Report TR-2008-06

 23

As discussed in Section 2.4, the problem with the general confusion matrix criteria and
ROC is that they are designed to apply to all classification problems and they do not clearly and
directly relate to the cost effectiveness of using class fault-proneness prediction models in our or
any other given application context. Assuming a class is predicted as very likely to be faulty, one
would take corrective action by investing additional effort to inspect and test the class. In our
context, we consider the cost of such activities to be roughly proportional to the size of the class.
For example, regarding control flow testing, many studies show that cyclomatic complexity
(number of independent control flow paths) is strongly correlated with code size [23]. Though
this remains to be empirically investigated, this suggests that control flow testing over a large
number of classes should be roughly proportional to the size of those classes.

Given the above assumption, if we are in a situation where the only thing a prediction
model does is to model the fact that the number of faults is proportional to the size of the class,
we are not likely to gain much from such a model. What we want are models that capture other
fault factors in addition to size. Therefore, to assess cost effectiveness, we compare two curves as
exemplified in Figure 3. Classes are first ordered from high to low fault probabilities. When a
model predicts the same probability for two classes, we order them further according to size so
that larger classes are selected last. The solid curve represents the actual percentage of faults
given a percentage of lines of code of the classes selected to focus verification according to the
abovementioned ranking procedure (referred to as the model cost effectiveness (CE) curve). The
dotted line represents a line of slope 1 where the percentage of faults would be identical to the
percentage of lines of code (% NOS) included in classes selected to focus verification. This line
is what one would obtain, on average, if randomly ranking classes and is therefore a baseline of
comparison (referred to as the baseline). Based on these definitions and the assumptions above,
the overall cost-effectiveness of fault predictive models would be proportional to the surface area
between the CE curve and the baseline. This is practical as such a surface area is a unique score
according to which we can compare models in terms of cost-effectiveness regardless of a
specific, possibly unknown, NOS percentage to be verified. If the model yields a percentage of
faults roughly identical to the percentage of lines of code, then no gain is to be expected from
using such a fault-proneness model when compared to chance alone. The exact surface area to
consider may depend on a realistic, maximum percentage of lines of code that is expected to be

Figure 3: Surrogate Measure of Cost Effectiveness

Simula Technical Report TR-2008-06

 24

covered by the extra verification activities. For example, if only 5% of the source code is the
maximum target considered feasible for extra testing, only the surface area below the 5%
threshold should be considered.

For a given release, it is impossible to determine beforehand what would be the surface
area of an optimal model. For each release, we compute it by ordering classes as follows: (1) we
place all faulty classes first and then order them so that larger classes are tested last, and (2) we
place fault-free classes afterwards also in increasing order of size. This procedure is a way to
maximize the surface area for a given release and set of faulty classes, assuming the future can
be perfectly predicted. Once computed, we can compare, for a specific NOS percentage, the
maximum percentage of faults that could be obtained with an optimal model and use this as an
upper bound to further assess a model, as shown by the dashed line in Figure 3.

To compare CE areas we need to account for the fact that the optimal model might differ
across test sets. Thus, we compute a normalized cost-effectiveness measure as

CEπ = (CEπ(model) – CEπ(baseline)) / (CEπ(optimal) – CEπ(baseline))
where CEπ(x) is the area under the curve x (baseline, model, or optimal) for a given π
percentage of NOS. This measure can be interpreted as a proportion of the optimal cost-
effectiveness, a measure which is comparable across evaluation datasets. Depending on the
amount of resources available for testing, the percentage of NOS to be tested will vary, so we
compute CE for respectively 1%, 5% and 20% of the NOS (CE0.01, CE0.05, CE0.20). Computing a
CE area is also a way to compare models without any specific percentage of classes in mind and
based on a unique score. This is why we also choose to include the cost-effectiveness at 100%
NOS (CE1.00). Admittedly such CE values may not be easy to interpret but their purpose is to
facilitate the comparison among models based on a measure that should be directly proportional
to cost-effectiveness in the context of focusing verification and validation efforts.

3.8 Model Assessment Procedure

We built a total of 112 different fault-proneness models on the basis of our training dataset, i.e.,
individual prediction models for each of the seven metric sets presented in Section 3.4 (OO,
Delta, Process, OO + Delta, Process + OO, Process + Delta, Total) with and without CFS,
using each of the eight candidate mining techniques presented in Section 3.5 (Neural network,
C4.5, Decorate C4.5, Boost C4.5, SVM, Logistic regression, PART, C4.5 + PART). Each of the
112 models was evaluated on the three distinct evaluation datasets presented in Section 3.6
(Excluded, COS 20, COS 21) and using the evaluation criteria presented in Section 3.7
(Accuracy, Precision, Recall, Type I/II misclassification rate, ROC, CE0.01, CE0.05, CE0.20, CE1.00)

To assess the magnitude of the differences between the model building techniques and the
metric sets, we report a number of statistics including the mean, the minimum, and maximum of
each criterion. As it is difficult to make any assumptions about the underlying distribution for
many of the evaluation criteria we use non-parametric tests to assess the significance of the
differences. More specifically, for each evaluation criterion, we report p-values from a matched
pair Wilcoxon’s signed rank test for

• all pairs of techniques aggregated across metric sets, and
• all pairs of metric sets aggregated across techniques.

Given the large number of tests being performed, we set the level of significance to α=.0.001. In
practice it is useful to not only know the p-values, but also the size of the effect. Thus, in addition

Simula Technical Report TR-2008-06

 25

to the Wilcoxon p-value on the difference between respectively all pairs of techniques and all
pairs of metric sets, we also report effect sizes on these differences using Cohen’s d [81].

4 Results
This section reports the results from the assessment procedure that was summarized in Section
3.8. As mentioned in Section 3.4 and 3.5, a number of different models were built; both using a
complete set of independent variables and using a CFS-reduced version of the same metric sets.
Surprisingly, the performance of the models that were built using the reduced set of metrics were
consistently but marginally poorer than the complete set of metrics across most of the evaluation
criteria considered. Consequently, to simplify the already quite complex analyses, and since the
results would anyway be very similar, we do not provide separate results for respectively the
CFS-reduced models and the non-reduced models, but instead combine the two in one analysis.

First, we give an evaluation of the metric sets and modeling techniques using ROC and CE
as we consider these criteria the most appropriate to evaluate prediction models in our context.
Then, we show the results when considering a selection of the most popular confusion matrix
criteria: accuracy, precision and recall, and Type I- and Type II-misclassification rates. At the
end of this section we summarize and discuss the results.

The detailed results are reported in tables that form the basis for our discussion in the
following subsections. The tables compare metric sets and modeling techniques against one
another in terms of the different evaluation criteria. In the tables we report the mean, standard
deviation, minimum and maximum value for each metric set and technique. These descriptive
statistics are shown in the leftmost columns of the tables – next to the name of the metric set or
modeling technique. In the right part of the tables we report the difference between each
combination of metric set/modeling technique in terms of effect size and the Wilcoxon test. The
latter appears in the upper right side of the diagonal, while the effect size appears in the lower
left side of the diagonal. The effect size is shown in bold face if the corresponding Wilcoxon test
is significant at α=0.001. The results for metric sets and techniques are sorted according to their
mean values in each table; either descending or ascending depending on whether higher or lower
values are better. Finally, the technique and metric set with the highest average rank when
considering the ROC area and the four CE measures in combination are included as the “best
technique” and “best metric set”, respectively. The average results for the best technique are
included in the tables that compare the metric sets, whereas the average results for the best
metric set is included in the tables that compare the techniques.

4.1 Evaluation of Modeling Techniques using ROC and CE

Table 2 shows that the differences among techniques in terms of mean ROC area are in most
cases very small, or at least too small to be of practical significance. If we were to use the
median as a ranking criterion instead, the ranking of the techniques would be similar. The
average ROC area ranges from 0.70 for C4.5 to above 0.75 using Decorate C4.5 and Neural
network. That is, the probability that a faulty class will be assigned a higher fault probability than
a non-faulty one is on average above 0.7, for all modeling techniques. Decorate C4.5 is the data
mining technique which has the lowest standard deviation, and thus yields the most stable results
regardless of metric set; the minimum is right below 0.6 while the maximum is 0.9, and the
standard deviation is 0.08. C4.5 and PART and the combination of the two are perhaps the
techniques that yield the models that are the easiest to interpret. At the same time, C4.5 and

Simula Technical Report TR-2008-06

 26

PART are also the ones that yield the smallest ROC area among the techniques assessed in this
study; the mean ROC area for C4.5 and PART is significantly smaller than the mean ROC area
of the two best techniques. Although C4.5 has the lowest average ROC area overall, the ROC
area when using C4.5 in combination with the Process metrics is similar to the mean ROC area
using Neural network when not considering any particular metric set, suggesting that C4.5 is in
fact a technique that may give fairly good results given that the optimal set of metrics (Process)
is used. Considering the ease of interpretation of decision trees, one might choose this technique
if the goal is not only to predict fault-proneness, but also to interpret the model and explain it to
practitioners. If the results from using C4.5 are not sufficient, Adaboost can be applied to further
improve the model, as the combination of C4.5 and boosting is the technique that yields the best
overall ranking across all evaluation criteria.

In Table 3 through Table 6 the data mining techniques are compared using the surrogate
measure of cost-effectiveness described in Section 3.7. The difference in average cost-
effectiveness between the most and least cost-effective techniques ranges from 0.04 to 0.08
percentage points depending on which threshold π is used. Although there is to some degree a
significant difference between the extremes, the differences are negligible considering the
uncertainty in the data. Using the optimal set of measures (Process), all techniques yield a cost-
effectiveness of approximately 30% of the optimal model at π = 0.20 NOS. Although there is
still room for improvement, this is more than three times as cost-effective compared to a model
based on random selection.

Table 2: Area under ROC curve for the modeling techniques

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

Neural
network

Decorate
C4.5

SVM
Logistic

regression
Boost
C4.5

PART
C4.5 +
PART

C4.5

Neural network 0,756 0,091 0,543 0,935 0,826 ‐ 0,902 0,811 0,045 0,036 0,001 0,000 0,000

W
ilcoxon (α = 0,001)

Decorate C4.5 0,752 0,077 0,598 0,899 0,779 0,048 ‐ 0,515 0,109 0,006 0,000 0,000 0,000

SVM 0,749 0,112 0,453 0,942 0,724 0,072 0,034 ‐ 0,556 0,164 0,011 0,004 0,001

Logistic regression 0,737 0,097 0,454 0,919 0,722 0,205 0,174 0,114 ‐ 0,551 0,026 0,013 0,009

Boost C4.5 0,732 0,085 0,510 0,856 0,806 0,279 0,252 0,173 0,057 ‐ 0,006 0,000 0,005

PART 0,708 0,086 0,468 0,861 0,776 0,548 0,543 0,412 0,317 0,280 ‐ 0,661 0,467

C4.5 + PART 0,703 0,087 0,468 0,862 0,778 0,599 0,599 0,459 0,370 0,336 0,059 ‐ 0,579

C4.5 0,699 0,091 0,470 0,873 0,762 0,629 0,630 0,489 0,403 0,372 0,099 0,041 ‐

 Effect size

Simula Technical Report TR-2008-06

 27

Table 3: Cost-effectiveness for modeling techniques at π = 0.01 NOS

Table 4: Cost-effectiveness for modeling techniques at π = 0.05 NOS

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

Logistic
regression

Boost
C4.5

PART
Neural
network

C4.5 +
PART

Decorate
C4.5

C4.5 SVM

Logistic regression 0,099 0,082 ‐0,029 0,255 0,160 ‐ 0,055 0,095 0,003 0,130 0,029 0,001 0,000

W
ilcoxon (α = 0,001)

Boost C4.5 0,076 0,088 ‐0,037 0,301 0,143 0,272 ‐ 0,878 0,763 0,954 0,584 0,230 0,134

PART 0,074 0,070 ‐0,037 0,202 0,096 0,333 0,027 ‐ 0,688 0,855 0,274 0,124 0,113

Neural network 0,073 0,085 ‐0,035 0,263 0,134 0,309 0,029 0,004 ‐ 0,897 0,456 0,225 0,027

C4.5 + PART 0,070 0,085 ‐0,037 0,239 0,127 0,347 0,066 0,045 0,038 ‐ 0,449 0,138 0,208

Decorate C4.5 0,062 0,085 ‐0,037 0,294 0,174 0,443 0,160 0,150 0,134 0,097 ‐ 0,518 0,230

C4.5 0,052 0,072 ‐0,037 0,184 0,097 0,607 0,293 0,302 0,270 0,228 0,302 ‐ 0,924

SVM 0,051 0,083 ‐0,035 0,220 0,113 0,583 0,291 0,296 0,268 0,229 0,131 0,017 ‐

 Effect size

Table 5: Cost-effectiveness for modeling techniques at π = 0.20 NOS

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

Logistic
regression

Neural
network

Decorate
C4.5

Boost
C4.5

C4.5 +
PART

PART C4.5 SVM

Logistic regression 0,137 0,161 ‐0,043 0,665 0,185 ‐ 0,012 0,024 0,052 0,074 0,025 0,012 0,007

W
ilcoxon (α = 0,001)

Neural network 0,104 0,197 ‐0,043 0,807 0,142 0,186 ‐ 0,421 0,724 0,848 0,700 0,661 0,292

Decorate C4.5 0,101 0,230 ‐0,043 0,870 0,339 0,179 0,010 ‐ 0,445 0,347 0,130 0,833 0,427

Boost C4.5 0,099 0,161 ‐0,043 0,556 0,254 0,236 0,026 0,013 ‐ 0,742 0,821 0,715 0,361

C4.5 + PART 0,090 0,129 ‐0,043 0,371 0,160 0,319 0,079 0,059 0,058 ‐ 0,853 0,505 0,510

PART 0,087 0,120 ‐0,043 0,371 0,139 0,353 0,103 0,080 0,085 0,030 ‐ 0,618 0,349

C4.5 0,080 0,135 ‐0,043 0,371 0,152 0,383 0,139 0,114 0,126 0,079 0,052 ‐ 0,873

SVM 0,079 0,162 ‐0,043 0,689 0,153 0,358 0,135 0,112 0,122 0,077 0,053 0,006 ‐

 Effect size

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

Boost
C4.5

PART
Decorate
C4.5

Logistic
regression

C4.5 +
PART

Neural
network

C4.5 SVM

Boost C4.5 0,168 0,132 ‐0,061 0,389 0,289 ‐ 0,956 0,576 0,137 0,717 0,010 0,046 0,017

W
ilcoxon (α = 0,001)

PART 0,162 0,140 ‐0,078 0,382 0,302 0,051 ‐ 0,494 0,326 0,463 0,093 0,031 0,068

Decorate C4.5 0,156 0,119 ‐0,052 0,377 0,300 0,096 0,040 ‐ 0,936 0,897 0,072 0,186 0,021

Logistic regression 0,155 0,154 ‐0,111 0,458 0,274 0,090 0,041 0,007 ‐ 0,763 0,002 0,464 0,064

C4.5 + PART 0,152 0,148 ‐0,079 0,423 0,326 0,119 0,068 0,035 0,025 ‐ 0,199 0,063 0,213

Neural network 0,130 0,150 ‐0,097 0,524 0,286 0,274 0,219 0,196 0,169 0,148 ‐ 0,735 0,518

C4.5 0,129 0,139 ‐0,092 0,398 0,273 0,294 0,237 0,215 0,183 0,162 0,009 ‐ 0,745

SVM 0,123 0,152 ‐0,090 0,511 0,230 0,316 0,261 0,241 0,209 0,189 0,042 0,035 ‐

 Effect size

Simula Technical Report TR-2008-06

 28

Table 6: Cost-effectiveness for modeling techniques at π = 1.0 NOS

 Mean
Std.
Dev.

Min Max
Best metric set

(Process)
Boost
C4.5

Decorate
C4.5

Neural
network

Logistic
regression

PART SVM C4.5
C4.5 +
PART

Boost C4.5 0,272 0,208 ‐0,259 0,607 0,536 ‐ 0,320 0,049 0,037 0,037 0,033 0,000 0,001

W
ilcoxon (α = 0,001)

Decorate C4.5 0,259 0,236 ‐0,294 0,650 0,526 0,062 ‐ 0,083 0,051 0,098 0,005 0,007 0,019

Neural network 0,227 0,235 ‐0,249 0,720 0,535 0,205 0,135 ‐ 0,441 0,839 0,487 0,985 0,584

Logistic regression 0,217 0,247 ‐0,262 0,674 0,362 0,241 0,171 0,040 ‐ 0,849 0,130 0,907 0,735

PART 0,213 0,243 ‐0,216 0,656 0,499 0,262 0,191 0,058 0,017 ‐ 0,681 0,441 0,208

SVM 0,200 0,281 ‐0,331 0,742 0,342 0,292 0,225 0,103 0,064 0,048 ‐ 0,745 0,839

C4.5 0,196 0,252 ‐0,202 0,636 0,515 0,333 0,259 0,129 0,087 0,071 0,018 ‐ 0,811

C4.5 + PART 0,192 0,237 ‐0,214 0,654 0,510 0,359 0,281 0,147 0,103 0,086 0,031 0,013 ‐

 Effect size

4.2 Evaluation of Metric Sets using ROC and CE

As shown in Table 7, the differences in average ROC area between the metric sets (across
techniques) are moderate. The average ROC area ranges from 0.65 for Deltas up to 0.77 when
using the Process metric set. The Delta metric set is significantly worse than the other
combinations of metrics. The ROC area for all but the Delta set is above 0.7.

Table 7: Area under ROC curve for the metric sets

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
Process
+ OO

Total
Process
+ Delta

OO +
Delta

OO Delta

Process 0,772 0,097 0,453 0,942 0,806 ‐ 0,968 0,852 0,034 0,041 0,004 0,000

W
ilcoxon (α = 0,001)

Process + OO 0,768 0,072 0,608 0,915 0,763 0,041 ‐ 0,438 0,004 0,000 0,000 0,000

Total 0,759 0,089 0,546 0,884 0,761 0,132 0,108 ‐ 0,011 0,000 0,000 0,000

Process + Delta 0,736 0,086 0,510 0,929 0,703 0,387 0,402 0,264 ‐ 0,880 0,103 0,000

OO + Delta 0,720 0,080 0,562 0,840 0,736 0,578 0,627 0,460 0,192 ‐ 0,003 0,000

OO 0,702 0,085 0,532 0,849 0,690 0,761 0,834 0,654 0,398 0,220 ‐ 0,001

Delta 0,648 0,079 0,468 0,821 0,665 1,397 1,584 1,317 1,069 0,910 0,659 ‐

 Effect size

Though the smallest ROC area (0.45) is obtained when using the Process metrics2, this set

of metrics is at the same time best in terms of mean and maximum ROC area. Compared to the
Process metrics alone, there seems to be no immediate gain by combining them with the OO
metrics. However, as can be seen from Table 7, by adding the OO metrics, the minimum ROC
area is lifted above 0.6, and the standard deviation is lower.

2 It is worth noting that all ROC areas below 0.5 were obtained using the CFS-reduced data sets.

Simula Technical Report TR-2008-06

 29

Table 8: Cost-effectiveness for the metric sets at π = 0.01 NOS

Mean

Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
Process
+ Delta

Process
+ OO

Total Delta OO
OO +
Delta

Process 0,190 0,209 ‐0,043 0,775 0,254 ‐ 0,402 0,030 0,078 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process + Delta 0,175 0,212 ‐0,043 0,870 0,157 0,072 ‐ 0,279 0,279 0,002 0,000 0,000

Process + OO 0,123 0,151 ‐0,043 0,511 0,129 0,367 0,281 ‐ 0,630 0,004 0,000 0,000

Total 0,116 0,176 ‐0,043 0,689 0,109 0,388 0,307 0,048 ‐ 0,068 0,000 0,000

Delta 0,049 0,088 ‐0,043 0,360 0,008 0,879 0,774 0,597 0,475 ‐ 0,263 0,000

OO 0,025 0,071 ‐0,043 0,208 0,009 1,061 0,950 0,832 0,676 0,306 ‐ 0,017

OO + Delta 0,001 0,070 ‐0,043 0,362 0,025 1,215 1,102 1,036 0,856 0,605 0,335 ‐

Table 9: Cost-effectiveness for the metric sets at π = 0.05 NOS

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
Process
+ Delta

Total Delta
Process
+ OO

OO +
Delta

OO

Process 0,130 0,075 ‐0,029 0,301 0,143 ‐ 0,227 0,001 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process + Delta 0,116 0,079 ‐0,027 0,289 0,117 0,185 ‐ 0,019 0,001 0,004 0,000 0,000

Total 0,083 0,085 ‐0,037 0,255 0,105 0,590 0,404 ‐ 0,479 0,177 0,000 0,000

Delta 0,071 0,070 ‐0,026 0,201 0,027 0,817 0,606 0,156 ‐ 1,000 0,000 0,000

Process + OO 0,071 0,081 ‐0,037 0,258 0,102 0,761 0,566 0,147 0,001 ‐ 0,000 0,000

OO + Delta 0,009 0,044 ‐0,037 0,163 0,035 1,957 1,669 1,087 1,048 0,938 ‐ 0,939

OO 0,006 0,035 ‐0,037 0,101 0,000 2,121 1,810 1,192 1,177 1,042 0,096 ‐

 Effect size

Table 10: Cost-effectiveness for the metric sets at π = 0.20 NOS

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
Process
+ Delta

Delta Total
Process
+ OO

OO +
Delta

OO

Process 0,285 0,088 0,102 0,524 0,289 ‐ 0,000 0,000 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process + Delta 0,233 0,092 0,041 0,389 0,276 0,574 ‐ 0,005 0,000 0,000 0,000 0,000

Delta 0,183 0,140 ‐0,030 0,458 0,147 0,874 0,426 ‐ 0,936 0,141 0,000 0,000

Total 0,170 0,112 ‐0,071 0,387 0,207 1,143 0,619 0,103 ‐ 0,023 0,000 0,000

Process + OO 0,129 0,121 ‐0,076 0,331 0,192 1,476 0,971 0,410 0,348 ‐ 0,000 0,000

OO + Delta 0,022 0,091 ‐0,106 0,261 0,057 2,933 2,303 1,356 1,440 0,997 ‐ 0,320

OO 0,007 0,078 ‐0,111 0,222 0,011 3,343 2,652 1,550 1,683 1,202 0,184 ‐

 Effect size

Simula Technical Report TR-2008-06

 30

Table 11: Cost-effectiveness for the metric sets at π = 1.0 NOS

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
Process
+ Delta

Delta Total
Process
+ OO

OO +
Delta

OO

Process 0,478 0,165 ‐0,122 0,742 0,536 ‐ 0,000 0,000 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process + Delta 0,394 0,107 0,119 0,669 0,372 0,604 ‐ 0,000 0,000 0,000 0,000 0,000

Delta 0,236 0,195 ‐0,216 0,674 0,236 1,343 1,008 ‐ 0,400 0,701 0,000 0,000

Total 0,224 0,219 ‐0,213 0,531 0,318 1,308 0,984 0,054 ‐ 0,479 0,000 0,000

Process + OO 0,199 0,194 ‐0,223 0,470 0,273 1,552 1,247 0,190 0,125 ‐ 0,000 0,000

OO + Delta 0,037 0,185 ‐0,306 0,357 0,137 2,512 2,358 1,045 0,925 0,853 ‐ 0,004

OO ‐0,013 0,178 ‐0,331 0,294 0,036 2,863 2,774 1,334 1,191 1,139 0,275 ‐

 Effect size

If we turn to cost-effectiveness, the results for the metric sets are quite different. In

Table 8 through Table 11 we compare the metric sets in terms of cost-effectiveness.
Looking back at Table 7, we can see that the OO metrics are on par with the Process metrics
when considering the ROC area. However from Table 8 through Table 11, we observe that in
terms of cost-effectiveness the difference between these two sets of metrics is much larger. At π
= 0.20 NOS (Table 10), the cost-effectiveness using OO metrics are not even 1% of the optimal
model, while the cost-effectiveness by using the Process metrics alone are one third of the
optimal model, and over three times as cost-effective than the baseline (random model).

As explained in Section 3.8, a number of models were built by using different data mining
techniques. Because three separate test sets were applied to the each of these prediction models,
we obtained a fairly large number of observations for each metric set. These samples form
distributions which we can compare. Figure 4 depicts the distribution in cost-effectiveness for
the prediction models built and evaluated using the Process metrics and the OO metrics,
respectively. The plot shows the median cost-effectiveness for each group of prediction models.
In addition to the median shown as a solid line, the area between the 25 and 75 percentiles is
shaded. This visualization can be interpreted as simplified boxplots of the cost-effectiveness
when using the two metric sets at discrete levels of NOS. As can be seen from the figure, the
distribution in cost-effectiveness using the process metrics is far from the baseline, and nearly
not overlapping with the corresponding distribution obtained from using the OO metrics.
Looking at the plot for the process metrics, we observe that the 25-percentile for the process
metrics are close to 50% Total faults at CE0.20. This shows that among the models using the
process metrics alone, a majority of them (3/4) located more than 50% of the faults in 20% of the
most fault-prone classes as predicted by the model. Further, the 75-percentile at CE0.20 for the
process metrics is at 70% Total faults, indicating that 25% of the most cost-effective models in
fact identified over 70% of the faults in the 20% most fault-prone classes. This is comparable to
the results obtained by Ostrand et al. [15-17].

Simula Technical Report TR-2008-06

 31

Figure 4: Median and 25-/75-percentiles for process metrics and object-oriented metrics

Figure 4 supports the results in the tables comparing metric sets, showing that the cost-
effectiveness obtained by using the OO metrics is close to zero. It is worth noting that there are
in fact a large number of models using the OO metrics that have negative cost-effectiveness: the
median of the OO metrics is close to the baseline with slope 1, indicating that 50% of the
observations are below this baseline, and thus these models are not more cost-effective than a
completely random model. It is interesting that the average cost-effectiveness for OO metrics is
close to zero across all thresholds. Turning back to Table 8 through Table 11, note also that the
cost-effectiveness of the models built using other metric sets decreases when the OO metrics are
added. For example, this is visible when comparing the cost-effectiveness of the process metrics
with that of the process metrics in combination with the OO metrics (Process+OO): The process
metrics are consistently more cost-effective, but when adding the OO metrics, this combination
is consistently ranked among the least cost-effective. That is, adding the OO metrics consistently
degrades the cost-effectiveness of a model. Further, we observe that although the deltas have the
smallest average ROC area, these metrics are consistently more cost-effective than the OO
metrics. The low cost-effectiveness of the OO metrics may be due to their correlation with size
measures, which has been reported in many other papers [82].

If we were to use the prediction models to focus verification and validation efforts by, say,
inspecting the 20% most fault-prone classes – the gain from using the process metrics (finding
60% of the faults on average) compared to the average of what would be obtained with random
orders (finding 20% of the faults) is substantial. Of course, this is a somewhat simplified view
for both scenarios, as we probably cannot expect to find all faults by applying a particular fault-
proneness model to focus verification and validation3. Still, the gain from using a prediction

3 A suitable cost-benefit model that accounts for the percentage of faults that are not discovered during

verification efforts is given in [4] L. C. Briand and J. Wust, "Empirical studies of quality models in object-
oriented systems," Advances in Computers, Vol 56, vol. 56, pp. 97-166, 2002..

Simula Technical Report TR-2008-06

 32

model based on process metrics is substantial compared with the baseline model. On the other
hand, we also see that there is much room for improvement when compared to an optimal
ranking of the classes: the best model is approximately 50% of the optimal model in terms of
cost-effectiveness.

The results show that the OO metrics are good predictors of faulty classes (i.e., large ROC
area), but these metrics do not result in cost-effective prediction models. Many OO metrics have
been shown to be associated with size [82], and this fact might explain the low cost-effectiveness
of the OO metrics, because the surrogate measure for cost-effectiveness penalize models which
mostly capture a size effect. Although the process metrics are presumably more expensive to
collect, the results show that collecting process metrics is likely to be cost-effective.

4.3 Evaluating Techniques and Metric Sets using other Evaluation Criteria

In the two previous subsections, metric sets and modeling techniques were compared using two
evaluation criteria: ROC area and cost-effectiveness (CE). This section presents the results when
using some of the more commonly used evaluation criteria. More specifically, we will consider
the most popular measures that can be derived from the confusion matrix as explained in Section
3.7. We did not investigate in detail how these classification accuracy measures are affected by
different probability cut-off values. Still, the results given in this section are comparable to most
studies, which in most cases do not vary the threshold, but rather use the default value of 0.5, as
shown in Section 2. We first consider accuracy as it is the most prominent measure in the studies
reviewed. Then, we show our results for precision, recall and Type I- and Type II-
misclassification rates as these evaluation criteria are also widely used.

One of the conclusions in the two previous subsections was that the Process metrics set
seems to be the overall best metric set and Boost C4.5 the best modeling technique in terms of
average ROC area and cost-effectiveness. Consequently, to facilitate comparisons with the
previous subsections, we still show the Process/Boost C4.5 results in a separate column.

Accuracy

Table 12 and Table 13 show the accuracy for modeling techniques and metric sets, respectively.
As higher accuracy is considered better than lower accuracy, the tables are sorted in descending
order according to the mean values.

Table 12: Accuracy of modeling techniques

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

SVM
Logistic

regression
C4.5
+PART

Neural
network

Decorate
C4.5

C4.5
Boost
C4.5

PART

SVM 0,863 0,061 0,744 0,985 0,869 ‐ 0,000 0,145 0,007 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Logistic regression 0,845 0,060 0,753 0,983 0,867 0,295 ‐ 0,830 0,265 0,007 0,004 0,000 0,000

C4.5+PART 0,838 0,105 0,650 0,970 0,934 0,287 0,077 ‐ 0,806 0,000 0,000 0,000 0,000

Neural network 0,830 0,090 0,681 0,986 0,916 0,432 0,199 0,089 ‐ 0,017 0,014 0,000 0,000

Decorate C4.5 0,807 0,104 0,634 0,970 0,915 0,652 0,443 0,298 0,230 ‐ 0,059 0,002 0,000

C4.5 0,793 0,125 0,568 0,969 0,912 0,709 0,527 0,391 0,334 0,122 ‐ 0,494 0,270

Boost C4.5 0,783 0,107 0,658 0,961 0,903 0,925 0,719 0,528 0,477 0,234 0,092 ‐ 0,452

PART 0,771 0,125 0,526 0,964 0,901 0,932 0,750 0,582 0,537 0,314 0,177 0,099 ‐

 Effect size

Simula Technical Report TR-2008-06

 33

The differences in accuracy among modeling techniques are smaller than the differences

among metric sets. If one were to select a particular modeling technique based on the average
accuracy, one would probably select SVM or logistic regression, although these techniques yield
lower accuracy when used in conjunction with the optimal metric set (Process).

Table 13: Accuracy of metric sets

Mean

Std
Dev

Min Max
Best technique
(Boost C4.5)

Delta Process Process+Delta Total Process+OO OO+Delta OO

Delta 0,908 0,085 0,739 0,986 0,889 ‐ 0,367 0,000 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process 0,902 0,050 0,744 0,982 0,903 0,089 ‐ 0,000 0,000 0,000 0,000 0,000

Process+Delta 0,871 0,070 0,760 0,971 0,868 0,475 0,504 ‐ 0,000 0,000 0,000 0,000

Total 0,797 0,084 0,612 0,945 0,684 1,319 1,519 0,959 ‐ 0,351 0,000 0,000

Process+OO 0,776 0,070 0,642 0,899 0,711 1,697 2,065 1,354 0,267 ‐ 0,031 0,000

OO+Delta 0,744 0,085 0,526 0,896 0,745 1,925 2,252 1,622 0,620 0,408 ‐ 0,037

OO 0,715 0,074 0,568 0,834 0,680 2,420 2,947 2,156 1,029 0,845 0,364 ‐

 Effect size

It is worth pointing that the Delta metric set yields the highest accuracy. Looking at the
results for ROC area in Table 7 in Section 4.2, Delta was the metric set giving the smallest
average ROC area, and thus one would probably conclude that using these metrics to predict
fault-proneness is not optimal, thus running counter to what one would conclude when
considering the accuracy measure.

Furthermore, what is considered the best metric set is highly dependent on which cut-off
that is used. Here we have used a threshold of 0.5 because it is commonly used in the existing
literature, however, it is difficult to give a rule of thumb as to what cut-off to use because there
would probably be large variations across studies as these results are highly dependent on
properties of the data set. In our case, the most accurate models are obtained when using cut-off
values above 0.8. This is due to the highly unbalanced nature of our data sets: only a small
percentage of the classes are faulty. Although high accuracy is intuitively a desired property, our
results suggest that accuracy is not necessarily an appropriate measure for evaluating how useful
fault-proneness prediction models are.

Precision and Recall

Two other evaluation criteria that are widely used are the precision and recall measures, as
explained in Section 3.7. Table 14 and Table 15 show the results for these measures using the
different metric sets. The metric sets are sorted in descending order according to their mean
precision/recall.

From Table 14 we see that the precision ranges from 3% to approximately 10%. This
indicates that when using a cut-off of 0.5 to distinguish faulty classes from non-faulty ones, only
a small part of the fault-prone classes identified by the prediction model is in fact faulty – that is,
most of the classes predicted as faulty are false positives. Although the maximum for Delta is
above 0.4, the precision of our models is much lower than comparable studies who typically
achieved precision in the range of 0.7 to 0.95 [13, 38, 65]. The reason we get a relatively low
precision is probably because only 0.5% to 2% of the classes in our data sets are in fact faulty.

Simula Technical Report TR-2008-06

 34

Thus, even a few false positives have a huge impact on the precision of the prediction models.
However, as argued in [83], for such unbalanced data, the prediction models can still be useful
despite having low precision.

Table 14: Precision for the metric sets

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Delta Process
Process
+ Delta

Total
Process
+ OO

OO +
Delta

OO

Delta 0,104 0,094 0,040 0,429 0,076 ‐ 0,288 0,000 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Process 0,082 0,047 0,020 0,273 0,082 0,294 ‐ 0,000 0,000 0,000 0,000 0,000

Process + Delta 0,067 0,035 0,019 0,160 0,061 0,521 0,362 ‐ 0,000 0,000 0,000 0,000

Total 0,044 0,021 0,014 0,101 0,030 0,871 1,024 0,768 ‐ 0,486 0,000 0,000

Process + OO 0,039 0,020 0,013 0,110 0,031 0,941 1,162 0,942 0,223 ‐ 0,000 0,000

OO + Delta 0,032 0,014 0,013 0,061 0,031 1,063 1,426 1,288 0,671 0,432 ‐ 0,012

OO 0,029 0,013 0,013 0,058 0,025 1,108 1,520 1,411 0,854 0,620 0,227 ‐

 Effect size

Table 15: Recall (or Sensitivity, TP rate) for the metric sets

 Mean
Std
Dev

Min Max
Best technique
(Boost C4.5)

Process
+ OO

Total OO
OO +
Delta

Process
+ Delta

Process Delta

Process + OO 0,623 0,113 0,389 0,889 0,677 ‐ 0,689 0,925 0,252 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Total 0,612 0,138 0,278 0,833 0,723 0,087 ‐ 0,752 0,490 0,000 0,000 0,000

OO 0,609 0,117 0,333 0,781 0,597 0,122 0,023 ‐ 0,408 0,001 0,000 0,000

OO + Delta 0,593 0,137 0,361 0,833 0,609 0,235 0,134 0,122 ‐ 0,005 0,000 0,000

Process + Delta 0,518 0,175 0,167 0,755 0,556 0,712 0,595 0,611 0,480 ‐ 0,203 0,000

Process 0,492 0,162 0,139 0,833 0,554 0,936 0,794 0,826 0,674 0,151 ‐ 0,000

Delta 0,362 0,160 0,056 0,616 0,429 1,884 1,671 1,762 1,552 0,929 0,810 ‐

 Effect size

Table 15 shows the corresponding results for recall. We see that the models typically

capture somewhere between 36% and 62% of the faulty classes on average using a cut-off equal
to 0.5. This is comparable to other studies, e.g., [13, 22, 65], while other studies achieved recall
close to 1 [38]. With respect to recall, the Total metric set is best, and looking at the results when
using the overall best modeling technique (Boost C4.5) in combination with the total set of
metrics, we observe that 72% of the faults are captured on average by these models.

Among the modeling techniques, the differences in average precision are small, typically
in the range from 0.05 to 0.07 (Table 16). The rule- and tree-based modeling techniques are
techniques that seem to yield low precision, whereas these techniques are at the same time those
that yield higher recall than SVM, neural network and logistic regression (Table 17).

Simula Technical Report TR-2008-06

 35

Table 16: Precision for each of the modeling techniques

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

SVM
Neural
network

C4.5+PART
Logistic

regression
Decorate
C4.5

C4.5
Boost
C4.5

PART

SVM 0,073 0,081 0,019 0,429 0,069 ‐ 0,009 0,290 0,007 0,005 0,021 0,000 0,000

W
ilcoxon (α = 0,001)

Neural network 0,064 0,074 0,016 0,429 0,107 0,125 ‐ 0,471 0,954 0,378 0,132 0,014 0,001

C4.5+PART 0,059 0,037 0,015 0,175 0,097 0,226 0,078 ‐ 0,526 0,051 0,000 0,000 0,000

Logistic regression 0,058 0,050 0,020 0,316 0,062 0,233 0,095 0,033 ‐ 0,300 0,267 0,025 0,006

Decorate C4.5 0,053 0,037 0,014 0,150 0,084 0,316 0,176 0,155 0,097 ‐ 0,138 0,001 0,000

C4.5 0,052 0,033 0,013 0,143 0,078 0,341 0,201 0,198 0,129 0,035 ‐ 0,171 0,139

Boost C4.5 0,048 0,032 0,014 0,131 0,082 0,412 0,278 0,326 0,233 0,160 0,131 ‐ 0,363

PART 0,047 0,036 0,013 0,148 0,075 0,416 0,284 0,329 0,241 0,171 0,143 0,019 ‐

 Effect size

Table 17: Recall for each of the modeling techniqes

 Mean
Std.
Dev.

Min Max
Best metric
set (Process)

Boost
C4.5

PART C4.5
Decorate
C4.5

Neural
network

Logistic
regression

SVM
C4.5 +
PART

Boost C4.5 0,592 0,155 0,222 0,833 0,554 ‐ 0,492 0,268 0,055 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

PART 0,571 0,151 0,278 0,833 0,482 0,139 ‐ 0,706 0,694 0,022 0,015 0,003 0,000

C4.5 0,570 0,161 0,194 0,795 0,488 0,140 0,005 ‐ 0,776 0,014 0,007 0,001 0,000

Decorate C4.5 0,567 0,158 0,167 0,781 0,465 0,163 0,027 0,021 ‐ 0,003 0,013 0,003 0,000

Neural network 0,522 0,194 0,056 0,778 0,467 0,399 0,280 0,269 0,251 ‐ 0,426 0,134 0,918

Logistic regression 0,519 0,164 0,167 0,778 0,548 0,461 0,331 0,317 0,298 0,020 ‐ 0,379 0,904

SVM 0,507 0,192 0,111 0,889 0,494 0,487 0,368 0,355 0,338 0,078 0,065 ‐ 0,356

C4.5 + PART 0,505 0,155 0,194 0,775 0,440 0,561 0,428 0,410 0,392 0,096 0,083 0,010 ‐

 Effect size

Type I and Type II Misclassification Rates

Ostrand et al. argue that Type II errors are the most expensive, and that prediction models should
be selected and evaluated by their Type II misclassification rate [16]. This measure is also used
by Khoshgoftaar et al. [19, 37]. In Table 18 we report the average Type II misclassification rate
for each technique using a default cut-off equal to 0.5. As smaller numbers are considered better
(less errors in predictions), the table is sorted in ascending order according to the average for
each technique.

Simula Technical Report TR-2008-06

 36

Table 18: Type II misclassification rates for each modeling technique

 Mean
Std
Dev

Min Max
Best metric
set (Process)

Boost
C4.5

PART
Decorate
C4.5

C4.5
Neural
network

Logistic
regression

C4.5+PART SVM

Boost C4.5 0,005 0,003 0,001 0,011 0,006 ‐ 0,758 0,144 0,132 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

PART 0,006 0,003 0,001 0,010 0,007 0,072 ‐ 0,350 0,272 0,012 0,034 0,000 0,006

Decorate C4.5 0,006 0,003 0,002 0,011 0,007 0,118 0,045 ‐ 0,598 0,011 0,020 0,000 0,002

C4.5 0,006 0,003 0,002 0,011 0,007 0,142 0,071 0,027 ‐ 0,034 0,032 0,000 0,001

Neural network 0,006 0,003 0,002 0,013 0,007 0,311 0,247 0,208 0,181 ‐ 0,831 0,965 0,061

Logistic regression 0,006 0,003 0,002 0,012 0,006 0,337 0,271 0,231 0,203 0,015 ‐ 0,961 0,062

C4.5+PART 0,006 0,003 0,002 0,011 0,008 0,411 0,342 0,301 0,269 0,069 0,055 ‐ 0,203

SVM 0,007 0,003 0,002 0,012 0,007 0,420 0,358 0,320 0,292 0,106 0,094 0,045 ‐

 Effect size

The Type II misclassification rate is typically small, suggesting that a large part of the
prediction models assigns a predicted fault probability above 0.5 to most of the faulty classes.
Our Type II misclassification rates are slightly smaller (better) than those reported in earlier
studies, where this rate typically ranged from 0.01 [16] to 0.3 [12]. Although the differences
among the modeling techniques presented here are small, if we were to select a particular
technique based on the results in this table, we would conclude that the decision trees or rule-
based techniques, i.e., C4.5 (with or without boosting) or PART, yield the best prediction models
in terms of Type II misclassification rates. This contradicts our conclusion based on the ROC
area in Section 4.1.

Table 19: Type I misclassification rates for each modeling technique

 Mean
Std
Dev

Min Max
Best metric
set (Process)

SVM
Logistic

regression
C4.5+PART

Neural
network

Decorate
C4.5

C4.5
Boost
C4.5

PART

SVM 0,130 0,061 0,003 0,248 0,125 ‐ 0,000 0,162 0,006 0,000 0,000 0,000 0,000

W
ilcoxon (α = 0,001)

Logistic regression 0,149 0,061 0,005 0,242 0,127 0,297 ‐ 0,839 0,276 0,006 0,004 0,000 0,000

C4.5+PART 0,155 0,106 0,020 0,346 0,058 0,287 0,075 ‐ 0,787 0,000 0,000 0,000 0,000

Neural network 0,164 0,091 0,002 0,311 0,078 0,433 0,198 0,090 ‐ 0,019 0,016 0,000 0,000

Decorate C4.5 0,187 0,105 0,020 0,362 0,077 0,657 0,445 0,302 0,233 ‐ 0,060 0,002 0,000

C4.5 0,201 0,126 0,021 0,426 0,081 0,712 0,528 0,394 0,336 0,120 ‐ 0,452 0,259

Boost C4.5 0,212 0,108 0,029 0,336 0,091 0,933 0,724 0,534 0,481 0,236 0,095 ‐ 0,483

PART 0,223 0,126 0,026 0,470 0,092 0,935 0,750 0,585 0,537 0,312 0,177 0,095 ‐

 Effect size

Because the Type I and Type II misclassification rates are inversely correlated – that is, in

most cases decreasing the number of Type II errors leads to an increase in the number of Type I
errors – it is useful to compare the results in Table 18 with the Type I misclassification rates
given in Table 19. Table 19 clearly illustrates that modeling techniques that have lower Type II
misclassification rates have higher Type I misclassification rates. If we were to select the
modeling technique that would yield best results in terms of Type I misclassification rates, we

Simula Technical Report TR-2008-06

 37

would probably choose another modeling technique than when considering Type II
misclassification rates. That is, considering Type II misclassification rates we concluded that the
rule- or decision tree-based techniques were best, while from Table 19 we conclude that these are
significantly worse than SVM. In practice, one would probably consider a trade-off between
these types of misclassification rates. One option is to investigate the consistency in ranking for
each technique across the evaluation criteria. Then, neural networks would perhaps be a good
compromise.

As can be seen from the results above, which modeling technique or metric set can be
considered “best” is highly dependent on the criteria used for evaluation. The prediction models
in this case study yield a recall and accuracy comparable to recent studies. However, the
precision of our models is very low due to the unbalanced nature of our data sets, and choosing
another cut-off than 0.5 can possibly yield very different results.

4.4 Discussion

In the subsections above we have evaluated and compared several carefully selected modeling
techniques and metric sets that entail different data collection costs. Our goal was to assess what
measures are necessary to achieve practically useful predictions, what modeling techniques seem
to be more helpful, and how our conclusions differ depending on the evaluation criteria used.

We observe that the Process measures on average yield the most cost-effective prediction
models, whereas the OO metrics on average is no better than a model based on random selection
of classes. Although the Delta measures alone does not yield particularly large ROC areas, these
measures still yield more cost-effective prediction models than the OO metrics.

Turning to the evaluation criteria, a first observation is that using general confusion matrix
criteria raises a number of issue: (i) it is difficult to assess if the default cut-off of 0.5 is
appropriate and if not, what other cut-off value should be used; (ii) none of these criteria strongly
relate to the main goal in our context, that is ranking classes according to their fault-proneness to
prioritize and increase the cost-effectiveness of verification; (iii) none of these criteria are clearly
related to the possible cost-effectiveness of applying a particular prediction model.

Further, another issue when evaluating prediction models is that what can be considered
the best modeling technique or set of measures is highly dependent on the evaluation criteria
used for evaluation. Consequently, it is crucial that the criteria used to evaluate fault-proneness
prediction models are closely linked to the intended, practical application of the prediction
models.

We argue that ROC and CE capture two properties that are of high importance within our
context, namely class ranking and cost-effectiveness: The area under the ROC curve reflects the
probability that a faulty class is assigned a higher fault probability than a non-faulty one, while
the CE measure allows us to compare prediction models according to their cost-effectiveness
based on a number of assumptions. As shown in Section 4.2, these two measures capture two
different dimensions of model performance: The difference between the Process and the OO
metric sets was not clearly visible when only considering the ROC area, whereas the differences
considering CE were relatively large. The results showed that an apparently accurate model is
not necessarily cost-effective. Consequently, we emphasize the importance of considering not
only measures such as the ones that can be derived from the confusion matrix, but also specific
measures that are more closely related to the possible cost-effectiveness of applying fault-
proneness prediction models to focus verification efforts.

Simula Technical Report TR-2008-06

 38

5 Threats to Validity
The evaluation of techniques and metric sets were done using data from one single environment.
The data collected were from 13 major releases over a period of several years. The system has
endured a large extent of organizational and personnel change. Thus, it is unlikely that the results
are heavily affected by individual developers and their experience, or the traits of certain releases
of the system. Still, as with most case studies, one should be careful to generalize the specific
results to all systems or environments. However, at a more general level, we believe that many
methodological lessons can be learned from this study, including the need for doing systematic
and comprehensive evaluations to ensure that the prediction models have the desired properties
(e.g., cost effectiveness) for the purpose at hand.

In this study, we have not accounted for the actual cost of making the measures available
and collecting them. Consequently, there are some initial costs associated with this process
improvement activity that we do not account for. In particular, the Process metric set, being most
cost-effective, is at the same time the measures that have the highest cost with respect to data
reporting and collection.

The prediction models built in this case study were built using default parameters. That is,
we have not systematically investigated how the models are affected by varying the parameters.
There are possibly a large number of potential combinations of parameters for each modeling
technique and optimizing the parameters with respect to some criteria for each technique would
be very computational intensive. Furthermore, optimizing the modeling parameters might also
lead to overfitted models that is highly specific to the training set. One way to alleviate this
potential threat would be to apply evolutionary programming to optimize the parameters with
respect to some property, e.g., cross-validated measures of ROC or CE.

Note also that the use of statistical tests in this study to test the differences between
techniques and metric sets are somewhat exploratory in nature. In particular, from a formal
standpoint, the notion of p-values is questionable in our context, because we have not taken a
random sample from a target population, but rather used all the data we had available and
computed p-values on differences between subsets of our data. For this reason we have also
reported effect sizes, which are not problematic in this regard.

6 Conclusions and Further Work
Our review of recent studies revealed that many studies do not comprehensively and
systematically compare modeling techniques and types of measures to build fault-prediction
models. Many works also do not apply suitable evaluation methods and show little consistency
in terms of criteria and methods that are used to evaluate the prediction models. Thus, it is hard
to draw general conclusions on which measures and modeling techniques to use to build fault-
proneness prediction models based on the existing body of studies. Further, most studies evaluate
their models using confusion matrix criteria while we have shown that the metric set or
technique that is put forward as the best is highly dependent on the specific criteria used.

Except for a few studies, i.e., [21, 38], there has been no systematic and comprehensive
effort on comparing modeling techniques to build accurate and useful fault-proneness prediction
models. In this paper, we do not only compare a carefully selected set of modeling techniques in
a systematic way, but we also compare the impact of using different types of measures as
predictors, based on different evaluation criteria. By doing so, we also propose a systematic

Simula Technical Report TR-2008-06

 39

process and associated data analysis procedures for the rigorous comparison of models in terms
of their cost effectiveness.

More precisely, we have empirically evaluated all combinations of three distinct sets of
candidate measures (OO structural measures, code churn measures, and process change and fault
measures) and eight, carefully selected modeling techniques, using a number of evaluation
criteria. Overall, the findings are that the measures and techniques that are put forward as the
“best” is highly dependent on the evaluation criteria applied. Thus, it is important that the
evaluation criteria used to evaluate the prediction models are clearly justified in the context in
which the models are to be applied.

Within the field of software verification we propose a surrogate measure of cost-
effectiveness (CE) that enables us to assess and compare the possible benefits of applying fault-
proneness prediction models to focus software verification efforts, e.g., by ranking the classes
according to fault-proneness and focusing unit testing on the π % most fault-prone components.
Using this CE measure to evaluate the prediction models in our case study revealed that using
OO metrics to build fault-proneness prediction models does not necessarily yield cost-effective
models – possibly because these metrics show strong correlation with size related measures, and
prediction models that merely capture size are not cost-effective under the assumption that
verification costs are proportional to size. Further, this case study clearly suggests that one
should consider process-related measures, such as measures related to the history of changes and
faults, to improve prediction model cost-effectiveness. Regarding the choice of modeling
technique, the differences appear to be rather small in terms of cost-effectiveness, although
Adaboost combined with C4.5 overall gave the best results. Note however that we have only
compared techniques using default parameters, and as future work we will try to optimize the
parameters while attempting to avoid overfitting.

The CE measure proposed in this paper is a surrogate measure to facilitate comparisons of
prediction models using a criterion that is directly linked to the assumed cost-effectiveness of
using such models to focus verification efforts. In order to assess the real cost-effectiveness and
possible return on investment, we have recently performed a pilot study where the C4.5
prediction model was applied in a new release of the COS system. In this pilot study, developers
spent an additional week of unit testing on the most fault-prone classes and several serious faults
that otherwise would have slipped through to later testing phases or even the production system
was discovered and corrected. Preliminary results suggest a return of investment of about 100
percent by preventing these faults from slipping through to later phases where they would have
been more expensive to correct [84]. Due to these promising preliminary results, plans are
underway to perform large-scale evaluations of the costs and benefits of using the prediction
models to focus testing in the COS project.

References

[1] L. C. Briand and J. Wuest, "Empirical Studies of Quality Models in Object-Oriented Systems," Advances in
Computers, vol. 59, pp. 97-166, 2002.

[2] J. S. Collofello and S. N. Woodfield, "Evaluating the effectiveness of reliability-assurance techniques," Journal of
Systems & Software, vol. 9, pp. 191-195, 1989.

[3] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second ed.: Morgan
Kaufman, 2005.

[4] L. C. Briand and J. Wust, "Empirical studies of quality models in object-oriented systems," Advances in Computers,
Vol 56, vol. 56, pp. 97-166, 2002.

[5] "IEEE standard glossary of software engineering terminology," in IEEE Std 610.12-1990, 1990.

Simula Technical Report TR-2008-06

 40

[6] N. E. Fenton and M. Neil, "A Critique of Software Defect Prediction Models," IEEE Transactions Software
Engineering, vol. 25, pp. 675-689, 1999.

[7] T. J. Ostrand and E. J. Weyuker, "The distribution of faults in a large industrial software system," in 2002 International
Symposium on Software Testing and Analysis, 2002.

[8] P. Tomaszewski, L. Lundberg, and H. Grahn, "Improving Fault Detection in Modified Code — A Study from the
Telecommunication Industry," Journal of Computer Science and Technology, vol. 22, pp. 397-409, 2007.

[9] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, "Empirical Validation of Three Software Metrics Suites
to Predict Fault-Proneness of Object-Oriented Classes Developed Using Highly Iterative or Agile Software
Development Processes," IEEE Transactions on Software Engineering, vol. 33, pp. 402-419, 2007.

[10] Y. Zhou and H. Leung, "Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity
Faults," IEEE Transactions on Software Engineering, vol. 32, pp. 771-789, 2006.

[11] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi, "Identification of defect-prone classes in
telecommunication software systems using design metrics," Information Sciences, vol. 176, pp. 3711-3734, 2006.

[12] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai, "Object-oriented software fault prediction
using neural networks," Information and Software Technology, vol. 49, pp. 483-492, 2007.

[13] G. J. Pai and J. B. Dugan, "Empirical Analysis of Software Fault Content and Fault Proneness Using Bayesian
Methods," IEEE Transactions on Software Engineering, vol. 33, pp. 675-686, 2007.

[14] M. M. T. Thwin and T.-S. Quah, "Application of neural networks for software quality prediction using object-oriented
metrics," Journal of Systems and Software, vol. 76, pp. 147-156, 2005.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the Location and Number of Faults in Large Software
Systems.," IEEE Transactions on Software Engineering vol. 31, pp. 340-355, 2005.

[16] T. J. Ostrand and E. J. Weyuker, "How to measure success of fault prediction models," in Fourth international
workshop on Software quality assurance (SOQUA) Dubrovnik, Croatia: ACM, 2007.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Automating algorithms for the identification of fault-prone files," in
2007 International symposium on Software testing and analysis, London, United Kingdom, 2007.

[18] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, "Using Developer Information as a Factor for Fault Prediction," in
International Workshop on Predictor Models in Software Engineering, 2007. , 2007.

[19] T. M. Khoshgoftaar and N. Seliya, "Comparative Assessment of Software Quality Classification Techniques: An
Empirical Case Study," Empirical Software Engineering, vol. 9, pp. 229-257, 2004.

[20] A. P. Nikora and J. C. Munson, "Developing fault predictors for evolving software systems," in Ninth International
Software Metrics Symposium (METRICS'03), 2003, pp. 338-350.

[21] L. Guo, Y. Ma, B. Cukic, and H. Singh, "Robust prediction of fault-proneness by random forests," in 15th International
Symposium on Software Reliability Engineering, 2004, pp. 417-428.

[22] S. Kim, J. E. J. Whitehead, and Y. Zhang, "Classifying Software Changes: Clean or Buggy?," IEEE Transactions on
Software Engineering, vol. 34, pp. 181-196, 2008.

[23] P. Tomaszewski, L. Lundberg, and H. Grahn, "Increasing the Efficiency of Fault Detection in Modified Code," in 12th
Asia-Pacific Software Engineering Conference, 2005.

[24] R. Subramanyam and M. S. Krishnan, "Empirical Analysis of CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects," IEEE Transactions on Software Engineering, vol. 29, pp. 297-310, 2003.

[25] N. Nagappan and T. Ball, "Using Software Dependencies and Churn Metrics to Predict Field Failures: An Empirical
Case Study," in First International Symposium on Empirical Software Engineering and Measurement, 2007, pp. 364-
373.

[26] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component failures," in 28th international conference
on Software engineering, Shanghai, China, 2006.

[27] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone Software Modules," Software Quality Journal, vol. 11, pp.
19-37, 2003.

[28] N. Nagappan and T. Ball, "Use of relative code churn measures to predict system defect density," in 27th international
conference on Software engineering, St. Louis, MO, USA, 2005.

[29] J. Rosenberg, "Some misconceptions about lines of code," in Fourth International Software Metrics Symposium, 1997,
pp. 137-142.

[30] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object-Oriented Design," IEEE Transactions on Software
Engineering, vol. 20, pp. 476-493, 1994.

[31] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, vol. SE-2, pp. 308-320, 1976.
[32] L. C. Briand, J. Daly, and J. Wust, "A Unified Framework for Cohesion Measurement in Object-Oriented Systems,"

Empirical Software Engineering, vol. 3, pp. 65-117, 1998.
[33] L. C. Briand, J. W. Daly, and J. Wust, "A Unified Framework for Coupling Measurement in Object-Oriented Systems,"

IEEE Transactions on Software Engineering, vol. 25, pp. 91-121, 1999.
[34] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability," Journal of Systems and Software, vol. 23,

pp. 111-122, 1993.
[35] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault Incidence Using Software Change History," IEEE

Transactions on Software Engineering, vol. 26, pp. 653-661, July 2000.

Simula Technical Report TR-2008-06

 41

[36] T. J. Yu, V. Y. Shen, and H. E. Dunsmore, "An analysis of several software defect models," IEEE Transactions on
Software Engineering, vol. 14, pp. 1261-1270, Sept. 1988.

[37] T. M. Khoshgoftaar and N. Seliya, "Analogy-Based Practical Classification Rules for Software Quality Estimation,"
Empirical Software Engineering, vol. 8, pp. 325-350, 2003.

[38] K. O. Elish and M. O. Elish, "Predicting defect-prone software modules using support vector machines," Journal of
Systems and Software, vol. 81, pp. 649-660, 2008.

[39] M. Hall, "Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning," in Seventeenth Int.
Conf. on Machine Learning, 2000, pp. 359-366.

[40] H. H. Maurice, Elements of Software Science (Operating and programming systems series): Elsevier Science Inc.,
1977.

[41] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen, "Mining software repositories for
comprehensible software fault prediction models," Journal of Systems and Software, vol. 81, pp. 823-839, 2008.

[42] I. Gondra, "Applying machine learning to software fault-proneness prediction," Journal of Systems and Software, vol.
81, pp. 186-195, 2008.

[43] L. C. Briand, J. W. Daly, V. Porter, and J. Wust, "Exploring the Relationships between Design Measures and Software
Quality in Object-Oriented Systems," Journal of Systems and Software, vol. 51, pp. 245-273, 2000.

[44] Y.-S. Lee, B.-S. Liang, S.-F. Wu, and F.-J. Wang, "Measuring the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow," in International Conference on Software Quality, Maribor, Slovenia, 1995.

[45] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, "Investigating the Effect of Coupling Metrics on Fault Proneness
in Object-Oriented Systems," Software Quality Professional, vol. 8, 2006.

[46] L. C. Briand, W. L. Melo, and J. Wust, "Assessing the applicability of fault-proneness models across object-oriented
software projects," IEEE Transactions on Software Engineering, vol. 28, pp. 706-720, 2002.

[47] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis, "Investigating Quality Factors In Object-Oriented Designs:
an Industrial Case Study," in 21st International Conference of Software Engineering (ICSE'99), Los Angeles, CA.,
1999, pp. 345-354.

[48] K. El Emam, W. Melo, and J. C. Machado, "The prediction of faulty classes using object-oriented design metrics,"
Journal of Systems and Software, vol. 56, pp. 63-75, 2001.

[49] L. C. Briand, S. Morasca, and V. R. Basili, "Property-based Software Engineering Measurement," IEEE Transactions
on Software Engineering, vol. 22, pp. 68-85, 1996.

[50] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation of Object-Oriented Design Metrics as Quality Indicators,"
IEEE Transactions on Software Engineering, vol. 22, pp. 751-761, 1996.

[51] B. Henderson-Sellers, Object-oriented metrics: measures of complexity: Prentice-Hall, Inc., 1996.
[52] J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented design quality assessment," IEEE Transactions

on Software Engineering, vol. 28, pp. 4-17, 2002.
[53] F. Brito e Abreu and W. Melo, "Evaluating the Impact of Object-Oriented Design on Software Quality," in Proceedings

of the Third International Software Metrics Symposium (METRICS'96), Berlin, 1996, pp. 90-99.
[54] Rhino, "http://www.mozilla.org/rhino/."
[55] R. J. Freund and W. J. Wilson, Regression Analysis: statistical modeling of a response variable: Academic Press, 1998.
[56] R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann, 1993.
[57] P. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting:

Wiley, 1994.
[58] V. N. Vapnik, The Nature of Statistical Learning Theory: Springer, 1995.
[59] T. Joachims, "Learning to Classify Text Using Support Vector Machines," 2002.
[60] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasenbeek, M. Angelo, M.Reich, G.

S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J.
C.Aster, and T. R. Golub, "Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and
supervised machine learning," Nat Med, vol. 8, pp. 68-74, 2002.

[61] Y. Freund and R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to
Boosting," in European Conference on Computational Learning Theory, 1995.

[62] R. Melville and R. Mooney, "Creating Diversity in Ensembles using Artificial data," Information Fusion, vol. 6, pp.
99-111, 2005.

[63] M. A. Hall and G. Holmes, "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining," IEEE
transactions on knowledge and data engineering vol. 15, pp. 14-37, 2003.

[64] I. Kononenko, "On Biases in Estimating Multivalued Attributes," in fourteenth Int. Joint conf. on Artificial Intelligence,
1995, pp. 495-502.

[65] G. Denaro and M. Pezze, "An empirical evaluation of fault-proneness models," in 24rd International Conference on
Software Engineering, 2002, pp. 241-251.

[66] G. Dunteman, Principal Component Analysis: SAGE publications, 1989.
[67] R. M. O’Brien, "A Caution Regarding Rules of Thumb for Variance Inflation Factors," Quality and Quantity, vol. 41,

pp. 673-690, 2007.
[68] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments (Second Edition): Wiley-

Interscience, 2003.

Simula Technical Report TR-2008-06

 42

[69] J. H. Friedman, "Multivariate Adaptive Regression Splines," The Annals of Statistics, vol. 19, pp. 1-67, 1991.
[70] N. Ohlsson and H. Alberg, "Predicting fault-prone software modules in telephone switches," IEEE Transactions on

Software Engineering, vol. 22, pp. 886-894, 1996.
[71] L. Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5-32, 2001.
[72] E. Arisholm and L. C. Briand, "Predicting Fault-prone Components in a Java Legacy System," in 5th ACM-IEEE

International Symposium on Empirical Software Engineering (ISESE), , Rio de Janeiro, Brazil, 2006, pp. 8-17.
[73] E. Arisholm, L. C. Briand, and M. Fuglerud, "Data Mining Techniques for Building Fault-proneness Models in

Telecom Java Software," in The 18th IEEE International Symposium on Software Reliability, 2007. ISSRE '07., 2007,
pp. 215-224.

[74] T. M. Khoshgoftaar and E. B. Allen, "Modeling software quality with classification trees," in Recent Advances in
Reliability and Quality Engineering vol. 2, H. Pham, Ed. Singapore: World Scientific Publishing, 2001, pp. 247-270.

[75] J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC)
curve," Radiology, vol. 143, pp. 29-36, April 1, 1982 1982.

[76] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis. Upper Saddle River, N.J.: Pearsson
Prentice Hall, 2007.

[77] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller, "Open-Source Change Logs," Empirical Software
Engineering, vol. 9, pp. 197-210, 2004.

[78] JHawk, "http://www.virtualmachinery.com/jhawkprod.htm."
[79] T. M. Khoshgoftaar and G. Kehan, "Count Models for Software Quality Estimation," IEEE Transactions on Reliability,

vol. 56, pp. 212-222, 2007.
[80] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the Location and Number of Faults in Large Software

Systems.," IEEE Transactions on Software Engineering, vol. 31, pp. 340-355, 2005.
[81] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2 ed.: Lawrence Erlbaum Associates, 1988.
[82] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, "The Confounding Effect of Class Size on the Validity of Object-

Oriented Metrics," IEEE Transactions on Software Engineering, vol. 27, pp. 630-650, July 2001 2001.
[83] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, "Problems with Precision: A Response to "Comments on

'Data Mining Static Code Attributes to Learn Defect Predictors'"," IEEE Transactions on Software Engineering, vol.
33, pp. 637-640, September 2007 2007.

[84] M. J. Fuglerud, "Implementing and Evaluating a Fault-proneness Prediction Model to Focus Testing in a Telecom Java
Legacy System," in Dept. of Informatics. vol. M. Sc.: University of Oslo, 2007.

[85] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical validation of object-oriented metrics on open source software for fault
prediction," IEEE Transactions on Software Engineering, vol. 31, pp. 897-910, 2005.

[86] X. Jin, Z. Liu, R. Bie, G. Zhao, and J. Ma, "Support Vector Machines for Regression and Applications to Software
Quality Prediction," in Computational Science – ICCS 2006, 2006, pp. 781-788.

[87] T. M. Khoshgoftaar, E. B. Allen, and D. Jianyu, "Using regression trees to classify fault-prone software modules,"
IEEE Transactions on Reliability, vol. 51, pp. 455-462, 2002.

[88] G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller, "Practical assessment of the models for identification of defect-
prone classes in object-oriented commercial systems using design metrics," Journal of Systems and Software, vol. 65,
pp. 1-12, 2003.

Simula Technical Report TR-2008-06

 43

Appendix A: Papers reviewed

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Arisholm et al.
[72]

- Absence or
presence of
faults

- Class - 14 Structural
measures
- 6 Delta measures
- 5 Process
measures
- In addition, some
measures of code
violations, coding
style errors etc.

- Univariate logistic
regression
- Multivariate logistic
regression

- False positive
rate and false
negative rate at
cut-off values
ranging from 0 to
1.

- Leave-one-out
cross-validation

- Large java legacy
system consting of
1700 classes and
110KLOC

Arisholm et al.
[73]

- Absence or
presence of
faults

- Class/file - Structural
measures
- Process measures
such as the amount
of change
undertaken and
number of
developers involved

8 Data mining
techniques:
- C4.5
- PART
- SVM
- Decorate C4.5
- Boost C4.5
- C4.5+PART
- Neural network

- Confusion
matrix criteria;
precision, recall
- Area under
ROC curve

- 2/3 forms the
training set
- 1/3 is used as
a test set. In
addition, a later
release of the
same system is
used as a
separate test
set.

- Large java legacy
system consting of
2600 classes and
148KLOC

Briand et al.
[46]

- Absence or
presence of
faults

- Class - 23 structural
measures

- Multivariate and
univariate logistic
regression
- MARS

- Correctness
- Completeness
- Cost-benefit
model

Two validation
methods:
(1) 10-fold
cross-validation
(2) System i
forms training
set whereas
System ii forms
the evaluation
set

Two Java
applications:
- (i) Xpose (144
classes)
- (ii) Jwriter (68
classes)

Simula Technical Report TR-2008-06

 44

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Denaro et al.
[65]

- Highly faulty or
not (more than 4
faults)

- Module - 8 size measures
- 30 structural
measures including
Halstead's difficulty,
effort and program
volume.

- Logistic regression - R²
- Alberg-diagram
- Confusion
matrix criteria;
accuracy,
precision, recall

- Cross
validation

- Apache release
1.3 and 2.0 (C)

Elish and Elish
[38]

- Absence or
presence of
faults

- (i) Function
- (ii) Method

- Structural
properties

- Logistic regression
- K-nearest
neighbour
- Multi-layer
perceptron
- Radial basis
function
- Bayesian belief
network
- Naïve Bayes
- Random forest
- Decision tree

- Accuracy
- Precision
- Recall
- F-measure

- 10-fold cross-
validation run
100 times using
different seed
values

- (i) The CM1 and
PC1 data sets from
NASA MDP (C)
- (ii) The KC1 and
KC3 data sets from
NASA MDP (C++)

Gondra [42] - Fault-
proneness
(neural network)
- Absence or
presence of
faults (SVM)

- Function - Structural
properties
- Some size metrics

- Neural network
- Support vector
machines (SVM)

- Mean squared
error
- Proportion of
incorrect
classifications (1-
accuracy)

- 2/3 forms the
training set
- 1/3 is used as
a test set

- The JM1 data set
from NASA MDP,
315 KLOC (C)

Simula Technical Report TR-2008-06

 45

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Guo et al. [21] - Absence or

presence of
faults

- (i) Function
- (ii) Method

- 16 structural
measures (included
McCabe's and
Halstead's)
- 5 size measures

- Random forest
- Discriminant
analysis
- Logistic regression
- 20 data mining
techniques using
WEKA
- See5/C5
- ROCKY

- Confusion
matrix criteria;
accuracy,
sensitivity,
specificity

For random
forest:
- 2/3 form the
training set
- 1/3 is used for
evaluation/valid
ation

For all others:
- 10 times 10-
fold cross
validation

- (i) The CM1, JM1
and PC1 data sets
from NASA MDP (C)
- (ii) The KC1 and
KC2 data sets from
NASA MDP (C++)

Gyimóthy et al.
[85]

- Number of bugs
- Absence or
presence of bugs

- Class - The 6 CK'94
metrics

- Multivariate and
univariate linear
regression
- Multivariate and
univariate logistic
regression
- C4.5
- Neural network

- Accuracy (in the
paper called
precision)
- Recall (in the
paper called
correctness)
- Completeness

None - Version 1.0
through 1.6 of the
Mozilla email and
browser suite (C++)

Janes et al. [11] - Number of
defects

- Class - CK '94 class level
metrics
- NOS

- Poisson regression
- Negative binomial
regression
- Zero-inflated
negative binomial
regression
(all are univariate)

- Spearman rank
correlation
- Dispersion
- Alberg-
diagrams

None - Five real-time
telecommunication
systems written in
C++ (63400 LOC in
total)

Simula Technical Report TR-2008-06

 46

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Jin et al. [86] - Number of

changes
- Module - 5 structural

measures
- 6 size measures

- Multivariate linear
regression
- Conjunctive rule
- Locally weighted
regression
- Support vector
machine regression

- Mean absolute
error
- Correlation
coefficient

- 10-fold cross-
validation

- MIS dataset

Kanmani et al.
[12]

- Absence or
presence of
faults (faults
found during
testing)

- Class - 57 Structural OO
measures including
CK'94, Briand's
coupling measures
as well as Li and
Henry's metrics
- 7 Size measures

- Back propagation
neural network
- Probabilistic neural
network
- Discriminant
analysis
- Logistic regression

- Type I and
Type II error
rates
- Correctness
- Completeness
- Effectiveness
- Efficiency

- 2/3 forms the
training set
- 1/3 is used as
a test set

- Object-oriented
library management
system developed
by graduate
students (10-
15KLOC)

Khoshgoftaar et
al. [27]

- (1) Number of
faults
- (2) Debug code
churn

- Module (1):
- Structural
properties (e.g.,
number of unique
operands, Halstead
cycl. compl.)
- Size metrics
(2):
- Structural
properties (e.g.
McCabes
complexity metrics,
number of
edges&nodes in
control flow graph
etc.)
- Size metrics

- Multiple linear
stepwise regression

- R²
- Average
absolute and
relative error
- The percentage
of faults obtained
compared to an
«optimal»
(actual) model at
different
thresholds
(percentage of
modules)

- (1) 2/3 form
the training set
while the
remaining 1/3 is
used ot
evaluate/validat
e the model
- (2) Release 1
forms the
training set,
release 2 is
used to
evaluate/validat
e model

Two systems:
(1) Military system
written in Ada
(2) Large legacy
telecommunications
system

Simula Technical Report TR-2008-06

 47

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Khoshgoftaar et
al. [79]

- Number of
faults
- Probability of
two faults or
more

- Module (Ada
package)

- (1) 7 structural
measures including
some size related
measures
- (2) five product
measures obtained
during inspection

- Logistic regression
- Poisson regression
- Zero-inflated
Poisson regression

- Average
absolute error
- Average
relative error
- Type I and
Type II
misclassification
rates

- 2/3 form the
training set
- 1/3 form the
test set

Two case studies:
- (1) Large military
telecom system
written in Ada
- (2) Two large
embedded
applications used for
config. of wireless
telecom products

Khoshgoftaar et
al. [37]

- Absence or
presence of
customer-
discovered faults

- Set of
related
source-code
files
(modules)

- 24 Structural
measures
- 14 Process
measures
- 4 Software
execution metrics

- Case Based
Reasoning by (i)
Majority vote and (ii)
Data clustering

- Type I and
Type II
misclassification
rates, where
Type II is
considered most
important

- Train using
release 1
- Select model
using leave-
one-out cross
validaion
- Test using
release 2, 3
and 4

- Large legacy
telecommunication
software, procedural
paradigm
(1000KLOC)

Khoshgoftaar et
al. [19]

- Absence or
presence of
faults detected
during system
operation (post-
release)

- Set of
related files
(data
collected at
file level, and
then
aggregated)

- Structural
measures
- Software execution
metrics (execution
time)

- Logistic regression
- Case-based
reasoning
- CART
- Regr. tree using S-
PLUS
- Sprint-Sliq
- C4.5
- Treedisc

- Type I and
Type II error
rates (model
selection)
- Expected cost
of
misclassification
(model
evaluation)

- Train using
release 1
- Select using
release 2
- Evaluate
using release 2,
3 and 4

- Large-scale legacy
telecommunications
system, procedural
paradigm (PROTEL)

Simula Technical Report TR-2008-06

 48

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Khoshgoftaar et
al. [87]

- Absence or
presence of
faults in modules
that was
changed since
the prior release

- Module; one
or more
functionally
related
source-code
files

- 26 structural
measures including
size-related
measures
- 4 metrics capturing
the average
execution time of a
module

- Regression tree
using S-Plus

- Type I and
Type II
misclassification
rates
- Estimated profit
and ROI

- Release 1
was used as
training set
- Release 2-4
were used as
separate test
sets

- Embeded real-time
system consisting of
more than 10.000
KLOC written in a
procedural language
(PROTEL)

Kim et al. [22] - Clean or buggy
commit

- Change
(committed
change to
source code
repository)

- 8 RCS meta
measures, e.g. day
of week and for
commit,
cummulative
number of changes
and bugs
- The deltas
between the new
and old revision for
61 complexity
metrics

- Support vector
machine

- Confusion
matrix criteria;
accuracy,
precision, recall

- 10 fold cross
validation

- 12 open source
software projects
including Apache,
Subversion, Eclipse
and PostgreSQL

Nagappan et al.
[25]

- Number of post-
release failures
- Absence or
presence of post-
release failures

- System
binaries

- Change (churn)
measures; lines
added, deleted or
modified. Number of
files that churned
and number of
changes.
- Architectural
dependencies

- Multivariate linear
regression using
PCA (count)
- Multivariate Binary
logistic regression
using PCA (failure-
proneness)

- F-test (coeff.
sign.)
- R², both
adjusted,
Nagelkerkes, and
Cox & Snell
- Spearman rank
correlation
- Pearson
correlation
- Precision and
recall

- Random split;
2/3 training, 1/3
test. Repeated
5 times.

- Windows 2003
Server

Simula Technical Report TR-2008-06

 49

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Nagappan et al.
[26]

- Number of post-
release failures

- System
binaries

- 11 structural
measures at
function level
(aggregated to
module level as
Total and Maximum)
- 4 structural
measures at class
level (aggregated to
module level as
Total and Maximum)
- 3 structural
measures at module
level

- Univariate and
multivariate (using
PCA) linear
regression

- R² and adjusted
R²
- Spearman and
Pearson rank
correlation

- Random split
for each
subsystem; 2/3
training, 1/3
test. Repeated
5 times.
- 5 models; one
for each
component is
applied to the
other 4
components.

- 5 object-oriented
components in
Windows; including
Internet Explorer 6
and IIS

Nikora et al.
[20]

- Cumulative
number of faults
across releases

- Function /
procedure

- 6 size measures
- Some control flow
graph measures

- Multiple linear
regression using
principal
components

- R² None - Space shuttle
mission software

Olague et al. [9] - Absence or
presence of
faults

- Class - CK '94 class
metrics
- Abreu's metrics
- Bansiya and Davis'
metrics

- Univariate binary
logistic regression
(used for variable
selection)
- Multivariate binary
logistic regression
- Also linear
regression was
used, but were not
successful in pred.
faults

- Hosmer-
Lemeshow test
- Percentage
correctly
classified
(accuracy)

For release x <
n < y, where x-
y=5:
- Train using
set n
- Test/evaluate
on n+1

- Mozilla Rhino,
(Open source Java
system)

Simula Technical Report TR-2008-06

 50

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Ostrand et al.
[16]

- Number of
faults (Pre- and
post-release)

- File - Lines of code
(LOC)
- Wheter file is new
or
changed/unchanged
- Age of file
- Number of faults in
prev. rel.
- Language (java,
perl, c, xml etc.)
- Number of different
developers who
have worked one
the file

- Negative binomial
regression

- Confusion
matrix criteria;
accuracy, recall,
precision, type I
and type II error
ratios at different
percentages of
files selected that
are predicted as
most fault-prone

None - Large industrial
software systems
(doesn't state
language, design
paradigm etc.)

Ostrand et al.
[15]

- Number of
faults
(Pre- and post-
release)

- File - Lines of code
(LOC)
- Whether file is new
or
changed/unchanged
- Age of file
- Number of faults in
prev. rel.
- Language (java,
perl, c, xml etc.)

- Negative binomial
regression

- Percentage of
faults included by
model in th top
20% most fault-
prone files

- Training set
- Test/evaluate
on later
releases of the
same system

- Large industrial
software systems;
one written in Java,
and the other mainly
in SQL

Ostrand et al.
[17]

- Number of
faults (Pre- and
post-release)

- File - LOC
- Age
- Number of prior
changes and faults
- Exposure (the
fraction of the
release which a new
file existed)
- Language (C++,
SQL, C etc.)

- Negative binomial
regression

- The percentage
of LOC included
in the fault-prone
files vs. the
percentage of
faults included in
those files
- Whether %
LOC in the fault-
prone files is
smaller than the
percentage of
faults.

- Model for
release N was
built using
release 2
through N-1
- In addition,
two models
built from
another system
were assessed

- 35 releases of a
large maintenance
support system
(C++, SQL an
others)

Simula Technical Report TR-2008-06

 51

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Pai et al. [13] - Number of

faults
- Absence or
presence of
faults

- Class - 6 CK'94 class level
metrics
- LOC

- Linear regression
- Bayesian
networks:
 * Bayesian linear
regression
 * Bayesian poisson
regression
 * Bayesian logistic
regression

- Kolmogorov-
Smirnov
- Deviance
information
criterion
- Alberg-
diagrams
- Confusion
matrix measures;
sensitivity,
specificity,
precision, Type I
and Type II error
rates

- 10-fold cross
validation

- The KC1 data set
from NASA MDP
(C++, 43 KLOC, 145
classes)

Subramanyam
et al. [24]

- Number of
defects

- Class - Some of the CK
'94 class measures
(WMC, CBO, DIT)
and size (NOS)

- Linear regression
using Box-Cox
transformation and
weighted least
squares

- Adjusted R² None (built
from and
applied to one
release)

- Commercial object-
oriented B2C e-
commerce
application suite
(C++ and Java)

Succi et al. [88] - Number of
faults (defects)

- Class - LOC
- The 6 CK'94
metrics

- Negative binomial
regression
- Zero-inflated
binomial regression
- Poisson regression

- Relative
standard error
- Dispersion
- Pareto analyis
(using 80% of the
faults)

None - Two commercial
applications each of
consisting of apprx.
150 classes

Simula Technical Report TR-2008-06

 52

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Thwin et al. [14] - Number of

faults
- Class - 8 structural

measures including
CK metrics

2 neural network
techniques:
- General regression
neural network
- Ward neural
network

- R squared,
mean square
error,
mean/maximum/
minimum
absolute error

- 10 fold cross
validation

- Three object-
oriented subsystems
totaling 43KLOC in
size, 97 classes.
The subsystems are
part of a large
industrial system
consisting of 200
subsystems.

Tomaszeski et
al. [8]

- Number of
faults and fault
density

- Class - 7 CK'94 class level
metrics
- Cyclomatic
complexity
- 5 size measures
- Number of new or
modified LOC

- Univariate and
multivariate linear
regression

- R²
- Spearman rank
correlation
- Presumed cost
reduction in
terms of
percentage faults
detected
compared to
optimal model,
and further
compared to a
simple model
based on size
and finally a
random model.

- Build model
from one
release of one
system,
evaluating the
model on a
later release of
the same
system and on
another system

- Two large object-
oriented
telecommunication
systems (500 KLOC
and 600 KLOC)

Tomaszewski et
al. [23]

- Number of
faults and fault
density

- Class - CK'94 class level
metrics
- 5 size measures
- Number of new or
modified LOC

- Stepwise
multivariate linear
regression

- R²
- F-test
- Presumed cost
reduction wrt.
percentage of
faults detected
compared to
optimal model, a
model based on
size and finally a
random model.

None
(built from and
applied to one
release)

- Large object-
oriented
telecommunication
system (250 KLOC)

Simula Technical Report TR-2008-06

 53

Author(s)
Dependent

variable
Unit of

analysis Measures
Modeling

techniques
Evaluation

criteria
Validation

method Type of system
Vandecruys et
al. [41]

- Absence or
presence of
faults

- (i) Function
or subroutine
- (ii) Method

- Size metrics
- Structural
measures such as
Halstead volume,
effort and difficulty,
and cuclomatic
complexity etc.

- AntMiner+
- RIPPER
- C4.5
- Logistic regression
- k-nearest
neighbour
- Support vector
machine
- Majority vote

- Confusion
matrix criteria;
accuracy,
sensitivity,
specificity

- 70% training
set
- 30% test set

- (i) The PC1 and
PC4 data sets from
NASA MDP (C)
- (ii) The KC1 data
set from NASA MDP
(C++)

Weyuker et al.
[18]

- Number of
faults (Pre- and
post-release)

- File Same as for the
ISSTA'07 paper, but
in addition a number
of measures meant
to capture the
number of
developers involved
in developing a file.

- Negative binomial
regression

- Percentage of
faults found in
the (predicted)
20% most fault-
prone files

- Model for
release N was
built using
release 2
through N-1, for
N >= 6

- 35 releases of a
large maintenance
support system
(C++, SQL an
others)

Zhou et al. [10] - Absence or
presence of (1)
high severity
faults, (2) low
severity faults,
and (3) both

- Class - 7 CK'94 class level
metrics; WMC, DIT,
RFC, NOC, CBO,
LCOM and LOC

- Univariate logistic
regression
- Multivariate logistic
regression
- Naive Bayes
network
- Random forest
- Nearest neighbour
with generalization

- Confusion
matrix critera;
correctness and
an awkard
definition of
precision
- Completeness

- Leave-one-out
cross validation

- The KC1 data set
from NASA MDP

Simula Technical Report TR-2008-6

 54

