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Abstract. 
This paper describes a study performed in an industrial setting that attempts to build predictive 
models to identify parts of a Java system with a high fault probability. The system under 
consideration is constantly evolving as several releases a year are shipped to customers. 
Developers usually have limited resources for their testing and would like to devote extra 
resources to faulty system parts. The main research focus of this paper is to systematically assess 
three aspects on how to build and evaluate fault-proneness models in the context of this large 
Java legacy system development project: (1) compare many data mining and machine learning 
techniques to build fault-proneness models, (2) assess the impact of using different metric sets 
entailing different data collection costs, such as source code structural measures and historic 
change/fault (process) measures, and (3) compare several alternative ways of assessing the 
performance of the models, in terms of (i) confusion matrix criteria such as accuracy and 
precision/recall, (ii) ranking ability, using the receiver operating characteristic area (ROC), and 
(iii) our proposed cost-effectiveness measure (CE).  

The results of the study indicate that the choice of fault-proneness modeling technique 
has limited impact on the resulting classification accuracy or cost-effectiveness. There is 
however large differences between the individual metric sets in terms of cost-effectiveness, and 
although the process measures are among the most expensive ones to collect, including them as 
candidate measures significantly improves the prediction models compared with models that 
only include structural measures and/or their deltas across releases – both in terms of ROC area 
and cost-effectiveness. Further, we observe that what is considered the best model is highly 
dependent on the criteria that are used to evaluate and compare the models. The regular 
confusion matrix criteria, although popular, are not clearly related to what we consider to be a 
crucial aspect, namely the cost-effectiveness of using fault-proneness prediction models to focus 
verification effort where it is the most needed.  

 

1 Introduction 

A significant research effort has been dedicated to defining specific quality measures and 
building quality models based on those measures [1]. Such models can then be used to help 
decision-making during development of software systems. Fault-proneness or the number of 
defects detected in a software component (usually a module, class, or file) are the most 
frequently investigated dependent variables [1]. In this case, we may want to predict the fault-
proneness of components in order to focus validation and verification effort, thus potentially 
finding more defects for the same amount of effort. For example, assuming a class is predicted as 
very likely to be faulty, one would take corrective action by investing additional effort to inspect 
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and test this class. Given that software development companies might spend between 50 to 80 
percent of their software development effort on testing [2], research on fault-proneness 
prediction models can be motivated by its high cost-saving potential.  

As a part of this study, we have reviewed a selection of relevant publications within the 
field of fault-proneness prediction models (details are provided in Section 2). The review 
revealed that a vast number of modeling techniques have been used to build such prediction 
models. However, there has been no comprehensive and systematic effort on assessing the 
impact of selecting a particular modeling technique. 

To construct fault-proneness prediction models, most studies use structural measures such 
as coupling and cohesion as independent variables. Although some studies have investigated the 
possible benefits of including other measures such the number of changes performed on 
components and their fault history in previous releases, none of the studies assess in a systematic 
way the impact of using various sets of measures, entailing different data collection costs, on the 
cost-effectiveness of the prediction models. 

A large number of evaluation criteria have been used to evaluate and compare fault-
proneness prediction models,. Among the most popular evaluation criteria are the ones that can 
be derived from the confusion matrix such as accuracy, precision, and recall. There is little 
consistency across the reviewed studies with respect to the criteria and methods that are used to 
evaluate the models, making it hard to draw general conclusions on what modeling technique or 
sets of independent variables seems the most appropriate. In addition, the popular confusion 
matrix criteria are somewhat abstract as they do not clearly and directly relate to the cost-
effectiveness of using fault-proneness prediction models to focus verification and validation 
activities such as testing. Because there exists very little evidence of the economic viability of 
fault-proneness prediction models [1], there is a need for evaluating and comparing fault-
proneness prediction models not only by considering their prediction accuracy, but also by 
assessing the potential cost-effectiveness of applying such models.  

To compare the potential cost-effectiveness of alternative prediction models, we need to 
consider (surrogate) measures of additional verification cost for the selected, faulty classes. For 
many verification activities, such as structural coverage testing or even simple code inspections, 
the cost of verification is likely to be roughly proportional to the size of the class.1 What we want 
are models that capture other fault factors in addition to size, so that the model would select a 
subset of classes with high fault density.  

To build fault-proneness prediction models there are a large number of modeling 
techniques to choose from, including standard statistical techniques such as logistic regression, 
and data mining techniques such as decision trees [3]. The data mining techniques are especially 
useful since we have little theory to work with and we want to explore many potential factors 
(and their interactions) and compare many alternative models so as to optimize cost-
effectiveness.  

Although there are a large number of publications that have built and evaluated methods 
for building fault-proneness prediction models, it is not easy to draw practical guidelines from 
them in terms of what modeling techniques to use, what data to collect, and what practical gains 
to expect. This paper investigates in a systematic way three practical aspects of the building and 
evaluation of fault-proneness prediction models; (i) choice of modeling techniques, (ii) choice of 

                                                 
1  Depending on the specific verification undertaken on classes predicted as fault prone, one may want to use a different size measure 

that would be proportional to the cost of verification. 
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independent variables (sets of measures), and (iii) choice of evaluation criteria. This assessment 
is performed by building a range of fault-proneness prediction models using a selection of 
relevant modeling techniques. The models are built using different sets of independent variables 
entailing different data collection costs. This allows us to assess the possible benefits of 
collecting certain sets of measures. The resulting models are then systematically compared and 
evaluated using a number of the most popular evaluation criteria such as accuracy, precision and 
recall. To assess the potential cost-effectiveness in applying the models to focus verification 
activities, we also compare the models according to a proposed measure of cost-effectiveness 
within this particular industrial context.   

The remainder of this paper is organized as follows: Section 2 provides a comprehensive 
overview of related works, whereas Section 3 presents our study design. In Section 4 we report 
our results, comparing several modeling techniques and sets of measures using a number of 
different evaluation criteria. Section 5 discusses what we consider the most important threats to 
validity, whereas Section 6 concludes and outlines directions for future research. 

2 Fault-proneness Prediction Models 

In this section, we first elaborate on the concept of fault-proneness; how it is defined, and 
possible ways of measuring it. Then, we describe factors that may have an impact on fault-
proneness, and thus are candidate predictor variables. We continue by giving a brief summary on 
how various statistical methods and data-mining techniques have been used in existing fault-
proneness studies. Furthermore, we discuss how fault-proneness prediction models have been 
evaluated. Throughout the following subsections we summarize existing work according to the 
abovementioned dimensions and discuss implications for our work.  

The discussions in the following sections are frequently referring to Appendix A, which 
gives a summary of this field of research in recent years. Each study is categorized in terms of 
dependent variable, unit of analysis, selection of measures, modeling techniques and evaluation 
criteria used, validation method and type of system (see Appendix A). Many of the findings prior 
to 2002 are summarized in [4], and we therefore focus on empirical research reported since 2001. 
To obtain this set of papers, we proceeded as follows:  

We searched ISI Web of Knowledge and Inspec for papers that matched the following 
logical expression:  

((software  OR  object‐oriented)  AND  (metrics)  AND 
(prediction) AND (defect OR fault OR error)) 

First, ISI returned 40 hits. Out of these, 12 papers were included after reading the title and 
abstract to determine whether they were indeed related to the topic of fault-proneness prediction 
models. Second, using Inspec, we performed the same search but limited to journal papers only. 
This search resulted in 32 hits, of which 8 additional papers were included on the basis of 
reading the title and abstract.  

Given that this search was probably not complete, we furthermore checked the included 
papers for references to additional work on the topic of fault-proneness prediction models. As a 
result, an additional 13 papers were included leading to a total of 33 papers.  
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A more comprehensive systematic literature review is certainly possible but we still 
believe, because of the systematic nature of our search, that the selected papers reflect the current 
state of the art in a reasonably unbiased way.  

2.1 Fault-proneness 

Fault-proneness is a difficult concept to define in precise terms and can be measured in many 
ways. In pragmatic terms, fault-proneness is the probability that a component, e.g., a class, 
contains a fault. A fault is a (possibly undetected) incorrect program step, process, or data 
definition in a computer program [5]. In many situations, a more practical definition of fault-
proneness that is commonly used is the probability of detecting one or more faults in a 
component. A fault may be detected as a result of any form of verification and validation 
activities at different stages of development and maintenance. Some faults remain undetected 
while others are detected as field failures. A field failure is a systems inability to perform its 
required functions during operation. Faults that manifest themselves through field failures may 
be different from those found before the system is deployed. Thus, one may distinguish between 
pre-release and post-release faults, the latter possibly resulting in field failures. Furthermore, 
some faults are more severe than others, and thus one may classify faults according to their 
severity level to distinguish fault-proneness with critical implications. Column 2 in Appendix A 
gives an overview of the kinds of faults that have been considered in the reviewed studies. 

A common conception is that some components are intrinsically more fault-prone than 
others due to some (possibly unknown) property. For example, components that are fault-prone 
during system test may continue to be fault-prone during future operation. Thus, the distribution 
of faults found during pre-release testing may reflect the future distribution of post-release faults. 
However, a study by Fenton et al. suggests that the number of pre-release faults is inversely 
correlated to the number of post-release faults, i.e., components that are among the most fault-
prone during pre-release testing are among the most reliable during field operation [6]. This is, to 
some degree, further supported by Ostrand et al.[7]. It is important to note that these findings do 
not imply a causal relationship; the fact that post-release fault-proneness is inversely correlated 
to pre-release fault-proneness might be attributed to the distribution of effort spent during pre-
release testing across various components. 

When measuring and predicting faults in object-oriented systems, the unit of analysis may 
be the individual changes done on a particular component, a class, a file, a package or module, 
executable component or subsystem. Some studies investigating fault-proneness models in the 
context of object-oriented systems use a class as their unit of analysis, e.g., [8-14] . However, 
because most revision control systems operate at the file-level, many studies use files as the unit 
of analysis, e.g., [15-18]. Others aggregate data to a higher level and use collections of related 
files (modules) as the unit of analysis, e.g., [19], while others analyze on a more detailed level 
such as methods or procedures , e.g., [20, 21]. Some studies, such as [22], have used the change 
itself, i.e., each commit to the source code repository, as the unit of analysis.  

In addition to the choice of the unit of analysis, there are also different options for 
constructing the dependent variable to be predicted: binary measures of whether the unit contains 
one or more faults, counts of faults and fault density. The choice of dependent variable varies 
across studies, as shown in Column 2 in Appendix A. Nearly half of the studies reviewed in this 
thesis use the number of faults as the dependent variable [11, 13-18, 23-27]. However, in many 
cases, the number of faults in a component is small, making it more practical (from a data 
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analysis perspective) to use a dichotomous variable to indicate the absence or presence of faults 
rather than fault counts. Half of the studies reviewed in this thesis use a binary dependent 
variable [9, 25]. Although this recoding allows the use of classification techniques and facilitates 
analysis, it is a more coarse-grained measure, thus potentially limiting the discriminatory power 
of the prediction model.   

Some studies divide the number of faults by some size measure, e.g., lines of code, and 
thus obtain a measure of fault density [28]. However, the use of fault density might be 
problematic as the denominator of the dependent variable is a size measure while certain 
explanatory variables are also strongly correlated with size. Rosenberg [29] showed that such 
situations may lead to spurious relationships which are pure mathematical artifacts. It also results 
in models that are difficult to interpret. Finally, some studies account for the severity of faults. 
For example, Zhou et al. [10] built three prediction models; one to predict the probability of high 
severity faults, one to predict the probability of low severity faults, and finally a model where the 
severity of faults was not accounted for. 

The choice of dependent variable also depends on how the resulting prediction model is to 
be used. If the purpose is merely to provide some indicator of quality of each component in a 
system, then using the number of faults as a dependent variable might be a reasonable choice, 
assuming that one can find an appropriate modeling technique for the distribution at hand. 
Conversely, if differentiating components with one fault from components with many faults does 
not affect decision making (e.g., as in deciding whether or not to spend extra effort to verify that 
a class does not contain faults), one may be better off to choose a binary dependent variable, in 
which case the prediction model can provide a ranking of the classes according to fault 
probabilities. 

2.2 Fault-proneness Factors 

There are a number of factors that are likely to have an impact on fault-proneness. We divide 
these factors into three categories:  

• Structural measures: They are measures of structural properties derived from 
the source code. This category includes popular coupling metrics, size metrics 
and other measures that can be collected from a snapshot of a file (revision). 

• Delta measures: These measures capture the amount of change – sometimes 
called churn – in a file, e.g., by taking the difference between structural 
measures between to successive releases. 

• Process measures: They are not derived from the source code, but are collected 
from meta data in the revision control system or through human intervention, 
e.g., by assessing the experience of each developer, the number of developers 
that have made changes to a file, the number of faults in previous release(s) and 
simpler measures such as the number of lines added and/or removed. 

Our classification of measures into three categories is motivated by practical 
considerations. Collecting structural measures requires no revision control system or historical 
data. They are simply derived from a particular snapshot of the code base. The delta measures, 
on the other hand, require release management and a revision control system to compute the 
difference between two successive releases for a particular measure. However, if revision control 
and release management is in place, such measures are inexpensive to collect because it requires 
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no additional human intervention. Some of the process measures, on the other hand, require 
intervention from the developers; they need to record the reason for each change in a coherent 
manner. In addition, the process measures are somewhat domain and process specific, and their 
definitions are coupled to the way the development team works: how the system is evolving, how 
the developers locate and record faults, and how they remove them. 

One of the underlying hypotheses in building fault-proneness models is that structural 
properties, such as coupling between object classes [30] and cyclomatic complexity [31], affect 
fault-proneness. The assumption is that such properties affects the cognitive complexity of the 
code, which in turn may affect how prone a programmer is to commit errors when developing or 
changing the code.  There are numerous structural property measures proposed in the literature. 
Important sources in this field of research are the work by McCabe [31], Chidamber & Kemerer 
[30], Briand et al. [32, 33], and Li & Henry [34]. The metrics given in [30] are among the 
measures most widely used [4]. Many of these measures are, to various degrees, correlated with 
the size of the components being measured. This is not necessarily a problem depending on how 
the prediction model is intended to be used [1].  

Studies have shown that not only structural properties are important predictors of fault-
proneness, but also the history of an individual component and the experience of the developers 
should be considered when building fault-proneness prediction models. Graves et al. suggested 
that the mere change of a file itself is associated with fault-proneness [35]. Yu et al. showed that 
a component with a previous history of faultiness will continue to be faulty in the future due to 
possibly unknown underlying factors [36]. There are studies that include the number of distinct 
developers that have made changes to a component during its lifetime, assuming that one can 
expect more faults when developers share responsibility on a particular component with other 
developers, perhaps because (some of) the developers lack of understanding of the changes made 
by other developers. Further, it is reasonable to assume that it is easiest to make reliable changes 
to the code if the developer is familiar with the complete history of a component’s functionality 
and code [18]. However, Graves et al. showed that the number of developers that had made 
changes to a module were not associated with fault-proneness [35].  

There are a number of studies investigating if and how the three different categories of 
measures relate to fault-proneness. From Appendix A we can see that two thirds of the reviewed 
studies built prediction models using structural measures. The Chidamber and Kemerer metrics 
[30] are among the measures most often used. Only a few of the studies included process 
metrics, e.g., [16, 18, 25, 37]. Below, we briefly summarize how the various types of measures 
have typically been used in the reviewed studies.  

Tomaszewski et al. [23] selected eight metrics out of 14 through a correlation analysis 
using Spearman Rho. Among the measures selected were WMC and RFC [30], maximum 
cyclomatic complexity [31] and some size metrics. In addition, the number of lines added or 
modified since the previous release was used. In fact, this change metric was the best individual 
predictor of fault density and number of faults. 

In [38], the authors used fault and code measures data from the NASA Metrics Data 
Program (MDP). There were 21 measures available as candidate predictors. Four different data 
sets were used, and the most important metrics in each data set were selected using correlation-
based feature selection  (CFS) [39]. Depending on the data set used, the number of variables was 
reduced from 21 to three to seven. Among the variables selected were McCabe's cyclomatic 
complexity and Halstead's intelligent count and difficulty metrics [40]. Also included were 
several line count metrics: the number of lines including comments and number of blank lines.  
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Vandecruys et al. [41] also used data from the NASA MDP. By using a χ²-based filter, 
they selected only a subset of the metrics available – reducing the number of metrics to around 
12 depending on the data set that was filtered. Among the metrics selected were Halstead volume 
and error estimate [40], cyclomatic complexity [31], as well as several size-related metrics such 
as the total lines of code and lines of comments.  

Data available from the NASA MDP was also used in studies by Pai et al. [13] and Gondra 
[42]. Pai et al. used the subset of the metrics which are associated with the work of Chidamber 
and Kemerer: WMC, DIT, RFC, NOC, CBO, LCOM [30]. Their result showed that four metrics 
were significant in predicting fault-proneness: WMC, CBO, RFC and lines of code. DIT, NOC 
and to some degree LCOM, were not found to be significant. In [42], the system under study was 
a system written in C. Thus, we consider the metrics investigated in this study of less importance 
as our focus in this study is mainly on object-oriented systems. Gondra focused on the Halstead 
metrics suite and a selection of size metrics and the prediction models yielded an accuracy 
ranging from 0.73 to 0.87. Elish et al. [38] used the metrics available through NASA MDP to 
compare several data mining techniques. The models yielded an accuracy ranging from 0.83 to 
0.93, and nearly all of the precision and recall measures were above 0.9. 

Briand et al. [43] investigated the impact of a large number of metrics on fault-proneness; 
28 coupling measures, 10 cohesion measures, 11 inheritance-related measures and 6 size 
measures. Each measure's impact on fault-proneness was evaluated through univariate logistic 
regression. Three multivariate models were built; one using size metrics alone, one including 
object-oriented measures like cohesion, coupling and inheritance, and one including both the size 
measures and the object-oriented metrics as candidate predictors. The best model in terms of 
correctness and completeness were the model based on object-oriented metrics alone, i.e., 
without the size metrics. This model obtained 92% completeness and 78% correctness using 10-
fold cross validation, as apposed to 94% completeness and 81% correctness when assessing 
goodness-of-fit. The cross-validated accuracy of the model was 80%. Among the findings from 
the univariate analyses were that coupling measures related to the number of method invocations 
on a class X initiated from a class C, i.e., import coupling, have a significant impact on fault-
proneness for class C. That is, measures like RFC [30] and the ICP measures defined in [44] 
seem to be related to fault-proneness. However, the fact that a class C is used by many other 
classes, i.e., high export coupling, seems to have little effect on C’s fault-proneness. Both of 
these findings are also supported in [45] and, to some extent, in [46] and [47]. Contradicting 
evidence were found in [48], where export coupling measures were significantly associated with 
fault-proneness. Further findings in [43] were that some of the cohesion measures were 
significant with respect to fault-proneness (α=0.05). However, there is some disagreement on 
what constitute a proper cohesion measure and the mathematical properties with which a 
cohesion measures should comply [49] [50] [51]. All the inheritance measures were significant 
predictors of fault-proneness (α =0.05); that is, the more ancestors a class inherits from, or the 
deeper the class is in the inheritance hierarchy, the higher its fault-proneness. Further, as a class 
overrides more methods or adds new methods, its fault-proneness also increases [43]. 

In [9], Olague et al. evaluated three metric suites; 1) the metrics proposed by Chidamber 
and Kemerer [30], 2) the metrics proposed by Bansiya et al. [52], and 3) the metrics suite given 
by Brito e Abreau et al. [53]. Of the three metric sets, the Chidamber and Kemerer metrics 
resulted in the best models in terms of accuracy. Further, the only measures that were 
significantly associated with faults across 6 successive releases of the Rhino system [54] were 
RFC, CBO and WMC. The findings in [9] runs counter to [43]. In the former, the inheritance 
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measures were not significantly associated with fault-proneness, while significant results were 
found in the latter. However, the study by Briand et al. was performed in an academic setting at 
an undergraduate/graduate level. Lack of experience might have influenced the understanding 
and use of inheritance by the experiment subjects. The fact that inheritance measures DIT and 
NOC are not a significantly associated with fault-proneness is further supported in [46]. In a 
study by El Emam et al. [48] DIT was significantly associated with fault-proneness, while NOC 
was not. 

The regression analysis done by Subramanyam et al. [24] suggested that the interaction 
between CBO and DIT has a significant impact on fault-proneness. A somewhat interesting 
result was the impact that CBO had at different depths in the inheritance hierarchy (DIT). In the 
C++ based system under study, the fault-proneness of classes with higher CBO values was 
significantly larger for classes deeper down in the inheritance hierarchy. 

Zhou et al. [10] distinguished between low and high severity faults. The results showed 
that design metrics like CBO, DIT, WMC, RFC and LCOM were highly effective in predicting 
low severity faults. However, none of the metrics led to suitable models to predict high severity 
faults. 

Although most of the research done in recent years focused on the impact of structural 
properties on fault-proneness, a number of studies investigated other types of fault-proneness 
factors. For example, Nagappan et al. [25, 28] used code churn together with dependency 
metrics to predict fault-prone modules. Code churn is a measure of the amount of code change 
within a component over time. Graves et al. [35] counted the number of changes done in a 
module as well as the average age of the code. Referring to Graves et al., Weyuker et al. 
constructed a fault-count prediction model using a number of process measures in addition to 
structural measures. Weyuker et al. accounted for the number of developers who modified a file 
during the prior release, and the number of new developers involved on a particular file. In 
addition, they counted the cumulative number of distinct developers who have modified a file 
during its lifetime. The model using these process measures showed only slight improvements 
compared with a model using only structural measures.  

Khoshgoftaar et al. [37] considered 14 process metrics, such as a variable counting the 
number of updates done by designers who had 10 or less total updates in their entire company 
career, the number of different designers making changes to a particular module, and the net 
increase in lines of code (LOC) for each module. Khoshgoftaar et al. did not study the impact of 
the individual measures on fault-proneness, but their prediction models achieved Type I and 
Type II misclassification rates ranging within 25-30%. In [22], Kim et al. used deltas from 61 
complexity metrics and a selection of process metrics, and achieved an accuracy ranging from 
64% to 92% on twelve open source applications. 

Most of the studies reviewed here considered structural measures, and there is considerable 
evidence that coupling measures (such as CBO [30]) have an impact on fault-proneness. Further, 
there is conflicting evidence on how inheritance measures affect fault-proneness although the 
overall trend indicates that inheritance measures (such as DIT and NOC [30]) alone are not 
strongly associated with fault-proneness. However, as there might be interaction effects between 
inheritance measures and other metrics, this should be investigated further. As for cohesion 
metrics, there is some empirical evidence suggesting that low cohesion is associated with fault-
proneness, but the results is not nearly as clear and strong as for coupling. Some of the studies 
use process measures and deltas to assess fault-proneness. Most of the studies combine these 
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measures with structural measures. Thus, based on the results of the reviewed studies, it is 
difficult to assess the impact that process measures and deltas alone have on fault-proneness.  

Although there is some empirical evidence regarding what factors drive fault-proneness, 
building prediction models will remain an exploratory process as we have to expect wide 
variations across datasets. 

2.3 Data Modeling Techniques 

Building fault-proneness prediction models has been a field of research for decades, but there is 
still a need for an exploratory process as the number of variables often is large and their inter-
relationship and impact on fault-proneness is currently unknown. The field of data mining and 
knowledge discovery facilitates the exploratory nature of building fault-proneness prediction 
models. 

There exists a large number of data analysis and mining techniques to build a fault-
proneness model, such as classification models determining whether classes or files are faulty. A 
classical statistical technique used in many existing papers is logistic regression [55]. But many 
techniques are also available from the fields of data mining, machine learning, and neural 
networks [3]. One important category of machine learning techniques focuses on building 
decision trees, which recursively partition a data set, and the most well-known algorithm is 
probably C4.5 [56]. In our context, each leaf of a decision tree would then correspond to a subset 
of the data set available (e.g., characterized by components’ source code characteristics and their 
fault/change history, as described in Section 3.4) and this leaf’s fault frequency distribution can 
be used for prediction when all the conditions leading to that leaf are met. Another similar 
category involves coverage algorithms that generate independent rules where a number of 
conditions are associated with a probability for a component to contain a fault based on the 
instances each rule covers in the data set. As opposed to the divide-and-conquer strategy of 
decision trees, these algorithms iteratively identify attribute-value pairs that maximize the 
probably of the desired classification and, after each rule is generated, remove the instances that 
it covers before identifying the next optimal rule.  

Both decision tree or coverage rule algorithms generate models that are easy to interpret 
(logical rules associated with probabilities) and therefore tend to be easier to adopt in practice as 
practitioners can then understand why they get a specific prediction. Furthermore they are easy 
to build (many freely available tools exist) and apply as they only involve checking the truth of 
certain conditions. Another advantage is that, instead of relying on model-level accuracy (e.g., 
like for Logistic Regression), each rule or leaf has a specific expected accuracy. The level of 
expected accuracy associated with a prediction therefore varies across predictions depending on 
which rule or leaf is applied.  

Other common techniques include Neural networks, for example the classical back-
propagation algorithm [57], which can also be used for classification purposes. A more recent 
technique that has received increased attention in recent years across various scientific fields [58-
60] is the Support Vector Machine classifier (SVM) [3], which attempts to identify optimal 
hyperplanes with nonlinear boundaries in the variable space in order to minimize 
misclassification.  

Machine learning techniques, such as classification trees, can be improved in terms of 
accuracy by using metalearners. For example, decision trees are inherently unstable due to the 
way their learning algorithms work: a few instances can dramatically change variable selection 
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and the structure of the tree. The Boosting [3] method combines multiple trees, implicitly 
seeking trees that complement one another in terms of the data domain where they work best. 
Then it uses voting based on the classifications yielded by all trees to decide about the final 
classification of an instance. How the trees are generated differ depending on the specific 
algorithm, and one of the well-know algorithm is AdaBoost [61], which is designed specifically 
for classification algorithms. It iteratively builds models by encouraging successive models to 
handle instances that were incorrectly handled in previous models. It does so by re-weighting 
instances after building each new model and builds the next model on the new set of weighted 
instances. Another metalearner worth mentioning is named Decorate [3]. This recent technique is 
claimed [62] to consistently improve not only the base model but also outperform other 
techniques such as Bagging and Random forest. It is also supposed to outperform boosting on 
small training sets and rival it on larger ones [3].  

Another way to improve classifier models is to use techniques to pre-select variables or 
features, to eliminate most of the irrelevant variables before the learning process starts. When 
building models to predict fault-prone components, we often do not have a strong theory to rely 
on and the process is rather exploratory. As a result, we often consider a large number of 
possible predictors, many of which turn out not to be useful or strongly correlated. Though in 
theory the more information one uses to build a model, the better the chances to build an accurate 
model, studies have shown that adding random information tends to deteriorate the performance 
of C4.5 classifiers [3]. This happens because as the tree gets built, the algorithm works with a 
decreasing amount of data, which may increasingly lead to chance selection of irrelevant 
variables. The number of training instances needed for instance-based learning increases 
exponentially with the number of irrelevant variables present in the data set. Strong inter-
correlations among variables also affect variable selection heuristics in regression analysis [55]. 
A recent paper [63] compared various variable selection schemes. The authors concluded by 
recommending a number of techniques which vary in terms of their computational complexity. 
Among them, two efficient techniques were reported to do well: CFS [39] and ReliefF [64].  

Because it is a standard and well-established approach, multivariate logistic regression 
seems to be one of the most popular techniques for building fault-proneness models, e.g., [65], 
[43],  [48], [23], [25], [9] and [45]. In these studies, the dependent variable is dichotomous: it 
reflects whether or not a component contains a fault that was uncovered either during system test 
or operation. Such models output the probability that a given component contains one or more 
faults. Other studies count the number of faults that has previously occurred in a component, and 
use this count as a dependent variable, e.g., [15, 17] and [11]. Ostrand et al. [15, 17] applied 
negative binomial regression, which is a suitable regression technique when dealing with skewed 
right-tail count distributions with low averages. The output of a negative binomial regression 
model is a conditional probability that a component contains n faults, e.g., “given that a 
component has a coupling equal to 3 and a cyclomatic complexity equal to 8, what is the 
probability that the component contains 2 faults?”. Because in most cases, a majority of classes 
do not contain faults and many fault count distributions show a median close to zero, zero 
inflated regression models might be more appropriate [11]. Janes et al. compared regular Poisson 
regression with negative binomial regression, with and without the zero-inflated version [11].  
The zero-inflated approach yielded the best results in terms of what percentage of classes needed 
to be inspected to find 80% of the faults. 

As discussed in Section 2.2, object-oriented structural measures are among the most 
frequently used predictors of fault-proneness. A possible problem using these measures in the 
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context of regression techniques is that they often are correlated [4]. When this correlation is 
extreme, the estimation of coefficients in logistic regression becomes difficult and inaccurate, a 
problem referred to as multicollinearity [55]. One way of dealing with multicollinearity is to 
apply principal component analysis (PCA) [66]. Principal component analysis creates a number 
of orthogonal (uncorrelated) principal components (PCs) that are linear combinations of the 
original independent variables. These PCs may be applied directly as new independent variables 
in a regression model. Alternatively, PCA can be used to select a subset of the variables, e.g., by 
selecting the variable with the highest loading within each PC, and use these variables as 
independent variables. Also, PCA can be used simply to analyze the dimensions captured by a 
set of measures and help understand what these measures really capture [46]. 

Another way of dealing with multicollinearity is to examine the variance inflation factor 
(VIF). For each coefficient, VIF measures how much of the variance is inflated due to 
collinearity compared to what the variance would have been if there was no multicollinearity. 
Although one should be careful to use specific thresholds as a rule of thumb [67], VIF values 
greater than 10 may indicate multicollinearity problems and these variables should be 
investigated further [68],. 

Though extreme multicollinearity among independent variables may lead to unstable 
coefficients, misleading statistical tests, and unexpected coefficient signs [6], in the context of 
prediction models the main purpose is not to interpret the coefficients to explain why a class has 
a certain fault-proneness. Thus, multicollinearity is not a major problem if it remains at moderate 
levels. Nonetheless, one should be aware that testing the significance of the independent 
variables in a multivariate model is unreliable when multicollinearity is present. 

Some of the studies applying multivariate regression, e.g., [25, 26], used PCA to alleviate 
multicollinearity issues. Others, such as [9, 48], applied univariate analysis on each measure, and 
built a prediction model using those measures that are significant with respect to fault-proneness. 
Others again, used either forward or backward stepwise regression to select significant variables 
[46]. 

Lately, there has been an increasing interest in alternatives to logistic regression. Briand et 
al. discussed the downsides on using traditional regression techniques, and suggested using 
multivariate adaptive regression splines (MARS) [69], because MARS suites the exploratory 
nature of building prediction models [46]. The MARS model performed slightly better in terms 
of accuracy, completeness and correctness, compared to logistic regression. Also, the authors did 
a cost/benefit analysis similar to those of an Alberg-diagram [70], which suggested the MARS 
model outperformed the model built using logistic regression in terms of cost-effectiveness. 

Khoshgoftaar et al. [19] compared seven models that were built using a variety of tools. 
The models were built using different regression and classification trees including C4.5, CHAID, 
Sprint-Sliq and different versions of CART. Also included in the study were logistic regression 
and case-based reasoning. The techniques were evaluated against each other by comparing a 
measure of expected cost of misclassification. The differences between the techniques were at 
best moderate. 

Vandecruys et al. compared Ant Colony Optimization against well-known techniques like 
C4.5, support vector machine (SVM), logistic regression, K-nearest neighbour, RIPPER and 
majority vote [41]. In terms of accuracy, C4.5 was the best technique. However, the differences 
between the techniques in terms of accuracy, sensitivity and specificity were moderate. 

Kanmani et al. [12] compared two variants of artificial neural networks against logistic 
regression and discriminant analysis. Neural network outperformed the traditional statistical 
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regression techniques in terms of correctness and completeness. The possible benefits of neural 
networks was also explored by Gondra [42]. In addition, Gondra studied the usefulness of 
support vector machines (SVMs) to perform simple classification. When considering fault-
proneness as a binary classification problem (i.e. faulty vs. non-faulty) using a threshold of 0.5, 
the accuracy was 87,4% when using SVM compared to 72,61% when using neural networks – 
suggesting that SVM is a promising technique for classification within the domain of fault-
proneness prediction. Success in using SVMs is also reported in [38], where SVM was evaluated 
against eight other data mining techniques; logistic regression, neural network, radial basis 
function, Bayesian belief network, naïve Bayes, Random Forest and the C4.5 decision tree 
algorithm. There were some statistically significant differences between the techniques, but the 
differences were quite small from a practical standpoint. 

Guo et al. [21] compared Random Forest [71] with 26 other modeling techniques including 
logistic regression and 20 techniques available through the WEKA tool. The study compared the 
techniques using five different datasets from the NASA MDP program, and although the results 
showed that Random Forests perform better than many other classification techniques in terms of 
accuracy and specificity, the results were not significant in four of the five data sets. In Elish 
[38], the authors compared SVM against eight other modeling techniques, among them Random 
Forest. The modeling techniques were evaluated in terms of accuracy, precision, recall and the F-
measure using four data sets from the NASA MDP program. All techniques achieved an 
accuracy ranging from approximately 0.83 to 0.94. As with the other studies reviewed here, there 
were some differences, but no single modeling technique was significantly better than the others 
across data sets. 

In this section, we have elaborated on the model building techniques that typically have 
been used to build fault proneness prediction models. Seven of the studies reviewed compared 
several modeling techniques [10, 19, 21, 38, 41, 72, 73]. The overall trend seem to be that there 
are some differences between techniques, but there are wide variations across datasets and 
studies in terms of which technique yield the best models. In addition, there is little consistency 
on how the models are evaluated, a topic elaborated in the next section. Thus, it is difficult to 
compare the results and draw conclusions from these studies. 

2.4 Evaluation Criteria and Methods 

In this section we describe how fault-proneness prediction models should be evaluated, in terms 
of evaluation criteria and evaluation methods. First, in terms of evaluation criteria, there are three 
main aspects of the “quality” of prediction models that we may want to assess: 

• Goodness-of-fit tells us how well the model explains the data that were used to 
build the model. Among the most popular measures for models with a 
continuous dependent variable is the coefficient of determination, R², which is 
the amount of variability in the dependent variable that is explained by the 
model. 

• Predictive power is an assessment of how the model performs when predicting 
based on data that was not used to build the model and that may represent more 
recent observations.  

• Cost/benefits assessments tells us what are the costs accompanied with 
applying a particular prediction model, e.g., the costs of data collection and 
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model building, and what benefits can be drawn from using this model, e.g., 
less latent faults and improved quality using less resources. Measures of costs 
and benefits tend to be context-dependent.  

In many cases, fault-proneness is measured on a continuous scale, for example as a fault 
count or fault density. However, many of the model building techniques described in the 
previous subsection are classifiers. That is, they classify software components as faulty or non-
faulty. Or rather than a mere classification, most of the classifiers output a probability for a 
component to be faulty. To distinguish, based on such probabilities, faulty classes from non-
faulty-ones, one is required to predefine a certain threshold, or cut-off probability value. By 
default, this cut-off is 0.5, i.e., components having a probability  p>0.5 are classified as faulty 
whereas the remaining classes are classified as non-faulty. Since we cannot expect a classifier to 
be 100% accurate, some instances will not be correctly classified. These instances fall into two 
categories: Type I errors and Type II errors, or false positives and false negatives, respectively. A 
false positive is a non-faulty class erroneously classified as fault-prone, while a false negative is 
a faulty class that is misclassified as non-faulty. By varying the cut-off value, one can to some 
degree control the ratio of false positives versus false negatives. 

In the context of software development and testing, the later you discover a fault the more 
expensive it is to fix. Hence, if the scope of a fault-proneness prediction model is to focus testing 
activities, the cost of missing a faulty class (i.e., a false negative) will in most cases outweigh the 
cost of testing a non-faulty class (i.e., a false positive). A confusion matrix, shown in Figure 1, 
can be used to show to relative frequency or number of false positives and false negatives 
compared to the ratio or number of correctly classified instances, i.e., true positives and true 
negatives. Many of the measures that are used to evaluate classifiers can be derived from the 
confusion matrix. A selection of these measures are explained below. However,  although they 
give an indication as to how well a particular prediction model performs in terms of 
classification accuracy, they are not directly linked to the possible cost-effectiveness of using 
such models. Towards the end of this section we elaborate on some criteria that can be used to 
assess the cost-effectiveness of prediction models.  

  Actual 
  Positive Negative 

Predicted 
by model 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

Figure 1: The confusion matrix 

 
One of the popular measures in the literature that can be derived from the confusion matrix 

is accuracy. Accuracy is the ratio of correctly classified instances. 

Accuracy = TP+TN / (TP + FP + TN + FN) 
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However, the accuracy measure is somewhat ambiguous; although an accuracy of exactly 1 
indicates that all instances are correctly classified, an accuracy of 0.8 reflect that 80% of the 
instances are correctly classified; it does not state whether the remaining 20% are mainly false 
positives or false negatives. Thus, if we want to determine an appropriate trade-off between type 
I and type II errors, accuracy is not a suitable measure. 

Sensitivity and specificity are fine-grained measures that enable us to assess the trade-off 
between type I and type II errors. The former measure is the percentage of actual positives that 
are correctly classified, i.e., in our context, the percentage of faulty components classified as 
such. Sensitivity serves as a measure of how many faulty components we are likely to find (or 
conversely miss) if we use the prediction model.   

Sensitivity = TP / (TP + FN) 
Specificity = TN / (FP +TN) 

Specificity is the number of non-faulty components correctly classified. Sensitivity is also 
referred to as recall, and is not to be confused with the term completeness, which in our context 
would be defined as the number of faults found in the components classified as fault-prone 
divided by the total number of faults in the system [4].  

Precision is often used in conjunction with recall (sensitivity). It is the number of instances 
correctly classified as fault-prone (true positives) divided by the total number of instances 
classified as fault-prone. 

Precision = TP / (TP + FP) 

It is possible to increase recall by lowering the cut-off value described earlier. In practice, 
however, this often results lower precision; as we are lowering the threshold, more classes are 
erroneously predicted as faulty (false positives) and precision drops. 

Khoshgoftaar et al. suggested that fault-proneness models should be evaluated using two 
additional evaluation criteria allowing one to assess the inaccuracy of prediction models [74]. 
The authors defined Type I and Type II misclassification rates as the ratio of Type I and Type II 
errors respectively. 

Type I misclassification rate = FP / N 
Type II misclassification rate = FN / N 

 A major part of the studies reviewed use a number of the measures derived from the 
confusion matrix to evaluate their models. Although most studies use the standard cut-off of 0.5 
to distinguish the fault-prone components from the less faulty ones, some studies vary the cut-off 
to find an optimal trade-off between Type I and Type II errors, e.g., [37, 72]. Because the Type II 
errors are considered the most expensive of the two types of errors, the importance of 
considering Type II misclassification rates is emphasized by Ostrand et al. [16].  

All the measures described up to this point are evaluation criteria for classifiers. That is, in 
the context of fault-proneness models, these measures assess the accuracy of a particular model 
with regards to component fault-proneness classification. These measures require that one 
predefines a cut-off probability value, and although these measures are useful, the intent of fault-
proneness prediction models is not only to classify instances. For example, if the prediction 
model was to be used to focus testing on fault-prone components, we would be more interested 
in the ranking of the component, and use the ranking to prioritize their testing. Consequently, it 
would be preferable to be able to assess how well a particular model is at ranking instances in a 
correct manner. Further, it would be preferable to evaluate the performance of a prediction model 
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without first having to choose a specific cut-off value. This is the objective of the receiver 
operating characteristic (ROC) curve. The ROC curve is a plot of sensitivity versus 1-specificity. 
Thus, the ROC curve depicts the benefits of using the model  (true positives) versus the costs of 
using the model (false positives) at different thresholds.  The ROC curve allows one to assess 
performance of a prediction model in general – regardless of any particular cut-off value. The 
area under the ROC curve can be used as a descriptive statistic, and is the estimated probability 
that a randomly selected positive instance will be assigned a higher predicted p by the prediction 
model than another randomly selected negative instance [75]. Hence, this statistic quantifies a 
model’s ability to correctly rank instances. Not many studies use ROC curves to assess the 
performance of their models. Khoshgoftaar et al. used the ROC curve to optimize the models by 
selecting an appropriate probability cut-off used to distinguish between faulty and non-faulty 
components [48]. Arisholm et al. used the area under the ROC curve to compare prediction 
models [73]. 

In addition to the regular confusion matrix criteria, some studies assess the usefulness of 
their prediction models using measures of a more practical nature. One example is the expected 
cost of misclassification [76]. However, as stated in [19], one should be careful about using this 
measure for model selection purposes. Another evaluation method is the Alberg-diagram [70], in 
which the components first are sorted in descending order according to their (predicted) fault 
probability. The x-axis shows the cumulative number of components, whereas the y-axis shows 
the cumulative number of faults. This curve can then be compared with an optimal curve, in 
which the components are sorted according to the actual number of faults instead of the fault 
probability. Three studies [11, 13, 65] evaluate their prediction models using Alberg-diagrams in 
addition to some of the confusion matrix criteria and R2. Ostrand et al. propose another measure 
to assess the usefulness of their models; the percentage of faults included in the 5% to 20% of the 
most fault-prone components as predicted by the model [15, 16, 18]. Tomaszewski et al. 
proposed a measure of the presumed cost reduction in terms of percentage of faults found 
compared to not using any model at all, and a model based on size, i.e., where the fault-prone 
components are selected according to their size as larger components (are assumed) to be more 
fault-prone [23]. Further, Tomaszewski et al. compared their prediction models against an 
optimal model. Ostrand et al. assess their models by investigating whether the percentage of 
LOC in 20% of the files predicted as most fault-prone is smaller than the percentage of faults 
[17]. 

Though relevant, the problem with most existing evaluation criteria is that they do not 
clearly and directly relate to the cost effectiveness of using fault-proneness prediction models. 
For example, assuming a class is predicted as very likely to be faulty, one would take corrective 
action by investing additional effort to inspect and test the class. Furthermore, if we assume that 
the cost of such activities might be roughly proportional to some property of that class, e.g., its 
size or complexity, such properties can be used as surrogate measures of the verification cost. 
The choice of surrogate measure will depend on the specific verification activities undertaken. In 
our previous work we proposed such a cost-effectiveness measure that not only considers the 
accuracy of the predictions, but also accounts for the assumed cost of using the model to focus 
verification and validation activities [72, 73].  Further details will be elaborated in Section 3.7. 

The above discussions focused on the evaluation criteria that can be used. How the 
prediction model is applied for the purpose of model assessment is also of crucial importance. 
Many studies evaluate their fault-proneness models by applying it to the same data set that was 
used to build the model, e.g., [11, 16, 20, 23, 24]. These studies are merely doing a goodness-of-
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fit analysis, that is, they assess how well the model is at explaining the data that were used to 
build the model. If the intent is to use these fault-proneness models to predict fault-proneness on 
new and unknown data, this procedure is not suitable. Rather, a prediction model should be 
evaluated on new data to obtain more sensible measures of the predictive power of a particular 
model. Mainly, there are two ways of validating a prediction model; either by (1) dividing the 
data set in two parts; one training set and one test set (hold-out validation), or (2) by doing what 
is called k-fold cross-validation. In hold-out validation, typically 2/3 of the data forms the 
training set, while 1/3 is used as a test set to validate the model. This procedure is suitable when 
the data set is large enough to allow a proper training set to be formed. If the data set is small, 
one may resort to k-fold cross validation, where the data set is divided into k parts. Then, k 
models are built where each of the k subsets is successively used as a test set, while the other k-1 
subsets form the training set. As k models have to be built, k-fold cross-validation is more 
computationally intensive than a simple hold-out cross-validation. Ultimately, in the context of 
fault-proneness prediction models, the training set should consist of one or several releases of a 
software system, while the training set should consists of later releases of the same system or 
even releases of another system. Nearly a third of the studies reviewed use later releases as 
separate test sets [8, 9, 15, 17-19, 27, 73]. Two of these studies apply the prediction models on 
another system [8, 17].  

A major issue in the studies reviewed, is the fact that the models are evaluated using 
criteria that are not directly linked to the possible costs and benefits of using the prediction 
models in different contexts, e.g., focusing verification and validation efforts. Further, many 
studies only considers goodness-of-fit, and do not assess the predictive power of their models on 
new data, and thus they run the risk of having models that are overfitted, giving optimistic 
estimates of predictive power. Further, as each study use different evaluation criteria, 
comparisons of results across studies are difficult. 

2.5 Types of System 

There are many different types of system that have been investigated in recent studies, ranging 
from large industry systems consisting of hundreds of thousands lines of code, to small systems 
developed by students in an academic setting. All of the studies reviewed are case studies. So far, 
there exists no experiment in a controlled environment, although this presumably could be 
beneficial to obtain a more in-depth understanding of the causal relationships between candidate 
predictors and fault-proneness, as illustrated by the somewhat inconsistent results reported in 
Section 2.2.  

A large part of the studies reviewed here collected data from large commercial or legacy 
software projects [8, 11, 14-20, 23-27, 37, 72, 73]. Many studies [10, 13, 21, 38, 41, 42] used the 
data sets available through NASA MDP, making it possible to compare results across studies. 
With the increasing popularity and availability of open source software projects, some studies [9, 
22, 65] rely on open source system repositories. However, a study by Chen et al. [77] uncovered 
large deficiencies in such repositories. Thus, researchers need to take great care in using open 
source software as research subjects. 

Two thirds of the studies reviewed investigate object-oriented systems, while a minor part 
of the studies investigate systems written in a procedural language. Others again, investigate 
systems developed using both paradigms; mainly those studies that use the data available 
through NASA MDP. 
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2.6 Summary 

In summary, few studies have compared a comprehensive set of data mining techniques for 
building fault-proneness prediction models to assess which techniques are more likely to be 
accurate in various contexts. Most models were evaluated through different confusion matrix 
criteria and, as a result, it is difficult to provide general conclusions. However, results suggest 
that the differences between modeling techniques might be relatively small. Most existing 
studies have used structural measures as candidate predictors whereas only a subset have also 
included other measures, usually more expensive to collect, such as code churn and process 
measures. However, no studies have so far attempted to evaluate the benefits of including such 
measures in comparison with models that contain only structural code measures. In this paper, 
we assess, in a systematic way, how both the choice of modeling technique and the selection of 
different categories of candidate measures affect the accuracy and cost-effectiveness of the 
resulting prediction models based on a complete set of evaluation criteria. We furthermore assess 
how the choice of evaluation criteria affects what is deemed to the “best” prediction model. 

3 Design of Study 
When building fault-proneness prediction models, many decisions have to be made regarding the 
choice of dependent and independent variables, modeling technique, evaluation method and 
evaluation criteria. As discussed in the previous section, no systematic study has been performed 
to assess the impact of such decisions on the resulting prediction models. This paper compares 
alternative fault-proneness prediction models where we systematically vary three important 
dimensions of the modeling process: modeling technique (e.g., C4.5, neural networks, logistic 
regression), categories of independent variables (e.g., process measures, object-oriented code 
structural measures, code churn measures) and evaluation criteria (e.g., accuracy, ROC, and cost-
effectiveness). We assess (i) to what extent different data mining techniques affect prediction 
accuracy and cost effectiveness, (ii) the effects of using different sets of measurements (with 
different data collection costs) on the accuracy and cost-effectiveness of the fault-proneness 
predictions models, and (iii) how our decisions in terms of selecting the “best” model would be 
affected by using the different evaluation criteria. This section describes the development 
project, study variables, data collection, and model building and evaluation procedures. 

3.1 The Development Project 

The legacy system studied is a Java middleware system called COS, serving the mobile division 
in a large telecom company. COS provides more than 40 client systems with a consistent view 
across multiple back-end systems, and has evolved through 22 major releases during the past 
eight years. At any point in time, 30 to 60 software engineers were involved in the project. The 
core system currently consists of more than 2600 Java classes amounting to about 148 KSLOC. 
In addition to this, the system consists of a large number of test classes, library classes, and about 
1000 KSLOC of generated code, but this code is not considered in our study. As the system 
expanded in size and complexity, QA engineers felt they needed more sophisticated techniques 
to focus verification activities on fault-prone parts of the system. We used 13 recent releases of 
this system for model building and evaluation. As a first step, the focus was on unit testing in 
order to eliminate as many faults as possible early on in the verification process by applying 
more stringent test strategies to code predicted as fault-prone.  
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3.2 Data Collection Procedures 

Perl scripts were developed to collect file-level change data for the studied COS releases through 
the configuration management system (MKS). In our context, files correspond to Java public 
classes. The data model is shown in Figure 2. Each change is represented as a change request 
(CR). The CR is related to a given releaseId and has a given changeType, defining whether the 
change is a critical or non-critical fault correction, a small, intermediate, or large requirement 
change, or a refactoring change. An individual developer can work on a given CR through a 
logical work unit called a change package (CP), for which the developer can check in and out 
files in relation to the CR. For a CP, we record the number of CRs that the responsible developer 
has worked on prior to opening the given CP, and use this information as a surrogate measure of 
that person’s coding experience on the COS system. For each Class (file) modified in a CP, we 
record the number of lines added and deleted, as modeled by the association class CP_Class. 
Data about each file in the COS system is collected for each release, and is identified using a 
unique MKSId, which ensures that the change history of a class can be traced even in cases 
where it changes location (package) from one release to the next. This traceability turned out to 
be crucial in our case because we wanted to keep track of historic changes and faults for each 
class, and there were quite a few refactoring changes in the project that would result in loss of 
historic data if we did not use the MKDId to uniquely identify each class. Finally, for each 
release, a code parser (JHawk [78]) is executed to collect structural measures for the class, which 
are combined with the MKS change information. Independent (change, process, and code 
structure measurements) and dependent variables (Faults in the next release) were computed on 
the basis of the data model presented in Figure 2. 

3.3 Dependent Variable 

The dependent variable in our analysis was the occurrences of corrections in classes of a specific 
release which are due to field error reports. Since our main current objective was to facilitate unit 
testing and inspections, the class was a logical unit of analysis. Given that our aim was to capture 
the fault-proneness of a class in a specific release n, and that typically a fault correction involved 
several classes, we decided to count the number of distinct fault corrections that was required in 
each class for developing release n+1. Furthermore, in this project, only a very small portion of 
classes contained more than one fault for a given release, so class fault-proneness in release n is 
therefore treated as a classification problem and is estimated as the probability that a given class 
will undergo one or more fault corrections in release n+1.  



Simula Technical Report TR-2008-06 

 19 

3.4 Explanatory Variables 

Though many studies on predicting fault-prone classes on the basis of the structural properties of 
object-oriented systems have been reported (Section 2), a specificity of the study presented here 
is the fact that we needed to predict fault-proneness for a changing legacy system. Thus, in 
addition to structural measures, similar to other studies [16-18, 22, 25, 28, 35, 37, 73, 79, 80] we 
also use data on changes and fault corrections for specific releases and their impact on the code. 
In our context, past change and fault data could be useful to help predicting fault-proneness by 
identifying what subset of classes have shown to be inherently fault and change prone in the past. 
Our explanatory variables can be classified into three categories: 

• Object-oriented (OO) code measures, i.e., measures of structural properties 
derived from the source code. In this study, the JHawk tool was used to collect 
such measures, as shown in Table 1. 

• Delta measures: These measures capture the amount of change – sometimes called 
churn – in a file between two successive releases. In this study, the delta measures 
were computed from the JHawk measures given in Table 1. 

• Process measures: In this study, the process measures were collected from the 
configuration management system (MKS), and included a surrogate measure of 
the experience of each developer performing each change, the number of 
developers that have made changes to a file, the number of faults in previous 
release(s) and simpler measures such as the accumulated number of lines added 
and/or removed in a given release. 

The fundamental hypothesis underlying our work is that the fault-proneness of classes in a 
legacy, object-oriented system can be affected by these measures. Furthermore, it is also likely 

 
Figure 2: Data Model 
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that these factors interact in the way they affect fault-proneness. For example, changes may be 
more fault-prone on larger, more complex classes. The data mining techniques used to build the 
models will account for such interactions.  

The three categories of measures (OO, Delta and Process) incur different costs in terms of 
data collection effort and process instrumentation requirements. OO measures can be collected 
from simple code snapshots, Deltas require that different versions of the system be available, 
whereas Process measures require that developers record detailed information about their work 
(e.g., changes and fault corrections, developer info, time of changes, whether a change passed 
certain test procedures) in a systematic and consistent way in configuration management or 
change management systems. To assess the relative importance of the individual categories of 
explanatory variables (OO, Delta and Process), they were combined to construct seven different 
candidate metric sets (OO, Delta, Process, OO + Delta, Process + OO, Process + Delta, Total). 
In Section 4.2 we will show how the many different measures of accuracy and cost effectiveness 
of the fault-proneness prediction models are affected by the choice of metric set. In this way, we 
will not only be able to compare individual categories of measures (e.g., Process vs. OO) but 
also assess the potential impact of combining measures (e.g., Process + OO) with regards to a 
comprehensive set of evaluation criteria (Section 3.7). Based on such analyses, we will be in a 
better position to determine whether the added cost of collecting, for example, process measures 
will result in payoffs in terms of better fault-proneness prediction models. 

3.5 Model Building Techniques 

A detailed description of many of the most popular techniques for building fault-proneness 
prediction models was provided in Section 2. In this study we compared one classification tree 
algorithm (C4.5) as it is the most studied in its category, the most recent coverage rule algorithm 
(PART) which has shown to outperform older algorithms such as Ripper [3], Logistic Regression 
as a standard statistical technique for classification, Back-propagation neural networks as it is a 
widely used technique in many fields, and SVM.  

For C4.5, we also applied the AdaBoost and Decorate metalearners [3], because decision 
trees are inherently unstable due to the way their learning algorithms work, and thus we wanted 
to assess the impact of using metalearners on C4.5. We included Decorate in addition to 
Adaboost because it is supposed to outperform boosting on small training sets and rivals it on 
larger ones.  

Furthermore, as the outputs of leaves and rules are directly comparable, we combined C4.5 
and PART predictions by selecting, for each class instance to predict, the rule or leaf that yields a 
fault probability distribution with the lowest entropy (i.e., the fault probability the furthest from 
0.5, in either direction). This allows us to use whatever technique works best for each prediction 
instance.  

For each metric set, we also used CFS (Correlation-based Feature Selection) [39] to pre-
select variables, as further described in Section 2, to assess the effect of such variable pre-
selection on the prediction model performance.  

All of the above techniques were applied using the WEKA tool and are described in [3]. 
An attempt was made to optimize the parameters of various techniques, but in most cases the 
impact of varying these parameters was small and we resorted to using the WEKA default 
parameters.  
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Table 1: Summary of the explanatory variables  

Variable Description Source 
O

O
 

No_Methods  | NOQ | NOC Number of [implemented | query | command] methods in the class JHawk 

LCOM  Lack of cohesion of methods  JHawk 

TCC | MAXCC | AVCC [Total|Max|Avg] cyclomatic complexity in the class  JHawk 

NOS | UWCS Class size in [number of Java statements | number of attributes + number of methods]  JHawk 

HEFF Halstead effort for this class  JHawk 

EXT/LOC Number of [external | local] methods called by this class JHawk 

HIER Number of methods called that are in the class hierarchy for this class JHawk 

INST Number of instance variables  JHawk 

MOD  Number of modifiers for this class declaration  JHawk 

INTR Number of interfaces implemented JHawk 

PACK Number of packages imported JHawk 

RFC Total response for the class JHawk 

MPC Message passing coupling JHawk 

FIN The sum of the number of unique methods that call the methods in the class JHawk 

FOUT Number of distinct non-inheritance related classes on which the class depends JHawk 

R-R | S-R [Reuse | Specialization] Ratio for this class  JHawk 

NSUP | NSUB Number of [super | sub] classes JHawk 

MI | MINC Maintainability Index for this class [including | not including] comments JHawk 

D
el

ta
  For each OO measure X above:  

delta_<X> The difference in each OO measure X between two successive releases. Calculated 

Pr
oc

es
s 

[nm1|nm2|nm3]_CLL_CR The number of large requirement changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_CFL_CR The number of medium requirement changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_CKL_CR The number of small requirement changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_M_CR The number of refactoring changes for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_CE_CR The number of critical fault corrections for this class in release [n-1 | n-2 | n-3] MKS 

[nm1|nm2|nm3]_E_CR The number of noncritical fault corrections for this class in release [n-1 | n-2 | n-3] MKS 

numberCRs  Number of CRs in which this class was changed MKS 

numberCps Total number of CPs in all CRs in which this class was changed  MKS 

numberCpsForClass Number of CPs that changed the class  MKS 

numberFilesChanged Number of classes changed across all CRs in which this class was changed MKS 

numberDevInvolved Number of developers involved across all CRs in which this class was changed MKS 

numberTestFailed Total number of system test failures across all CRs in which this class was changed MKS 

numberPastCr Total developer experience given by the accumulated number of prior changes MKS 

nLinesIn Lines of code added to this class (across all CPs that changed the class) MKS 

nLinesOut Lines of code deleted from this class  (across all CPs that changed the class) MKS 

 For CRs of type Y={CLL, CFL, CKL, M, CE, E}:  

<Y>_CR Same def as numberCRs but only including the subset of CR’s of type Y MKS 

<Y>_CPs Same def as numberCpsForClass but only including the subset of CR’s of type Y MKS 

<Y>numberCps Same def as numberCps but only including the subset of CR’s of type Y MKS 

<Y>numberFilesChanged Same def as numberFilesChanged  but only including the subset of CR’s of type Y MKS 

<Y>numberDevInvolved Same def as numberDevInvolved but only including the subset of CR’s of type Y MKS 

<Y>numberTestFailed Same def as numberTestFailed but only including the subset of CR’s of type Y MKS 

<Y>numberPastCr Same def as numberPastCr  but only including the subset of CR’s of type Y MKS 

<Y>nLinesIn Same def as nLinesIn but only including the subset of CR’s of type Y MKS 

<Y>nLinesOut Same def as nLinesOut but only including the subset of CR’s of type Y MKS 
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3.6 Training and Evaluation Datasets 

To build and evaluate the prediction models, class-level structural and change/fault data from 13 
recent releases of COS were used. The data was divided into four separate subsets, as follows. 
The data from the 11 first releases was used to form two datasets, respectively a training set to 
build the model and a test set to evaluate the predictions versus actual class faults. More 
specifically, following the default setting of most tools, two thirds of the data (16004 instances) 
were randomly selected as the Training dataset, whereas the remaining one third (8002 
instances) formed the Excluded test dataset. Our data set was large enough to follow this 
procedure to build and evaluate the model without resorting to cross-validation, which is much 
more computationally intensive. Also, the random selection of the training set across 11 releases 
reduced the chances for the prediction model to be overly influenced by peculiarities of any 
given release. Note that in the training set, there were only 303 instances representing faulty 
classes (that is, the class had at least one fault correction in the next release). This is due to the 
fact that, in a typical release, a small percentage of classes turn out to be faulty. Thus, to facilitate 
the construction of unbiased models, we created a balanced subset (606 rows) from the complete 
training set, consisting of the 303 faulty classes and a random selection of 303 rows representing 
non-faulty classes.  The proportions of faulty and correct classes were therefore exactly 50% in 
the training set and the probability decision threshold for classification into faulty and correct 
classes for the test sets can therefore be set to 0.5. Nearly all the techniques we used performed 
better (sometimes very significantly) when run on this balanced dataset. Consequently, the 
models reported in this paper were built using this subset of 606 instances. 

Finally, the two most recent of the 13 selected releases formed the third and forth distinct 
datasets, hereafter referred to as the COS 20 and COS 21 datasets, which we also used as test 
sets. The Excluded test set allows us to estimate the accuracy of the model on the current (release 
11) and past releases whereas the COS 20 and COS 21 test sets indicate accuracy on future 
releases. This will give us insights on any decrease in accuracy, if any, when predicting the 
future. The results given in Section 4 were obtained using only the test set (Excluded) and the 
two evaluation sets (COS 20 and COS 21), i.e., the training set was not included. By not 
including the training set, the results can be interpreted as what one could expect when applying 
the models on a new set of classes or a new system version. 

3.7 Model Evaluation Criteria 

Having described our model evaluation procedure, we now need to explain what model accuracy 
criteria we used. The alternative prediction models were assessed on the basis of all of the 
following criteria in order to 1) provide a comprehensive comparison of the models and 2) to 
assess how the choice of criteria affects the ranking of models.  

First, we used several confusion matrix criteria [3], including accuracy, precision and 
recall and Type I/II misclassification rates. For example, in our context, precision is the 
percentage of classes classified as faulty that are actually faulty and is a measure of how 
effective we are at identifying where faults are located. Recall is the percentage of faulty classes 
that are predicted as faulty and is a measure of how many faulty classes we are likely to miss if 
we use the prediction model. We also used the Receiver Operating Characteristic (ROC) area [3]. 
The larger the area under the ROC curve (the ROC area), the better the model. A perfect 
prediction model, that classifies all instances correct, would have a ROC area of 100%. See 
Section 2.4 for further details. 
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As discussed in Section 2.4, the problem with the general confusion matrix criteria and 
ROC is that they are designed to apply to all classification problems and they do not clearly and 
directly relate to the cost effectiveness of using class fault-proneness prediction models in our or 
any other given application context. Assuming a class is predicted as very likely to be faulty, one 
would take corrective action by investing additional effort to inspect and test the class. In our 
context, we consider the cost of such activities to be roughly proportional to the size of the class. 
For example, regarding control flow testing, many studies show that cyclomatic complexity 
(number of independent control flow paths) is strongly correlated with code size [23]. Though 
this remains to be empirically investigated, this suggests that control flow testing over a large 
number of classes should be roughly proportional to the size of those classes.  

Given the above assumption, if we are in a situation where the only thing a prediction 
model does is to model the fact that the number of faults is proportional to the size of the class, 
we are not likely to gain much from such a model. What we want are models that capture other 
fault factors in addition to size. Therefore, to assess cost effectiveness, we compare two curves as 
exemplified in Figure 3. Classes are first ordered from high to low fault probabilities. When a 
model predicts the same probability for two classes, we order them further according to size so 
that larger classes are selected last. The solid curve represents the actual percentage of faults 
given a percentage of lines of code of the classes selected to focus verification according to the 
abovementioned ranking procedure (referred to as the model cost effectiveness (CE) curve). The 
dotted line represents a line of slope 1 where the percentage of faults would be identical to the 
percentage of lines of code (% NOS) included in classes selected to focus verification. This line 
is what one would obtain, on average, if randomly ranking classes and is therefore a baseline of 
comparison (referred to as the baseline). Based on these definitions and the assumptions above, 
the overall cost-effectiveness of fault predictive models would be proportional to the surface area 
between the CE curve and the baseline. This is practical as such a surface area is a unique score 
according to which we can compare models in terms of cost-effectiveness regardless of a 
specific, possibly unknown, NOS percentage to be verified. If the model yields a percentage of 
faults roughly identical to the percentage of lines of code, then no gain is to be expected from 
using such a fault-proneness model when compared to chance alone. The exact surface area to 
consider may depend on a realistic, maximum percentage of lines of code that is expected to be 

 
Figure 3: Surrogate Measure of Cost Effectiveness 
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covered by the extra verification activities. For example, if only 5% of the source code is the 
maximum target considered feasible for extra testing, only the surface area below the 5% 
threshold should be considered.  

For a given release, it is impossible to determine beforehand what would be the surface 
area of an optimal model. For each release, we compute it by ordering classes as follows: (1) we 
place all faulty classes first and then order them so that larger classes are tested last, and (2) we 
place fault-free classes afterwards also in increasing order of size. This procedure is a way to 
maximize the surface area for a given release and set of faulty classes, assuming the future can 
be perfectly predicted. Once computed, we can compare, for a specific NOS percentage, the 
maximum percentage of faults that could be obtained with an optimal model and use this as an 
upper bound to further assess a model, as shown by the dashed line in Figure 3. 

To compare CE areas we need to account for the fact that the optimal model might differ 
across test sets. Thus, we compute a normalized cost-effectiveness measure as  

CEπ = (CEπ(model) – CEπ(baseline)) / (CEπ(optimal) – CEπ(baseline)) 
where CEπ(x) is the area under the curve x  (baseline, model, or optimal) for a given π  
percentage of NOS. This measure can be interpreted as a proportion of the optimal cost-
effectiveness, a measure which is comparable across evaluation datasets. Depending on the 
amount of resources available for testing, the percentage of NOS to be tested will vary, so we 
compute CE for respectively 1%, 5% and 20% of the NOS (CE0.01, CE0.05, CE0.20). Computing a 
CE area is also a way to compare models without any specific percentage of classes in mind and 
based on a unique score. This is why we also choose to include the cost-effectiveness at 100% 
NOS (CE1.00). Admittedly such CE values may not be easy to interpret but their purpose is to 
facilitate the comparison among models based on a measure that should be directly proportional 
to cost-effectiveness in the context of focusing verification and validation efforts. 

3.8 Model Assessment Procedure 

We built a total of 112 different fault-proneness models on the basis of our training dataset, i.e., 
individual prediction models for each of the seven metric sets presented in Section 3.4 (OO, 
Delta, Process, OO + Delta, Process + OO, Process + Delta, Total) with and without CFS, 
using each of the eight candidate mining techniques presented in Section 3.5 (Neural network, 
C4.5, Decorate C4.5, Boost C4.5, SVM, Logistic regression,  PART, C4.5 + PART ). Each of the 
112 models was evaluated on the three distinct evaluation datasets presented in Section 3.6 
(Excluded, COS 20, COS 21) and using the evaluation criteria presented in Section 3.7 
(Accuracy, Precision, Recall, Type I/II misclassification rate, ROC, CE0.01, CE0.05, CE0.20, CE1.00) 

To assess the magnitude of the differences between the model building techniques and the 
metric sets, we report a number of statistics including the mean, the minimum, and maximum of 
each criterion. As it is difficult to make any assumptions about the underlying distribution for 
many of the evaluation criteria we use non-parametric tests to assess the significance of the 
differences. More specifically, for each evaluation criterion, we report p-values from a matched 
pair Wilcoxon’s signed rank test for  

• all pairs of techniques aggregated across metric sets, and  
• all pairs of metric sets aggregated across techniques. 

Given the large number of tests being performed, we set the level of significance to α=.0.001. In 
practice it is useful to not only know the p-values, but also the size of the effect. Thus, in addition 
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to the Wilcoxon p-value on the difference between respectively all pairs of techniques and all 
pairs of metric sets, we also report effect sizes on these differences using Cohen’s d [81].  

4 Results 
This section reports the results from the assessment procedure that was summarized in Section 
3.8. As mentioned in Section 3.4 and 3.5, a number of different models were built; both using a 
complete set of independent variables and using a CFS-reduced version of the same metric sets. 
Surprisingly, the performance of the models that were built using the reduced set of metrics were 
consistently but marginally poorer than the complete set of metrics across most of the evaluation 
criteria considered. Consequently, to simplify the already quite complex analyses, and since the 
results would anyway be very similar, we do not provide separate results for respectively the 
CFS-reduced models and the non-reduced models, but instead combine the two in one analysis. 

First, we give an evaluation of the metric sets and modeling techniques using ROC and CE 
as we consider these criteria the most appropriate to evaluate prediction models in our context. 
Then, we show the results when considering a selection of the most popular confusion matrix 
criteria: accuracy, precision and recall, and Type I- and Type II-misclassification rates. At the 
end of this section we summarize and discuss the results. 

The detailed results are reported in tables that form the basis for our discussion in the 
following subsections. The tables compare metric sets and modeling techniques against one 
another in terms of the different evaluation criteria. In the tables we report the mean, standard 
deviation, minimum and maximum value for each metric set and technique. These descriptive 
statistics are shown in the leftmost columns of the tables – next to the name of the metric set or 
modeling technique. In the right part of the tables we report the difference between each 
combination of metric set/modeling technique in terms of effect size and the Wilcoxon test. The 
latter appears in the upper right side of the diagonal, while the effect size appears in the lower 
left side of the diagonal. The effect size is shown in bold face if the corresponding Wilcoxon test 
is significant at α=0.001. The results for metric sets and techniques are sorted according to their 
mean values in each table; either descending or ascending depending on whether higher or lower 
values are better. Finally, the technique and metric set with the highest average rank when 
considering the ROC area and the four CE measures in combination are included as the “best 
technique” and “best metric set”, respectively. The average results for the best technique are 
included in the tables that compare the metric sets, whereas the average results for the best 
metric set is included in the tables that compare the techniques.  

4.1 Evaluation of Modeling Techniques using ROC and CE 

Table 2 shows that the differences among techniques in terms of mean ROC area are in most 
cases very small, or at least too small to be of practical significance. If we were to use the 
median as a ranking criterion instead, the ranking of the techniques would be similar. The 
average ROC area ranges from 0.70 for C4.5 to above 0.75 using Decorate C4.5 and Neural 
network. That is, the probability that a faulty class will be assigned a higher fault probability than 
a non-faulty one is on average above 0.7, for all modeling techniques. Decorate C4.5 is the data 
mining technique which has the lowest standard deviation, and thus yields the most stable results 
regardless of metric set; the minimum is right below 0.6 while the maximum is 0.9, and the 
standard deviation is 0.08. C4.5 and PART and the combination of the two are perhaps the 
techniques that yield the models that are the easiest to interpret. At the same time, C4.5 and 
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PART are also the ones that yield the smallest ROC area among the techniques assessed in this 
study; the mean ROC area for C4.5 and PART is significantly smaller than the mean ROC area 
of the two best techniques. Although C4.5 has the lowest average ROC area overall, the ROC 
area when using C4.5 in combination with the Process metrics is similar to the mean ROC area 
using Neural network when not considering any particular metric set, suggesting that C4.5 is in 
fact a technique that may give fairly good results given that the optimal set of metrics (Process) 
is used. Considering the ease of interpretation of decision trees, one might choose this technique 
if the goal is not only to predict fault-proneness, but also to interpret the model and explain it to 
practitioners. If the results from using C4.5 are not sufficient, Adaboost can be applied to further 
improve the model, as the combination of C4.5 and boosting is the technique that yields the best 
overall ranking across all evaluation criteria. 

In Table 3 through Table 6 the data mining techniques are compared using the surrogate 
measure of cost-effectiveness described in Section 3.7. The difference in average cost-
effectiveness between the most and least cost-effective techniques ranges from 0.04 to 0.08 
percentage points depending on which threshold π is used. Although there is to some degree a 
significant difference between the extremes, the differences are negligible considering the 
uncertainty in the data. Using the optimal set of measures (Process), all techniques yield a cost-
effectiveness of approximately 30% of the optimal model at π = 0.20 NOS. Although there is 
still room for improvement, this is more than three times as cost-effective compared to a model 
based on random selection.  

Table 2: Area under ROC curve for the modeling techniques 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process) 

Neural 
network

Decorate 
C4.5 

SVM 
Logistic 

regression
Boost 
C4.5 

PART 
C4.5 + 
PART 

C4.5 

  

Neural network  0,756  0,091  0,543  0,935  0,826  ‐  0,902  0,811  0,045  0,036  0,001  0,000  0,000 

W
ilcoxon (α = 0,001) 

Decorate C4.5  0,752  0,077  0,598  0,899  0,779  0,048  ‐  0,515  0,109  0,006  0,000  0,000  0,000 

SVM  0,749  0,112  0,453  0,942  0,724  0,072  0,034  ‐  0,556  0,164  0,011  0,004  0,001 

Logistic regression  0,737  0,097  0,454  0,919  0,722  0,205  0,174  0,114  ‐  0,551  0,026  0,013  0,009 

Boost C4.5  0,732  0,085  0,510  0,856  0,806  0,279  0,252  0,173  0,057  ‐  0,006  0,000  0,005 

PART  0,708  0,086  0,468  0,861  0,776  0,548  0,543  0,412  0,317  0,280  ‐  0,661  0,467 

C4.5 + PART  0,703  0,087  0,468  0,862  0,778  0,599  0,599  0,459  0,370  0,336  0,059  ‐  0,579 

C4.5  0,699  0,091  0,470  0,873  0,762  0,629  0,630  0,489  0,403  0,372  0,099  0,041  ‐ 

            Effect size   
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Table 3: Cost-effectiveness for modeling techniques at π = 0.01 NOS 

 
Table 4: Cost-effectiveness for modeling techniques at π = 0.05 NOS 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process) 

Logistic 
regression

Boost 
C4.5 

PART 
Neural 
network

C4.5 + 
PART 

Decorate 
C4.5 

C4.5  SVM 

  

Logistic regression  0,099  0,082  ‐0,029  0,255  0,160  ‐  0,055  0,095  0,003  0,130  0,029  0,001  0,000 

W
ilcoxon (α = 0,001) 

Boost C4.5  0,076  0,088  ‐0,037  0,301  0,143  0,272  ‐  0,878  0,763  0,954  0,584  0,230  0,134 

PART  0,074  0,070  ‐0,037  0,202  0,096  0,333  0,027  ‐  0,688  0,855  0,274  0,124  0,113 

Neural network  0,073  0,085  ‐0,035  0,263  0,134  0,309  0,029  0,004  ‐  0,897  0,456  0,225  0,027 

C4.5 + PART  0,070  0,085  ‐0,037  0,239  0,127  0,347  0,066  0,045  0,038  ‐  0,449  0,138  0,208 

Decorate C4.5  0,062  0,085  ‐0,037  0,294  0,174  0,443  0,160  0,150  0,134  0,097  ‐  0,518  0,230 

C4.5  0,052  0,072  ‐0,037  0,184  0,097  0,607  0,293  0,302  0,270  0,228  0,302  ‐  0,924 

SVM  0,051  0,083  ‐0,035  0,220  0,113  0,583  0,291  0,296  0,268  0,229  0,131  0,017  ‐ 

            Effect size   
 

Table 5: Cost-effectiveness for modeling techniques at π = 0.20 NOS 

 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process) 

Logistic 
regression

Neural 
network

Decorate 
C4.5 

Boost 
C4.5 

C4.5 + 
PART 

PART  C4.5  SVM 
 

Logistic regression  0,137  0,161  ‐0,043  0,665  0,185  ‐  0,012  0,024  0,052  0,074  0,025  0,012  0,007 

W
ilcoxon (α = 0,001) 

Neural network  0,104  0,197  ‐0,043  0,807  0,142  0,186  ‐  0,421  0,724  0,848  0,700  0,661  0,292 

Decorate C4.5  0,101  0,230  ‐0,043  0,870  0,339  0,179  0,010  ‐  0,445  0,347  0,130  0,833  0,427 

Boost C4.5  0,099  0,161  ‐0,043  0,556  0,254  0,236  0,026  0,013  ‐  0,742  0,821  0,715  0,361 

C4.5 + PART  0,090  0,129  ‐0,043  0,371  0,160  0,319  0,079  0,059  0,058  ‐  0,853  0,505  0,510 

PART  0,087  0,120  ‐0,043  0,371  0,139  0,353  0,103  0,080  0,085  0,030  ‐  0,618  0,349 

C4.5  0,080  0,135  ‐0,043  0,371  0,152  0,383  0,139  0,114  0,126  0,079  0,052  ‐  0,873 

SVM  0,079  0,162  ‐0,043  0,689  0,153  0,358  0,135  0,112  0,122  0,077  0,053  0,006  ‐ 

            Effect size   

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process) 

Boost 
C4.5 

PART 
Decorate 
C4.5 

Logistic 
regression

C4.5 + 
PART 

Neural 
network 

C4.5  SVM 

  

Boost C4.5  0,168  0,132  ‐0,061  0,389  0,289  ‐  0,956  0,576  0,137  0,717  0,010  0,046  0,017 

W
ilcoxon (α = 0,001) 

PART  0,162  0,140  ‐0,078  0,382  0,302  0,051  ‐  0,494  0,326  0,463  0,093  0,031  0,068 

Decorate C4.5  0,156  0,119  ‐0,052  0,377  0,300  0,096  0,040  ‐  0,936  0,897  0,072  0,186  0,021 

Logistic regression  0,155  0,154  ‐0,111  0,458  0,274  0,090  0,041  0,007  ‐  0,763  0,002  0,464  0,064 

C4.5 + PART  0,152  0,148  ‐0,079  0,423  0,326  0,119  0,068  0,035  0,025  ‐  0,199  0,063  0,213 

Neural network  0,130  0,150  ‐0,097  0,524  0,286  0,274  0,219  0,196  0,169  0,148  ‐  0,735  0,518 

C4.5  0,129  0,139  ‐0,092  0,398  0,273  0,294  0,237  0,215  0,183  0,162  0,009  ‐  0,745 

SVM  0,123  0,152  ‐0,090  0,511  0,230  0,316  0,261  0,241  0,209  0,189  0,042  0,035  ‐ 

            Effect size   
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Table 6: Cost-effectiveness for modeling techniques at π = 1.0 NOS 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric set 

(Process) 
Boost 
C4.5 

Decorate 
C4.5 

Neural 
network

Logistic 
regression

PART  SVM  C4.5 
C4.5 + 
PART 

  

Boost C4.5  0,272  0,208  ‐0,259  0,607  0,536  ‐  0,320  0,049  0,037  0,037  0,033  0,000  0,001 

W
ilcoxon (α = 0,001) 

Decorate C4.5  0,259  0,236  ‐0,294  0,650  0,526  0,062  ‐  0,083  0,051  0,098  0,005  0,007  0,019 

Neural network  0,227  0,235  ‐0,249  0,720  0,535  0,205  0,135  ‐  0,441  0,839  0,487  0,985  0,584 

Logistic regression  0,217  0,247  ‐0,262  0,674  0,362  0,241  0,171  0,040  ‐  0,849  0,130  0,907  0,735 

PART  0,213  0,243  ‐0,216  0,656  0,499  0,262  0,191  0,058  0,017  ‐  0,681  0,441  0,208 

SVM  0,200  0,281  ‐0,331  0,742  0,342  0,292  0,225  0,103  0,064  0,048  ‐  0,745  0,839 

C4.5  0,196  0,252  ‐0,202  0,636  0,515  0,333  0,259  0,129  0,087  0,071  0,018  ‐  0,811 

C4.5 + PART  0,192  0,237  ‐0,214  0,654  0,510  0,359  0,281  0,147  0,103  0,086  0,031  0,013  ‐ 

            Effect size   

 

4.2 Evaluation of Metric Sets using ROC and CE 

As shown in Table 7, the differences in average ROC area between the metric sets (across 
techniques) are moderate. The average ROC area ranges from 0.65 for Deltas up to 0.77 when 
using the Process metric set. The Delta metric set is significantly worse than the other 
combinations of metrics. The ROC area for all but the Delta set is above 0.7. 

Table 7: Area under ROC curve for the metric sets 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process
Process 
+ OO 

Total 
Process 
+ Delta 

OO + 
Delta 

OO  Delta 
 

Process  0,772  0,097  0,453  0,942  0,806  ‐  0,968  0,852  0,034  0,041  0,004  0,000 

W
ilcoxon (α = 0,001) 

Process + OO  0,768  0,072  0,608  0,915  0,763  0,041  ‐  0,438  0,004  0,000  0,000  0,000 

Total  0,759  0,089  0,546  0,884  0,761  0,132  0,108  ‐  0,011  0,000  0,000  0,000 

Process + Delta  0,736  0,086  0,510  0,929  0,703  0,387  0,402  0,264  ‐  0,880  0,103  0,000 

OO + Delta  0,720  0,080  0,562  0,840  0,736  0,578  0,627  0,460  0,192  ‐  0,003  0,000 

OO  0,702  0,085  0,532  0,849  0,690  0,761  0,834  0,654  0,398  0,220  ‐  0,001 

Delta  0,648  0,079  0,468  0,821  0,665  1,397  1,584  1,317  1,069  0,910  0,659  ‐ 

            Effect size   

 
Though the smallest ROC area (0.45) is obtained when using the Process metrics2, this set 

of metrics is at the same time best in terms of mean and maximum ROC area. Compared to the 
Process metrics alone, there seems to be no immediate gain by combining them with the OO 
metrics. However, as can be seen from Table 7, by adding the OO metrics, the minimum ROC 
area is lifted above 0.6, and the standard deviation is lower. 

  

                                                 
2 It is worth noting that all ROC areas below 0.5 were obtained using the CFS-reduced data sets. 
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Table 8: Cost-effectiveness for the metric sets at π = 0.01 NOS 

 
Mean 

Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process
Process 
+ Delta 

Process 
+ OO 

Total  Delta  OO 
OO + 
Delta   

Process  0,190  0,209  ‐0,043  0,775  0,254  ‐  0,402  0,030  0,078  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process + Delta  0,175  0,212  ‐0,043  0,870  0,157  0,072  ‐  0,279  0,279  0,002  0,000  0,000 

Process + OO  0,123  0,151  ‐0,043  0,511  0,129  0,367  0,281  ‐  0,630  0,004  0,000  0,000 

Total  0,116  0,176  ‐0,043  0,689  0,109  0,388  0,307  0,048  ‐  0,068  0,000  0,000 

Delta  0,049  0,088  ‐0,043  0,360  0,008  0,879  0,774  0,597  0,475  ‐  0,263  0,000 

OO  0,025  0,071  ‐0,043  0,208  0,009  1,061  0,950  0,832  0,676  0,306  ‐  0,017 

OO + Delta  0,001  0,070  ‐0,043  0,362  0,025  1,215  1,102  1,036  0,856  0,605  0,335  ‐ 

 
Table 9: Cost-effectiveness for the metric sets at π = 0.05 NOS 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process
Process 
+ Delta 

Total  Delta 
Process 
+ OO 

OO + 
Delta 

OO 
 

Process  0,130  0,075  ‐0,029  0,301  0,143  ‐  0,227  0,001  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process + Delta  0,116  0,079  ‐0,027  0,289  0,117  0,185  ‐  0,019  0,001  0,004  0,000  0,000 

Total  0,083  0,085  ‐0,037  0,255  0,105  0,590  0,404  ‐  0,479  0,177  0,000  0,000 

Delta  0,071  0,070  ‐0,026  0,201  0,027  0,817  0,606  0,156  ‐  1,000  0,000  0,000 

Process + OO  0,071  0,081  ‐0,037  0,258  0,102  0,761  0,566  0,147  0,001  ‐  0,000  0,000 

OO + Delta  0,009  0,044  ‐0,037  0,163  0,035  1,957  1,669  1,087  1,048  0,938  ‐  0,939 

OO  0,006  0,035  ‐0,037  0,101  0,000  2,121  1,810  1,192  1,177  1,042  0,096  ‐ 

            Effect size   
 

Table 10: Cost-effectiveness for the metric sets at π = 0.20 NOS 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process
Process 
+ Delta 

Delta  Total 
Process 
+ OO 

OO + 
Delta 

OO 
 

Process  0,285  0,088  0,102  0,524  0,289  ‐  0,000  0,000  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process + Delta  0,233  0,092  0,041  0,389  0,276  0,574  ‐  0,005  0,000  0,000  0,000  0,000 

Delta  0,183  0,140  ‐0,030  0,458  0,147  0,874  0,426  ‐  0,936  0,141  0,000  0,000 

Total  0,170  0,112  ‐0,071  0,387  0,207  1,143  0,619  0,103  ‐  0,023  0,000  0,000 

Process + OO  0,129  0,121  ‐0,076  0,331  0,192  1,476  0,971  0,410  0,348  ‐  0,000  0,000 

OO + Delta  0,022  0,091  ‐0,106  0,261  0,057  2,933  2,303  1,356  1,440  0,997  ‐  0,320 

OO  0,007  0,078  ‐0,111  0,222  0,011  3,343  2,652  1,550  1,683  1,202  0,184  ‐ 

            Effect size   
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Table 11: Cost-effectiveness for the metric sets at π = 1.0 NOS 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process
Process 
+ Delta 

Delta  Total 
Process 
+ OO 

OO + 
Delta 

OO 
 

Process  0,478  0,165  ‐0,122  0,742  0,536  ‐  0,000  0,000  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process + Delta  0,394  0,107  0,119  0,669  0,372  0,604  ‐  0,000  0,000  0,000  0,000  0,000 

Delta  0,236  0,195  ‐0,216  0,674  0,236  1,343  1,008  ‐  0,400  0,701  0,000  0,000 

Total  0,224  0,219  ‐0,213  0,531  0,318  1,308  0,984  0,054  ‐  0,479  0,000  0,000 

Process + OO  0,199  0,194  ‐0,223  0,470  0,273  1,552  1,247  0,190  0,125  ‐  0,000  0,000 

OO + Delta  0,037  0,185  ‐0,306  0,357  0,137  2,512  2,358  1,045  0,925  0,853  ‐  0,004 

OO  ‐0,013  0,178  ‐0,331  0,294  0,036  2,863  2,774  1,334  1,191  1,139  0,275  ‐ 

            Effect size   

 
If we turn to cost-effectiveness, the results for the metric sets are quite different. In  

Table 8 through Table 11 we compare the metric sets in terms of cost-effectiveness. 
Looking back at Table 7, we can see that the OO metrics are on par with the Process metrics 
when considering the ROC area. However from Table 8 through Table 11, we observe that in 
terms of cost-effectiveness the difference between these two sets of metrics is much larger. At π 
= 0.20 NOS (Table 10), the cost-effectiveness using OO metrics are not even 1% of the optimal 
model, while the cost-effectiveness by using the Process metrics alone are one third of the 
optimal model, and over three times as cost-effective than the baseline (random model).  

As explained in Section 3.8, a number of models were built by using different data mining 
techniques. Because three separate test sets were applied to the each of these prediction models, 
we obtained a fairly large number of observations for each metric set. These samples form 
distributions which we can compare. Figure 4 depicts the distribution in cost-effectiveness for 
the prediction models built and evaluated using the Process metrics and the OO metrics, 
respectively. The plot shows the median cost-effectiveness for each group of prediction models. 
In addition to the median shown as a solid line, the area between the 25 and 75 percentiles is 
shaded. This visualization can be interpreted as simplified boxplots of the cost-effectiveness 
when using the two metric sets at discrete levels of NOS. As can be seen from the figure, the 
distribution in cost-effectiveness using the process metrics is far from the baseline, and nearly 
not overlapping with the corresponding distribution obtained from using the OO metrics. 
Looking at the plot for the process metrics, we observe that the 25-percentile for the process 
metrics are close to 50% Total faults at CE0.20. This shows that among the models using the 
process metrics alone, a majority of them (3/4) located more than 50% of the faults in 20% of the 
most fault-prone classes as predicted by the model. Further, the 75-percentile at CE0.20 for the 
process metrics is at 70% Total faults, indicating that 25% of the most cost-effective models in 
fact identified over 70% of the faults in the 20% most fault-prone classes. This is comparable to 
the results obtained by Ostrand et al. [15-17]. 
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Figure 4: Median and 25-/75-percentiles for process metrics and object-oriented metrics 

 
Figure 4 supports the results in the tables comparing metric sets, showing that the cost-
effectiveness obtained by using the OO metrics is close to zero. It is worth noting that there are 
in fact a large number of models using the OO metrics that have negative cost-effectiveness: the 
median of the OO metrics is close to the baseline with slope 1, indicating that 50% of the 
observations are below this baseline, and thus these models are not more cost-effective than a 
completely random model. It is interesting that the average cost-effectiveness for OO metrics is 
close to zero across all thresholds. Turning back to Table 8 through Table 11, note also that the 
cost-effectiveness of the models built using other metric sets decreases when the OO metrics are 
added. For example, this is visible when comparing the cost-effectiveness of the process metrics 
with that of the process metrics in combination with the OO metrics (Process+OO): The process 
metrics are consistently more cost-effective, but when adding the OO metrics, this combination 
is consistently ranked among the least cost-effective. That is, adding the OO metrics consistently 
degrades the cost-effectiveness of a model. Further, we observe that although the deltas have the 
smallest average ROC area, these metrics are consistently more cost-effective than the OO 
metrics. The low cost-effectiveness of the OO metrics may be due to their correlation with size 
measures, which has been reported in many other papers [82]. 

If we were to use the prediction models to focus verification and validation efforts by, say, 
inspecting the 20% most fault-prone classes – the gain from using the process metrics (finding 
60% of the faults on average) compared to the average of what would be obtained with random 
orders (finding 20% of the faults) is substantial. Of course, this is a somewhat simplified view 
for both scenarios, as we probably cannot expect to find all faults by applying a particular fault-
proneness model to focus verification and validation3. Still, the gain from using a prediction 

                                                 
3 A suitable cost-benefit model that accounts for the percentage of faults that are not discovered during 

verification efforts is given in [4] L. C. Briand and J. Wust, "Empirical studies of quality models in object-
oriented systems," Advances in Computers, Vol 56, vol. 56, pp. 97-166, 2002.. 



Simula Technical Report TR-2008-06 

 32 

model based on process metrics is substantial compared with the baseline model. On the other 
hand, we also see that there is much room for improvement when compared to an optimal 
ranking of the classes: the best model is approximately 50% of the optimal model in terms of 
cost-effectiveness.  

The results show that the OO metrics are good predictors of faulty classes (i.e., large ROC 
area), but these metrics do not result in cost-effective prediction models. Many OO metrics have 
been shown to be associated with size [82], and this fact might explain the low cost-effectiveness 
of the OO metrics, because the surrogate measure for cost-effectiveness penalize models which 
mostly capture a size effect. Although the process metrics are presumably more expensive to 
collect, the results show that collecting process metrics is likely to be cost-effective.  

4.3 Evaluating Techniques and Metric Sets using other Evaluation Criteria 

In the two previous subsections, metric sets and modeling techniques were compared using two 
evaluation criteria: ROC area and cost-effectiveness (CE). This section presents the results when 
using some of the more commonly used evaluation criteria. More specifically, we will consider 
the most popular measures that can be derived from the confusion matrix as explained in Section 
3.7. We did not investigate in detail how these classification accuracy measures are affected by 
different probability cut-off values. Still, the results given in this section are comparable to most 
studies, which in most cases do not vary the threshold, but rather use the default value of 0.5, as 
shown in Section 2. We first consider accuracy as it is the most prominent measure in the studies 
reviewed. Then, we show our results for precision, recall and Type I- and Type II-
misclassification rates as these evaluation criteria are also widely used.  

One of the conclusions in the two previous subsections was that the Process metrics set 
seems to be the overall best metric set and Boost C4.5 the best modeling technique in terms of 
average ROC area and cost-effectiveness. Consequently, to facilitate comparisons with the 
previous subsections, we still show the Process/Boost C4.5 results in a separate column.  

Accuracy 

Table 12 and Table 13 show the accuracy for modeling techniques and metric sets, respectively. 
As higher accuracy is considered better than lower accuracy, the tables are sorted in descending 
order according to the mean values. 

Table 12: Accuracy of modeling techniques 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process) 

SVM 
Logistic 

regression
C4.5 
+PART 

Neural 
network

Decorate 
C4.5 

C4.5 
Boost 
C4.5 

PART 
 

SVM  0,863  0,061  0,744  0,985  0,869  ‐  0,000  0,145  0,007  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Logistic regression  0,845  0,060  0,753  0,983  0,867  0,295  ‐  0,830  0,265  0,007  0,004  0,000  0,000 

C4.5+PART  0,838  0,105  0,650  0,970  0,934  0,287  0,077  ‐  0,806  0,000  0,000  0,000  0,000 

Neural network  0,830  0,090  0,681  0,986  0,916  0,432  0,199  0,089  ‐  0,017  0,014  0,000  0,000 

Decorate C4.5  0,807  0,104  0,634  0,970  0,915  0,652  0,443  0,298  0,230  ‐  0,059  0,002  0,000 

C4.5  0,793  0,125  0,568  0,969  0,912  0,709  0,527  0,391  0,334  0,122  ‐  0,494  0,270 

Boost C4.5  0,783  0,107  0,658  0,961  0,903  0,925  0,719  0,528  0,477  0,234  0,092  ‐  0,452 

PART  0,771  0,125  0,526  0,964  0,901  0,932  0,750  0,582  0,537  0,314  0,177  0,099  ‐ 

            Effect size   
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The differences in accuracy among modeling techniques are smaller than the differences 

among metric sets. If one were to select a particular modeling technique based on the average 
accuracy, one would probably select SVM or logistic regression, although these techniques yield 
lower accuracy when used in conjunction with the optimal metric set (Process).  

 

Table 13: Accuracy of metric sets 

 
Mean 

Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Delta  Process Process+Delta Total  Process+OO  OO+Delta OO 
 

Delta  0,908  0,085  0,739  0,986  0,889  ‐  0,367  0,000  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process  0,902  0,050  0,744  0,982  0,903  0,089  ‐  0,000  0,000  0,000  0,000  0,000 

Process+Delta  0,871  0,070  0,760  0,971  0,868  0,475  0,504  ‐  0,000  0,000  0,000  0,000 

Total  0,797  0,084  0,612  0,945  0,684  1,319  1,519  0,959  ‐  0,351  0,000  0,000 

Process+OO  0,776  0,070  0,642  0,899  0,711  1,697  2,065  1,354  0,267  ‐  0,031  0,000 

OO+Delta  0,744  0,085  0,526  0,896  0,745  1,925  2,252  1,622  0,620  0,408  ‐  0,037 

OO  0,715  0,074  0,568  0,834  0,680  2,420  2,947  2,156  1,029  0,845  0,364  ‐ 

            Effect size    

It is worth pointing that the Delta metric set yields the highest accuracy. Looking at the 
results for ROC area in Table 7 in Section 4.2, Delta was the metric set giving the smallest 
average ROC area, and thus one would probably conclude that using these metrics to predict 
fault-proneness is not optimal, thus running counter to what one would conclude when 
considering the accuracy measure.  

Furthermore, what is considered the best metric set is highly dependent on which cut-off 
that is used. Here we have used a threshold of 0.5 because it is commonly used in the existing 
literature, however, it is difficult to give a rule of thumb as to what cut-off to use because there 
would probably be large variations across studies as these results are highly dependent on 
properties of the data set. In our case, the most accurate models are obtained when using cut-off 
values above 0.8. This is due to the highly unbalanced nature of our data sets: only a small 
percentage of the classes are faulty. Although high accuracy is intuitively a desired property, our 
results suggest that accuracy is not necessarily an appropriate measure for evaluating how useful 
fault-proneness prediction models are. 

Precision and Recall 

Two other evaluation criteria that are widely used are the precision and recall measures, as 
explained in Section 3.7. Table 14 and Table 15 show the results for these measures using the 
different metric sets. The metric sets are sorted in descending order according to their mean 
precision/recall. 

From Table 14 we see that the precision ranges from 3% to approximately 10%. This 
indicates that when using a cut-off of 0.5 to distinguish faulty classes from non-faulty ones, only 
a small part of the fault-prone classes identified by the prediction model is in fact faulty – that is, 
most of the classes predicted as faulty are false positives. Although the maximum for Delta is 
above 0.4, the precision of our models is much lower than comparable studies who typically 
achieved precision in the range of 0.7 to 0.95 [13, 38, 65]. The reason we get a relatively low 
precision is probably because only 0.5% to 2% of the classes in our data sets are in fact faulty. 
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Thus, even a few false positives have a huge impact on the precision of the prediction models. 
However, as argued in [83], for such unbalanced data, the prediction models can still be useful 
despite having low precision. 

Table 14: Precision for the metric sets 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Delta  Process 
Process 
+ Delta 

Total 
Process 
+ OO 

OO + 
Delta 

OO 
 

Delta  0,104  0,094  0,040  0,429  0,076  ‐  0,288  0,000  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Process  0,082  0,047  0,020  0,273  0,082  0,294  ‐  0,000  0,000  0,000  0,000  0,000 

Process + Delta  0,067  0,035  0,019  0,160  0,061  0,521  0,362  ‐  0,000  0,000  0,000  0,000 

Total  0,044  0,021  0,014  0,101  0,030  0,871  1,024  0,768  ‐  0,486  0,000  0,000 

Process + OO  0,039  0,020  0,013  0,110  0,031  0,941  1,162  0,942  0,223  ‐  0,000  0,000 

OO + Delta  0,032  0,014  0,013  0,061  0,031  1,063  1,426  1,288  0,671  0,432  ‐  0,012 

OO  0,029  0,013  0,013  0,058  0,025  1,108  1,520  1,411  0,854  0,620  0,227  ‐ 

            Effect size   

 
Table 15: Recall (or Sensitivity, TP rate) for the metric sets 

   Mean 
Std 
Dev 

Min  Max 
Best technique 
(Boost C4.5) 

Process 
+ OO 

Total  OO 
OO + 
Delta 

Process 
+ Delta 

Process  Delta 
 

Process + OO  0,623  0,113  0,389  0,889  0,677  ‐  0,689  0,925  0,252  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Total  0,612  0,138  0,278  0,833  0,723  0,087  ‐  0,752  0,490  0,000  0,000  0,000 

OO  0,609  0,117  0,333  0,781  0,597  0,122  0,023  ‐  0,408  0,001  0,000  0,000 

OO + Delta  0,593  0,137  0,361  0,833  0,609  0,235  0,134  0,122  ‐  0,005  0,000  0,000 

Process + Delta  0,518  0,175  0,167  0,755  0,556  0,712  0,595  0,611  0,480  ‐  0,203  0,000 

Process  0,492  0,162  0,139  0,833  0,554  0,936  0,794  0,826  0,674  0,151  ‐  0,000 

Delta  0,362  0,160  0,056  0,616  0,429  1,884  1,671  1,762  1,552  0,929  0,810  ‐ 

            Effect size   

 
Table 15 shows the corresponding results for recall. We see that the models typically 

capture somewhere between 36% and 62% of the faulty classes on average using a cut-off equal 
to 0.5. This is comparable to other studies, e.g., [13, 22, 65], while other studies achieved recall 
close to 1 [38]. With respect to recall, the Total metric set is best, and looking at the results when 
using the overall best modeling technique (Boost C4.5) in combination with the total set of 
metrics, we observe that 72% of the faults are captured on average by these models.  

Among the modeling techniques, the differences in average precision are small, typically 
in the range from 0.05 to 0.07 (Table 16). The rule- and tree-based modeling techniques are 
techniques that seem to yield low precision, whereas these techniques are at the same time those 
that yield higher recall than SVM, neural network and logistic regression (Table 17).  
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Table 16: Precision for each of the modeling techniques 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process)

SVM 
Neural 
network

C4.5+PART
Logistic 

regression
Decorate 
C4.5 

C4.5 
Boost 
C4.5 

PART 

  

SVM  0,073  0,081  0,019  0,429  0,069  ‐  0,009  0,290  0,007  0,005  0,021  0,000  0,000 

W
ilcoxon (α = 0,001) 

Neural network  0,064  0,074  0,016  0,429  0,107  0,125  ‐  0,471  0,954  0,378  0,132  0,014  0,001 

C4.5+PART  0,059  0,037  0,015  0,175  0,097  0,226  0,078  ‐  0,526  0,051  0,000  0,000  0,000 

Logistic regression  0,058  0,050  0,020  0,316  0,062  0,233  0,095  0,033  ‐  0,300  0,267  0,025  0,006 

Decorate C4.5  0,053  0,037  0,014  0,150  0,084  0,316  0,176  0,155  0,097  ‐  0,138  0,001  0,000 

C4.5  0,052  0,033  0,013  0,143  0,078  0,341  0,201  0,198  0,129  0,035  ‐  0,171  0,139 

Boost C4.5  0,048  0,032  0,014  0,131  0,082  0,412  0,278  0,326  0,233  0,160  0,131  ‐  0,363 

PART  0,047  0,036  0,013  0,148  0,075  0,416  0,284  0,329  0,241  0,171  0,143  0,019  ‐ 

            Effect size   

 
Table 17: Recall for each of the modeling techniqes 

   Mean 
Std. 
Dev. 

Min   Max 
Best metric 
set (Process)

Boost 
C4.5 

PART  C4.5 
Decorate 
C4.5 

Neural 
network 

Logistic 
regression 

SVM 
C4.5 + 
PART 

  

Boost C4.5  0,592  0,155  0,222  0,833  0,554  ‐  0,492  0,268  0,055  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

PART  0,571  0,151  0,278  0,833  0,482  0,139  ‐  0,706  0,694  0,022  0,015  0,003  0,000 

C4.5  0,570  0,161  0,194  0,795  0,488  0,140  0,005  ‐  0,776  0,014  0,007  0,001  0,000 

Decorate C4.5  0,567  0,158  0,167  0,781  0,465  0,163  0,027  0,021  ‐  0,003  0,013  0,003  0,000 

Neural network  0,522  0,194  0,056  0,778  0,467  0,399  0,280  0,269  0,251  ‐  0,426  0,134  0,918 

Logistic regression  0,519  0,164  0,167  0,778  0,548  0,461  0,331  0,317  0,298  0,020  ‐  0,379  0,904 

SVM  0,507  0,192  0,111  0,889  0,494  0,487  0,368  0,355  0,338  0,078  0,065  ‐  0,356 

C4.5 + PART  0,505  0,155  0,194  0,775  0,440  0,561  0,428  0,410  0,392  0,096  0,083  0,010  ‐ 

            Effect size   

 

Type I and Type II Misclassification Rates 

Ostrand et al. argue that Type II errors are the most expensive, and that prediction models should 
be selected and evaluated by their Type II misclassification rate [16]. This measure is also used 
by Khoshgoftaar et al. [19, 37]. In Table 18 we report the average Type II misclassification rate 
for each technique using a default cut-off equal to 0.5. As smaller numbers are considered better 
(less errors in predictions), the table is sorted in ascending order according to the average for 
each technique. 
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Table 18: Type II misclassification rates for each modeling technique 

   Mean 
Std 
Dev 

Min   Max 
Best metric 
set (Process) 

Boost 
C4.5 

PART 
Decorate 
C4.5 

C4.5 
Neural 
network 

Logistic 
regression 

C4.5+PART SVM 

  

Boost C4.5  0,005  0,003  0,001  0,011  0,006  ‐  0,758  0,144  0,132  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

PART  0,006  0,003  0,001  0,010  0,007  0,072  ‐  0,350  0,272  0,012  0,034  0,000  0,006 

Decorate C4.5  0,006  0,003  0,002  0,011  0,007  0,118  0,045  ‐  0,598  0,011  0,020  0,000  0,002 

C4.5  0,006  0,003  0,002  0,011  0,007  0,142  0,071  0,027  ‐  0,034  0,032  0,000  0,001 

Neural network  0,006  0,003  0,002  0,013  0,007  0,311  0,247  0,208  0,181  ‐  0,831  0,965  0,061 

Logistic regression  0,006  0,003  0,002  0,012  0,006  0,337  0,271  0,231  0,203  0,015  ‐  0,961  0,062 

C4.5+PART  0,006  0,003  0,002  0,011  0,008  0,411  0,342  0,301  0,269  0,069  0,055  ‐  0,203 

SVM  0,007  0,003  0,002  0,012  0,007  0,420  0,358  0,320  0,292  0,106  0,094  0,045  ‐ 

            Effect size   
 

The Type II misclassification rate is typically small, suggesting that a large part of the 
prediction models assigns a predicted fault probability above 0.5 to most of the faulty classes. 
Our Type II misclassification rates are slightly smaller (better) than those reported in earlier 
studies, where this rate typically ranged from 0.01 [16] to 0.3 [12]. Although the differences 
among the modeling techniques presented here are small, if we were to select a particular 
technique based on the results in this table, we would conclude that the decision trees or rule-
based techniques, i.e., C4.5 (with or without boosting) or PART, yield the best prediction models 
in terms of Type II misclassification rates. This contradicts our conclusion based on the ROC 
area in Section 4.1. 

 

Table 19: Type I misclassification rates for each modeling technique 

   Mean 
Std 
Dev 

Min   Max 
Best metric 
set (Process) 

SVM 
Logistic 

regression
C4.5+PART

Neural 
network

Decorate 
C4.5 

C4.5 
Boost 
C4.5 

PART 

  

SVM  0,130  0,061  0,003  0,248  0,125  ‐  0,000  0,162  0,006  0,000  0,000  0,000  0,000 

W
ilcoxon (α = 0,001) 

Logistic regression  0,149  0,061  0,005  0,242  0,127  0,297  ‐  0,839  0,276  0,006  0,004  0,000  0,000 

C4.5+PART  0,155  0,106  0,020  0,346  0,058  0,287  0,075  ‐  0,787  0,000  0,000  0,000  0,000 

Neural network  0,164  0,091  0,002  0,311  0,078  0,433  0,198  0,090  ‐  0,019  0,016  0,000  0,000 

Decorate C4.5  0,187  0,105  0,020  0,362  0,077  0,657  0,445  0,302  0,233  ‐  0,060  0,002  0,000 

C4.5  0,201  0,126  0,021  0,426  0,081  0,712  0,528  0,394  0,336  0,120  ‐  0,452  0,259 

Boost C4.5  0,212  0,108  0,029  0,336  0,091  0,933  0,724  0,534  0,481  0,236  0,095  ‐  0,483 

PART  0,223  0,126  0,026  0,470  0,092  0,935  0,750  0,585  0,537  0,312  0,177  0,095  ‐ 

            Effect size   

 
Because the Type I and Type II misclassification rates are inversely correlated – that is, in 

most cases decreasing the number of Type II errors leads to an increase in the number of Type I 
errors – it is useful to compare the results in Table 18 with the Type I misclassification rates 
given in Table 19. Table 19 clearly illustrates that modeling techniques that have lower Type II 
misclassification rates have higher Type I misclassification rates. If we were to select the 
modeling technique that would yield best results in terms of Type I misclassification rates, we 
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would probably choose another modeling technique than when considering Type II 
misclassification rates. That is, considering Type II misclassification rates we concluded that the 
rule- or decision tree-based techniques were best, while from Table 19 we conclude that these are 
significantly worse than SVM. In practice, one would probably consider a trade-off between 
these types of misclassification rates. One option is to investigate the consistency in ranking for 
each technique across the evaluation criteria. Then, neural networks would perhaps be a good 
compromise. 

As can be seen from the results above, which modeling technique or metric set can be 
considered “best” is highly dependent on the criteria used for evaluation. The prediction models 
in this case study yield a recall and accuracy comparable to recent studies. However, the 
precision of our models is very low due to the unbalanced nature of our data sets, and choosing 
another cut-off than 0.5 can possibly yield very different results.  

4.4 Discussion 

In the subsections above we have evaluated and compared several carefully selected modeling 
techniques and metric sets that entail different data collection costs. Our goal was to assess what 
measures are necessary to achieve practically useful predictions, what modeling techniques seem 
to be more helpful, and how our conclusions differ depending on the evaluation criteria used.  

We observe that the Process measures on average yield the most cost-effective prediction 
models, whereas the OO metrics on average is no better than a model based on random selection 
of classes. Although the Delta measures alone does not yield particularly large ROC areas, these 
measures still yield more cost-effective prediction models than the OO metrics.  

Turning to the evaluation criteria, a first observation is that using general confusion matrix 
criteria raises a number of issue: (i) it is difficult to assess if the default cut-off of 0.5 is 
appropriate and if not, what other cut-off value should be used; (ii) none of these criteria strongly 
relate to the main goal in our context, that is ranking classes according to their fault-proneness to 
prioritize and increase the cost-effectiveness of verification; (iii) none of these criteria are clearly 
related to the possible cost-effectiveness of applying a particular prediction model. 

Further, another issue when evaluating prediction models is that what can be considered 
the best modeling technique or set of measures is highly dependent on the evaluation criteria 
used for evaluation. Consequently, it is crucial that the criteria used to evaluate fault-proneness 
prediction models are closely linked to the intended, practical application of the prediction 
models. 

We argue that ROC and CE capture two properties that are of high importance within our 
context, namely class ranking and cost-effectiveness: The area under the ROC curve reflects the 
probability that a faulty class is assigned a higher fault probability than a non-faulty one, while 
the CE measure allows us to compare prediction models according to their cost-effectiveness 
based on a number of assumptions. As shown in Section 4.2, these two measures capture two 
different dimensions of model performance: The difference between the Process and the OO 
metric sets was not clearly visible when only considering the ROC area, whereas the differences 
considering CE were relatively large. The results showed that an apparently accurate model is 
not necessarily cost-effective. Consequently, we emphasize the importance of considering not 
only measures such as the ones that can be derived from the confusion matrix, but also specific 
measures that are more closely related to the possible cost-effectiveness of applying fault-
proneness prediction models to focus verification efforts. 
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5 Threats to Validity 
The evaluation of techniques and metric sets were done using data from one single environment. 
The data collected were from 13 major releases over a period of several years. The system has 
endured a large extent of organizational and personnel change. Thus, it is unlikely that the results 
are heavily affected by individual developers and their experience, or the traits of certain releases 
of the system. Still, as with most case studies, one should be careful to generalize the specific 
results to all systems or environments. However, at a more general level, we believe that many 
methodological lessons can be learned from this study, including the need for doing systematic 
and comprehensive evaluations to ensure that the prediction models have the desired properties 
(e.g., cost effectiveness) for the purpose at hand. 

In this study, we have not accounted for the actual cost of making the measures available 
and collecting them. Consequently, there are some initial costs associated with this process 
improvement activity that we do not account for. In particular, the Process metric set, being most 
cost-effective, is at the same time the measures that have the highest cost with respect to data 
reporting and collection. 

The prediction models built in this case study were built using default parameters. That is, 
we have not systematically investigated how the models are affected by varying the parameters. 
There are possibly a large number of potential combinations of parameters for each modeling 
technique and optimizing the parameters with respect to some criteria for each technique would 
be very computational intensive. Furthermore, optimizing the modeling parameters might also 
lead to overfitted models that is highly specific to the training set. One way to alleviate this 
potential threat would be to apply evolutionary programming to optimize the parameters with 
respect to some property, e.g., cross-validated measures of ROC or CE.  

Note also that the use of statistical tests in this study to test the differences between 
techniques and metric sets are somewhat exploratory in nature. In particular, from a formal 
standpoint, the notion of p-values is questionable in our context, because we have not taken a 
random sample from a target population, but rather used all the data we had available and 
computed p-values on differences between subsets of our data. For this reason we have also 
reported effect sizes, which are not problematic in this regard. 

6 Conclusions and Further Work 
Our review of recent studies revealed that many studies do not comprehensively and 
systematically compare modeling techniques and types of measures to build fault-prediction 
models. Many works also do not apply suitable evaluation methods and show little consistency 
in terms of criteria and methods that are used to evaluate the prediction models. Thus, it is hard 
to draw general conclusions on which measures and modeling techniques to use to build fault-
proneness prediction models based on the existing body of studies. Further, most studies evaluate 
their models using confusion matrix criteria while we have shown that the metric set or 
technique that is put forward as the best is highly dependent on the specific criteria used. 

Except for a few studies, i.e., [21, 38], there has been no systematic and comprehensive 
effort on comparing modeling techniques to build accurate and useful fault-proneness prediction 
models. In this paper, we do not only compare a carefully selected set of modeling techniques in 
a systematic way, but we also compare the impact of using different types of measures as 
predictors, based on different evaluation criteria. By doing so, we also propose a systematic 
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process and associated data analysis procedures for the rigorous comparison of models in terms 
of their cost effectiveness. 

More precisely, we have empirically evaluated all combinations of three distinct sets of 
candidate measures (OO structural measures, code churn measures, and process change and fault 
measures) and eight, carefully selected modeling techniques, using a number of evaluation 
criteria. Overall, the findings are that the measures and techniques that are put forward as the 
“best” is highly dependent on the evaluation criteria applied. Thus, it is important that the 
evaluation criteria used to evaluate the prediction models are clearly justified in the context in 
which the models are to be applied.  

Within the field of software verification we propose a surrogate measure of cost-
effectiveness (CE) that enables us to assess and compare the possible benefits of applying fault-
proneness prediction models to focus software verification efforts, e.g., by ranking the classes 
according to fault-proneness and focusing unit testing on the π % most fault-prone components. 
Using this CE measure to evaluate the prediction models in our case study revealed that using 
OO metrics to build fault-proneness prediction models does not necessarily yield cost-effective 
models – possibly because these metrics show strong correlation with size related measures, and 
prediction models that merely capture size are not cost-effective under the assumption that 
verification costs are proportional to size. Further, this case study clearly suggests that one 
should consider process-related measures, such as measures related to the history of changes and 
faults, to improve prediction model cost-effectiveness. Regarding the choice of modeling 
technique, the differences appear to be rather small in terms of cost-effectiveness, although 
Adaboost combined with C4.5 overall gave the best results. Note however that we have only 
compared techniques using default parameters, and as future work we will try to optimize the 
parameters while attempting to avoid overfitting.  

The CE measure proposed in this paper is a surrogate measure to facilitate comparisons of 
prediction models using a criterion that is directly linked to the assumed cost-effectiveness of 
using such models to focus verification efforts. In order to assess the real cost-effectiveness and 
possible return on investment, we have recently performed a pilot study where the C4.5 
prediction model was applied in a new release of the COS system. In this pilot study, developers 
spent an additional week of unit testing on the most fault-prone classes and several serious faults 
that otherwise would have slipped through to later testing phases or even the production system 
was discovered and corrected. Preliminary results suggest a return of investment of about 100 
percent by preventing these faults from slipping through to later phases where they would have 
been more expensive to correct [84]. Due to these promising preliminary results, plans are 
underway to perform large-scale evaluations of the costs and benefits of using the prediction 
models to focus testing in the COS project. 
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Appendix A: Papers reviewed 

Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Arisholm et al. 
[72] 

- Absence or 
presence of 
faults 

- Class - 14 Structural 
measures 
- 6 Delta measures 
- 5 Process 
measures 
- In addition, some 
measures of code 
violations, coding 
style errors etc. 

- Univariate logistic 
regression 
- Multivariate logistic 
regression 

- False positive 
rate and false 
negative rate at 
cut-off values 
ranging from 0 to 
1. 

- Leave-one-out 
cross-validation

- Large java legacy 
system consting of 
1700 classes and 
110KLOC 

Arisholm et al. 
[73] 

- Absence or 
presence of 
faults 

- Class/file - Structural 
measures 
- Process measures 
such as the amount 
of change 
undertaken and 
number of 
developers involved 

8 Data mining 
techniques: 
- C4.5 
- PART 
- SVM 
- Decorate C4.5 
- Boost C4.5 
- C4.5+PART 
- Neural network 

- Confusion 
matrix criteria; 
precision, recall 
- Area under 
ROC curve  

- 2/3 forms the 
training set 
- 1/3 is used as 
a test set. In 
addition, a later 
release of the 
same system is 
used as a 
separate test 
set. 

- Large java legacy 
system consting of 
2600 classes and 
148KLOC 

Briand et al. 
[46] 

- Absence or 
presence of 
faults 

- Class - 23 structural 
measures 

- Multivariate and 
univariate logistic 
regression 
- MARS 

- Correctness 
- Completeness 
- Cost-benefit 
model 

Two validation 
methods: 
(1) 10-fold 
cross-validation
(2) System i 
forms training 
set whereas 
System ii forms 
the evaluation 
set 

Two Java 
applications: 
- (i) Xpose (144 
classes) 
- (ii) Jwriter (68 
classes) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Denaro et al. 
[65] 

- Highly faulty or 
not (more than 4 
faults) 

- Module - 8 size measures 
- 30 structural 
measures including 
Halstead's difficulty, 
effort and program 
volume. 

- Logistic regression - R² 
- Alberg-diagram
- Confusion 
matrix criteria; 
accuracy, 
precision, recall 

- Cross 
validation 

- Apache release 
1.3 and 2.0 (C) 

Elish and Elish 
[38] 

- Absence or 
presence of 
faults 

- (i) Function 
- (ii) Method 

- Structural 
properties 

- Logistic regression
- K-nearest 
neighbour 
- Multi-layer 
perceptron 
- Radial basis 
function 
- Bayesian belief 
network 
- Naïve Bayes 
- Random forest 
- Decision tree 

- Accuracy 
- Precision 
- Recall 
- F-measure 

- 10-fold cross-
validation run 
100 times using 
different seed 
values 

- (i) The CM1 and 
PC1 data sets from 
NASA MDP (C) 
- (ii) The KC1 and 
KC3 data sets from 
NASA MDP (C++) 

Gondra [42] - Fault-
proneness 
(neural network) 
- Absence or 
presence of 
faults (SVM) 

- Function - Structural 
properties 
- Some size metrics 

- Neural network 
- Support vector 
machines (SVM) 

- Mean squared 
error 
- Proportion of 
incorrect 
classifications (1-
accuracy) 

- 2/3 forms the 
training set 
- 1/3 is used as 
a test set 

- The JM1 data set 
from NASA MDP, 
315 KLOC (C) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Guo et al. [21] - Absence or 

presence of 
faults 

- (i) Function 
- (ii) Method 

- 16 structural 
measures (included 
McCabe's and 
Halstead's) 
- 5 size measures 

- Random forest 
- Discriminant 
analysis 
- Logistic regression
- 20 data mining 
techniques using 
WEKA 
- See5/C5 
- ROCKY 

- Confusion 
matrix criteria; 
accuracy, 
sensitivity, 
specificity 

For random 
forest: 
- 2/3 form the 
training set 
- 1/3 is used for 
evaluation/valid
ation 
 
For all others: 
- 10 times 10-
fold cross 
validation 

- (i) The CM1, JM1 
and PC1 data sets 
from NASA MDP (C) 
- (ii) The KC1 and 
KC2 data sets from 
NASA MDP (C++) 

Gyimóthy et al. 
[85] 

- Number of bugs 
- Absence or 
presence of bugs 

- Class - The 6 CK'94 
metrics 

- Multivariate and 
univariate linear 
regression 
- Multivariate and 
univariate logistic 
regression 
- C4.5 
- Neural network 

- Accuracy (in the 
paper called 
precision) 
- Recall (in the 
paper called 
correctness) 
- Completeness 

None - Version 1.0 
through 1.6 of the 
Mozilla email and 
browser suite (C++) 

Janes et al. [11] - Number of 
defects 

- Class - CK '94 class level 
metrics 
- NOS 

- Poisson regression
- Negative binomial 
regression 
- Zero-inflated 
negative binomial 
regression 
(all are univariate) 

- Spearman rank 
correlation 
- Dispersion 
- Alberg-
diagrams 

None - Five real-time 
telecommunication 
systems written in 
C++ (63400 LOC in 
total) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Jin et al. [86] - Number of 

changes 
- Module - 5 structural 

measures 
- 6 size measures 

- Multivariate linear 
regression 
- Conjunctive rule 
- Locally weighted 
regression 
- Support vector 
machine regression 

- Mean absolute 
error 
- Correlation 
coefficient 

- 10-fold cross-
validation 

- MIS dataset 

Kanmani et al. 
[12] 

- Absence or 
presence of 
faults (faults 
found during 
testing) 

- Class - 57 Structural OO 
measures including 
CK'94, Briand's 
coupling measures 
as well as Li and 
Henry's metrics 
- 7 Size measures 

- Back propagation 
neural network 
- Probabilistic neural 
network 
- Discriminant 
analysis 
- Logistic regression 

- Type I and 
Type II error 
rates 
- Correctness 
- Completeness 
- Effectiveness 
- Efficiency 

- 2/3 forms the 
training set 
- 1/3 is used as 
a test set 

- Object-oriented 
library management 
system developed 
by graduate 
students (10-
15KLOC) 

Khoshgoftaar et 
al. [27] 

- (1) Number of 
faults 
- (2) Debug code 
churn 

- Module (1): 
- Structural 
properties (e.g., 
number of unique 
operands, Halstead 
cycl. compl.) 
- Size metrics 
(2): 
- Structural 
properties (e.g. 
McCabes 
complexity metrics, 
number of 
edges&nodes in 
control flow graph 
etc.) 
- Size metrics 

- Multiple linear 
stepwise regression 

- R² 
- Average 
absolute and 
relative error 
- The percentage 
of faults obtained 
compared to an 
«optimal» 
(actual) model at 
different 
thresholds 
(percentage of 
modules) 

- (1) 2/3 form 
the training set 
while the 
remaining 1/3 is 
used ot 
evaluate/validat
e the model 
- (2) Release 1 
forms the 
training set, 
release 2 is 
used to 
evaluate/validat
e model 

Two systems: 
(1) Military system 
written in Ada 
(2) Large legacy 
telecommunications 
system 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Khoshgoftaar et 
al. [79] 

- Number of 
faults 
- Probability of 
two faults or 
more 

- Module (Ada 
package) 

- (1) 7 structural 
measures including 
some size related 
measures 
- (2) five product 
measures obtained 
during inspection 

- Logistic regression
- Poisson regression
- Zero-inflated 
Poisson regression 

- Average 
absolute error 
- Average 
relative error 
- Type I and 
Type II 
misclassification 
rates 

- 2/3 form the 
training set 
- 1/3 form the 
test set 

Two case studies: 
- (1) Large military 
telecom system 
written in Ada 
- (2) Two large 
embedded 
applications used for 
config. of wireless 
telecom products 

Khoshgoftaar et 
al. [37] 

- Absence or 
presence of 
customer-
discovered faults 

- Set of 
related 
source-code 
files 
(modules) 

- 24 Structural 
measures 
- 14 Process 
measures 
- 4 Software 
execution metrics 

- Case Based 
Reasoning by (i) 
Majority vote and (ii) 
Data clustering 

- Type I and 
Type II 
misclassification 
rates, where 
Type II is 
considered most 
important 

- Train using 
release 1 
- Select model 
using leave-
one-out cross 
validaion 
- Test using 
release 2, 3 
and 4 

- Large legacy 
telecommunication 
software, procedural 
paradigm 
(1000KLOC) 

Khoshgoftaar et 
al. [19] 

- Absence or 
presence of 
faults detected 
during system 
operation (post-
release) 

- Set of 
related files 
(data 
collected at 
file level, and 
then 
aggregated) 

- Structural 
measures 
- Software execution 
metrics (execution 
time) 

- Logistic regression
- Case-based 
reasoning 
- CART 
- Regr. tree using S-
PLUS 
- Sprint-Sliq 
- C4.5 
- Treedisc 

- Type I and 
Type II error 
rates (model 
selection) 
- Expected cost 
of 
misclassification 
(model 
evaluation) 

- Train using 
release 1 
- Select using 
release 2 
- Evaluate 
using release 2, 
3 and 4 

- Large-scale legacy 
telecommunications 
system, procedural 
paradigm (PROTEL) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Khoshgoftaar et 
al. [87] 

- Absence or 
presence of 
faults in modules 
that was 
changed since 
the prior release 

- Module; one 
or more 
functionally 
related 
source-code 
files 

- 26 structural 
measures including 
size-related 
measures 
- 4 metrics capturing 
the average 
execution time of a 
module 

- Regression tree 
using S-Plus 

- Type I and 
Type II 
misclassification 
rates 
- Estimated profit 
and ROI 

- Release 1 
was used as 
training set 
- Release 2-4 
were used as 
separate test 
sets 

- Embeded real-time 
system consisting of 
more than 10.000 
KLOC  written in a 
procedural language 
(PROTEL) 

Kim et al. [22] - Clean or buggy 
commit 

- Change 
(committed 
change to 
source code 
repository) 

- 8 RCS meta 
measures, e.g. day 
of week and for 
commit, 
cummulative 
number of changes 
and bugs 
- The deltas 
between the new 
and old revision for 
61 complexity 
metrics 

- Support vector 
machine 

- Confusion 
matrix criteria; 
accuracy, 
precision, recall 

- 10 fold cross 
validation 

- 12 open source 
software projects 
including Apache, 
Subversion, Eclipse 
and PostgreSQL 

Nagappan et al. 
[25] 

- Number of post-
release failures 
- Absence or 
presence of post-
release failures 

- System 
binaries 

- Change (churn) 
measures; lines 
added, deleted or 
modified. Number of 
files that churned 
and number of 
changes. 
- Architectural 
dependencies 

- Multivariate linear 
regression using 
PCA (count) 
- Multivariate Binary 
logistic regression 
using PCA (failure-
proneness) 

- F-test (coeff. 
sign.) 
- R², both 
adjusted, 
Nagelkerkes, and 
Cox & Snell 
- Spearman rank 
correlation 
- Pearson 
correlation 
- Precision and 
recall 

- Random split; 
2/3 training, 1/3 
test. Repeated 
5 times. 

- Windows 2003 
Server 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Nagappan et al. 
[26] 

- Number of post-
release failures 

- System 
binaries 

- 11 structural 
measures at 
function level 
(aggregated to 
module level as 
Total and Maximum)
- 4 structural 
measures at class 
level (aggregated to 
module level as 
Total and Maximum)
- 3 structural 
measures at module 
level 

- Univariate and 
multivariate (using 
PCA) linear 
regression 

- R² and adjusted 
R² 
- Spearman and 
Pearson rank 
correlation 

- Random split 
for each 
subsystem; 2/3 
training, 1/3 
test. Repeated 
5 times. 
- 5 models; one 
for each 
component is 
applied to the 
other 4 
components. 

- 5 object-oriented 
components in 
Windows; including 
Internet Explorer 6 
and IIS 

Nikora et al. 
[20] 

- Cumulative 
number of faults 
across releases 

- Function / 
procedure 

- 6 size measures 
- Some control flow 
graph measures 

- Multiple linear 
regression using 
principal 
components 

- R² None - Space shuttle 
mission software 

Olague et al. [9] - Absence or 
presence of 
faults 

- Class - CK '94 class 
metrics 
- Abreu's metrics 
- Bansiya and Davis' 
metrics 

- Univariate binary 
logistic regression 
(used for variable 
selection) 
- Multivariate binary 
logistic regression 
- Also linear 
regression was 
used, but were not 
successful in pred. 
faults 

- Hosmer-
Lemeshow test 
- Percentage 
correctly 
classified 
(accuracy) 

For release x < 
n < y, where x-
y=5: 
- Train using 
set n 
- Test/evaluate 
on n+1 

- Mozilla Rhino, 
(Open source Java 
system) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Ostrand et al. 
[16] 

- Number of 
faults (Pre- and 
post-release) 

- File - Lines of code 
(LOC) 
- Wheter file is new 
or 
changed/unchanged
- Age of file 
- Number of faults in 
prev. rel. 
- Language (java, 
perl, c, xml etc.) 
- Number of different 
developers who 
have worked one 
the file 

- Negative binomial 
regression 

- Confusion 
matrix criteria; 
accuracy, recall, 
precision, type I 
and type II error 
ratios at different 
percentages of 
files selected that 
are predicted as 
most fault-prone 

None - Large industrial 
software systems 
(doesn't state 
language, design 
paradigm etc.) 

Ostrand et al. 
[15] 

- Number of 
faults 
(Pre- and post-
release) 

- File - Lines of code 
(LOC) 
- Whether file is new 
or 
changed/unchanged
- Age of file 
- Number of faults in 
prev. rel. 
- Language (java, 
perl, c, xml etc.) 

- Negative binomial 
regression 

- Percentage of 
faults included by 
model in th top 
20% most fault-
prone files 

- Training set 
- Test/evaluate 
on later 
releases of the 
same system 

- Large industrial 
software systems; 
one  written in Java, 
and the other mainly 
in SQL  

Ostrand et al. 
[17] 

- Number of 
faults (Pre- and 
post-release) 

- File - LOC 
- Age 
- Number of prior 
changes and faults 
- Exposure (the 
fraction of the 
release which a new 
file existed) 
- Language (C++, 
SQL, C etc.) 

- Negative binomial 
regression 

- The percentage 
of LOC included 
in the fault-prone 
files vs. the 
percentage of 
faults included in 
those files 
- Whether % 
LOC in the fault-
prone files is 
smaller than the 
percentage of 
faults. 

- Model for 
release N was 
built using 
release 2 
through N-1 
- In addition, 
two models 
built from 
another system 
were assessed 

- 35 releases of a 
large maintenance 
support system 
(C++, SQL an 
others) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Pai et al. [13] - Number of 

faults 
- Absence or 
presence of 
faults 

- Class - 6 CK'94 class level 
metrics 
- LOC 

- Linear regression 
- Bayesian 
networks: 
  * Bayesian linear 
regression 
  * Bayesian poisson 
regression 
  * Bayesian logistic 
regression 

- Kolmogorov-
Smirnov  
- Deviance 
information 
criterion 
- Alberg-
diagrams 
- Confusion 
matrix measures; 
sensitivity, 
specificity, 
precision, Type I 
and Type II error 
rates 

- 10-fold cross 
validation 

- The KC1 data set 
from NASA MDP 
(C++, 43 KLOC, 145 
classes) 

Subramanyam 
et al. [24] 

- Number of 
defects  

- Class - Some of the CK 
'94 class measures 
(WMC, CBO, DIT) 
and size (NOS) 

- Linear regression 
using Box-Cox 
transformation and 
weighted least 
squares 

- Adjusted R² None  (built 
from and 
applied to one 
release) 

- Commercial object-
oriented B2C e-
commerce 
application suite 
(C++ and Java) 

Succi et al. [88] - Number of 
faults (defects) 

- Class - LOC 
- The 6 CK'94 
metrics 

- Negative binomial 
regression 
- Zero-inflated 
binomial regression
- Poisson regression

- Relative 
standard error 
- Dispersion 
- Pareto analyis 
(using 80% of the 
faults) 

None - Two commercial 
applications each of 
consisting of apprx. 
150 classes 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Thwin et al. [14] - Number of 

faults 
- Class - 8 structural 

measures including 
CK metrics 

2 neural network 
techniques: 
- General regression 
neural network 
- Ward neural 
network 

- R squared, 
mean square 
error, 
mean/maximum/
minimum 
absolute error 

- 10 fold cross 
validation 

- Three object-
oriented subsystems 
totaling 43KLOC in 
size, 97 classes. 
The subsystems are 
part of a large 
industrial system 
consisting of 200 
subsystems. 

Tomaszeski et 
al. [8] 

- Number of 
faults and fault 
density 

- Class - 7 CK'94 class level 
metrics 
- Cyclomatic 
complexity 
- 5 size measures 
- Number of new or 
modified LOC 

- Univariate and 
multivariate linear 
regression 

- R² 
- Spearman rank 
correlation 
- Presumed cost 
reduction in 
terms of 
percentage faults 
detected 
compared to 
optimal model, 
and further 
compared to a 
simple model 
based on size 
and finally a 
random model. 

- Build model 
from one 
release of one 
system, 
evaluating the 
model on a 
later release of 
the same 
system and on 
another system 

- Two large object-
oriented 
telecommunication 
systems (500 KLOC 
and 600 KLOC) 

Tomaszewski et 
al. [23] 

- Number of 
faults and fault 
density 

- Class - CK'94 class level 
metrics 
- 5 size measures 
- Number of new or 
modified LOC 

- Stepwise 
multivariate linear 
regression 

- R² 
- F-test 
- Presumed cost 
reduction wrt. 
percentage of 
faults detected 
compared to 
optimal model, a 
model based on 
size and finally a 
random model. 

None  
(built from and 
applied to one 
release) 

- Large object-
oriented 
telecommunication 
system (250 KLOC) 
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Author(s) 
Dependent 

variable 
Unit of 

analysis Measures 
Modeling 

techniques 
Evaluation 

criteria 
Validation 

method Type of system 
Vandecruys et 
al. [41] 

- Absence or 
presence of 
faults 

- (i) Function 
or subroutine
- (ii) Method 

- Size metrics 
- Structural 
measures such as 
Halstead volume, 
effort and difficulty, 
and cuclomatic 
complexity etc. 

- AntMiner+ 
- RIPPER 
- C4.5 
- Logistic regression
- k-nearest 
neighbour 
- Support vector 
machine 
- Majority vote 

- Confusion 
matrix criteria; 
accuracy, 
sensitivity, 
specificity 

- 70% training 
set 
- 30% test set 

- (i) The PC1 and 
PC4 data sets from 
NASA MDP (C) 
- (ii) The KC1 data 
set from NASA MDP 
(C++) 

Weyuker et al. 
[18] 

- Number of 
faults (Pre- and 
post-release) 

- File Same as for the 
ISSTA'07 paper, but 
in addition a number 
of measures meant 
to capture the 
number of 
developers involved 
in developing a file. 

- Negative binomial 
regression 

- Percentage of 
faults found in 
the (predicted) 
20% most fault-
prone files 

- Model for 
release N was 
built using 
release 2 
through N-1, for 
N >= 6 

- 35 releases of a 
large maintenance 
support system 
(C++, SQL an 
others) 

Zhou et al. [10] - Absence or 
presence of (1) 
high severity 
faults, (2)  low 
severity faults, 
and (3) both 

- Class - 7 CK'94 class level 
metrics; WMC, DIT, 
RFC, NOC, CBO, 
LCOM and LOC 

- Univariate logistic 
regression 
- Multivariate logistic 
regression 
- Naive Bayes 
network 
- Random forest 
- Nearest neighbour 
with generalization 

- Confusion 
matrix critera; 
correctness and 
an awkard 
definition of 
precision 
- Completeness 

- Leave-one-out 
cross validation

- The KC1 data set 
from NASA MDP 
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