

Authors
Institution, Address
e-mail:

An investigation of change effort in two evolving software systems

Technical report 11/2008, Simula Research Laboratory

Hans Christian Benestad, Bente Anda, Erik Arisholm

Abstract Making changes to software systems can prove costly and it remains a challenge to
understand the factors that affect the costs of software evolution. This study sought to identify
such factors by investigating the effort expended by developers to perform 336 change tasks in two
different software organizations. We quantitatively analyzed data from version control systems
and change trackers to identify factors that correlated with change effort. In-depth interviews with
the developers about a subset of the change tasks further refined the analysis. Two central
quantitative results found that volatility of requirements and dispersion of changed code
consistently correlated with change effort. The analysis of the qualitative interviews pointed to two
important, underlying cost drivers: Difficulties in anticipating side effects of changes and
difficulties in comprehending dispersed code. This study demonstrates a novel method for
combining qualitative and quantitative analysis to assess cost drivers of software evolution. Given
our findings, we propose improvements to design practices and development tools to reduce the
costs.

1 Introduction
Software systems must evolve to adapt to continuously changing environments [1]. With a greater
understanding of the cost of software evolution, technologies and practices could be improved to
act against typical cost drivers. Development organizations could also make more targeted process
improvements and predict cost more accurately in their specific context. Researchers have taken a
number of different approaches toward understanding the cost of software evolution. One class of
studies has investigated project factors, such as maintainer skills, the size of teams, development
practices, and documentation practices, [2-5]. Other studies have examined how system factors
such as structural attributes of source code, relate to the ease of changing software [6-8]. A third
class of studies has focused on human factors and has probed the individual cognitive processes
involved when developers attempt to comprehend and change software [9].

This case study assumes that software evolution consists of change tasks that developers
perform to resolve change requests, and that change effort, i.e. the effort expended by developers
to perform these tasks, is a meaningful measure of software evolution cost. Thus, by identifying
the drivers of change effort we can better understand the cost of software evolution.

Change effort might be affected by factors such as volatility of change requirements, types of
change, developer experience, task size and complexity, and structural attributes of the system. An
important element of the study design was to propose cost drivers on the basis of a systematic
literature review of change-based studies. With this basis, it was possible to separate between i) a
confirmatory analysis to test the effect of factors shown to be important in earlier change-based
studies and ii) an explorative analysis that identifies factors that best explained change effort in the
data at hand. This is also the first study we are aware of that combines quantitative and qualitative
analysis of change tasks in a systematic manner. The purpose was to paint a rich picture of factors
that are involved when developers spend effort to perform change tasks. Ultimately, our goal is to
aggregate evidence from change-based studies into theories of software evolution.

Quantitative data for this study was retrieved from version control systems and change trackers
of two independent projects over periods of 6 and 11 months, respectively. The developers
recorded the effort to perform change tasks and we used this as a response variable in quantitative
models. Qualitative data was collected through semi-structured interviews focusing on the changes
that the interviewees had recently made.

The main contributions of this paper are threefold: First, from a local perspective the study
results can be used to improve the practices in the investigated projects. For example, the study
identifies specific factors that were insufficiently accounted for when the projects estimated
change effort. Second, from the software engineering perspective the study clarifies factors that

 2

drive cost of software evolution. For example, the study identifies commonly used design practices
that had an undesirable effect on change effort. Third, from the empirical software engineering
perspective the paper demonstrates a methodology of qualitative and quantitative analysis of
software changes to assess factors that affect the cost of software evolution.

The remainder of this paper is organized as follows: Section 2 describes the design of the study,
and includes a measurement model based on a literature review of empirical studies of software
change. Sections 3 and 4 provide the results from the quantitative analysis, while Section 5
provides the results from the qualitative analysis. Section 6 summarizes the results for the different
parts of the analysis and discusses the consequences of the results. Section 7 discusses threats to
validity, and Section 8 concludes.

2 Design of the study

2.1 Research question
The study addresses the following research question:

Which factors associated with change tasks correlate with and affect change effort?

As implied by this question, the individual change task is the unit of analysis for this study.
Change trackers and version control systems were the source of quantitative data to capture factors
that vary across change tasks, such as volatility of change requirements, type of change,
experience of the developers who performed the change, and size of the change. Data on change
effort was retrieved from the same source.

We use regression analysis to identify factors that best explain variations in change effort. This
is the basis for the objective and quantifiable results. However, such analysis does not reveal all
factors involved when developers spend effort to perform change tasks. We interviewed
developers about recent change tasks to identify factors that were not captured by the quantitative
data. Also, because statistical regression analyzes correlations, we expected the interview data to
reveal more about the involved causal relationships. For example, regression analysis may show
that corrective changes are more expensive than non-corrective changes, but provides little insight
into the root causes for this result. Such insight can be found by interviewing developers about
how corrective and non-corrective changes were made.

Factors such as the size and type of the system, commercial terms and collaboration model are
stable across change tasks, and constitute the context for the study results. Generalization of the
results to other contexts is discussed in Section 2.3.

2.2 Case study procedures
Mutual commitment for collaboration was established in 2006 with two development
organizations that fulfilled the requirements for the study. Developer interviews were conducted
over a period of six months until July 2007, at which point quantitative data was retrieved from
change trackers and version control systems in the two organizations. More details about data
collection are provided in Section 2.4.

An important preparatory step for the study was a systematic literature review of existing
change-based studies [10]. The review identified factors that might influence change effort, and
possible quantitative measures to capture these factors. The measurement model described in
Section 2.5 summarizes these findings, and defines the specific measures collected for the
quantitative analysis.

The quantitative analysis proceeded in two steps: First, we conducted a confirmatory, evidence-
driven analysis to test whether a small set of pre-selected measures contributed to change effort in
statistical regression models. These measures captured cost factors important in earlier change-
based studies. Second, in the data-driven analysis, a wider set of factors and measures were used as
input to statistical procedures designed to identify the models that best explained variations in
change effort. Section 2.6 describes the specifics in how quantitative data was analyzed.

Roughly once a month, we interviewed the developers about recent change tasks and any
circumstances that had made the task easier or more difficult. The interviews aimed to identify
additional or more fundamental cost factors than those identified by the quantitative analysis. To
achieve this goal, the analysis focused on the changes that had required considerably more or less
effort than predicted from the regression models. Section 2.7 describes the procedures that we
followed to collect and analyze qualitative data.

 3

The partial evidence from the different parts of the analysis were then compared and integrated
into a set of joint results. These results constitute the basis for discussing consequences from the
three perspectives that were mentioned in the introduction.

Fig. 1 summarizes the case study procedures. The analysis was based on quantitative and

qualitative field data from two software projects, and on proposals generated from existing
empirical evidence. The results from each part of the analysis were summarized to strengthen and
expand this empirical evidence. With this design, we move towards a theory on software change
effort that would be valuable both for researchers and practitioners within software engineering.

Fig. 1 Case study procedures: Solid lines represent flow of information

2.3 Generalization of case study results
The case study paradigm is appropriate when investigating complex phenomena, especially when
it is difficult to separate the investigated factors from their context [11]. In software development
and software evolution, social and human factors interact with technological characteristics of the
software that is developed. We chose the case study method because we wanted to consider the
full complexity of factors that could affect change effort in a realistic context.

A main concern with case studies is whether it is possible to generalize study results beyond the
immediate study context. Case study methodologists recommend that studies are designed to build
or test theories. Theories can then explain, predict and manage the investigated phenomenon in
some future situation, and are therefore useful to be able to generalize from case studies. Because
we are not aware of theories that are directly relevant to the research question, the proposals for
this study were based on a systematic review of relevant empirical evidence. In other words, the
systematic review of empirical evidence takes the place of theories in this study.

Empirical evidence

Quantitative analysis

Evidence-driven Data-driven Joint results

Residuals

Qualitative
Analysis

New evidence

Partial results

Interview data
project A&B

Change data
project A&B

Proposals generated from review

Results A
Results B

Results A
Results B

Results A
Results B

 4

In particular, the evidence-driven analysis was essential for the generalizability of this study
because it is designed to confirm, refute or modify the current empirically based knowledge about
factors that correlate with or affect change effort. The role of the data-driven analysis was to
discover additional relationships within the investigated projects, and to generate proposals for
further confirmatory studies.

The qualitative analysis aimed at refining the quantitative results. For example, while regression
analysis could show that more effort is expended when a particular programming language was
used, interviews could reveal that developers used this programming language for a particular type
of tasks, say, to interface with hardware. This is important in order to make appropriate use of the
study results in other contexts, and hence for generalizability.

The results of this study are inevitably under the influence of context factors pertaining to the
investigated development organizations. Understanding these factors makes it easier to judge the
applicability of the results in a new context. By replicating the study across two development
organizations, and comparing the results and the organizations, we were able to evaluate some of
these context factors.

2.4 Case selection and data collection
Gaining access to software engineering data of the type required by this study is not
straightforward. We approached medium and large-sized software development organizations in
the geographic area of our research group during 2006, using procedures that conformed to those
described in [12]. We required the participants to grant access to the planned sources for
quantitative and qualitative data, to use object-oriented programming languages, to have planned
development for at least 12 months ahead, and to use a well-defined change process that included
some basic data collection procedures. In particular, when the developers committed code changes
to the version control system, they included an identifier of the associated change request in the
log message. For each change, the total effort expended on detailed design, coding, unit testing and
integration was recorded. The recruitment phase ended when we made agreements with two
projects, henceforth named project A and project B.

Project A develops and maintains a Java-based system that handles the lifecycle of research
grants for the Research Council of Norway. A publicly available web interface provides
functionality for people in academia and industry to apply for research grants, and to report
progress and financial status from ongoing projects [13]. The officials of the Council use a Java
client to review the research grant applications and reports. The system integrates with a web
publishing system, an archive system, and a proprietary system that manages the research
programs. The consultancy company that we cooperated with was subcontracted by the Council
annually to make improvements and to add new functionality to the system. Most change requests
originated from the users at the Council. Roughly once a month, the development group agreed
with user representatives and the product owner on changes to include in the next release. They
continued to work closely with the development group during design, coding, test and integration
of the changes. For the most part, the contractor was paid per hour of development effort. Defects
that were detected after deployment were corrected under a guarantee agreement, at no charge

Project B develops and maintains a Windows PocketPC system written in Java and C++. The
system allows passengers who travel with the Norwegian State Railways [14] to purchase tickets
on-board, and offers electronic tickets and credit card payment. The system integrates with a back-
end accounting system that is shared with other sales channels. The consultancy company that we
cooperated with had been subcontracted by the Norwegian State Railways to develop the system.
In the period of data collection, improvements, new functionality and corrections were made to the
system. The main focus was to support a new electronic ticket system, shared between public
transport operators in the geographic area. Most change requests originated from the product
owner and user representatives. The members of the development group prioritized and assigned
development tasks directly in the change tracker, or as part of short and frequent meetings. New
versions of the system were released roughly once a month. For the most part, the contractor was
paid per hour of development effort. Some larger changes were performed on a fixed-contract,
while defects that were detected after deployment were corrected under a guarantee agreement, at
no charge.

Both projects were medium-sized and with extensive change activity. Three to six developers
were making code changes to the systems in each of the projects.

Fig. 2 and Fig. 3 illustrate change activity and system size over a period of 30 months. Project
A deployed the first version of their system in Q1 2003, while project B deployed the system in
Q1 2005. Data was collected over the last 6 and 11 months of the charted period, for project A and
B, respectively. The apparent dip in system size for project A around Q3 in 2005 was due to a

 5

reorganization of the project, where one subsystem was extracted out and defined as a separately
managed project. Also, a major change in the technology platform happened at that time.

0

5000

10000

15000

20000

25000

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Fig. 2 Accumulated number of commits

0

100000

200000

300000

400000

500000

Q4-
04

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Fig. 3 System size, in lines of code

We developed scripts to retrieve quantitative data from the repositories of the version control
systems and change trackers. Raw data was aggregated by MS Access into the change-level
measures described in Section 2.5. Qualitative data was collected through a series of interviews
with the developers. The interview sessions were aligned with the release rhythm of the projects,
i.e. roughly once a month. Table 1 provides key information about collected data.

Table 1 Key information about collected data

 Project A Project B
Number of analyzed changes 136 200
Total effort of analyzed changes 1425 hours 1115 hours
Changes discussed in interviews 120 65
Period for data collection Aug 2006 – Jul 2007 Jan 2007-Jul 2007
Version control system IBM Rational Clearcase LT

[15]
CVS [16]

Change tracker Jira [17] Jira [17]
Total duration of interviews 20 hours 10 hours
Total time charged for data collection 18 hours 14 hours

The companies charged their normal hourly rate for the time they used on interviews and to record
effort data. This agreement was made in order to increase their commitment to provide the
required data.

Prior to the analysis, four and six data points were removed from project A and B, respectively,
because they corresponded to continuously ongoing maintenance activities, rather than
independent and cohesive tasks.

2.5 Measurement model

Fig. 4 Key terms and concepts

This study’s perspective is that software evolution is organized around the change task. A
conceptual model for change-based studies is given in Fig. 4. A change task is a cohesive and self-
contained unit of work that is triggered by a change request. In the investigated projects, a change
task consists of detailed design, coding, unit testing and integration. A change task is manifested in

 6

a corresponding change set. A change set consists of revisions, each of which creates a new
version of a component of the system. The new version can be based on a pre-existing version of
the component, or it can be the first version of an entirely new component.

A system is deployed to its users through releases. A release is built from particular versions of
the components of the system. A release can also be described by the change sets or corresponding
change requests that it incorporates. The term change aggregates the change task, the originating
change request, and the resulting change set. Changes involve human resources, and are managed
and resolved by the development organization. Changes can be hierarchical, because large changes
may be broken down into smaller changes that are more manageable for the development
organizations.

The measures used as explanatory variables in quantitative models of change effort were
intended to capture factors pertaining to the entities of the model shown in Fig. 4. A summary of
the relationships between entities, factors and measures is provided in Table 2. In the following,
we describe the rationale and empirical foundation for the proposals that certain factors will affect
change effort. For each factor, we select one primary measure and zero or more alternative
measures. The primary measures are used as explanatory variables in models that are built in the
evidence-driven analysis. These models are a reference point allowing us to assess the added value
of the data-driven analysis, where we build optimized, project-specific models using all the
described measures as candidate variables. We preferred primary measures that were likely to be
robust to variations in measurement context, that have been used and validated in previous
empirical studies, and that were measurable or assessable at an early stage in the change cycle.
Measures are written in italics, while primary measures are marked with an additional asterisk (*).

Table 2 Summary of measures

Entity Factor Measure Explanation of measure
Change task Change effort ceffort Time expended to design, code, test, and

integrate change, tracked by developers
Used as response variable in the study.

Requirement
volatility

crTracks*
crWords
crInitWords
crWait

-Change tracks for CR before first check-in
-Words in CR before first check-in
-Words in original CR
-Calendar time before first check-in

Change
request

Change type isCorrective* -Classification + text scanning
Change set size components*

addLoc
chLoc
delLoc
newLoc
segments

-Changed components
-Measures collected by
parsing side-by-side
output (-y)
of unix/linux diff
-diff –y v2 v1 | cut –c65 | tr –d ‘\n’ | wc –w

Change set

Change set
complexity

addCC
delCC
addRefs
delRefs

Parse output of diff to measure the number of
structural elements added and deleted.
Measures control-flow statements and reference
symbols (. ->)

Component
version

Structural attrib.:
Size

Coupling

Control flow

avgSize*
cpSize
avgRefs
cpRefs
avgCC
cpCC

-Average/weighted (by segments) size of
changed components
-Average/weighted (by segments) number of
references to members of imported components
-Average/weighted (by segments) number of
control flow statements

Technological
heterogeneity

filetypes -Unique file types that were changed

Specific
technology

hasCpp (A)
hasWorkflow (B)

-Change concerns C++ code
-Change concerns the workflow engine

Component

Code volatility avgRevs -Average number of earlier revisions
systExp* -Avg. previous check-ins by developers
techExp -Avg. previous check-ins on same technology
packExp -Avg. previous check-ins in same package
compExp -Avg. previous check-ins in same components

Human
resource and
Revision

Change
experience

devspan -Number of developers participating in change
Development
organization

Project identity isA* 1 if change belongs to project A
0 if change belongs to project B

 7

2.5.1 Requirement volatility

Before developers start a change task, they need to comprehend the described requirements, and to
analyze the impact of the change by some formal or informal procedure. Modifications or
additions that the developers or other stakeholders make to the original change request, the
requirement volatility, can indicate uncertainty or other problems in envisioning the change
incorporated into the system. Such problems could propagate to the coding phase and affect
change effort. In [18], requirement volatility correlated with fault proneness, while in [19],
requirement volatility correlated with change effort. A straightforward measure of requirement
volatility is the number of modifications to the original change request, as recorded in the change
tracker (crTracks*). Alternative measures include the number of words in the original change
request (crInitWords), the number of words in all modifications to the change requests (crWords),
and the elapsed time from a stakeholder created the change request until a developer started the
change task (crWait).

2.5.2 Change set size

The change set size reflects the differences between the current and preceding versions of changed
source components. The intuitive notion that the change set size affects change effort is verified by
previous studies [19-22]. Other studies have shown that after controlling for change type or
structural complexity of changed components, discussed below, change set size is not necessarily a
significant factor [23-25]. A large change set can indicate that a major bulk of new or changed
functionality was coded, or that the change request was incompatible with the current design. A
coarse-grained measure of change set size is the number of source components that were changed
during the change task (components*). Finer granularity measures use text difference algorithms
[26] to measure the number of lines of code (LOC) that were added (addLoc), deleted (delLoc) and
changed (chLoc). Added code in existing components can be differentiated from code in newly
created components (newLoc).

We selected a coarse-grained measure of change set size because there is evidence that these
perform equally well or better than LOC-based measures in models of change effort [21]. LOC
counts are less meaningful in technologically heterogeneous environments, and when tools that
generate code automatically are used. Furthermore, LOC counts may become high for
conceptually trivial changes, such as when program variables or methods are renamed. For
estimation of change effort, it is probably easier to estimate the number of components to change
than the number of lines of code to change. An alternative, medium-grained measure is to count
the number of disjoint places in the existing code where changes were made (segments).

2.5.3 Change set complexity

If the structural complexity of the change set is high, e.g., if there are many changes to the control-
flow, or many changes in the usage of members of external components, an increase in change
effort beyond the effect of change set size could be expected. Except for one study in the authors’
research group [27], we are not aware of any studies investigating this effect of change set
complexity on change effort. Fluri and Gall showed that measures of edits to the abstract syntax
trees of individual components predict ripple effects better than measures of textual differences
[28]. We constructed two measures to capture the number of added control-flow statements and
added references to members of external components, addCC and addRefs. Corresponding
measures were constructed for deleted control-flow statements and deleted references to members
of external components, delCC and delRefs. Because these are likely to correlate strongly with
measures of change set size, and because they are experimental in nature, we only used these
measures in the data-driven analysis.

2.5.4 Change type

Changes can be described according to their origin, importance, quality focus, and a number of
other criteria. In change-based studies, the change type has been important in order to understand
change effort [21, 22, 24, 25, 29]. Corrective, adaptive or perfective change types, as suggested by
Swanson [30], was the most commonly used classification schema. A recurring result from
existing change-based studies is that corrective changes are more time consuming than other types
of change, after controlling for change set size [21, 31]. This does not contradict results from
studies that have shown that the mean effort for corrective changes is lower than for other change
types [29], because corrective changes tend to have smaller change set size [32]. We chose the
classification into corrective and non-corrective changes (isCorrective*) as the primary measure in

 8

the analysis. To identify corrective changes, we combined the categorizations performed by the
developers with textual search for words like “bug”, “fails” and “crash” (in the native language) in
change request descriptions. The latter step was necessary because the projects tended to underuse
the category for corrective change.

2.5.5 Structural attributes of changed components

Relevant parts of the system must be understood in order to perform a change task. The structural
attributes of these parts may affect developers’ ability to comprehend software code [33, 34].
Many change-based studies have investigated whether the size of changed modules (avgSize*)
correlate with change effort [19, 22, 23, 28, 35]. Arisholm showed that size and certain other
structural properties of the changed source components were correlated with change effort [23].
We constructed alternative measures of control flow complexity and coupling in the changed
components. The first measure takes the average number of control-flow statements (avgCC) in
the changed components, while the second measure takes the average number of references to
members of imported components, of each changed component (avgRefs). Variations of the
measures were constructed by weighting the measures by the relative amount of change in each
component (cpSize, cpCC and cpRefs), as proposed in [23].

2.5.6 Code volatility

Historical code changes are typically not uniformly distributed over the components of the system.
While many components rarely change, some are involved in a large proportion of the change
tasks. We propose that the code volatility or change proneness will affect change effort, and that
changes to change prone components require less effort, simply because the developers are more
experienced with changing these components. Conversely, changes to infrequently changed
components represent unfamiliarity, and may also indicate more fundamental changes. Higher
code volatility could also result in increased change effort, because frequently changed modules
may experience code decay [36]. However, in the investigated projects, components believed to
have decayed due to frequent changes were re-factored, and we therefore expected this effect to be
limited. The number of historical revisions, averaged over all changed components (avgRevisions),
captures code volatility of changed components. Several researchers have used volatility of
individual components as a predictor of failure proneness, see e.g., [37]. However, we are not
aware of studies that have investigated the relationships between code volatility and change effort.
Due to this lack of existing empirical evidence we only used this measure in the data-driven
analysis.

2.5.7 Technological heterogeneity

Both projects used a number of tools and technologies. Technological heterogeneity refers to the
number of different technologies involved in a change. Increased technological heterogeneity may
increase change effort, because it sets higher demands on developer skills and because it may not
be straightforward to integrate technologies. One simple way to measure technological
heterogeneity is to count the number of unique file name extensions among the changed
components (filetypes). We are not aware of studies that have investigated how technological
heterogeneity affects change effort. Due to the lack of existing empirical evidence we only used
this measure in the data-driven analysis.

2.5.8 Specific technology

Use of a specific technology can affect change effort. For example, Atkins et al. showed that when
developers used a tool that supported evolution of system variants, change effort was significantly
reduced [24]. In project B, functionality interfacing with hardware was written in C++. We
propose that changes that involve C++ will be more expensive to change than other code, which
was predominantly written in Java. One rationale is that more specialized knowledge is required to
develop code that interfaces to hardware. An effect of the lower abstraction level in C++ as
compared to Java would work in the same direction. The binary measure hasCpp evaluates to true
if any of the changed components were written in C++. Project A used a Java-based workflow
engine as an important part of the technological basis. Although the project assumed that they
benefited from the high abstraction level of this technology, we wanted to investigate whether the
changes involving the workflow engine were different with respect to change effort. The binary
measure hasWorkflow evaluates to true if any of the changed components were based on the
technology of the Java-based workflow engine.

 9

2.5.9 Change experience

Experiments have shown that there can be large productivity differences between individual
developers [38, 39]. The developer’s ability to perform a change is determined by a complex set of
factors that include general mental abilities, education, different categories of experience, and
motivation. In a project setting, large individual differences may be masked by compensation
effects, e.g., more experienced developers may be assigned to inherently difficult tasks [21, 31]. If
the identity of individual developers were used as a nominal measure, we could have accounted for
individual differences. This was not possible because we had agreed to avoid analysis that could
be perceived as an assessment of the individual developer. Consequently, we resorted to various
counts of previous commits to the version control system as indicators of the developers’
experience. This change experience can be measured for a given developer at different granularity
levels: A basic measure is the total number of previous check-ins by the developer who performed
the change (systExp*). Other measures include the average number of earlier check-ins of the
changed components (compExp), packages (packExp) or technologies (techExp). For packExp, we
counted earlier check-ins to components in the same packages that were changed. For techExp, we
counted earlier check-ins to components that matched the file extensions of the changed
components. If several developers were involved in the change, the averages of the measures were
used, weighted by the number of components changed by each developer. Similar measures were
used in [40]. In that study, the coarsest-grained measure (systExp) significantly affected the
response variable capturing failure proneness, while the other measures did not.

2.6 Analysis of quantitative data
This section describes the statistical framework used to build and assess the regression models.
The specific procedures for the evidence-driven and the data-driven analysis are provided in
Section 3.1 and 4.1, respectively. The statistical packages used were SAS 9.1 to fit regression
models, JMP 6 to create decision trees, and R version 2.6.1 to calculate the cross-validated
measures of model fit described in Section 2.6.2.

2.6.1 Statistical procedures

Change effort was used as the response variable for all statistical models. The measures discussed
in Section 2.5 were used as candidate explanatory variables. The regression model framework was
Generalized Linear Models (GLM) with a gamma response variable distribution (sometimes called
the error structure) and a log link-function, see [41]. One reason to assume gamma-distributed
responses was that the effort data distribution has a natural lower bound of zero and was right-
skewed with a long right tail. This resembles other kinds of gamma-distributed wait-time data, for
example data on time-to-death or time-to-failure. A log link function ensures that predicted values
are always positive, which is appropriate for wait-time data. The size of effect of a specific
explanatory variable xn is assessed by the proportional change in expected change effort that
results from a change to xn. Because a log link-function is used, the proportional change in
expected change effort becomes:

nß
e

nCnß1-nC1-nß..1C1ß 0ß
e

1)n(Cnß1-nC1-nß..1C1ß 0ß
e

)nCnx,1nC1nx..1C1x(ceffort
)1nCnx,1nC1nx..1C1x(ceffort

=++++

+++++
=

=−=−=
+=−=−=

Cross-project models were constructed to identify effects that were present in both projects, and to
formally test for project differences. Project-specific models were constructed to identify effects
that were particular to each project, and to quantify those effects in each project.

The p-values, sign and magnitude of the coefficients are inspected to interpret the models. The
significance level is set to 0.05. This means that for a variable to be assessed as significant, the
probability that the variable has no impact must be less than 5%. It is difficult to interpret
coefficients when there is a high degree of multicollinearity between the explanatory variables. In
the evidence-driven analysis we attempted to reduce multicollinearity by selecting primary
measures designed to capture independent factors. In the data-driven analysis, the results from a
principal component analysis identified orthogonal factors in the data sets. The actual amount of
multicollinearity in the fitted models was measured by the variance inflation factor (VIF).

2.6.2 Measures of model fit

We chose the cross-validated mean and median magnitude of relative error to assess the fit of
models. The basis for these measures is the magnitude of relative error (MRE) which is the

 10

absolute value of the difference between the actual and the predicted effort, divided by the actual
effort. The measures were calculated by n-fold cross-validation. With this procedure, the variable
subset to be evaluated was fitted in n iterations on n-1 data points. In each iteration, the fitted
model was used to predict the last data point. The mean MRE of these predictions forms
MMREcross, while the median of the values forms MDMREcross. The cross-validated measures
are more realistic measures of the predictive ability of regression models than those measures that
are not based on cross-validated predictions. This was particularly important during the data-
driven analysis, where models were selected on the basis of the MMREcross-measure. Because
MdMREcross uses the median of the cross-validated MRE values rather than the mean, it is more
robust against the influence of outliers.

Another measure to assess model fit is the percentage of data points with an MRE of less than a
particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of the data
points that have a MRE of less than 0.25 and 0.50, respectively.

As a reference point to assess the model performance, we calculated the measures of model fit
for the constant model, i.e. the model that uses a constant value as predictor for all data points.

2.7 Collection and analysis of qualitative data
We prepared for the interview sessions by studying data about each change request in the change
trackers and version control systems, and attempted to understand how the changed code fulfilled
the change requirements. The interview guide is given in Appendix A. In parts 5, 6 and 7 of the
interviews, the developers were encouraged to express opinions about phenomena that had
affected change effort. The purpose of the other parts was to elicit context information. To help the
interviewee recall what had happened during the change task, we made information about each
change easily available during the interview sessions.

The changes with the largest magnitude of relative error (MRE) from the data-driven analysis
were selected for in depth analysis. An alternative criterion would have been to select changes
with the largest error in absolute hours. However, we considered an error of 10 hours to be more
interesting if the effort estimated by the model was 2 hours, than if it was 100 hours. We limited
the analysis to data points with an MRE of more than 1.3 for underestimated changes and more
than 0.5 for overestimated changes. These limits were set somewhat arbitrarily. Note that the terms
underestimated changes and overestimated changes refer to the relationship between the actual
change effort and the expected values that were obtained post hoc on the basis of the regression
models.

The interviews were transcribed and analyzed in the tool Transana [42], which provides
mechanisms to navigate between transcripts and audio data. This feature made it feasible to re-
listen to the original voice recordings throughout the analysis. The interviews were coded in two
phases. In phase 1, immediately after each interview session, the interviews were transcribed and
coded according to a coding scheme that evolved as more data became available. Eventually, 17
categories and 132 codes were used to capture the contents of the interviews, including context
and background information. In phase 2, when the quantitative models had been constructed, it
was possible to use these to select the changes that required considerably more or less effort than
predicted. When only this subset of changes was considered, the number of applied codes was
reduced to 82 for the 17 categories. We then narrowed the focus to the categories and codes that
suggested a relationship with change effort. Finally, the exact naming and meaning of codes and
categories were reconsolidated to make them more straightforward and easier to understand. The
coding schema that resulted from this process is described in Section 5.

3 Evidence-driven analysis

3.1 Models fitted in evidence-driven analysis
The data sets from the two projects were concatenated, and cross-project models were constructed
to identify effects present in both projects, and to formally test for project differences:

isA
6

ß veisCorrecti
5

ß avgSize
4

ß systExp
3

ß components
2

ß crTracks
1

ß
0

ßt)log(ceffor ++++++= (M1)

isA11ßisAveisCorrecti10ßisA avgSize9ßisA systExp8ßisA components7ß

sAi crTracks6ß veisCorrecti
5

ß avgSize
4

ß systExp
3

ß components
2

ß crTracks
1

ß
0

ßt)log(ceffor

+∗+∗+∗+∗

+∗++++++=
(M2)

 11

Model 1 includes one explanatory variable for each of the primary measures. It also includes a
project indicator (isA) allowing for a constant multiplicative between the projects. Model 2 adds
interaction terms between the project indicator and each of the primary measures, allowing for
different coefficients for each factor in each project.

Furthermore, two project specific models were fitted, one for each of the two data sets:

veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß 0ßt)log(ceffor +++++= (M3)

The value of the coefficients and the associated significance levels in the project specific models
were used to asses the size and statistical significance of effects. The measures of cross-validated
model fit were used to assess explained change effort variability. The model fit of the constant
models was used as a yardstick for the assessment:

isA1ß 0ßt)log(ceffor += (M4)

3.1.1 Results from evidence-driven analysis

Key information about coefficients in the fitted models is provided in Table 3. Significance levels
of 0.05, 0.01 and 0.001 are indicated with one, two and three asterisks, respectively.

Table 3 Coefficient values, significance and model fit in evidence-driven analysis

 Cross
project
constant
model (M4)

Cross project
w. project
indicator
(M1)

Cross project
w. interactions
(M2)

Project A
(M3)

Project B
(M3)

Intercept (β0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30***
crTracks . 0.0750** 0.0756** 0.0800* 0.0756**
components . 0.0976*** 0.119*** 0.0759*** 0.119***
systExp . -0.0000389 -0.000177** 0.0000255 -0.000177**
avgSize . -0.0000325 -0.0000614 -0.0000108 -0.0000612
isCorrective . -0.277* -0.110 -0.780*** -0.1098
isA 0.63*** 0.182 0.142 . .
crTracks*isA . . 0.00436 . .
components*isA . . -0.0429+ . .
systExp*isA . . 0.000203** . .
avgSize*isA . . 0.0000505 . .
isCorrective*isA . . -0.670* . .
MMREcross 3.29 1.52 1.5192 1.86 1.32
MdMREcross 1.43 0.69 0.6786 0.72 0.60
Pred(25) 0.095 0.20 0.23 0.21 0.25
Pred(50) 0.24 0.36 0.40 0.35 0.43

The summary of the constant model M4 shows that the expected change effort was 5.6 hours and
10.5 hours for project A and B, respectively, and that this difference was statistically significant.
The summary of the cross project model M1 shows that the measures of requirement volatility and
change set size are significant explanatory variables of change effort in the concatenated data set.
After accounting for these variables, there was no longer a statistically significant difference
between the projects. However, the model M2 shows that project differences exist, because it
includes significant interaction terms for system experience (systExp*isA) and change type
(isCorrective*isA). Furthermore, the summary of the project-specific models M3 shows that the
measure of change type was statistically significant in project A only, whereas the measure of
system experience was statistically significant in project B only. We use the results from the
project-specific models M3 to assess the sizes of effects of the significant explanatory variables:

The number of updates to the change request prior to the coding phase (crTracks) had a
significant effect on change effort in all models. A 7% increase in change effort could be expected
for each additional track in the change tracker. This size of effect was similar in the two projects.

The number of changed components had a significant effect on change effort in the models
from both projects. When one additional component was changed, a 12.9% and 7% increase in
effort could be expected in project A and B, respectively.

In project A, the significant model term for isCorrective indicate that corrective changes was
expected to require slightly less than half the effort compared to that required by non-corrective

 12

changes (e-0.780=46%). Note that this estimate was not confounded by a smaller change set size for
corrective changes, because such effects are eliminated (held fixed) when assessing the effect sizes
of the individual explanatory variables, see Section 2.6.1. In project B, the change type has no
significant effect on change effort.

In project B, the total number of commits to the version control system by the involved
developers (systExp), was significantly related to change effort. Change effort was expected to
decrease by 16.2% for every 1000th check-in performed by a developer. In project A, the effect
was small and statistically insignificant.

The estimated coefficients for the average size of changed components (avgSize) indicate that
change effort was slightly lower when large components are changed, but the effects are very
small and statistically insignificant.

Plots of actual versus predicted change effort of projects A and B are provided in Fig. 5 and Fig.
6, respectively. The primary measure of cross-validated model fit, MdMREcross, was down from
1.43 for the constant model to between 0.60 and 0.72 for the rest of the models. Hence, the
selected measures explain a fair amount of variability. However, a suggested criteria for accepting
a model as good is a value of less than 0.25 for MMRE or MdMRE, and higher than 0.75 from
Pred(25) [43]. By this standard, the model fit was relatively poor, and justifies the search for
additional relationships through the use of the data-driven analysis presented in Section 4.

The variance inflation factor was less than 1.34 for all the coefficients in all models. Hence,
multicollinearity was not a threat to the interpretation of the coefficients.

Fig. 5 Predicted vs. actual effort, project A

Fig. 6 Predicted vs. actual effort, project B

3.2 Discussion of evidence-driven analysis
In the evidence-driven analysis, we used five pre-selected explanatory variables. The measures

of requirement volatility and change set size had a consistent and strong effect on change effort in
the models. It is not surprising that the size of the change set was important: The more code that
needs to be changed, the more fundamental is the change, and the more effort it takes. It is
interesting from a practical perspective that a relatively coarse grained, easily collectable and early
assessable measure seems to perform well as a predictor of change effort. It is also possible that
components captured a particular effect of dispersion that adds to an effect of change set size:
Code changes that are dispersed among many components could require more effort than if the
same number of lines are changed in fewer components. Both the data-driven analysis and the
qualitative analysis investigate this topic in more depth.

The result for requirement volatility is useful to make better effort estimates. The number of
comments or tracks in change trackers can be automatically retrieved in an early phase of the
change process, and can therefore be a useful predictor for the coding phase. The results also
imply that actions that reduce the volatility of requirements can be important to reduce change
effort. However, it is difficult to suggest concrete actions without more knowledge about the
causes for volatile requirements. This is further investigated in the qualitative analysis.

Corrective changes required less effort than non-corrective changes, although the difference
was statistically insignificant in project B. The direction of this effect is opposite to that of earlier
studies. A possible explanation is that the tasks and processes involved in corrective vs. non-
corrective changes are indeed different, but the direction of the difference is dependent on the
situation. A negative coefficient for isCorrective indicates that it is relatively easy to correct
defects compared to making other types of changes. We consider this to be a favourable situation
in projects where it is important to quickly correct defects or where defects are associated with
undesirable noise.

 13

The effect of system experience seemed to be quite small, even though systExp was statistically
significant for project B. One problem with systExp as a measure of system experience is that it
may be confounded with system decay: The desirable effect of more experienced developers can
be counteracted by an effect of system decay, because systExp and system decay are inversely
related to the underlying factor of time.

We did not measure any significant effect of the size of changed components. There are several
possible explanations for this. First, it is not necessarily correct to assume that the class or the file
is the natural unit for code comprehension during change tasks. Second, because larger
components are more change-prone, developers will have more experience in changing these
components. This desirable effect of familiarity may have counteracted an undesirable effect of the
size of the components. These issues are further discussed in the qualitative analysis in Section 5.

4 Data-driven analysis
The data-driven analysis presented in this section aims to complement the evidence-driven
analysis: It enables us to i) explore relationships that were not originally proposed, ii) assess
factors that have a weaker foundation in theory and empirical evidence, and iii) evaluate the
predictive power of alternative measures of the same underlying factor.

4.1 Procedures for data-driven analysis
In the data-driven analysis, all the measures from Table 2 were used as candidate variables in the
statistical procedures described below. We used:

• Principal component analysis (PCA) to identify subsets of uncorrelated or moderately

correlated measures to prevent problems with multicollinearity,
• Cross-validated measures of model fit as the criterion to select the models that best explained

change effort.
• Regression trees to identify interaction effects and non-continuous effects.

The goal was to identify the models that explained the most possible change effort variability,
under the constraint that each model variable captured relatively orthogonal cost factors.

4.1.1 Variable subset selection based on Principal Component Analysis

The structure of the correlations between the candidate variables was analyzed by principal
component analysis (PCA). PCA is used to reduce the dimensionality of wide data sets, and to
help in identifying orthogonal factors. Each principal component (PC) that results from a PCA is a
linear combination of the original variables, constructed so that the first PC explains the maximum
of the variance in the data set, while each of the next PC’s explains the maximum of the variance
that remains, under the constraint that the PC is orthogonal to all the previously constructed PC’s.
The loading of each variable in PC indicates the degree to which it is associated with that PC. In
order to interpret a PC, we inspected the variables that loaded higher than 0.5, after the varimax
rotation [44] had been applied. The results from the analysis are provided in Section 4.2.1.

The results from the PCA were used to construct all possible subsets of candidate variables that
contained exactly one variable from each PC. This constraint prevents high multicollinearity in the
models, and makes them easier to interpret.

4.1.2 Identify the best models that contain main effects only

For each of the subsets of variables identified by means of the PCA, regression models of change
effort were fitted within the described statistical framework, that is, Generalized Linear Models
assuming Gamma-distributed outcomes and a log link-function. The cross-validated measures of
model fit were calculated for the models that only contained significant variables. This
requirement helps in interpreting the models, but it was also a pragmatic choice to limit the
number of variable subsets that were subject to the cross-validation procedure, which is
computationally expensive. The models with the lowest MMREcross in the two projects were
selected as the best.

4.1.3 Select the best models that include interaction effects or non-continuous effects

The goal of this step was to identify possible interactions between the main effects identified in the
previous step, and to discover effects that apply to smaller intervals for values of the explanatory

 14

variables. We used a hybrid regression technique that combines the explorative nature of
regression trees with the formality of GLM regression, procedures originally proposed in [45].
Regression trees can describe complex interaction effects and non-continuous effects, while still
being easy to interpret. Complementary to this, the linear regression framework is suited to
identify the overall continuous effects, and to assess the statistical significance of effects.

A regression tree splits the data set at an optimal value for one of the explanatory variables. The
split is performed so that the significance of the difference between the two splits is maximized.
This step is performed recursively on the splits, until a stop criterion is reached. The stop criterion
was that a leaf node should contain not less than 15 data points.

For use in GLM regression, a binary indicator variable was created for each of the leaf nodes in
the regression tree. Since this procedure partitions the dataset, every change task had the value 1
for one of the indicator variables, and 0 for the rest. Candidate variable subsets were generated
from all possible combinations of the indicator variables and the main effects. The variable subsets
that only contained statistically significant variables were retained for n-fold cross-validation. The
models with the lowest MMREcross from the n-fold cross-validation were selected as the best.

4.2 Results from data-driven analysis

4.2.1 Factors identified by PCA

The summary of results from the principal component analyzes for project A and B are shown in
Table 4 and Table 5, respectively. We made the following observations about the match between
the conceptual measurement model and the PCA:

• The factors in italics match factors described in Section 2.5. The collected measures for these

factors are consistent with the measurement model, and capture five orthogonal factors in the
data set: Change set size, Component version size, Requirement volatility, Change experience
and Change type.

• PC1A and PC2B show that the suggested measures for control-flow and coupling belong to the
same principal component as the LOC-based measures of size. The underlying factor captured
by all these measures is the size of changed components.

• Likewise, PC1B shows that the suggested measures of change set complexity belong to the
same principal component as the LOC-based measures of change set size, in project B.

• PC2A and PC3B contain measures that capture the dispersion of changed code over
components, types of components and developers. We label this dimension change set
dispersion. This dimension captures a factor that is orthogonal to change set size.

• PC3A contains measures of removed code. This principal component captures the amount of
rework, apparently distinguishable from the concept of change set size in project A.

• In project A, the measure of code volatility belongs to a distinct principal component (PC7A),
while in project B, it belongs to the principal component that captures size (PC2B). The latter
result indicates that large components are more prone to change, simply due to the effect of
size.

• PC6B contains a measure of lines of code in new components, and the change set dispersion.
One possible interpretation is that these measures capture the degree of mismatch between the
current design and the design required by the change.

These observations are accounted for when the models are interpreted, in Sections 4.3 and 6.

Table 4 Summary of principal component analysis, project A

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A
Load
> 0.5
after
varimax
rotation

avgSize
avgRefs
avgCC
cpRefs
cpCC
cpSize

hasWorkflow
addCC
addRefs
newLoc
components
filetypes
devspan

delLoc
delCC
delRefs
crWait

addLoc
chLoc
segments

crWords
crInitWords
crTracks

systExp
techExp
packExp

avgRevs isCorrective

Entity

Factor

Component
version
Size

Change set

Dispersion

Change set:

Rework

Change set

Size

Change
request
Requirement
volatility

Human
resource
Change
experience

Component
version
Code
volatility

Change
request
Change
type

 15

Table 5 Summary of principal component analysis, project B

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B
Load
> 0.5
after
varimax
rotation

addLoc
delLoc
chLoc
segments
addCC
delCC
addRefs
delRefs

avgSize
avgRefs
avgCC
avgRevs
cpRefs
cpCC
cpSize

components
filetypes
devspan
packExp
hasCpp

crWords
crInitWords
crTracks
crWait

systExp
techExp

newLoc
components

isCorrective

Entity

Factor

Change set

Size

Component
version
Size

Change set

Dispersion

Change request

Requirement
volatility

Human resource

Change
experience

Change set

Design
mismatch

Change
request
Change
type

4.2.2 Main effects

Candidate variable subsets were generated from all combinations of variables that included at most
one variable from each principal component. On the basis of the results in

These observations are accounted for when the models are interpreted, in Sections 4.3 and 6.

Table 4 and Table 5, this meant that 71680 variable subsets were generated for project A and 38880
variable subsets for project B. Following the procedure described in Section 4.1.2, the variable
subsets shown in the first and second rows of Table 6 were eventually selected as the best variable
subset.

For project B, the best variable subset from the data-driven analysis includes all the primary
measures used in the evidence-driven analysis. In addition, the model includes the measure
addCC, which counts the number of control-flow statements in the change set. This was intended
to capture structural complexity of the change set, but results from the PCA showed that addCC
must be considered to be a size measure in this data set. The size of effect is moderate, as the
expected change effort increases by 10% when 10 control-flow statements are added. For the other
explanatory variables, the sizes of effects are similar to those described in the evidence-driven
analysis.

For project A, only the change type indicator isCorrective recurred from the evidence-driven
analysis. The model predicts that 40% less effort is required for corrective changes. The measure
crWords is the number of words in the tracks counted by the primary measure crTracks. An
increased change effort of 10 percent can be expected when 50 additional words are used in
updates of the change request. A strong effect is indicated by the coefficient for filetypes, the
measure of technological heterogeneity: Change effort is expected to increase by around 30 %
when one additional file type is part of the change set. A measure of change set size, chLoc, is also
significant: An increase of 30 % can be expected when around 50 additional lines of code were
changed.

The variance inflation factor was lower than 1.88 for all the coefficients in the two models. This
verifies that multicollinearity is not a problem for the interpretability of the coefficients.

4.2.3 Interaction effects

As explained in Section 4.1.3, regression trees were used to explore interaction effects and non-
continuous effects. A binary variable was constructed for each of the leaf nodes, and used as
candidate variables in GLM regression together with the main effects of the models described in
the previous section. For project A, there were four main effects and seven leaf nodes, which give
rise to 2048 candidate variable subsets. For project B, there were four main effects and eight leaf
nodes leading to 4096 variable subsets.

The variable subset that resulted in the lowest MMREcross was selected for each data set. The
third row in Table 6 contains a summary of the selected model for project A. Compared with the
model that contained main effects only (row 1), the new model retains three of the four main
effects, and adds four interaction rules. The first three of the interaction rules identify the 50

 16

changes that involve only one file type, i.e. technologically homogenous changes. The coefficients
for the rules are negative, which means that change effort is lower for these changes, beyond the
difference that is explained by the continuous main effect. The second and third rules indicate that
the effect of technology homogeneity is weaker when the requirement volatility is higher. Rule 3
indicates that the effect also decreases with large change set size. The fourth rule predicts that 2.6
times more effort is expended for changes involving three or more file types and many changes to
existing code.

The last row in Table 6 contains a summary of the model with the lowest MMREcross for
project B. Compared with the model that contained main effects only (row 2), a binary rule
replaces a continuous effect of addCC: If 23 or more control-flow statements are added, then this
doubles the expected change effort. This rule applies to 12% of the changes.

Table 6 Coefficient values, significance and model fit in data-driven analysis

Model Variable Coefficient MMRE
cross

MdMRE
cross

Pred
(25)

Pred
(50)

Project A
Main
effects

Intercept
crWords
filetypes
chLoc
isCorrective

9.06***
0.00187**
0.279***
0.005111**
-0.503*

1.52 0.63 0.23 0.40

Project B
Main
effects

Intercept
crTracks
addCC
components
systExp

9.06***
0.0879***
0.00949**
0.1027***
-0.000161**

1.12 0.60 0.24 0.42

Project A
With
interaction
terms

Intercept
crWords
filetypes
isCorrective
filetypes=1 & crWords<24
filetypes=1 & crWords>=24 & chLoc < 2
filetypes=1 & crWords>=24 & chLoc>=2
filetypes>=3 & chLoc>= 48

9.64***
0.00109*
0.178***
-0.376*
-1.145***
-0.831***
-0.653**
0.963***

1.37 0.57 0.24 0.46

Project B
With
interaction
terms

Intercept
crTracks
components
systExp
addCC>=23

9.15***
0.0839***
0.0798***
-0.000153**
0.7877**

1.12 0.62 0.22 0.40

Fig. 7 Predicted vs. actual effort, project A

Fig. 8 Predicted vs. actual effort, project B

When regression tree rules were added for project A, the cross-validated model fit substantially
improved. For project B, the model fit was almost identical with and without rules from the
regression tree.

4.3 Discussion of data-driven analysis
The results from the data-driven analysis complement the results from the evidence-driven
analysis. In the model for project B, LOC-based size, as well as change set dispersion, had
significant effects on change effort. The PCA showed that these measures captured different

 17

factors in the data set. A possible explanation is that change set dispersion affected change effort,
beyond the effect of LOC-based size.

Technological heterogeneity can also be an important predictor of change effort. In particular,
less effort was expended when only one technology was involved in the change. This result can be
useful to improve change effort estimates.

The size and complexity of changed components did not have a significant effect on change
effort in the models. At face value, this is a surprising observation because it violates fundamental
assumptions about relationships between software design and the ease with which the software can
be maintained and evolved. One explanation is that the systems overall had good and modular
designs, with only minor (in terms of their effect on change effort) size and complexity differences
between components. Another explanation is that the chosen measures do not capture the most
important (in terms of their effect on change effort) structural attributes of the source code. This
issue is further discussed in the qualitative analysis in Section 5.2.

For project A, the data-driven analysis resulted in models that had better model fit than the
models from the evidence-based analysis. In particular, the improved model fit can be contributed
to the introduction of a measure of technological heterogeneity. For project B, the model fit did not
improve. In this case, the primary measures seemed to capture the important factors available from
the data at hand. For both projects, the regression trees proved to be well suited to simultaneously
describe non-continuous effects and interaction effects. The total amount of explained change
effort variability was moderate. This shows that there were other important factors at play than
those captured by quantitative measures. The plots in Fig. 7 and Fig. 8 show the MRE boundaries
for overestimated and underestimated changes. The changes that fell outside the area formed by
these lines received particular attention during the qualitative analysis. In total, 32 underestimated
changes and 16 overestimated changes (those with MRE limits of 0.5 for overestimated changes
and 1.3 for underestimated changes, see Fig. 7 and Fig. 8) were analyzed in depth.

5 Results from the qualitative analysis
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48 selected
changes. Four changes were excluded from the analysis because the interviews showed that code
changes had not been properly tracked. In other words, the quantitative models identified data
points with large measurement error.

The three first columns in Table 7 define the coding schema that resulted from the coding
process. Each code captures a factor that was perceived by the interviewees to drive or save effort.
For example, T0 could drive effort if the developer was unfamiliar with a relevant technology, and
save effort if the developer had particularly good knowledge about the technology. The rightmost
column shows the number of times a code was used in underestimated and overestimated changes,
respectively.

Table 7 Summary of factors from qualitative analysis

Category Code Description of code Occurrences in
underestimated/over
estimated changes

Understanding
change
requirements

R1

CR clarification was needed/not needed

9/2

Identifying and
understanding
relevant source
code

U1
U2
U3

It was difficult/easy to understand the relevant source code
It was difficult/easy to identify the relevant system states
The developer was unfamiliar/familiar with relevant source code

7/1
3/3
3/2

Learning relevant
technologies and
resolving
technology issues

T0
T1
T2
T3

Developer was unfamiliar/familiar with the relevant technology
The features of the technology did not/did suite the task
Technology had/did not have defects that affected the task
Technology had limited/good debugging support

3/0
1/2
4/0
5/0

Designing and
applying changes
to source code

D1
D2
D3

Change required deep/shallow understanding of user scenario
The needed mechanisms were not/were in place
Changes were made to many/very few parts of the code

0/9
13/2
0/8

Verifying the
change

V1 It was necessary/not necessary to establish test conditions 2/1

Cause of change C1 Error by omission – failed to handle a system state 11/5

 18

(analyzed for all
changes)

C2
C3
C4

Error by commission – erroneous handling of a system state
Improve existing functionality – within current system scope
Planned expansion of functionality – extend the system scope

1/3
4/9
6/5

Many of the codes and categories coincide with concepts studied within the field of software
comprehension. For example, Von Mayrhauser and Vans proposed and evaluated an integrated
model of software comprehension that addressed the comprehension processes of developers who
perform change tasks within large scale software maintenance [46]. They suggested lists of
activities involved in change tasks that largely conform to the developed categories. One
discrepancy is that, in our case, a separate category was justified for technology properties. Also,
the design activity was difficult to distinguish from the coding activity; hence we used a common
category. We chose to use a common coding schema for all types of changes, and let the cause of
change be part of the coding schema.

In the following subsections, we discuss factors that affected effort for the analyzed change
tasks. The analysis applies to both projects, except when project particularities are mentioned
specifically. The tables in Appendix B provide details about each of the analyzed changes

5.1 Understanding change requirements
R1. For nine of the underestimated changes, the developers mentioned that the need to clarify
requirements resulted in increased change effort. For two of the overestimated changes, they
mentioned that a concise and complete specification made it easier to perform the change. This
supports the results from quantitative analysis, which showed a consistent relationship between the
amount of updates to the original change request, and change effort. For the nine underestimated
changes, the requirement clarifications were only partially documented in the change tracker. This
explains the large residuals for these changes. The need to clarify requirements occurred more
frequently in project A than in project B. However, six out of nine underestimated changes for
project B were fixes of errors due to missed requirements, see Section 5.6. Hence, incomplete
requirements had an undesirable effect in both projects.

In some cases, the developers said that the user representatives deliberately failed to provide
complete specifications, in particular for changes that concerned the look and feel of the user
interface. However, the strongest effect on effort occurred when unanticipated side effects of a
change needed to be clarified during detailed design and coding. In most cases, this meant that
existing functionality was somehow impacted by the change, but that the developer was uncertain
how to deal with these impacts. In general, it is not obvious that updates to requirements should be
avoided. However, in the investigated projects, updates to change requests were indeed associated
with higher change effort. We conclude that practices that help to identify side effects of change
requirements are likely to have a positive effect in both projects.

5.2 Identifying and understanding relevant source code
Time expended by developers to comprehend code that is relevant for a change can constitute a
substantial share of the total change effort. Koenemann and Robertson suggested that the
comprehension process involves code of direct, intermediate and strategic relevance [47]. Directly
relevant is code that has to be modified. Code that is perceived to interact with directly relevant
code has intermediate relevance. Strategic code acts as a pointer towards other relevant parts of the
code. These categories conform well to the descriptions provided by the developers in this study:
Some code was inspected in order to identify the code that was relevant for the change, i.e.
strategic code was comprehended to locate intermediate code. Then, from the intermediate code,
the direct locations to make code changes were identified.

U1: Typically, the change requests were described by referencing a user scenario, i.e. a
sequence of interactions between the user and the system, and by requesting a change to that
scenario. For seven of the underestimated changes, the developers expressed that considerable
time was spent understanding relevant, intermediate code when it was dispersed among many
files. In other words, the qualitative data shows that when code involved in the changed user
scenario was dispersed over many components, that user scenario was difficult to change.

The dispersion of changed code had a strong and consistent effect on change effort in the
quantitative models. It is possible that the time developers spend to comprehend dispersed code is
a fundamental factor that in many cases explains the apparent effect of making dispersed changes.
When intermediate code for a change is dispersed, it is likely that direct code changes are
dispersed. We did not possess the data required to confirm such a correlation.

 19

The effort involved in comprehending code along the lines of user scenarios can also explain
why the measures of structural attributes of changed components did not have an effect on change
effort in the quantitative models. First, only directly affected components were captured by these
measures, even though the structural attributes of intermediate code were likely to be important.
Second, the measures capture the structural attributes of files and classes rather than of user
scenarios. This suggests that it would be more useful to collect measures of structural attributes
along the execution path of the changed user scenarios. These measures could be based on models
such as UML sequence diagrams, which would also aid in comprehension [48], or dynamic code
measurement (e.g., by executing each user scenario), as proposed in [49].

U2: For three of the underestimated changes, the developers expressed that it was difficult to
identify and understand the system states relevant to the change task. One developer stated: “All
the states that need to be handled in the GUI make the code mind-blowing.” This statement
indicates that the perceived code complexity is caused by a complex underlying state model. It
also suggests that in order to understand the code from the functional view discussed above, it is a
prerequisite that the underlying state model is understood. An obvious proposal is to provide aid
that makes it easier to understand the most complex underlying state models, e.g., by the use of
diagramming techniques such as UML state diagrams.

U3: The degree of familiarity with relevant code was said to have affected change effort in five
cases. The straightforward explanation is that code familiarity determines the amount of time that
is necessary to comprehend code of direct, intermediate and strategic relevance. The quantitative
results for change experience showed that relatively little of the variations in change effort can be
explained by familiarity with the systems. The qualitative analysis showed that experience was
indeed important in both projects, in the few extreme cases when it was either very high or very
low.

5.3 Learning relevant technologies and resolving technology issues
T0. Project A used several different technologies. Lack of familiarity with relevant technology was
perceived to increase change effort for three of the changes. The measure that was intended to
capture the effect of technology experience (techexp), was not significant in the quantitative
analysis. One possible explanation is that familiarity with the involved technology affected change
effort in the relatively few cases where the familiarity was particularly low or high.

T1, T2, T3: The degree of match between the actual and required features of the development
tools and technologies was considered important in 12 cases. If the functionality required by the
change task was provided out of the box, the technology was considered to save effort. Reversely,
if the technology was incompatible with the change task, or had defects, considerable effort was
required to create workarounds. Unsatisfactory facilities for debugging were considered to
increase change effort in five cases. We conclude that these factors are important to consider when
evaluating technologies for use in a development environment.

5.4 Designing and applying changes to source code
D1: Empirical studies have shown that the nature of a given task determines how the
comprehension process is carried out [50]. Indeed, the interview data showed that the developers
associated a certain degree of superficiality or shallowness with a change task. A change was
perceived as shallow when the developer assumed that it was not necessary to understand the
details of the code involved in the changed user scenario. Typically, shallow changes were
performed by textual search in intermediate code to identify the direct code to change. Examples
of shallow changes were those that concerned the appearance in the user interface, user messages,
logging behaviour and simple refactoring. Deep changes, on the other hand, required full
comprehension of the code involved in the changed user scenario. The comprehension activities
described in the previous section are therefore primarily relevant for deep changes.

D2: We use the term mechanism for code that implements a solution to a recurring need in the
system. Typically, formalized design patterns [51] can be used directly or as part of a mechanism.
In the investigated projects, examples of mechanisms are handling of runtime exceptions and
transfer of data between the physical and logical layers of the system. In 13 cases, the change was
perceived to be particularly challenging because a required mechanism had to be constructed as
part of the change. According to the developers, creating these mechanisms was challenging for
two reasons: First, the mechanism had to be carefully designed for reusability. Second, when the
purpose of mechanisms was to hide peculiarities of specific technologies, these needed to be well
understood by the developer of the mechanism.

 20

D3: For eight of the overestimated changes, the developers expressed that the change was easy
to perform because it was concentrated in one or few parts in the code. This observation supports
the results for change set dispersion from the quantitative analysis, and suggests a particularly
strong effect for the most localized changes. However, this explanation is contradicted by data
from 50 other change tasks that affected only one segment of the code without resulting in
particularly low change effort. An alternative explanation is that the developers perceived the
change to be particularly local because the code of intermediate relevance was not dispersed
among many components, as elaborated in Section 5.2

5.5 Verifying the change
V1: The effort expended to test the developers’ own code changes was discussed in the
interviews. For a large majority of the changes, the developers expressed that it was quite easy to
verify that the change was correctly coded. In two cases, verification was perceived to be difficult
because the change task affected time-dependent behaviour that had to be simulated in the test
environment. In project A, some extra time was needed when it was necessary to generate and
execute the system on the target mobile platform. In project B, extra time was needed when the
technology necessitated deployment on a dedicated test server.

5.6 Cause of change
The cause of each change, i.e. the events that triggered the change request, was discussed with the
developer assigned to the particular change task. Based on this, we classified all changes according
to the codes shown in the last row of Table 7. In order to better understand the results for change
type from the quantitative analysis, we measured the agreement between the automated
classification into change types, and the classification from qualitative analysis. Sufficient data
was available for 87 and 61 changes, for project A and B, respectively. When mapping C1 and C2
to corrective change, and C3 and C4 to non-corrective change, the agreement was good (Cohen’s
kappa=0.64) for project A, but less than what could be expected by pure chance (Cohen’s kappa=-
0.038) for project B. This result shows that the automated classification for project B did not
appropriately reflect real differences in change type, which can explain why there was no effect of
change type in the quantitative models. From the qualitative analysis of project B, it can be seen
that six out of nine of the underestimated changes were fixes of error by omission. A typical
reason for such an error was not recognizing a side effect of a change. We conclude that for project
B, fixes of errors by omission were associated with underestimated changes. In line with the
conclusion in Section 5.1, we recommend practices that help to identify side effects of change
requirements, because they are likely to reduce occurrences of errors by omission.

6 Joint results and discussion
On the basis of a systematic literature review of earlier change-based studies, we proposed a small
set of factors and straightforward measures that could explain variations in change effort. The
evidence-driven analysis largely confirmed the proposals, and strengthens the evidence that these
factors are not spurious, but present over time and across software development contexts. The
data-driven analysis confirmed the results from the evidence-driven analysis, and provided
evidence of additional, more project-specific effects.

The explained variability in the quantitative models was relatively poor by standards that have
been suggested for prediction models [43]. The qualitative analysis identified cost drivers that had
not been captured by the quantitative measures, by focusing on change tasks that corresponded to
large model residuals. The concrete results of the analyses were:

• Requirement volatility, measured by updates in the change tracker, consistently contributed to

change effort in the quantitative models. The qualitative analysis showed that when requirement
volatility was due to difficulties in anticipating side effects of a change, the effect was
particularly large.

• Change set dispersion, measured by the number of changed components or types of changed
components, consistently contributed to change effort in the quantitative models. The
qualitative analysis suggested that the effort expended by developers in comprehending highly
dispersed code was an important underlying cost driver.

• Overall, measures of change set dispersion were better predictors of change effort than were
more fine-grained (e.g., LOC-based) measures of change set size.

 21

• In project A, corrective changes required more effort than non-corrective changes, after
accounting for other factors. No significant difference was found for project B. The qualitative
analysis showed that a sub-class of corrective changes (fixes of errors by omission) in many
cases required extra effort.

• A statistically significant, but small effect of developers’ experience was identified in project B.
The qualitative analysis showed that familiarity with the changed functional and technological
areas was indeed important in both projects, in a few more extreme cases when the familiarity
was either very high or very low. This effect of experience was not appropriately captured by
the quantitative measures.

• Structural attributes of changed components did not have a significant effect on change effort in
the quantitative models. The qualitative analysis showed that the properties of the code involved
in the changed user scenario did affect change effort. In particular, the complexity of the
underlying state model of the user scenario was important, as was the dispersion of code that
implemented the user scenario.

• The qualitative analysis showed that change effort increased when the relevant tools and
technologies had defects, were inadequate for the task, or did not support debugging
satisfactorily.

• The qualitative analysis showed that certain properties of the change task, such as the need for
innovation in the change task, or shallowness of the change task were important factors that we
had not attempted to capture by the quantitative measures.

In the following, we discuss the consequences of these results from the perspective of software
engineering, the local projects, and that of research methods within empirical software
engineering.

6.1 Consequences for software engineering
The results from the study have implications for effort estimation of change tasks during software
evolution. First, due to the wide prediction intervals implied by the relatively poor model fit
obtained in this and similar studies [22, 35], it seems infeasible to build models that are
sufficiently accurate to be accepted as a black-box method to estimate the effort expended on
individual change tasks. Effort estimates generated by models may still play a role to support
projects in planning releases during software evolution, where the primary interest is in the
aggregate of change effort estimates. This is because the aggregated prediction interval decreases,
measured proportionally to the estimate, as more predictions are aggregated. On the basis of
results from this and earlier change-based studies, we recommend that models include measures of
requirement volatility, developers’ experience, type of change and change set dispersion. As
shown in this study, it is feasible to automatically retrieve measures of the first three factors from
version control systems and change trackers prior to the coding phase. A coarse grained impact
analysis would be necessary to obtain a measure of change set dispersion in this phase.

The results can also be used to help experts improve judgement-based effort estimates. One
method is to develop checklists of factors that experts should assess when they make estimates.
Projects can either retrieve appropriate measures from version control systems and change
trackers, or they can make subjective judgements for each factor.

Regression models of change effort can also be used to investigate the effect of a new practice
or technology. A generic setup is to complement the model with a binary variable that indicates
whether the practice or technology was used for a particular change [21, 24, 27, 52]. The
significance, sign and magnitude of the coefficient for this explanatory variable can then be used
to assess the effect of the new practice or technology. The types of measures that we recommend
in such models conform to those recommended in [21], with the important addition of a measure
of requirement volatility.

A recommended best practice for software design is to distribute responsibility between
relatively small, collaborating objects [53]. The study adds to the empirical evidence that
delocalized, or dispersed code causes difficulties during program comprehension, see [54] and
[55]. A consequence of these findings is that to facilitate comprehension during software
evolution, code that is functionally cohesive should be localized rather than dispersed. This
concern about comprehension effort should be balanced against other concerns, such as potentials
for reuse and constraints set by the physical architecture.

The results of this study strengthen the case for tools that makes it easier to understand code
that cross-cuts architectural units, along functional units such as user scenarios. One feature that
already exists in some software modeling tools is the ability to perform static analysis of some
selected portion of the code (e.g., a method) to generate a dynamic model of that code (e.g., a

 22

UML sequence diagram) [56]. However, the reverse-engineering of sequence diagrams using
dynamic analysis of those objects and messages that are involved in a specific user scenario or use
case is still at an early stage of research and development [57]. It is, furthermore, not obvious how
this approach could be extended to technologically heterogeneous and physically distributed
computing environments.

Context factors of the investigated projects may limit those projects to which the above
discussion applies. In order to retrieve change-based measures for the purpose of prediction or
assessment, a well-defined, tool-supported change process is required. The client collaboration
model is likely to affect volatility of requirements and how this factor is managed: Both projects
combined a formal collaboration model at the project level with semi-formality at the level of
releases, and informality and close collaboration at the level of change tasks. The nature of the
change tasks differed between the projects, the tasks in project B being more corrective than those
in project A. As discussed in Section 5.6 a subset of the corrective changes required considerably
higher change effort than predicted from the models. This indicates that type of evolution may
influence change effort for individual change tasks. We believe that the effect of code dispersion is
universal to all kinds of software systems, however particular relevance can be expected in
technologically heterogeneous environment, such as in project A.

6.2 Consequences for the investigated projects
In project A, effort estimation was a team activity performed on a regular basis as part of release
planning. To judge the potentials for more accurate effort estimates, we calculated the accuracy of
the current estimation process, on the basis of effort estimates and actual effort for the 107 change
tasks where this data was available. The effort estimates were given in units of relative size, see
[58], and were scaled according to the factor that minimized MdMRE. The resulting MMRE and
MdMRE was 1.47 and 0.54, respectively. Even though these values roughly correspond to the
accuracy of the models from the data-driven analysis, we did not recommend replacing judgement-
based estimates with model-based estimates, for two reasons. First, change set size or change set
dispersion would have to be subjectively assessed to obtain the required input measures. This
would likely decrease the model accuracy, and preclude fully automated procedures. Second, the
team estimation of change tasks was perceived to be important to share knowledge and build team
spirit in the project, and to constitute an initial step of design for a solution to the change request.

An alternative use of the results was to improve effort estimates that are based on developers’
judgement, by ensuring that the important factors are assessed by the developers. To assess
whether the factors were already accounted for by the developers, we fitted regression models that
included the developers’ estimate as an explanatory variable. In these models, measures of
requirement volatility, change set dispersion and change type became statistically insignificant.
This indicates that these factors were already sufficiently accounted for by the subjective
estimates. The number of different technologies involved, on the other hand, had a significant
effect on actual effort. The model was:

log(ceffort)= 9.25 + 0.13*relativeEffortEstimate + 0.14*filetypes

We recommended that the developers put more emphasise on the latter factor when they made
effort estimates of change tasks. Due to the results from the qualitative analysis, we also advised
the project to be more aware of the effect of particularly strong familiarity or lack of familiarity
with code of intermediate and direct relevance.

Project B used similar, judgement-based procedures for estimates of change effort, but we did
not have sufficient data to assess the potentials for more accurate estimates. We were therefore
only able to advise that all the identified factors should be assessed when the effort for planned
change tasks was estimated.

Even though this study identified factors that correlated with and affected change effort, it was
not straightforward to identify specific actions in the projects that would mitigate these factors, and
hence save costs. However, on the basis of the results, some actions that we believe would have a
positive effect are:

• Further improve knowledge sharing between the system stakeholders
• Refactor code where execution paths are dispersed across more components than necessary
• Acquire tools that make it easier to simulate and understand the code involved in user scenarios
• Document the underlying state models in areas where those models are particularly complex

6.3 Consequences for empirical software engineering

 23

The goal of empirical software engineering is to use empirical methods to assess and improve
software engineering practices. In the following, the experiences with three central elements of the
design of this study are summarized:

Foundation in a systematic review. The use of systematic reviews in software engineering was
suggested as an important element of evidence-driven software engineering [59], and the method
has already gained significant momentum in the empirical software engineering community. The
factors and measures that were used in the quantitative analysis were selected on the basis of a
systematic literature review of earlier change-based studies. This was particularly important to be
able to perform the evidence-driven analysis, which was key to linking this study to results from
previous studies. Systematic reviews have a particularly important role when study proposals
cannot be derived from established theories. Currently, this is the situation for most topics that are
investigated within the empirical software engineering community.

Combined confirmatory and explorative analysis. According to proposed guidelines for
empirical studies on software engineering, strong conclusions can only be drawn from
confirmatory studies, while explorative studies are important to generate hypothesis and guide
further research [60]. We combined confirmatory and exploratory elements: The evidence-driven
analysis largely confirmed proposals about factors that affect change effort. The data-driven
analysis explored and identified additional factors that can be investigated in future confirmatory
studies.

Qualitative analysis to explain large model residuals. Even though the role of qualitative
methods in this field has long been recognized, see e.g., [61], empirical researchers have
developed and used quantitative methods to a larger extent [62]. Because we used the individual
change as a common unit of analysis, and change effort as the dependent variable, we were able to
tightly integrate the quantitative analysis of data from version control systems and change trackers
with the qualitative analyses of developer interviews. The qualitative analysis contributed to the
joint analysis since it enabled us to:

• Confirm the importance of factors that were not properly captured by quantitative measures. An

example of this was the effect of developer experience.
• Identify more fundamental factors than those identified by the quantitative analysis. For

example, the apparent effect of change set dispersion could be explained by the dispersion of
comprehended code.

• Identify additional factors not attempted to be captured by the quantitative analysis. An example
is the effect of defects and inadequacy of relevant technologies.

This method can also be used to focus the more expensive qualitative analysis on the most
interesting data. This is particularly important for practitioners who use lightweight empirical
methods to evaluate their own practices such as Postmortem analysis [63] or Agile Retrospectives
[64]. We expect that group discussions that are part of such practices would benefit from focusing
on the activities that required considerably more or considerably less time than expected from
quantitative data.

7 Threats to validity
Construct validity. The measurement model (summarized in Table 2) proposed factors that could
affect change effort, and alternative ways the factors could be measured. Only measures that could
be retrieved from version control systems and change trackers were considered, because this data
source is usually available in well-organized software projects. Information from such tools may
not perfectly capture the factors of interest; hence this data source introduces issues of construct
validity. In some cases, we were able to use the qualitative data to mitigate such threats. For
example, the interviews provided a subjective operationalization of change experience that
allowed us to draw stronger conclusions about the effects of experience. There were also threats to
construct validity in the qualitative coding schema. We attempted to mitigate this by
reconsolidating the coding schema to reflect commonly used concepts within our field.

Requirement volatility would intuitively be considered to be high if extensive informal
clarifications about change requirements were needed, even if the clarifications were documented
by only a short summary in the change trackers. Therefore, our measures of requirement volatility,
which relied on traces in such tools, may not perfectly capture this factor. The analysis of the
interviews strengthened the proposal that requirement volatility was indeed an important factor,
not always appropriately captured by the quantitative measures.

Code complexity cannot be fully captured by one or a few measures [65]. To judge, in a
meaningful and repeatable manner, whether a piece of code is “more complex than” another piece

 24

of code, very specific criteria must be defined. Therefore, there were obvious construct validity
threats in the measurement of complexity of change sets and changed components. The measures
needed to be simple because they had to be compatible with the range of technologies that the
projects used. Likewise, it is not obvious how measures of added, deleted and changed lines
contribute to an aggregated measure of change set size, in particular when different technologies
were involved, and it is not obvious which architectural unit to count when measuring change set
dispersion.

Change experience was captured by counting the number of earlier check-ins to the version
control systems. It is an obvious simplification that one check-in can be counted as one unit of
experience. Moreover, when several developers were involved in a change, we used the average of
the experience measures. This aggregation does not perfectly capture the concept of joint
experience. It is possible that the relatively poor fit of the quantitative models was due to the
inability to fully capture the intended factors by measures retrieved from version controls systems.

Internal validity. Internal validity of the quantitative results refers to the degree to which the
variations to change effort in the investigated projects were caused by the proposed factors. Issues
of internal validity are important when the context, tasks and procedures for allocating study units
to groups cannot be controlled, which is the case with data that occurs naturally in software
development projects. For example, a particularly skilled developer may require fewer requirement
clarifications and less change effort than the average developer. In this case, the underlying effect
is that of individual developers’ skills than that of requirement volatility. Likewise, the data-driven
analysis showed that changes that were local to one technology required less effort than other
changes. However, it is possible that the underlying effect pertains to the specific technology,
Java, that was used in most of the cases that involved only one technology. Qualitative data from
developer interviews was useful to evaluate some of these threats. For example, the qualitative
analysis suggested that a more fundamental factor than the effect of dispersion of changed code
was the effect of dispersion of intermediate code that needed to be comprehended.

Another threat to internal validity was the possibility of shotgun correlations. In the data-driven
analysis, a large number of factors and measures were tested. This increases the likelihood that one
or more of the significant effects occurred due to chance, rather than to a true underlying effect.
This risk was lower in the evidence-driven analysis, because this investigated the effect of a small
set of factors and measures selected on the basis of existing empirical evidence.

A third type of threat to internal validity was the potential bias introduced by missing data
points in the data set, see [66]. For project A, change effort was not recorded for around 10% of
the actual changes that were performed. For project B, change effort was not recorded for 25% of
the changes. Most of the missing data points were due to challenges with establishing the routines
to track change effort and code changes. Because the data points that we did collect from the initial
periods can be considered to be selected by random, we do not expect the missing data points to
constitute a serious threat to internal validity.

The use of interviews introduced the possibility of researcher bias, consciously or
unconsciously skewing the investigation to conform to the competencies, opinions, values or
interests of the involved researchers. Although such threats apply to quantitative research as well,
they can be particularly difficult to handle when subjectivity is involved. The developers may
introduce conscious or unconscious biases in the qualitative data, for the same reasons as those
mentioned above. Imperfect memory, lack of trust or other communication barriers between the
interviewer and the interviewee may also introduce biases.

We believe that the strict focus on relatively small, cohesive tasks recently performed by the
interviewee helped to mitigate such biases. To mitigate communication barriers, the interviewer
made extensive efforts to be prepared for the interviews, and data from the version control systems
and change trackers was readily available during the interviews to help the developers recollect
details.

External validity. The ability to generalize results beyond the study context is one of the key
concerns with case studies. Section 2.3 described the design elements introduced to interpret the
results in a wider context. We believe that the lack of relevant theories on which to base the study
proposals is a major obstacle to generalizing the results. In this situation, we chose to base the
study proposals on a comprehensive review of earlier empirical studies with similar research
questions. In this way, the study adds to the empirical foundation that eventually can provide more
generally applicable evidence of how and when different factors affect change effort.

8 Conclusion, consequences and further work
Software engineering practices can be improved if they address factors that have been shown
empirically to affect developers’ effort during software evolution. In this study, we identified such

 25

factors by analyzing data about changes in two software organizations. Regression models were
constructed to identify factors that correlated with change effort, and developer interviews were
conducted to explore additional factors at play when the developers expended effort to perform
change tasks. Central results were:

• The volatility of requirements had a large and consistent effect on effort in the quantitative

models. The effect was particularly large when volatility was due to difficulties in anticipating
side effects of a change. Such difficulties also resulted in errors by omission, which in turn were
particularly expensive to correct.

• The dispersion of changed code also had a large and consistent effect on change effort in the
quantitative models. The quantitative models indicated that dispersion of the directly affected
code was important. The qualitative analysis indicated that the dispersion of intermediate code
was a more fundamental factor that affected change effort, due to comprehension effort.

• The experience that developers had in changing the system or parts of the system seemed to
have little effect in the quantitative models. However, the qualitative analysis showed that this
factor was indeed important in individual cases.

Because these results are also consistent with results from earlier empirical studies, we suggest that
these (admittedly quite course-grained) factors should be given consideration when attempting to
improve software engineering practices.

The specific analyses of the two projects provided additional and more fine-grained results. In
one project, changes that concerned only one technology required considerably less effort. The
analysis of estimation accuracy indicated that this factor was not sufficiently accounted for when
developers made their estimates. This exemplifies how projects can benefit from analyzing data
from their version control systems and change trackers to improve their estimation practices.

One important direction for further work is to investigate further the causal relationships that
are in play when developers perform change tasks. Interviewing developers about recent changes
was an effective method for making tentative suggestions about such relationships. However,
studies that control possibly confounding factors should be conducted before firm conclusions are
drawn. It is also necessary to paint a richer picture of how context factors, such as size and type of
the system, influence change effort. Ultimately, the empirical results could be aggregated into a
theory on software change effort, which would define invariant knowledge about software
evolution, and be immediately useful for practitioners within the field.

Acknowledgements We are indebted to the managers and developers at Esito and Know IT who provided us
with high quality empirical data. We thank Audris Mockus for his comprehensive feedback on two early
drafts of this paper. Dag Sjøberg and Magne Jørgensen provided strategic advice on the research approach. Jo
Hannay and Stein Grimstad contributed with insightful comments in discussions about this work. Finally, we
are grateful to the <removed at submission time> for funding the Ph.D. position of the first author of this
paper.

 26

Appendix A

Interview guide

Part 1. (Only in first interview with each developers - Information about the purpose of the
research. Agree on procedures, confidentiality voluntariness, audio-recording).
Question: Can you describe your work and your role in the project?
Part 2. Project context (factors intrinsic to the time period covered by the changes under
discussion)
How would you describe the project and your work in the last time period? Did any particular
event require special focus in the period?
For each change (CR-nnnn, CR-nnnn, CR-nnnn….,)

Part 3. Measurement control (change effort and name of changed components shown to the
interviewee)
Are change effort and code changes correctly registered?
Part 4. Change request characteristics (change tracker information shown on screen to support
discussion)
Can you describe the change from the viewpoint of the user? Why was the change needed?
Part 5. General cost factors
Can you roughly indicate how the X hours were distributed on different activities?
Part 6. Properties of relevant code (output from windiff showed on screen to support the
discussions)
Can you summarize the changes that you made to the components?
What can you say about the code that was relevant for the change? Was it easy or difficult to
understand and make changes to the code?
Part 7. Stability
Did you go through several iterations before you reached the final solution? If so, why?
Did anything not go as expected?
How did you proceed to test the change?
Go to Part 3 for next change

Part 8. Concluding remarks
Do you think this interview covered your activities during the last period?

 27

Appendix B

Effort drivers and effort savers for individual changes
Table B1 Underestimated changes, project A

CR# Pred.
Actual

Change description
Developer statement (translated and condensed)

Code

A4155

9.4
19

Ensure consistency between reported grants, expenses and accounts
Input control spans fields were spread over three tables
Input control should be conditioned by check-button state
One file was not tagged
Unintended consequence - too strict input control

C3
D2
D2
n.a.
R1

A4666

10.2
21.5

Calculate and show deviation between grants and expenses
Remove validation. Conditioned by check-button state
The original specification was not very detailed
Many Javascript changes. Have not very much Javascript experience
Less debugging support in XSL/Javascript, use write-statements

C3
D2
R1
T0
T3

A4569

2.3
5

Check special case when saving user access rights
Discussion about on whether and how it should be done

C1
R1

A4568

1.6
3.5

Fix programming error, used wrong variable
Code reading not successful, needed to execute/debug
No direct debug support

C2
U1
T3

A4557 4.5
10

Change trigger rule for starting timer for reminder
Workflow tool: Could not use out-of-the box support, special code needed
Defect discovered in tool, needed to create a work-around
Difficult to test when actions are based on time triggers, must manipulate database

C1
T1
T2
V1

A4427 18.0
41

Create web based view into research application data
Choose technical solution, chose xslt
Mechanism for access to details
Many rounds of feedback on page layout details

C4
D2
D2
R1

A4282 9.0
21

Serverside input validation of application
Difficult to comprehend external framework, recursive functions, difficult to follow
control flow
XPath not well known

C3
U1

T0

A518 2.0
5

Correction of correction
Complex state due to collaborating screens makes the code difficult to understand

C1
U1

A512 4.0
10.5

Handle unexpected user input, empty fields
Had to change the interface, create a new method, and send in another object
Needed to discuss which rules to implement

C1
D2
R1

A4211 6.9
19

Transfer data to external system, Check social security number
Re-implement algorithm in Javascript

C3
D3

A4438 1.6
5

Error in pageflow on validation error
Internal state needed to be set correctly, needed time to realize this
Separate debugging tool, could not use eclipse

C1
U1
T3

A4461 33
117

Get new mechanisms for persistence in place, integrate design and runtime tools
Defects in Genova
Unfamilar with Hibernate
Impossible to debug in Eclipse
Time consuming to deploy for debug in other tool
Unstable debugging tool

C4
T2
T0
T3
T3
T2

A4122 7.0
20.5

Assumptions of max 10 years broken in GUI
Upfront effort on analysis/design
Implement scrolling mechanism in GUI

C4
R1/D
2
D2

Table B2 Underestimated changes, project B
CR# Pred.

Actual
Change description
Developer statement (translated and condensed)

Code

B4189 3
6

Defect, wrong assumption that object was already created
It was not well specified
Use log and debug to reproduce the state that gives the error

C1
R1
U2

B3777 23
48

Special key for Oslo-ticket
Requirement clarifications needed
Iterative design

C4
R1
D2

B4062 2.8
6

Fix state action: Must ensure correct printout, dependent on the type of area Difficult to
determine full state
Difficult algorithm

C1
U1
D2

B4188 3.4
7.5

Defect: Must check for events on ticket before setting to unused after cancelling
Difficult to determine when to perform which action

C1
U2

 28

 Testing dependent on time V1
B3935 4.2

9.5

Write receipt on sale from MT, from popup
Unfamiliar with print code
Need to restructure

C4
U3
D2

B4260 3.4
8

Logging of two events needed to separated, because they did not always happen together C1
U1
D2

B4089 3.6
9.5

Need to cancel sale on e-ticket on technical cancelling
Difficult to identify the part of the code that handled technical cancelling, due to naming
Unfamiliar with the code

C1
U2
U3

B4157 12.4
32.5

Special key for prefer2travel
Difficult because it was not very well specified
Difficult to know which part of the code to change
Difficult to comprehend what is part of the create sale transaction
Earlier attempt to start coding

C4
R1
U3
U1
D2

B3278 12.4
20

Corrected defect due to string-number conversion
Assumed to be correct, unstable api-call

C1
T2

Table B3 Overestimated changes, project A
CR# Pred.

Actual
Change description
Developer statement (translated and condensed)

Code

A4555 6.4
2.5

Wrong text substitution in emails, text retrieved from content server
Easily recreated

C2
U2

A4531 2.8
1

Changes to CSS and layout

C3
D1

A4434 2.9
1

Set input field type in xml’s C3
D1

A4426 1.6
0.5

Change name of GUI--field

C3
D1

A4607 1.6
0.5

Missed specific state and action
Simple check on condition
Needed only one place

C1
U2
D3

A4539 1.6
0.5

Wrong action, should not update last change by on automatic change
Easy to identify

C1
U2

A4578 1.7
0.5

Moved comparator method between class
One user only

C1
D3

A4330 7
2

Display differently dependent on research application status
Change to property-files

C4
D1

A4279 7.6
2

New CSS definition for read-only fields C3
D1
D3

A4369 4.3
1

Add one element to transfer to external system
Have worked with this program before
Had a framework available for testing
Knew the class where the change needed to be done

C1
U3
V1
D3

A4596 2.3
5

Name change on label

I knew very well how to make the change

C3
D1
U3

A4500 2.3
0.5

Keep relations to organization when creating revised application
It was a small and local change
Reused a method that could do this

C4
D3
D2

A4542 7.6
1

Changes to fonts, small error correction

We needed to create a new CSS class

C2
D1
D3

A4559 4.1
0.5

Error in text C2
D1
D3

A4547 1.7
0.17

New button in webscreen
Only needed to add a button

C4
D1,T
1,D3

A4414 2.4
0.17

Sort column in table
Framework contained the exact needed API

C3
T1

A4584 111
39

Request for approval that application could be visible to others
It was very well specified
Spanned many classes

C4
R1
P6

Table B4 Overestimated changes, project B

CR# Pred.
Actual

Change description
Developer statement (translated and condensed)

Code

B4367 3.3
1

Remove logging calls
Many similar changes

C3
U1

B4366 3 Not good enough data. Interviewee was instructed what to do n.a.

 29

1
B3765 17

6
Move and split location of data attribute
Well specified

C3
R1

B3928 2.4
1

Reset screen on error
Make call to predefined function on error

C3
D2

B4022 6,1
2.5

Check that more than 2000 points are not sold
Local change

C4
P6

B4233 2.8
0.5

Logging level adjusted
Simple, local change

C1
P6

References

1. Lehman MM, Ramil JF, Wernick PD, Perry DE, and Turski WM. Metrics and laws of software evolution - the

nineties view. Proceedings of the 4th International Symposium on Software Metrics. IEEE Computer Society
Press: Los Alamitos CA, 1997; 20-32.

2. Banker RD, Datar SM, Kemerer CF, and Zweig D. Software complexity and maintenance costs.
Communications of the ACM 1993; 36(11):81-94.

3. Bhatt P, Shroff G, Anantaram C, and Misra AK. An influence model for factors in outsourced software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice 2006; 18(6):385-423.

4. Krishnan MS, Kriebel CH, Kekre S, and Mukhopadhyay. T. An empirical analysis of productivity and quality in
software products. Management Science 2000; 46(6):745-759.

5. Lientz BP. Issues in software maintenance. ACM Computing Surveys 1983; 15(3):271-278.
6. Hayes JH, Patel SC, and Zhao L. A metrics-based software maintenance effort model. Proceedings of the 8th

European Conference on Software Maintenance and Reengineering. IEEE Computer Society Press: Los
Alamitos CA, 2004; 254-258.

7. Kemerer C. Software complexity and software maintenance: A survey of empirical research. Annals of Software
Engineering 1995; 1(1):1-22.

8. Munson JC and Elbaum SG. Code churn: A measure for estimating the impact of code change. Proceedings of
the 14th International Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA,
1998; 24-31.

9. Détienne F and Bott F, Software design - cognitive aspects. London: Springer-Verlag, 2002.
10. Benestad HC, Anda BC, and Arisholm E, "A systematic review of empirical software engineering studies that

analyze individual changes," Simula Research Laboratory Technical Report 2008-05, 2008.
11. Yin RK. Designing case studies in Case study research: Design and methods. Sage Publications:Thousand

Oaks, CA, 2003; 19-53.
12. Benestad HC, Arisholm E, and Sjøberg D. How to recruit professionals as subjects in software engineering

experiments. Information Systems Research in Scandinavia (IRIS), Kristiansand, Norway 2005;
13. https://www.forskningsradet.no/mittNettstedWeb/common/security/login.jsp?setLocale=en
14. Norwegian State Railways, http://www.nsb.no/about_nsb/
15. IBM Rational ClearCase, http://www-306.ibm.com/software/awdtools/clearcase/cclt/
16. CVS, http://www.nongnu.org/cvs/
17. http://www.atlassian.com/software/jira/
18. Schneidewind NF. Investigation of the risk to software reliability and maintainability of requirements changes.

Proceedings of the 2001 International Conference on Software Maintenance. IEEE Computer Society Press:
Los Alamitos CA, 2001; 127-136.

19. Niessink F and van Vliet H. Two case studies in measuring software maintenance effort. Proceedings of the
14th International Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA,
1998; 76–85.

20. Evanco WM. Analyzing change effort in software during development. Proceedings of the 6th International
Symposium on Software Metrics (METRICS99).1999; 179-188.

21. Graves TL and Mockus A. Inferring change effort from configuration management databases. Proceedings of
the 5th International Symposium on Software Metrics. IEEE Computer Society Press: Los Alamitos CA, 1998;
267–273.

22. Jørgensen M. Experience with the accuracy of software maintenance task effort prediction models. IEEE
Transactions on Software Engineering 1995; 21(8):674-681.

23. Arisholm E. Empirical assessment of the impact of structural properties on the changeability of object-oriented
software. Information and Software Technology 2006; 48(11):1046-1055.

24. Atkins DL, Ball T, Graves TL, and Mockus A. Using version control data to evaluate the impact of software
tools: A case study of the version editor. IEEE Transactions on Software Engineering 2002; 28(7):625-637.

25. Briand LC and Basili VR. A classification procedure for the effective management of changes during the
maintenance process. Proceedings of the 1992 Conference on Software Maintenance. IEEE Computer Society
Press: Los Alamitos CA, 1992; 328-336.

26. Hunt JW and McIlroy MD, "An algorithm for differential file comparison," in Computing Science Technical
Report 41, Bell Laboratories, 1975.

27. Moløkken-Østvold K, Haugen NC, and Benestad HC. Using planning poker for combining expert estimates in
software projects. Accepted for publication in Journal of Systems and Software 2008;

28. Fluri B and Gall HC. Classifying change types for qualifying change couplings. Proceedings of the 14th
International Conference on Program Comprehension (ICPC).2006; 35-45.

29. Polo M, Piattini M, and Ruiz F. Using code metrics to predict maintenance of legacy programs: A case study.
Proceedings of the 2001 International Conference on Software Maintenance. IEEE Computer Society Press:
Los Alamitos CA, 2001; 202-208.

30. Swanson EB. The dimensions of maintenance. Proceedings of the 2nd International Conference on Software
Engineering. IEEE Computer Society Press: Los Alamitos CA, 1976; 492-497.

31. Jørgensen M. An empirical study of software maintenance tasks. Journal of Software Maintenance: Research
and Practice 1995; 7(1):27-48.

 30

32. Purushothaman R and Perry DE. Toward understanding the rhetoric of small source code changes. IEEE
Transactions on Software Engineering 2005; 31(6):511-526.

33. Etzkorn L, Bansiya J, and Davis C. Design and code complexity metrics for oo classes. Journal of Object-
Oriented Programming 1999; 12(1):35-40.

34. Rajaraman C and Lyu MR. Reliability and maintainability related software coupling metrics in c++ programs.
Proceedings of the Third International Symposium on Software Reliability Engineering.1992; 303-311.

35. Niessink F and van Vliet H. Predicting maintenance effort with function points. Proceedings of the 1997
International Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 1997;
32-39.

36. Eick SG, Graves TL, Karr AF, Marron JS, and Mockus A. Does code decay? Assessing the evidence from
change management data. IEEE Transactions on Software Engineering 2001; 27(1):1-12.

37. Graves TL, Karr AF, Marron JS, and Siy H. Predicting fault incidence using software change history. IEEE
Transactions on Software Engineering 2000; 26(7):653-661.

38. DeMarco T and Lister T. Programmer performance and the effects of the workplace. Proceedings of the
Proceedings of the 8th international conference on Software engineering.1985; 268-272.

39. Sackman H, Erikson WJ, and Grant EE. Exploratory experimental studies comparing online and offline
programming performance. Communications of the ACM 1968; 11(1):3-11.

40. Mockus A and Weiss DM. Predicting risk of software changes. Bell Labs Technical Journal 2000; 5(2):169-
180.

41. Myers RH, Montgomery DC, and Vining GG. The generalized linear model in Generalized linear models with
applications in engineering and the sciences. Wiley Series in Probability and Statistics, 2001; 4-6.

42. http://www.transana.org/
43. Conte SD, Dunsmore HE, and Shen VY, Software engineering metrics and models: Benjamin-Cummings

Publishing Co., Inc. Redwood City, CA, USA, 1986.
44. Jolliffe IT, Principal component analysis, 2nd ed. New York: Springer-Verlag, 2002.
45. Briand LC and Wüst J. The impact of design properties on development cost in object-oriented systems. IEEE

Transactions on Software Engineering 2001; 27(11):963-986.
46. von Mayrhauser A and Vans AM. Program comprehension during software maintenance and evolution.

Computer 1995; 28(8):44-55.
47. Koenemann J and Robertson SP. Expert problem solving strategies for program comprehension. Proceedings of

the SIGCHI conference on Human factors in computing systems: Reaching through technology.1991; 125-130.
48. Dzidek WJ, Arisholm E, and Briand LC. A realistic empirical evaluation of the costs and benefits of uml in

software maintenance. IEEE Transactions on Software Engineering 2008; 34(3):407-432.
49. Arisholm E, Briand LC, and Føyen A. Dynamic coupling measurement for object-oriented software. IEEE

Transactions on Software Engineering 2004; 30(8):491-506.
50. Détienne F and Bott F. Influence of the task in Software design - cognitive aspects. Springer-Verlag, 2002; 105-

110.
51. Gamma E, Helm R, Johnson R, and Vlissides J, Design patterns: Elements of reusable object-oriented software:

Addison-Wesley, 1995.
52. Herbsleb JD and Mockus A. An empirical study of speed and communication in globally distributed software

development. IEEE Transactions on Software Engineering 2003; 29(6):481-494.
53. Wirfs-Brock R and McKean A, Object design: Roles, responsibilities, and collaborations: Addison-Wesley

Professional, 2003.
54. Détienne F and Bott F. Discontinuities and delocalized plans in Software design - cognitive aspects. Springer-

Verlag, 2002; 113-114.
55. Arisholm E and Sjøberg DIK. Evaluating the effect of a delegated versus centralized control style on the

maintainability of object-oriented software. IEEE Transactions on Software Engineering 2004; 30(8):521-534.
56. Kern J and Garret C: Effective Sequence Diagram Generation, 2003.
57. Briand LC, Labiche Y, and Miao Y. Towards the reverse engineering of uml sequence diagrams. Proceedings of

the 10th Working Conference on Reverse Engineering, WCRE 2003.2003; 57-66.
58. Cohn M, Agile estimating and planning: Pearson Education, Inc. Boston, MA, 2006.
59. Kitchenham BA, Dybå T, and Jørgensen M. Evidence-based software engineering. Proceedings of the 26th

International Conference on Software Engineering (ICSE). IEEE Computer Society, 2004; 273-281.
60. Kitchenham BA, Pleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K, and Rosenberg J. Preliminary

guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering 2002;
12(4):1106-1125.

61. Seaman CB. Qualitative methods in empirical studies of software engineering. IEEE Transactions on Software
Engineering 1999; 25(4):557-572.

62. Perry DE, Porter AA, and Votta LG. Empirical studies of software engineering: A roadmap. Proceedings of the
Conference on The Future of Software Engineering.2000; 345-355.

63. Birk A, Dingsøyr T, and Stålhane T. Postmortem: Never leave a project without it. IEEE Software 2002;
19(3):43-45.

64. Derby E and Larsen D, Agile retrospectives: Making good teams great: Raleigh, NC: Pragmatic Bookshelf,
2006.

65. Fenton N. Software measurement: A necessary scientific basis. IEEE Transactions on Software Engineering
1994; 20(3):199-205.

66. Mockus A. Missing data in software engineering in Guide to advanced empirical software engineering. 2000;
185-200.

