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Abstract Making changes to software systems can prove costly and it remains a challenge to 
understand the factors that affect the costs of software evolution. This study sought to identify 
such factors by investigating the effort expended by developers to perform 336 change tasks in two 
different software organizations. We quantitatively analyzed data from version control systems 
and change trackers to identify factors that correlated with change effort. In-depth interviews with 
the developers about a subset of the change tasks further refined the analysis. Two central 
quantitative results found that volatility of requirements and dispersion of changed code 
consistently correlated with change effort. The analysis of the qualitative interviews pointed to two 
important, underlying cost drivers: Difficulties in anticipating side effects of changes and 
difficulties in comprehending dispersed code. This study demonstrates a novel method for 
combining qualitative and quantitative analysis to assess cost drivers of software evolution. Given 
our findings, we propose improvements to design practices and development tools to reduce the 
costs. 
 
 
1 Introduction 
Software systems must evolve to adapt to continuously changing environments [1]. With a greater 
understanding of the cost of software evolution, technologies and practices could be improved to 
act against typical cost drivers. Development organizations could also make more targeted process 
improvements and predict cost more accurately in their specific context. Researchers have taken a 
number of different approaches toward understanding the cost of software evolution. One class of 
studies has investigated project factors, such as maintainer skills, the size of teams, development 
practices, and documentation practices, [2-5]. Other studies have examined how system factors 
such as structural attributes of source code, relate to the ease of changing software [6-8]. A third 
class of studies has focused on human factors and has probed the individual cognitive processes 
involved when developers attempt to comprehend and change software [9]. 

This case study assumes that software evolution consists of change tasks that developers 
perform to resolve change requests, and that change effort, i.e. the effort expended by developers 
to perform these tasks, is a meaningful measure of software evolution cost. Thus, by identifying 
the drivers of change effort we can better understand the cost of software evolution. 

Change effort might be affected by factors such as volatility of change requirements, types of 
change, developer experience, task size and complexity, and structural attributes of the system. An 
important element of the study design was to propose cost drivers on the basis of a systematic 
literature review of change-based studies. With this basis, it was possible to separate between i) a 
confirmatory analysis to test the effect of factors shown to be important in earlier change-based 
studies and ii) an explorative analysis that identifies factors that best explained change effort in the 
data at hand. This is also the first study we are aware of that combines quantitative and qualitative 
analysis of change tasks in a systematic manner. The purpose was to paint a rich picture of factors 
that are involved when developers spend effort to perform change tasks. Ultimately, our goal is to 
aggregate evidence from change-based studies into theories of software evolution. 

Quantitative data for this study was retrieved from version control systems and change trackers 
of two independent projects over periods of 6 and 11 months, respectively. The developers 
recorded the effort to perform change tasks and we used this as a response variable in quantitative 
models. Qualitative data was collected through semi-structured interviews focusing on the changes 
that the interviewees had recently made.  

The main contributions of this paper are threefold: First, from a local perspective the study 
results can be used to improve the practices in the investigated projects. For example, the study 
identifies specific factors that were insufficiently accounted for when the projects estimated 
change effort. Second, from the software engineering perspective the study clarifies factors that 
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drive cost of software evolution. For example, the study identifies commonly used design practices 
that had an undesirable effect on change effort. Third, from the empirical software engineering 
perspective the paper demonstrates a methodology of qualitative and quantitative analysis of 
software changes to assess factors that affect the cost of software evolution. 

The remainder of this paper is organized as follows: Section 2 describes the design of the study, 
and includes a measurement model based on a literature review of empirical studies of software 
change. Sections 3 and 4 provide the results from the quantitative analysis, while Section 5 
provides the results from the qualitative analysis. Section 6 summarizes the results for the different 
parts of the analysis and discusses the consequences of the results. Section 7 discusses threats to 
validity, and Section 8 concludes. 
 
2 Design of the study 

2.1 Research question 
The study addresses the following research question:  
 
Which factors associated with change tasks correlate with and affect change effort? 
 
As implied by this question, the individual change task is the unit of analysis for this study. 
Change trackers and version control systems were the source of quantitative data to capture factors 
that vary across change tasks, such as volatility of change requirements, type of change, 
experience of the developers who performed the change, and size of the change. Data on change 
effort was retrieved from the same source.  

We use regression analysis to identify factors that best explain variations in change effort. This 
is the basis for the objective and quantifiable results. However, such analysis does not reveal all 
factors involved when developers spend effort to perform change tasks. We interviewed 
developers about recent change tasks to identify factors that were not captured by the quantitative 
data. Also, because statistical regression analyzes correlations, we expected the interview data to 
reveal more about the involved causal relationships. For example, regression analysis may show 
that corrective changes are more expensive than non-corrective changes, but provides little insight 
into the root causes for this result. Such insight can be found by interviewing developers about 
how corrective and non-corrective changes were made. 

Factors such as the size and type of the system, commercial terms and collaboration model are 
stable across change tasks, and constitute the context for the study results. Generalization of the 
results to other contexts is discussed in Section 2.3. 

2.2 Case study procedures 
Mutual commitment for collaboration was established in 2006 with two development 
organizations that fulfilled the requirements for the study. Developer interviews were conducted 
over a period of six months until July 2007, at which point quantitative data was retrieved from 
change trackers and version control systems in the two organizations. More details about data 
collection are provided in Section 2.4.  

An important preparatory step for the study was a systematic literature review of existing 
change-based studies [10]. The review identified factors that might influence change effort, and 
possible quantitative measures to capture these factors. The measurement model described in 
Section 2.5 summarizes these findings, and defines the specific measures collected for the 
quantitative analysis. 

The quantitative analysis proceeded in two steps: First, we conducted a confirmatory, evidence-
driven analysis to test whether a small set of pre-selected measures contributed to change effort in 
statistical regression models. These measures captured cost factors important in earlier change-
based studies. Second, in the data-driven analysis, a wider set of factors and measures were used as 
input to statistical procedures designed to identify the models that best explained variations in 
change effort. Section 2.6 describes the specifics in how quantitative data was analyzed. 

Roughly once a month, we interviewed the developers about recent change tasks and any 
circumstances that had made the task easier or more difficult. The interviews aimed to identify 
additional or more fundamental cost factors than those identified by the quantitative analysis. To 
achieve this goal, the analysis focused on the changes that had required considerably more or less 
effort than predicted from the regression models. Section 2.7 describes the procedures that we 
followed to collect and analyze qualitative data. 
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The partial evidence from the different parts of the analysis were then compared and integrated 
into a set of joint results. These results constitute the basis for discussing consequences from the 
three perspectives that were mentioned in the introduction. 

 

 
Fig. 1 summarizes the case study procedures. The analysis was based on quantitative and 

qualitative field data from two software projects, and on proposals generated from existing 
empirical evidence. The results from each part of the analysis were summarized to strengthen and 
expand this empirical evidence. With this design, we move towards a theory on software change 
effort that would be valuable both for researchers and practitioners within software engineering.  

 

 
Fig. 1 Case study procedures: Solid lines represent flow of information 

2.3 Generalization of case study results 
The case study paradigm is appropriate when investigating complex phenomena, especially when 
it is difficult to separate the investigated factors from their context [11]. In software development 
and software evolution, social and human factors interact with technological characteristics of the 
software that is developed. We chose the case study method because we wanted to consider the 
full complexity of factors that could affect change effort in a realistic context. 

A main concern with case studies is whether it is possible to generalize study results beyond the 
immediate study context. Case study methodologists recommend that studies are designed to build 
or test theories. Theories can then explain, predict and manage the investigated phenomenon in 
some future situation, and are therefore useful to be able to generalize from case studies.  Because 
we are not aware of theories that are directly relevant to the research question, the proposals for 
this study were based on a systematic review of relevant empirical evidence. In other words, the 
systematic review of empirical evidence takes the place of theories in this study.  
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In particular, the evidence-driven analysis was essential for the generalizability of this study 
because it is designed to confirm, refute or modify the current empirically based knowledge about 
factors that correlate with or affect change effort.  The role of the data-driven analysis was to 
discover additional relationships within the investigated projects, and to generate proposals for 
further confirmatory studies. 

The qualitative analysis aimed at refining the quantitative results. For example, while regression 
analysis could show that more effort is expended when a particular programming language was 
used, interviews could reveal that developers used this programming language for a particular type 
of tasks, say, to interface with hardware. This is important in order to make appropriate use of the 
study results in other contexts, and hence for generalizability. 

The results of this study are inevitably under the influence of context factors pertaining to the 
investigated development organizations. Understanding these factors makes it easier to judge the 
applicability of the results in a new context. By replicating the study across two development 
organizations, and comparing the results and the organizations, we were able to evaluate some of 
these context factors.  

2.4 Case selection and data collection 
Gaining access to software engineering data of the type required by this study is not 
straightforward. We approached medium and large-sized software development organizations in 
the geographic area of our research group during 2006, using procedures that conformed to those 
described in [12]. We required the participants to grant access to the planned sources for 
quantitative and qualitative data, to use object-oriented programming languages, to have planned 
development for at least 12 months ahead, and to use a well-defined change process that included 
some basic data collection procedures. In particular, when the developers committed code changes 
to the version control system, they included an identifier of the associated change request in the 
log message. For each change, the total effort expended on detailed design, coding, unit testing and 
integration was recorded. The recruitment phase ended when we made agreements with two 
projects, henceforth named project A and project B.  

Project A develops and maintains a Java-based system that handles the lifecycle of research 
grants for the Research Council of Norway. A publicly available web interface provides 
functionality for people in academia and industry to apply for research grants, and to report 
progress and financial status from ongoing projects [13]. The officials of the Council use a Java 
client to review the research grant applications and reports. The system integrates with a web 
publishing system, an archive system, and a proprietary system that manages the research 
programs. The consultancy company that we cooperated with was subcontracted by the Council 
annually to make improvements and to add new functionality to the system.  Most change requests 
originated from the users at the Council. Roughly once a month, the development group agreed 
with user representatives and the product owner on changes to include in the next release. They 
continued to work closely with the development group during design, coding, test and integration 
of the changes. For the most part, the contractor was paid per hour of development effort. Defects 
that were detected after deployment were corrected under a guarantee agreement, at no charge 

Project B develops and maintains a Windows PocketPC system written in Java and C++. The 
system allows passengers who travel with the Norwegian State Railways [14] to purchase tickets 
on-board, and offers electronic tickets and credit card payment. The system integrates with a back-
end accounting system that is shared with other sales channels. The consultancy company that we 
cooperated with had been subcontracted by the Norwegian State Railways to develop the system. 
In the period of data collection, improvements, new functionality and corrections were made to the 
system. The main focus was to support a new electronic ticket system, shared between public 
transport operators in the geographic area. Most change requests originated from the product 
owner and user representatives. The members of the development group prioritized and assigned 
development tasks directly in the change tracker, or as part of short and frequent meetings. New 
versions of the system were released roughly once a month. For the most part, the contractor was 
paid per hour of development effort. Some larger changes were performed on a fixed-contract, 
while defects that were detected after deployment were corrected under a guarantee agreement, at 
no charge. 

Both projects were medium-sized and with extensive change activity. Three to six developers 
were making code changes to the systems in each of the projects.  

Fig. 2 and Fig. 3 illustrate change activity and system size over a period of 30 months. Project 
A deployed the first version of their system in Q1 2003, while project B deployed the system in 
Q1 2005. Data was collected over the last 6 and 11 months of the charted period, for project A and 
B, respectively. The apparent dip in system size for project A around Q3 in 2005 was due to a 
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reorganization of the project, where one subsystem was extracted out and defined as a separately 
managed project. Also, a major change in the technology platform happened at that time.  
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Fig. 2 Accumulated number of commits 
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Fig. 3 System size, in lines of code 

We developed scripts to retrieve quantitative data from the repositories of the version control 
systems and change trackers. Raw data was aggregated by MS Access into the change-level 
measures described in Section 2.5. Qualitative data was collected through a series of interviews 
with the developers. The interview sessions were aligned with the release rhythm of the projects, 
i.e. roughly once a month. Table 1 provides key information about collected data.  

 

Table 1 Key information about collected data 

 Project A Project B 
Number of analyzed changes 136 200 
Total effort of analyzed changes  1425 hours 1115 hours 
Changes discussed in interviews 120 65 
Period for data collection Aug 2006 – Jul 2007 Jan 2007-Jul 2007 
Version control system IBM Rational Clearcase LT 

[15] 
CVS [16] 

Change tracker Jira [17] Jira [17] 
Total duration of interviews 20 hours 10 hours 
Total  time charged for data collection 18 hours 14 hours 
 
The companies charged their normal hourly rate for the time they used on interviews and to record 
effort data. This agreement was made in order to increase their commitment to provide the 
required data. 

Prior to the analysis, four and six data points were removed from project A and B, respectively, 
because they corresponded to continuously ongoing maintenance activities, rather than 
independent and cohesive tasks. 

2.5 Measurement model 

 
Fig. 4 Key terms and concepts 

This study’s perspective is that software evolution is organized around the change task. A 
conceptual model for change-based studies is given in Fig. 4. A change task is a cohesive and self-
contained unit of work that is triggered by a change request. In the investigated projects, a change 
task consists of detailed design, coding, unit testing and integration. A change task is manifested in 
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a corresponding change set. A change set consists of revisions, each of which creates a new 
version of a component of the system. The new version can be based on a pre-existing version of 
the component, or it can be the first version of an entirely new component.  

A system is deployed to its users through releases. A release is built from particular versions of 
the components of the system. A release can also be described by the change sets or corresponding 
change requests that it incorporates. The term change aggregates the change task, the originating 
change request, and the resulting change set. Changes involve human resources, and are managed 
and resolved by the development organization. Changes can be hierarchical, because large changes 
may be broken down into smaller changes that are more manageable for the development 
organizations. 

The measures used as explanatory variables in quantitative models of change effort were 
intended to capture factors pertaining to the entities of the model shown in Fig. 4. A summary of 
the relationships between entities, factors and measures is provided in Table 2. In the following, 
we describe the rationale and empirical foundation for the proposals that certain factors will affect 
change effort. For each factor, we select one primary measure and zero or more alternative 
measures. The primary measures are used as explanatory variables in models that are built in the 
evidence-driven analysis. These models are a reference point allowing us to assess the added value 
of the data-driven analysis, where we build optimized, project-specific models using all the 
described measures as candidate variables. We preferred primary measures that were likely to be 
robust to variations in measurement context, that have been used and validated in previous 
empirical studies, and that were measurable or assessable at an early stage in the change cycle. 
Measures are written in italics, while primary measures are marked with an additional asterisk (*). 
 

Table 2 Summary of measures 

Entity Factor Measure Explanation of measure 
Change task Change effort  ceffort Time expended to design, code, test, and 

integrate change,  tracked by developers 
Used as response variable in the study. 

Requirement 
volatility 

crTracks* 
crWords 
crInitWords 
crWait 

-Change tracks for CR before first check-in 
-Words in CR before first check-in 
-Words in original CR  
-Calendar time before first check-in 

Change 
request 

Change type isCorrective* -Classification + text scanning 
Change set size components* 

addLoc 
chLoc 
delLoc 
newLoc 
segments 

-Changed components 
-Measures collected by  
parsing  side-by-side  
output (-y) 
of unix/linux diff 
-diff –y v2 v1 |  cut –c65 | tr –d ‘\n’  | wc –w 

Change set 

Change set 
complexity 

addCC 
delCC 
addRefs 
delRefs 

Parse output of diff to measure the number of 
structural elements added and deleted. 
Measures control-flow statements and reference 
symbols (. -> ) 

Component 
version 

Structural attrib.: 
Size 
 
Coupling 
 
Control flow 

 
avgSize* 
cpSize 
avgRefs 
cpRefs 
avgCC 
cpCC 

 
-Average/weighted (by segments) size of 
changed components 
-Average/weighted (by segments) number of 
references to members of imported components  
-Average/weighted (by segments) number of 
control flow statements 

Technological 
heterogeneity 

filetypes -Unique file types that were changed  

Specific 
technology  

hasCpp (A) 
hasWorkflow (B) 

-Change concerns C++ code 
-Change concerns the  workflow engine 

Component 

Code volatility avgRevs -Average number of earlier revisions 
systExp* -Avg. previous check-ins by developers 
techExp -Avg. previous check-ins on same technology 
packExp -Avg. previous check-ins in same package 
compExp -Avg. previous check-ins in same components 

Human 
resource and 
Revision 

Change 
experience 
 
 

devspan -Number of developers participating in change 
Development 
organization 

Project identity isA* 1 if change belongs to project A 
0 if change belongs to project B 
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2.5.1 Requirement volatility 

Before developers start a change task, they need to comprehend the described requirements, and to 
analyze the impact of the change by some formal or informal procedure. Modifications or 
additions that the developers or other stakeholders make to the original change request, the 
requirement volatility, can indicate uncertainty or other problems in envisioning the change 
incorporated into the system. Such problems could propagate to the coding phase and affect 
change effort. In [18], requirement volatility correlated with fault proneness, while in [19], 
requirement volatility correlated with change effort. A straightforward measure of requirement 
volatility is the number of modifications to the original change request, as recorded in the change 
tracker (crTracks*). Alternative measures include the number of words in the original change 
request (crInitWords), the number of words in all modifications to the change requests (crWords), 
and the elapsed time from a stakeholder created the change request until a developer started the 
change task (crWait). 

2.5.2 Change set size 

The change set size reflects the differences between the current and preceding versions of changed 
source components. The intuitive notion that the change set size affects change effort is verified by 
previous studies [19-22]. Other studies have shown that after controlling for change type or 
structural complexity of changed components, discussed below, change set size is not necessarily a 
significant factor [23-25]. A large change set can indicate that a major bulk of new or changed 
functionality was coded, or that the change request was incompatible with the current design. A 
coarse-grained measure of change set size is the number of source components that were changed 
during the change task (components*). Finer granularity measures use text difference algorithms 
[26] to measure the number of lines of code (LOC) that were added (addLoc), deleted (delLoc) and 
changed (chLoc). Added code in existing components can be differentiated from code in newly 
created components (newLoc).  

We selected a coarse-grained measure of change set size because there is evidence that these 
perform equally well or better than LOC-based measures in models of change effort [21]. LOC 
counts are less meaningful in technologically heterogeneous environments, and when tools that 
generate code automatically are used. Furthermore, LOC counts may become high for 
conceptually trivial changes, such as when program variables or methods are renamed. For 
estimation of change effort, it is probably easier to estimate the number of components to change 
than the number of lines of code to change. An alternative, medium-grained measure is to count 
the number of disjoint places in the existing code where changes were made (segments). 

2.5.3 Change set complexity 

If the structural complexity of the change set is high, e.g., if there are many changes to the control-
flow, or many changes in the usage of members of external components, an increase in change 
effort beyond the effect of change set size could be expected. Except for one study in the authors’ 
research group [27], we are not aware of any studies investigating this effect of change set 
complexity on change effort. Fluri and Gall showed that measures of edits to the abstract syntax 
trees of individual components predict ripple effects better than measures of textual differences 
[28]. We constructed two measures to capture the number of added control-flow statements and 
added references to members of external components, addCC and addRefs. Corresponding 
measures were constructed for deleted control-flow statements and deleted references to members 
of external components, delCC and delRefs.  Because these are likely to correlate strongly with 
measures of change set size, and because they are experimental in nature, we only used these 
measures in the data-driven analysis.  

2.5.4 Change type 

Changes can be described according to their origin, importance, quality focus, and a number of 
other criteria. In change-based studies, the change type has been important in order to understand 
change effort [21, 22, 24, 25, 29]. Corrective, adaptive or perfective change types, as suggested by 
Swanson [30], was the most commonly used classification schema. A recurring result from 
existing change-based studies is that corrective changes are more time consuming than other types 
of change, after controlling for change set size [21, 31]. This does not contradict results from 
studies that have shown that the mean effort for corrective changes is lower than for other change 
types [29], because corrective changes tend to have smaller change set size [32]. We chose the 
classification into corrective and non-corrective changes (isCorrective*) as the primary measure in 
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the analysis. To identify corrective changes, we combined the categorizations performed by the 
developers with textual search for words like “bug”, “fails” and “crash” (in the native language) in 
change request descriptions. The latter step was necessary because the projects tended to underuse 
the category for corrective change. 

2.5.5 Structural attributes of changed components 

Relevant parts of the system must be understood in order to perform a change task. The structural 
attributes of these parts may affect developers’ ability to comprehend software code [33, 34]. 
Many change-based studies have investigated whether the size of changed modules (avgSize*) 
correlate with change effort [19, 22, 23, 28, 35]. Arisholm showed that size and certain other 
structural properties of the changed source components were correlated with change effort [23]. 
We constructed alternative measures of control flow complexity and coupling in the changed 
components. The first measure takes the average number of control-flow statements (avgCC) in 
the changed components, while the second measure takes the average number of references to 
members of imported components, of each changed component (avgRefs). Variations of the 
measures were constructed by weighting the measures by the relative amount of change in each 
component (cpSize, cpCC and cpRefs), as proposed in [23]. 

2.5.6 Code volatility 

Historical code changes are typically not uniformly distributed over the components of the system.  
While many components rarely change, some are involved in a large proportion of the change 
tasks. We propose that the code volatility or change proneness will affect change effort, and that 
changes to change prone components require less effort, simply because the developers are more 
experienced with changing these components. Conversely, changes to infrequently changed 
components represent unfamiliarity, and may also indicate more fundamental changes. Higher 
code volatility could also result in increased change effort, because frequently changed modules 
may experience code decay [36]. However, in the investigated projects, components believed to 
have decayed due to frequent changes were re-factored, and we therefore expected this effect to be 
limited. The number of historical revisions, averaged over all changed components (avgRevisions), 
captures code volatility of changed components. Several researchers have used volatility of 
individual components as a predictor of failure proneness, see e.g., [37]. However, we are not 
aware of studies that have investigated the relationships between code volatility and change effort. 
Due to this lack of existing empirical evidence we only used this measure in the data-driven 
analysis. 

2.5.7 Technological heterogeneity  

Both projects used a number of tools and technologies. Technological heterogeneity refers to the 
number of different technologies involved in a change. Increased technological heterogeneity may 
increase change effort, because it sets higher demands on developer skills and because it may not 
be straightforward to integrate technologies. One simple way to measure technological 
heterogeneity is to count the number of unique file name extensions among the changed 
components (filetypes). We are not aware of studies that have investigated how technological 
heterogeneity affects change effort. Due to the lack of existing empirical evidence we only used 
this measure in the data-driven analysis. 

2.5.8 Specific technology 

Use of a specific technology can affect change effort. For example, Atkins et al. showed that when 
developers used a tool that supported evolution of system variants, change effort was significantly 
reduced [24]. In project B, functionality interfacing with hardware was written in C++. We 
propose that changes that involve C++ will be more expensive to change than other code, which 
was predominantly written in Java. One rationale is that more specialized knowledge is required to 
develop code that interfaces to hardware. An effect of the lower abstraction level in C++ as 
compared to Java would work in the same direction. The binary measure hasCpp evaluates to true 
if any of the changed components were written in C++. Project A used a Java-based workflow 
engine as an important part of the technological basis. Although the project assumed that they 
benefited from the high abstraction level of this technology, we wanted to investigate whether the 
changes involving the workflow engine were different with respect to change effort. The binary 
measure hasWorkflow evaluates to true if any of the changed components were based on the 
technology of the Java-based workflow engine. 
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2.5.9 Change experience 

Experiments have shown that there can be large productivity differences between individual 
developers [38, 39]. The developer’s ability to perform a change is determined by a complex set of 
factors that include general mental abilities, education, different categories of experience, and 
motivation. In a project setting, large individual differences may be masked by compensation 
effects, e.g., more experienced developers may be assigned to inherently difficult tasks [21, 31]. If 
the identity of individual developers were used as a nominal measure, we could have accounted for 
individual differences. This was not possible because we had agreed to avoid analysis that could 
be perceived as an assessment of the individual developer. Consequently, we resorted to various 
counts of previous commits to the version control system as indicators of the developers’ 
experience. This change experience can be measured for a given developer at different granularity 
levels: A basic measure is the total number of previous check-ins by the developer who performed 
the change (systExp*). Other measures include the average number of earlier check-ins of the 
changed components (compExp), packages (packExp) or technologies (techExp). For packExp, we 
counted earlier check-ins to components in the same packages that were changed. For techExp, we 
counted earlier check-ins to components that matched the file extensions of the changed 
components. If several developers were involved in the change, the averages of the measures were 
used, weighted by the number of components changed by each developer. Similar measures were 
used in [40]. In that study, the coarsest-grained measure (systExp) significantly affected the 
response variable capturing failure proneness, while the other measures did not. 

2.6 Analysis of quantitative data 
This section describes the statistical framework used to build and assess the regression models. 
The specific procedures for the evidence-driven and the data-driven analysis are provided in 
Section 3.1 and 4.1, respectively. The statistical packages used were SAS 9.1 to fit regression 
models, JMP 6 to create decision trees, and R version 2.6.1 to calculate the cross-validated 
measures of model fit described in Section 2.6.2. 

2.6.1 Statistical procedures 

Change effort was used as the response variable for all statistical models. The measures discussed 
in Section 2.5 were used as candidate explanatory variables. The regression model framework was 
Generalized Linear Models (GLM) with a gamma response variable distribution (sometimes called 
the error structure) and a log link-function, see [41]. One reason to assume gamma-distributed 
responses was that the effort data distribution has a natural lower bound of zero and was right-
skewed with a long right tail. This resembles other kinds of gamma-distributed wait-time data, for 
example data on time-to-death or time-to-failure. A log link function ensures that predicted values 
are always positive, which is appropriate for wait-time data. The size of effect of a specific 
explanatory variable xn is assessed by the proportional change in expected change effort that 
results from a change to xn. Because a log link-function is used, the proportional change in 
expected change effort becomes: 
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Cross-project models were constructed to identify effects that were present in both projects, and to 
formally test for project differences. Project-specific models were constructed to identify effects 
that were particular to each project, and to quantify those effects in each project. 

The p-values, sign and magnitude of the coefficients are inspected to interpret the models. The 
significance level is set to 0.05. This means that for a variable to be assessed as significant, the 
probability that the variable has no impact must be less than 5%. It is difficult to interpret 
coefficients when there is a high degree of multicollinearity between the explanatory variables. In 
the evidence-driven analysis we attempted to reduce multicollinearity by selecting primary 
measures designed to capture independent factors. In the data-driven analysis, the results from a 
principal component analysis identified orthogonal factors in the data sets. The actual amount of 
multicollinearity in the fitted models was measured by the variance inflation factor (VIF).  

2.6.2 Measures of model fit 

We chose the cross-validated mean and median magnitude of relative error to assess the fit of 
models. The basis for these measures is the magnitude of relative error (MRE) which is the 
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absolute value of the difference between the actual and the predicted effort, divided by the actual 
effort. The measures were calculated by n-fold cross-validation. With this procedure, the variable 
subset to be evaluated was fitted in n iterations on n-1 data points. In each iteration, the fitted 
model was used to predict the last data point. The mean MRE of these predictions forms 
MMREcross, while the median of the values forms MDMREcross. The cross-validated measures 
are more realistic measures of the predictive ability of regression models than those measures that 
are not based on cross-validated predictions. This was particularly important during the data-
driven analysis, where models were selected on the basis of the MMREcross-measure. Because 
MdMREcross uses the median of the cross-validated MRE values rather than the mean, it is more 
robust against the influence of outliers. 

Another measure to assess model fit is the percentage of data points with an MRE of less than a 
particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of the data 
points that have a MRE of less than 0.25 and 0.50, respectively. 

As a reference point to assess the model performance, we calculated the measures of model fit 
for the constant model, i.e. the model that uses a constant value as predictor for all data points. 

2.7 Collection and analysis of qualitative data 
We prepared for the interview sessions by studying data about each change request in the change 
trackers and version control systems, and attempted to understand how the changed code fulfilled 
the change requirements. The interview guide is given in Appendix A. In parts 5, 6 and 7 of the 
interviews, the developers were encouraged to express opinions about phenomena that had 
affected change effort. The purpose of the other parts was to elicit context information. To help the 
interviewee recall what had happened during the change task, we made information about each 
change easily available during the interview sessions.  

The changes with the largest magnitude of relative error (MRE) from the data-driven analysis 
were selected for in depth analysis. An alternative criterion would have been to select changes 
with the largest error in absolute hours. However, we considered an error of 10 hours to be more 
interesting if the effort estimated by the model was 2 hours, than if it was 100 hours. We limited 
the analysis to data points with an MRE of more than 1.3 for underestimated changes and more 
than 0.5 for overestimated changes. These limits were set somewhat arbitrarily. Note that the terms 
underestimated changes and overestimated changes refer to the relationship between the actual 
change effort and the expected values that were obtained post hoc on the basis of the regression 
models. 

The interviews were transcribed and analyzed in the tool Transana [42], which provides 
mechanisms to navigate between transcripts and audio data. This feature made it feasible to re-
listen to the original voice recordings throughout the analysis. The interviews were coded in two 
phases. In phase 1, immediately after each interview session, the interviews were transcribed and 
coded according to a coding scheme that evolved as more data became available. Eventually, 17 
categories and 132 codes were used to capture the contents of the interviews, including context 
and background information. In phase 2, when the quantitative models had been constructed, it 
was possible to use these to select the changes that required considerably more or less effort than 
predicted. When only this subset of changes was considered, the number of applied codes was 
reduced to 82 for the 17 categories. We then narrowed the focus to the categories and codes that 
suggested a relationship with change effort. Finally, the exact naming and meaning of codes and 
categories were reconsolidated to make them more straightforward and easier to understand. The 
coding schema that resulted from this process is described in Section 5. 
 
3 Evidence-driven analysis 

3.1 Models fitted in evidence-driven analysis 
The data sets from the two projects were concatenated, and cross-project models were constructed 
to identify effects present in both projects, and to formally test for project differences: 
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6
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Model 1 includes one explanatory variable for each of the primary measures. It also includes a 
project indicator (isA) allowing for a constant multiplicative between the projects. Model 2 adds 
interaction terms between the project indicator and each of the primary measures, allowing for 
different coefficients for each factor in each project.  

Furthermore, two project specific models were fitted, one for each of the two data sets: 
 

veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß  0ßt)log(ceffor +++++=   (M3) 
 
The value of the coefficients and the associated significance levels in the project specific models 
were used to asses the size and statistical significance of effects. The measures of cross-validated 
model fit were used to assess explained change effort variability. The model fit of the constant 
models was used as a yardstick for the assessment: 

 
isA1ß  0ßt)log(ceffor +=  (M4)      

3.1.1 Results from evidence-driven analysis 

Key information about coefficients in the fitted models is provided in Table 3. Significance levels 
of 0.05, 0.01 and 0.001 are indicated with one, two and three asterisks, respectively.  

 

Table 3 Coefficient values, significance and model fit in evidence-driven analysis 

 Cross 
project 
constant 
model (M4) 

Cross project 
w. project 
indicator 
(M1) 

Cross project 
w. interactions 
(M2)  

Project A 
(M3) 

Project B 
(M3) 

Intercept (β0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30*** 
crTracks   . 0.0750** 0.0756** 0.0800* 0.0756** 
components . 0.0976*** 0.119*** 0.0759*** 0.119*** 
systExp . -0.0000389 -0.000177** 0.0000255 -0.000177** 
avgSize . -0.0000325 -0.0000614 -0.0000108 -0.0000612 
isCorrective . -0.277* -0.110 -0.780*** -0.1098 
isA 0.63*** 0.182 0.142 . . 
crTracks*isA . . 0.00436 . . 
components*isA . . -0.0429+ . . 
systExp*isA . . 0.000203** . . 
avgSize*isA . . 0.0000505 . . 
isCorrective*isA . . -0.670* . . 
MMREcross 3.29 1.52 1.5192 1.86 1.32 
MdMREcross 1.43 0.69 0.6786 0.72 0.60 
Pred(25) 0.095 0.20 0.23 0.21 0.25 
Pred(50) 0.24 0.36 0.40 0.35 0.43 

 
The summary of the constant model M4 shows that the expected change effort was 5.6 hours and 
10.5 hours for project A and B, respectively, and that this difference was statistically significant. 
The summary of the cross project model M1 shows that the measures of requirement volatility and 
change set size are significant explanatory variables of change effort in the concatenated data set. 
After accounting for these variables, there was no longer a statistically significant difference 
between the projects. However, the model M2 shows that project differences exist, because it 
includes significant interaction terms for system experience (systExp*isA) and change type 
(isCorrective*isA). Furthermore, the summary of the project-specific models M3 shows that the 
measure of change type was statistically significant in project A only, whereas the measure of 
system experience was statistically significant in project B only. We use the results from the 
project-specific models M3 to assess the sizes of effects of the significant explanatory variables: 

The number of updates to the change request prior to the coding phase (crTracks) had a 
significant effect on change effort in all models. A 7% increase in change effort could be expected 
for each additional track in the change tracker. This size of effect was similar in the two projects. 

The number of changed components had a significant effect on change effort in the models 
from both projects. When one additional component was changed, a 12.9% and 7% increase in 
effort could be expected in project A and B, respectively.  

In project A, the significant model term for isCorrective indicate that corrective changes was 
expected to require slightly less than half the effort compared to that required by non-corrective 
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changes (e-0.780=46%). Note that this estimate was not confounded by a smaller change set size for 
corrective changes, because such effects are eliminated (held fixed) when assessing the effect sizes 
of the individual explanatory variables, see Section 2.6.1. In project B, the change type has no 
significant effect on change effort. 

In project B, the total number of commits to the version control system by the involved 
developers (systExp), was significantly related to change effort. Change effort was expected to 
decrease by 16.2% for every 1000th check-in performed by a developer. In project A, the effect 
was small and statistically insignificant. 

The estimated coefficients for the average size of changed components (avgSize) indicate that 
change effort was slightly lower when large components are changed, but the effects are very 
small and statistically insignificant. 

Plots of actual versus predicted change effort of projects A and B are provided in Fig. 5 and Fig. 
6, respectively. The primary measure of cross-validated model fit, MdMREcross, was down from 
1.43 for the constant model to between 0.60 and 0.72 for the rest of the models. Hence, the 
selected measures explain a fair amount of variability. However, a suggested criteria for accepting 
a model as good is a value of less than 0.25 for MMRE or MdMRE, and higher than 0.75 from 
Pred(25) [43]. By this standard, the model fit was relatively poor, and justifies the search for 
additional relationships through the use of the data-driven analysis presented in Section 4.  

The variance inflation factor was less than 1.34 for all the coefficients in all models. Hence, 
multicollinearity was not a threat to the interpretation of the coefficients. 
 

Fig. 5 Predicted vs. actual effort, project A 
 

Fig. 6 Predicted vs. actual effort, project B 

3.2 Discussion of evidence-driven analysis 
In the evidence-driven analysis, we used five pre-selected explanatory variables. The measures 

of requirement volatility and change set size had a consistent and strong effect on change effort in 
the models. It is not surprising that the size of the change set was important: The more code that 
needs to be changed, the more fundamental is the change, and the more effort it takes. It is 
interesting from a practical perspective that a relatively coarse grained, easily collectable and early 
assessable measure seems to perform well as a predictor of change effort. It is also possible that 
components captured a particular effect of dispersion that adds to an effect of change set size: 
Code changes that are dispersed among many components could require more effort than if the 
same number of lines are changed in fewer components. Both the data-driven analysis and the 
qualitative analysis investigate this topic in more depth. 

The result for requirement volatility is useful to make better effort estimates. The number of 
comments or tracks in change trackers can be automatically retrieved in an early phase of the 
change process, and can therefore be a useful predictor for the coding phase. The results also 
imply that actions that reduce the volatility of requirements can be important to reduce change 
effort. However, it is difficult to suggest concrete actions without more knowledge about the 
causes for volatile requirements. This is further investigated in the qualitative analysis.  

Corrective changes required less effort than non-corrective changes, although the difference 
was statistically insignificant in project B. The direction of this effect is opposite to that of earlier 
studies. A possible explanation is that the tasks and processes involved in corrective vs. non-
corrective changes are indeed different, but the direction of the difference is dependent on the 
situation. A negative coefficient for isCorrective indicates that it is relatively easy to correct 
defects compared to making other types of changes. We consider this to be a favourable situation 
in projects where it is important to quickly correct defects or where defects are associated with 
undesirable noise.  
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The effect of system experience seemed to be quite small, even though systExp was statistically 
significant for project B. One problem with systExp as a measure of system experience is that it 
may be confounded with system decay: The desirable effect of more experienced developers can 
be counteracted by an effect of system decay, because systExp and system decay are inversely 
related to the underlying factor of time. 

We did not measure any significant effect of the size of changed components. There are several 
possible explanations for this. First, it is not necessarily correct to assume that the class or the file 
is the natural unit for code comprehension during change tasks. Second, because larger 
components are more change-prone, developers will have more experience in changing these 
components. This desirable effect of familiarity may have counteracted an undesirable effect of the 
size of the components. These issues are further discussed in the qualitative analysis in Section 5. 
 
4 Data-driven analysis 
The data-driven analysis presented in this section aims to complement the evidence-driven 
analysis: It enables us to i) explore relationships that were not originally proposed, ii) assess 
factors that have a weaker foundation in theory and empirical evidence, and iii) evaluate the 
predictive power of alternative measures of the same underlying factor. 

4.1 Procedures for data-driven analysis 
In the data-driven analysis, all the measures from Table 2 were used as candidate variables in the 
statistical procedures described below. We used: 

 
• Principal component analysis (PCA) to identify subsets of uncorrelated or moderately 

correlated measures to prevent problems with multicollinearity, 
• Cross-validated measures of model fit as the criterion to select the models that best explained 

change effort. 
• Regression trees to identify interaction effects and non-continuous effects.  
 
The goal was to identify the models that explained the most possible change effort variability, 
under the constraint that each model variable captured relatively orthogonal cost factors. 

4.1.1 Variable subset selection based on Principal Component Analysis 

The structure of the correlations between the candidate variables was analyzed by principal 
component analysis (PCA). PCA is used to reduce the dimensionality of wide data sets, and to 
help in identifying orthogonal factors. Each principal component (PC) that results from a PCA is a 
linear combination of the original variables, constructed so that the first PC explains the maximum 
of the variance in the data set, while each of the next PC’s explains the maximum of the variance 
that remains, under the constraint that the PC is orthogonal to all the previously constructed PC’s. 
The loading of each variable in PC indicates the degree to which it is associated with that PC. In 
order to interpret a PC, we inspected the variables that loaded higher than 0.5, after the varimax 
rotation [44] had been applied. The results from the analysis are provided in Section 4.2.1. 

The results from the PCA were used to construct all possible subsets of candidate variables that 
contained exactly one variable from each PC. This constraint prevents high multicollinearity in the 
models, and makes them easier to interpret.  

4.1.2 Identify the best models that contain main effects only 

For each of the subsets of variables identified by means of the PCA, regression models of change 
effort were fitted within the described statistical framework, that is, Generalized Linear Models 
assuming Gamma-distributed outcomes and a log link-function. The cross-validated measures of 
model fit were calculated for the models that only contained significant variables. This 
requirement helps in interpreting the models, but it was also a pragmatic choice to limit the 
number of variable subsets that were subject to the cross-validation procedure, which is 
computationally expensive. The models with the lowest MMREcross in the two projects were 
selected as the best. 

4.1.3 Select the best models that include interaction effects or non-continuous effects 

The goal of this step was to identify possible interactions between the main effects identified in the 
previous step, and to discover effects that apply to smaller intervals for values of the explanatory 
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variables.  We used a hybrid regression technique that combines the explorative nature of 
regression trees with the formality of GLM regression, procedures originally proposed in [45]. 
Regression trees can describe complex interaction effects and non-continuous effects, while still 
being easy to interpret. Complementary to this, the linear regression framework is suited to 
identify the overall continuous effects, and to assess the statistical significance of effects.  

A regression tree splits the data set at an optimal value for one of the explanatory variables. The 
split is performed so that the significance of the difference between the two splits is maximized. 
This step is performed recursively on the splits, until a stop criterion is reached. The stop criterion 
was that a leaf node should contain not less than 15 data points.  

For use in GLM regression, a binary indicator variable was created for each of the leaf nodes in 
the regression tree. Since this procedure partitions the dataset, every change task had the value 1 
for one of the indicator variables, and 0 for the rest. Candidate variable subsets were generated 
from all possible combinations of the indicator variables and the main effects. The variable subsets 
that only contained statistically significant variables were retained for n-fold cross-validation. The 
models with the lowest MMREcross from the n-fold cross-validation were selected as the best. 

4.2 Results from data-driven analysis 

4.2.1 Factors identified by PCA 

The summary of results from the principal component analyzes for project A and B are shown in 
Table 4 and Table 5, respectively. We made the following observations about the match between 
the conceptual measurement model and the PCA: 

 
• The factors in italics match factors described in Section 2.5. The collected measures for these 

factors are consistent with the measurement model, and capture five orthogonal factors in the 
data set: Change set size, Component version size, Requirement volatility, Change experience 
and Change type. 

• PC1A and PC2B show that the suggested measures for control-flow and coupling belong to the 
same principal component as the LOC-based measures of size. The underlying factor captured 
by all these measures is the size of changed components. 

• Likewise, PC1B shows that the suggested measures of change set complexity belong to the 
same principal component as the LOC-based measures of change set size, in project B. 

• PC2A and PC3B contain measures that capture the dispersion of changed code over 
components, types of components and developers. We label this dimension change set 
dispersion. This dimension captures a factor that is orthogonal to change set size. 

• PC3A contains measures of removed code. This principal component captures the amount of 
rework, apparently distinguishable from the concept of change set size in project A.  

• In project A, the measure of code volatility belongs to a distinct principal component (PC7A), 
while in project B, it belongs to the principal component that captures size (PC2B). The latter 
result indicates that large components are more prone to change, simply due to the effect of 
size. 

• PC6B contains a measure of lines of code in new components, and the change set dispersion. 
One possible interpretation is that these measures capture the degree of mismatch between the 
current design and the design required by the change. 

 
These observations are accounted for when the models are interpreted, in Sections 4.3 and 6.  
 

Table 4 Summary of principal component analysis, project A 

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A 
Load 
> 0.5 
after 
varimax 
rotation 

avgSize 
avgRefs 
avgCC 
cpRefs 
cpCC 
cpSize 

hasWorkflow 
addCC 
addRefs 
newLoc 
components 
filetypes 
devspan 

delLoc 
delCC 
delRefs 
crWait 

addLoc 
chLoc 
segments 

crWords 
crInitWords 
crTracks 

systExp 
techExp 
packExp 

avgRevs isCorrective

Entity 
 
Factor 

Component 
version 
Size 

Change set 
 
Dispersion 

Change set: 
 
Rework 

Change set  
 
Size 

Change 
request 
Requirement 
volatility 

Human 
resource 
Change 
experience 

Component 
version 
Code 
volatility  

Change 
request  
Change 
type 
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Table 5 Summary of principal component analysis, project B 

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B 
Load 
> 0.5 
after 
varimax 
rotation 

addLoc 
delLoc 
chLoc 
segments 
addCC  
delCC 
addRefs 
delRefs 

avgSize 
avgRefs 
avgCC 
avgRevs 
cpRefs 
cpCC 
cpSize 

components 
filetypes 
devspan 
packExp 
hasCpp 

crWords 
crInitWords 
crTracks 
crWait 

systExp 
techExp 

newLoc 
components 

isCorrective

Entity 
 
Factor 
 

Change set 
 
Size  

Component 
version 
Size  

Change set 
 
Dispersion 
 

Change request 
 

Requirement 
volatility 

Human resource 
 
Change 
experience 

Change set 
 
Design 
mismatch 

Change 
request 
Change 
type 

 

4.2.2 Main effects 

Candidate variable subsets were generated from all combinations of variables that included at most 
one variable from each principal component. On the basis of the results in  
 
These observations are accounted for when the models are interpreted, in Sections 4.3 and 6.  
 
Table 4 and Table 5, this meant that 71680 variable subsets were generated for project A and 38880 
variable subsets for project B. Following the procedure described in Section 4.1.2, the variable 
subsets shown in the first and second rows of Table 6 were eventually selected as the best variable 
subset.  

For project B, the best variable subset from the data-driven analysis includes all the primary 
measures used in the evidence-driven analysis. In addition, the model includes the measure 
addCC, which counts the number of control-flow statements in the change set. This was intended 
to capture structural complexity of the change set, but results from the PCA showed that addCC 
must be considered to be a size measure in this data set. The size of effect is moderate, as the 
expected change effort increases by 10% when 10 control-flow statements are added. For the other 
explanatory variables, the sizes of effects are similar to those described in the evidence-driven 
analysis. 

For project A, only the change type indicator isCorrective recurred from the evidence-driven 
analysis. The model predicts that 40% less effort is required for corrective changes. The measure 
crWords is the number of words in the tracks counted by the primary measure crTracks. An 
increased change effort of 10 percent can be expected when 50 additional words are used in 
updates of the change request. A strong effect is indicated by the coefficient for filetypes, the 
measure of technological heterogeneity: Change effort is expected to increase by around 30 % 
when one additional file type is part of the change set. A measure of change set size, chLoc, is also 
significant: An increase of 30 % can be expected when around 50 additional lines of code were 
changed.  

The variance inflation factor was lower than 1.88 for all the coefficients in the two models. This 
verifies that multicollinearity is not a problem for the interpretability of the coefficients. 

4.2.3 Interaction effects 

As explained in Section 4.1.3, regression trees were used to explore interaction effects and non-
continuous effects. A binary variable was constructed for each of the leaf nodes, and used as 
candidate variables in GLM regression together with the main effects of the models described in 
the previous section. For project A, there were four main effects and seven leaf nodes, which give 
rise to 2048 candidate variable subsets. For project B, there were four main effects and eight leaf 
nodes leading to 4096 variable subsets.  

The variable subset that resulted in the lowest MMREcross was selected for each data set. The 
third row in Table 6 contains a summary of the selected model for project A. Compared with the 
model that contained main effects only (row 1), the new model retains three of the four main 
effects, and adds four interaction rules. The first three of the interaction rules identify the 50 
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changes that involve only one file type, i.e. technologically homogenous changes. The coefficients 
for the rules are negative, which means that change effort is lower for these changes, beyond the 
difference that is explained by the continuous main effect. The second and third rules indicate that 
the effect of technology homogeneity is weaker when the requirement volatility is higher. Rule 3 
indicates that the effect also decreases with large change set size. The fourth rule predicts that 2.6 
times more effort is expended for changes involving three or more file types and many changes to 
existing code.  

The last row in Table 6 contains a summary of the model with the lowest MMREcross for 
project B.  Compared with the model that contained main effects only (row 2), a binary rule 
replaces a continuous effect of addCC: If 23 or more control-flow statements are added, then this 
doubles the expected change effort. This rule applies to 12% of the changes. 
 
Table 6 Coefficient values, significance and model fit in data-driven analysis 

Model Variable Coefficient MMRE 
cross 

MdMRE 
cross 

Pred 
(25) 

Pred 
(50) 

Project A 
Main 
effects 

Intercept 
crWords 
filetypes 
chLoc 
isCorrective 

9.06*** 
0.00187** 
0.279*** 
0.005111** 
-0.503* 

1.52 0.63 0.23 0.40 

Project B 
Main 
effects 

Intercept 
crTracks 
addCC 
components 
systExp 

9.06*** 
0.0879*** 
0.00949** 
0.1027*** 
-0.000161** 

1.12 0.60 0.24 0.42 

Project A 
With 
interaction 
terms  

Intercept 
crWords 
filetypes 
isCorrective 
filetypes=1 & crWords<24   
filetypes=1 & crWords>=24 & chLoc < 2 
filetypes=1 & crWords>=24 & chLoc>=2   
filetypes>=3 & chLoc>= 48 

9.64*** 
0.00109* 
0.178*** 
-0.376* 
-1.145*** 
-0.831*** 
-0.653** 
0.963*** 

1.37 0.57 0.24 0.46 

Project B 
With 
interaction 
terms 

Intercept 
crTracks 
components 
systExp 
addCC>=23    

9.15*** 
0.0839*** 
0.0798*** 
-0.000153** 
0.7877** 

1.12 0.62 0.22 0.40 

 
 

Fig. 7 Predicted vs. actual effort, project A 
 

Fig. 8  Predicted vs. actual effort, project B 

 
When regression tree rules were added for project A, the cross-validated model fit substantially 
improved. For project B, the model fit was almost identical with and without rules from the 
regression tree. 

4.3 Discussion of data-driven analysis 
The results from the data-driven analysis complement the results from the evidence-driven 
analysis. In the model for project B, LOC-based size, as well as change set dispersion, had 
significant effects on change effort. The PCA showed that these measures captured different 
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factors in the data set. A possible explanation is that change set dispersion affected change effort, 
beyond the effect of LOC-based size.  

Technological heterogeneity can also be an important predictor of change effort. In particular, 
less effort was expended when only one technology was involved in the change.  This result can be 
useful to improve change effort estimates. 

The size and complexity of changed components did not have a significant effect on change 
effort in the models. At face value, this is a surprising observation because it violates fundamental 
assumptions about relationships between software design and the ease with which the software can 
be maintained and evolved. One explanation is that the systems overall had good and modular 
designs, with only minor (in terms of their effect on change effort) size and complexity differences 
between components. Another explanation is that the chosen measures do not capture the most 
important (in terms of their effect on change effort) structural attributes of the source code. This 
issue is further discussed in the qualitative analysis in Section 5.2. 

For project A, the data-driven analysis resulted in models that had better model fit than the 
models from the evidence-based analysis. In particular, the improved model fit can be contributed 
to the introduction of a measure of technological heterogeneity. For project B, the model fit did not 
improve. In this case, the primary measures seemed to capture the important factors available from 
the data at hand.  For both projects, the regression trees proved to be well suited to simultaneously 
describe non-continuous effects and interaction effects. The total amount of explained change 
effort variability was moderate. This shows that there were other important factors at play than 
those captured by quantitative measures. The plots in Fig. 7 and Fig. 8 show the MRE boundaries 
for overestimated and underestimated changes. The changes that fell outside the area formed by 
these lines received particular attention during the qualitative analysis. In total, 32 underestimated 
changes and 16 overestimated changes (those with MRE limits of 0.5 for overestimated changes 
and 1.3 for underestimated changes, see Fig. 7 and Fig. 8) were analyzed in depth. 
 
5 Results from the qualitative analysis  
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48 selected 
changes. Four changes were excluded from the analysis because the interviews showed that code 
changes had not been properly tracked. In other words, the quantitative models identified data 
points with large measurement error. 

The three first columns in Table 7 define the coding schema that resulted from the coding 
process. Each code captures a factor that was perceived by the interviewees to drive or save effort. 
For example, T0 could drive effort if the developer was unfamiliar with a relevant technology, and 
save effort if the developer had particularly good knowledge about the technology. The rightmost 
column shows the number of times a code was used in underestimated and overestimated changes, 
respectively. 
 

Table 7 Summary of factors from qualitative analysis 

Category Code Description of code Occurrences in 
underestimated/over
estimated changes 

Understanding 
change 
requirements 

 

R1 
 

CR clarification was needed/not needed  
 

9/2 

Identifying and 
understanding 
relevant source 
code 

 

U1 
U2 
U3 

It was difficult/easy to understand the relevant source code 
It was difficult/easy to identify the relevant system states 
The developer was unfamiliar/familiar with relevant source code 

7/1 
3/3 
3/2 

Learning relevant 
technologies and 
resolving 
technology issues 

 

T0 
T1 
T2 
T3 

Developer was unfamiliar/familiar with the relevant technology 
The features of the technology did not/did suite the task 
Technology had/did not have defects that affected the task 
Technology had limited/good debugging support 

3/0 
1/2 
4/0 
5/0 

Designing and 
applying changes 
to source code 

 

D1 
D2 
D3 

Change required deep/shallow understanding of user scenario 
The needed mechanisms were not/were in place  
Changes were made to many/very few parts of the code 

0/9 
13/2 
0/8 

Verifying the 
change 

 

V1 It was necessary/not necessary to establish test conditions  2/1 

Cause of change C1 Error by omission – failed to handle a system state 11/5 
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(analyzed for all 
changes) 

C2 
C3 
C4 

Error by commission – erroneous handling of a system state 
Improve existing functionality  – within current system scope 
Planned expansion of functionality – extend the system scope 

1/3 
4/9 
6/5 

 
 
 
Many of the codes and categories coincide with concepts studied within the field of software 
comprehension. For example, Von Mayrhauser and Vans proposed and evaluated an integrated 
model of software comprehension that addressed the comprehension processes of developers who 
perform change tasks within large scale software maintenance [46]. They suggested lists of 
activities involved in change tasks that largely conform to the developed categories. One 
discrepancy is that, in our case, a separate category was justified for technology properties. Also, 
the design activity was difficult to distinguish from the coding activity; hence we used a common 
category. We chose to use a common coding schema for all types of changes, and let the cause of 
change be part of the coding schema. 

In the following subsections, we discuss factors that affected effort for the analyzed change 
tasks. The analysis applies to both projects, except when project particularities are mentioned 
specifically. The tables in Appendix B provide details about each of the analyzed changes 

5.1 Understanding change requirements 
R1. For nine of the underestimated changes, the developers mentioned that the need to clarify 
requirements resulted in increased change effort. For two of the overestimated changes, they 
mentioned that a concise and complete specification made it easier to perform the change. This 
supports the results from quantitative analysis, which showed a consistent relationship between the 
amount of updates to the original change request, and change effort. For the nine underestimated 
changes, the requirement clarifications were only partially documented in the change tracker. This 
explains the large residuals for these changes. The need to clarify requirements occurred more 
frequently in project A than in project B. However, six out of nine underestimated changes for 
project B were fixes of errors due to missed requirements, see Section 5.6. Hence, incomplete 
requirements had an undesirable effect in both projects. 

In some cases, the developers said that the user representatives deliberately failed to provide 
complete specifications, in particular for changes that concerned the look and feel of the user 
interface. However, the strongest effect on effort occurred when unanticipated side effects of a 
change needed to be clarified during detailed design and coding. In most cases, this meant that 
existing functionality was somehow impacted by the change, but that the developer was uncertain 
how to deal with these impacts. In general, it is not obvious that updates to requirements should be 
avoided. However, in the investigated projects, updates to change requests were indeed associated 
with higher change effort. We conclude that practices that help to identify side effects of change 
requirements are likely to have a positive effect in both projects.  

5.2 Identifying and understanding relevant source code 
Time expended by developers to comprehend code that is relevant for a change can constitute a 
substantial share of the total change effort. Koenemann and Robertson suggested that the 
comprehension process involves code of direct, intermediate and strategic relevance [47]. Directly 
relevant is code that has to be modified. Code that is perceived to interact with directly relevant 
code has intermediate relevance. Strategic code acts as a pointer towards other relevant parts of the 
code. These categories conform well to the descriptions provided by the developers in this study: 
Some code was inspected in order to identify the code that was relevant for the change, i.e. 
strategic code was comprehended to locate intermediate code. Then, from the intermediate code, 
the direct locations to make code changes were identified.  

U1:  Typically, the change requests were described by referencing a user scenario, i.e. a 
sequence of interactions between the user and the system, and by requesting a change to that 
scenario. For seven of the underestimated changes, the developers expressed that considerable 
time was spent understanding relevant, intermediate code when it was dispersed among many 
files. In other words, the qualitative data shows that when code involved in the changed user 
scenario was dispersed over many components, that user scenario was difficult to change. 

The dispersion of changed code had a strong and consistent effect on change effort in the 
quantitative models. It is possible that the time developers spend to comprehend dispersed code is 
a fundamental factor that in many cases explains the apparent effect of making dispersed changes. 
When intermediate code for a change is dispersed, it is likely that direct code changes are 
dispersed. We did not possess the data required to confirm such a correlation. 
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The effort involved in comprehending code along the lines of user scenarios can also explain 
why the measures of structural attributes of changed components did not have an effect on change 
effort in the quantitative models. First, only directly affected components were captured by these 
measures, even though the structural attributes of intermediate code were likely to be important. 
Second, the measures capture the structural attributes of files and classes rather than of user 
scenarios. This suggests that it would be more useful to collect measures of structural attributes 
along the execution path of the changed user scenarios. These measures could be based on models 
such as UML sequence diagrams, which would also aid in comprehension [48], or dynamic code 
measurement (e.g., by executing each user scenario), as proposed in [49].  

U2: For three of the underestimated changes, the developers expressed that it was difficult to 
identify and understand the system states relevant to the change task. One developer stated: “All 
the states that need to be handled in the GUI make the code mind-blowing.” This statement 
indicates that the perceived code complexity is caused by a complex underlying state model. It 
also suggests that in order to understand the code from the functional view discussed above, it is a 
prerequisite that the underlying state model is understood. An obvious proposal is to provide aid 
that makes it easier to understand the most complex underlying state models, e.g., by the use of 
diagramming techniques such as UML state diagrams. 

U3: The degree of familiarity with relevant code was said to have affected change effort in five 
cases. The straightforward explanation is that code familiarity determines the amount of time that 
is necessary to comprehend code of direct, intermediate and strategic relevance. The quantitative 
results for change experience showed that relatively little of the variations in change effort can be 
explained by familiarity with the systems. The qualitative analysis showed that experience was 
indeed important in both projects, in the few extreme cases when it was either very high or very 
low. 

5.3 Learning relevant technologies and resolving technology issues 
T0. Project A used several different technologies. Lack of familiarity with relevant technology was 
perceived to increase change effort for three of the changes. The measure that was intended to 
capture the effect of technology experience (techexp), was not significant in the quantitative 
analysis. One possible explanation is that familiarity with the involved technology affected change 
effort in the relatively few cases where the familiarity was particularly low or high. 

T1, T2, T3: The degree of match between the actual and required features of the development 
tools and technologies was considered important in 12 cases. If the functionality required by the 
change task was provided out of the box, the technology was considered to save effort. Reversely, 
if the technology was incompatible with the change task, or had defects, considerable effort was 
required to create workarounds. Unsatisfactory facilities for debugging were considered to 
increase change effort in five cases. We conclude that these factors are important to consider when 
evaluating technologies for use in a development environment. 

5.4 Designing and applying changes to source code 
D1: Empirical studies have shown that the nature of a given task determines how the 
comprehension process is carried out [50]. Indeed, the interview data showed that the developers 
associated a certain degree of superficiality or shallowness with a change task. A change was 
perceived as shallow when the developer assumed that it was not necessary to understand the 
details of the code involved in the changed user scenario. Typically, shallow changes were 
performed by textual search in intermediate code to identify the direct code to change. Examples 
of shallow changes were those that concerned the appearance in the user interface, user messages, 
logging behaviour and simple refactoring. Deep changes, on the other hand, required full 
comprehension of the code involved in the changed user scenario. The comprehension activities 
described in the previous section are therefore primarily relevant for deep changes. 

D2: We use the term mechanism for code that implements a solution to a recurring need in the 
system. Typically, formalized design patterns [51] can be used directly or as part of a mechanism. 
In the investigated projects, examples of mechanisms are handling of runtime exceptions and 
transfer of data between the physical and logical layers of the system. In 13 cases, the change was 
perceived to be particularly challenging because a required mechanism had to be constructed as 
part of the change. According to the developers, creating these mechanisms was challenging for 
two reasons: First, the mechanism had to be carefully designed for reusability. Second, when the 
purpose of mechanisms was to hide peculiarities of specific technologies, these needed to be well 
understood by the developer of the mechanism. 
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D3: For eight of the overestimated changes, the developers expressed that the change was easy 
to perform because it was concentrated in one or few parts in the code. This observation supports 
the results for change set dispersion from the quantitative analysis, and suggests a particularly 
strong effect for the most localized changes. However, this explanation is contradicted by data 
from 50 other change tasks that affected only one segment of the code without resulting in 
particularly low change effort. An alternative explanation is that the developers perceived the 
change to be particularly local because the code of intermediate relevance was not dispersed 
among many components, as elaborated in Section 5.2 

5.5 Verifying the change 
V1:  The effort expended to test the developers’ own code changes was discussed in the 
interviews. For a large majority of the changes, the developers expressed that it was quite easy to 
verify that the change was correctly coded. In two cases, verification was perceived to be difficult 
because the change task affected time-dependent behaviour that had to be simulated in the test 
environment. In project A, some extra time was needed when it was necessary to generate and 
execute the system on the target mobile platform. In project B, extra time was needed when the 
technology necessitated deployment on a dedicated test server. 

5.6 Cause of change 
The cause of each change, i.e. the events that triggered the change request, was discussed with the 
developer assigned to the particular change task. Based on this, we classified all changes according 
to the codes shown in the last row of Table 7. In order to better understand the results for change 
type from the quantitative analysis, we measured the agreement between the automated 
classification into change types, and the classification from qualitative analysis. Sufficient data 
was available for 87 and 61 changes, for project A and B, respectively. When mapping C1 and C2 
to corrective change, and C3 and C4 to non-corrective change, the agreement was good (Cohen’s 
kappa=0.64) for project A, but less than what could be expected by pure chance (Cohen’s kappa=-
0.038) for project B. This result shows that the automated classification for project B did not 
appropriately reflect real differences in change type, which can explain why there was no effect of 
change type in the quantitative models. From the qualitative analysis of project B, it can be seen 
that six out of nine of the underestimated changes were fixes of error by omission.  A typical 
reason for such an error was not recognizing a side effect of a change. We conclude that for project 
B, fixes of errors by omission were associated with underestimated changes. In line with the 
conclusion in Section 5.1, we recommend practices that help to identify side effects of change 
requirements, because they are likely to reduce occurrences of errors by omission. 
 
6 Joint results and discussion 
On the basis of a systematic literature review of earlier change-based studies, we proposed a small 
set of factors and straightforward measures that could explain variations in change effort. The 
evidence-driven analysis largely confirmed the proposals, and strengthens the evidence that these 
factors are not spurious, but present over time and across software development contexts. The 
data-driven analysis confirmed the results from the evidence-driven analysis, and provided 
evidence of additional, more project-specific effects.  

The explained variability in the quantitative models was relatively poor by standards that have 
been suggested for prediction models [43]. The qualitative analysis identified cost drivers that had 
not been captured by the quantitative measures, by focusing on change tasks that corresponded to 
large model residuals. The concrete results of the analyses were: 
 
• Requirement volatility, measured by updates in the change tracker, consistently contributed to 

change effort in the quantitative models. The qualitative analysis showed that when requirement 
volatility was due to difficulties in anticipating side effects of a change, the effect was 
particularly large. 

• Change set dispersion, measured by the number of changed components or types of changed 
components, consistently contributed to change effort in the quantitative models. The 
qualitative analysis suggested that the effort expended by developers in comprehending highly 
dispersed code was an important underlying cost driver.  

• Overall, measures of change set dispersion were better predictors of change effort than were 
more fine-grained (e.g., LOC-based) measures of change set size. 
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• In project A, corrective changes required more effort than non-corrective changes, after 
accounting for other factors. No significant difference was found for project B. The qualitative 
analysis showed that a sub-class of corrective changes (fixes of errors by omission) in many 
cases required extra effort.  

• A statistically significant, but small effect of developers’ experience was identified in project B. 
The qualitative analysis showed that familiarity with the changed functional and technological 
areas was indeed important in both projects, in a few more extreme cases when the familiarity 
was either very high or very low. This effect of experience was not appropriately captured by 
the quantitative measures. 

• Structural attributes of changed components did not have a significant effect on change effort in 
the quantitative models. The qualitative analysis showed that the properties of the code involved 
in the changed user scenario did affect change effort. In particular, the complexity of the 
underlying state model of the user scenario was important, as was the dispersion of code that 
implemented the user scenario.  

• The qualitative analysis showed that change effort increased when the relevant tools and 
technologies had defects, were inadequate for the task, or did not support debugging 
satisfactorily. 

• The qualitative analysis showed that certain properties of the change task, such as the need for 
innovation in the change task, or shallowness of the change task were important factors that we 
had not attempted to capture by the quantitative measures. 

 
In the following, we discuss the consequences of these results from the perspective of software 
engineering, the local projects, and that of research methods within empirical software 
engineering. 

6.1 Consequences for software engineering 
The results from the study have implications for effort estimation of change tasks during software 
evolution. First, due to the wide prediction intervals implied by the relatively poor model fit 
obtained in this and similar studies [22, 35], it seems infeasible to build models that are 
sufficiently accurate to be accepted as a black-box method to estimate the effort expended on 
individual change tasks. Effort estimates generated by models may still play a role to support 
projects in planning releases during software evolution, where the primary interest is in the 
aggregate of change effort estimates. This is because the aggregated prediction interval decreases, 
measured proportionally to the estimate, as more predictions are aggregated. On the basis of 
results from this and earlier change-based studies, we recommend that models include measures of 
requirement volatility, developers’ experience, type of change and change set dispersion. As 
shown in this study, it is feasible to automatically retrieve measures of the first three factors from 
version control systems and change trackers prior to the coding phase. A coarse grained impact 
analysis would be necessary to obtain a measure of change set dispersion in this phase.  

The results can also be used to help experts improve judgement-based effort estimates. One 
method is to develop checklists of factors that experts should assess when they make estimates. 
Projects can either retrieve appropriate measures from version control systems and change 
trackers, or they can make subjective judgements for each factor. 

Regression models of change effort can also be used to investigate the effect of a new practice 
or technology. A generic setup is to complement the model with a binary variable that indicates 
whether the practice or technology was used for a particular change [21, 24, 27, 52]. The 
significance, sign and magnitude of the coefficient for this explanatory variable can then be used 
to assess the effect of the new practice or technology. The types of measures that we recommend 
in such models conform to those recommended in [21], with the important addition of a measure 
of requirement volatility. 

A recommended best practice for software design is to distribute responsibility between 
relatively small, collaborating objects [53]. The study adds to the empirical evidence that 
delocalized, or dispersed code causes difficulties during program comprehension, see [54] and 
[55]. A consequence of these findings is that to facilitate comprehension during software 
evolution, code that is functionally cohesive should be localized rather than dispersed. This 
concern about comprehension effort should be balanced against other concerns, such as potentials 
for reuse and constraints set by the physical architecture.  

The results of this study strengthen the case for tools that makes it easier to understand code 
that cross-cuts architectural units, along functional units such as user scenarios. One feature that 
already exists in some software modeling tools is the ability to perform static analysis of some 
selected portion of the code (e.g., a method) to generate a dynamic model of that code (e.g., a 
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UML sequence diagram) [56]. However, the reverse-engineering of sequence diagrams using 
dynamic analysis of those objects and messages that are involved in a specific user scenario or use 
case is still at an early stage of research and development [57]. It is, furthermore, not obvious how 
this approach could be extended to technologically heterogeneous and physically distributed 
computing environments. 

Context factors of the investigated projects may limit those projects to which the above 
discussion applies. In order to retrieve change-based measures for the purpose of prediction or 
assessment, a well-defined, tool-supported change process is required. The client collaboration 
model is likely to affect volatility of requirements and how this factor is managed: Both projects 
combined a formal collaboration model at the project level with semi-formality at the level of 
releases, and informality and close collaboration at the level of change tasks. The nature of the 
change tasks differed between the projects, the tasks in project B being more corrective than those 
in project A. As discussed in Section 5.6 a subset of the corrective changes required considerably 
higher change effort than predicted from the models. This indicates that type of evolution may 
influence change effort for individual change tasks. We believe that the effect of code dispersion is 
universal to all kinds of software systems, however particular relevance can be expected in 
technologically heterogeneous environment, such as in project A. 

6.2 Consequences for the investigated projects 
In project A, effort estimation was a team activity performed on a regular basis as part of release 
planning. To judge the potentials for more accurate effort estimates, we calculated the accuracy of 
the current estimation process, on the basis of effort estimates and actual effort for the 107 change 
tasks where this data was available. The effort estimates were given in units of relative size, see 
[58], and were scaled according to the factor that minimized MdMRE. The resulting MMRE and 
MdMRE was 1.47 and 0.54, respectively. Even though these values roughly correspond to the 
accuracy of the models from the data-driven analysis, we did not recommend replacing judgement-
based estimates with model-based estimates, for two reasons. First, change set size or change set 
dispersion would have to be subjectively assessed to obtain the required input measures. This 
would likely decrease the model accuracy, and preclude fully automated procedures. Second, the 
team estimation of change tasks was perceived to be important to share knowledge and build team 
spirit in the project, and to constitute an initial step of design for a solution to the change request.   

An alternative use of the results was to improve effort estimates that are based on developers’ 
judgement, by ensuring that the important factors are assessed by the developers. To assess 
whether the factors were already accounted for by the developers, we fitted regression models that 
included the developers’ estimate as an explanatory variable. In these models, measures of 
requirement volatility, change set dispersion and change type became statistically insignificant. 
This indicates that these factors were already sufficiently accounted for by the subjective 
estimates. The number of different technologies involved, on the other hand, had a significant 
effect on actual effort. The model was: 

 
log(ceffort)= 9.25 +  0.13*relativeEffortEstimate + 0.14*filetypes 

 
We recommended that the developers put more emphasise on the latter factor when they made 
effort estimates of change tasks. Due to the results from the qualitative analysis, we also advised 
the project to be more aware of the effect of particularly strong familiarity or lack of familiarity 
with code of intermediate and direct relevance. 

Project B used similar, judgement-based procedures for estimates of change effort, but we did 
not have sufficient data to assess the potentials for more accurate estimates. We were therefore 
only able to advise that all the identified factors should be assessed when the effort for planned 
change tasks was estimated. 

Even though this study identified factors that correlated with and affected change effort, it was 
not straightforward to identify specific actions in the projects that would mitigate these factors, and 
hence save costs. However, on the basis of the results, some actions that we believe would have a 
positive effect are: 
 
• Further improve knowledge sharing between the system stakeholders 
• Refactor code where execution paths are dispersed across more components than necessary 
• Acquire tools that make it easier to simulate and understand the code involved in user scenarios  
• Document the underlying state models in areas where those models are particularly complex 

6.3 Consequences for empirical software engineering 
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The goal of empirical software engineering is to use empirical methods to assess and improve 
software engineering practices. In the following, the experiences with three central elements of the 
design of this study are summarized:  

Foundation in a systematic review. The use of systematic reviews in software engineering was 
suggested as an important element of  evidence-driven software engineering [59], and the method 
has already gained significant momentum in the empirical software engineering community. The 
factors and measures that were used in the quantitative analysis were selected on the basis of a 
systematic literature review of earlier change-based studies. This was particularly important to be 
able to perform the evidence-driven analysis, which was key to linking this study to results from 
previous studies. Systematic reviews have a particularly important role when study proposals 
cannot be derived from established theories. Currently, this is the situation for most topics that are 
investigated within the empirical software engineering community. 

Combined confirmatory and explorative analysis. According to proposed guidelines for 
empirical studies on software engineering, strong conclusions can only be drawn from 
confirmatory studies, while explorative studies are important to generate hypothesis and guide 
further research [60]. We combined confirmatory and exploratory elements: The evidence-driven 
analysis largely confirmed proposals about factors that affect change effort. The data-driven 
analysis explored and identified additional factors that can be investigated in future confirmatory 
studies. 

Qualitative analysis to explain large model residuals. Even though the role of qualitative 
methods in this field has long been recognized, see e.g., [61], empirical researchers have 
developed and used quantitative methods to a larger extent [62]. Because we used the individual 
change as a common unit of analysis, and change effort as the dependent variable, we were able to 
tightly integrate the quantitative analysis of data from version control systems and change trackers 
with the qualitative analyses of developer interviews. The qualitative analysis contributed to the 
joint analysis since it enabled us to: 
 
• Confirm the importance of factors that were not properly captured by quantitative measures. An 

example of this was the effect of developer experience.  
• Identify more fundamental factors than those identified by the quantitative analysis. For 

example, the apparent effect of change set dispersion could be explained by the dispersion of 
comprehended code. 

• Identify additional factors not attempted to be captured by the quantitative analysis. An example 
is the effect of defects and inadequacy of relevant technologies.   

 
This method can also be used to focus the more expensive qualitative analysis on the most 
interesting data. This is particularly important for practitioners who use lightweight empirical 
methods to evaluate their own practices such as Postmortem analysis [63] or Agile Retrospectives 
[64]. We expect that group discussions that are part of such practices would benefit from focusing 
on the activities that required considerably more or considerably less time than expected from 
quantitative data.  
 
7 Threats to validity 
Construct validity. The measurement model (summarized in Table 2) proposed factors that could 
affect change effort, and alternative ways the factors could be measured. Only measures that could 
be retrieved from version control systems and change trackers were considered, because this data 
source is usually available in well-organized software projects. Information from such tools may 
not perfectly capture the factors of interest; hence this data source introduces issues of construct 
validity.  In some cases, we were able to use the qualitative data to mitigate such threats. For 
example, the interviews provided a subjective operationalization of change experience that 
allowed us to draw stronger conclusions about the effects of experience. There were also threats to 
construct validity in the qualitative coding schema. We attempted to mitigate this by 
reconsolidating the coding schema to reflect commonly used concepts within our field.  

Requirement volatility would intuitively be considered to be high if extensive informal 
clarifications about change requirements were needed, even if the clarifications were documented 
by only a short summary in the change trackers. Therefore, our measures of requirement volatility, 
which relied on traces in such tools, may not perfectly capture this factor. The analysis of the 
interviews strengthened the proposal that requirement volatility was indeed an important factor, 
not always appropriately captured by the quantitative measures. 

Code complexity cannot be fully captured by one or a few measures [65]. To judge, in a 
meaningful and repeatable manner, whether a piece of code is “more complex than” another piece 



 24

of code, very specific criteria must be defined. Therefore, there were obvious construct validity 
threats in the measurement of complexity of change sets and changed components. The measures 
needed to be simple because they had to be compatible with the range of technologies that the 
projects used. Likewise, it is not obvious how measures of added, deleted and changed lines 
contribute to an aggregated measure of change set size, in particular when different technologies 
were involved, and it is not obvious which architectural unit to count when measuring change set 
dispersion.  

Change experience was captured by counting the number of earlier check-ins to the version 
control systems. It is an obvious simplification that one check-in can be counted as one unit of 
experience. Moreover, when several developers were involved in a change, we used the average of 
the experience measures. This aggregation does not perfectly capture the concept of joint 
experience. It is possible that the relatively poor fit of the quantitative models was due to the 
inability to fully capture the intended factors by measures retrieved from version controls systems. 

Internal validity. Internal validity of the quantitative results refers to the degree to which the 
variations to change effort in the investigated projects were caused by the proposed factors. Issues 
of internal validity are important when the context, tasks and procedures for allocating study units 
to groups cannot be controlled, which is the case with data that occurs naturally in software 
development projects. For example, a particularly skilled developer may require fewer requirement 
clarifications and less change effort than the average developer. In this case, the underlying effect 
is that of individual developers’ skills than that of requirement volatility. Likewise, the data-driven 
analysis showed that changes that were local to one technology required less effort than other 
changes. However, it is possible that the underlying effect pertains to the specific technology, 
Java, that was used in most of the cases that involved only one technology. Qualitative data from 
developer interviews was useful to evaluate some of these threats. For example, the qualitative 
analysis suggested that a more fundamental factor than the effect of dispersion of changed code 
was the effect of dispersion of intermediate code that needed to be comprehended.  

Another threat to internal validity was the possibility of shotgun correlations. In the data-driven 
analysis, a large number of factors and measures were tested. This increases the likelihood that one 
or more of the significant effects occurred due to chance, rather than to a true underlying effect. 
This risk was lower in the evidence-driven analysis, because this investigated the effect of a small 
set of factors and measures selected on the basis of existing empirical evidence.  

A third type of threat to internal validity was the potential bias introduced by missing data 
points in the data set, see [66]. For project A, change effort was not recorded for around 10% of 
the actual changes that were performed. For project B, change effort was not recorded for 25% of 
the changes. Most of the missing data points were due to challenges with establishing the routines 
to track change effort and code changes. Because the data points that we did collect from the initial 
periods can be considered to be selected by random, we do not expect the missing data points to 
constitute a serious threat to internal validity.  

The use of interviews introduced the possibility of researcher bias, consciously or 
unconsciously skewing the investigation to conform to the competencies, opinions, values or 
interests of the involved researchers. Although such threats apply to quantitative research as well, 
they can be particularly difficult to handle when subjectivity is involved. The developers may 
introduce conscious or unconscious biases in the qualitative data, for the same reasons as those 
mentioned above. Imperfect memory, lack of trust or other communication barriers between the 
interviewer and the interviewee may also introduce biases. 

We believe that the strict focus on relatively small, cohesive tasks recently performed by the 
interviewee helped to mitigate such biases. To mitigate communication barriers, the interviewer 
made extensive efforts to be prepared for the interviews, and data from the version control systems 
and change trackers was readily available during the interviews to help the developers recollect 
details. 

External validity. The ability to generalize results beyond the study context is one of the key 
concerns with case studies. Section 2.3 described the design elements introduced to interpret the 
results in a wider context. We believe that the lack of relevant theories on which to base the study 
proposals is a major obstacle to generalizing the results. In this situation, we chose to base the 
study proposals on a comprehensive review of earlier empirical studies with similar research 
questions. In this way, the study adds to the empirical foundation that eventually can provide more 
generally applicable evidence of how and when different factors affect change effort. 
 
8 Conclusion, consequences and further work 
Software engineering practices can be improved if they address factors that have been shown 
empirically to affect developers’ effort during software evolution. In this study, we identified such 



 25

factors by analyzing data about changes in two software organizations. Regression models were 
constructed to identify factors that correlated with change effort, and developer interviews were 
conducted to explore additional factors at play when the developers expended effort to perform 
change tasks. Central results were: 
 
• The volatility of requirements had a large and consistent effect on effort in the quantitative 

models. The effect was particularly large when volatility was due to difficulties in anticipating 
side effects of a change. Such difficulties also resulted in errors by omission, which in turn were 
particularly expensive to correct. 

• The dispersion of changed code also had a large and consistent effect on change effort in the 
quantitative models. The quantitative models indicated that dispersion of the directly affected 
code was important. The qualitative analysis indicated that the dispersion of intermediate code 
was a more fundamental factor that affected change effort, due to comprehension effort. 

• The experience that developers had in changing the system or parts of the system seemed to 
have little effect in the quantitative models. However, the qualitative analysis showed that this 
factor was indeed important in individual cases. 

 
Because these results are also consistent with results from earlier empirical studies, we suggest that 
these (admittedly quite course-grained) factors should be given consideration when attempting to 
improve software engineering practices.  

The specific analyses of the two projects provided additional and more fine-grained results. In 
one project, changes that concerned only one technology required considerably less effort. The 
analysis of estimation accuracy indicated that this factor was not sufficiently accounted for when 
developers made their estimates. This exemplifies how projects can benefit from analyzing data 
from their version control systems and change trackers to improve their estimation practices.  

One important direction for further work is to investigate further the causal relationships that 
are in play when developers perform change tasks. Interviewing developers about recent changes 
was an effective method for making tentative suggestions about such relationships. However, 
studies that control possibly confounding factors should be conducted before firm conclusions are 
drawn. It is also necessary to paint a richer picture of how context factors, such as size and type of 
the system, influence change effort. Ultimately, the empirical results could be aggregated into a 
theory on software change effort, which would define invariant knowledge about software 
evolution, and be immediately useful for practitioners within the field.  
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Appendix A  
 
Interview guide 
 
Part 1. (Only in first interview with each developers - Information about the purpose of the 
research. Agree on procedures, confidentiality voluntariness, audio-recording).  
Question: Can you describe your work and your role in the project? 
Part 2. Project context (factors intrinsic to the time period covered by the changes under 
discussion) 
How would you describe the project and your work in the last time period? Did any particular 
event require special focus in the period?  
For each change (CR-nnnn, CR-nnnn, CR-nnnn….,) 

 
Part 3. Measurement control (change effort and name of changed components shown to the 
interviewee) 
Are change effort and code changes correctly registered? 
Part 4. Change request characteristics (change tracker information shown on screen to support 
discussion) 
Can you describe the change from the viewpoint of the user? Why was the change needed? 
Part 5. General cost factors 
Can you roughly indicate how the X hours were distributed on different activities?  
Part 6.  Properties of relevant code (output from windiff showed on screen to support the 
discussions)  
Can you summarize the changes that you made to the components?  
What can you say about the code that was relevant for the change? Was it easy or difficult to 
understand and make changes to the code?  
Part 7. Stability 
Did you go through several iterations before you reached the final solution? If so, why? 
Did anything not go as expected?  
How did you proceed to test the change? 
Go to Part 3 for next change 

 
Part 8. Concluding remarks 
Do you think this interview covered your activities during the last period? 
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Appendix B 
 
Effort drivers and effort savers for individual changes 
Table B1 Underestimated changes, project A 

CR# Pred. 
Actual 

Change description 
Developer statement (translated and condensed) 

Code 

A4155 
 

9.4 
19 

Ensure consistency between reported grants, expenses and accounts 
Input control spans fields were spread over three tables 
Input control should be conditioned by check-button state 
One file was not tagged 
Unintended consequence - too strict input control 

C3 
D2 
D2 
n.a. 
R1 

A4666 
 

10.2 
21.5 

Calculate and show deviation between grants and expenses 
Remove validation.  Conditioned by check-button state 
The original specification was not very detailed 
Many Javascript changes. Have not very much Javascript experience 
Less debugging support in XSL/Javascript, use write-statements 

C3 
D2 
R1 
T0 
T3 

A4569 
 

2.3 
5 

Check special case when saving user access rights 
Discussion about on whether and how it should be done 

C1 
R1 

A4568 
 

1.6 
3.5 

Fix programming error, used wrong variable 
Code reading not successful, needed to execute/debug 
No direct debug support 

C2 
U1 
T3 

A4557 4.5 
10 

Change trigger rule for starting timer for reminder 
Workflow tool: Could not use out-of-the box support, special code needed 
Defect discovered in tool, needed to create a work-around 
Difficult to test when actions are based on time triggers, must manipulate database 

C1 
T1 
T2 
V1 

A4427 18.0 
41 

Create web based view into research application data 
Choose technical solution, chose xslt 
Mechanism for access to details 
Many rounds of feedback on page layout details 

C4 
D2 
D2 
R1 

A4282 9.0 
21 

Serverside input validation of application 
Difficult to comprehend external framework, recursive functions, difficult to follow 
control flow 
XPath not well known 

C3 
U1 
 
T0 

A518 2.0 
5 

Correction of correction 
Complex state due to collaborating screens makes the code difficult to understand 

C1 
U1 
 

A512 4.0 
10.5 

Handle unexpected user input, empty fields 
Had to change the interface, create a new method, and send in another object 
Needed to discuss which rules to implement 

C1 
D2 
R1 

A4211 6.9 
19 

Transfer data to external system, Check social security number 
Re-implement algorithm in Javascript 

C3 
D3 

A4438 1.6 
5 

Error in pageflow on validation error 
Internal state needed to be set correctly, needed time to realize this 
Separate debugging tool, could not use eclipse 

C1 
U1 
T3 

A4461 33 
117 

Get new mechanisms for persistence in place, integrate design and runtime tools 
Defects in Genova 
Unfamilar with Hibernate 
Impossible to debug in Eclipse 
Time consuming to deploy for debug in other tool 
Unstable debugging tool 

C4 
T2 
T0 
T3 
T3 
T2 

A4122 7.0 
20.5 

Assumptions of max 10 years broken in GUI 
Upfront effort on analysis/design 
Implement scrolling mechanism in GUI 

C4 
R1/D
2 
D2 

 
Table B2 Underestimated changes, project B 
CR# Pred. 

Actual 
Change description 
Developer statement (translated and condensed) 

Code 

B4189 3 
6 
 

Defect, wrong assumption that object was already created 
It was not well specified 
Use log and debug to reproduce the state that gives the error 

C1 
R1 
U2 

B3777 23 
48 
 

Special key for Oslo-ticket 
Requirement clarifications needed 
Iterative design 

C4 
R1 
D2 

B4062 2.8 
6 
 

Fix state action: Must ensure correct printout, dependent on the type of area Difficult to 
determine full state 
Difficult algorithm 

C1 
U1 
D2 

B4188 3.4 
7.5 

Defect: Must check for events on ticket before setting to unused after cancelling 
Difficult to determine when to perform which action 

C1 
U2 
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 Testing dependent on time V1 
B3935 4.2 

9.5 
 

Write receipt on sale from MT, from popup 
Unfamiliar with print code 
Need to restructure 

C4 
U3 
D2 

B4260 3.4 
8 
 

Logging of two events needed to separated, because they did not always happen together C1 
U1 
D2 

B4089 3.6 
9.5 
 

Need to cancel sale on e-ticket on technical cancelling 
Difficult to identify the part of the code that handled technical cancelling, due to naming 
Unfamiliar with the code 

C1 
U2 
U3 

B4157 12.4 
32.5 
 

Special key for prefer2travel 
Difficult because it was not very well specified 
Difficult to know which part of the code to change 
Difficult to comprehend what is part of the create sale transaction 
Earlier attempt to start coding 

C4 
R1 
U3 
U1 
D2 

B3278 12.4 
20 

Corrected defect due to string-number conversion 
Assumed to be correct, unstable api-call 

C1 
T2 

 
Table B3  Overestimated changes, project A 
CR# Pred. 

Actual 
Change description 
Developer statement (translated and condensed) 

Code 

A4555 6.4 
2.5 

Wrong text substitution in emails, text retrieved from content server 
Easily recreated 

C2 
U2 

A4531 2.8 
1 

Changes to  CSS  and layout 
 

C3 
D1 

A4434 2.9 
1 

Set input field type in xml’s C3 
D1 

A4426 1.6 
0.5 

Change name of GUI--field 
 

C3 
D1 

A4607 1.6 
0.5 
 

Missed specific state and action 
Simple check on condition 
Needed only one place 

C1 
U2 
D3 

A4539 1.6 
0.5 

Wrong action, should not update last change by on automatic change 
Easy to identify 

C1 
U2 

A4578 1.7 
0.5 

Moved comparator method between class 
One user only 

C1 
D3 

A4330 7 
2 

Display differently dependent on research application status 
Change to property-files 

C4 
D1 

A4279 7.6 
2 

New CSS definition for read-only fields C3 
D1 
D3 

A4369 4.3 
1 
 

Add one element to transfer to external system 
Have worked with this program before 
Had a framework available for testing 
Knew the class where the change needed to be done  

C1 
U3 
V1 
D3 

A4596 2.3 
5 
 

Name change on label  
 
I knew very well how to make the change 

C3 
D1 
U3 

A4500 2.3 
0.5 
 

Keep relations to organization when creating revised application 
It was a small and local change 
Reused a method that could do this 

C4 
D3 
D2 

A4542 7.6 
1 
 

Changes to fonts, small error correction 
 
We needed to create a new CSS class 

C2 
D1 
D3 

A4559 4.1 
0.5 
 

Error in text C2 
D1 
D3 

A4547 1.7 
0.17 
 

New button in webscreen 
Only needed to add a button 
 

C4 
D1,T
1,D3 

A4414 2.4 
0.17 

Sort column in table 
Framework contained the exact needed API 

C3 
T1 

A4584 111 
39 
 

Request for approval that  application could be visible to others 
It was very well specified  
Spanned many classes 

C4 
R1 
P6 

 

 

Table B4 Overestimated changes, project B 

CR# Pred. 
Actual 

Change description 
Developer statement (translated and condensed) 

Code 

B4367 3.3 
1 

Remove logging calls 
Many similar changes  

C3 
U1 

B4366 3 Not good enough data. Interviewee was instructed what to do n.a. 
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1 
B3765 17 

6 
Move and split location of data attribute 
Well specified 

C3 
R1 

B3928 2.4 
1 

Reset screen on error 
Make call to predefined function on error 

C3 
D2 

B4022 6,1 
2.5 

Check that more than 2000 points are not sold 
Local change 

C4 
P6 

B4233 2.8 
0.5 

Logging level adjusted 
Simple, local change 

C1 
P6 
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