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Viewpoints 

Software Development Effort Estimation: Formal 
Models or Expert Judgment? 

Magne Jørgensen and Barry Boehm 
 

Which is better for estimating software project resources: formal models, as instantiated in estimation tools, 
or expert judgment? Two luminaries, Magne Jørgensen and Barry Boehm, debate this question here. 
Outside this article, they’re colleagues with a strong inclination to combine methods. But for this debate, 
they’re taking opposite sides and trying to help software project managers figure out when, and under what 
conditions, each method would be best. 

While it might be less argumentative—and certainly less controversial—to agree that the use of both 
methods might be best, Magne is making a stronger point: Perhaps our refinement of and reliance on the 
formal models that we find in tools is wrong headed, and we should allocate our scarce resources toward 
judgment-based methods. (For a primer on both methods, see the sidebar.) — Stan Rifkin 

 
//Layout artist: Place the sidebar near here.// 
 

Magne: Formal software development effort estimation models have been around for more than 40 years. 
They’re the subject of more than a thousand research studies and experience reports. They’re described and 
promoted in many software engineering textbooks and guidelines. They’re supported by user-friendly tools 
and advisory services from consultancy companies. In spite of this massive effort and promotion, available 
empirical evidence shows that formal estimation models aren’t in much use.1 Formal effort estimation 
models have had more than sufficient opportunities to become a success story; it’s now time to move on 
and focus industrial estimation process improvement work and scientific research on judgment-based effort 
estimation methods. This is a much more promising way forward for several reasons. Here are three. 

 
First, 10 out of the 16 studies reviewed in “Estimation of Software Development Work Effort: Evidence 

on Expert Judgment and Formal Models” report that using (typically simple and unstructured) judgment-
based effort estimation methods led to more accurate effort estimates than using sophisticated formal 
models.2 The introduction of more structure and more supporting elements, such as structured group 
processes and experience-based estimation checklists, could even further improve judgment-based effort 
estimates. See, for example, Principles of Forecasting: A Handbook for Researchers and Practitioners for 
general forecasting evidence on the benefits of several types of expert-judgment process structures and 
support.3 

Second, so far, little work has been done on improving judgment-based effort estimation processes 
compared with that on formal effort estimation models. As an illustration, Martin Shepperd and I found that 
only 15 percent of the journal papers on software development effort estimation analyzed judgment-based 
effort estimation.4 Unlike most papers on formal effort estimation models, the great majority of these 
papers didn’t aim at improving judgment-based effort estimation processes. 

 
Third, most of the software industry, as far as I’ve experienced, is much more willing to accept, 

understand, and properly use judgment-based estimation methods. I have, for example, repeatedly observed 
that software projects officially applying a formal estimation model actually use the model as a disguise for 
expert estimation. This low acceptance and “models as judgment in disguise” attitude appear in several 
forecasting disciplines and shouldn’t be surprising. An important reason for the rejection of formal models 
might be that experts’ highly specific knowledge—for example, about the developers who are supposed to 
do the work—frequently can’t be included properly as model input. It’s understandably difficult to trust an 
estimation method unable to make use of strongly relevant information. It’s hardly possible to unite highly 
specific knowledge with the need to establish general relationships in formal models; that is, this limitation 
isn’t a question of improved models. 

In short, there are very good reasons to claim that future estimation process improvement and research 
initiatives should aim at better judgment-based effort estimation processes and not at better formal models. 

Although formal effort estimation models might seem primarily objective and repeatable, I believe they 
aren’t. All meaningful estimation models require judgment to produce the input to the models. This might 
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include judgment of complexity, team skill, and the customers’ requirements for the system. This means 
that software companies benefit from a stronger focus on better judgment-based processes—even when 
they choose to apply estimation models, for example, in combination with expert judgment. 

 
Barry: First, let me say that I think Magne’s published analyses are well done and important to understand. 
However, I don’t think that a 10/16 = 62.5 superiority percentage for expert judgment in empirical studies 
is conclusive, particularly because there are uncertainties in whether the results of empirical studies are 
representative of results in project practice. If most people are using expert judgment methods in practice, 
the results aren’t encouraging. The last few years of Standish Group surveys indicate that only about 30 
percent of the projects surveyed successfully deliver their software within their estimates.5 T. Capers Jones’ 
analysis of 50 completed projects indicated that only four (8 percent) were estimated within 10 percent of 
their actuals.6 However, these data do support Magne’s call for more research into better methods of 
judgment-based estimation. 

One candidate explanation of this discrepancy is that the expert estimates produced in empirical studies 
aren’t representative of estimates produced in practice. Some nonrepresentativeness occurs because not 
everyone is an expert, nobody is an expert in all domains, and empirical studies based on estimates and data 
from completed projects aren’t representative of estimates made when they’re needed, at the beginning of 
projects. As an educator, I wonder what the definition of “expert” is; when exactly does someone go from 
being a nonexpert to an expert, and, perhaps more important, what can we do to accelerate that process? 
I’m not sure about the definition of “expert,” and substituting a synonym such as “experienced” doesn’t 
help, because we would again have to face the question of exactly when someone goes from being 
inexperienced to experienced. And, of course, I’m wondering whether the expertise to which Magne refers 
is something that can be both taught and learned, or something that can only be learned. 

A well-documented problem with the accuracy of estimates, particularly early in the life cycle, is the 
Cone of Uncertainty, which indicates that early estimates might be off by factors of two to four, simply 
because not enough is known about either the requirements or the solutions (for example, the feasibility of 
using off-the-shelf components).7,8 When faced with such uncertainties, many organizations highly value 
the ability to perform extensive sensitivity, risk, and trade-off analyses. The number of cases involved in 
such analyses goes well beyond the available time of experts to perform, whereas parametric models can 
run them rapidly, with little human effort. 

When comparing expert-judgment versus parametric-model estimates, another factor might cause 
parametric models to appear less accurate. The organization’s counting rules used for software size, cost, 
and schedule might differ from those used to calibrate the models. For size, this might involve differences 
between logical and physical lines of code, counting of nonexecutable statements, and counting of support 
software such as deliverable tools and test drivers. For cost and schedule, it might involve differing phases 
counted (programming versus full development cycle), work hours counted (training, personal activities, 
and overtime), and activities counted (configuration management, quality assurance, data preparation, and 
hardware and software integration). For Cocomo, my colleagues and I found factor-of-three differences 
between an evaluation study’s data and data conforming to Cocomo’s published definitions. 

In situations involving high cost and schedule uncertainty, it’s a good idea to draw upon as many 
sources of insight as possible. Parametric models contain a good deal of information about which factors 
cause software costs to go up or down, and by how much. This information is based on extensive analyses 
of real-project data and feedback from real-project users. Their absolute estimates might differ from your 
actuals owing to the causes I just mentioned, but their relative estimates of the effects of various cost 
drivers are generally fairly accurate. As a bottom line, I agree with Magne’s recommendation for more 
research on better methods of expert-judgment estimation. But I would strongly disagree with any 
recommendations to stop people from performing research on which factors affect software costs and by 
how much, or to discourage people from using insights provided by parametric models. 

 
Magne: Barry and I agree that the accuracy of judgment-based effort estimation isn’t exactly amazing. 
Judgment-based estimates are far from perfect. For example, they frequently involve a high degree of 
wishful thinking and inconsistency. The surprising observation is therefore that estimation models haven’t 
managed to produce more accurate effort estimates! This observation is even more surprising when you 
consider that models seem to outperform expert judgment in most other disciplines.9 

Barry suggests that poor model accuracy can be a result of size-counting rules that differ from those 
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used to calibrate the model. I share his concern about the lack of standardized size measurement and agree 
that there’s an improvement potential related to the practical use of models. His suggestion does, however, 
also nicely illustrate how complex and time consuming it can be to use effort estimation models properly. 
An organization must therefore decide whether it should prioritize its limited resources on training and 
monitoring people’s size-counting processes, or on better methods and support for judgment-based effort 
estimation. 

Estimation models have inherent problems that make the latter choice more worthwhile and that explain 
the empirical results in favor of the expert judgment. In particular, the relation between effort and size in 
software development contexts isn’t stable. The results reported in “On the Problem of the Software Cost 
Function,”10 based on an evaluation of 12 data sets, illustrates how much the functional relation between 
effort and size vary from data set to data set. This lack of relation stability is a problem not only between 
data sets but also within data from the same organization. Essential effort relationships might, for example, 
change over time owing to learning or technology change. In situations with unstable relationships, expert 
judgment has been shown to be preferable.11 

In addition, as mentioned before, software development situations frequently contain highly specific, 
highly important information. Take, for example, the information that there’s a serious conflict between the 
project leader Peter and his best programmer Paul. This conflict will likely have a serious impact on the 
project’s productivity. No effort estimation model, as far as I know, integrates this kind of relation 
mechanically. A model might choose to integrate this type of highly specific information through expert 
judgment—for example, through expert judgment of how much such conflicts will likely impact overall 
productivity. Then, however, dominant model variables would be judgment-based and subject to biases and 
problems similar to those of a purely expert-judgment-based process. Consequently, it isn’t easy to see how 
the models would be able to perform much better than experts in such situations. Several studies—for 
example, “On Knowing When to Switch from Quantitative to Judgemental Forecasts”12—suggest that 
expert judgment can have great advantages in situations with highly specific information that’s not 
mechanically integrated, or integrated at all, in the model. 

Even if models should tend to be less accurate than expert judgment, software organizations might, 
according to Barry, benefit from using them as a means to sensitivity, risk, and trade-off analyses. I’m not 
so sure, and I’ve seen no empirical evidence to support the usefulness of this. Simulation of how a single 
variable affects effort may require an ability to model all the underlying relationships that’s even better 
than that needed for effort estimation. That’s why simulation models typically are much more complex than 
estimation models. 

The representativeness of the 16 empirical studies comparing estimation models and judgment-based 
effort estimation might not be optimal. And, of course, these studies don’t prove that judgment-based 
estimation models are on average better. These studies do, on the other hand, provide the best available 
knowledge about this issue and should therefore be important input when deciding where to put estimation 
improvement effort. I hope, however, that there soon will be more studies shedding light on when models 
and judgment-based estimation processes are likely to be more accurate.3 

 
Barry: I’ll try to respond to Magne’s main points in his second-round contribution. 

First, Magne argues that properly using estimation models requires more investment in data collection, 
model calibration, education, and training. I agree. It correlates with a recent Chinese survey of 116 
organizations involved in process improvement, in which this investment was the highest-ranked (52 
percent) of the “barriers and difficulties to applying cost estimation models.” 

Often, though, organizations find these investments worthwhile. Recently, my colleagues and I 
administered a survey to 16 acquisition managers at a software acquisition cost and risk workshop and to 
28 cost estimation professionals at a cost estimation forum. They answered several questions of the form 
“How much value do current parametric cost models contribute when you perform the following functions, 
as compared to human-judgment estimates?” on a scale of 1 (much less) through 3 (about equal) to 5 (much 
more). 

The top-ranked relative values of parametric cost models (with the average responses for the two 
groups) were 

• preparing cost proposals (4.3, 4.4), 
• evaluating cost proposals (3.75, 4.0), 
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• performing risk or sensitivity analyses (3.6, 3.8), and 
• making cost-schedule-performance trade-offs (3.45, 3.8). 

The top-ranked relative values of human-judgment estimates were 

• performing make-buy-outsource analyses (2.35, 2.7), 
• investing in productivity improvements (2.35, 2.8), 
• allocating project budgets (2.5, 3.05), and 
• making software evolution or phaseout decisions (2.7, 2.9). 

You can see not only that the results vary with the population being sampled but also that the results 
vary even more strongly by the cost estimation function you’re trying to perform. So, at least in these 
sampled populations, making a one-size-fits-all decision on using models versus experts in all situations 
doesn’t appear to be a good idea. 

Second, Magne states that 

The relation between effort and size in software development contexts isn’t stable. 

Again, I would agree, and go further in saying that this phenomenon has been well known for quite a while 
and is the main reason that parametric cost models have incorporated additional productivity-driver 
parameters to explain the variation. Chapter 29 of Software Engineering Economics shows the significant 
difference between the original Basic Cocomo model with a size parameter and a single-mode parameter 
(estimating the 63 projects in the database within a factor of 1.3 of the actuals only 29 percent of the time), 
and the Intermediate Cocomo model with an added 15 productivity-driver parameters (within a factor of 
1.3, 78 percent of the time).7 

 
Several purported evaluations of the accuracy of “Cocomo” didn’t have cost driver data and could only 

evaluate Basic Cocomo, in which case it wasn’t surprising that “Cocomo” didn’t produce very accurate 
results. 

 
Third, Magne says that 

Software development situations frequently contain highly specific, highly important information [such as 
personnel compatibility]. 

Such information is often incorporated in the leading parametric models. For example, both the Cocomo 
family and SEER13 productivity-driver parameters Analyst Capability and Programmer Capability rate 
team rather than average individual capability, including such factors as raw ability, efficiency and 
thoroughness, and ability to communicate and cooperate. It’s true, though, that parametric models never 
have enough calibration data to accurately estimate the effect on the productivity of 99th-percentile teams. 
It’s also true that well-calibrated parametric models are biased toward the results of organizations that 
collect and are willing to share their productivity data. These tend to be better-performing organizations, 
although highly capable agile teams can be even more productive without needing to collect and analyze 
data. 

Finally, according to Magne, 

Judgment-based estimates tend to have a higher degree of wishful thinking. 

 
I agree. A major advantage of a parametric model is that it doesn’t modify its estimates when customers, 
managers, or marketers apply pressure. 

The only way you can get a parametric model to reduce its estimates is by going on record to make a 
visible change in the project’s estimated size or in its productivity-driver parameter ratings. Thus, using a 
calibrated parametric model enables negotiation of the price of a software development contract to be 
driven by objective adjustment of project size or productivity-driver parameters, rather than by a contest of 
wills between self-described experts. 
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Barry: Because Magne has been gracious enough to start first in Rounds 1 and 2 and let me have the last 
word in each round, and because I think we’ve covered a lot of the significant ground in those rounds, I 
propose that we each make closing statements, that I’ll go first, and that he can have the last word. 

Rather than continue to discuss which is better of two estimation methods that I think are both 
complementary and useful, I’d like to focus on what you should do with the estimates that you’ve produced 
or received. Unfortunately, for the many organizations that consistently overrun, the usual practice is to 
discard them as having served their purpose and to avoid future embarrassment when the estimates are 
overrun. However, by doing so, such organizations lose any chance of learning through experience. They 
also remain vulnerable to overly optimistic expert- or model-based estimators. 

The organizations I’ve seen that have had the most success at meeting cost and schedule commitments 
use a mix of parametric models and expert judgment. But more important, they save the estimates and use 
them in a closed-loop feedback process to compare estimate inputs and outputs with actual experiences. 
Any mismatches not only can be corrected during the project but also can be used to calibrate the inputs for 
future project estimates. For example, consistently overoptimistic expert estimators or model users can be 
warned or excluded, domain experts can be calibrated for their optimism or pessimism about how others 
will succeed in their domain, or model parameters can be recalibrated to evolving experience. 

I used to think that closed-loop feedback and recalibration would enable organizations and models to 
become increasingly perfect estimators. But I don’t any more. The software field continues to reinvent and 
rebaseline itself too rapidly to enable this to happen. As a bottom-line statement, we need to recognize that 
people and models will never be perfect software cost and schedule estimators, and build this into our 
project plans. 

 
A good way to do this is to use incremental development and to use the process called either timeboxing 

or cost and schedule as an independent variable. This involves customers prioritizing their desired features, 
and developers architecting their systems to make borderline-priority features easy to add or drop. Then, as 
each increment goes on and finds itself ahead of or behind its estimated cost and schedule, it can add or 
drop borderline features to make the increment fit its budget or schedule. This enables the customers to 
receive their most valuable features in each increment. However, it also recognizes that if estimation can’t 
be perfect, then the number of such features can’t be an independent variable along with cost and schedule. 
But again, it requires using the estimates to monitor progress with respect to plans, and applying closed-
loop feedback processes within each increment, across increments, and across projects to keep on top of 
changing situations. 

 
Magne: My main claim in this discussion is that organizations’ process improvement work and research 
initiatives should focus on better judgment-based effort estimation processes, not on introducing or 
improving formal estimation models. The claim is backed up with results from a comprehensive review of 
relevant empirical estimation studies and explanations based on results from other forecasting disciplines. 
As far as I can see, none of Barry’s arguments provides evidence against this claim. 

Barry’s arguments are instead related to the observation that some software professionals find estimation 
models useful, that model use can be improved, that we should combine models and expert judgment, and 
that more frequent feedback through incremental models improves estimates. These claims are easy to 
agree on but don’t easily translate to an organization’s decision on whether to improve model- or judgment-
based estimation processes. 

The current strong belief in models among some software professionals and many software engineering 
researchers might be a result of myths about models and expert estimation, possibly illustrated by Barry’s 
claim that 

use of a calibrated parametric model enables negotiation of the price of a software development contract to 
be driven by objective adjustment of the project’s size or productivity-driver parameters, rather than by a 
contest of wills between self-described experts. 

The first myth here is that models are objective. As I stated earlier, they clearly aren’t. Essential input to 
the models is based on expert judgment and can consequently be impacted by outside pressure. 

The second myth is that judgment-based effort estimation is a black-box process leading to a contest of 
wills between self-described experts—that is, a process that’s difficult to improve. This isn’t true, either. 
There are many ways to improve judgment-based effort estimation and avoid contests of wills. Barry’s own 
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Wideband Delphi process and the guidelines suggested in “Practical Guidelines for Expert-Judgment-Based 
Software Effort Estimation”14 are examples of such ways. 

A third myth, especially common among software engineering researchers, is that more advanced 
estimation models will likely lead to substantially more accurate effort estimates. For example, that the 
intermediate version of the Cocomo models or a neural-network-based estimation model will likely be 
more accurate than much simpler models. In software engineering, as in most other similar forecasting 
disciplines, the perhaps most stable result is that simple models typically perform just as good as more 
advanced models and that more sophisticated models are vulnerable to overfitting to outdated or 
unrepresentative data sets. The improvement potential of the model side will consequently likely be quite 
low.1,3 

Although we clearly shouldn’t reject estimation models as providing no value, we shouldn’t ignore 
available empirical evidence, either. If the software engineering discipline wants to become evidence 
based, it should focus on improving those processes for which the evidence suggests that improvements 
will more likely occur. In most effort estimation contexts, but hardly all, the available evidence suggests a 
much stronger focus on improving judgment-based effort estimation processes. 
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The Difference between Model- and Expert-Judgment-Based 
Estimation 
The essential difference between formal-model-based and expert-judgment-based effort estimation is the 
quantification step—that is, the final step that transforms the input into the effort estimate. Formal effort 
estimation models, such as Cocomo and function-point-based models, are based on a mechanical 
quantification step such as a formula. On the other hand, judgment-based estimation methods, such as 
work-breakdown structure-based methods, are based on a judgment-based quantification step—for 
example, what the expert believes is the most likely use of effort to complete an activity. Judgment-based 
estimation processes range from pure “gut feelings” to structured, historical data and checklist-based 
estimation processes. That is, there are many other ways of improving judgment-based processes than 
selecting the best expert. 

Some estimation methods, such as the Planning Poker method (www.planningpoker.com/detail.html), 
can be implemented as judgment- or model-based, depending on whether the final step is mechanically 
based on the velocity (productivity) of previous iterations. This illustrates that the difference between models 
and expert judgment isn’t always clear. Table 1 summarizes typical similarities and differences of the 
processes involved. 

 
Table 1. A comparison of the processes for expert-based and model-based estimation. 

Estimation activity Expert judgment Estimation models 

Understand the estimation problem. Judgment- and analysis-based 
processes possibly structured by 
templates for work breakdown. 

Judgment- and analysis-based 
processes possibly structured by the 
need for model input if the model has 
already been chosen at this stage. 

Agree on decisions and assumptions 
relevant for estimation. 

Judgment- and analysis-based 
processes possibly structured by 
checklist or guidelines. 

Judgment- and analysis-based 
processes possibly structured by 
checklists or guidelines. Several 
assumptions implicitly made when 
selecting a model. 

Collect information relevant for the 
estimation. 

Judgment- and analysis-based 
processes possibly structured by 
checklists or guidelines. The set of 
variables considered relevant is 
judgment based. The collected 
information includes subjective 
assessments. 

Judgment- and analysis-based 
processes structured by the model’s 
need for input data. The set of 
variables considered relevant is 
predetermined. The collected 
information typically includes 
subjective assessments. 

Evaluate the importance (weighting) Judgment-based processes. Analysis-based processes based on 
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of different pieces of information. statistical analysis of historical data. 
Quantify the effort on the basis of the 
information. 

Judgment-based processes. Analysis-based processes based on a 
formalized, repeatable process or 
formula. 

Review the effort estimate. Judgment- and analysis-based 
processes possibly structured by 
checklists, guidelines, and expert 
judgment. 

Judgment- and analysis-based 
processes possibly structured by 
checklists, guidelines, and expert 
judgment, sometimes leading to 
judgment-based updates of the effort 
estimate. 

 
 


