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Abstract

Static profiling is a technique that produces estimates of exe-

cution likelihoods or frequencies based on source code anal-

ysis only. It is frequently used in determining cost/benefit

ratios for certain compiler optimizations. In previous work,

we introduced a simple algorithm to compute execution like-

lihoods, based on a control flow graph and heuristic branch

prediction.

In this paper we examine the benefits of using more in-

volved analysis techniques in such a static profiler. In par-

ticular, we explore the use of value range propagation to im-

prove the accuracy of the estimates, and we investigate the

differences in estimating execution likelihoods and frequen-

cies.

1. Introduction

Static Profiling is a technique to derive an approximated pro-

file of a system’s dynamic behavior, such as execution like-

lihoods or relative frequencies for various program points

from source code alone. Previously, it has mainly been used

in compiler optimization, to assess whether the costs asso-

ciated with certain optimizations would pay off. In earlier

work, we have proposed another application of such static

profiles, which is to use them to prioritize the results of au-

tomatic code inspections [4].

In automatic code inspection, a tool statically analyzes

code, looking for patterns or constructs that are, based on

past experience, known to be fault-prone. These tools can

be run early in the development phase, when it is less costly

to fix defects, and thorough testing may not yet be feasible.

The latter is especially relevant in our application area, soft-

ware embedded in consumer electronics, as hardware may

not be available early on during development.

Our research is performed in the context of the TRADER1

∗ This work has been carried out in the Software Evolution Research

Lab at Delft University of Technology as part of the TRADER project un-

der the responsibility of the Embedded Systems Institute. This project is

partially supported by the Netherlands Ministry of Economic Affairs under

the BSIK03021 program.
1 http://www.esi.nl/trader

project, where we investigate methods and tools to pro-

duce robust embedded software, together with our industrial

partner NXP (formerly known as Philips Semiconductors).

Previous experience with automatic code inspection within

NXP showed that these tools typically produce too many

warnings to make direct use feasible: some means of pri-

oritization is needed. Research within TRADER focuses on

defects that visibly disrupt the behavior of the system, so

we want a prioritization scheme that points the developer to

these defects. The simple observation that faulty code needs

to be triggered, i.e., executed, in order to corrupt the system

state has lead us to investigate the feasibility of using pro-

gram profiling information (and thus execution likelihoods)

to prioritize warning reports. The main intuition behind our

approach is that the more likely it is that code having an in-

spection warning is executed, the higher the priority of that

warning should be.

Typically, dynamic execution profiles are more accurate

than static profiles, so they would make a logical choice.

However, dynamic analysis is less suitable in our context

because the embedded (soft-)real time nature of the appli-

cations makes it very hard to capture dynamic information

without influencing system behavior, and system-wide dy-

namic analysis requires complete control over the set of test

inputs, which is often lacking in the context of consumer

electronics. In addition, as mentioned above, the system’s

hardware may not be available early on (especially for every

developer). Consequently, we choose to compute a static ex-

ecution profile for the program at hand by means of source

code analysis. In essence, this means that we use the control

flow context of the identified faults to assess their impact,

and therefore their priority.

Another important requirement which follows from the

project context is the need for a scalable approach: The soft-

ware embedded in consumer electronics has grown tremen-

dously over the years. For example, a modern television

contains millions of lines of code, and it is these systems

that our tools will need to analyze eventually. To achieve

this scalability in our previous work [4], we favored elemen-

tary, conservative, techniques and applied simple heuristics

to predict branching behavior. The resulting profiler uses

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.18

79



only control flow information and some type information in

the branch prediction heuristics.

Rather than focusing on the application, in this paper we

investigate the benefits and trade-offs of using a more elabo-

rate data flow analysis technique in such a static profiler. The

technique exploits constant values present in source code in

order to enhance branch prediction. We evaluate the accu-

racy and speed of the new static profiler with respect to our

earlier approach. Specifically, the current paper investigates:

1. The amount of information that can be retrieved from

constant values present in the source code.

2. The predictive strength of our profilers with regard to

execution likelihood and execution frequency.

We evaluate accuracy by comparing our statically ob-

tained results to an oracle set of values that were obtained

using dynamic analysis. In contrast to what one would ex-

pect, the results show that the use of this particular data flow

analysis has little impact on either the branch prediction in

general or on the computed program profiles. This is sur-

prising since earlier work by Patterson suggested that such

a technique can indeed improve branch prediction [12], and

hence, by extension, static profiling.

The remainder of the paper is organized as follows: Sec-

tion 2 introduces methodology by summarizing our previous

profiler, discussing static branch prediction techniques, and

presenting the new profiler. Section 3 describes the vari-

ous experiments and the experimental setup, the results of

which are shown in Section 4 and summarized in Section

5. Finally, Section 6 describes related work and Section 7

concludes and discusses directions for future work.

2. Methodology

This section defines the execution likelihood and execution

frequency concepts used in our investigation and discusses

the techniques that we use to estimate them, such as the

graph representations of source code, the graph propagation

algorithms and static branch prediction schemes. We will

present these concepts and techniques with respect to our

previous profiler [4], and use it as a starting point for dis-

cussing the extensions that are specific to this paper.

2.1. Execution likelihood and frequency

We define execution likelihood of a program point v in pro-

gram p as the probability that v is executed at least once in

an arbitrary run of p. Similarly, we define the execution fre-

quency of v in p as the average frequency of v over all pos-

sible distinct runs of p. A program point can be any expres-

sion or statement of interest, or more specifically, a vertex in

the corresponding system dependence graph (SDG) [9]. We

i n t main ( i n t argc , char ∗∗ a rgv ) {
/∗ v1 ∗ /

i n t a = 1 ;

foo ( a ) ;

f o r ( a = 0 ; a < a r g c ; a ++) {
/∗ v2 ∗ /

}

foo ( a ) ;

re tu rn 0 ;

}

void foo ( i n t i n ) {
/∗ v3 ∗ /

i f ( i n > 1) {
/∗ v4 ∗ /

}
}

Listing 1. Example of various program points that

have different execution likelihoods

will discuss this representation later, and focus first on the

difference in application of both definitions.

To understand why the distinction may be important, we

will look at a few code snippets in the context of software in-

spection. Imagine we run a code inspection tool on the code

in Listing 1, and it signals warnings in the marked locations

(v1 - v4). We can deduce that program point v1 must have

an execution likelihood of 1, telling us that it will always

be executed in any run of the program. A warning in such a

location is obviously one that should be fixed as soon as pos-

sible, since it will certainly have an impact on the observable

behavior. On the other hand, the conditionally executed v4

will have a lower execution likelihood than v3 because the

condition may not always hold.2 However, when looking at

v1 and v3, it becomes difficult to distinguish between the two

as they both have an execution likelihood of 1. This could

become a real problem if we need to prioritize warnings in a

program of which a significant part will always be executed.

Using execution frequency instead of execution likeli-

hood solves this problem. This frequency is useful when

thinking of the warnings as potentially leading to a corrup-

tion of the system state, and eventually a disruption of ob-

servable behavior. From this perspective, a program point

with a higher frequency should be given higher priority, as

with more executions, the probability of distortion increases.

Nevertheless, an intuitive difference remains between v2,

which is generally executed a number of times, and v3,

which is guaranteed to be executed at least once. This differ-

ence can only be properly expressed by the execution likeli-

2Note that we will discuss later how to compute the actual likelihood.
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Information used: uniform condition variable

distribution and variable range

Prediction type: assumption types estimates

uniform prediction
√

heuristic based prediction
√ √

value range propagation based prediction
√ √ √

Table 1. Branch prediction approaches and information types

hood, which is why we will assess the approaches described

below for their predictive strength of both concepts.

2.2. Execution likelihood analysis

In previous work [4], we introduced an algorithm to compute

execution likelihood based on control flow, dubbed ELAN
(for Execution Likelihood ANalysis). It uses a graph repre-

sentation, the aforementioned SDG, a generalization of the

program dependence graph (PDG). The PDG is a directed

graph representing control- and data dependences within

a single routine of a program (i.e. intraprocedural), and

the SDG ties all the PDGs of a program together by mod-

elling the interprocedural control- and data dependences [9].

Since ELAN merely uses control flow information, we only

list the most important reasons for control dependences be-

tween two vertices v1 and v2:

• There is a control dependence between v1 and v2 if

v1 is a condition, and the evaluation of v1 determines

whether v2 is executed.

• There is a control dependence between v1 and v2 if v1

is the entry vertex of function f and v2 represents any

top-level statement in f .

• There is a control dependence between v1 and v2 if v1

represents a call to f and v2 is the entry vertex of f .

Intuitively, we can find all possible acyclic execution

paths by traversing the SDG with respect to control depen-

dences. However, traversing the complete SDG to find all

paths to a single point is not very efficient. To better guide

this search, we base our traversals on program slicing.

The slice of a program p with respect to a certain loca-

tion v and a variable x is the set of statements in p that may

influence the value of variable x at point v. Program slices

contain both control flow and data flow information. Since,

at this stage, we do not need data flow information, we can

restrict ourselves to control flow, and rephrase the definition

as follows: the control-slice of v in p consists of all state-

ments in p that determine whether execution reaches v.

Calculating the execution likelihood of v is now reduced

to traversing all paths within this slice. Given the SDG of

a project, we traverse the graph in reverse postorder, start-

ing from the main function entry point (execution start) to

v. For simplicity, we assume that the project contains a

main function that serves as a starting point of execution,

although this is not a strict prerequisite. We can pick any

function f as the start point and use program chopping, an

operation closely related to slicing but with given start and

end points [10, 13], to compute the section of the program

that can influence control, starting from f ’s entry point and

ending at v. As the paths obtained this way are usually con-

ditional, we need some means of branch prediction for all

conditions on the path to compute a likelihood or frequency

for a given program point v.

2.3. Branch prediction by static analysis

Various pieces of information present in the source code can

provide hints as to the likelihood that a certain condition will

evaluate to true or false. The different methods described

below use one or more of these types of information, as has

been summarized in Table 1. These methods principally use

the most sophisticated information available to them to es-

timate branch behavior, but revert to simpler forms if the

more sophisticated ones do not apply. For instance, the value

range propagation method will try to use statically estimated

variable values wherever possible, but uses heuristics or the

uniform distribution assumption otherwise.

2.3.1. Branch prediction using uniform distribution

In the simplest form of branch prediction, we assume a

uniform distribution over all branches, i.e., every branch is

equally likely. This rule is applied to both conditional state-

ments and (multi-branch) switch statements. When dealing

with loops, we assume that it is more likely they are exe-

cuted at least once, and use a predictive value that was de-

termined empirically (cf. Table 2). In this approach, loops

are detected by using abstract syntax tree information, while

interprocedural loops (i.e. recursion) are ignored.

2.3.2. Branch prediction using heuristics

A sophistication of the simple scheme mentioned above is

based on Wu and Larus’ approach to branch prediction [20].

They tested a number of heuristics empirically and used the

observed accuracy as a prediction for branch probability.

For example, they observed that a certain heuristic predicts
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Heuristic Probability

Any loop condition 0.88

Comparison of two pointers / pointer against null 0.24

Comparison of integer to a value less than zero 0.34

Condition in loop with one branch leading out of the loop 0.31

Condition with one branch leading to a function return 0.29

Table 2. Heuristics and associated probabilities

‘branch not taken’ accurately 84% of the time. Therefore,

when encountering a condition applicable to this heuristic,

16% and 84% are used for the ‘true’ and ‘false’ branch prob-

abilities, respectively. In situations where more than one

heuristic applies to a certain condition, the predictions are

combined using the Dempster-Shafer theory of evidence [8],

a generalization of bayesian theory that describes how sev-

eral independent pieces of information regarding the same

event can be combined into a single outcome.

One thing to note is that Wu and Larus’ numbers are

based on an empirical investigation of different software [1]

than the system that is used in our experiments. Deitrich et

al. [5] provide more insight into their effectiveness and ap-

plicability to other systems (and discuss some refinements

specific to compilers). In order to fine-tune the heuristic pa-

rameters to our particular test bed, we repeated the empirical

investigation, leading to slightly different values and a mod-

est increase in accuracy. The resulting values are displayed

in Table 2, for more information on these heuristics see [1].

2.3.3. Prediction using value range propagation

Estimated values for variables involved in conditions can

help to model the branching behavior more accurately than

using only heuristics. Previously, techniques such as con-

stant propagation used value information present in the

source code to perform, e.g., dead code elimination. Sim-

ilarly, Patterson [12] uses this information in his value range

propagation (VRP) technique to produce symbolic value

ranges for integer variables, which in turn are used to model

branching behavior. He also shows that some improve-

ment in prediction accuracy can be achieved by only using

numeric ranges. We will use a VRP approach that holds

i f ( a < 1) {
b = 1 ;

} e l s e {
b = 0 ;

}

i f ( b > 2) {
/∗ dead code ∗ /

}

Listing 2. Example of multiple reaching definitions

the middle ground between constant propagation and Pat-

terson’s symbolic ranges, by only using numeric ranges, in

addition to other sacrifices for the sake of speed and scala-

bility. We will outline how to compute numeric ranges as

well as the differences with Patterson’s original approach.

VRP is an extension to the well-known constant propa-

gation, exploiting constant (integer) values present in source

code. Although constant propagation only supports a single

value definition, VRP administers a range of values for every

variable. This means that whereas constant propagation can

only deal with one reaching definition, VRP can also handle

multiple. Consider the code in Listing 2, in which a value

for a cannot be statically determined: the use of b in the

second condition has multiple reaching definitions, and con-

stant propagation will therefore consider it undefined. VRP

takes both definitions into account, and a subsequent analy-

sis of the condition can tell us that the body of the second

if statement is dead code. Of course, this is a contrived ex-

ample, but it serves to illustrate an important difference be-

tween constant propagation and VRP.

In addition, we attach frequencies to the value ranges,

which can be used to further increase the precision of branch

prediction. Consider another example in Listing 3. Suppose

we can establish a range for the loop variable, a, being [0:5]

with frequency 6. If we further assume the actual value to be

uniformly distributed across this range, we can deduce that

b will have ranges of [1] with frequency 3 and [3:5] with

frequency 3 at the second if statement. Therefore, we would

predict that condition to be true in 50% of the cases. This

a = 5 ;

wh i l e ( a >= 0) {
i f ( a < 3) {

b = 1 ;

} e l s e {
b = a ;

}

i f ( b > 2) {
/∗ Some p o i n t o f i n t e r e s t ∗ /

}
a−−;

}

Listing 3. Loops and frequency-annotated ranges
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also illustrates the need for support of multiple ranges with

different corresponding frequencies.

This may leave the reader wondering how we compute

ranges for loop counters. By inspecting the (def,kill) chains

in the loop we can extract all the operations on the loop vari-

able, and determine a single step increment or decrement.

This way we can approximate the loop variable value ranges.

For example, we can see that there is a single loop variable a
in Listing 3, its start value is 5, the decrement is 1 (one loop

operation; the post-decrement operator), and a is -1 at loop

exit. The resulting range then becomes the previously men-

tioned [0:5] with frequency 6. Clearly, not every loop can

be statically estimated this way. Loop conditions consisting

of multiple variables that are changed in the loop, as well as

operations that cannot be determined statically, such as ran-

dom generators or memory loads, will result in an undefined

range for the variables involved.

In Patterson’s original VRP technique, a simple worklist

algorithm is used to propagate value ranges around the con-

trol flow graph (CFG) until a fixed point is reached, both

for interprocedural and intraprocedural propagation. In in-

traprocedural propagation, loops are handled by matching

them against a template to quickly compute loop variable

ranges. The algorithm reverts to the usual fixed-point com-

putation if this matching fails.

Our approach on the other hand always uses a single-

pass propagation mechanism. For intraprocedural propaga-

tion, this means handling loops in a manner similar to VRP,

or failing that, using heuristics instead. For interprocedu-

ral propagation this means that recursion is ignored, gaining

performance at the price of underestimation in some areas

of the program. Also, as mentioned before, we use only nu-

meric ranges instead of (limited) symbolic ranges.

Furthermore, we do not use an SSA-based graph rep-

resentation, but an ordinary CFG, where the variables are

made unique by distinguishing them per vertex. Moreover,

our range representation holds frequencies instead of prob-

abilities, which was done to ease the computation of ex-

ecution frequencies for the corresponding vertices. These

frequencies are converted on the fly to probabilities for use

in branch prediction, so they do not change the results of

the algorithm. Finally, both VRP approaches are context-

insensitive: value ranges for formal parameters are com-

puted by merging the ranges of the corresponding actual pa-

rameters at every call site. Patterson also employs a limited

amount of procedure cloning to produce more accurate pa-

rameter ranges, however.

2.4. Execution Frequency Analysis

The graph traversal in the new profiler differs from the one

in ELAN , as it should to be compatible with VRP. As VRP

already needs to traverse the complete graph in order to esti-

mate variable values, adding a demand-driven traversal such

as in ELAN makes little sense. Therefore, the frequency

analysis traverses the whole graph at once, using the tech-

niques described in the previous sections. It consists of two

parts, one for interprocedural propagation, and one for in-

traprocedural propagation.

The interprocedural propagation starts at the ‘main’ func-

tion of the program, and traverses the call graph to reach

other functions, administering estimates for parameters and

keeping track of visited functions to prevent infinite traver-

sals. Specifically, InterPropagation consists of the fol-

lowing steps:

• Given inter- and intraprocedural CFGs for a program,

construct a call graph, administering the number of call

sites for every function in CallPredecessors. Simi-

larly, record the number of in-edges for every vertex in

the intraprocedural CFGs in InEdges. Add the ‘main’

function to the InterWorkList, and set its frequency

to 1. While InterWorkList is non-empty, perform

the following:

– Let F be the first item on the InterWorkList.

– If all call sites in CallPredecessors for F have

been visited, retrieve its frequencies and the value

ranges for its parameters. If the frequency is non-

zero, run IntraPropagation, otherwise only up-

date CallPredecessors to prevent stalls in the

propagation of its successors (this is in fact a per-

formance optimization).

– Remove F from InterWorkList.

Similar administration and traversal happens in the intrapro-

cedural case; however, here we also need to evaluate ex-

pressions and conditions using the propagated estimates. In

detail, IntraPropagation entails:

• Let IntraWorkList be a list with only the entry ver-

tex. Save all variables and their value ranges per pro-

gram point in Bindings, the entry vertex is assigned

the frequency and parameter bindings associated with

the current function. While the IntraWorkList is

non-empty, do:

– Let v be the first item of IntraWorkList.

– If all predecessors of v in InEdges have been vis-

ited, retrieve its frequency vf and bindings vb and

perform:

∗ If all variables in the use-set of v are defined

in vb, evaluate v and update vb for the kill-set

of v.

∗ If v is a condition, try to evaluate the condi-

tion using vb, use heuristics if this fails. In

both cases, update outgoing ranges to reflect

the condition probabilities.
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Project Name ncKLoC # nodes # CPoints Project name ncKLoC # nodes # CPoints

in SDG in SDG in SDG in SDG

Antiword 27 89995 2787 CCache 3 19200 541

Chktex 4 25378 769 Check 3 48825 428

Lame 27 81071 3665 Cut 1 3736 85

Link 14 67205 2969 Indent 26 35496 1554

Uni2Ascii 4 4937 141 Memwatch 2 34561 496

Table 3. Case study programs and their metrics

∗ If v is a call to function F , merge the bind-

ings in vb for all its parameters with the ex-

isting ones, and vf to the recorded frequency

for F .

∗ In all cases, update Bindings and Inedges
for all successors of v in the intraprocedural

CFG.

– Remove v from IntraWorkList.

The implementation of this algorithm is parameterized with

the type of branch prediction used. This facilitates switching

between heuristics and VRP and comparing the results. In

the following, we will abbreviate the Execution Frequency

Analysis as EFAN , and use a subscript H or V to indicate

if respectively heuristic or VRP based branch prediction was

used. Although ELAN can also be instantiated with dif-

ferent branch predictions, we will only discuss the version

using heuristics in this paper for clarity and space reasons.

3. Experimental Setup

Our investigation must show the analysis time and accuracy

of the profiling techniques with respect to execution likeli-

hood as well as execution frequency, and specifically, the ap-

plicability of VRP. Therefore, we can distinguish four seper-

ate parts in our investigation:

IV1 An investigation into the applicability of the VRP

method, showing if we can extract sufficient variable

information for use in estimating branch behavior.

IV2 An evaluation of branch prediction accuracy by com-

parison to dynamically gathered branch behavior. This

will tell us how well each technique interacts with the

selected cases, and what improvement we may there-

fore expect in the subsequent profiler evaluation. Es-

sentially, this is a partial repetition of the experiment in

[12] on our testbed (partial, since we do not include all

techniques used there).

IV3 An evaluation of profiler accuracy for both execution

likelihood and frequency by comparison to dynamic

profiles. In this, we want to see the impact of different

branch prediction techniques (by comparing EFANH

and EFANV ) and the differences in estimating like-

lihoods and frequencies (by comparing ELANwith

those two). This is an extension of our previous in-

vestigation in [4].

IV4 The final evaluation is that of analysis time, which will

show the cost of the additional complexity of the more

elaborate techniques. Also this is an extension of our

previous investigation, in techniques assessed as well

as the number of cases used.

The profilers have been implemented as a plug-in for Gram-

matech’s Codesurfer,3 a program analysis tool that can con-

struct control flow graphs and dependence graphs for C and

C++ programs.

Case selection Table 3 lists some source code properties for

the different cases, respectively the size in (non-commented)

lines of code (LoC, measured using SLOCCount4), the size

of the SDG in vertices, and the total number of conditions

in the program. The apparent discrepancy between the size

in LoC and the size of the SDG in vertices can be largely

attributed to Codesurfer’s modelling of global variables in

the SDG, adding them as parameters to every function. All

programs are written in C, the only language currently sup-

ported by our implementation.

The first five programs (leftmost column) were used in

the accuracy evaluations (IV1-3). These programs were se-

lected such that it would be easy to construct ‘typical usage’

input sets, and automatically perform a large number of test

runs in order to compare our static estimates with actual dy-

namic behavior. For every case, at least 100 different test

runs were recorded, and profile data was saved. The com-

plete set of ten programs were used in the time evaluation

(IV4) to ensure a uniform spread of datapoints.

4. Results

4.1. IV1: Applicability of VRP

Table 4 lists some metrics collected while running the VRP

analysis over the accuracy testbed, i.e., the first five pro-

grams in Table 3. These numbers were aggregated over the

3 http://www.grammatech.com/products/codesurfer/
4 http://www.dwheeler.com/sloccount/
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Metric Number

vertices with vars 64728

vertices with int vars 27242

vertices with vars known 7482

vertices with all vars known 3162

total conditions 10331

conditions with vars known 2157

conditions with all vars known 871

Table 4. Value range propagation related metrics
collected from testbed

whole accuracy testbed, and provide an indication of feasi-

bility of using VRP. For instance, we can see from the ratio

between the number of program points with integer variable

occurrences and the total number of vertices with variable

occurrences that limiting data flow information to integers

can still yield results for a significant part of our test pro-

grams. Noteworthy is also that of those program points with

integers, close to 12% can be completely statically evalu-

ated. Finally, approximately 8% of the conditions have com-

plete variable value information (i.e., conditions containing

only integer variables, and these could all be estimated).

This last metric is the prerequisite for successful use of

VRP as a branch predictor, as we can only use the value

ranges for prediction in those conditions where an estimate

for every variable has been determined. This does not look

very promising, since there will be relatively few conditions

that can benefit from the extra information VRP provides.

4.2. IV2: Branch prediction accuracy

We will assess what this means for the accuracy by com-

paring static estimates with their dynamic counterparts. For

every branch in the test set, we produce three estimates, and

check whether they are correct within a certain error mar-

gin. This is shown in Figure 1, where we can make two

observations: (1) the heuristic and VRP predictors do offer

improvement over the simple scheme; and (2) there is no ap-

parent difference in accuracy between the heuristic and VRP

predictors: the two lines coincide completely. Apparently

the small number of conditions that could benefit from data

flow information has no impact on the overall score. As this

small set could include loops or branches with a great impact

on the likelihood/frequency distribution, it may yet influence

the accuracy of the profiler that uses the predictors.

4.3. IV3: Profiler accuracy

We evaluate profiler accuracy by looking at their ranking of

program locations, since this is the most relevant output for

typical applications. We therefore create two sets of pro-

gram locations, the first sorted by one of the static profil-

ers, the second by actual usage, and compare them using
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Figure 1. Branch prediction accuracy

Wall’s unweighted matching method [19]. This will give us

a matching score for different sections of the two rankings.

To illustrate this matching score, consider the following ex-

ample: suppose we have obtained the two sorted lists of pro-

gram locations, both having length N , and we want to know

the score for the topmost m locations. Let k be the size of

the intersection of the two lists of m topmost locations. The

matching score then is k/m, where 1 denotes a perfect score,

and the expected score for a random sorting will be m/N .

In our experiments, scores were calculated for the topmost

10%, 20%, 30%, 40% and 50%. The rankings used are at

the level of basic blocks, since there is no way for profiling

to dinstinguish between locations within one block.

Table 5 compares the rankings of the profilers against the

dynamically obtained likelihood ranking, Table 6 compares

the profilers’ rankings against the dynamic frequency rank-

ing. It may seem odd to compare a ranking based on an

estimate of likelihood with a ranking based on frequency,

however, both should be largely the same, modulo multiple

function invocations and loop iterations. By comparing ac-

curacy of both likelihood and frequency estimates as a pre-

dictor for frequency, we can surmise the extent to which we

can statically determine the influence of these two factors.

We can make two obervations by looking at these tables:

(1) using VRP does not result in more accurate estimates;

and (2) ELAN slightly outperforms both EFAN variants,

even when used as a frequency estimator. The first is in

line with the earlier observed branch prediction accuracy;

apparently, there is no set of ‘important’ branches more ac-

curately predicted by using VRP. This is perhaps best illus-

trated by Figure 2, which displays the overall profiler ac-

curacy, in a manner similar to the earlier branch prediction

accuracy (Figure 1.) Once more, the lines representing the

two EFAN variants almost coincide. The second obser-

vation is more surprising, but may be explained by the fact

that, contrary to our hope, VRP was unable to predict many
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Portion antiword chktex lame link uni2ascii

10 0.50 0.52 0.36 0.31 0.20 0.19 0.39 0.26 0.27 0.52 0.28 0.03 0.25 0.12 0.00

20 0.46 0.42 0.38 0.54 0.39 0.38 0.38 0.25 0.25 0.58 0.40 0.24 0.71 0.53 0.29

30 0.46 0.41 0.47 0.40 0.37 0.38 0.38 0.29 0.30 0.64 0.53 0.44 0.68 0.60 0.52

40 0.47 0.46 0.52 0.39 0.34 0.41 0.46 0.42 0.45 0.65 0.64 0.58 0.65 0.50 0.47

50 0.54 0.52 0.56 0.46 0.45 0.45 0.48 0.49 0.53 0.66 0.75 0.70 0.60 0.52 0.48

Table 5. Execution Likelihood matching for ELAN , EFANH , and EFANV

Portion antiword chktex lame link uni2ascii

10 0.26 0.24 0.33 0.02 0.00 0.03 0.01 0.01 0.02 0.18 0.29 0.27 0.38 0.12 0.00

20 0.38 0.33 0.38 0.06 0.05 0.12 0.15 0.07 0.07 0.28 0.40 0.46 0.41 0.24 0.18

30 0.45 0.40 0.46 0.06 0.04 0.20 0.36 0.27 0.28 0.36 0.48 0.56 0.40 0.32 0.24

40 0.47 0.46 0.52 0.25 0.21 0.36 0.46 0.42 0.45 0.46 0.57 0.61 0.59 0.44 0.41

50 0.54 0.52 0.56 0.44 0.43 0.45 0.48 0.49 0.53 0.55 0.66 0.66 0.60 0.52 0.48

Table 6. Execution Frequency matching for ELAN , EFANH , and EFANV

conditions, most particularly loops. In such cases a simple

fixed estimate for loop iterations is not a good alternative.

Although not shown here, we ran multiple experiments to

find a relation between several structural properties of the

loops and the corresponding number of iterations, but none

were found. In likelihood estimates loops are less dominant,

and therefore their impact on the accuracy of the estimates.

4.4. IV4: Profiler analysis time

With regard to the speed of the profilers, we are primarily in-

terested in the difference between EFANH and EFANV ,

as we investigated the time performance behavior of ELAN
before. We have seen that the kind of operations and the

single-pass traversal involved are similar to ELAN . Thus,

we also expect their time characteristics to be similar to that

profiler, which was found to be approximately linear in the

size of the SDG. Note that there is a difference in the traver-

sal; while ELAN traverses over dependence edges, EFAN
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Figure 2. Profile prediction accuracy

uses control flow edges, probably visiting more vertices as a

result. Figure 3 displays analysis time measurements for the

different programs, and in fact we can observe that EFANH

and EFANV both behave similar to ELAN (cf. Figure 2

in [4]). Two programs do not fit the trend line, they were

found to have some functions of a highly branching nature

(e.g., having switches of 500-1000 cases).

5. Evaluation

Returning to our four lines of investigation, we can summa-

rize the results as follows:

IV1 The numeric VRP approach can estimate value ranges

for approximately 12% of all locations containing inte-

ger variables, and 8% of all conditions containing inte-

ger variables. This constitutes an upper bound on the

number of conditions that may be estimated using nu-

meric VRP, as there are other structural requirements
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that need to be met. For instance, also including non-

integer values or function calls in the condition will

render the approach ineffective.

IV2 As a result of said limited applicability, VRP performs

on par with the heuristic branch prediction approach

in terms of accuracy. This result contrasts with Pat-

terson’s findings on numeric ranges, which did show

an improvement over heuristics [12]. Two main differ-

ences between his approach and ours that may be re-

sponsible are fixed-point calculation instead of single-

pass traversal, and the use of procedure cloning. The

first is likely to benefit the accuracy of branches in

functions part of a recursion, but will not increase the

number of branches where VRP is applicable. Proce-

dure cloning helps where parameters of a function have

a known definition in one calling context, but not in

another. The current context-insensitive approach will

thus be unable to approximate the parameter value, but

will be able to distinguish the two reaching definitions

in case of cloning. Therefore, this seems the most likely

culprit for the difference in findings.

IV3 Although a more accurate estimate of a limited number

of high-impact branches could positively influence the

accuracy of the static profiler, this does not appear to be

the case either. Perhaps more surprising is the fact that

ELAN outperforms both EFAN variants not only in

estimating execution likelihood, but als for execution

frequency. The most likely reason for this is the loop

estimation in the EFAN approaches, which both need

to resort to a generic value, whereas the value used in

ELAN has previously shown itself well-suited to our

testbed [4]. In addition, in likelihood estimation the

values used for loops have a less prominent effect on

the overall likelihood estimate than the values for loop

iteration have on overall frequency estimates.

IV4 The profiling techniques and the branch predictions

employed were all designed for simplicity and scalabil-

ity, and results of the analysis time investigation reflect

this. Notably, the numeric VRP method only imposes a

linear-time overhead on the profilers with less elaborate

techniques (i.e., heuristics and uniform prediction).

Internal validity As the approaches in this paper are based

on the CFG and SDG, the way in which these graphs are

constructed directly affects the outcome, especially in terms

of accuracy. It should be noted, therefore, that the graphs

both have missing dependences (false negatives) and depen-

dences that are actually impossible (false positives). For ex-

ample, control- or data dependences that occur when using

setjmp/longjmp are not modeled. Another important issue

is the accuracy of dependences in the face of pointers, think

for example of modeling control dependences when using

function pointers. To improve this accuracy, a flow insensi-

tive and context insensitive points-to algorithm [15] is em-

ployed to derive safe information for every pointer in the

program. This means that our profilers also model control

flow through pointers (i.e., function pointers) and data flow

through pointers to integer variables.

External validity Our testbed consists of programs adher-

ing to a simple input-output paradigm, which makes creation

of appropriate test inputs easier, and allows us to focus on

evaluating the approach itself. Generalizing to other kinds of

programs may not be too hard, as the approaches are based

on control- and data-flow information, which will always be

present in any program. Still, there may be an increased in-

fluence of interaction or inputs in comparison to programs in

our testbed. However, Fisher and Freudenberger observed

that, in general, varying program input tends to influence

which parts of the system will be executed, rather than in-

fluencing the behavior of individual branches [7]. This sug-

gests that branch behavior is no different in other types of

programs, and that static profiling should be similarly appli-

cable elsewhere.

6. Related Work

Static profiling is used in a number of compiler optimiza-

tions and worst-case execution time (WCET) analyses, aim-

ing at identifying heavily-executed portions of the code.

Branch prediction in these techniques often takes the form

of heuristics [20, 18]. A more sophisticated data flow based

approach is described by Patterson who uses statically de-

rived value ranges for variables to predict branching be-

havior [12]. Closely related techniques range from con-

stant propagation [11, 14, 2], to symbolic range propaga-

tion [16, 3], or even symbolic evaluation [6]. However, none

of these techniques has previously been applied to static

branch prediction or in the computation of static profiles.

Voas [17] proposed the concepts of execution probability,

infection probability and propagation probability to model

the likelihood that a defect leads to a failure. The first of

these is similar to our notion of execution likelihood: the

chance that a certain location is executed. However, the ap-

plication is quite different, in the sense that Voas explicitly

looks for those areas where bugs could be hiding during test-

ing, whereas we are looking for ‘visible’ bugs out of a list

too large to solve. Moreover, Voas computes these metrics

by means of a dynamic analysis, which is less suitable for

our application area, as discussed earlier.

7. Concluding Remarks

Contributions In this paper, we have (1) presented a novel

approach to use data flow information for computing static
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profiles, by using statically derived value ranges for integer

variables in branch prediction; (2) identified the merits of

estimating both execution likelihood and frequency; and (3)

assessed the new approach with respect to both concepts in

comparison to our earlier static profiler.

Conclusions Although we found that some branches in

our testbed potentially benefit from VRP information, the

actual number of branches that could be predicted this

way is limited. In addition, we found that the simple

control-dependence based solution, ELAN , outperformed

both EFAN variants in estimating both likelihood and fre-

quency, most likely because the value range information is

insufficient to accurately model loop behavior. We conclude

that the use of these more involved analyses has little impact

on the accuracy of either branch prediction or profiling.

Future Work Patterson’s work suggests that branch predic-

tion can be further improved using simple symbolic ranges

instead of purely numeric ones [12]. An interesting direc-

tion for future work is therefore to extend the current profil-

ers with some form of symbolic evaluation and investigate

the benefits for accuracy and the costs in terms of additional

performance overhead.
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