2nd International Workshop on Advanced
Software Development Tools and Techniques (WASDeTT):
Tools for Software Maintenance, Visualization, and Reverse Engineering

Holger M. Kienle
University of Victoria, Canada
hkienle @acm.com

Michael W. Godfrey
University of Waterloo, Canada
migod@uwaterloo.ca

Abstract

The objective of the 2nd International Workshop on Ad-
vanced Software Development Tools and Techniques (WAS-
DeTT) is to provide interested researchers with a forum to
share their tool building experiences and to explore how
tools can be built more effectively and efficiently. This
workshop specifically focuses on tools for software main-
tenance and comprehension and addresses issues such as
tool-building in an industrial context, component-based
tool building, and tool building in teams.

1. Introduction and Rationale

The motivation for this workshop is the fact that tools
and tool building play an important role in applied com-
puter science research [5]. The tangible results of research
projects are often embodied in a tool. Even though tool
building is a popular technique to validate research (e.g.,
proof-of-concept prototyping followed by user studies), it
is neither simple nor cheap to accomplish.

Given the importance of tool building and the significant
cost associated with it, this workshop gathers interested re-
searchers and to provide them with a forum to share their
tool building experiences and to explore how tools can be
built more effectively and efficiently. Thus, the workshop is
not so much about the finished product—a tool’s novel fea-
tures and algorithms—but about kow the tool was designed
and built.

This workshop is the second installment of the Interna-
tional Workshop on Advanced Software Development Tools
and Techniques (WASDeTT). We hope that WASDeTT will
become a regular event, attracting researchers from soft-

978-1-4244-2614-0/08/$25.00 © 2008 IEEE

Leon Moonen

Simula Research Laboratory, Norway

408

leon.moonen @ computer.org

Hausi A. Muller
University of Victoria, Canada
hausi@cs.uvic.ca

ware engineering and related areas. The first WASDeTT
was held at the 22nd European Conference on Object-
Oriented Programming (ECOOP 2008) in Cyprus.' This
workshop focused on tools that are implemented in object-
oriented languages and/or target object-oriented software.
In contrast, this workshop specifically addresses tools that
support maintenance and program comprehension of soft-
ware systems. The aim of the workshop is to foster interac-
tions between researchers that are constructing such tools,
and to advance the state-of-the-art in tool building.

2. Workshop Topics

General topics of interest include questions such as:
Should tool building remain a craft? Should researchers
strive towards improving promising prototypes so that they
can compete with the quality of professional offers—and
should this effort be fostered and rewarded by academia?
What are the positive lessons learned in building tools?
What are the (recurring) pitfalls in tool building? What are
the good practices and techniques? How to integrate and
combine independently developed tools? Are there archi-
tectures and patterns for tool building in the research com-
munity? How to compare or benchmark tools?

For this workshop we are especially interested in experi-
ences of speakers and participants that relate to the follow-
ing topics:

Tool building in industry: There are examples of indus-
trial tools that have started as academic prototypes. For
example, the Bauhaus reverse engineering tool originated
as part of a dissertation [8] and is now commercialized by
Axivion (www.axivion.com). Other examples of aca-
demic spin-offs are Legasys Corporation in Canada, which

"http://smallwiki.unibe.ch/wasdett2008/

ICSM 2008

offered services in software maintenance automation for
six years [2], and the Software Improvement Group in the
Netherlands (www.sig.nl). The latter was founded by
two Ph.D. students and now employs more than 30 peo-
ple. In this context, we would like to discuss issues such as
how to get the foot into industry’s door for conducting case
studies and user studies, and successful business models to
transition a research tool into a commercial offering. Also,
how to effectively ensure tool stability for commercial cus-
tomers while continuing to use the tool as a testbed to try
out now research ideas?

Component-based tool building: Researchers are in-
creasingly leveraging components to assemble their tools
instead of building them from scratch. Examples of com-
ponents are off-the-shelf (OTS) products—commercial as
well as open source—such as Eclipse [10], Rational Rose
[4], Emacs [14], Visio [15], Graphviz [12], Source Naviga-
tor [11], and GCC [3]. While many researchers are leverag-
ing OTS products, comparably few experiences and lessons
learned are described in the literature (e.g., [13] [1] [6]). In
this context, we would like to discuss concrete experiences
and lessons learned of component-based building of soft-
ware maintenance and comprehension tools. Question of
interest are, for example: How to assess and select suitable
OTS products? How to customize a certain OTS product
(via its API or scripting)? How to interoperate with a cer-
tain OTS product?

Tool building in teams: Often tools are developed by a
single researcher over a few years as part of his or her thesis
or dissertation. These tools are typically prototypes that are
abandoned after the degree is completed. In contrast, there
are also tools that are developed and maintained over many
years by a significant team of developers. Examples of such
tools are Bauhaus (University of Bremen and University of
Stuttgart) [9] and Rigi (University of Victoria) [7]. In this
context, we would like to discuss how team size and team
diversity impacts tool building, and how to manage larger
teams. Especially, is there a need to introduce more formal-
ity in the tool-development process? And how can this be
achieved without stifling creativity in research?

3. Workshop Activities and Tangible Outcomes

The workshop features presentations by invited speak-
ers that will talk about their tool building experiences in an
academic and industrial context. The purpose of the presen-
tations is to convey lessons learned and to point out open
issues that can generate interesting discussion. We plan to
have an interactive workshop with ample time for discus-
sion and a break-out session. After the workshop, we would
like to solicit feedback from each participant about the most
important insight that he or she has learned in the workshop.

In order to preserve and disseminate results, talks, posi-

409

tion papers and other materials that the workshop generates
will be published on the workshop’s web site at

http://wasdett2.wikispaces.com/.

Furthermore, the results from this workshop will be also
summarized in the next WASDeTT.

As concrete outcome, we aim to distill practical results
and experiences so that other researchers can apply them to
improve upon their own tools and upon the way that they
build them. As a result, we expect that this workshop will
contribute towards advancing the current state-of-the-art in
tool building.

References

[1] D. Coppit and K. J. Sullivan. Multiple mass-market applications
as components. 22nd ACM/IEEE International Conference on Soft-
ware Engineering (ICSE’00), pages 273-282, June 2000.

J. R. Cordy. Comprehending reality—practical barriers to industrial
adoption of software maintenance automation. /Ith IEEE Inter-
national Workshop on Program Comprehension (IWPC’03), pages

196-206, May 2003.

T. R. Dean, A. J. Malton, and R. Holt. Union schemas as a ba-
sis for a C++ extractor. 8th IEEE Working Conference on Reverse
Engineering (WCRE’01), pages 59-67, Oct. 2001.

A. Egyed and P. B. Kruchten. Rose/Architect: A tool to visualize
architecture. 32rd IEEE Hawaii International Conference on System
Sciences (HICSS’99), Jan. 1999.

R. Glass, I. Vessey, and V. Ramesh. Research in software engi-
neering: an analysis of the literature. Information and Software
Technology, 44(8):491-506, June 2002.

H. M. Kienle. Building reverse engineering tools with software
components: Ten lessons learned. [4th IEEE Working Conference
on Reverse Engineering (WCRE 2007), pages 289-292, Oct. 2007.
H. M. Kienle and H. A. Miiller. The Rigi reverse engineering envi-
ronment. /nd International Workshop on Advanced Software Devel-
opment Tools and Techniques (WASDeTT 1), July 2008. To appear.
R. Koschke. Atomic Architectural Component Recovery for Pro-
gram Understanding and Evolution. PhD thesis, University of

Stuttgart, Germany, 2000.

R. Koschke. Zehn Jahre WSR - Zwolf Jahre Bauhaus.
10th Workshop Software Reengineering (WSR 2008), May
2008. http://www.informatik.uni-bremen.de/st/
papers/bauhaus-wsr08.pdf.

R. Lintern, J. Michaud, M. Storey, and X. Wu. Plugging-in visu-
alization: experiences integrating a visualization tool with Eclipse.
ACM Symposium on Software Visualization (SoftVis'03), pages 47—
56, June 2003.

D. L. Moise and K. Wong. An industrial experience in reverse en-
gineering. 10th IEEE Working Conference on Reverse Engineering
(WCRE’03), pages 275-284, Nov. 2003.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflex-
ion models: Bridging the gap between design and implementation.
IEEE Transactions on Software Engineering, 27(4):364-380, Apr.
2001.

S. P. Reiss. Program editing in a software development environment
(draft). http://www.cs.brown.edu/~spr/research/

desert/fredpaper.pdf, 1995.

P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Points-to analysis
for program understanding. 5th IEEE International Workshop on
Program Comprehension (IWPC’97), pages 90-99, Mar. 1997.

Q. Zhu, Y. Chen, P. Kaminski, A. Weber, H. Kienle, and H. A.
Miiller. Leveraging Visio for adoption-centric reverse engineer-
ing tools. 10th IEEE Working Conference on Reverse Engineering
(WCRE’03), pages 270-274, Nov. 2003.

(2]

(3]

(4]

[5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

