
Dealing with Crosscutting Concerns in Existing Software

Leon Moonen
Simula Research Laboratory, Norway

Leon.Moonen@computer.org

Abstract
This paper provides a roadmap for dealing with crosscutting
concerns while trying to understand, maintain, and evolve
existing software systems. We describe an integrated, sys-
tematic, approach that helps a software engineer with iden-
tifying, documenting and migrating crosscutting concerns
in the source code of a software system, and discuss the
integration considerations. We conclude with a number of
lessons learned and directions for future research.

1. Introduction

It is well-known that the majority of software engineers
work on the evolution of existing systems instead of the cre-
ation of new systems. As such, they are regularly confronted
with the daunting task of needing to understand (part of)
a complex system for which they have little to no a priori
knowledge. Effective comprehension is essential for main-
tenance and evolution, and can take up as much as 50%–90%
of the software’s total costs [12, 39, 45].

A software engineering technique that helps to manage
system complexity is separation of concerns: a modulariza-
tion approach that divides a system in distinct pieces that
have as little overlap in functionality as possible, thereby
improving comprehensibility [2, 10, 38]. However, the ma-
jority of applications that are used and maintained today re-
main hard to understand, evolve, or reuse, because a com-
plete separation of concerns is difficult or even impossible
to achieve using the modularization mechanisms available
in most popular programming paradigms [47].

Concerns that cannot be cleanly decomposed and iso-
lated in a system’s dominant decomposition into modules
are called crosscutting concerns. Examples include the au-
thorization of users, keeping a history of changes to a pa-
tient record, persistence of data, transaction management,
and exception handling. Forcing the implementation of a
crosscutting concern into an existing decomposition results
in symptoms like scattering, where the implementation of a
single concern is spread over several modules, and tangling,
where a single module implements multiple concerns. As a
side effect, it often also results in code duplication.

These symptoms have an obvious negative impact on the
system’s comprehensibility and evolvability: first of all, it
becomes difficult to recognize and consistently change a

crosscutting concern as a whole when it is scattered over
the system. Second, the system’s ordinary concerns become
harder to understand because they get tangled with the cross-
cutting ones: classes and methods no longer only deal with
their primary responsibility, but also need to take care of
secondary, crosscutting, concerns. Also, because the con-
cerns are not explicit, they may be overlooked, resulting in
modifications or extensions that break the system’s concep-
tual integrity. Figure 1 illustrates the scattering and tangling
of crosscutting concerns throughout the modules of a sys-
tem. The vertical bars represent modules, horizontal lines
correspond to code fragments implementing a concern, and
grayscales indicate various concerns.

Aspect-oriented software development (AOSD) has
emerged as development paradigm for advanced separation
of concerns. It seeks to separate even those crosscutting
concerns that are difficult to decompose and isolate with ear-
lier programming methodologies. Aspect-oriented program-
ming (AOP) captures crosscutting concerns in a new modu-
larization unit, the aspect, enabling developers to organize
code, design and other artifacts in a more logical way, ac-
cording to the concern they address. It offers composition
facilities to create complete applications by weaving aspects
into a core system at the appropriate places, keeping the core
oblivious to the crosscutting concerns.

AOSD promises significant benefits in the areas of soft-
ware comprehension, maintenance and evolution and could
therefore play an important role in the revitalization of ex-

Figure 1. Scattering and tangling of crosscutting
concerns throughout a system (src: Bruntink [6])

978-1-4244-2655-3/08/$25.00 © 2008 IEEE FoSM 200868

isting (legacy) software systems. However, most of the ex-
isting AOSD approaches seem to focus primarily on dealing
with crosscutting concerns in new systems that are devel-
oped from scratch. Fully exploiting AOSD in the context
of existing software systems imposes different requirements
and constraints and has its own set of challenges and open
issues that need to be solved.

This paper focuses on dealing with crosscutting concerns
while trying to understand, maintain, and evolve existing
(legacy) software systems. We take a code-centric point of
view, looking at techniques that help a developer to (a) iden-
tify crosscutting concerns in the source code of an existing
system, (b) document how these code fragments relate to
each other and aggregate into higher level structures, and (c)
manage evolution of the system by increasing the separation
of concerns via views or migrations.

Our goal is to provide a roadmap for potential users of
aspect-oriented technology in the context of existing sys-
tems. For more information about aspect-oriented program-
ming, we refer to [1, 15, 26]. For a recent survey of auto-
mated aspect mining techniques, we refer to [36].

2. Background and Terminology

Over the recent years, various researchers have started to
look at identifying, documenting and transforming crosscut-
ting concerns in existing software systems, a practice that is
commonly referred to as aspect mining and refactoring.1

Crosscutting concerns can be characterized by their in-
tent and extent. A concern’s intent is the objective of the
concern and the extent is the concrete representation of that
concern in the system’s source code. For example, the in-
tent of a tracing concern is that all relevant input and output
parameters of public methods are appropriately traced, and
the extent consists of the collection of all statements actually
generating traces for a given method parameter.

In aspect mining, we search for source code elements that
belong to the extent of crosscutting concerns. We will refer
to such code elements as (concern) seeds. Once a seed for a
concern is identified, seed expansion can be used to expand
it to the full extent of the concern, for example by follow-
ing data and control flow dependencies. Automated aspect
mining techniques yield candidate seeds, which can become
confirmed seeds (or simply “seeds”) when they are validated
by a human expert, or non-seeds if rejected. Non-seeds are
also referred to as false positives; a false negative is a parts
of a known crosscutting concern that is missed due to inher-
ent limitations of the mining approach.

1 Note that some people consider this a misnomer as aspects in AOP
are already isolated modules representing a concern, so “mining” aspects
is trivial. Likewise, aspect refactoring implies restructuring of existing as-
pects, and not software migration aimed at isolating crosscutting concerns.
The terms crosscutting concern identification and (crosscutting) concern
migration have been proposed as alternatives.

3. Identifying Crosscutting Concerns

Experience shows that manual adoption of aspect-oriented
techniques in existing software systems is a difficult and
error-prone process [8, 27]. Challenges include the, at times
complicated and irregular, entanglement of concerns, the
sheer size and complexity of the software, and the lack of
up-to-date documentation and knowledge about the system.

Clearly, there is a need for tools and techniques that help
developers to identify and document cross-cutting concerns
in existing systems, and (potentially) help to migrate the dis-
covered cross-cutting concerns into aspects.

Aspect mining aims at finding crosscutting concerns in
existing code. Once these concerns have been identified,
they can be used for program understanding and evolution
purposes. We distinguish query-based and generative min-
ing approaches; they are discussed in more detail below.

3.1. Query-based approaches

Query-Based techniques start exploration from search pat-
terns provided by the user. Code fragments that match the
pattern are used as concern seeds and can interactively be
expanded to more complete concerns using the tool.

Aspect Browser, one of the first query-based tools, uses
lexical pattern matching for querying the code and a map
metaphor for visualizing the results [16]. The Aspect Min-
ing Tool (AMT) extends the lexical search from the Aspect
Browser with structural search for usage of types within a
given piece of code [19]. Both tools display the query re-
sults in a Seesoft-type view [11], as also shown in figure 1.

AMT has evolved into PRISM, a tool supporting identifi-
cation activities by means of lexical and type-based patterns
called fingerprints [53]. A fingerprint can be defined, for
example, as any method in a given class of which the name
starts with a given word. A software engineer defining fin-
gerprints is assisted by so-called advisors.

The Feature Exploration and Analysis Tool FEAT is an
Eclipse plug-in aimed at locating, describing, and analyzing
concerns in source code [40]. It is based on concern graphs
which represent the elements of a concern and their relation-
ships. A FEAT session starts with an element known to be a
concern seed, and FEAT allows the user to query relations,
such as direct call relations, between the seed and other ele-
ments in the program. Query results that the user considers
relevant to the (crosscutting) concern under investigation can
be added to the concern-graph of that concern.

The Concern Manipulation Environment CME aims at
supporting the whole lifecycle of an aspect-oriented devel-
opment project [20]. This includes aspect identification fa-
cilities through an integrated search component (Puma) that
uses an extensible query language (Panther) [48]. CME
also allows for concern management similar to FEAT. Most
importantly, CME provides a infrastructure that is poten-

69

tially usable for the integration of different approaches to
aspect mining, including seed identification and concern ex-
ploration and management.

Various query-based tools have been compared in a re-
cent study [37] which shows that the queries and patterns are
mostly derived from application knowledge, code reading,
words from task descriptions, or names of files. This clearly
indicates that prior knowledge of the system or known start-
ing points strongly affect the usefulness of the outcomes of
an explorative approach.

3.2. Generative approaches

Generative aspect mining approaches aim at automatically
generating crosscutting concern seeds, usually based on
some form of program analysis. These techniques look for
symptoms of crosscutting functionality (such as code scat-
tering and tangling) and identify program elements exhibit-
ing these symptoms as candidate aspect seeds.

Our own fan-in analysis [29, 32] aims at recognizing
code scattering: It uses the idea that common functional-
ity in scattered code is likely to be factored out into helper
methods. Since these methods are called from many places,
they have a high fan-in value, which makes high fan-in a
good indicator of the scattered implementation of a concern.

Aspect mining using fan-in analysis consists of three
steps: First, we identify the methods with the highest fan-
in values. Second, we filter out methods that may have a
high fan-in but for which it is unlikely that there is a sys-
tematic pattern in their usage that could be exploited in an
aspect solution (e.g., getters, setters, certain utility methods).
Third, we inspect the call sites of the high fan-in methods,
in order to determine if the method in question does indeed
implement crosscutting functionality. The last step is the
most labor intensive, and it is based on an analysis of recur-
ring patterns in, for example, the call sites of the high fan-
in method. All steps are supported by a publicly available
Eclipse plug-in called FINT.2

Note that there are multiple ways in which a fan-in
metric can be defined, for example depending on the way
that polymorphic callers and callees are taken into ac-
count [5, 21, 22]. For calls from polymorphic methods, we
count the number of unique calls from different bodies; calls
to polymorphic methods are counted for each occurrence in
the inheritance hierarchy. We refer to [32] for a detailed dis-
cussion of the various options and their implications.

Additional assessments of fan-in analysis have been per-
formed in [17], where the metric is used to measuring scat-
tering, and in the Timna framework [43], which uses ma-
chine learning techniques to combine the results of several
aspect mining techniques. In addition, software repository
mining has been used to search for concerns by analyzing

2 http://swerl.tudelft.nl/view/AMR/FINT

changes in fan-in values between different versions of the
system under investigation [4].

Several authors have looked at code cloning as a side
effect of code scattering: Shepherd et al. [42] describe the
use of clone detection based on program dependence graphs
and the comparison of individual statement’s abstract syntax
trees for mining aspects in Java source code. Bruntink et al.
[7] evaluate the use of three clone detection techniques for
concern identification on an industrial C component. The
authors start from four dedicated crosscutting concerns that
were manually identified and annotated in the code and eval-
uate the suitability of various clone detection techniques for
identifying these concerns automatically by measuring the
coverage of the annotated concerns by detected clones.

Dynamic analysis approaches to aspect mining include
examining execution traces for recurring patterns [3] and as-
sociating method executions to traces that are specific to cer-
tain use-cases using formal concept analysis [50]. The typi-
cal dynamic analysis challenge is having to exercise all func-
tionality in the system that could lead to aspect candidates.
This issues is avoided in a variation on the first approach
which searches for recurring execution patterns in control
flow graphs using static analysis [25].

Identifier analysis uses formal concept analysis to group
program elements based on their names [52]. This is based
on the idea that developers use naming conventions that hint
at the relation between scattered elements of a concern.

The relation between interfaces and crosscutting con-
cerns has been investigated through a number of indicators
like the naming pattern used by the interface definition, the
coupling between the methods of the implementing class
and the methods declared by the interface, or the package
location of the interface and its implementing class [49].

4. Crosscutting Concern Sorts

Despite significant research efforts on the design and devel-
opment of aspect-oriented languages, and on aspect mining
techniques, there is still little consensus on what exactly con-
stitutes a (crosscutting) concern. Sutton and Rouvellou [46]
define a concern to be “any matter of interest in a software
system.”, Filman et al. [13] refer crosscutting concerns as
“systematic behavior” whose implementation is “scattered
throughout the rest of an implementation”, and Kiczales
et al. [24] define such concerns as “properties” that “cannot
be cleanly encapsulated in a generalized procedure”.

As a result, it is not clear how such concerns can be sys-
tematically recognized, understood, and clearly documented
in source code and aspect mining publications rely on non-
uniform and ad-hoc descriptions of the crosscutting con-
cerns they aim to identify and of the steps to be taken to
map their results onto potentially associated concerns.

The lack of a sound definition of crosscutting concerns

70

Sort Short description Examples
Consistent Behavior A set of method-elements consistently invoke a specific action as

a step in their execution.
Log events; Wrap or translate business service excep-
tions [32]; Notify and register listeners; Authorization

Redirection Layer A type-element acts as a front-end interface having its methods
responsible for receiving calls and redirecting them to dedicated
methods of a specific reference, optionally executing additional
functionality.

Decorator (pattern), Adapter (pattern) [18]; Forward
local calls to remote instances (RMI) [44]

Role Superimposition Type-elements extend their core functionality through the imple-
mentation of a secondary role.

Many roles specific to design patterns: Observer, Com-
mand, Visitor, etc.; Persistence [32]

Expose Context
(Pass Context)

Methods in a call chain consistently use parameter(s) to propagate
context information along the chain.

Transaction management, Authorization [26]

Support Classes for
Role Superimposition

Types implement secondary roles by enclosing support classes.
The nesting defines and enforces the relation between the enclos-
ing and the support class.

Undo in JHOTDRAW; Iterators for Collection types;
Event dispatcher for managing notifications

Exception Propagation Methods in a call chain consistently (re-)throw exceptions from
their callees when no appropriate response is available.

Checked Exceptions, such as IOException for failed
disk access, or SQLExceptions thrown in JDBC API

Table 1. Selection of Crosscutting Concern Sorts

prevents effective comparison and combination of mining
techniques, as is shown by the following (hypothetical but
likely) evaluation scenario: One approach presents results
to an instance of the Observer pattern through elements that
are crosscut by the super-imposed roles of Subject and Ob-
server [14]. A second approach reports results related to the
same instance, but identified through elements that consis-
tently implement the notification of the observer. Human
analyzers interpret the results and agree on ad-hoc conver-
gence rules: the Observer instance is easily accepted as com-
mon finding based on the valid results from both techniques,
especially since the Observer pattern is a well known exam-
ple of crosscutting behavior. In addition, each technique can
explain how the implementation of the Observer is related to
its own identification mechanism.

The problems with the scenario sketched above are ap-
parent: convergence is ad-hoc and relies on inconsistent in-
terpretation of the reported findings (since the Observer ac-
tually comprises two distinct crosscutting concerns and each
technique finds only one). The results require a tedious man-
ual correlation effort as they do not (always) overlap directly,
but are related by design decisions. Moreover, such a sce-
nario can only be successful when both techniques provide
detailed descriptions of results and associated concerns, a
situation that is unlikely in practice (especially for other con-
cerns than a well-known design pattern). A first step towards
overcoming these issues is developing a consistent system
for addressing and describing crosscutting concerns.

Over the last three to four years, we have analyzed cross-
cutting concerns in a range of Java systems, including JBoss,
TOMCAT, JHOTDRAW, and the J2EE PETSTORE, totaling
over 500,000 lines of code (a detailed description of the
crosscutting concerns in the latter three of these systems is
provided in [32] and [9]). The experience gained from these
studies allows us to recognize and categorize a number of
typical atomic “building blocks” for crosscutting function-
ality, i.e., concerns that cannot be decomposed into smaller,

yet meaningful, concerns. Examples include the superimpo-
sition of a new role on an existing class or the implemen-
tation of consistent behavior, for example for precondition
checking, refreshing the display after updates to a drawing
or tracing certain events.

We refer to these “building blocks” as crosscutting con-
cern sorts [30, 33]. They are characterized by a number of
properties common to all the instances of the sort, such as
a generic description of the sort (the sort’s intent), and their
specific underlying relations and implementation idioms in
non-aspect-oriented languages (i.e., the sort’s extent or its
characterizing implementation symptoms). Table 1 shows a
selection of the identified crosscutting concern sorts.

Observe that the list of sorts is open-ended, i.e. new sorts
can be added if their underlying relations cannot be covered
by the existing sorts. It is also important to note that the
concerns described by sorts are meaningful on their own,
and can occur in more complex compositions, like a transac-
tion management mechanism or an Observer design. In fact,
published aspect refactorings are often at the same granular-
ity as concern sorts, like introduction of roles, or advice for
consistent behavior, although they are often presented in a
larger context of a specific feature or design [18, 26].

The classification of crosscutting concerns based on sorts
ensures a number of important properties for systematic as-
pect mining: first, the atomicity of the sorts ensures a consis-
tent granularity level for the mining results; second, sorts de-
scribe the relation between concrete instances and the asso-
ciated crosscutting functionality; third, sorts provide a com-
mon language for referring to typical crosscutting behavior.

Crosscutting concern sorts can be formalized using rela-
tional calculus as queries over source models that are ex-
tracted from a system’s source code. The elements and rela-
tions relevant to these queries are shown in Figure 2. An in-
depth treatment of the concrete queries would go beyond the
scope of this paper but we refer the interested reader to [33].

71

5. Documenting Crosscutting Concerns

A concern models documents crosscutting concerns in a sys-
tem and identifies the program elements that play a role in
the implementation of these concerns. An empirical study
by Robillard and Murphy [40] indicates that concern models
are helpful when performing software change tasks. Con-
cern modeling tools help software engineers to build con-
cern models for a system. Examples of such tools include
the Feature Exploration and Analysis Tool FEAT [40] and
the Concern Manipulation Environment CME [20].

Existing concern modeling tools create rather low level
models which are based on concrete source elements from
the system to be documented. Some tools allow for user-
defined queries to be attached to these models, although
these are rather simple and unstructured queries. We pro-
pose to raise the level of abstraction in concern modeling us-
ing crosscutting concern sorts [31]. Sorts can be integrated
into concern models by allowing sort queries as elements in
the concern hierarchy.

5.1. Sort-based concern modeling in SOQUET

To support such sort-based concern modeling, we have built
an Eclipse plug-in called SOQUET (SOrts QUEry Tool),
which is freely available for download.3 The tool allows
one to describe crosscutting relations in a system based on
querying its source code for instances of concern sorts [34].
These queries can be composed and stored to create persis-
tent, sort-based documentation of concerns in existing code.

SOQUET assists the user in documenting and under-
standing crosscutting concerns in a system in the following
way: First, the user defines a query for a specific sort based
on its predefined template. The template guides the user in
querying for elements that pertain to concrete sort instances
and the user can restrict the query context, for example, by
limiting it to a certain inheritance hierarchy.

3 http://swerl.tudelft.nl/view/AMR/SoQueT

Project

Package

Type

Name

Interface Method

Field

Exception

Class Constructor

Member

throws

implements

contains

contains

declares

has-argument

has-parameter

invokes

invokes

invokes

is_of_type

extends

Element

encloses

dataflow

Figure 2. Meta-model relevant to sort queries

Next, the results of the query are displayed in the Sort-
search results view. This view provides a number of op-
tions for navigating and investigating the results, like display
and organization layouts, sorting and filtering options, links
from the query results for source code inspection, etc.

Finally, a Concern model view allows one to organize
sort instances in composite concerns and describe them by
user defined names. The concern model is a tree that defines
a view over the system that is complementary to Eclipse’s
standard Package Explorer. The system’s sort instances are
leaves in this tree and intermediate nodes describe compos-
ite concerns. Note that queries can be associated only with
sort instances and not to a composite concern. A model can
exist at various levels of abstraction and describe complex
concerns, system features, or whole projects.

SOQUET introduces the concept of a virtual interface to
define and describe a role whose definition is tangled within
another type and cannot be identified by means of a standard
(Java) interface. This mechanism allows the user to create a
virtual interface by selecting in a graphical interface those
members of the multi-role type, such as methods or fields,
that are part of the role of interest.

5.2. Using SOQUET for software evolution

SOQUET can typically be used from two perspectives: (1)
as a tool for consistently creating crosscutting concern docu-
mentation for a system, and (2) as a tool for exploring query-
based crosscutting concern documentation that was defined
earlier for the system under investigation. In the first sce-
nario, the user has to be acquainted with the concerns to be
documented. An example is a developer that wants to explic-
itly document some relations that are otherwise “hidden” by
the object-based decomposition of a given system.

In the second scenario, aimed at supporting software evo-
lution, the user explores a given system by loading (pre-
existing) sort-based documentation of application into SO-
QUET in order to locate and better understand certain cross-
cutting concerns in the implementation. The tool allows for
searching a concern model and displaying only those queries
that are associated with a specific element. Such searches
can be used to highlight relations and policies in the code
that are relevant for a particular concern of interest.

The main challenge with documenting crosscutting con-
cerns stems from the flexibility for defining query contexts.
SOQUET could be improved by supporting set theoretic op-
erations, such as the union of type hierarchies. In addition,
defining contexts using pattern matching on names (e.g., all
set* methods) is not implemented at the moment.

Adding new sort queries in the current version of the tool
is fairly complex, as it relies on the “extension points” mech-
anism in Eclipse. We are exploring how we can prototype
our queries using tools that support more direct source code
queries. However, this support is still limited at the moment.

72

6. Systematic Aspect Mining

The increasing number of aspect mining techniques pro-
posed in literature over the recent years draw inspiration
from various domains and show a surprising variation in ap-
proaches. Structured research into aspect mining calls for
a methodological approach for identifying potential mining
opportunities and for comparing and combining existing ap-
proaches in order to evaluate, and improve their quality.

To addresses this challenge, we propose a common
framework based on crosscutting concern sorts which al-
lows to systematically define and consistently assess, com-
pare and combine aspect mining techniques.

6.1. A framework for aspect mining

Our focus is on generative techniques: (semi-)automatic ap-
proaches that identify the program elements participating in
crosscutting concerns by inspecting source code character-
istics symptoms of crosscutting functionality.

Our framework defines the following requirements that
ensure homogeneity in formulating the mining goals, pre-
senting the results and evaluating their quality:
R1: Search-goal An aspect mining technique has to define
the types crosscutting concerns that the analysis searches for.
We call this the search-goal of the technique, and propose to
define search-goals based on the classification of crosscut-
ting concerns in sorts described earlier in section 4. Estab-
lishing a search-goal prevents that any fortuitous findings of
the mining technique cloud its evaluation.
R2: Representation of candidate seeds An aspect mining
technique has to define and describe the format for present-
ing mining results, i.e., the source code elements and rela-
tions that are generated as candidate seeds.
R3: Map candidate seeds on search-goal An aspect min-
ing technique has to define how the candidate seeds map
onto the targeted crosscutting concerns, i.e., the implemen-
tation idioms of the targeted concern sort(s). This mapping
forms the relation between mining results and potentially as-
sociated concerns. Furthermore, it defines how one should
understand and reason about the candidate seeds, and how
they can be expanded into complete crosscutting concerns.
R4: Evaluation metrics An aspect mining technique has
to define how the quality of identified candidate seeds are
assessed (and possibly improved). We propose to use the
following three metrics: (1) Precision is the percentage of
correctly identified seeds in the whole set of candidate seeds
reported by the technique. (2) Absolute recall counts the
absolute number of identified concern seeds. We use this
metric instead of standard recall because it is impossible to
objectively determine the total number of concerns of a cer-
tain sort in a reasonably large system (as it requires interpre-
tation of design decisions). (3) Seed quality characterizes
each candidate seed by showing what percentage of (pro-

gram) elements covered by the total mining result belong to
the concern associated with the given candidate. This pro-
vides a measure for the effort required for reasoning about
that candidate [9, 28]. Average seed quality can be used to
bring this metric to the level of the complete technique. It
indicates the level of confidence in the concern seeds identi-
fied by a particular technique.

6.2. Retrofitting existing techniques

To demonstrate the use and general applicability of the
framework, we have retrofitted a number of known aspect
mining techniques. The results are shown in Table 2.

Note that the descriptions presented here are, in general,
more limiting than the original presentation by the authors
since the table only reports the most representative sort as
search goal and omit other findings. For example, fan-in
analysis as described in [32], can identify a number of cross-
cutting concern sorts. The typical one is consistent behavior
but fan-in analysis can also be used to find role superimposi-
tion: persistence across a set of classes can be implemented
by methods that all invoke a particular (I/O) helper method,
resulting in a high fan-in value for that helper method.

This “restriction” can be addressed by distinguishing a
number of variants for the technique (or subtechniques) that
each have their own search goal. This allows us to inves-
tigate and describe more clearly what part of a given tech-
nique exactly contributes to certain results or improvements.

6.3. Combining Mining Techniques

In addition to structuring the definition of aspect mining
techniques, the framework presented in the previous section
also supports more systematic investigation of combinations
of mining techniques and their potential advantages. Below
we will discuss for each of the evaluation metrics how com-
bining mining techniques affects their value.
Improving precision Precision is measured by the per-
centage of correctly identified crosscutting concern seeds in
the complete set of candidates reported by the mining tech-
nique. A straightforward combination of two aspect mining
techniques that increases precision is achieved by intersect-
ing their results (i.e., the set of candidates). This is basically
pooling of evidence: if the same results reported by two or
more different techniques, they are more likely to be valid.
However, this can be done only when the techniques target
the same crosscutting concern sorts, with compatible rep-
resentations of the results. Two techniques that satisfy this
condition are, for example, Fan-in and Grouped calls analy-
sis. They can be combined by select those results of Fan-in
analysis whose callees occur as callee in at least one of the
Grouped calls candidates.
Improving absolute recall Absolute recall can be im-
proved by considering the union of the results from differ-
ent mining techniques. For techniques that target different

73

Technique Search goal Representation of candidate seeds Mapping
Fan-in analysis [17, 32] Consistent behavior Call relation described by a callee and a set

of callers.
The method with high fan-in (the callee) maps onto
the crosscutting element; the callers of that method
correspond to the elements being crosscut.

Grouped calls [31] Consistent behavior Set of (object,attribute) tuples, where the ob-
jects are the callers and the attributes are the
grouped callees.

The attributes (i.e., the callees) map onto methods im-
plementing crosscutting functionality, and the objects
(i.e., the callers) match the crosscut elements.

Redirection finder [31] Redirection layer Redirection relation described by method
pairs from two different classes, related by
a one-to-one call relation.

The callers in the reported set match the methods exe-
cuting the redirection, while their pair callees receive
the redirection.

Aspectizable interfaces [49] Role superimposition Relation between (groups of) methods that
belong (or can be abstracted) to interfaces,
and the types that implement them.

The reported interface and its members map onto ele-
ments that crosscut the types that implement them.

Concepts in traces [9, 50] Role superimposition Set of methods in a type hierarchy defining
the superimposed role, and the classes that
implementing them.

The methods map onto the members of the superim-
posed type and cut across the classes that implement
them.

Clone detection [7, 43] Consistent behavior Set of code fragments that are duplicated in
multiple method bodies (and can be refac-
tored by method extraction).

The methods containing the cloned code map onto the
elements being crosscut; the (clone) method to be ex-
tracted maps onto the crosscutting element.

Execution patterns
(dynamic [3] and static [25])

Consistent behavior Relation between recurrent sequences of
method invocations that match according to
a given criterion

The recurrent sequence of method invocations maps
onto the elements crosscutting the callers in the rela-
tion.

History-based mining [4] Consistent behavior Call relation between two sets of methods,
where each method in the callers set calls all
methods in the callees set.

The invoked methods map onto the elements cross-
cutting their reported callers.

Context flow mining [41] Context passing Call chain sequence annotated with the po-
sition of the parameter passed by each caller
to its callee in the chain.

The caller in each invocation in the chain maps onto
the method passing the context through the mapping
parameter.

Table 2. Retrofitting existing aspect mining techniques to the framework.

concern sorts, the results will be complementary, and the
number of seeds for the combination is the sum of the seeds
identified by each technique.

Another way of improving the absolute recall is by being
less selective, e.g. by lowering thresholds. However, this is
likely to reduce precision. However, for Fan-in and Grouped
calls analyses, precision can be restored by combining these
two techniques with the same search-goal, and taking the
intersection of their results. The lower thresholds allow for
new candidates to be reported and the intersection filters the
results so the precision does not drop significantly.
Improving seed quality Like precision, seed quality can
be improved by combining techniques that target the same
sort. For example, consider the intersection of Fan-in and
Grouped calls analysis, selecting the common callees and
the common callers of these callees. Since Grouped calls
analysis is the most restrictive of both techniques, the num-
ber of callers for a callee is typically lower than for Fan-in
analysis. Thus the combined result will have higher quality
than the techniques alone (since false positives are filtered).

7. Migrating Crosscutting Concerns

The tangling and scattering that results from implementing
crosscutting concerns in a software system using traditional
object-oriented programming is a known challenge to pro-
gram comprehension and software evolution.

One option to deal with the negative impact from cross-
cutting concerns on a system’s comprehensibility and evolv-
ability is to migrate the system to aspect-oriented program-
ming (AOP) and transform the crosscutting concerns into
aspects, a process known as aspect refactoring.

Despite significant efforts on various parts of the refactor-
ing of crosscutting concerns from existing systems, to date
there exists no compelling show-case for such a complete
migration. One of the main causes for this void is the fact
that there is no clearly defined, coherent migration strategy
detailing the steps to be taken to perform this process.

7.1. Migration strategy

Successful migration requires a strategy comprising steps
like identification of the concerns (i.e., aspect mining), de-
scription of the concerns to be refactored, and consistent
refactoring solutions to be applied. Moreover, such a strat-
egy requires integrated steps, so that aspect mining results,
for example, can be consistently mapped onto concerns in
code, and further refactored by general aspect solutions.

We propose an integrated strategy for migrating cross-
cutting concerns to aspects that builds upon the crosscutting
concern sorts discussed earlier. The strategy integrates the
following four steps [35]:

1. Systematic aspect mining This step consists of the
idiom-driven identification of crosscutting concerns as
described in the previous section. The mining targets a

74

Sort Template aspect solution
Consistent Behavior Refactor using pointcut and advice:

around(..) : callersContext(..){
invokeCB(..); //before
proceed();
// or after: invokeCB(..);

}

Table 3. Example refactoring template

specific crosscutting concern sorts by searching for its
implementation idiom and is supported by our aspect
mining tool FINT.2

2. Sort-based concern exploration The second step of
our strategy, concern exploration, aims at expanding
mining results (i.e., concern seeds) to the complete im-
plementation of the associated concerns. In this step,
we start from the discovered seeds and use the specific
relation of the sort for the seed’s concern to identify all
the participants in the concern implementation. FINT
integrates support for seed exploration and expansion
to full concerns, such as detection of structural relations
or similar call positions for the callers of a method.

3. Sort-based concern modeling The third step consists
of sort-based concern modeling to document the con-
cerns in the system. To ensure generally applicable
solutions during migration, we need a systematic and
coherent way of describing the concerns in a system
with respect to its source code. This is achieved via the
formalized queries for each of the concern sorts, which
capture occurrences in terms of the sort’s idiomatic re-
lation between source code elements. This step is sup-
ported by our concern modeling tool SoQueT.3

4. Sort-based migration The final step consists of sort-
based, idiom-driven approach to aspect refactoring
which allows for consistent integration with the previ-
ous steps of our strategy. It is based on template as-
pect solutions for each of the concern sorts that can be
instantiated to refactor sort occurrences. Like the pre-
vious steps, the refactoring addresses crosscutting be-
havior at the level of atomic concern sorts, providing
an optimal trade-off between complexity of the refac-
toring and comprehensibility of the refactored element.
An example refactoring template is shown in Table 3.
Refactoring a sort instance starts from its query-based
documentation in SOQUET. The query points to the
elements participating in the concern, which can be
used to configure the refactoring template. For exam-
ple, the query for a Consistent behavior instance indi-
cates the callers to be captured by a pointcut definition
(the source context) and the action to be introduced by
the advice (the target context). Other configurable ele-
ments, such as the type of advice to introduce the cross-
cutting call (e.g., before, after, after throwing, etc.), are
decided at the refactoring time.

A detailed discussion of the refactoring templates for the re-
maining crosscutting concern sorts goes beyond the scope of
this roadmap. We refer to [35] for more information.

7.2. Alternatives to migration

Especially in the context of large legacy systems, the risks
involved with making changes and the uncertainty about
desired future changes (e.g. towards yet another program-
ming paradigm) make it worthwhile to explore alternatives
to refactoring which increase separation of concerns without
explicitly modifying the code.

One option in this context are so called concern views:
representations of a part of the system that capture a con-
cern like an aspect, but which are views on the underlying
(unmodified) code that are generated by an advanced IDE.
The disadvantage of such views is that they are static and
cannot be used to make changes to the code, nor is it possi-
ble to reuse concerns in other applications.

However, aspects and concern views are only two ex-
tremes of a spectrum: somewhere in the middle of this spec-
trum we would find a approach like Fluid AOP [23] that
supports updatable concern views where changes are prop-
agated back to the appropriate locations in the underlying
code via linked editing [51]. The use of domain-specific lan-
guages and generative techniques to modularize some con-
cerns can also be viewed as points in this spectrum.

8. Concluding Remarks

8.1. Lessons Learned

The lessons learned from the work described in this paper
can be summarized as follows:

• Common language We have proposed a fine-grained
model for addressing crosscutting functionality in
source code based on atomic crosscutting concern
sorts. Such a model provides a consistent and coher-
ent way of describing and referring to crosscutting con-
cerns. As a result, these concern sorts become useful
in program comprehension and concern documentation
since they provide a common language.

• Code based Crosscutting concern sorts can be de-
scribed as relations between sets of program elements
which can be formalized as queries over source repre-
sentations. This formalization enables the use of con-
cern sorts (via their queries) as building blocks in semi-
automated tools that support concern modeling based
on program querying and analysis. This allows for
systematic documentation of crosscutting concerns in
source code.

• Integration Besides supporting comprehension and
documentation, the systematic use of crosscutting con-
cern sorts in defining aspect mining techniques ensures

75

homogeneity and compatibility in formulating the min-
ing search-goals, presenting the results, and evaluating
their quality. This enables detailed comparison and
combination of such techniques which increases the
quality of the results.

• Structured investigation Retrofitting aspect mining
literature in terms of a common framework and lan-
guage enables a structured investigation of the exist-
ing techniques and identifies potential opportunities for
new research by locating areas that have been insuffi-
ciently addressed in the existing work.

8.2. Opportunities for Future Research

We distinguish a number of directions that have interesting
opportunities for future research:
Aspect Mining As already hinted at in the previous section,
there are a number of crosscutting concern sorts that are not
yet targeted by aspect mining techniques. Table 2 indicates
which sorts are already covered, and Table 1 indicates the
specific idioms that should be targeted by a technique to ad-
dress the gap.
Elaborate Evaluation Metrics Another direction to ex-
plore is elaboration on the metrics that are used as quality
indicators in the framework. For example, it would be in-
teresting to have an indication of seed coverage, a measure
of how much of a concern’s extent is covered by a particular
seed. This metric complements the seed quality metric that
relates the concern associated with the given seed to the total
mining result. In addition to defining new metrics, the valid-
ity of the existing metrics could be empirically investigated
on a larger collection of benchmark applications.
Support for Migration Besides aspect refactoring using
template as discussed earlier, there are a number of addi-
tional questions that could be investigated to increase sup-
port for migration. One of these is pointcut generation:
Given a list of affected source code locations or fragments,
how can one find a good, or optimal, or generalized pointcut
from this information? And what are the trade-offs between
these variants for aspect migration and for further evolution
of the system?
Alternatives to Migration As discussed in this paper, due
to the inherent risks that are associated with changing legacy
systems, it is worthwhile to pursue alternatives to refactor-
ing that increase separation of concerns without explicitly
modifying the code. Starting points for investigation in-
clude questions like: How can one automatically derive a
view from source code that represents a cross-cutting con-
cern? How can such views be made updatable? Given the
spectrum of approaches discussed earlier, when is it better
to use one approach over another?
Multi-Language Aspects A challenging direction of fu-
ture research is the identification and migration of concerns
that not only crosscut the dominant decomposition but also

crosscut programming language boundaries. This is espe-
cially relevant in the context of dealing with legacy systems,
many of which are know to be developed in a combination
of (embedded) programming languages.

Acknowledgments The work described in this paper was car-
ried out at Delft University of Technology in collaboration with
Marius Marin and Arie van Deursen. The author wishes to thank
Marius and Arie for the successful collaboration and fruitful dis-
cussions that helped to shape the ideas expressed here.

References

[1] The AspectJ Team. The AspectJ Programming Guide. Palo
Alto Research Center, 2003. Version 1.2.

[2] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of
Modularity Volume 1. MIT Press, 1999. ISBN 0262024667.

[3] S. Breu and J. Krinke. Aspect mining using event traces. In
Proc. 19th IEEE Int’l Conf. on Automated Softw. Eng. (ASE),
pages 310–315. IEEE, 2004.

[4] S. Breu and T. Zimmermann. Mining aspects from version
history. In Proc. 21st IEEE Int’l Conf. on Automated Softw.
Eng. (ASE), pages 221–230. IEEE, 2006.

[5] L. C. Briand, J. W. Daly, and J. K. Wüst. A unified framework
for coupling measurement in object-oriented systems. IEEE
Trans. Softw. Eng., 25(1):91–121, 1999.

[6] M. Bruntink. Renovation of Idiomatic Crosscutting Concerns
in Embedded Systems. PhD thesis, Delft University of Tech-
nology, the Netherlands, March 2008.

[7] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé.
On the use of clone detection for identifying crosscutting con-
cern code. IEEE Trans. Softw. Eng., 31(10):804–818, 2005.

[8] M. Bruntink, A. van Deursen, M. d’Hondt, and T. Tourwé.
Simple crosscutting concerns are not so simple: analysing
variability in large-scale idioms-based implementations. In
Proc. 6th Int’l Conf. on Aspect-Oriented Softw. Development
(AOSD), pages 199–211. ACM, 2007.

[9] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwé. Applying and combining three different aspect
mining techniques. Softw. Qual. J., 14(3):209–231, 2006.

[10] E. W. Dijkstra. On the role of scientific thought. In Selected
writings on Computing: A Personal Perspective, pages 60–
66. Springer, 1982.

[11] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-A
Tool for Visualizing Line Oriented Software Statistics. IEEE
Trans. Softw. Eng., 18(11):957–968, 1992.

[12] L. Erlikh. Leveraging legacy system dollars for e-business.
IT Professional, 2(3):17–23, 2000.

[13] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-
Oriented Software Development. Addison-Wesley, 2005.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[15] J. D. Gradecki and N. Lesiecki. Mastering AspectJ - Aspect
Oriented Programming in Java. Wiley, 2003.

[16] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. In Proc. 23rd Int’l
Conf. on Softw. Eng. (ICSE), pages 265–274. IEEE, 2001.

76

[17] K. Gybels and A. Kellens. Experiences with identifying as-
pects in smalltalk using unique methods. In Proc. 1st Ws. on
Linking Aspect Technology and Evolution (LATE), 2005.

[18] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. In Proc. 17th Conf. on OO
Progr., Syst., Lang., & Appl. (OOPSLA), pages 161–173.
ACM, 2002.

[19] J. Hannemann and G. Kiczales. Overcoming the prevalent de-
composition of legacy code. In Ws. on Advanced Separation
of Concerns, 2001.

[20] W. Harrison, H. Ossher, S. M. S. Jr., and P. Tarr. Concern
modeling in the Concern Manipulation Environment. Tech.
Rep. RC23344, IBM T.J. Watson Research Center, 2004.

[21] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham.
Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design). Object Oriented Sys-
tems, 3:143–158, 1996.

[22] S. Henry and K. Kafura. Software structure metrics based
on information flow. IEEE Trans. Softw. Eng., 7(5):510–518,
1981.

[23] T. Hon and G. Kiczales. Fluid AOP join point models. In
Comp. 21st Conf. on OO Progr., Syst., Lang., & Appl. (OOP-
SLA), pages 712–713. ACM, 2006.

[24] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. 11th European Conf. on OO Prog.
(ECOOP), pages 220–242. Springer-Verlag, 1997.

[25] J. Krinke. Mining control flow graphs for crosscutting con-
cerns. In Proc. of 13th Working Conf. on Reverse Engineering
(WCRE), pages 334–342. IEEE, 2006.

[26] R. Laddad. AspectJ in Action. Manning, 2003.
[27] M. Marin. An Integrated System to Manage Crosscutting

Concerns in Source Code. PhD thesis, Delft University of
Technology, the Netherlands, Jan 2008.

[28] M. Marin. Reasoning about assessing and improving the seed
quality of a generative aspect mining technique. In Proc.
2nd Ws. on Linking Aspect Technology and Evolution (LATE),
pages 23–27. CWI, Amsterdam, the Netherlands, 2006.

[29] M. Marin, A. van Deursen, and L. Moonen. Identifying as-
pects using fan-in analysis. In Proc. 11th Working Conf. on
Reverse Engineering (WCRE), pages 132–141. IEEE, 2004.

[30] M. Marin, L. Moonen, and A. van Deursen. A classification
of crosscutting concerns. In Proc. 21st IEEE Int’l Conf. on
Softw. Maintenance (ICSM), pages 673–677. IEEE, 2005.

[31] M. Marin, L. Moonen, and A. van Deursen. A common
framework for aspect mining based on crosscutting concern
sorts. In Proc. 13th Working Conf. on Reverse Engineering
(WCRE), pages 29–38. IEEE, 2006.

[32] M. Marin, A. van Deursen, and L. Moonen. Identifying cross-
cutting concerns using fan-in analysis. ACM Trans. Softw.
Eng. Meth., 17(1):1–37, 2007.

[33] M. Marin, L. Moonen, and A. van Deursen. Documenting
typical crosscutting concerns. In Proc. 14th Working Conf.
on Reverse Engineering (WCRE). IEEE, 2007.

[34] M. Marin, L. Moonen, and A. van Deursen. SOQUET:
Query-based documentation of crosscutting concerns. In
Proc. 29th Int’l Conf. on Softw. Eng. (ICSE). IEEE, 2007.

[35] M. Marin, L. Moonen, and A. van Deursen. An integrated

strategy to crosscutting concern migration and its aplication
to JHOTDRAW. In Proc. 7th IEEE Int’l Working Conf. on
Source Code Analysis and Manip. (SCAM). IEEE, 2007.

[36] K. Mens, A. Kellens, and P. Tonella. A survey of automated
code-level aspect mining techniques. Trans. Aspect-Oriented
Softw. Development, 4:145–164, 2007.

[37] G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hanne-
mann, and W. Leong. Design recommendations for concern
elaboration tools. In [13], pages 507–530.

[38] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Comm. ACM, 15(12):1053–1058, 1972.

[39] T. M. Pigoski. Practical Software Maintenance: Best Prac-
tices for Managing Your Software Investment. Wiley, 1996.

[40] M. P. Robillard and G. C. Murphy. Representing concerns in
source code. ACM Trans. Softw. Eng. Meth., 16(1):3, 2007.

[41] L. Seiter. Automatic mining of context passing in java pro-
grams. In Proc. Ws. Towards Evolution of Aspect Mining
(TEAM), pages 9–13. Delft University of Technlogy, 2006.

[42] D. Shepherd, E. Gibson, and L. Pollock. Design and eval-
uation of an automated aspect mining tool. In Softw. Eng.
Research and Practice, pages 601–607. CSREA Press, 2004.

[43] D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carroll.
Timna: a framework for automatically combining aspect min-
ing analyses. In Proc. 20th Int’l Conf. on Automated Softw.
Eng. (ASE), pages 184–193. ACM, 2005.

[44] S. Soares, E. Laureano, and P. Borba. Implementing distri-
bution and persistence aspects with AspectJ. In Proc. 17th
Conf. on OO Progr., Syst., Lang., & Appl. (OOPSLA), pages
174–190. ACM, 2002.

[45] I. Sommerville. Software Engineering. 7th ed. Pearson, 2004.
[46] S. M. Sutton and I. Rouvellou. Concern modeling for aspect-

oriented software development. pages 479–505.
[47] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N

degrees of separation: multi-dimensional separation of con-
cerns. In Proc. 21st Int’l Conf. on Softw. Eng. (ICSE), pages
107–119. IEEE, 1999.

[48] P. Tarr, W. Harrison, and H. Ossher. Pervasive query support
in the Concern Manipulation Environment. Technical Report
RC23343, IBM TJ Watson Research Center, 2004.

[49] P. Tonella and M. Ceccato. Migrating interface implemen-
tation to aspect-oriented programming. In Proc. 20th Int’l
Conf. on Softw. Maintenance (ICSM), pages 220–229. IEEE,
2004.

[50] P. Tonella and M. Ceccato. Aspect mining through the formal
concept analysis of execution traces. In Proc. 11th Working
Conf. on Reverse Engineering (WCRE). IEEE, 2004.

[51] M. Toomim, A. Begel, and S. L. Graham. Managing dupli-
cated code with linked editing. In Proc. Symp. on Visual Lan-
guages - Human Centric Computing (VLHCC), pages 173–
180. IEEE, 2004.

[52] T. Tourwé and K. Mens. Mining aspectual views using for-
mal concept analysis. In Proc. 4th Int’l Ws. on Source Code
Analysis and Manip. (SCAM). IEEE, September 2004.

[53] C. Zhang and H.-A. Jacobsen. PRISM is research in aspect
mining. In Comp. 19th Conf. on OO Progr., Syst., Lang., &
Appl. (OOPSLA), pages 20–21. ACM, 2004.

77

