

UNIVERSITY OF CALGARY

Software Process Evaluation Using a Customizable Pattern-based Simulator

by

Keyvan Khosrovian Kermani

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

August, 2008

©Keyvan Khosrovian Kermani 2008

 ii

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, “Software Process Evaluation Using a

Customizable Pattern-based Simulator” submitted by Keyvan Khosrovian Kermani in

partial fulfillment of the requirements for the degree of Master of Science.

 __
 Supervisor, Dr. Dietmar Pfahl,

 Department of Electrical and Computer Engineering

 __
 Co-supervisor, Dr. Vahid Garousi,
 Department of Electrical and Computer Engineering

__
 Dr. Günther Ruhe,
 Department of Electrical and Computer Engineering

 __
 Dr. Mahmood Moussavi,
 Department of Electrical and Computer Engineering

__
 Dr. Xin Wang,
 Department of Geomatics Engineering

Date

 iii

Abstract

Software process analysis and improvement relies heavily on empirical research.

However, controlled experiments and surveys as means of empirical research have two

major drawbacks. First, whatever evidence is gained via empirical research is strongly

context dependent. Second, they are costly. Software process simulation modeling

supports empirical studies by both reducing the cost of experimentation, and facilitating

the combination of isolated empirical evidence. The process simulation model GENSIM

2.0, developed as part of this work, addresses the above challenges. Compared to the

existing process simulation models in the literature, the novelty of GENSIM 2.0 is

twofold: (1) Model structure is customizable to organization-specific development

processes. This is achieved by using a limited set of generic structures (macro-patterns).

(2) Model parameters can be easily calibrated to available empirical data and expert

knowledge. This is achieved by making the internal model structures explicit and by

providing guidance on how to calibrate the model parameters. The main achievements of

the work are: Generic structures of software development processes referred to as macro-

patterns, GENSIM 2.0, a customizable software process simulator developed based on

the proposed macro-patterns and the V-Model lifecycle and complete and detailed

description of the calibration of the simulator. This work also presents examples of useful

application scenarios of the simulator including finding the best combination of

Verification and Validation (V&V) techniques with respect to specific time, quality and

effort goals and analyzing the effect of the project staffing profile on its performance.

 iv

Acknowledgements

My deepest gratitude goes to Dr. Dietmar Pfahl for his earnest and devoted support,

encouragement and guidance throughout this work. Accomplishing this work would have

been impossible without his supervision and assistance.

I am very grateful to Dr. Vahid Garousi, for supervision, providing valuable advices and

sharing his experiences towards the end of this work.

I would also like to thank Dr. Gunther Ruhe, Dr. Mahmood Moussavi and Dr. Xin Wang,

my committee members, for their help and feedbacks in revising this work.

Finally, I want to express my sincere appreciation to my drear cousins, Mehran and

Rostam Pooladi-Darvish for their valuable support.

 v

This work is dedicated to my dear parents.

 vi

Table of Contents

Approval Page………………………………………………………………………….....ii
Abstract .. iii
Acknowledgements.. iv
Table of Contents... vi
List of Figures .. viii
List of Tables ... ix
List of Equations .. xi

CHAPTER ONE: INTRODUCTION..1
1.1 Software Process Improvement...1
1.2 Motivation...3
1.3 Limitations of previous work ..6
1.4 The proposed approach ...8
1.5 Contributions...9
1.6 Thesis Outline ...10

CHAPTER TWO: BACKGROUND AND RELATED WORK.......................................11
2.1 System Dynamics..11

2.1.1 Constructs of SD models...11
2.2 System Archetypes..13
2.3 Reusable Model Structures and Behaviours ...14

CHAPTER THREE: OVERVIEW OF GENSIM 2.0..17
3.1 Generic Process Structures (Macro-Patterns) ...17
3.2 The V-Model Development process ...21

CHAPTER FOUR: GENSIM 2.0 IMPLEMENTATION ...25
4.1 Model Parameters..26
4.2 Views ..31

4.2.1 Development/Verification Views..31
4.2.1.1 Code Phase Product Flow View..32
4.2.1.2 Code Phase Defect Flow View..34
4.2.1.3 Code Phase Resource Flow View..36
4.2.1.4 Code Phase State Flow View ..39

4.2.2 Validation Views...41
4.2.2.1 System Testing Product Flow View..42
4.2.2.2 System Testing Defect Flow View..44
4.2.2.3 System testing Resource Flow View...45
4.2.2.4 System testing State Flow View..47

4.3 Subscripts ..49
4.4 Workforce Allocation Algorithm..51

CHAPTER FIVE: CALIBRATION OF GENSIM 2.0..55
5.1 GENSIM 2.0 Calibration Parameters..57

 vii

5.2 Sources of Calibration...59
5.3 Current Parameter Calibration of GENSIM 2.0..61

5.3.1 Calibration of the Development Phases ..61
5.3.2 Calibration of Validation Phases...70

CHAPTER SIX: GENSIM 2.0 APPLICATION SCENARIOS..73
6.1 Scenario 1: Choosing the best combination of V&V techniques with respect to

project performance goals..73
6.2 Scenario 2: Choosing the best combination of verification techniques with

respect to project performance goals ...78
6.3 Scenario 3: Analyzing the effect of workforce headcount on project

performance ...80
6.4 Scenario 4: Analyzing the effect of workforce skill levels on project

performance ...85

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK ..90
7.1 Contributions...90
7.2 Conclusion ..91
7.3 Limitations and Future Work ..92

REFERENCES ..94
Appendix A..97
Appendix B ..111

 viii

List of Figures

Figure 1: Schematic notation of a Rate and Level System ... 12

Figure 2: Example of the "limits to growth" system archetype [17] 14

Figure 3: Class Hierarchy of Reusable Model Structures [23] ... 15

Figure 4: Macro-pattern for development/verification activity pairs (with state-
transition charts).. 18

Figure 5: Test case development/Validation macro-pattern ... 21

Figure 6: Application of macro-patterns to simulate the V-Model in GENSIM 2.0 22

Figure 7: Code Phase Product Flow View.. 33

Figure 8: Code Phase Defect Flow View.. 35

Figure 9: Code Phase Resource Flow View ... 37

Figure 10: Code Phase State Flow View .. 40

Figure 11: System Test Product Flow View... 42

Figure 12: System Test Defect Flow View... 44

Figure 13: System Test Resource Flow View... 46

Figure 14: System Test State Flow View ... 48

Figure 15: Quality vs. Duration and Effort vs. Duration (Scenario 1 – Calibrations A
and B).. 75

Figure 16: Quality vs. Duration and Effort vs. Duration (Scenario 2 – Calibration B).... 78

 ix

List of Tables

Table 1: A subset of the parameters used in modeling the code phase............................. 29

Table 2: A subset of the parameters used in modeling the system test phase 30

Table 3: Calibration parameters of the code development phase 57

Table 4: Calibration parameters of the system test phases ... 58

Table 5: Calibration values of the initial development parameters 61

Table 6: Calibration values of the correction effort parameters 65

Table 7: Calibration values of the artefact conversion parameters................................... 65

Table 8: Calibration values of the fault conversion parameters 66

Table 9: Calibration values of the verification rates... 66

Table 10: Defect Containment Matrix .. 67

Table 11: Total number of defects injected in different artefacts..................................... 68

Table 12: Calibration values of the defect injection parameters....................................... 69

Table 13: Calibration values of the verification effectiveness parameters 70

Table 14: Calibration values of the validation rate parameters .. 71

Table 15: Calibration values of the validation effectiveness parameters 71

Table 16: Difference between Calibration A and Calibration B....................................... 74

Table 17: Simulation results for Scenario 1.. 76

Table 18: Simulation results for Scenario 2.. 79

Table 19: Simulation results for Scenario 3 - Case 1.. 83

Table 20: Simulation results for Scenario 3 – Case 2... 84

Table 21: Example of mapping skill levels from ordinal to ratio scale 86

Table 22: Differences in inputs of the runs of Scenario 4 – Case 1.................................. 87

Table 23: Simulation results for Scenario 4 – Case 1... 87

 x

Table 24: Workforce information for Scenario 4 – Case 2... 88

Table 25: Simulation results for Scenario 4 – Case 2... 89

 xi

List of Equations

Equation 1: Mathematical representation of a Rate and Level system............................. 12

Equation 2: Skill level Matrix S ... 52

Equation 3: Portion of developers assigned to activity j in step t 54

Equation 4: Caculating the total initial code development duration................................. 63

Equation 5: Calculating the initial code development productivity.................................. 63

Equation 6: Initial Staffing profile matrix for Scenario 3 - Case 1................................... 81

Equation 7: Staffing profile matrix for run A of Scenario 3 - Case 1............................... 82

Equation 8: Staffing profile matrix for run B of Scenario 3 - Case 1............................... 82

Equation 9: Initial Staffing profile matrix for Scenario 3 – Case 2 84

Equation 10: Staffing profile matrix with arbitrary settings... 85

1

Chapter One: Introduction

1.1 Software Process Improvement

Software industry has always been confronted with problems of overdue deadlines, cost

overruns and poor quality of the products delivered by software development

organizations. Meanwhile, the increasing demand for 'better, faster, cheaper' software

together with the increasing complexity of software systems have urged software

developers to bring discipline to software development processes and to improve the

overall performance of software projects, i.e., shorter total project duration, less total

project effort consumption (or cost), and better quality of the end product. In this context,

a process is referred to as a set of activities, methods, practices, and tools that people use

to develop and maintain a product and its associated work products (e.g., requirements

specification, design documents, code and test cases) [1]. Two major factors affect the

performance of software projects [2]. Firstly, there are the technological issues, e.g.,

languages, tools, hardware, etc. Despite of the considerable improvements achieved in

these areas, experience shows that the extent to which these factors impact project

performance is confined by human-related factors [3]. Secondly, there are the managerial

issues such as planning, resource allocation and workforce training, that have a

significant impact on project performance. However, advances in these areas are made

with more difficulty due to the complex human-based nature of software development

environments.

Empirical research is essential for developing theories of software process management,

transforming the art of software development into an engineering discipline and

2

subsequently improving the overall performance of software development projects.

Engineering disciplines require provision of evidence of the efficiency and effectiveness

of tools and techniques in varying application contexts. In software engineering, the

number of tools and techniques is constantly growing, and ever more contexts emerge in

which a tool or technique might be applied. The application context of a tool or technique

is defined, firstly, by the organizational aspects such as process structure, resource

allocation, developer team size and skill sets, management policies, etc., and, secondly,

by the set of all other tools and techniques applied in a development process.

Since most activities in software development are strongly human-based, the actual

efficiency and effectiveness of a tool or technique can only be determined through real-

world experiments. Controlled experiments and case studies are means for assessing the

local efficiency and effectiveness of tools or techniques. Local efficiency and

effectiveness of a tool or technique refers to the efficiency and effectiveness of the tool or

technique when applied in isolation without considering its larger application context, for

example, the typical defect detection effectiveness of an inspection or test technique

applied to a specific type of development artefact, by a typical class of developers (with

adequate training and experience levels) regardless of the other techniques and entities

involved in a development process. Global efficiency and effectiveness of a tool or

technique on the other hand, relates to its impact on the overall project performance while

considering all other entities involved in the entire development process and their mutual

influences. Typically, global efficiency and effectiveness have to be evaluated through a

series of case studies.

3

1.2 Motivation

Controlled experiments and case studies are expensive in terms of effort and time

consumption. Therefore, it is not possible to experiment with all practically relevant

context alternatives in real projects. Hence, Support for deciding which experiments and

case studies are more worthwhile to spend effort and time on would be a great help to

focus empirical studies. Currently, these decisions are made purely expert-based, mostly

relying on experience and intuition. This way of decision-making has two drawbacks.

Firstly, due to the multitude of mutual influences between entities involved in a process,

it is hard to estimate for an expert the extent to which a locally efficient and effective tool

or technique positively complements another locally efficient and effective tool or

technique applied in another activity of the chosen development process. Secondly, for

the same reasons as in point one, it is hard to estimate for an expert how sensitive the

overall project performance will react to variations in local efficiency or effectiveness of

a single tool or technique. The second point is particularly important if a decision has to

be made whether anticipated improvements are worthwhile to be empirically investigated

within various contexts.

In order to assist decision makers in situations described above and to help minimize the

drawbacks of the current decision making practice, one can provide experts with a

software process simulation system that generates estimates of the impact of local process

changes on the overall performance of the project. For example, if, derived from

experiments with unit testing technique A, or from what its advocates claim, the defect

detection effectiveness of unit testing technique A is locally 10% better than that of unit

4

testing technique B in a given context, through simulation we may find out that using

technique A instead of technique B yields an overall positive impact of 2% on the end

product quality (plus effects on project duration and effort) or we may find out the

change yields an overall positive impact of 20%. If simulations indicate that it has only

2% overall impact or less, it might not be worthwhile to run additional experiments to

explore the actual advantage of technique A over technique B (in the specific context).

With the help of simulation models, even more complex situations could be investigated.

For example, one could assess the overall effectiveness and efficiency of different

combinations of development, verification, and validation techniques. As an example, it

is trivial that carrying out the best development activities and all the possible verification

and validation techniques using highly skilled developers will result in good quality of

the final product, but in a specific development context with specific resource constraints

and deadlines, that may not be possible and the management would have to leave out

some activities or invest in some activities more than others. In such a situation, the

simulation model could be used to generate estimates of all project performance

dimensions for all possible combinations of available development, verification and

validation activities and help the management gain a better understanding of the 'big

picture' of the development processes.

Another example of a complex situation where the simulation model could be helpful is a

situation where management wants to investigate how much workforce should be

allocated to development, verification and validation activities in order to achieve

predefined performance goals. Obviously, in general, hiring a large workforce dedicated

5

to carrying out any of the activities within the development process will result in better

performance regarding project duration. However, in a specific context, management

might not be able to do so due to specific budget and resource constraints. In such a

situation, the simulation model could help management in assessing different options of

allocating workforce in order to stay within the time limits while not running out of

available resources. More specifically, the simulation model enables management to get a

better understanding of the overall development process with regards to different

activities that are under progress at different points in time, and how workforce with

skills in carrying out multiple activities could be used to meet the deadline while not

running out of resources.

One can even go one step further and use process simulators to analyze how hiring more

highly skilled developers or training the existing ones will affect the project performance.

It is obvious that allocating workforce with high levels of experience with the tools and

techniques that are used within the development context or investing in training the

available workforce will generally result in better performance, but again, because of

specific constraints, management might not always be able to do so. In a situation like

this, a process simulator could be used to analyze the impact of the skill levels of

different groups of workforce on the overall project performance by taking into account

all specifics of the entire development process and assess whether and to what extent

investments to increase workforce skills actually pay off.

6

1.3 Limitations of previous work

The idea of using software process simulators for predicting software project

performance or evaluating software processes is not new. Beginning with pioneers like

Abdel-Hamid [4], Bandinelli [5], Gruhn [6], Kellner [7], Scacchi [8], and many others,

dozens of process simulation models have been developed for various purposes.

However, all known models have at least one of the following shortcomings:

1. The model is too simplistic or its scope is so limited to actually capture the full

complexity of real-world industrial development processes.

2. The model structure and calibration is not completely published and thus cannot be

independently adapted and used by others.

3. The model captures a specific real-world development process with sufficient detail

but fails to offer mechanisms to represent detailed product and resource models. This

has typically been an issue for models using SD modeling environments.

4. The model structure captures a specific real-world development process (and

associated products and resources) in sufficient detail, but is not easily adaptable to

new application contexts due to lack of design for reuse and lack of guidance for re-

calibration.

GENSIM [9], a predecessor of GENSIM 2.0, is an example of a model having the first

shortcoming mentioned above. GENSIM is a software development process simulation

model intended to be used for purely educational purposes. It models a basic waterfall-

like development process with three phases of design, implementation and test, and

mostly focuses on managerial dimensions related to the performance of the overall

7

software development project. Even though GENSIM is a good learning aid to

familiarize software engineering students with managerial concepts and issues of

software development projects, it has a simplified and limited scope making it unsuitable

for more comprehensive analyses of development processes in real-world environments,

where modeling and analyzing technical aspects of development as well as individual

development phases and multiple project influences are critical.

An example of a model with the second shortcoming mentioned above is reported in [10].

The goal of building the model described in [10] is to facilitate quantitative assessment of

financial benefits when applying Independent Verification and Validation (IV&V)

techniques in software development projects and figuring out the optimal alternatives

regarding those benefits. IV&V techniques are verification and validation techniques

performed by one or more groups that are completely independent from the developers of

a system and can be applied during all phases of the development. In this research, one

NASA project using the IEEE 12207 [11] software development process with multiple

possible IV&V configurations is modeled. The model is then used to answer multiple

questions regarding application of IV&V activities in the software development project.

Examples of these questions are: What would be the costs and benefits associated with

implementing a given IV&V technique on a selected software project? How would

employment of a particular combination of IV&V techniques affect the development

phase of the project? Usefulness of the model is demonstrated using three different use

cases. However, despite providing descriptions and snapshots of the overall structure, the

implementation source of the model has not been made available to the public and

therefore cannot be reused by others directly. This fact even limits the contributions of

8

the published experimental results, because the internal model mechanisms that generate

the results cannot be evaluated by others.

In [12] Pfahl and Lebsanft report experience with a model having the fourth shortcoming

mentioned above. The development and application of a process simulator called PSIM

(Project SIMulator) was a pilot project conducted by Siemens Corporate Research within

a Siemens business unit. Its purpose was to assess the feasibility of System Dynamics

modeling and its benefits in planning, controlling and improving software development

processes in a real-world environment. It modeled a development process comprising the

high level design, low level design, implementation, unit test, and system test phases.

Different available information sources were used to come up with the model structure

and to calibrate the model parameters.

While the third shortcoming mentioned above can easily be resolved by fully exploiting

the modeling constructs offered by commercial process simulation environments such as

Extend™ [13] and Vensim® [14], the fourth issue has not yet been satisfactory resolved,

neither by researchers proposing proprietary process simulation modeling environments

(e.g., Little-Jil [15]) nor by researchers using commercial process simulation

environments.

1.4 The proposed approach

Inspired by the idea of frameworks in software engineering, GENSIM 2.0 consists of a

small set of generic reusable components which can be composed to model a wide range

of different software development processes.

9

These components capture key attributes of different building blocks of different

development processes. More specifically, they capture attributes of the product/process

structure, and quality and resource specific attributes associated with the processes

represented by the building blocks. Generally, product/process structure attributes relate

mostly to the time dimension, quality attributes relate mostly to the quality dimension and

resource attributes relate mostly to the effort dimension of project performance.

However, what makes the model results interesting and hard to precisely predict are the

numerous complex relationships and influences between each pair of these groups of

attributes. GENSIM 2.0 currently assembles reusable building blocks, denominated

macro-patterns and simulates an instance of the well-known V-Model software

development process, consisting of three development phases (requirements

specification, design and code) each comprising an artefact development activity and

related verification activity (inspection) carried out on the developed artefact, and three

validation (testing) activities, consisting of unit, integration and system test.

1.5 Contributions

The major contributions of this work are fourfold.

1. We introduce a limited set of generic process structures (macro-patterns) that

can be reused in the development of software process simulation models and

hence, improve the efficiency of these development activities.

2. In order to show the usefulness of the introduced macro-patterns, we

developed a customizable software process simulator, GENSIM 2.0, based on

these patterns. To enable easy reuse of the developed simulator we describe

all its implementation details and equations in this work.

10

3. To facilitate easy re-calibration and reuse of GENSIM 2.0, we devote a

complete chapter of this thesis to present a detailed description of all

GENSIM 2.0 calibration parameters and how they are currently calibrated

using data available in the software engineering literature. In addition, we

discuss alternative sources that could potentially be used for the calibration of

the model.

4. We describe example software process problems that GENSIM 2.0 can be

applied to find a solution to. The presented application scenarios are not

comprehensive but a subset of the variety of the situations that GENSIM 2.0

can be used in tackling software process issues.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 presents related work. Chapter 3 presents

an overview of GENSIM 2.0, the simulator that we have developed for the purpose of

this thesis together with the generic process structures (macro-patterns). The

implementation details of GENSIM 2.0 have been described in Chapter 4. In Chapter 5

the calibration of GENSIM 2.0 is discussed. Chapter 6 presents application scenarios of

GENSIM 2.0 and finally we present the conclusions and future work in Chapter 7.

11

Chapter Two: Background and Related Work

2.1 System Dynamics

System Dynamics (SD) modeling was originally developed at MIT to solve socio-

economic and socio-technical problems [16]. In its essence are the ideas of systems

thinking [17]. In systems thinking, socio-economic or socio-technical systems are

represented as feedback structures whose complex behaviours are a result of interactions

of many (possibly non-linear) feedback loops over time [18]. During the past nearly 20

years, SD modeling has entered the software domain and has been used to analyze and

tackle a wide range of issues regarding managerial aspects of software development

projects [4], [19], [20], [21], [22]. Examples of its application in software engineering

include the evaluation of process variants, project planning, control and improvement. In

the next sub sections the process of building SD models and the constructs used in SD

models are described.

2.1.1 Constructs of SD models

The basic constructs used in SD modeling are levels, flows, sources/sinks, auxiliaries,

constants and information links or connectors. Figure 1 depicts an example of a

schematic representation of all these elements in a simple SD model implemented with

Vensim®, a popular commercial tool used for SD modeling.

Level variables, also known as state variables, capture the state of the system by

representing accumulations of entities. In the software engineering domain, level

variables are used to represent accumulation of entities like software artefacts, defects

and workforce.

12

Rate variables are always used together with level variables. They represent the flow

of entities to or from the level variables. Example usages of rate variables in the software

engineering domain are artefact development, defect generation and allocation of

workforce.

Figure 1: Schematic notation of a Rate and Level System

Equation 1 shows how the value of a level variable is calculated at time tt Δ+ using its

value at time t . Level variables are in fact integrations of their input rates (inflows to the

level) and output rates (outflows from the level) over time.

Equation 1: Mathematical representation of a Rate and Level system

ttRateOutputtRateInputtLevelttLevel
inputsallover outputsallover

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=Δ+ ∑ ∑)()()()(

Sources and Sinks represent the system borders. Typically entities leaving the system

are sent to sinks, e.g., software artefacts delivered to the customer and entities from

outside the boundaries of the system enter the system from sources, e.g., newly hired

workforce.

Auxiliaries are variables that are used for intermediate calculations, e.g., the portion of a

software artefact that needs to be reworked due to defects detected during unit test.

13

Constants are used to represent factors that determine the modeled system. In other

words, they are means for calibrating the simulation model to its context. Constants keep

their initial value during the simulation. The average number of errors that developers

commit while developing a kind of software artefact is an example of a constant.

Information Links or connectors represent flow of information. When one variable is

connected to another, this means that the value of the former has an influence on the

value of the latter. For example, in Figure 1, the values of the Auxiliary and the Constant

are used to calculate the value of the Rate.

2.2 System Archetypes

A first attempt to define a set of core structures of process simulation models which can

be seen as a set of basic building blocks of any process simulator was made by Peter

Senge in the early 1990s [17]. He identified ten “Systems Archetypes”, i.e., generic

process structures which embody typical recurring behavioural patterns of individuals

and organizations. “Limits to growth” is one of these archetypes which he explains as “A

reinforcing (amplifying) process is set in motion to produce a desired result. It creates a

spiral of success but also creates inadvertent secondary effects...which eventually slow

down the success”. Figure 2 shows an example of this behavior in an organization.

As can be seen, growth in sales demand in a certain production organization leads to a

growth in its production. Meanwhile, growth in its production leads to growth in its sales

demand as well. This simple mutual effect could be considered as a “spiral of success”.

However, on the other hand, growth in production requires hiring and training new

workforce.

14

Figure 2: Example of the "limits to growth" system archetype [17]

In this example, the availability of new workforce and limited financing capacity are

among the factors that “slow down the success”. Although these archetypes are certainly

a good tool for understanding individual and organizational behaviour modes, they are

too generic and qualitative as to be directly applicable for the modeling of software

development processes.

2.3 Reusable Model Structures and Behaviours

More recently, following the approach taken by Senge but having software development

processes in mind, Raymond Madachy suggested a core set of reusable model structures

and behaviour patterns [23]. His proposed set comprises several very specific micro-

patterns (and their implementations) suited for System Dynamics process simulation

models. The object-oriented framework concept has been used for organizing these

structures in a class hierarchy with inheritance relationships in which as you move down

the hierarchy the structures become bigger and more complex as shown in Figure 3.

15

Figure 3: Class Hierarchy of Reusable Model Structures [23]

At the root of the hierarchy is the rate and level system, the smallest individual class in a

System Dynamics model. Instances of this class are referred to as elements. Below the

root class are classes representing generic flow processes. Generic flow processes are

small microstructures consisting of only a few elements. Underneath the classes

representing generic flow processes are infrastructures that comprise several

microstructures producing more complex behaviours. Finally, there are the flow chains

that form the basic “backbone” of a model portion. These flow chains are larger

infrastructures including a series of elements. This set of reusable structures or “plug and

play” components can be put together to build System Dynamics models for software

development processes of varying complexity.

Madachy’s micro-patterns are well-thought reusable process structures, with very specific

purpose and focused scope. They can be interpreted as a bottom-up approach to support

16

reusability of process simulation structure. However, there exist no guidelines that help

modellers combine individual micro-patterns to capture more complex, software

development specific process structures.

Emerging from suggestions made several years ago [24], the work presented in this thesis

complements Madachy’s micro-patterns by a top-down approach that provides a set of

reusable and adaptable macro-patterns of software development processes. The suggested

macro-patterns are described in more detail by giving an implementation example of the

research prototype GENSIM 2.0. Besides capturing important structural and behavioural

aspects of software development processes, GENSIM 2.0 provides a blueprint on how to

integrate detailed product and resource models.

17

Chapter Three: Overview of GENSIM 2.0

Inspired by the idea of frameworks in software engineering, customizable software

process simulation models and frameworks can be constructed using generic and reusable

structures ([25], [26], [27]) referred to as macro-patterns. GENSIM 2.0 is an example of a

process simulation model constructed from macro-patterns. This chapter describes the

macro-patterns of software development processes as employed in GENSIM 2.0. The

design of the macro-patterns used for constructing GENSIM 2.0 is derived from generic

process structures that are common in software development.

3.1 Generic Process Structures (Macro-Patterns)

The left-hand side of Figure 4 illustrates the macro-pattern that GENSIM 2.0 employs for

development activities (comprising initial development and rework) and its associated

verification activities. As shown in the figure, it is assumed that software artefacts

(requirements specification, design and code) are verified (e.g., inspected) right after they

are developed. However, since not in all software development projects all artefacts are

verified, this activity is optional.

Associated with activities, are input/output products and resources. It is assumed that

every development activity has some input artefacts and cannot be started if those

artefacts are not ready. For example, the code development activity may not be started

without the related design artefacts in place. Outputs of the development activities which

are software artefacts are the input for the verification activities. Output of the

verification activities are defects logs which are fed back to the development activities for

reworking of the software artefacts.

18

Figure 4: Macro-pattern for development/verification activity pairs (with state-

transition charts)

In addition, each artefact, activity, and resource is characterized by attributes representing

states. Learning is an example attribute related to resources such as workforce. The

number of times an activity has been carried out may be used to determine the learning

state. Other states may represent the maturity of activities. The right-hand side of Figure

4 shows the state-transition diagrams determining the maturity states of development

(top) and verification (bottom) activities.

In the state transition diagram of the development (initial development or rework) activity

it can be seen that as soon as the target size of the artefact that has to be developed

becomes greater than zero, i.e., input artefacts of the development activity are ready and

development can be started, the development activity transitions into the In Progress

state. After development of an artefact is finished, if verification has to be carried out, the

artefact is handed to the verification team and the development activity transitions into

19

the Complete state. The same transition happens when rework of artefacts is finished

and they are handed to validation teams for testing activities. Hence, in the diagram, state

transitions of the development activity are specified using the Total V&V status which

represents the state of all V&V (Verification and Validation) activities together. After the

verification activity is finished, the development activity transitions into the In Progress

state again as the artefact has to be reworked. This transition happens similarly in the

situation where validation activities are finished and artefacts have to be reworked as a

result. Whenever the development activity of an artefact is finished and no more

verification and validation has to be carried out the development activity of the artefact is

finalized.

In the state transition diagram of the verification activity it can be seen that the

verification activity transitions into the In Progress state as soon as the development

activity of an artefact is finished. Whenever the verification activity is finished,

depending on the number of detected defects, it is either finalized or goes into the

Complete but to be repeated state. If the number of defects that is detected is below a

certain threshold, the verification activity is finalized; otherwise it goes into the Complete

but to be repeated state to indicate that due to great number of detected defects the

artefact has to be verified once more. However, since this policy, which implies the

enforcement of quality thresholds, might not be followed in all organizations, it is

optional. If thresholds are not used, every verification activity is carried out at most once.

The Left-hand side of figure 5 illustrates the macro-pattern applied for validation phases

of the development process. In the figure it can be seen that it is assumed that certain

artefacts, i.e., software code or specification artefacts, depending on management

20

policies, are input to any test case development activity. The test case development

activity cannot begin if these artefacts are not in place. Output of the test case

development activity is a collection of test cases in the form of a test suite. If test case

verification activity has to be modeled, the test case development activity can be

extended to include both the test case development and verification activities using the

development/verification macro-pattern explained above. The developed test suite along

with other necessary artefacts, i.e., software code artefacts, is the input to the validation

activity. The output of the validation activity is a log of all detected defects which is fed

back to the development activity for rework. Test case development and validation

activities, like any other activity, use resources.

The right-hand side of figure 5 shows the state transition diagrams specifying the

maturity states of the test case development (top) and validation (bottom) activities. The

test case development activity transitions into the In Progress state whenever software

code or specification artefacts are available. Determining whether or not test cases can be

derived directly from the specification artefacts before the code artefacts are ready, i.e.,

Specification artefact is greater than zero while Code to validate is still zero depends on

managerial policies and the nature of the specific testing activity itself. Whenever there

are no more test cases to develop in order to test the code artefacts the test case

development activity is finalized.

21

Figure 5: Test case development/Validation macro-pattern

The code artefact validation activity transitions into the In Progress state whenever code

artefacts that have to be validated are available and the required test cases are developed.

Whenever all of the code artefacts are tested, depending on the number of detected

defects, the validation activity is either finalized or transitions into the Completed but to

be repeated state. If the number of detected defects is lower than a certain threshold, the

activity is finalized. If it is greater than the threshold, it transitions into the Completed but

to be repeated state showing that the artefacts have to be re-tested. From the Completed

but to be repeated state, the validation activity transitions into the In Progress state as

soon as reworking of the artefacts is finished and they become available for validation.

3.2 The V-Model Development process

For the current implementation of GENSIM 2.0, the macro-patterns shown in figures 4

and 5 are employed to represent an instance of the well-known V-Model software

development process shown in figure 6.

Test case
Development

Activity

Artifact
Input

Artifact
Test suite

Validation Activity

Artifact
Defect Log

Resources
(Workforce,
Tools, Time)

Resources
(Workforce,
Tools, Time)

produces

produces

uses

uses

consumes

consumes

consumes

22

Figure 6: Application of macro-patterns to simulate the V-Model in GENSIM 2.0

Requirements

Design

Code Unit Test

System Test

Integration Test

Real-World ProcessesSimulation Model

View D-P
View D-Q
View D-W
View D-S

View R-P
View R-Q
View R-W
View R-S

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View D-P
View D-Q
View D-W
View D-S

View R-P
View R-Q
View R-W
View R-S

Subscripting

Requirements

Design

Code Unit Test

System Test

Integration Test

Real-World ProcessesSimulation Model

View D-P
View D-Q
View D-W
View D-S

View D -P
View D-Q
View D-W
View D-S

View C-P

View R-P
View R-Q
View R-W
View R-S

View R- P
View R-Q
View R-W
View R-S

View 1: Product Flow
View 2: Defect Flow
View 3: Workforce Flow
View 4: State Flow

View 1: Product Flow
View 2: Defect Flow
View 3: Resource Flow
View 4: State Flow

View D-P
View D-Q
View D-W
View D-S

View D -P
View D - D
View D -R
View D -S

View R-P
View R-Q
View R-W
View R-S

View R -P
View R - D
View R -R
View R -S

Subscripting

[1 system]

[s sub
systems]

[m modules]
View C-D
View C-R
View C-S

View C-P
View C-D
View C-R
View C-S

As described in the development/verification macro-pattern, every development activity

is immediately followed by a verification activity. In the figure this is shown using the

loops from the development phases to themselves. In GENSIM 2.0, different software

artefacts are captured as instances of different software artefacts types. For example, a

specific design artefact of a subsystem is an instance of the artefact type design artefact.

Software artefacts types are associated with one of three granularity or refinement levels

of software development as follows:

System Level includes activities carried out on artefacts representing the whole system.

It currently consists of the requirements specification development and verification (e.g.,

requirements specification inspection) pair and the system testing activities.

23

Subsystem Level includes activities carried out on artefacts representing individual

subsystems. It currently consists of design development and verification (e.g., design

inspection) pair and the integration testing activities.

Module Level includes activities carried out on artefacts representing individual

modules. It currently consists of code development and verification (e.g., code

inspection) pair and the unit testing activities.

On each level, one or more artefacts are developed, verified, and validated. If a new

refinement level is required, e.g., design shall be split into high-level design and low-

level design, existing models can easily be reused to define separate high-level and low-

level design levels replacing the current subsystem level.

Only development activities are mandatory. Depending on the organizational policies,

verification and validation activities might not be performed. Therefore, all V&V

activities are made optional. If defects are detected during verification or validation,

rework has to be done. On code level, rework is assumed to be mandatory regardless of

the activity that has detected the defects. Rework of design and requirements artefacts is

optional for defects found by verification and validation activities of subsequent phases.

In order to capture the main dimensions of project performance, i.e., project duration,

project effort, and product quality, and to explicitly represent the states of activities, the

software development process shown in Figure 6 is implemented in separate views, each

view representing one of the following four dimensions of each development/rework &

verification macro-pattern and each validation macro-pattern:

24

Product Flow View models the specifics of how software artefacts are processed

(developed, reworked, verified and validated) and sent back and forth during and between

different activities of the development project.

Defect Flow View models the specifics of how defects are moved around (generated,

propagated, detected and corrected) as different software artefact are processed (as

modeled in the product flow view). In other words, it is a co-flow of the product flow and

captures the changes in the quality of different software artefacts as they are processed in

different activities.

Resource Flow View models the specifics of how different resources (developers,

techniques/tools) are allocated to different activities of the development project.

State Flow View models the specifics of how the states of different entities as explained

in Section 3.1 change during the development project.

As mentioned earlier, different software artefacts types are associated with refinement

levels of the software development process, i.e., system, subsystem, and module. In the

implementation of GENSIM 2.0 the subscripting mechanism provided by Vensim® has

been used to model individual software artefacts. Therefore if one system consists of

several sub-systems, and each sub-system of several modules, then each of the individual

software artefacts belonging to any of the subsystems or modules is identifiable using the

subsystem’s or module’s subscript value.

25

Chapter Four: GENSIM 2.0 Implementation

GENSIM 2.0 is implemented using the System Dynamics (SD) simulation modeling tool

Vensim®, a mature commercial tool widely used by SD modelers. Vensim® offers three

features in support of reuse and interoperability: views, subscripts, and the capability of

working with external Dynamic Linked Libraries (DLL).

The capability of Vensim® to have multiple views is used to capture the main

dimensions of project performance (i.e. project duration, project effort, and product

quality), as well as the states of the software development process shown in Figure 6.

Having multiple views adds to the understandability and hence reusability of the model,

while enabling the modeller to focus on one specific aspect at a time. Views are discussed

in more detail in Section 4.2.

The subscripting mechanism provided by Vensim® is used to model individual software

artefacts. This again adds to the reusability of the model because the model can be easily

reused to simulate different numbers of individual products in different projects. For

example, if the model is used to simulate a development project for a software product

consisting of five subsystems, the model can be easily reused to simulate a project for a

software product that has six subsystems by simply changing the Subsystem subscript

range from five to six. Besides reusability, application of subscripts adds to the level of

detail that the model can capture since it can capture individual entities. Subscripts and

their usage in GENSIM 2.0 are discussed in more detail in Section 4.3.

The capability of Vensim® to work with external DLLs is used to extract organization-

specific heuristics from the SD model and incorporating them into external DLL libraries

where they can be modified easily without affecting the model structure. An example of

26

such a heuristic is the workforce allocation algorithm or policy. The possibility to

extract computation intensive heuristics from the process simulation adds to the

customizability and reusability of GENSIM 2.0, since different organizations potentially

have different policies to allocate their available workforce to different tasks. A process

simulation model that hard-wires one specific allocation algorithm has to be modified

extensively in order to be reused in another organization. These issues are discussed in

more detail in Section 4.4.

4.1 Model Parameters

GENSIM 2.0 has a large number of parameters. Input and calibration parameters are

typically represented by model constants, while output parameters can be any type of

variable, i.e., levels, rates or auxiliaries. Generally, since the macro-pattern described in

Section 3.1 is employed in modeling all the three development phases, corresponding sets

of parameters have been defined for each development phase. To give an example, in the

code phase model, the level variable Code to do size is used to represent the amount of

code artefact that is waiting to be developed. Meanwhile, the level variable called Design

to do size is defined in the design phase model to specify the amount of a design artefact

that is waiting to be developed. The same rule applies for the set of parameters used in

modeling different validation phases. This mechanism, adds to the understandability and

hence reusability of the model.

Parameters can represent model inputs and outputs, or they are used to calibrate the

model to expert knowledge and empirical data specific to an organization, process,

technique or tool. Table 1 shows a subset of the parameters used in the implementation of

the code phase (comprising code development and verification activities). Corresponding

27

parameters exist for the requirements specification and design related sub-processes.

These parameters and the influences between them are discussed in more detail in

Section 4.2.1. For a complete description and the details of all the parameters and their

defining equations please refer to Appendix A.

Input parameters represent project specific information such as estimated product sizes,

developer skills and project specific policies such as the combination of the verification

and validation activities or whether requirements or design artefacts should be reworked

if defects are found in code that actually originate in requirements specification or design

phases.

Calibration parameters represent organization specific information that is typically

retrieved from measurement programs and empirical studies. For a detailed description of

how GENSIM 2.0 calibration is done, refer to Chapter 5.

Output parameters represent values that are calculated by the simulation engine based on

the dynamic cause-effect relationships between input and calibration parameters. Which

output values are in the focus of interest, depends on the simulation goal. Typically,

project performance variables such as product quality (e.g., in terms of total number of

defects or defect density), project duration (e.g., in terms of calendar days) and effort

consumption (e.g., in terms of person-days) are of interest.

Besides their usage in the simulation model, i.e., input, calibration and output, the

parameters within GENSIM 2.0 can also be categorized according to the entity which

they represent an attribute of. In GENSIM 2.0 it is assumed that different parameters can

be an attribute of four different entities namely process, product, resource and project.

28

Attributes of the process category define the structure of the development process or

the specifics of how different activities are carried out, e.g., verify code or not. The verify

code or not parameter is a Boolean constant that specifies if the code verification activity

is carried out or not. This directly affects the process structure.

Attributes of the product category define the specifics of the software product that is

being developed e.g., number of modules per subsystem, which specifies the number of

modules within different subsystems of the software product.

Attributes of the resource category capture the specifics of the available resources for the

project including tools/techniques and the workforce e.g., Developers’ skill level for code

dev and Maximum code ver effectiveness. The Developers’ skill level for code dev

parameter is a constant that defines the skill level of the available workforce in

developing code artefacts. The Maximum code ver effectiveness parameter is a constant

that defines the effectiveness of the code verification tool/technique in detecting code

faults in the code artefacts.

The last group of parameters is the one that relates to the attributes of the overall project.

It mostly captures the software development context and managerial policies. For

example, Required skill level for code dev is a constant that represents the management

policy regarding the skill level of the workforce that can be allocated to carry out code

development tasks.

Parameters of GENSIM 2.0 can also be classified according to the view that they are

associated with. Which type of view, i.e., product, defect, resource or state flow view a

parameter is associated with depends on the primary effect of the attribute it represents.

29

For example, Required skill level for code dev is a parameter representing a managerial

policy that primarily affects the resource flow of the code development activity.

Table 1: A subset of the parameters used in modeling the code phase

No. Parameter Name Type Attribute of View
1 Verify code or not Input Process C-P
2 # of modules per subsystem Input Product C-P
3 Developers’ skill levels for code dev Input Resource C-R
4 Developers’ skill levels for code ver Input Resource C-R
5 Code doc quality threshold per size unit Input Project C-S
6 Required skill level for code dev Input Project C-R
7 Required skill level for code ver Input Project C-R
8 Code rework effort for code faults detected in CI Calibrated Process C-D
9 Code rework effort for code faults detected in UT Calibrated Process C-D

10 Code rework effort for code faults detected in IT Calibrated Process C-D
11 Code rework effort for code faults detected in ST Calibrated Process C-D
12 Average design to code conversion factor Calibrated Product C-P
13 Average # of UT test cases per code size unit Calibrated Product C-P
14 Average design to code fault multiplier Calibrated Product C-D
15 Maximum code ver. effectiveness Calibrated Resource C-D
16 Maximum code ver. rate per person per day Calibrated Resource C-P
17 Initial code dev. rate per person per day Calibrated Resource C-R
18 Minimum code fault injection rate per size unit Calibrated Resource C-D
19 Code to rework Output Process C-P
20 Code development activity Output Process C-P
21 Code verification activity Output Process C-P
22 Code development effort Output Process C-R
23 Code verification effort Output Process C-R
24 Code faults undetected Output Product C-D
25 Code faults detected Output Product C-D
26 Code faults corrected Output Product C-D
27 Code doc size Output Product C-P

Table 2 shows a subset of the parameters used in the implementation of the system test

phase. Corresponding parameters exist for the unit and integration test phases. These

parameters and the influences between them are discussed in more detail in Section 4.2.2.

For a complete description of the details of all the parameters and equations refer to

Appendix A.

30

Table 2: A subset of the parameters used in modeling the system test phase

No. Parameter Name Type Attribute of View
1 System test or not Input Process S-P
2 Postpone TC dev until code is ready in ST or not input Process S-P
3 Developers’ skill levels for ST Input Resource S-R
4 Quality threshold in ST Input Project S-S
5 Required skill level for system test Input Project S-R
6 Maximum ST effectiveness Calibrated Resource S-D
7 Maximum ST productivity per person per day Calibrated Resource S-P
8 Maximum # of ST test cases developed per

person per day
Calibrated Resource S-P

9 Maximum # of ST test cases executed per person
per day

Calibrated Resource S-P

10 Number of test cases for ST Calibrated Product S-P
11 Code returned for rework from ST Output Process S-P
12 ST rate Output Process S-P
13 Incoming code to ST rate Output Process S-P
14 System testing effort Output Process S-P
15 Code ready for ST Output Product S-P
16 ST test cases Output Product S-P
17 Actual code faults detected in ST Output Product S-D

Thanks to the gaming feature provided by Vensim®, the value of any GENSIM 2.0 input

and calibration parameter could be changed in the middle of a simulation run. In terms of

the impacts of a change in a parameter value on the model, we can group the parameters

in two categories: (1) the parameters which are only read (i.e., used) at a single

designated time step only and any change in those parameters after that time step will

simply not be considered by the model, and (2) parameters which are read in every time

step and, thus, any change in those at any time step will be considered by the model.

As an example of case (1) above, any change in the average size of the requirements

specification artefact made after the first time step, will not be considered by the

simulator as this parameter is read and used only at the beginning of the simulation.

31

As an example of case (2) above, changing the average development productivity

parameters, denoting the real situation in an organization in which the average

productivity is increased or decreased on a given day or week, will always be considered

as these parameters are read in every time step.

4.2 Views

In this section the implementation of the four views mentioned above and their

underlying assumptions and internal mechanisms are described for both the development

phases (development/verification activities) and validation phases in more detail.

4.2.1 Development/Verification Views

In this section, underlying assumptions and mechanisms, levels, rates, and auxiliary

variables implemented in the four different views of the development phases of the

development project, i.e., requirements specification, design and code as illustrated in

Figure 6 are discussed in more detail. Since the macro-pattern discussed in Section 3.1 is

applied to product flow views of all the three development phases (i.e. requirements

specification, design and code), all the four views are similar for all of them except for

few minor differences related to the specific nature of the development phase. For

example, in the code phase product flow view, three rate variables are defined to

represent the outflow of code artefacts to other phases, i.e., the three validation phases.

However, in the design phase product flow view, only one rate variable is defined to

represent the outflow of design artefacts to other phases, i.e., the code phase. In the

following, only the code phase is explained in full detail.

32

4.2.1.1 Code Phase Product Flow View

The code phase product flow view captures the specifics of how code artefacts are

developed, reworked and verified and sent back and forth during and between the code

phase and validation phases of the development project. Figure 7 is a simplified snapshot

of the code phase product flow view with many of its auxiliary variables hidden to

improve readability and understandability of the graph.

Software artefacts that flow through this part of the model are code artefacts of different

modules of the system. It is assumed that code development for a module can only begin

when the design artefacts for the subsystem that the module belongs to is completed. This

is specified in the model with the information link from the Design to CM (Configuration

Management), which is itself a rate variable in the design development/verification

product flow view, to the Code to develop rate. Variables in the form of <…> define the

interface of this view to other views. Code to develop rate is a variable which specifies

the incoming flow of code artefacts that has to be developed. These artefacts are stored

and wait in the Code to do size level variable before they can be developed. As soon as

Code dev productivity becomes greater than zero, i.e., developers become available to

carry out the code development task, waiting code artefacts are developed and then stored

in the Code doc size level variable.

Whenever the development activity for a module’s code artefact is finished, it is either

verified or not according to the state variables as discussed in Section 4.2.1.4. If the code

artefacts have to be verified they have to wait in the Code doc size level variable until the

Code ver productivity becomes greater than zero, i.e. verifiers become available and can

carry out the verification task. While the Code verification activity is greater than zero,

33

i.e. the code verification activity is under process, the Code doc verified level variable

is used to keep track of the amount of code that has been verified at any moment.

As code is verified and code faults are detected in the code artefact, the code artefact is

sent back for rework using the Code to rework rate variable. This rate is also used to

specify the amount of code artefact returned for rework from the validation phases (i.e.

unit, integration and system test).

Figure 7: Code Phase Product Flow View

If at the end of the development activity the code artefact doesn’t need to be verified, it

flows to the Code doc ready size level variable using the Code not to verify rate variable.

The Code not to rework rate variable is needed, because in some situations only parts of

the code artefact have to be sent for rework. These situations are the times when few, i.e.,

less than a certain a threshold code faults are detected and reworking the entire code

34

artefact is not necessary. The parts that do not need rework flow to the Code doc ready

size level variable using the Code not to rework variable.

When all parts of a module’s code artefact arrive in the Code doc ready size level

variable they are stored in the Code doc stored size level variable using the Code to CM

rate variable. The Code doc stored size corresponds to the configuration managements

system. Code to UT flush, Code to IT flush and Code to ST flush rate variables are used

for sending the code artefact to different validation phases.

4.2.1.2 Code Phase Defect Flow View

This view captures the specifics of how defects are moved around i.e. generated,

propagated, detected and corrected as code artefacts are processed (as modeled in the

code phase product flow view). In other words, it is a co-flow of the code phase product

flow and captures the changes in the quality of code artefacts as they are processed in the

code phase. Figure 8 shows a simplified snapshot of this view with many of its auxiliary

variables hidden to improve readability and understandability of the graph.

Entities that flow through this view are code faults that exist in the code. It is assumed

that code faults are injected in the code artefact for two reasons. Firstly, there are the

faults that are injected in the code artefact due to design faults in the design artefact that

have not been detected and hence have propagated into the coding phase. These faults are

specified using the Design to code fault propagation variable. These faults will not be

injected into the code unless the code development activity begins. Therefore, they are

stored in the Design to code fault waiting level variable and wait there until the Code

development activity becomes greater than zero and hence causing these faults to be

actually injected into the code artefact using the Code fault generation due to

35

propagation rate variable. The Design to code faults propagated level variable is used

to keep track of the number of faults that has been committed in the code artefact because

of the propagation.

Figure 8: Code Phase Defect Flow View

The second group of faults that are injected into the code are the ones due to mistakes

made by the developers. These faults are specified using the information link from the

Code development activity to the Code fault generation rate variable. Code fault

generation specifies the sum of faults committed with both of the sources.

The generated faults are stored in the Code faults undetected in coding level variable and

wait until some of them are detected due to verification and validation activities. The

final remaining undetected faults will be the ones that will remain in the code after

shipment of the product. The Code fault detection rate variable specifies the sum of code

36

faults detected in various V&V activities. The code faults detected level variable is

used to keep track of the number of code faults that are detected.

After code faults are detected, they are stored in the Code faults pending level variable

where they wait until they are fixed. It is currently assumed that all of them are corrected

during rework. The Code faults correction rate specifies the number of code faults that

are corrected per time unit. The rate depends on the headcount of workforce that are

reworking the code artefact and the amount of effort that has to be spent to fix each of the

faults. The Code faults corrected level variable is used to keep track of the number of

code faults that have been fixed during the reworking of the code artefacts.

4.2.1.3 Code Phase Resource Flow View

This view captures various attributes related to resources, i.e., developers (workforce)

and techniques/tools that are used to perform the code phase activities of the development

project. Figure 9 depicts a simplified snapshot of this view with some of its auxiliary

variables hidden to improve readability and understandability of the graph.

The Actual Allocation is an important auxiliary variable that uses the external DLL

library of GENSIM 2.0. In essence, it is a matrix consisting of one row for any of the

activities within the project and two columns. The first column represents the headcount

of the workforce allocated to the activities. The second column represents the average

skill level of the team allocated to the activity. As can be seen in Figure 9, it is used to

determine the headcount of the workforce assigned to the code development and

verification activities and their skill level average. Details on exactly how Actual

Allocation is calculated are discussed in Section 4.4.

37

Figure 9: Code Phase Resource Flow View

It is assumed that the skill level of an employee is specified by a real number between 0

and 1, where 0 means “not able to carry out the activity” and 1 means “optimally skilled”.

If such exact information can not be specified, but the data can be given on an ordinal

scale a mapping from the ordinal scale onto [1,0] could resolve the issue (Details are

discussed in Chapter 6).

Code ver effectiveness is a constant used to represent the effectiveness of the code

verification technique in detecting the code faults in the code artefact, if used by

“optimally skilled” workforce. It has a value between 0 and 1. If for example

effectiveness of a certain code verification technique is 0.7, it means that when using the

technique 70% of the faults in the code will be detected. If the skill level average of the

assigned workforce is less than “optimally skilled”, the value of this variable decreases

38

proportionately. This constant has to be calibrated based on information about the

training and experience of the workforce.

Minimum code fault injection per size unit is a constant used to represent the number of

faults that “optimally skilled” workforce commit in the code artefact. If the skill level

average of the workforce is less than “optimally skilled”, the value of this variable

increases proportionately. This constant has to be calibrated based on data collected over

multiple projects with the development team.

Code ver productivity is a variable used to represent the amount of code that can be

verified per time unit (e.g., day). As can be seen in figure 9 it depends on the headcount

of the workforce allocated to carry out the verification activity, the number of code

artefacts that have to be verified i.e. the number of modules that their code artefact has to

be verified (determined by Number of document being processed per activity), skill level

average of the verification team and Maximum code ver rate per person per day.

Maximum code ver rate per person per day is the amount of code that “optimally skilled”

verifiers can verify every day.

Code dev productivity is a variable used to represent the amount of code that can be

developed (initially developed or reworked) per time unit (e.g., day). Its value depends on

the value of Maximum code dev rate per day and the average skill level of the

development team. As the average skill level of developers increases this productivity

increases proportionately. Maximum code dev rate per day is the amount of code that

“optimally skilled” developers develop every day. Its value is calculated differently for

initial development and rework. In both cases it depends of the Code learning status and

the headcount of the allocated developers. However, besides these variables, for initial

39

development its value depends on Initial code dev rate per person per day and if

rework its value depends on the number of code faults detected in the code and the

amount of effort required for the correction of the faults. Initial code dev rate per person

per day specifies the amount of code that each “optimally skilled” developer develops

every day.

Code dev effort and Code ver effort are level variables used for keeping track of the

amount of effort spent for code development and code verification activities respectively.

However, since the time step used for simulation is a day and it might happen that a

developer is allocated to a task that takes less than a day, these variables are not accurate

indications of the amount of effort that were actually spent on the activities. Actual code

rework effort and Actual initial code dev effort are level variables used to address this

issue.

4.2.1.4 Code Phase State Flow View

This view captures the specifics of how the states of different entities as explained in

Section 3.1 change during the code phase of the development project. Figure 10

illustrates a simplified snapshot of this view with many of its variables hidden to improve

readability and understandability of the graph.

Code doc dev status level variable is used to represent the state of the development

activity (both initial development and rework). This level variable can have three

different values. If its value is 0 it means that the development activity has not been

started yet. As soon as some code artefact arrives for development (specified using the

information link from Code to do size to Code doc dev status change), its value changes

40

to 1 meaning it is under process. Whenever code development is finished, value of this

level variable is changed to 2.

Code doc ver status is used to represent the state of the verification activity. This level

variable can have four different values. A value of 0 means that the activity has not been

started yet. Whenever Code doc dev status becomes 2, i.e., code development is finished

(specified using the information link from Code doc dev status to Code doc ver status

change), its value changes to 1 meaning it is under process. Whenever the verification

activity finishes its value changes depending on the number of detected code faults

(specified using the Code doc quality) auxiliary variable.

Figure 10: Code Phase State Flow View

If Code doc quality (the number of code faults detected during the verification activity) is

greater than or equal to a threshold specified using the Code doc quality limit per size unit

constant, the value of the Code doc quality flag is set to 1 and the value of the Code doc

ver status changes to 2, which means that the verification activity is finished but it has to

be repeated once again due to bad quality. In this situation the value of Code doc dev

status is set from 2 back to 1 (specified using the information link from the Code dov dev

status to Code doc dev status change). If Code doc quality is smaller than the Code doc

41

quality limit per size unit constant, the value of Code doc ver status is set from 1 to 3,

which means that it is complete and does not have to be repeated.

The Verify code or not constant is used to specify whether the code verification activity

has to be carried out or not. If set to 1, the verification activity is carried out and the states

of development/verification activities changes as described above. If set to 0, the

verification activity is not carried out and the state of the verification activity maintains

its initial value which is 0.

Code learning status level variable is essentially used to keep track of the number of

times that the code artefact has been processed (specified by the information links from

Code development activity and Code verification activity to Code learning status change

rate variable). By processed, it is meant, developed, reworked or verified. Every time the

code artefact is processed, value of this level is incremented by 1. Code productivity

learning status specifies the effect of Code learning status on the productivity of the

developers.

4.2.2 Validation Views

In this section, key underlying assumptions and mechanisms, levels, rates, and auxiliary

variables implemented in the validation phases i.e. unit, integration and system testing of

the process illustrated in Figure 6 are discussed in more detail. Since the second macro-

pattern explained in Section 3.1 is applied to the product flow views of all the three

validation phases (i.e. unit, integration and system testing), all the four views are quite

similar for all validation phases. Therefore, here views related to only one of them, i.e.,

system testing is presented and explained.

42

4.2.2.1 System Testing Product Flow View

This view captures the specifics of how code artefacts are validated and sent back and

forth between system testing validation and code phases of the development project.

Figure 11 shows a simplified snapshot of the system testing product flow view with many

of its auxiliary variables hidden to improve readability and understandability of the

graph.

Figure 11: System Test Product Flow View

It is assumed that code artefacts of all modules of the system have to be ready for system

testing before the system can go under system testing. Incoming code to ST rate is the

rate variable used to represent the code artefacts that become ready for system testing and

are sent to the system testing phase. Code ready for ST is the level variable used for

keeping track of the code artefacts that are ready for system testing. It is emptied and all

code artefacts are moved to Code to be tested in ST (Using the Code ready for ST flush

rate variable) whenever code artefacts of all modules of the system arrive in the system

43

testing phase (represented by using the information link between Sum actual code size

to develop per system to the Code ready to ST flush rate). When stored in the Code to be

tested in ST level variable, system (i.e. code artefacts of the system) is waiting to be

system tested.

ST test case data available or not is a flag used to indicate if empirical data about system

test case development (e.g., productivity of test case development, number of test cases

that need to be developed for system testing of the system, productivity of system test

case execution, etc) is available for calibration or not. If available, this variable should be

set to 1, otherwise 0.

If system testing test case calibration data is not available, system testing test case

development and execution activities are combined together and considered as one

system testing activity. In this situation system testing begins whenever workforce

becomes available for system testing and the Average ST productivity and hence the ST

rate becomes greater than zero. If system testing test case calibration data is available,

system testing begins whenever workforce becomes available, and the number of

developed test cases (represented using the ST test cases level variable) reaches the

number of the required system test cases for the system (represented using the Number of

test cases for ST variable). It is assumed that all test cases for the system have to be

developed before system testing can begin. In this situation the ST rate i.e. the amount of

code system tested everyday is determined by the value of Average number of ST test

cases executed per day.

As the system testing is carried out, the amount of code artefacts that is tested is stored in

the Tested code in ST level variable. After system testing is finished, the whole system is

44

sent back to the code phase for rework using the Code returned for rework from ST

rate variable.

4.2.2.2 System Testing Defect Flow View

This view captures the specifics of how code faults are moved around i.e. propagated,

detected and reported to and from the system testing phase. Figure 12 shows a simplified

snapshot of this view with many of its auxiliary variables hidden to improve readability

and understandability of the graph.

Figure 12: System Test Defect Flow View

Incoming code faults to ST rate is used to transition all the code faults existing in the

system code artefacts (represented by the Code faults undetected in coding) to the system

testing phase as the system becomes ready for system testing (represented using the Code

ready for ST flush). Code faults propagated to the system testing phase are stored in the

Undetected code faults in ST level variable where they wait for the system testing to

begin. When system testing begins (represented using the information link from ST rate

to the Code fault detection rate in ST), a portion of the defects in the system code

artefacts are detected. This portion is determined using the Average ST effectiveness.

45

Detected code faults in ST level variable is used to keep track of the number of code

faults detected during the system testing. Whenever system testing is finished, the

detected code faults are reported to the code phase and the Detected code faults in ST

level variable is emptied using the Detected code faults in ST flush rate variable. When

system testing is finished, the Undetected code faults in ST level variable is also emptied

using the Undetected code faults in ST flush. This is done so that this level is empty when

system testing is carried out another time.

4.2.2.3 System testing Resource Flow View

This view captures the specifics of various attributes of different resources, i.e.,

developers and techniques/tools, used in the system test phase of the development

project. Figure 13 illustrates a simplified snapshot of this view with some of its auxiliary

variables hidden to improve readability and understandability of the graph.

Similar to code phase resource flow view, Actual allocation is used to specify the

headcount and skill level average of the workforce allocated to system test case

development and system test case execution. If system test case calibration data is not

available, nobody is ever allocated to system test case development and the workforce

allocated to system test case execution will carry out the system testing activity. System

testing TC dev effort and System testing execution effort are level variables used to keep

track the amount of effort spent on system test case development and system test case

execution respectively.

46

Figure 13: System Test Resource Flow View

If system test case calibration data is available, it is assumed that the average skill level

of the workforce that develops the system test cases effect the effectiveness of the system

testing activity in detecting defects. System testing TC dev team skill level average stored

is used to keep track of the skill level of different teams of workforce who work on

system test case development. System testing TC dev working time level variable keeps

track of the time that different teams work on system test case development. Skill level

average average of TC developers for ST is the auxiliary variable used to calculate the

average of average skill level of different teams who have worked on system test case

development. The defect detection effectiveness of the system testing technique is

changed proportionate to this average. If system test case calibration data is not available,

the effectiveness of the system testing activity is changed proportionate to the average

skill level of the system test execution team.

If system test case calibration data is available, the productivity of system testing, i.e., the

amount of code artefact that is system tested per day is derived from the Average ST

productivity per person per day constant and the System testing execution workforce

47

variable. The Average ST productivity per person per day is among the constant

variables that have to be calibrated to empirical data. If system testing case calibration

data is available, Average number of ST test cases developed per day is determined by the

headcount of the workforce allocated to system test case development, the number of

system test cases developed everyday by an “optimally skilled” developer (Maximum

number of test cases developed per person per day) and the average skill level of the

allocated team. It is assumed that average skill level of the system test execution team has

no effect on their system test case execution productivity (represented by the Average

number of ST test cases executed per day) since the test case execution activity is

considered an automated procedure of running the test cases and reporting the results.

4.2.2.4 System testing State Flow View

This view captures the specifics of how the states of different entities as explained in

Section 3.1 change during the system test phase of the development project. Figure 14

illustrates a simplified snapshot of this view with many auxiliary variables hidden to

improve readability and understandability of the graph.

If system test case calibration data is available, System under TC dev in ST is used to

represent the state of the test case development. If system test cases are being developed

value of this auxiliary variable is set to 1, otherwise it is set to 0. System waiting for TC

dev for ST is a flag used to specify if system test cases can be developed. Postpone TC

dev until code is ready in ST or not is a constant used to represent the project's

management decision about the time to develop the test cases. If value of this constant is

set to 1, system test case development begins only when all the code artefacts of the

48

system are ready and if set to 0, system test case development can begin as soon as the

requirements specification artefacts of the system are developed and verified.

Figure 14: System Test State Flow View

The System test status level variable is used to represent the state of the system testing

activity. If system test case calibration data is available, it represents the state of the

system test case execution activity. This level variable can have four different values. A

value of 0 means that system testing has not been started yet. Whenever system testing

begins, its value changes to 1 meaning it is under process. Whenever system testing

finishes its value changes depending on the number of detected code faults (specified

using the Module Code doc quality) auxiliary variable.

If Code doc quality, i.e., the number of code faults detected during system testing divided

by the size of the system, is greater than a threshold specified using the Quality threshold

in ST constant, the value of the Quality flag in ST is set to 1 and the value of the System

test status changes to 2 which means that the system testing activity is finished but it has

to be repeated once again due to bad quality. If Code doc quality is smaller than the

Quality threshold in ST constant, the value of System test status is set from 1 to 3

meaning it is complete and it does not have to be repeated.

49

4.3 Subscripts

Subscription mechanism provided by Vensim® has been exploited in the implementation

of GENSIM 2.0 to add to its reusability and to capture individual entities involved in the

development project. The subscription mechanism in Vensim® is a feature that facilitates

to have variables that calculate and hold multiple values for multiple entities

simultaneously.

A subscript is an ordered set of entities in which each entity has a distinct identifier called

subscript value. When a subscript is associated with a variable (using the subscript's

name), the variable (variable's equation) is calculated for every entity in the subscript.

The value of the variable for any individual entity is accessible using its subscript value.

For example, if a model user wants to capture the sizes of various modules of the system

in one array, the model user can define a subscript named module and a variable called

module's size. Assuming the system has three modules, the model user can define the

module subscript values as MOD1 for the first module, MOD2 for the second module and

MOD3 for the third module. After associating module's size with module, module's

size[MOD1] will specify the size of the first module, module's size[MOD2] will specify

the size of the second module and module's size[MOD3] will specify the size of the third

module.

The subscription mechanism adds much to the reusability of the model, because

subscripted variables can be instantiated with different subscripts. In the example above,

if the number of modules in the system changes from three to four modules, there is no

need to change the module's size variable. The only necessary change is to modify the

50

module subscript and adding a fourth module with MOD4 subscript value. Following is

a list of subscripts used in GENSIM 2.0 along with their descriptions and current values.

Module is a subscript used to model individual modules of the system. Its subscript

values are currently specified as MOD1, MOD2, …, MOD100 to represent a hypothetical

system with 100 modules. However, it could easily be modified to represent different

number of modules in the system.

Subsystem is a subscript used to model different subsystems within the system. Its

subscript values are currently defined as SUB1, SUB2, …, SUB5 to model a hypothetical

system with 5 subsystems. Like the Module subscript, it could be easily modified to

model a system with a different number of subsystems.

It is assumed that every module in the system belongs to a distinct subsystem. This is

achieved by specifying a mapping between the Module and the Subsystem subscripts.

Phase is a subscript used to capture individual phases of the development project. Its

subscript values are currently specified as RE, DE, CO, UT, IT and ST representing

requirements specification, design, code, unit test, integration test and system test

respectively.

Origin is a subscript used to identify different origins that defects might have. Its

subscript values are currently specified as requ, design and code representing

requirements specification, design and code phases respectively. This subscript is

generally associated with variables used to represent defects of software artefacts.

Factor is a subscript used to identify different aspects of software quality that defects

have an effect on. By aspects of software quality, it is meant software quality

characteristics as identified in the ISO 9126 [28] standard. This subscript enables

51

analyzing both functional and non-functional aspects of software quality. Its current

values are defined as RLB, USB and FUN representing reliability, usability and

functionality respectively. It is assumed that faults in the software artefacts could be

characterized and differentiated by the quality aspect that they have the most significant

effect on. Like the Origin subscript, it is generally associated with variables that capture

defects of software artefacts and can be modified easily to enable evaluation of even

more different aspects of quality.

Developer is a subscript used to capture individual employees available for the project.

Its subscript values are currently specified as DEV1, DEV2, …, DEV40 to represent 40

employees available for the development project. However, it can be changed simply to

model projects with different number of employees.

Activity is a subscript used to model single activities within the development project. Its

subscript values are currently set as RED, REV, DED, DEV, COD, COV, UTTC, UTV,

ITTC, ITV, STTC and STV to represent requirements specification development,

requirements specification verification, design development, design verification, code

development, code verification, unit test case development, unit test execution,

integration test case development, integration test execution, system test case

development and system test case execution.

4.4 Workforce Allocation Algorithm

The ability of Vensim® to work with external DLLs has been exploited in GENSIM 2.0

to extract organization-specific heuristics from the SD model and incorporating them into

external DLL libraries where they can be changed easily without affecting the model

structure. The algorithm that allocates developers to development, verification, and

52

validation activities is an example of an organization-specific heuristic that was

implemented in a DLL library. The allocation function takes as input, the headcount and

skill levels of the available workforce, workload of different activities and the minimum

skill level required for the employees in order to be assigned to different activities.

Skill levels of the available workforce are represented by an n × m matrix S, as shown in

Equation 2, in which n is the headcount of the available workforce, m is the number of

activities which are carried out during the development life-cycle, and sij represents the

skill level of the ith employee in carrying out the jth activity. As can be seen in the

equation it is assumed that skill levels are given on a 0 to 1 continuous scale. If such

accurate data does not exist within an organization, and the available data is on an ordinal

scale, a simple mapping could resolve the issue (for details refer to Chapter 6).

Equation 2: Skill level Matrix S

[]1,0,

1

111

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=× ij

nmn

m

mn s
ss

ss
S

L

MOM

L

Workloads of different activities are represented by an m-dimensional vector w, in which

m is the number of activities and wj represents the amount of work which is waiting to be

done for the jth activity. The value for wj is determined by the number of artefacts, e.g.,

code modules which are waiting to be processed.

Minimum required skill levels of different activities are represented by an m-dimensional

vector R, in which m is the number of activities and rj specifies the minimum required

skill level for the jth activity.

53

To prepare the allocation of employees to tasks, using S and R, a new n × m matrix C

is constructed, in which cij is set to 1, if sij ≥ rj, and set to 0, sij < rj. The entry cij

determines whether the ith employee can be assigned to carry out the jth activity having at

least the activity’s required skill level.

To each activity j ∈ {1, …, k} with wj > 0, employees are assigned using the following

algorithm:

• Step 1: assign to activity j all employees that can only carry out the jth activity

• Step 2: assign to activity j a portion of the employees which can carry out only two

activities including the jth activity and one of the other activities for which wj > 0

• Step 3: assign to activity j a portion of the employees which can carry out only three

activities including the jth activity and 2 of the other activities for which wj > 0

• M

• Step k: assign to activity j a portion of the employees which can carry out only k

activities including the jth activity and k-1 of the other activities for which wj > 0

Each step t must be performed ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1
1

t
k

 times to account for all the possible permutations.

The portion of the employees which will be assigned to the jth activity in the tth step for

any of the possible permutations is determined using the formula shown in Equation 3.

As the following calculations may result in floating point numbers, results are rounded if

necessary.

54

Equation 3: Portion of developers assigned to activity j in step t

{ }jthanotheractivitiestjIwith
ww

w
P

jIi
ij

j
j 1)(

)(

−=
+

=
∑
∈

55

Chapter Five: Calibration of GENSIM 2.0

Model calibration refers to the adjustment of the simulation model calibration parameters

until, for a certain input, the model’s generated output matches a dataset observed in a

real-world environment. Software process simulation model calibration can be done

based on expert estimates or through parameter fitting based on historic data collected

from organization-specific or public repositories. In cases when such data is not

available, calibration can also be done using data published in the software engineering

literature, which is in fact a mix of different sources. For the current version of GENSIM

2.0, data published in the literature was used. Calibration is an important step in the

development of simulation models and is intended to ensure sound behaviour of the

model. Calibration is also required to build confidence in the simulation results.

GENSIM 2.0 is designed to be reused, customized and applied to tackle emerging

software development related problems of any kind. This chapter is not only intended to

show the current calibration values of GENSIM 2.0, but also to elaborate more on its

calibration parameters themselves which in turn allows for easy re-calibration of the

model.

The calibration of SD (System Dynamics) models and the associated difficulties have

been discussed in the literature for many years. The approach used for calibrating

GENSIM 2.0 can be characterized as calibration “by hand”. Calibration “by hand” is an

iterative process in which the modeller “examines differences between simulated output

and data, identifies possible reasons for those differences, adjusts model parameters in an

effort to correct the discrepancy, and re-simulates the model, looping back to the first

step.” [29]. A discussion of the problems associated with this approach, i.e., limited

56

reliability of the calibration process which strongly relies on the expertise of the

modeller, can be found in [29]. The alternative to calibration “by hand” is automated

calibration. Automated calibration, while improving reliability, is not an easy endeavour

either. A thorough discussion of the problems associated with automatic calibration of

SD models, and ways to mitigate these problems, can be found in [30].

In [31], the authors argue that in order to truly realize the benefits of the use of software

process simulation models, i.e., as virtual software engineering laboratories, process

simulation has to be combined with empirical studies. They propose that this combination

should be done in such a ways that firstly, empirical knowledge is used for development

and calibration of simulation models and secondly, results from process simulation are

used for supporting real experiments. They provide guidelines on how to achieve these

objectives as well. The idea of combining simulation models with empirical studies is not

limited to [31]. Pervious studies such as [32] had proposed the combination of process

simulation models and empirical data in support of decision analysis in software

development. In [32] the authors argue that since for decision-making, in practice, there

is a need to apply the available empirical knowledge, expensive empirical work should be

systematically extended with simulation to fill the gaps in the variable space of the

decision-making context.

The approach taken for the purpose of this thesis is not different from the work discussed

above from a methodological point of view. The only difference is that calibrating the

model is explained for the entire set of model parameters which enables easier re-

calibration and extended experimentation with the model as suggested in [31].

57

5.1 GENSIM 2.0 Calibration Parameters

Since, as discussed in chapter 4, corresponding sets of parameters (including calibration

parameters) have been defined for modeling each development phase, Table 3 list and

describe the calibration parameters used in modeling of the code development phase of

GENSIM 2.0. For the same reason Table 4 list and describe the calibration parameters

used in modeling the system test phase of GENSIM 2.0. Corresponding tables could be

defined for other development or validation phases.

Table 3: Calibration parameters of the code development phase

 Parameter Name Unit Attribute of View Description

1 Code rework effort
for code faults
detected in CI

PD
/Defect

Process C-D The amount of effort that
should be spent for fixing a
defect in the code artefacts if
detected during code
verification

2 Code rework effort
for code faults
detected in UT

PD
/Defect

Process C-D The amount of effort that
should be spent for fixing a
defect in the code artefacts if
detected during unit test

3 Code rework effort
for code faults
detected in IT

PD
/Defect

Process C-D The amount of effort that
should be spent for fixing a
defect in the code artefacts if
detected during integration
test

4 Code rework effort
for code faults
detected in ST

PD
/Defect

Process C-D The amount of effort that
should be spent for fixing a
defect in the code artefacts if
detected during system test

5 Average design to
code conversion
factor

KLOC
/Page

Product C-P The multiplier specifying
how many kilo lines of code
has to be developed per each
page of the design artefacts.

6 Average # of UT
test cases per code
size unit

Test case
/KLOC

Product C-P The number of test cases that
has to be developed in order
to unit test the code artefacts

7 Average design to
code fault
multiplier

N/A Product C-D The multiplier specifying
how many faults will be
committed in the code
artefacts because of an

58

undetected design defect.
8 Maximum code

ver. effectiveness
N/A Resource C-D The effectiveness of the

code verification technique
with regards to defection of
code defects if applied by an
optimally skilled verifier

9 Maximum code
ver. rate per person
per day

KLOC
/PD

Resource C-P The amount of code artefacts
that can be verified in one
day by an optimally skilled
verifier.

10 Initial code dev.
rate per person per
day

KLOC
/PD

Resource C-R The amount of code artefacts
that can be developed (not
reworked) in one day by one
optimally skilled developer

11 Minimum code
fault injection rate
per size unit

Defect
/KLOC

Resource C-D The number of defects that
an optimally skilled
developers in a size unit of
the code artefacts.

CI= Code Inspection, UT= Unit Test, IT= Integration Test, ST= System Test, PD= Person-Day

Table 4: Calibration parameters of the system test phases

 Parameter Name Unit Attribute of View Description

1 Maximum ST
effectiveness

N/A Resource S-D The effectiveness of the
system testing technique
with regards to defection of
code defects if applied by an
optimally skilled tester

2 Average ST
productivity per
person per day

KLOC/
PD

Resource S-P The amount of code artefacts
that can be system tested
(including test case
development) in one day by
a tester. Since the test case
development and execution
activities are considered
together in this parameter, It
is assumed that the skill
level of the testers does not
have any effect on this rate.

3 Maximum # of ST
test cases
developed per
person per day

Test case
/PD

Resource S-P The number of system test
cases that can be developed
in one day by an optimally
skilled tester.

4 Average # of ST
test cases executed
per person per day

Test case
/PD

Resource S-P The number of system test
cases that can be executed in
one day by a tester. It is
assumed that the skill level

59

of the testers does not have
any effect on the test case
execution rate.

ST= System Test, PD= Person-Day

5.2 Sources of Calibration

Many different sources could potentially be used for calibration of software process

simulation models, expert estimates are one of them. In [12] the authors discuss how

expert knowledge and data from project data bases was used to develop and calibrate

PSIM, a software process simulation model developed in order to show the usefulness of

SD modeling in tackling software project management issues in a development

department of Siemens. Despite being a good source in many situations, expert

knowledge is considered to be subjective and is often complemented with real-world

empirical data collected through measurement programs. Whenever simulation models

are developed for specific purposes within specific organizations, this data could be

gathered from different repositories within the organization. These repositories often

contain data collected from many different projects carried out in the organization and are

specific to its environment.

Whenever, expert knowledge or organization-specific data is not available or not

applicable due to their relevance only in a specific context, online repositories (such as

[33], [34] and [10]) which often contain cross-organizational data could be used to

collect the necessary information for calibration of simulation models. The Software

Information Repository [33], is maintained by an online community. Its members

contribute and exchange information and data regarding process improvement activities

around the world in order to build a knowledge base of this information which can be

60

used by any interested individual. The PROMISE Software Engineering Repository

presented in [34] is a collection of datasets and tools is made publicly available to support

researchers in building predictive software models. The Software-artefact Infrastructure

Repository presented in [35] has been designed and constructed in support of controlled

experimentation with software testing techniques. It contains many Java and C software

systems, in multiple versions, along with their supporting artefacts such as test suites,

fault data, scripts and manuals on how to experiment with the provided material. Results

obtained from experimentation with the provided systems could be used to obtain

estimates of different calibration parameters used in simulation models.

Another source of data that can be used for calibration of software process simulation

models is the software engineering literature. The software engineering literature now

contains many publications reporting data collected from different kinds of sources.

Some of these publications such as [36] report data collected from an experiment carried

out with groups of students or professionals. In [36] an experiment is carried out with one

group of 42 advanced students and another group of 32 professionals to compare the

effectiveness of three different testing strategies. Another group of these publications are

the ones that report coarse-grained data gathered from real-world projects in industrial

settings and mostly discuss the lessons learnt and the experiences. [37], is an example of

these publications. In [37], the authors present high-level information regarding couples

of projects in Motorola and discuss how CMM [38] helped them to improve the

performance of their projects. The last group of publications comprises the results from

surveys carried out on the existing literature itself. In [39] and [40] for example the

authors have gathered and compared data reported in many other existing publications.

61

For the current version of GENSIM 2.0 the software engineering literature has been

chosen as the source for calibration.

5.3 Current Parameter Calibration of GENSIM 2.0

In this section current values of GENSIM 2.0 calibration parameters together with how

and from what source they were obtained are presented. The next subsection discusses

the calibration of the development phases (requirements specification, design and code)

and the in following subsection calibration of the validation phases are explained.

5.3.1 Calibration of the Development Phases

This subsection describes how and from which sources calibration parameters used in the

simulation modeling of the development phases of GENSIM 2.0 were calibrated for its

current version. To make the understanding of the overall material easier, the parameters

are divided into different groups and then the calibration is presented for each group.

Initial development parameters: These parameters specify the productivity of the

developers in developing software artefacts for the first time. For example, Initial code

dev. rate per person per day specifies the speed with which the developers develop

software code artefacts for the first time. Three parameters in the model belong to this

category as shown in Table 5.

Table 5: Calibration values of the initial development parameters

Parameter Name Unit Value
Initial requ. dev. rate per person per day Page/Person-Day 0.07
Initial design dev. rate per person per day Page/Person-Day 0.829
Initial code dev. rate per person per day KLOC/Person-Day 0.048

To calibrate these parameters, the COCOMO ΙΙ [41] post architecture model was used.

COCOMO ΙΙ is a model that generates estimations of the cost, effort, and schedule of a

62

new software development activity across 4 life-cycle phases of software development,

i.e., Plans and Requirements, Product Design, Programming and Integration and test.

Additionally, within each life-cycle phase, it provides effort and time estimations for 8

different activities, i.e., Requirements Analysis, Product Design, Programming, Test

Planning, Verification and Validation, Project Office, CM/QA and manuals.

In order to calculate the initial development parameters, specifications of a hypothetical

system was inputted into the COCOMO ΙΙ model and the estimations were generated.

Following explains the details on how the Initial code dev. rate per person per day

parameter was calculated:

The effort spent on the programming activity during the plans and requirements, product

design and programming phases were summed up to obtain E . The schedule time spent

on the programming activities of the three aforementioned phases were also summed up

to obtain S .

The resultant effort (E) was divided by the resultant schedule time (S) to obtain the

average number of developers allocated for the programming activity (D) during S .

It was assumed that S includes the time spent for the initial code development activity,

rework due to faults detected in the code verification activity and rework due to defects

detected in the unit test activity. Since, as explained in chapter 4, the effect of learning is

incremented by 1 every time an artefact is processed (developed, reworked or verified),

the learning effect is 2 right after it is verified completely for the first time and is 3 after it

is completely reworked due the faults detected during verification. Hence, it is assumed

as an approximation that the effect of learning equals an average of 2.5 during the period

that it is reworked due to faults detected in code verification. As a result, rework due to

63

code faults detected in the code verification activity is 2.5 times faster than the initial

development. For the same reason, rework due to defects detected in unit testing is

assumed to be 3.5 times faster than the initial development.

With the above assumptions, solving Equation 4 for x will determine the overall schedule

time spent on the initial code development activity (T).

Equation 4: Caculating the total initial code development duration

xxxS)5.3/1()5.2/1(++=

Having calculated T , the productivity of each of the developers in the initial code artefact

development activity could be obtained using the formula shown in Equation 5 assuming

the size of the code artefacts:

Equation 5: Calculating the initial code development productivity

TD
artifactscodetheofSizep

×
=

Corresponding calculations were applied to calculate the Initial design dev. rate per

person per day and the Initial requ spec dev. rate per person per day parameters. In the

hypothetical system specified for the current calibration of GENSIM 2.0, the size of the

requirements specification artefact was assumed to be 50 pages. Considering the

conversion factor between the requirements specification and the design artefacts, size of

the overall design artefacts is calculated as 1550 pages by the simulation model. To

calculate the size of the module code artefacts, their average size is calculated initially

using the conversion factor between the design and code artefacts. After calculating the

average module code size, in order to avoid having the same size for all the modules,

64

their average size is multiplied by a uniformly generated random number between 0.5

and 1.5. With these calculations, the size of the overall system is calculated as 307.15

KLOC.

Correction effort parameters: These parameters specify the amount of effort that needs

to be spent for correcting the detected defects. The values of these parameters depend

greatly on the time of the detection of the defect. For the code artefacts, to capture this

difference, four distinct parameters where specified in GENSIM 2.0 as shown in the first

four rows of Table 6. To calculate values of these four parameters two different sources

were used ([39] and [42]). In [39], the author presents averages of many reported values

in the literature for each of these four parameters as absolute numbers. In [42] the author

presents these values as relative numbers. He claims that if the cost of fixing a defect if

detected during the implementation is 1, then the cost of fixing it if detected during

integration test is 2.5 and if detected during system test is 13. For the defects detected

during code verification and unit test, values reported in [39] were used. For the defects

detected in integration test and system test, we assumed that in [42], by defects detected

during implementation, the author means, the defects detected during unit test. Hence, the

value reported in [39] for the defects detected during unit test, was multiplied by 2.5 and

13 to calculate the parameters for integration and system test respectively.

For the requirements specification and design artefacts, since no data was found

regarding the difference of the correction effort of the detected defects depending on the

time of detection, the values reported in [39] were used to specify the amount of the

effort required for correction of the defects of these artefacts regardless of the time of

detection.

65

Table 6: Calibration values of the correction effort parameters

Parameter Name Unit Value
Code rework effort for code faults detected in CI Person-Day/Defect 0.3387
Code rework effort for code faults detected in UT Person-Day/Defect 0.4325
Code rework effort for code faults detected in IT Person-Day/Defect 1.0815
Code rework effort for code faults detected in ST Person-Day/Defect 5.6225
Design rework effort per fault Person-Day/Defect 0.29
Requ. spec. rework effort per fault Person-Day/Defect 0.125

Artefact Conversion Parameters: These parameters including Average requ. spec. to

design conversion factor and Average design to code conversion factor, determine the

relationship between the sizes of the artefacts developed in up-stream phases and the

sizes of the artefacts developed in the down-stream phases. These parameters should be

calibrated by collecting information from multiple projects for a certain context. Since no

such data was found published in the software engineering literature, for the current

calibration of GENSIM 2.0, these values where assumed hypothetically as shown in

Table 7.

Table 7: Calibration values of the artefact conversion parameters

Parameter Name Unit Value
Average requ. spec. to design conversion factor Page/Page 31
Average design to code conversion factor KLOC/Page 0.2

Fault Conversion Parameters: These parameters determine the number of faults that an

undetected defect in the artefacts of an up-stream phase causes in the artefacts of the

down-stream phase. Similar to artefact conversion parameters, these parameters should

be calibrated using information collected from multiple projects for a certain context.

Since no such data was found published in the software engineering literature, for the

66

current calibration of GENSIM 2.0, these values where assumed hypothetically as

shown in Table 8.

Table 8: Calibration values of the fault conversion parameters

Parameter Name Unit Value
Average requ. spec. to design fault multiplier N/A 3
Average design to code fault multiplier N/A 3

Verification Rate Parameters: These parameters determine the speed with which the

verification activities are carried out. For calibration of these parameters the values

presented in [39] were used as shown in Table 9.

Table 9: Calibration values of the verification rates

Parameter Name Unit Value
Maximum requ. spec. ver. rate per person per day Page/Person-Day 8
Maximum design ver. rate per person per day Page/Person-Day 30
Maximum code ver. rate per person per day KLOC/Person-Day 0.6

Defect Injection Parameters: In GENSIM 2.0, defects in artefacts are caused by two

different sources, firstly, the defects propagated from the up-stream phases and, secondly,

the faults that the developers commit themselves. Defect injection parameters determine

the rate with which the developers themselves inject defects in the artefacts. These

parameters were calibrated using a Defect Containment Matrix [43]. A Defect

Containment Matrix maps the phase in which a defect originated to the phase in which

the defect was detected. For the current calibration of GENSIM 2.0, a hypothetical

matrix, as illustrated in Table 10, was assumed and the injection rates were calculated

according to this matrix. Rows represent the phases in which the defects are detected.

Columns represent the origin of the detected defects. For example, it can be seen that a

67

total number of 2736 design defects were detected in the design phase, 1181 of which

were originated in the requirements phase, i.e., were injected in the design artefacts due

to undetected requirements specification defects.

Table 10: Defect Containment Matrix

 Stage Originated

Stage Detected Requirements Design Code UT IT ST Field Total

Requirements 1515 1515
Design 1181 1555 2736
Code 402 912 2421 3735

Unit test 200 420 1525 37 2182
Integration test 191 223 370 7 1 792

System test 89 114 114 5 0 10 332
Field 5 8 23 0 0 0 0 36
Total 3583 3232 4453 49 1 10 0 11328

Using Table 10 we calculate the total number of defects that the developers have injected

in different artefacts, i.e., requirements specification, design and code. In the following

the calculation process is explained for the requirements specification artefact:

1. The number of requirements specifications defects that were detected in the design

phase is calculated. From Table 10 it can be seen that 1181 design defects were

detected in the design phase that originate in the requirement specification phase.

Considering the fault multiplier between the requirements specification defects and

the design defects (Average requ. spec. to design fault multiplier) which is assumed to

be 3, it results that 394, i.e., 1181 divided by 3 requirements specification defects

have been detected in the design phase.

68

2. The above calculation is done for the code defects that were found in the code

phase and originated in the requirements specification phase. However, in this step,

the applied fault multiplier is 9 because every requirements specification causes 3

design defects and every design defect causes 3 code defects. Hence, 45 (402 divided

by 9) requirements specification defects were detected during the code phase.

3. The previous step with the same fault multiplier is carried out for the unit test,

integration test, system test and the field phases.

4. The numbers of the requirements specification defects from all the previous steps are

summed up together with the number of the requirements specification defects

detected during the requirements specification phase itself to give us the total number

of defects that the developers have injected in the requirements specification artefact.

A process corresponding to the above is followed for the design and code artefacts. The

results of these calculations are shown in Table 11.

Table 11: Total number of defects injected in different artefacts

Artefact Unit Value
Requirements Specification Defect 2007=1515+394+45+22+21+10
Design Defect 2114=1555+304+140+74+38+3
Code Defect 4453=2421+1525+370+114+23

Having the total number of defects that the developers have injected in different artefacts,

the defect injection rates could be calculated by dividing the total number of defects

injected in the artefacts by their size. The results of the calculations are shown in Table

12. The sizes of the artefacts were calculated as explained in the calibration of the initial

development parameters.

69

Table 12: Calibration values of the defect injection parameters

Parameter Name Unit Value
Minimum requ. spec. fault injection rate per size unit Defect/Page 40.14
Minimum design fault injection rate per size unit Defect/Page 1.362
Minimum code fault injection rate per size unit Defect/KLOC 14.52

Verification Effectiveness Parameters: These parameters specify the effectiveness of

the artefact verification techniques with regards to defect detection. Effectiveness is

expressed as the percentage of the artefact defects that are detected by the artefact

verification technique. There exist many sources that can be used for calibration of these

parameters in the software engineering literature, e.g., [39] and [40]. However, for the

current calibration of GENSIM 2.0, we used the Defect Containment Matrix shown in

Table 10 and the total number of defects injected in different artefacts shown in Table 11.

In the following, the calibration is presented for the design verification technique.

To calculate the effectiveness of the design verification technique, we have to consider

both the total number of defects that are injected in the design artefacts due to developer

errors and the number of defects injected due to undetected requirements specification

defects. Comparing Table 10 and Table 11, it can be seen that 492 (2007 minus 1515)

requirements specifications defects propagate to the design phases. Considering the fault

multiplier between requirements specification and design defects, it is concluded that

1477 (492 multiplied by 3) defects are injected in the design artefacts due to undetected

requirements specification defects. Adding these 1477 defects to the 2114 design defects

that are injected due to developer errors determines that 3591 defects have been injected

in the design artefacts. According to Table 10, 2736 of these defects are detected in the

design phase. Hence the effectiveness of the design verification technique is calculated as

70

0.76 (2736 divided 3591). A corresponding process is carried out for the requirements

specification and code verification technique and the results are presented in Table 13.

Table 13: Calibration values of the verification effectiveness parameters

Parameter Name Unit Value
Maximum requ. spec. ver. effectiveness N/A 0.75
Maximum design ver. effectiveness N/A 0.76
Maximum code ver. effectiveness N/A 0.53

Number of Test Cases Parameters: These parameters such as Average # of UT test

cases per code size unit specify the number of test cases that is required to test the

developed artefacts. Since no source for calibrating these parameters was found in the

literature, no values have been assigned to these variables for the current calibration of

GENSIM 2.0. Refer to chapter 4 for explanation on how the model works when test case

data is not available.

5.3.2 Calibration of Validation Phases

This subsection describes how and from which sources calibration parameters used in the

simulation modeling of the validation phases of GENSIM 2.0 were calibrated for its

current version. To make the understanding of the overall material easier, the parameters

are divided into different groups and then the calibration is presented for each group.

Validation Rate Parameters: These parameters specify the speed with which the testers

test the artefacts. For calibration of these parameters the values represented in [39] as

shown in Table 14 were used.

71

Table 14: Calibration values of the validation rate parameters

Parameter Name Unit Value
Average UT productivity per person per day KLOC/Person-Day 0.3093
Average IT productivity per person per day KLOC/Person-Day 0.1856
Average ST productivity per person per day KLOC/Person-Day 0.1546

Validation Effectiveness Parameters: These parameters specify the effectiveness of the

validation techniques with regards to defect detection. Similar to the verification

effectiveness parameters, many sources are available in the software engineering

literature to calibrate these parameters such as [39]. However, for the current calibration

of GENSIM 2.0, similar to the verification effectiveness parameters, these parameters

were calibrated using the Defect Containment Matrix shown in Table 10. Hence the

effectiveness of each of these techniques was calculated by dividing the total number of

code defects detected by the validation technique divided by the number of code defects

propagated to the corresponding validation phase. The results of the calculations are

shown in Table 15.

Table 15: Calibration values of the validation effectiveness parameters

Parameter Name Unit Value

Maximum UT effectiveness N/A 0.66
Maximum IT effectiveness N/A 0.69
Maximum ST effectiveness N/A 0.93

Test case Development and Execution Rate Parameters: These parameters such as

Average # of UT test cases developed per person per day specify the number of test cases

that are developed or executed by one tester in one day. Since no source for calibrating

these parameters was found in the literature, no values have been assigned to these

72

variables for the current calibration of GENSIM 2.0. Refer to chapter 4 for explanation

on how the model works when test case data is not available.

73

Chapter Six: GENSIM 2.0 Application Scenarios

GENSIM 2.0 can be helpful in solving many different types of software process

problems. In this chapter we discuss two of them as follows:

• Evaluating the overall effectiveness and efficiency of different combinations of

development, verification, and validation techniques

• Analyzing the overall impact of changes to the workforce characteristics on project

performance.

Initially, in sections 6.1 and 6.2, GENSIM 2.0 is used to find out the most effective and

efficient combination of verification and validation techniques with regards to specific

time, effort and quality goals. Secondly, in sections 6.3 and 6.4, it is used to find the most

promising areas of investment in a project’s workforce. It should be noted that the

presented scenarios and analysis results are not intended to be evaluated objectively, but

are intended to show examples of how GENSIM 2.0 can be applied and how its generated

results can be analyzed.

6.1 Scenario 1: Choosing the best combination of V&V techniques with respect to
project performance goals

One of the important features of GENSIM 2.0 is that its process structure can easily be

modified. This scenario exploits this feature of GENSIM 2.0 to address the issue of

finding the most suitable combination of verification and validation (V&V) activities

considering time, effort and quality goals. It shows the impact of different combinations

of V&V activities on project duration, product quality, and effort and how the model

could assist decision makers in choosing with the best alternative. Verification activities

include Requirements Inspections (RI), Design Inspections (DI) and Code Inspections

74

(CI). Validation activities include Unit Test (UT), Integration Test (IT), and System

Test (ST). For each V&V activity there is exactly one technique with given efficiency

(i.e., V&V rate) and effectiveness available. A V&V technique is either applied to all of

the documents of the related type (e.g., requirements, design, and code documents) or it is

not applied at all.

To clearly show how different calibration values can affect result analysis and how the

model can assist decision-making in different development contexts, besides the original

calibration of the model (Calibration B) this scenario was run using another calibration

(Calibration A). The difference between these calibrations is shown in Table 16. In

Calibration B, rework effort per detected defects is greater than in Calibration A for

defects detected during integration and system testing.

Table 16: Difference between Calibration A and Calibration B

Value
Calibration Parameter

Calibration A Calibration B

Code rework effort for code
faults detected in IT 0.6775 PD/Def. [39] 1.0812 PD/Def. [[39],[42]]

Code rework effort for code
faults detected in ST 1.0462 PD/Def. [39] 5.6225 PD/Def. [[39],[42]]

PD = Person-Day, Def. = Defect

Generating all the different V&V combinations and their respective simulation results

was done automatically using the ‘Sensitivity Analysis’ feature provided in Vensim®.

Figure 15 shows the simulation results for both calibrations of the model (Calibration A

above / Calibration B below). Squares represent (Quality, Duration) result value pairs,

where quality is measured as the total number of undetected code faults. Triangles

75

represent non-dominated (Quality, Duration) result values, i.e., simulation results to

which no other simulation exists with both less undetected defects and less duration.

Figure 15: Quality vs. Duration and Effort vs. Duration (Scenario 1 – Calibrations

A and B)

Obviously, for both calibrations, there exists a trade-off between Quality and Duration.

Only looking at the non-dominated solutions, one can see that in order to achieve less

undetected defects, more time is needed. In effect, if the goal was to see which

combinations of V&V activities should be applied to achieve the target duration, in the

76

case that there are several eligible V&V combinations, a decision-maker could pick the

non-dominated solution with the lowest number of undetected defects that is just within

the project deadline.

Furthermore, a detailed analysis of all 26 = 64 simulations using Table 17 which contains

detailed results of the simulation runs per calibration reveals that the set of non-

dominated solutions and their rankings differ for cases that involve IT and ST. For

example, it turns out that with Calibration B, combination (RI, DI, CI, UT, -, ST) is better

than combination (-, DI, -, -, IT, ST) with regards to duration, effort and quality. With

Calibration A, combination (RI, DI, CI, UT, -, ST) is better than combination (-, DI, -, -,

IT, ST) only with regards to effort and quality, but not with regards to project duration.

Table 17: Simulation results for Scenario 1

Duration [Day] Effort [PD] Quality [UD]
RI DI CI UT IT ST

Cal. A Cal. B Cal. A Cal. B Cal. A Cal. B
0 0 0 0 0 0 449 449 8640 8640 28508 28508
1 0 0 0 0 0 492 492 8836 8836 16241 16241
0 1 0 0 0 0 496 496 10639 10639 11054 11054
1 1 0 0 0 0 517 517 9825 9825 8171 8171
0 0 1 0 0 0 809 809 15701 15701 13422 13422
1 0 1 0 0 0 639 639 12986 12986 7656 7656
0 1 1 0 0 0 611 611 13602 13602 5218 5218
1 1 1 0 0 0 620 620 12085 12085 3850 3850
0 0 0 1 0 0 1017 1017 19370 19370 10498 10498
1 0 0 1 0 0 723 723 15193 15193 6343 6343
0 1 0 1 0 0 675 675 15195 15195 4597 4597
1 1 0 1 0 0 676 676 13342 13342 3633 3633
0 0 1 1 0 0 1060 1060 20655 20655 5775 5775
1 0 1 1 0 0 742 742 15952 15952 3663 3663
0 1 1 1 0 0 697 697 15908 15908 2499 2499
1 1 1 1 0 0 701 701 13989 13989 1845 1845
0 0 0 0 1 0 1329 1850 25282 33224 9641 9638
1 0 0 0 1 0 821 1008 18865 23339 5863 5840
0 1 0 0 1 0 764 877 17946 20936 4307 4242
1 1 0 0 1 0 761 850 15577 17765 3452 3369
0 0 1 0 1 0 1226 1469 24361 28104 4163 4163

77

1 0 1 0 1 0 838 906 18490 20622 2376 2376
0 1 1 0 1 0 813 831 17792 19241 1621 1620
1 1 1 0 1 0 815 834 15532 16595 1197 1196
0 0 0 1 1 0 1346 1497 26432 29359 3277 3277
1 0 0 1 1 0 910 961 19984 21746 1993 1988
0 1 0 1 1 0 864 894 19050 20316 1455 1447
1 1 0 1 1 0 862 896 16666 17670 1154 1147
0 0 1 1 1 0 1295 1377 25261 26869 1791 1791
1 0 1 1 1 0 972 1000 19390 20490 1202 1224
0 1 1 1 1 0 939 951 18707 19457 824 832
1 1 1 1 1 0 946 958 16448 17005 626 629
0 0 0 0 0 1 2447 10400 40664 162002 2794 2793
1 0 0 0 0 1 1335 4246 27663 96784 1937 1934
0 1 0 0 0 1 1162 3288 23928 70974 1576 1572
1 1 0 0 0 1 1117 2956 20011 54788 1376 1370
0 0 1 0 0 1 1842 5581 31737 88857 942 942
1 0 1 0 0 1 1131 2498 22820 55405 539 539
0 1 1 0 0 1 1022 2026 20835 43041 368 368
1 1 1 0 0 1 1000 1873 17846 34232 272 272
0 0 0 1 0 1 1980 4682 34083 78759 760 760
1 0 0 1 0 1 1324 2435 25434 52430 469 469
0 1 0 1 0 1 1255 2259 23573 43136 347 347
1 1 0 1 0 1 1280 2250 20681 36140 280 279
0 0 1 1 0 1 1780 3408 30441 55019 405 405
1 0 1 1 0 1 1251 1904 23454 39044 257 257
0 1 1 1 0 1 1222 1641 22169 32806 176 176
1 1 1 1 0 1 1258 1564 19545 27398 130 130
0 0 0 0 1 1 2069 5057 37251 86209 697 697
1 0 0 0 1 1 1236 2450 26768 56075 433 431
0 1 0 0 1 1 1164 2205 24184 45164 324 319
1 1 0 0 1 1 1161 2174 20891 37339 264 258
0 0 1 0 1 1 1668 3071 30602 52063 292 292
1 0 1 0 1 1 1112 1604 22778 35053 167 167
0 1 1 0 1 1 1064 1395 21289 29630 114 114
1 1 1 0 1 1 1058 1349 18576 24735 84 84
0 0 0 1 1 1 1714 2704 31714 48584 232 232
1 0 0 1 1 1 1169 1571 23883 34080 142 142
0 1 0 1 1 1 1117 1468 22374 29790 104 104
1 1 0 1 1 1 1114 1465 19666 25545 83 83
0 0 1 1 1 1 1590 2177 28979 38223 126 126
1 0 1 1 1 1 1198 1449 22483 28818 84 86
0 1 1 1 1 1 1151 1326 21397 25697 58 58
1 1 1 1 1 1 1154 1308 18924 22160 44 44

PD = Person-Day, UD = Number of undetected defects in the code document

78

6.2 Scenario 2: Choosing the best combination of verification techniques with
respect to project performance goals

This scenario uses only Calibration B as explained above. It shows the impact of different

combinations of verification activities and techniques on project duration, product

quality, and effort. This scenario assumes that all validation activities UT, IT, and ST are

always performed, while verification activities (RI, DI, CI) can be performed or not. If a

verification activity is performed, one of alternative techniques A or B can be applied.

Compared to A-type verification techniques, B-type techniques are always 10% more

effective (i.e., find 10% more of all defects contained in the related artefact) and 25% less

efficient (i.e., 25% less amount of the related artefact can be verified per person-day).

Figure 16: Quality vs. Duration and Effort vs. Duration (Scenario 2 – Calibration B)

The simulation of all possible combinations generates 33 = 27 different results (cf. Figure

16 and Table 18). Similar to what is shown in Figure 15, in Figure 16 the non-dominated

solutions are marked by diamonds and triangles. The main difference to Scenario 1 is that

in addition to the (Quality, Duration) trade-off there is a simultaneous (Effort, Duration)

trade-off. For example, when having a closer look at Table 18 one notices that strictly

79

using B-type techniques in all performed verification activities will always result in

less effort consumption and better quality than strictly using A-type techniques. With

regards to duration, however, the picture is not so clear. While simulation results using

patterns (B, 0, 0), (0, B, 0), (0, 0, B), (0, B, B), and (B, 0, B) indicate shorter duration

than corresponding patterns using strictly A-type techniques, simulation results using

patterns (B, B, 0) and (B, B, B) show longer durations than corresponding patterns (A, A,

0) and (A, A, A). When there is a mix of A-type and B-type verification techniques, the

picture is even more complex and no general conclusions can be made, hence, the results

have to be looked at in detail for each individual case.

Table 18: Simulation results for Scenario 2

Case RI DI CI RI-
tech

DI-
tech

CI-
tech

Duration
[Day]

Effort
[PD]

Quality
[UD]

1 0 1 0 B 1085 28401 96
2 0 1 0 A 1086 30272 108
3 1 0 0 B 1102 32830 135
4 1 0 0 A 1103 34448 145
5 1 1 0 A A 1103 26216 89
6 1 1 0 B A 1106 25637 86
7 1 1 0 A B 1108 25220 82
8 1 1 0 B B 1110 24892 81
9 1 1 1 A A A 1135 22032 43

10 0 1 1 B A 1138 24297 50
11 1 1 1 B A A 1143 21516 40
12 1 1 1 B B A 1144 20926 36
13 0 1 1 B B 1149 23888 45
14 0 1 1 A A 1152 25916 61
15 1 1 1 A B A 1156 21253 38
16 1 1 1 B B B 1158 20728 33
17 0 1 1 A B 1169 25412 54
18 1 0 1 B B 1171 27094 72
19 1 1 1 A B B 1172 21153 35
20 1 0 1 A A 1173 29187 90
21 1 0 1 B A 1178 27836 82
22 1 1 1 A A B 1179 21865 40
23 1 1 1 B A B 1181 21434 38

80

24 1 0 1 A B 1183 28302 79
25 0 0 1 B 1355 39446 139
26 0 0 1 A 1363 40287 149
27 0 0 0 1394 48683 233

PD = Person-Day, UD = Number of undetected defects in the code document

6.3 Scenario 3: Analyzing the effect of workforce headcount on project performance

The headcount of the workforce available for a project and their capabilities in carrying

out different activities in the project have a significant impact on the project’s

performance. GENSIM 2.0 enables the project management to analyze this impact, taking

into account all the mutual influences between the characteristics of the staffing profile,

the sequence of activities, organizational policies for workforce allocation and other

factors involved in the overall development process. The scenario presented in this

section shows an example of the situations that GENSIM 2.0 could assist the

management by providing estimates of the potential effects of the changes to a project’s

staffing profile.

To achieve increased reusability, in the implementation of GENSIM 2.0, organization-

specific policies are extracted from the SD model and incorporated into external Dynamic

Link Libraries (DLL) which allows for easy modification of these heuristics and

algorithm. The workforce allocation is an example of such an algorithm. The current

workforce allocation algorithm in GENSIM 2.0 which is also used for the purpose of the

scenarios represented in this section is explained in section 4.4.

In this scenario, GENSIM 2.0 is used to evaluate the effect of doubling the headcount of

a project’s available workforce on its performance measures, i.e., effort, quality and

duration. The analysis is performed on two extreme cases. In the first case, each activity

is carried out by only one developer. In the second case, all activities can be carried out

81

by all available employees. Any other case between these extremes could be

investigated similarly.

Case 1: In this case, the initial workforce consists of 6 employees and each activity can

be carried out by only one of them. Hence, the staffing profile matrix could look like the

example given in Equation 6. As can be seen, in this example each employee is capable

of carrying out two consecutive activities. The simulation run with this staffing profile is

referred to as the baseline run.

Equation 6: Initial Staffing profile matrix for Scenario 3 - Case 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

110000000000
001100000000
000011000000
000000110000
000000001100
000000000011

126S

The effect of doubling the headcount of the workforce is analyzed in two different ways.

Firstly, any of the activities can be carried out by only one of the employees and any of

the employees can carry out only one activity. Therefore, the staffing profile matrix is

defined as shown in Equation 7. The simulation run with this staffing profile is referred to

as run A. Secondly, any of the activities can be carried out by two of the employees but

each of these two can carry out two activities. Hence, the staffing profile matrix is

specified as shown in Equation 8. The simulation run with this staffing profile is referred

to as run B.

82

Equation 7: Staffing profile matrix for run A of Scenario 3 - Case 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001

1212S

Equation 8: Staffing profile matrix for run B of Scenario 3 - Case 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

110000000000
110000000000
001100000000
001100000000
000011000000
000011000000
000000110000
000000110000
000000001100
000000001100
000000000011
000000000011

1212S

Simulation results of run A, run B and the baseline run are shown in Table 19. It can be

seen that because in run B each employee can carry out two activities and could be

potentially allocated to any of them, run B yields a much greater improvement than run A

with regards to the duration of the project. This could be explained by existing constraints

inherent to the process structure. For example, requirements specification verification

activity can only begin when the requirements specification development activity is

83

finished. Therefore, there is only a small overlap between the periods that each of these

activities requires allocated workforce and that is the period when the verification is

being carried out and the detected faults are being corrected meanwhile. As a result in run

B, in most of the times when there is requirements specification development activity to

be done, two developers are assigned to the activity and there is no competition between

the development and the verification activities.

Table 19: Simulation results for Scenario 3 - Case 1

Run Duration
[Day]

Difference
in Duration

from
baseline

Effort
[PD]

Difference
in effort

from
baseline

Quality
[UD]

Difference
in quality

from
baseline

Baseline 1088 0% 901 0% 2 0%
A 1080 -0.73% 1061 +17.75% 2 0%
B 610 -43.93% 1093 +21.30% 2 0%

PD = Person-Day, UD = Number of undetected defects in the code document

Quality remains the same in all the runs, because the skill levels of all the employees

remain constant across different runs. The difference in the effort estimations is explained

by the fact that the time step chosen for the simulation runs is one whole day. So, the

employees are re-allocated to the activities on a daily basis. In cases that there is little

work left to be done in any of the activities, the model still allocates workforce to that

activity for the whole day which in turn causes the resulting effort estimations slightly

different from the actual effort that has to be spent for that activity.

Case 2: In this case, the initial workforce consists of 6 developers and any activity can be

carried out by any of the employees, i.e., each of them is capable of carrying out any of

the activities. Hence, the staffing profile matrix is defined as illustrated in Equation 9.

The simulation run with this staffing profile is referred to as the baseline run.

84

Equation 9: Initial Staffing profile matrix for Scenario 3 – Case 2

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

111111111111
111111111111
111111111111
111111111111
111111111111
111111111111

126S

The doubling effect is analyzed for a team of workforce with 12 developers with the

same pattern of capabilities as the baseline run, i.e., each of the employees is capable of

carrying out any of the activities. The simulation run with this staffing profile is referred

to as run A. The simulation results of the two runs of this case are shown in Table 20.

Table 20: Simulation results for Scenario 3 – Case 2

Run Duration
[Day]

Difference
in Duration

from
baseline

Effort
[PD]

Difference
in effort

from
baseline

Quality
[UD]

Difference
in quality

from
baseline

Baseline 280 0% 1005 0% 2 0%
A 154 -45% 1025 +2% 2 0%

PD = Person-Day, UD = Number of undetected defects in the code document

As shown in Table 20, the estimated duration of the project in run A is reduced by 45%

percent. The reason why this effect is not estimated as 50% is that some work can be

finished within one day whether 6 or 12 developers are allocated. As a result, since the

simulation time step is one day, the duration of that particular one-day work remains

equal for both runs. The difference in the effort estimates results from the same reasons

as explained in Case 1.

Any case in between the above extreme cases, involving arbitrary settings of the staffing

profile matrix, could be investigated in the same manner. For example, with the staffing

85

profile illustrated in Equation 10, duration of the project is estimated to be 232 days

while the effort spent on the project is estimated to be 1135 person-days and the number

of undetected defects in the code is estimated to be 2 defects.

Equation 10: Staffing profile matrix with arbitrary settings

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

101010000000
000010011010
100010100101
001011010100
001010111010
110101010011
111010110101
010011111010
001000100010
101101110100
010010010110
001001001011

1212S

6.4 Scenario 4: Analyzing the effect of workforce skill levels on project performance

This scenario shows the application of GENSIM 2.0 to analyze the effects of hiring better

skilled workforce or training the current workforce on the project's performance and to

figure out which type of skill sets is more worth the investment. GENSIM 2.0 assumes

that for any of the employees, a skill level, a real number ∈s [0, 1], can be given for any

of the activities of the project to specify his/her skill level in carrying out that activity. If

providing the skill level with such accuracy is not possible and the employees' skill levels

could only be specified on an ordinal scale a mapping from the ordinal scale onto [0,1]

could resolve the issue. For example if the employees' skill levels is provided on an

ordinal scale with five ordinals including excellent, good, medium, weak, and unable to

do, we can map them onto [0,1] using a table as shown in Table 21.

86

Table 21: Example of mapping skill levels from ordinal to ratio scale

Value on ordinal scale Value on ratio scale
Unable to do 0

Weak 0.25
Medium 0.5

Good 0.75
Excellent 1

The effect of the employees’ skill levels on GENSIM 2.0 parameters is twofold.

Whenever the skill level of an employee is increased, the speed with which he/she

performs that activity is increased while his/her chances of making a mistake decreases.

For example, if the skill level of testers is increased, the speed with which they test the

artefacts increases while the effectiveness of the testing technique in defect detection

increases. If the skill level of developers increases the speed with which they

develop/rework the artefacts increases while the number of defects they inject in the

artefact decreases. Because of the lack of reliable data on the magnitude of the effect of

workforce skill levels on different parameters, it was assumed that all the parameters

affected by the workforce skill levels increase/decrease proportionate to the average skill

level of the employees i.e. if the average skill level of the system testers is 0.5, then the

effectiveness of the system testing technique will drop from its reported optimal value by

50 percent.

The concrete question that this scenario answers is finding out the effect of hiring better

skilled or training developers, verifiers and testers on project duration and effort and the

quality of the final product. The question is analyzed for two example cases.

Case 1: In this case, the staffing profile matrix is specified as the run A of Case 2 of

section 3.3, i.e., 12 employees that each of them could potentially carry out any of the

87

activities. The scenario includes four different simulation runs with differences in their

inputs as illustrated in Table 22.

Table 22: Differences in inputs of the runs of Scenario 4 – Case 1

Run Average skill level
of developers

Average skill
level of verifiers

Average skill
level of testers

Baseline 0.5 0.5 0.5
A 0.75 0.5 0.5
B 0.5 0.75 0.5
C 0.5 0.5 0.75

Different output variables of the model could be used to analyze different effects. Table

23 includes the most important simulation results corresponding to the project’s

performance measures.

Table 23: Simulation results for Scenario 4 – Case 1

Run Duration
[Day]

Difference
in Duration

from
baseline

Effort
[PD]

Difference
in effort

from
baseline

Quality
[UD]

Difference
in quality

from
baseline

Baseline 956 0% 4796 0% 502 0%
A 786 -17.78% 3924 -18.18% 418 -16.73%
B 500 -47.69% 2879 -39.97% 230 -52.3%
C 917 -4.07% 4645 -3.14% 158 -68.52%

PD = Person-Day, UD = Number of undetected defects in the code document

As shown in Table 23, if the main concern of the project management is the quality of the

final product, improving the average skill level of the testers would result in more

improvement compared to improving the average skill level of the verifiers or the

developers. However if the effort or the duration of the project is considered as well, the

third case yields the smallest improvement with regards to these factors. Thus, in order to

decide on the group of workforce that is going to be invested in, priorities of the project

88

management have to be taken into account and trade-offs have to be analyzed. It is also

worth to pint out why the third case shows more improvement in quality than the second

case. This is due to the fact that the model assumes that testing techniques detect a certain

percentage of the defects within the code regardless of the total number of defects in the

code. The effect of the total number of defects in an artefact on the effectiveness of a

related verification and validation technique was not considered in the model because no

sufficient data was available.

Case 2: In this case, the workforce consists of 70 developers and each developer can

potentially carry out only one activity. The number of developers that can carry out each

of the activities is shown in Table 24. Besides its ability to generate estimates of the

global effects of changes in a project’s staffing profile, this scenario demonstrates that

GENSIM 2.0 can easily handle staffing profiles of large development projects. Any of

the simulation runs of this case take approximately 15 seconds which is very close to the

elapsed time of the runs with the small cases.

Table 24: Workforce information for Scenario 4 – Case 2

Activity Number of developers
Requirements specification development 6
Requirements specification verification 1
Design development 12
Design verification 3
Code development 23
Code verification 5
Unit test case development 5
Unit test 5
Integration test case development 5
Integration test 5
System test case development 10
System test 10

89

Four different simulation runs with differences in their input similar to those of Case 1

are analyzed. The results of the simulation runs are shown in Table 25.

Table 25: Simulation results for Scenario 4 – Case 2

Run Duration
[Day]

Difference
in Duration

from
baseline

Effort
[PD]

Difference
in effort

from
baseline

Quality
[UD]

Difference
in quality

from
baseline

Baseline 545 0% 4872 0% 502 0%
A 446 -18.17% 3986 -18.19% 418 -16.67%
B 329 -39.63% 2984 -38.74% 230 -54.12%
C 524 -3.85% 4729 -2.92% 158 -68.60%

PD = Person-Day, UD = Number of undetected defects in the code document

It can be seen that, similar to the first case, if the major concern is quality of the final

product, investing in the training the testers is the best choice. However, if duration and

effort are important as well, investing in verifiers is the best alternative.

90

Chapter Seven: Conclusion and Future Work

7.1 Contributions

The contributions of the work presented in this thesis are as follows:

1. We identified a set of generic process structures (macro-patterns) including

the development/verification pattern and the validation pattern. The former,

captures the generic process structure of a software artefact development

activity followed by an artefact verification activity. The latter, models the

generic process structure of a software validation activity. The introduced

patterns may be reused and composed in development of a wide range of

software process simulation models and hence mitigate their respective cost

issues.

2. To show the usefulness of the introduced macro-patterns, we developed a

customizable software process simulator, i.e., GENSIM 2.0, by applying the

identified macro-patterns to life-cycle phases of the well-known V-Model.

GENSIM 2.0 captures the patterns from 4 different perspectives, flow of

software artefacts, flow of defects, flow of resources and the changes in the

states of the activities and artefacts. To provide a deeper insight into the

specifics of the simulator and to enable it easy reuse and customization, we

described all its parameters, their mutual influences, equations and other

implementation details in this work.

3. We provided detailed description of all GENSIM 2.0 calibration parameters

categorized in two groups, parameters used for calibrating the

development/verification phases and the parameters used for calibration of the

91

validation phases. Currently calibration of GENSIM 2.0 is based on data

available in the software engineering literature. Nevertheless, we discussed

alternative sources that could potentially be used for the calibration of the

model.

4. We described two example software process problems that GENSIM 2.0 can

be applied to find a solution to. First we applied it to find the best combination

of verification and validation activities with regards to specific time, quality

and effort goals. Second we use GENSIM 2.0 to investigate the impact of

changes to the project workforce on its overall performance. The presented

application scenarios are not comprehensive but a subset of the variety of the

situations that GENSIM 2.0 can be used in tackling software process issues.

7.2 Conclusion

Software process simulation plays a key role in improvement of software processes.

Development of software process simulators has long suffered from cost issues. The

work presented in this thesis is considered a major step towards more efficient

development of these simulators. The macro-patterns introduced as part of this work are

generic process structures that are used frequently in simulation modeling of software

processes. Using the identified patterns, development of software process simulation

models from scratch could be avoided.

GENSIM 2.0, developed as part of this work, by applying the macro-patterns, is a

complex software process simulation model which has been made publicly available.

Different to most SD software process simulation models, GENSIM 2.0 allows for

detailed modeling of work products, activities, developers, techniques, tools, defects and

92

other entities from four different perspectives, i.e., product, defect, resource and state.

Moreover, the possibility to use external DLL libraries gives the opportunity to extract

organization-specific and potentially time-consuming algorithms from the SD model.

Besides improving the simulator’s performance, this feature allows for easy modification

of such algorithms which are often hard-wired in the simulation model and cannot be

changed easily. Comprehensive description of GENSIM 2.0 parameters and their

calibration allows for easy re-calibration and further experimentation with the model.

7.3 Limitations and Future Work

Future work on GENSIM 2.0 will address some of its current limitations as follows:

• Future work regarding the calibration and validation of GENSIM 2.0 includes

further investigation of the software engineering literature to find more sources

that could potentially be used for re-calibration of GENSIM 2.0 in order to add to

the reliability of its generated estimations.

• Future work regarding experimentation with GENSIM 2.0 will involve re-

calibrating, reusing, customizing and applying it to deal with different kinds of

software development process issues in real-world industrial development

environments.

• The possibility to analyze the impact of the intensity level of V&V activities on

project performance dimensions is also among the features that will be added to

GENSIM 2.0 in future.

• GENSIM 2.0 has to be improved in order to capture additional characteristics of

defects, e.g., severity. As a result, the simulator will be able to accurately capture

defect prioritization before the correction activities and different defects could be

93

corrected at different points in time according to their urgencies. Furthermore,

if such a defect prioritization scheme is used, a portion of defects may or may not

be fixed at all.

• Currently, except requirement corrections incurred by corrections in code or

design, GENSIM 2.0 does not allow any change in the requirements in the middle

of a simulation run.

• Another present limitation of GENSIM 2.0 is that it assumes that the available

workforce for the project is constant throughout the entire project. Future work on

GENSIM 2.0 will address this issue and implement mechanisms for dealing with

changeable workforce profiles.

• Currently it is not possible to represent incremental software development

processes using GENSIM 2.0. Mechanisms will be added to the model that allow

for concurrent execution of development cycles following the development

process shown in Figure 6.

• Reusability of the macro-patterns has to be demonstrated empirically by

collecting effort data from software process modeling projects that employ the

patterns and comparing it with data collected from similar projects that do not

apply them.

94

References

[1] M. Paulk, C. Weber, S. Garcia, M. B. Chrissis, and M. Bush, "Key practices of
the capability maturity model," Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 1993.

[2] H. Waeselynck and D. Pfahl, "System Dynamics Applied To The Modeling Of
Software Projects," Software Concepts and Tools, vol. 15, no. 4, pp. 162-176,
1994.

[3] B. W. Bohem, C. Abts, A. W. Browm, S. Chulani, B. K. Clark, E. Horowitz, R. J.
Madachy, D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II:
Prentice-Hall, 2000.

[4] T. Abdel-Hamid and S. E. Madnick, Software project dynamics: an integrated
approach: Prentice-Hall, Inc., 1991.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. P. Picco, "Modeling and
improving an industrial software process," Software Engineering, IEEE
Transactions on, vol. 21, no. 5, pp. 440-454, 1995.

[6] V. Gruhn and A. Saalmann, "Software Process Validation Based on FUNSOFT
Nets," in Proceedings of the Second European Workshop on Software Process
Technology: Springer-Verlag, 1992.

[7] M. I. Kellner and G. A. Hansen, "Software process modeling: a case study,"
System Sciences, 1989. Vol.II: Software Track, Proceedings of the Twenty-Second
Annual Hawaii International Conference on, pp. 175-188 vol.2, 1989.

[8] P. Mi and W. Scacchi, "A knowledge-based environment for modeling and
simulating software engineering processes," Knowledge and Data Engineering,
IEEE Transactions on, vol. 2, no. 3, pp. 283-289, 1990.

[9] D. Pfahl, M. Klemm, and G. Ruhe, " A CBT module with integrated simulation
component for software project management education and training," Journal of
Systems and Software, vol. 59, no. 3, pp. 283-298, 2001.

[10] D. M. Raffo, U. Nayak, S. Setamanit, P. Sullivan, and W. Wakeland, "Using
software process simulation to assess the impact of IV&V activities," IEE
Seminar Digests, vol. 2004, no. 911, pp. 197-205, 2004.

[11] zz, "IEEE Standards Description: 12207.0-1996."
[12] D. Pfahl and K. Lebsanft, "Knowledge Acquisition and Process Guidance for

Building System Dynamics Simulation Models. An Experience Report from
Software Industry," International Journal of Software Engineering and
Knowledge Engineering, vol. 10, no. 4, pp. 487-510, 2000.

[13] zz, "ExtendSim."
[14] zz, "Vensim."
[15] A. Wise, "Little-JIL 1.5 Language Report," Department of Computer Science,

University of Massachusetts, Amherst UM-CS-2006-51, 2006.
[16] J. W. Forrester, Industrial Dynamics: M.I.T Press, 1961.
[17] P. Senge, The fifth Discipline. New York: Currency Doubleday, 1990.

95

[18] G. P. Richardson, Feedback Thought in Social Science and Systems Theory:
University of Pennsylvania Press, 1990.

[19] C. Y. Lin, T. Abdel-Hamid, and J. S. Sherif, "Software Engineering Process
Simulation Model (SEPS)," Journal of Systems and Software, vol. 38, pp. 263-
277, 1997.

[20] R. J. Madachy, "A software project dynamics model for process cost, schedule
and risk assessment," University of Southern California, 1994, p. 127.

[21] A. Powell and K. Mander, "Strategies for lifecycle concurrency and iteration: A
system dynamics approach," Journal of Systems and Software, vol. 46, pp. 151-
162, 1999.

[22] J. D. Tvedt, "An extensible model for evaluating the impact of process
improvements on software development cycle time," Arizona State University,
1996, p. 386.

[23] R. Madachy, "Reusable Model Structures and Behaviors for Software Processes,"
in Software Process Change. vol. 3966/2006, Ed, Springer Berlin / Heidelberg,
pp. 222-233.

[24] N. Angkasaputra and D. Pfahl, "Making Software Process Simulation Modeling
Agile and Pattern-based," ProSim 2004, pp. 222-227, 2004.

[25] O. Armbrust, T. Berlage, T. Hanne, P. Lang, J. Munch, H. Neu, S. Nickel, I. Rus,
A. Sarishvili, S. v. Stockum, and A. Wirsen, "Simulation-based software process
modeling and evaluation," in Handbook of Software Engineering & Knowledge
Engineering. vol. 3, Ed, 2005, pp. 333-364.

[26] M. Muller and D. Pfahl, "Simulation Methods," in Guide to Advanced Empirical
Software Engineering, Ed, Springer London, 2008, pp. 117-152.

[27] D. Raffo, G. Spehar, and U. Nayak, "Generalized Process Simulation: What, Why
and How?," ProSim '03 Workshop, 2003.

[28] zz, "The ISO 9126 Standard."
[29] J. M. Lyneis and A. L. Pugh, "Automated vs. "hand" calibration of system

dynamics models: An experiment with a simple project model," 1996
International System Dynamics Conference, pp. 317-320, 1996.

[30] R. Oliva, "Model calibration as a testing strategy for system dynamics models,"
European Journal of Operational Research, vol. 151, no. 3, pp. 552-568, 2003.

[31] J. Munch, D. Rombach, and I. Rus, "Creating an Advanced Software Engineering
Laboratory by Combining Empirical Studies with Process Simulation," Software
Process Simulation Modeling (ProSim03), 2003.

[32] I. Rus, S. Biffl, and M. Halling, "Systematically combining process simulation
and empirical data in support of decision analysis in software development," in
Proceedings of the 14th international conference on Software engineering and
knowledge engineering Ischia, Italy: ACM, 2002.

[33] zz, "Software Engineering Information Repository (SEIR)."
[34] zz, "PROMISE Software Engineering Repository."
[35] zz, "Software-artifact Infrastructure Repository."
[36] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing

Strategies," Software Engineering, IEEE Transactions on, vol. SE-13, no. 12, pp.
1278-1296, 1987.

96

[37] M. Diaz and J. Sligo, "How software process improvement helped Motorola,"
Software, IEEE, vol. 14, no. 5, pp. 75-81, 1997.

[38] zz, "Capability Maturity Model for Software (CMM)."
[39] S. Wagner, "A literature survey of the quality economics of defect-detection

techniques," in Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering Rio de Janeiro, Brazil: ACM, 2006.

[40] O. Laitenberger, "A Survey of Software Inspection Technologies," Handbook on
Software Engineering and Knowledge Engineering, vol. 2, pp. 517-555, 2002.

[41] zz, "COCOMO II."
[42] L.-O. Damm, L. Lundberg, and C. Wohlin, "Faults-slip-through - a concept for

measuring the efficiency of the test process," Software Process: Improvement and
Practice, vol. 11, no. 1, pp. 47-59, 2006.

[43] A. A. Frost and M. J. Campo, "Advancing Defect Containment to Quantitative
Defect Management," The Journal of Defense Software Engineering, vol. 20, no.
12, pp. 24-28, 2007.

[44] K. Khosrovian, D. Pfahl, and V. Garousi, "GENSIM 2.0: A Customizable Process
Simulation Model for Software Process Evaluation," Schulich School of
Engineering, University of Calgary SERG-2007-07, Simula TR 2008-01, 2007.

97

Appendix A

This appendix includes the GENSIM 2.0 equations as implemented in Vensim for the

code development and the system test phases. For the complete set of equations and

description of the variables refer to [44].

A.1. Model equation for the code development phase:

**
 .Code Product Flow View
**

Code to develop[module]=

 IF THEN ELSE(Design to CM[subsystem]>0:AND:Total code doc dev status per
subsystem[subsystem\

]=0, Random average code size in KLOC

 [module]/TIME STEP,0)

 ~ KLOC/Day

 ~ |

Code development activity[module]=

 IF THEN ELSE(Code doc dev status[module]=1,MIN(Code to do size[module]/TIME
STEP,Code dev productivity\

 [module]),0)

 ~ KLOC/Day

 ~ |

Verified code flush[module]=

 IF THEN ELSE(Code doc dev status[module]=1, Code doc verified[module]/TIME STEP,
0)

 ~ KLOC/Day

 ~ |

Code not to verify[module]=

 IF THEN ELSE(Code doc dev status[module]=2:AND:Code doc ver status[module]=3, Code
doc size\

 [module]/TIME STEP,IF THEN ELSE(Verify code or not

 =0,Code doc size[module]/TIME STEP,0))

 ~ KLOC/Day

 ~ |

Code to CM[module]=

 IF THEN ELSE(Code doc ready size[module]>Actual code size to develop per
module[module\

]*0.999, Code doc ready size[module

]/TIME STEP,0)

 ~ KLOC/Day

 ~ |

Random average code size in KLOC[module]=

 Code randomizing multipliers[module]*Average code size in KLOC[module]

 ~ KLOC

98

 ~ This variable specifies the size of different modules.

 |

Number of test cases for UT[module]=

 Average number of UT test cases per code size unit*Actual code size to develop per
module\

 [module]

 ~ Testcase

 ~ |

Code to IT flush[module]=

 IF THEN ELSE(Integration test or not=1:AND:Unit test or not=1:AND:Integration test
status\

 [module]<3:AND:Unit test status[module]>=3, Code to CM[module

],IF THEN ELSE(Integration test or not=1:AND:Unit test or not=0:AND:Integration
test status\

 [module]<3,Code to CM[module],0))

 ~ KLOC/Day

 ~ This rate is used to send a moduls's code document for integration
testing.

 |

Code to ST flush[module]=

 IF THEN ELSE(System test or not=1:AND:Integration test or not=1:AND:Integration
test status\

 [module]>=3:AND:System test status[module]<=2, Code to CM

 [module],IF THEN ELSE(System test or not=1:AND:Integration test or
not=0:AND:System test status\

 [module]<=2,Code to CM[module],0))

 ~ KLOC/Day

 ~ This rate is used to send a moduls's code document for system testing.

 |

Code to UT flush[module]=

 IF THEN ELSE(Unit test status[module]<3:AND:Unit test or not=1, Code to
CM[module], \

 0)

 ~ KLOC/Day

 ~ This rate is used to send a moduls's code document for unit testing.

 |

Code doc stored size[module]= INTEG (

 Code to CM[module]-Code to IT flush[module]-Code to ST flush[module]-Code to UT
flush\

 [module],

 0)

 ~ KLOC

 ~ |

Code verification activity[module]=

 IF THEN ELSE(Code doc ver status[module]=1:OR:(Code doc ver
status[module]=2:AND:Code doc dev status\

 [module]=2),MIN(Code doc size

 [module]/TIME STEP, Code ver productivity),0)

 ~ KLOC/Day

 ~ |

Code to rework[module]=

 IF THEN ELSE(Code doc quality ratio[module]>0,Code verification
activity[module]*MIN\

 (1,Code doc quality ratio[module])+Code returned for rework rate from
UT[module]+Code returned for rework from IT\

99

 [module]+Code returned for rework from ST[module],Code verification
activity[module\

]+Code returned for rework rate from UT[module]+Code returned for rework
from IT[module\

]+Code returned for rework from ST[module])

 ~ KLOC/Day

 ~ |

Code not to rework[module]=

 MAX(Code verification activity[module]-Code to rework[module],0)

 ~ KLOC/Day

 ~ |

Number of modules per subsystem[SUB1]=

 ELMCOUNT(mod sub1) ~~|

Number of modules per subsystem[SUB2]=

 ELMCOUNT(mod sub2) ~~|

Number of modules per subsystem[SUB3]=

 ELMCOUNT(mod sub3) ~~|

Number of modules per subsystem[SUB4]=

 ELMCOUNT(mod sub4) ~~|

Number of modules per subsystem[SUB5]=

 ELMCOUNT(mod sub5)

 ~ Dmnl

 ~ This variable specifies the number of modules in every subsystem of the \

 product.

 |

Average code size in KLOC[module]=

 Average design to code conversion factor per subsystem[subsystem]*Average design
size in pages\

 [subsystem]/Number of modules per subsystem[subsystem]

 ~ KLOC

 ~ This variable specifies the average size of modules according to size of \

 their subsystem's design document and the number of modules in their \

 subsystem. It assumes that all modules within a subsystem correspond to \

 equal portions of their subsystem's design document size.

 |

Code doc verified[module]= INTEG (

 Code verification activity[module]-Verified code flush[module],

 0)

 ~ KLOC

 ~ |

Code doc quality ratio[module]=

 IF THEN ELSE(Code verification activity[module]>0:AND:Code doc quality limit per
size unit\

 >0, Sum code fault detection per module[module]/(Code doc quality limit
per size unit\

 *Code verification activity[module]), 0)

 ~ Dmnl

 ~ |

Actual code size to develop per module[module]= INTEG (

 Code to develop[module],

 0)

 ~ KLOC

 ~ |

100

Code doc ready size[module]= INTEG (

 Code not to rework[module]+Code not to verify[module]-Code to CM[module],

 0)

 ~ KLOC

 ~ |

Average design to code conversion factor per subsystem[subsystem]=

 0.2,0.14,0.18,0.25,0.2

 ~ KLOC/Page

 ~ |

Code to do size[module]= INTEG (

 Code to develop[module]-Code development activity[module]+Code to rework[module],

 0)

 ~ KLOC
 ~ |

**
 .Code Defect Flow View
**

Code fault detection[origin,factor,module]=

 IF THEN ELSE(Actual code size to develop per module[module]>0:AND:Code
verification activity\

 [module]>0, MIN(Code faults undetected in coding

 [origin,factor,module]/TIME STEP, Average code ver
effectiveness[origin,factor]*Code verification activity\

 [module]*(Code faults undetected in coding

 [origin

 ,factor,module]*(Code doc size[module]+Code doc verified[module])/Actual code size
to develop per module\

 [module]+Code faults detected

 [origin,factor,module])/(Code doc size[module]+Code doc verified[module])),Code
fault detection rate in UT\

 [origin,factor

 ,module]+Code fault detection rate in IT[origin,factor,module]+Code fault
detection rate in ST\

 [origin,factor,module])

 ~ Defect/Day

 ~ |

Design to code fault propagation[origin,factor,subsystem]=

 IF THEN ELSE(Design to CM[subsystem]>0:AND:Total code doc dev status per
subsystem[subsystem\

]=0,(Design faults undetected

 [origin,factor,subsystem]*Average design to code fault multiplier[origin])/Number
of modules per subsystem\

 [subsystem]/TIME STEP,

 0)

 ~ Defect/Day

 ~ |

Code fault generation due to propagation[origin,factor,module]=

 IF THEN ELSE(Actual code size to develop per module[module]>0:AND:Design to code
faults waiting\

 [origin,factor,module]>0

 , MIN(Design to code faults waiting[origin,factor,module]/TIME STEP, (Design to
code faults waiting\

101

 [origin,factor,module]+Design to code faults propagated

 [origin,factor,module])*Code development activity[module]/Actual code size to
develop per module\

 [module]), 0)

 ~ Defect/Day

 ~ |

Corrected code faults flush[origin,factor,module]=

 IF THEN ELSE(Code doc dev status[module]=2 , Code faults
corrected[origin,factor,module\

]/TIME STEP, 0)

 ~ Defect/Day

 ~ |

Detected code faults flush[origin,factor,module]=

 IF THEN ELSE(Code doc ver status[module]>1, Code faults
detected[origin,factor,module\

]/TIME STEP, 0)

 ~ Defect/Day

 ~ |

Code ver effectiveness[requ,factor]=

 Code ver effectiveness constant ~~|

Code ver effectiveness[design,factor]=

 Code ver effectiveness constant ~~|

Code ver effectiveness[code,factor]=

 Code ver effectiveness constant

 ~ Dmnl

 ~ |

Code fault correction[origin,factor,module]=

 IF THEN ELSE(Code dev workforce per module[module]>0:AND:Code faults
pending[origin,\

 factor,module]>0,MIN(Code dev workforce per module[module]/(Code rework
effort per fault\

 [module]*9),Code faults pending[origin,factor,module]/TIME STEP),0)

 ~ Defect/Day

 ~ |

code fault generation[origin,factor,module]=

 Code fault generation due to propagation[origin,factor,module]+Code development
activity

 [module]*Average code fault injection per size unit

 [origin,factor]/MAX(1,Code learning status[module]^(Learning amplifier for code
fault injection\

))

 ~ Defect/Day

 ~ |

Average code fault injection per size unit[origin,factor]=

 Minimum code fault injection per size unit[origin,factor]+(1-Code dev team skill
level average\

)*Minimum code fault injection per size unit[origin,factor]

 ~ Defect/KLOC

 ~ |

Code faults pending[origin,factor,module]= INTEG (

 Code fault detection[origin,factor,module]-Code fault
correction[origin,factor,module\

],

102

 0)

 ~ Defect

 ~ |

Code fault generation copy[origin,factor,module]=

 code fault generation[origin,factor,module]

 ~ Defect/Day

 ~ |

Design to code faults waiting[origin,factor,module]= INTEG (

 Design to code fault propagation[origin,factor,subsystem]-Code fault generation
due to propagation\

 [origin,factor,module],

 0)

 ~ Defect

 ~ |

Design to code faults propagated[origin,factor,module]= INTEG (

 Code fault generation due to propagation[origin,factor,module],

 0)

 ~ Defect

 ~ |

Sum code fault detection per module[module]=

 SUM(Code fault detection[origin!,factor!,module])

 ~ Defect/Day

 ~ |

Average design to code fault multiplier[origin]=

 3,3,0

 ~ Dmnl

 ~ |

Code faults detected[origin,factor,module]= INTEG (

 Code fault detection[origin,factor,module]-Detected code faults
flush[origin,factor,\

 module],

 0)

 ~ Defect

 ~ |

Actual code faults corrected[origin,factor,module]= INTEG (

 Code fault correction[origin,factor,module],

 0)

 ~ Defect

 ~ |

Actual code faults detected[origin,factor,module]= INTEG (

 Code fault detection[origin,factor,module],

 0)

 ~ Defect

 ~ |

Code faults corrected[origin,factor,module]= INTEG (

 Code fault correction[origin,factor,module]-Corrected code faults
flush[origin,factor\

 ,module],

 0)

 ~ Defect

 ~ |

Code faults undetected in coding[origin,factor,module]= INTEG (

103

 Code fault generation copy[origin,factor,module]-Code fault
detection[origin,factor,\

 module],

 0)

 ~ Defect

 ~ |

Minimum code fault injection per size unit[requ,factor]=

 0,0,0 ~~|

Minimum code fault injection per size unit[design,factor]=

 0,0,0 ~~|

Minimum code fault injection per size unit[code,factor]=

 4.84,4.84,4.84

 ~ Defect/KLOC

 ~ |

Learning amplifier for code fault detection=

 2

 ~ Dmnl

 ~ |

Code faults generated[origin,factor,module]= INTEG (

 code fault generation[origin,factor,module],

 0)

 ~ Defect
 ~ |

**
 .Code State Flow View
**

Code doc ver status change[module]=
 IF THEN ELSE((Code doc ver status[module]=0):AND:(Code doc dev
status[module]>1):AND:\
 Verify code or not=1,1,IF THEN ELSE
 ((Code doc ver status[module]=1):AND:(Code doc size[module]<=0):AND:(Code doc
quality flag\
 [module]>0):AND:Verify code or not=1,1,IF THEN ELSE((Code doc ver status
 [module]=2):AND:(Code doc size[module]>0):AND:(Code doc dev status[module]
 <>1):AND:Verify code or not=1,-1,IF THEN ELSE((Code doc ver
status[module]=1):AND:(Code doc size\
 [module]<=0):AND:(Code doc quality flag[module]<1):AND:Verify code or
not=1,2,IF THEN ELSE\
 (Code doc ver status[module]=0:AND:Verify code or not=0:AND:Code doc dev
status[module\
]>0,0,0)))))
 ~ Dmnl/Day
 ~ |
Code doc quality[module]=
 IF THEN ELSE(Code doc verified[module]>0, Sum code faults pending per
module[module]\
 /Code doc verified[module], 0)
 ~ Defect/KLOC
 ~ |
Code doc quality flag[module]=
 IF THEN ELSE(Code doc quality limit per size unit>0:AND:Code doc
quality[module]>Code doc quality limit per size unit\
 ,1,IF THEN ELSE(Code doc quality limit per size unit=0,0,0))
 ~ Dmnl
 ~ |
Code learning status change[module]=
 IF THEN ELSE(Actual code size to develop per module[module]>0, (Code development
activity\

104

 [module]+Code verification activity[module])/Actual code size to
develop per module\
 [module], 0)
 ~ Dmnl/Day
 ~ |
Code doc dev status change[module]=
 IF THEN ELSE((Code doc dev status[module]=0):AND:(Code to do size[module]>0),1,IF
THEN ELSE
 ((Code doc dev status[module]=1):AND:
 (Code to do size[module]<=0),1,IF THEN ELSE((Code doc dev
status[module]=2):AND:(Code to do size\
 [module]>0):AND:(Code doc ver status[module]<>1),-1,0))
)
 ~ Dmnl/Day
 ~ |
Code doc dev status[module]= INTEG (
 Code doc dev status change[module],
 0)
 ~ Dmnl
 ~ status 0 : non_exist
 status 1: incomplete
 status 2: complete
 |
Code doc ver status[module]= INTEG (
 Code doc ver status change[module],
 0)
 ~ Dmnl
 ~ status 0 : non_exist
 status 1: incomplete
 status 2: complete_repeat
 status 3: complete_final
Code learning status[module]= INTEG (
 Code learning status change[module],
 0)
 ~ Dmnl
 ~ |
Code doc quality limit per size unit=
 0
 ~ Defect/KLOC
 ~ |

**
 .Code Resource Flow View
**

Actual code dev effort per system=
 SUM(Actual code dev effort[module!])
 ~ Day*Person
 ~ |
Actual code dev effort rate[module]=
 IF THEN ELSE(Code learning status[module]<1,Code dev workforce per
module[module],0)
 ~ Person
 ~ |
Actual code dev effort[module]= INTEG (
 Actual code dev effort rate[module],
 0)
 ~ Day*Person
 ~ |
Code dev workforce per module[module]=
 IF THEN ELSE(Number of documents being processed per activity[COD]>0:AND:Code doc
dev status\
 [module]=1,Code dev workforce
 /Number of documents being processed per activity
 [COD],0)
 ~ Person
 ~ |

105

Actual code effort=
 Actual code dev effort per system+Sum actual code rework effort per system
 ~ Day*Person
 ~ This variable specifies the amount of actual effort spent on code \
 development/rework.
 |
Actual code rework effort[origin,factor,module]= INTEG (
 Actual code rework effort rate[origin,factor,module],
 0)
 ~ Day*Person
 ~ |
Actual code rework effort rate=A FUNCTION OF(Actual code rework effort rate,Code fault
correction\
 ,Code rework effort per fault) ~~|
Actual code rework effort rate[origin,factor,module]=
 Code fault correction[origin,factor,module]*Code rework effort per fault[module]c
 ~ Person
 ~ |
Code dev productivity[module]=
 Maximum code dev rate per day[module]*Code dev team skill level average
 ~ KLOC/Day
 ~ |
Sum actual code rework effort per system=
 SUM(Actual code rework effort[origin!,factor!,module!])
 ~ Day*Person
 ~ |
Initial code dev rate per person per day=
 0.048
 ~ KLOC/(Person*Day)
 ~ |
Code dev effort= INTEG (
 Code dev effort rate,
 0)
 ~ Day*Person
 ~ |
Code dev effort rate=
 Code dev workforce
 ~ Person
 ~ |
Code ver effort rate=
 Code ver workforce
 ~ Person
 ~ |
Code effort=
 Code dev effort+Code ver effort
 ~ Day*Person
 ~ This variable is used to show the total effort spent on the code document.
 |

Code ver effort= INTEG (
 Code ver effort rate,
 0)
 ~ Day*Person
 ~ This level variable is used to keep track of the effort spent of the code
\
 verification acitivity.
 |
Code ver team skill level average=
 Actual allocation[COV,SKLL]
 ~ Dmnl
 ~ |
Code ver workforce=
 Actual allocation[COV,NMBR]
 ~ Person
 ~ |
Code dev team skill level average=
 Actual allocation[COD,SKLL]
 ~ Dmnl
 ~ |

106

Average code ver effectiveness[origin,factor]=
 Code ver effectiveness[origin,factor]*Code ver team skill level average
 ~ Dmnl
 ~ |
Code ver productivity=
 IF THEN ELSE(Number of documents being processed per activity[COV]>0,(Code ver
workforce\
 /Number of documents being processed per activity
 [COV])*Maximum code ver rate per person per day*Code ver team skill level
average,0)
 ~ KLOC/Day
 ~ |
Maximum code ver rate per person per day=
 0.6
 ~ KLOC/(Day*Person)
 ~ |
Code ver effectiveness[requ,factor]=
 Code ver effectiveness constant ~~|
Code ver effectiveness[design,factor]=
 Code ver effectiveness constant ~~|
Code ver effectiveness[code,factor]=
 Code ver effectiveness constant
 ~ Dmnl
 ~ |
Average code fault injection per size unit[origin,factor]=
 Minimum code fault injection per size unit[origin,factor]+(1-Code dev team skill
level average\
)*Minimum code fault injection per size unit[origin,factor]
 ~ Defect/KLOC
 ~ |
Minimum code fault injection per size unit[requ,factor]=
 0,0,0 ~~|
Minimum code fault injection per size unit[design,factor]=
 0,0,0 ~~|
Minimum code fault injection per size unit[code,factor]=
 4.84,4.84,4.84
 ~ Defect/KLOC
 ~ |
Code dev workforce=
 Actual allocation[COD,NMBR]
 ~ Person
 ~ |

A.2. Model equations for the System Test Phase

**
 .ST Product Flow View
**

Code returned for rework from ST[module]=
 IF THEN ELSE(Tested code in ST[module]>0:AND:System test status[module]>1,Tested
code in ST\
 [module]/TIME STEP,0)
 ~ KLOC/Day
 ~ |
ST rate[module]=
 IF THEN ELSE(ST test case data available or not=1,IF THEN ELSE(Code to be tested
in ST\
 [module]>0:AND:ST test cases>Number of test cases for ST
 -0.0001:AND:Average number of ST test cases executed per day
 >0,MIN(Code to be tested in ST
 [module]/TIME STEP,Actual code size to develop per module[module]/(Number of test
cases for ST\
 /Average number of ST test cases executed per day
)),0),IF THEN ELSE(Code to be tested in ST[module]>0:AND:Average ST
productivity>0,MIN\

107

 (Code to be tested in ST[module]/TIME STEP,
 Actual code size to develop per module[module]/(Sum actual code size to develop
per system\
 /Average ST productivity)),0))
 ~ KLOC/Day
 ~ |
Code ready for ST flush[module]=
 IF THEN ELSE(Sum code ready for ST<(Sum actual code size to develop per
system+0.1):AND:\
 Sum code ready for ST>(Sum actual code size to develop per system
 -0.1):AND:VMIN(Code doc dev status[module!])>0,Code ready for ST[module]/TIME
STEP,0\
)
 ~ KLOC/Day
 ~ |
Sum code ready for ST per subsystem[subsystem]=
 CUSTOMSUMONED(Code ready for ST[MOD1],Subsystem's first module
number[subsystem],Number of modules per subsystem\
 [subsystem])
 ~ KLOC
 ~ This variable specifies the amount of a subsystem's code that is ready for
\
 system test.
 |
Sum code ready for ST=
 SUM(Sum code ready for ST per subsystem[subsystem!])+Sum code doc stored size per
system
 ~ KLOC
 ~ |
Code to be tested in ST[module]= INTEG (
 Code ready for ST flush[module]-ST rate[module],
 0)
 ~ KLOC
 ~ |
Tested code in ST[module]= INTEG (
 ST rate[module]-Code returned for rework from ST[module],
 0)
 ~ KLOC
 ~ |
Incoming code to ST rate[module]=
 Code to ST flush[module]
 ~ KLOC/Day
 ~ |
Code ready for ST[module]= INTEG (
 Incoming code to ST rate[module]-Code ready for ST flush[module],
 0)
 ~ KLOC
 ~ |

**
 .ST Defect Flow View
**

Code fault detection rate in ST[origin,factor,module]=
 IF THEN ELSE(ST rate[module]>0, MIN(Undetected code faults in
ST[origin,factor,module\
]/TIME STEP, Average ST effectiveness[origin
 ,factor]
 *
 ST rate[module]*(Undetected code faults in ST[origin,factor,module]+Detected code
faults in ST\
 [origin,factor,module])/(
 Code to be tested in ST[module]+Tested code in ST[module])),0)
 ~ Defect/Day
 ~ |
Undetected code faults in ST flush[origin,factor,module]=
 IF THEN ELSE(System test status[module]>1,Undetected code faults in
ST[origin,factor\

108

 ,module]/TIME STEP,0)
 ~ Defect/Day
 ~ |
Incoming code faults to ST rate[origin,factor,module]=
 IF THEN ELSE(Code ready for ST flush[module]>0,Code faults undetected in
coding[origin\
 ,factor,module]/TIME STEP,0)
 ~ Defect/Day
 ~ |
Detected code faults in ST flush[origin,factor,module]=
 IF THEN ELSE(System test status[module]>1,Detected code faults in
ST[origin,factor,module\
]/TIME STEP,0)
 ~ Defect/Day
 ~ |
Undetected code faults in ST[origin,factor,module]= INTEG (
 Incoming code faults to ST rate[origin,factor,module]-Code fault detection rate in
ST\
 [origin,factor,module]-Undetected code faults in ST
flush[origin,factor,module],
 0)
 ~ Defect
 ~ |
Actual code faults detected in ST[origin,factor,module]= INTEG (
 Actual code faults detected in ST rate[origin,factor,module],
 0)
 ~ Defect
 ~ |
Actual code faults detected in ST rate[origin,factor,module]=
 Code fault detection rate in ST[origin,factor,module]
 ~ Defect/Day
 ~ |
ST effectiveness[requ,factor]=
 0.93,0.93,0.93 ~~|
ST effectiveness[design,factor]=
 0.93,0.93,0.93 ~~|
ST effectiveness[code,factor]=
 0.93,0.93,0.93
 ~ Dmnl
 ~ |
Detected code faults in ST[origin,factor,module]= INTEG (
 Code fault detection rate in ST[origin,factor,module]-Detected code faults in ST
flush\
 [origin,factor,module],
 0)
 ~ Defect
 ~ |

**
 .ST Status Flow View
**

Quality flag in ST[module]=
 IF THEN ELSE(Quality threshold in ST>0:AND:Module quality in ST[module]>Quality
threshold in ST\
 ,1,IF THEN ELSE(Quality threshold in ST=0,0,0))
 ~ Dmnl
 ~ |
System test status change rate[module]=
 IF THEN ELSE(ST rate[module]>0:AND:System test status[module]=0,1,IF THEN
ELSE(System test status\
 [module]=1:AND:ST rate[module]=0:AND:Quality flag in ST[module]=1,1,IF
THEN ELSE(System test status\
 [module]=1:AND:ST rate[module]=0:AND:Quality flag in ST[module]=0,2,IF
THEN ELSE(System test status\
 [module]=2:AND:ST rate[module]>0,-1,0))))
 ~ Dmnl/Day

109

 ~ |
Sum detected code faults in ST[module]=
 SUM(Detected code faults in ST[origin!,factor!,module])
 ~ Defect
 ~ |
Module quality in ST[module]=
 IF THEN ELSE(ST rate[module]=0:AND:Tested code in ST[module]>0,Sum detected code
faults in ST\
 [module]/Tested code in ST[module],0)
 ~ Defect/KLOC
 ~ |
System test status[module]= INTEG (
 System test status change rate[module],
 0)
 ~ Dmnl
 ~ |
Quality threshold in ST=
 0
 ~ Defect/KLOC
 ~ |

**
 .ST Resource Flow View
**

Average ST productivity=
 System testing execution workforce*Average ST productivity per person per
day*System testing execution team skill level average
 ~ KLOC/Day
 ~ |
Skill level average average of TC developers for ST=
 IF THEN ELSE(ST TC dev done or not=1,System testing TC dev team skill level
average stored\
 /System testing TC dev working time*TIME STEP,0)
 ~ Dmnl
 ~ |
System testing TC dev skill level average rate=
 System testing TC dev team skill level average/TIME STEP
 ~ Dmnl/Day
 ~ |
System testing effort=
 System testing execution effort+System testing TC dev effort
 ~ Day*Person
 ~ This variable is used to show the total effort spent for system testing.
 |
System testing execution effort= INTEG (
 System testing execution workforce,
 0)
 ~ Day*Person
 ~ |
System testing TC dev effort= INTEG (
 System testing TC dev workforce,
 0)
 ~ Day*Person
 ~ |
Average ST effectiveness[origin,factor]=
 IF THEN ELSE(ST test case data available or not=1,ST
effectiveness[origin,factor]*Skill level average average of TC developers for ST
 ,System testing execution team skill level average*ST
effectiveness[origin,factor])
 ~ Dmnl
 ~ |
Average ST productivity per person per day=
 0.1546
 ~ KLOC/(Day*Person)
 ~ |
System testing TC dev workforce=

110

 Actual allocation[STTC,NMBR]
 ~ Person
 ~ |
System testing execution workforce=
 Actual allocation[STV,NMBR]
 ~ Person
 ~ |
System testing execution team skill level average=
 Actual allocation[STV,SKLL]
 ~ Dmnl
 ~ |
System testing TC dev team skill level average=
 Actual allocation[STTC,SKLL]
 ~ Dmnl
 ~ |
System testing TC dev team skill level average stored= INTEG (
 System testing TC dev skill level average rate,
 0)
 ~ Dmnl
 ~ |
System testing TC dev working time= INTEG (
 System testing TC dev working time rate,
 0)
 ~ Day
 ~ |
System testing TC dev working time rate=
 IF THEN ELSE(System testing TC dev team skill level average>0,1,0)
 ~ Dmnl
 ~ |
Average number of ST test cases developed per day=
 Maximum number of test cases developed per person per day*System testing TC dev
workforce\
 *System testing TC dev team skill level average
 ~ Testcase/Day
 ~ |
Maximum number of test cases developed per person per day=
 5
 ~ Testcase/(Day*Person)
 ~ |
Average number of ST test cases executed per day=
 Average number of test cases executed per person per day*System testing execution
workforce
 ~ Testcase/Day
 ~ |
Average number of test cases executed per person per day=
 20
 ~ Testcase/(Day*Person)
 ~ |
ST effectiveness[requ,factor]=
 0.93,0.93,0.93 ~~|
ST effectiveness[design,factor]=
 0.93,0.93,0.93 ~~|
ST effectiveness[code,factor]=
 0.93,0.93,0.93
 ~ Dmnl
 ~ |

111

Appendix B

This appendix includes the source code of the allocation function of GENSIM 2.0 in

C++.

double GETALLOCATIONX(VECTOR_ARG *alloc,VECTOR_ARG *skills,VECTOR_ARG
*thresholds,VECTOR_ARG *workload,int num_activities,int num_devs)
{

 double required_skills_levels[12];
 double docs[12],temp_docs[12];
 int needy_activities[12];
 int permutation[12];
 int dev_cap_pattern[12];
 int num_needy_activities=0;
 double allocation[12];
 double sum_assigned_skill[12];
 int i,j,k,l,m,n,count=0,p,finalPerm,stringIndex,oneIndex;
 COMPREAL *allocated;
 double rval;

 double *dev_skills = alloca(num_devs*num_activities*sizeof(double));
 int *capabilities = alloca(num_devs*num_activities*sizeof(double));

 allocated = alloc->vals;

 for(i=0;i<num_devs*num_activities;++i)
 dev_skills[i]=skills->vals[i];

 //Initializing demands and skill level thresholds in local arrays
 for(i=0;i<num_activities;++i)
 {
 docs[i] = workload->vals[i];
 required_skills_levels[i] = thresholds->vals[i];
 allocation[i]=0;
 sum_assigned_skill[i]=0;
 }

 // Setting capabilities according to the required skill levels for
 // different activities
 for(j=0;j<num_activities;++j)
 for(i=0;i<num_devs;++i)
 {
 if(required_skills_levels[j]>0.0 &&
dev_skills[i*num_activities+j]>required_skills_levels[j])
 capabilities[i*num_activities+j]=1;
 else if(required_skills_levels[j]==0.0 &&
dev_skills[i*num_activities+j]>0.0)
 capabilities[i*num_activities+j]=1;
 else
 capabilities[i*num_activities+j]=0;
 }

 // Determining the number of activities which need personnel
 for(i=0;i<num_activities;++i)
 if(docs[i]>0)
 num_needy_activities++;

 // Copying the docs array in a temp array to help with extracting
 // the index of needy activities
 for(i=0;i<num_activities;++i)
 temp_docs[i]=docs[i];

 // Determining the indexes of activities which need personnel.
 // The result is an array called needy_activities which has

112

 // the index of needy activities stored in it from its beginning
 // to the num_needy_activities
 for(i=0;i<num_activities;i++)
 for(j=0;j<num_activities;++j)
 if(temp_docs[j]>0)
 {
 needy_activities[i]=j;
 temp_docs[j]=0.0;
 break;
 }

 // The main for loop which is deciding on the share of the activity
 // from the developers that can carry out the task, considering other
 // needy activities.
 for(i=0;i<num_activities;++i)
 {
 if(docs[i]>0)
 {
 // Any developer that is going to be assigned to do the
 // activity must be capabale of it.
 dev_cap_pattern[i]=1;
 // Capabilities of the developer in activities which do
 // not need any personnel is not important. -1 in
 // dev_cap_pattern means that the developer's skill in
 // that activity is ignored.
 for(j=0;j<num_activities;++j)
 if(docs[j]==0)
 dev_cap_pattern[j]=-1;
 // Making capability patterns according to the following:
 // First developers that can just carry out this task
 // Second developers that can carry out 2 tasks including this task
 // Third developers that can carry out 3 tasks including this task
and ...

 ///
 // Assigninig developers which can only carry out this task. It is
separated
 // because the algorithm used to generate permutations cannot
generate the
 // permutation where all places are 0.
 for(j=0;j<num_needy_activities;j++)
 if(needy_activities[j]!=i)
 dev_cap_pattern[needy_activities[j]]=0;

 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_activities,n
um_devs);

 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev_skills,do
cs,num_activities,num_devs);

 ///
 // Assigninig developers that can carry out more than just this
task
 n = num_needy_activities-1;
 for(j=1;j<=n;++j)
 {
 p = j;
 for (k=0;k<n;k++)
 if (k < p)
 permutation[k] = 1;
 else permutation[k] = 0;
 // Look for the first generated capability pattern.
 for(l=0,m=0;l<num_needy_activities && m<n;l++,m++)

 {
 if(needy_activities[l]==i)
 {

113

 m--;
 continue;
 }
 else

 dev_cap_pattern[needy_activities[l]]=permutation[m];
 }

 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_activities,n
um_devs);

 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev_skills,do
cs,num_activities,num_devs);

 ///
 // Generating other permutations with the help of the first
one
 for (finalPerm = 0; finalPerm < p; finalPerm++)
 {
 for (oneIndex = finalPerm; oneIndex < p; oneIndex++)
 for (stringIndex = oneIndex; stringIndex <
n; stringIndex++)
 if (permutation[stringIndex] == 0)
 {
 permutation[oneIndex] =
0;//new permutation
 permutation[stringIndex] = 1;
 count++;
 // Form the dev_cap_pattern
according to the permutation
 // and calling a proper
function to find out the task's
 // share of the developers
with the specified pattern.

 for(l=0,m=0;l<num_needy_activities,m<n;l++,m++)
 {

 if(needy_activities[l]==i)
 {
 m--;
 continue;
 }
 else

 dev_cap_pattern[needy_activities[l]]=permutation[m];
 }

 allocation[i]+=activity_share(i,dev_cap_pattern,capabilities,docs,num_activities,n
um_devs);

 sum_assigned_skill[i]+=activity_skill(i,dev_cap_pattern,capabilities,dev_skills,do
cs,num_activities,num_devs);

 ///
 permutation[oneIndex] =
1;//revert to old permutation.
 permutation[stringIndex] = 0;
 }
 permutation[finalPerm] = 0;//now set digit 1 to the
end of the number and repermutate
 permutation[n - finalPerm - 1] = 1;
 }
 }
 }
 }

 // Setting the returning vector
 for(i=0;i<num_activities;++i)

114

 {
 allocated[i*2]=allocation[i];
 if(allocation[i]>0)
 allocated[i*2+1]=sum_assigned_skill[i]/allocation[i];
 else
 allocated[i*2+1]=0;
 }

 rval = allocated[0];
 return rval;
}
//
double activity_share(int activity,int *pattern,int *capabilities,double *workload,int
num_activities,int num_devs)
{
 double sum_workload=0.0;
 double raw_assignment[12];
 int num_matching_devs=0;
 int assigned_devs[12];
 int temp_assign[12];
 int dev_match,i,j,k,l,diff=0,max_index,min_index;
 int num_assigned_devs=0;
 int num_activity_to_adjust=0;
 int iterations=0;
 double temp_work[12];
 double sum;
 // Finding developers with capabilities matching the given pattern.
 for(i=0;i<num_devs;i++)
 {
 dev_match = 1;
 for(j=0;j<num_activities;++j)
 {
 if(pattern[j]==-1)
 continue;
 else if (pattern[j]!=capabilities[i*num_activities+j])
 {
 dev_match = 0;
 break;
 }
 }
 if(dev_match==1)
 num_matching_devs++;
 }
 ///
 // Summing up the amount of workload of the activities to which
 // developers will be assigned.
 for(i=0;i<num_activities;i++)
 if(pattern[i]==1)
 sum_workload+=workload[i];
 //
 // Setting the initial assignment for different activities
 // If the raw assignment for a certain activity is below 1
 // then it is rounded up to 1 and if it is above 1 then it
 // is rounded down.
 for(i=0;i<num_activities;++i)
 {
 if(pattern[i]==1)
 {
 raw_assignment[i] =(workload[i]/sum_workload)*num_matching_devs;
 if((raw_assignment[i]<1) && (raw_assignment[i]>0))
 assigned_devs[i]=1;
 else
 assigned_devs[i]=(int)raw_assignment[i];
 num_assigned_devs = num_assigned_devs + assigned_devs[i];
 }
 else
 assigned_devs[i]=0;
 }
 //

115

 // Adjusting the assigned numbers according to the available personnel
 // Since floating point numbers are rounded sometimes assigend personnel
 // are more than there are actually available and sometimes they are
 // less than available personnel.
 for(i=0;i<num_activities;++i)
 temp_assign[i]=assigned_devs[i];
 // If we have assigned less personnel than is actually available.
 if(num_assigned_devs<num_matching_devs)
 {
 diff = num_matching_devs-num_assigned_devs;
 while(diff>0)
 {
 max_index = find_max_indexx(temp_assign,num_activities);
 temp_assign[max_index]=-1;
 if(assigned_devs[max_index]>0)
 {
 assigned_devs[max_index]++;
 diff = diff - 1;
 }
 }

 }
 // If we have assigned more personnel that is actually available.
 if(num_assigned_devs>num_matching_devs)
 {
 for(i=0;i<num_activities;++i)
 if(assigned_devs[i]>0)
 num_activity_to_adjust++;

 for(i=0;i<num_activities;++i)
 if(assigned_devs[i]>0)
 temp_work[i]=workload[i];
 else
 temp_work[i]=0.0;
 }

 if(num_assigned_devs>num_matching_devs)
 {
 diff = num_assigned_devs-num_matching_devs;
 if(num_activity_to_adjust>0)
 iterations = diff/num_activity_to_adjust+1;

 for(i=0;i<(2*iterations);++i)
 {
 for(j=0;j<num_activities && diff>0;++j)
 {
 if(assigned_devs[j]>0)
 {
 min_index =
find_min_indexx(temp_assign,temp_work,num_activities);
 temp_assign[min_index]=0;
 temp_work[min_index]=1000;
 if(assigned_devs[min_index]>0)
 {
 assigned_devs[min_index]--;
 diff--;
 }
 }
 }
 for(k=0;k<num_activities;++k)
 temp_assign[k]=assigned_devs[k];

 for(l=0;l<num_activities;++l)
 if(assigned_devs[l]>0)
 temp_work[l]=workload[l];
 }
 }

116

 return assigned_devs[activity];
}
//
double activity_skill(int activity,int *pattern,int *capabilities,double *skills,double
*workload,int num_activities,int num_devs)
{
 double sum_workload=0.0;
 double raw_assignment[12];
 int num_matching_devs=0;
 int assigned_devs[12];
 int temp_assign[12];
 int *matching_devs;
 int *allocation;
 int dev_match,i,j,k,l,diff=0,max_index,min_index;
 int num_assigned_devs=0;
 int num_activity_to_adjust=0;
 int iterations=0,count;
 double temp_work[12];
 double sum;
 double sum_skill=0.0;

 matching_devs = alloca(num_devs*sizeof(int));
 allocation = alloca(num_devs*sizeof(int));

 // Finding developers with capabilities matching the given pattern.
 for(i=0;i<num_devs;i++)
 {
 dev_match = 1;
 for(j=0;j<num_activities;++j)
 {
 if(pattern[j]==-1)
 continue;
 else if (pattern[j]!=capabilities[i*num_activities+j])
 {
 dev_match = 0;
 break;
 }
 }
 if(dev_match==1)
 {
 num_matching_devs++;
 matching_devs[i]=1;
 }
 else if(dev_match==0)
 matching_devs[i]=0;
 }
 ///
 // Summing up the amount of workload of the activities to which
 // developers will be assigned.
 for(i=0;i<num_activities;i++)
 if(pattern[i]==1)
 sum_workload+=workload[i];
 //
 // Setting the initial assignment for different activities
 // If the raw assignment for a certain activity is below 1
 // then it is rounded up to 1 and if it is above 1 then it
 // is rounded down.
 for(i=0;i<num_activities;++i)
 {
 if(pattern[i]==1)
 {
 raw_assignment[i] =(workload[i]/sum_workload)*num_matching_devs;
 if((raw_assignment[i]<1) && (raw_assignment[i]>0))
 assigned_devs[i]=1;
 else
 assigned_devs[i]=(int)raw_assignment[i];
 num_assigned_devs = num_assigned_devs + assigned_devs[i];
 }
 else

117

 assigned_devs[i]=0;
 }
 //
 // Adjusting the assigned numbers according to the available personnel
 // Since floating point numbers are rounded sometimes assigend personnel
 // are more than there are actually available and sometimes they are
 // less than available personnel.
 for(i=0;i<num_activities;++i)
 temp_assign[i]=assigned_devs[i];
 // If we have assigned less personnel than is actually available.
 if(num_assigned_devs<num_matching_devs)
 {
 diff = num_matching_devs-num_assigned_devs;
 while(diff>0)
 {
 max_index = find_max_indexx(temp_assign,num_activities);
 temp_assign[max_index]=-1;
 if(assigned_devs[max_index]>0)
 {
 assigned_devs[max_index]++;
 diff = diff - 1;
 }
 }

 }
 // If we have assigned more personnel that is actually available.
 if(num_assigned_devs>num_matching_devs)
 {
 for(i=0;i<num_activities;++i)
 if(assigned_devs[i]>0)
 num_activity_to_adjust++;

 for(i=0;i<num_activities;++i)
 if(assigned_devs[i]>0)
 temp_work[i]=workload[i];
 else
 temp_work[i]=0.0;
 }

 if(num_assigned_devs>num_matching_devs)
 {
 diff = num_assigned_devs-num_matching_devs;
 if(num_activity_to_adjust>0)
 iterations = diff/num_activity_to_adjust+1;

 for(i=0;i<(2*iterations);++i)
 {
 for(j=0;j<num_activities && diff>0;++j)
 {
 if(assigned_devs[j]>0)
 {
 min_index =
find_min_indexx(temp_assign,temp_work,num_activities);
 temp_assign[min_index]=0;
 temp_work[min_index]=1000;
 if(assigned_devs[min_index]>0)
 {
 assigned_devs[min_index]--;
 diff--;
 }
 }
 }
 for(k=0;k<num_activities;++k)
 temp_assign[k]=assigned_devs[k];

 for(l=0;l<num_activities;++l)
 if(assigned_devs[l]>0)
 temp_work[l]=workload[l];

118

 }
 }

 for(i=0,j=0;i<num_activities;++i)
 {
 if(assigned_devs[i]>0)
 {
 count=assigned_devs[i];
 while(count>0)
 {
 if(matching_devs[j]==1)
 {
 count--;
 allocation[j]=i;
 j++;
 }
 else
 j++;
 }
 }
 }

 for(i=0;i<num_devs;++i)
 if(allocation[i]==activity)
 sum_skill+=skills[i*num_activities+activity];

 if(assigned_devs[activity]>0)
 return sum_skill;//assigned_devs[activity];
 else
 return 0;
}

