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Abstract—A large number of research works have addressed the importance of models in software engineering. However, the

adoption of model-based techniques in software organizations is limited since these models are perceived to be expensive and not

necessarily cost-effective. Focusing on model-based testing, this paper reports on a series of controlled experiments. It investigates

the impact of state machine testing on fault detection in class clusters and its cost when compared with structural testing. Based on

previous work showing this is a good compromise in terms of cost and effectiveness, this paper focuses on a specific state-based

technique: the round-trip paths coverage criterion. Round-trip paths testing is compared to structural testing, and it is investigated

whether they are complementary. Results show that even when a state machine models the behavior of the cluster under test as

accurately as possible, no significant difference between the fault detection effectiveness of the two test strategies is observed, while

the two test strategies are significantly more effective when combined by augmenting state machine testing with structural testing. A

qualitative analysis also investigates the reasons why test techniques do not detect certain faults and how the cost of state machine

testing can be brought down.

Index Terms—State-based software testing, structural testing, controlled experiments, state machines.
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1 INTRODUCTION

THERE is increasing interest [41] in model-driven devel-
opment for object-oriented systems using, for example,

the Unified Modeling Language (UML). In addition to
being a key resource for designing object-oriented software
and providing a means for communicating ideas among
designers and customers, models are very useful to guide
and automate the testing of object-oriented software. In
particular, UML state machines are very useful to model the
most complex and critical components in object-oriented
software [33].

Other than being useful to support development, models
can be used to support testing activities. Model-based testing
has been assessed in a number of empirical studies and
shown to be useful in systematically defining test strategies
and criteria and deriving test cases and oracles [15], [19], [20],
[23], [54], [56]. At the same time, a number of researchers
conducted studies on the cost and effectiveness of conven-
tional testing strategies: white box [31], [32], [40], [67] and
black box testing strategies [15], [58], [68]. However, despite a

growing number of studies [13], [15], [16], [19], [20], [23], [53],
[54], more empirical evidence is required to assess the
importance of models in improving testing cost-effectiveness,
and to investigate how model-based testing can be combined
or augmented with simpler, widely adopted testing techni-
ques such as white box structural testing. Therefore, assessing
the cost and fault detection effectiveness of testing techniques
based on state machines and comparing them with simpler,
code coverage-based techniques seems a logical investigation
to undertake. Since the latter is a basic test practice automated
by existing commercial tools, only a significant improvement
in fault detection effectiveness or cost would justify the use of
approaches based on state machines.

This paper focuses on the effectiveness of UML state
machine testing when compared and augmented with
white box, structural testing, which is deemed to be the
most common, basic technique for testing (clusters of)
components. The choice of UML as a language to model
state machines is a practical one, as UML is becoming a
widely known and applied standard in industry. Specifi-
cally, this paper focuses on a specific state machine test
strategy, i.e., round-trip paths testing [12], an adaptation of
the W-method [24] for UML state machines. The choice is
driven by our previous work on the subject [20] showing
that this is a reasonable compromise in terms of fault
detection effectiveness and cost between cheap but ineffi-
cient criteria (e.g., all transitions) and efficient but expensive
criteria (e.g., all transition pairs).

In this paper, based on controlled experiments involving
trained participants, we perform both a quantitative analysis
of differences in fault detection effectiveness and cost among
test techniques and a qualitative analysis to understand the
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reasons for these differences and the variations observed

across test drivers and component clusters. We aim to

answer the following research questions:

. How does the fault detection effectiveness of test
cases identified and manually generated by testers
based on the state machine alone (functional testing)
compare to that of test cases manually generated by
testers based on the coverage analysis of source code
(structural testing)?

. Are the sets of faults detected by state machine
testing and structural testing techniques comple-
mentary? Does this suggest that somehow combin-
ing the two techniques is beneficial in terms of fault
detection effectiveness? Given that test cases derived
from state machines are available earlier, can state
machine testing be effectively augmented, based on
its code coverage analysis, with structural test cases?

. What are the different factors that impact the
effectiveness of state machine testing?

As no analytical means can help obtain realistic,

practically useful answers to these questions, we conducted

a series of four controlled experiments—involving fully

trained, undergraduate and graduate students—on three

object-oriented class clusters1 with a nontrivial state-

dependent behavior modeled using UML state machines.

Results show the following:

. Overall, techniques based on code coverage and
state machines do not show practically significant
differences in terms of fault detection effectiveness.

. The two techniques are, to a significant extent,
complementary in terms of the faults they detect.
When augmenting state machine testing with struc-
tural testing, significant improvements in fault
detection can be observed.

. The real-time behavior of a class cluster negatively
affects the effectiveness of both structural and state-
based testing. This suggests that the techniques we
used in the experiments need to be complemented
with testing techniques specifically targeting real-
time properties.

The remainder of the paper is organized as follows:

Section 2 discusses the related literature. Section 3 provides a
detailed description of the reported controlled experiments

and Section 4 discusses the threats to validity. Section 5

presents the results, while Section 6 details the outcome of a

qualitative analysis to understand the limitations of the state

machine testing technique and the factors affecting the cost

of developing test drivers. Finally, Section 7 concludes and

summarizes the results.

2 RELATED WORK

This section discusses related work on state-based and
structural testing (Section 2.1), and empirical studies aimed

at assessing the usefulness and the effectiveness of testing

techniques (Section 2.2).

2.1 State-Based and Structural Testing

One of the earliest works on state-based testing is the work
by Chow [24], who proposed the W-method for finite state
machines (FSM). This method has been adapted to UML
state machines by Binder [12] and renamed the round-trip
paths (RTPs) strategy. In both techniques, the state model is
traversed to construct a transition tree that includes all
transitions in the state machine in such a way that
traversing along a path stops whenever the state encoun-
tered is already present in the tree. When there are guard
conditions on transitions and these guards are in a
disjunctive form, then several transitions are warranted,
one for each truth value combination that is sufficient to
make the guard condition true.

Other state-based test criteria were proposed by Offutt
et al. [56]: transition coverage, full predicate coverage,
transition-pair coverage, and complete sequence. A case
study was used to compare these criteria with a random
selection of test cases. Results showed an improvement in
fault detection when using the full-predicate coverage
criterion, while transition coverage yielded a smaller number
of test cases than random testing, with the same fault
detection rate.

Additional testing strategies have been defined for state
machines. Hong et al. [38] propose a technique to derive
extended finite state machines (EFSMs) from state ma-
chines. The EFSM is then transformed into a flow graph
modeling the control flow and data flow in the state
machine, thus enabling the application of conventional
control and data-flow analysis techniques. A modification
of this method is described by Bogdanov and Holcombe
[13] to address the compliance of an implementation of a
system to its specification. This has been further extended to
UML state machines with operations contracts defined in
the Object Constraint Language (OCL) [18].

FSMs, EFSMs, and UML state machines have been
widely used to model systems in various application
domains, such as sequential circuits and communication
protocols. The study in [43] provides a rather complete and
clear review of the fundamental problems in finite state
machines testing.

It is worth noting that any of the criteria discussed in the
literature, including the W-method, specifies a test case as a
(sub)sequence of transitions and states in the state machine.
Though deriving those test case specifications can easily be
automated, due to possibly complex guard conditions many
sequences may turn out to be infeasible and identifying test
(input) data for these test case specifications is, in practice,
very difficult [17]. This problem is identical to the sensitiza-
tion problem described by Beizer [10] for white box testing,
unless the guard conditions are simple (see, for instance,
[56]). This sensitization problem is undecidable, which
explains why some approaches based on search-based
optimization techniques,have been recently developed to
derive test cases for object-oriented systems (e.g., [49]). For
this reason, in this paper, we will focus on the assessment of
state-based testing (and its comparison with structural, white
box testing) when manually performed by testers.

2.2 Empirical Studies

From a more general standpoint, a growing number of
empirical studies address the cost-effectiveness of testing
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strategies in various types of testing techniques: white box
[31], [32], [67], black box [68], or model-based [6], [15], [20],
[53], [60]. Many of these studies use the mutation strategy to
seed faults and evaluate the fault detection effectiveness of
the testing techniques. For instance, a simulation and analysis
procedure [20] has been proposed and used to study the cost-
effectiveness of four state machine coverage criteria, namely,
all-transitions, all-transition-pairs, full-predicate [56], and
round-trip paths [12]. Briand et al. [20] showed that the cost-
effectiveness of these criteria depends to a significant extent
on the characteristics of the state machine. For state machines
labeled with numerous guard conditions, the round-trip
paths strategy provides a good compromise between all-
transitions and all-transition-pairs, the latter being far too
expensive and the former rather ineffective.

An empirical study focusing on white box testing
strategies was performed by Frankl and Weiss [31], where
the all-uses and decision (all-edges) criteria were compared to
each other and to the null criterion (random test suites).
Results showed that all-uses was not always more effective
than the decision and the null criteria, but in few cases where
there was a large difference. In contrast, in cases where the
decision criterion was more effective than the null criterion,
the difference was small. The results of Frankl and Weiss were
further confirmed by Hutchins et al. [40], whose experiments
showed a better fault detection effectiveness of the all-uses
criterion over the all-edges criterion, at the expense of larger
test sets. The two techniques seem to be complementary in
terms of the faults detected. This is yet another example of the
benefit of combining different testing techniques on the
overall fault detection effectiveness of test sets.

Pretschner et al. focused on the automatic generation of
test cases on the grounds of symbolic execution with
Constraint Logic Programming (CLP) [60]. The aim of the
symbolic execution of the model is to find an execution
trace—and therefore a test case—that leads to the state to be
tested. A number of strategies are used to optimize the
traversal of the state machine. For instance, a fitness function
is defined to generate the shortest path to the destination
state. Other strategies include attributing probabilities to
transitions or storing visited states and transitions to prevent
repeated visits. The study aims at comparing the use of
behavioral models, namely, EFSM, to handcrafted tests
generated based on requirements’ message sequence charts
(MSCs). Results show that the use of models significantly
increases the number of detected requirement errors. How-
ever, the number of detected programming errors was
unrelated to the use of models. Handcrafted, model-based
tests were shown to detect as many errors as automatically
generated tests, but the two sets of tests detect partially
different sets of faults [60]. Our work differs in that it
compares a more widely applied state machine testing
technique (RTP) to a practically common and widely used
structural testing technique (nodes and edge coverage). It
does so by performing replicated, controlled experiments
involving human subjects that aim at precisely understand-
ing the limits of each technique and how they complement
each other.

An approach in model-based testing was proposed and
validated by Nebut et al. [53]. The approach consists in
automating the generation of system test scenarios from use
cases in the context of object-oriented embedded software.

By using contracts with UML use cases, the authors apply
Meyer’s Design by Contract approach [50] at the require-
ment level. Executable contracts written in terms of logical
expressions allow for defining valid sequences of use cases
and extracting relevant paths, which are called test objec-
tives. An empirical evaluation of the proposed approach was
executed on three small case studies (800 LOC to 2,000 LOC)
to assess the efficiency of the generated test cases in terms of
statement coverage. The results showed that most of the
functional statements in the code are covered by the
proposed technique with relatively small sets of test cases.

Briand et al. [15] focused on the cost-effectiveness of the
RTP technique [12]. They investigate, in controlled experi-
ment settings, the fault detection effectiveness of state-
based (RTP) testing for classes or class clusters modeled
with state machines. They also investigate how to augment
RTP with a well-known black box testing technique:
category-partition (CP) [58], though this part of the study
is very limited. Results showed that the RTP technique
significantly benefits from CP in terms of fault detection.
These results were one of the motivations for our study. The
limitations of the RTP technique incited us to further
identify the factors that affect its fault detection effective-
ness. However, in contrast to Briand et al. [15], we choose to
compare and complement the RTP technique with a
structural testing technique rather than with a black box
testing technique. Furthermore, whereas CP was applied to
augment RTP on a small subset of methods, here, structural
testing is fully applied to the same extent as RTP, compared,
and combined. It is expected that structural testing can be
helpful at better exercising those parts of the cluster under
test that were not (sufficiently) tested by state-based testing
and that can be identified by analyzing its code coverage.
This is of practical importance as state models are rarely
complete and fully defined in practice. Briand et al. [15] also
noticed the significant difference in terms of fault detection
and cost between two oracle strategies, one using precise
oracles checking the concrete state of objects (i.e., checking
all attribute values), and the other based on state invariants.
We also address this issue and suggest ways to limit the
cost of oracles without affecting their fault detection
effectiveness [51].

3 EXPERIMENT DESCRIPTION

This section reports, following a specific template [69], the
definition and planning of the experiments we performed.

3.1 Experiment Definition and Context

The goal of this study is to analyze the state machine-based,
round-trip path testing strategy and the edge coverage
structural testing technique for the purpose of comparing
and assessing them, as well as their combination with
respect to their fault detection effectiveness and cost from
the point of view of the tester. The context consists of
objects, i.e., source code and UML state machines of three
Java software clusters, and participants, i.e., undergraduate
students from the fourth year of software engineering at
Carleton University, Canada, and graduate students from
the Master in Software Technology of the University of
Sannio, Italy.
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For the sake of brevity, we will refer to state machine
testing (drivers) using the round-trip path strategy as
state testing (drivers). The same applies to edge coverage
structural testing (drivers), which is simply referred to as
structural testing (drivers).

The study was conducted as a series of four experiments:
two conducted at Carleton University, Canada, and two at
the University of Sannio, Italy, since replication is impera-
tive to increase the credibility of results and to allow more
robust conclusions to be drawn. The experiments involved
three Java class clusters that all have a state-driven behavior:

1. OrdSet is a Java class (of 393 lines of code—LOC)
that was included in the original experiment and its
first replication. Each instance of OrdSet represents
a bounded, ordered set of integers. The OrdSet

class provides methods for adding a single element,
removing a single element and creating the union of
two ordered sets.

2. Cruise Control is a cluster of four Java classes (of
358 LOC). It simulates a car engine and its cruising
controller.

3. Elevator is a cluster of eight Java classes (of 581
LOC) that was included in the last two replications
only as a way to make our results less dependent on
the first two clusters. It consists of a number of
elevators servicing a number of floors. An elevator
accepts stop requests to travel to other floors. Users
can also request service from floors to go up or down.

The above three class clusters were extracted from
software engineering students’ final year projects, where
teams of students follow a rigorous, UML-based, develop-
ment strategy. Requirements of the final projects were
identified and described in use case diagrams. Other UML
artifacts were also used to model the systems, including
class diagrams, collaboration diagrams, activity diagrams,
and state machine diagrams. The latter was used to model
state behavior. These clusters represent two typical cases,
where a state machine is used to model the behavior of a
complex data structure (OrdSet) and a state-dependent
control class in a real-time multithreaded control cluster

(Cruise Control and Elevator). The implementations
and corresponding state machines were simplified in order
to give participants sufficient time for testing them within
the duration of laboratory sessions. Source code and models
of the three clusters used in this study can be found on the
Software-artifact Infrastructure Repository (SIR) [4]. The
main cluster characteristics are summarized in Table 1.

Though OrdSet is composed of only one class, one can
note that its state machine and control flow are more
complex than those of Cruise Control. Furthermore, the
guard conditions in the OrdSet state machine add to the
complexity of the class, whereas Cruise Control is event
driven only. Elevator is far more complex than the other
two clusters.

The choice of these three clusters was in part based on
the fact that each state machine was created at a different
level of abstraction. While the Cruise Control’s state
machine is simple (no guard conditions, nor complex
actions), it is restricted to the state behavior of the cluster
without modeling its real-time behavior. The real-time
behavior is implemented in two algorithms in the code. The
first represents the relation between time and class
attributes such as speed and distance. The second imple-
ments a relation between car throttle, time, and cruise
control speed to control car speed while in the cruising
state. The state machine therefore models the Cruise

Control’s behavior at a high level of abstraction without
modeling algorithms managing the cluster’s real-time
behavior and speed control. On the other hand, the
OrdSet’s state machine is more complex than the Cruise
Control’s state machine. It models the different function-
alities of the system at a relatively low level of abstraction:
All of the functionalities (algorithms) are specified under
the form of states, transitions, guards, and actions (pre and
postconditions). The third cluster, Elevator, has a rather
complex state machine at a very low level of abstraction: Its
real-time behavior is much simpler than Cruise Con-

trol’s and can be partly specified in the state machine; the
Elevator’s state machine does not model all of the
cluster’s functionalities, for instance, avoiding the specifica-
tion of interactions between different instances of elevators
(e.g., the optimization algorithm for choosing the best
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elevator to service a floor) and not differentiating between
moving directions (up and down). In our experience, such
variations in levels of abstraction are common in modeling
practice, as a trade-off between modeling cost and
completeness must be achieved.

The source code used in these experiments is admittedly
small. However, it is important to note that state machines
in standard UML-based development are mostly used to
model the behavior of complex classes or class clusters [21],
[33], [42], particularly complex data structures (usually
referred to as entity classes) and control classes, for
example, in reactive systems. They are rarely used to model
the entire system, as this would result in large and
unmanageable models for software engineers and testers,
or in simplistic, incomplete models which do not ade-
quately capture the system behavior. Furthermore, even
when the source code is small, the state behavior can be
quite complex when measured in terms of states, events,
and transitions. This issue is further discussed in Section 4.

3.2 Experiment Planning

This section details the experimental plan, describing the
context, the research questions, the variables, and the design.

3.2.1 Context Selection

The participants involved in the four experiments had the
following characteristics:

. First and third experiments (Carleton 1 and Carle-
ton 2): Participants are fourth-year students from a
specialized, software engineering bachelor’s pro-
gram. They were well versed in Java and UML and
were attending a course on software testing that
covers different white box and black box testing
techniques with a focus on object-oriented software.
The experiments were conducted during the lab
hours of that course as part of practical lab exercises.
Forty-eight students participated in the first experi-
ment and 19 in the third.

. Second and fourth experiments (Sannio 1 and
Sannio 2): participants are graduate students study-
ing for a master’s in software technology. Master
participants (about 30 every year) are selected from a
population of 300 graduate students in computer
science and computer engineering. The participants
were students attending an intensive course on
software testing. Their experience with software
testing before attending the course varied from no
experience to some experience with JUnit. Twenty-
five students participated in the second experiment
and 19 in the fourth one.

The method for the selection of participants follows a
stratified random sampling2; participants were first as-
signed to blocks based, for the Carleton Experiments, on
their background and knowledge of object-oriented design
and development techniques,3 and for the Sannio experi-
ments, on laurea graduation score (since participants were
graduate students). Then, participants were randomly
selected from the different blocks to form four groups with
a similar block distribution to ensure the results would not
be affected by random variations in subject experience
across groups. In addition, groups were defined to be of
similar sizes to ensure a balanced contribution of test
techniques/clusters combinations to the results.

3.2.2 Research Questions

Table 2 details the research questions addressing the goal
listed in Section 3.1. The fault detection effectiveness of both
state and structural test techniques is addressed in research
question RQ1. Answering RQ2 helps us to identify factors
that have an interaction effect with the test technique on
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sampling is then applied within the strata [44].

3. The background and knowledge regarding object-oriented design and
development techniques of the different subjects was assessed based on
their grades in two advanced courses in software engineering and object-
oriented design.



fault detection effectiveness. RQ3 investigates how com-
plementary the two techniques are in terms of fault
detection. Answers to RQ4 are used to compare test
techniques with respect to their cost, both individually
and when combined. RQ5 focuses on assessing the cost-
effectiveness of augmenting state testing with structural
testing. The reason why we do not investigate the reverse
option, i.e., augmenting structural testing with state testing,
is that state machine test cases can be derived earlier from
design models, and therefore are available when the source
code becomes available. In addition, we will investigate the
reasons why test techniques differ across class clusters in
terms of fault detection and cost.

3.2.3 Variable Selection

At a high level, our dependent variables are based on the
following constructs: 1) fault detection effectiveness, overall
and across different fault types; 2) cost for both test
specification and execution. There is one independent
variable of interest (treatment): the type of artifacts used
as a basis for testing (i.e., state machine or code structure).
Also, a number of other variables (cofactors) are accounted
for to determine whether they interact with the effect of our
independent variable: code coverage, learning effects, and
subject ability.

3.2.4 Mutant Seeding

To evaluate the fault detection effectiveness of the experi-
ment techniques, we executed the different drivers delivered
by the experiment participants on a number of mutant
programs (or mutants), i.e., versions of the program under
test where one fault was seeded using a mutation operator
[45], [46], and used different kinds of oracles (Section 3.2.5)
to compare the behavior of the original program with those
of mutants. Whenever the oracle indicates a difference, the
mutant is considered killed. The fault detection effectiveness
of a driver is measured by the percentage of mutants killed.
The mutants are automatically generated using MuJava [47],
which allows us to quickly generate a large number of faults,
thus facilitating statistical data analysis [5].

One issue to be addressed is the detection of equivalent
mutants, i.e., mutants that have the same behavior as the
original program and therefore cannot be killed by test
cases. There are studies proposing techniques to automate
the detection of equivalent mutants [55], [57], and a
commonly used heuristic is to consider live mutants not
killed by any test case in the overall test pool as equivalent
mutants [8], [27]. In our study, we cannot simply assume
that mutants not detected by any driver are equivalent, as
we know the testing performed by our experiment
participants is incomplete (due to time limitations) and
unlikely to kill all nonequivalent mutants. Therefore, we do
not attempt to discard nondetected mutants as equivalent
mutants but present our results based on all mutants and
then perform a manual, qualitative analysis of all unde-
tected faults to assess the potential impact of equivalent
mutants on the fault detection effectiveness results.

3.2.5 Experimental Procedure

When state machines are used, participants are expected to
generate test sets based on the RTP testing technique [12], a
common state testing strategy that can scale up to large

state machines but that is more demanding than simply
covering all transitions. A state machine would be
represented as a tree graph called a transition tree, which
includes (in a piecewise manner) all of the transition
sequences (paths) that begin and end with the same state,
as well as simple paths (i.e., sequences of transitions that
contain only one iteration for any loop present in the state
machine) from the initial state to the final state. A procedure
based on a breadth-first traversal of the state machine is
used for deriving the transition tree. The Round-Trip Path
testing technique corresponds to covering all paths from
the start node to the leaf nodes in a transition tree. Since
different transition trees can be generated from a state
machine, we wanted to avoid having our results affected by
variations due to alternative transition trees or trees
possibly wrongly constructed by participants. In practice,
such trees would be generated automatically from state
machines using a dedicated tool. For these reasons, one tree
per cluster was provided to all participants working with
the state machine model.

Participants working with state machines were asked to
manually generate test cases covering round-trip paths in
the provided transition tree. They were also asked to use
state invariants in their oracle assertions. After executing a
transition, an oracle assertion checks the new cluster state
with the expected state invariant. In replicated experiments,
in addition to state invariants, participants were asked to
implement contract assertions in their oracles. Contract
assertions include class invariant, and methods’ precondi-
tions and postconditions. The different invariants and
contracts are provided in OCL [66] in the documentation
provided to participants.

For structural testing, participants were told to attempt
covering all blocks (nodes, statements) and edges in the
methods’ control-flow graphs of the original (not mutated)
source code. This is a common practice when testing
classes and it is therefore a realistic baseline of comparison
for state testing. By running their drivers on the instru-
mented code, the participants identify noncovered nodes
and edges. This guides participants to identify new test
cases to be added to their drivers to improve structural
coverage. Participants using structural testing were ad-
vised to write oracles checking expected output/attribute
values against actual ones.

3.2.6 Experiment Design

To avoid learning and fatigue effects or the specific class
clusters having a confounding effect with our experimental
treatment, each subject group performed the experiment in
two separate labs with a different class cluster under test
and a different treatment. Table 3 shows the distribution of
treatments among groups of participants. Each treatment is
executed by two different groups of participants, in the first
or the second laboratory (lab order). As a result, each group
executed different combinations of treatment and class
cluster in each lab. Such an experimental design is standard
and is referred to as a balanced 2 � 2 factorial design [69].

Test drivers submitted by the participants were executed
offline on a set of mutant programs (Section 3.2.4) to
measure their mutation scores. Test drivers were also
executed on an instrumented version of the original code
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of the software under test to collect node and edge coverage

data. The development and data collection were done on

the Eclipse 3.0 platform [1]. Two Eclipse plug-ins, the

Eclipse Test and Performance Tools Platform (TPTP) project

[3] and the Eclipse Metrics plug-in [2], are used to collect

cost-related data.
From a general standpoint, the notion of cost in the

context of testing is complex and can be related to many
factors, such as test suite size, test case identification
complexity, CPU user time usage, and time-to-market. In
our context, we focus on generation and execution cost and,
in particular, we rely on the number of method calls
measured by executing instrumented test drivers, on the
CPU user time needed by the test driver execution, and on
the size of the test drivers measured in LOC. Although
these are clearly surrogate measures, number of calls [6],
[11], [20], [40], [67] and CPU time [15] have been used in a
number of testing studies. In these studies, one test case
often corresponds to one execution of a function/program
(e.g., [40]). This corresponds in our study to one execution
of a method in the class cluster under test.

3.3 Experiment Operation

3.3.1 Preparation and Material

To prepare the students for the different tasks required for

the experiment—and thus make the experiment realistic in

terms of human factors—the experiment was preceded by a

refresher course on the basics of software testing (e.g., test

cases, testing criteria, and test drivers), structural and

functional testing, and class testing. Students applied the

concepts and techniques they were taught in assignments

and laboratory exercises prior to the start of the experi-

ment’s tasks.
The following documents were prepared and provided

to all participants in all groups:

1. printed list of instructions to guide students through
the different tasks to complete,

2. high-level description of the class cluster,
3. Eclipse tutorial, and
4. driver template (with slight variations, depending

on the testing strategy).

Depending on the treatment (testing strategy), participants

were provided with the following:

. Source code (for participants using white box testing). To
allow participants to easily compute node and edge
coverage, we provided them with an instrumented
version of the code—packaged in a jar file—along
with the original, noninstrumented, source code.

. State machine diagrams (for participants using state
testing), plus

- class public interfaces,
- a transition tree,
- class diagrams, operations’ contracts and state

invariants in OCL [66], and
- an executable jar file of the class cluster contain-

ing byte code only, and not the source code, as
we want to ensure pure model-based testing.

3.3.2 Execution

In an experimental, artificial setting, the time allocated to an
experiment is necessarily limited. Test techniques are
compared assuming a limited, equal effort on the part of
testers. Although this does not allow the assessment of the
technique’s maximum fault detection effectiveness, it is
necessary to perform a fair comparison among participants
and to investigate the effectiveness of the techniques when
applied under time constraints [14], a realistic scenario in
industrial development environments. In our experiments,
each lab lasted three hours for Carleton’s experiments and
four hours for Sannio’s experiments.

Right before the lab, students were introduced to the

class clusters to be tested during the experiment to make

sure that they relied solely on the documentation provided

as part of the experimental material. Also, we explained the

tasks to be performed during the experiment.
During each lab, students were first asked to read

the documentation of the class cluster to understand the

functionality it provides; then they were asked to write

driver code, following precise instructions, by identifying

test cases based either on the provided transition tree

(covering round-trip paths) or based on structural coverage

criteria, depending on the group to which they belonged.
After completing their task, the participants were asked

to answer and return a survey questionnaire. The ques-

tionnaire addresses three areas: the tasks implemented, the

testing technique used, and the work environment. Due to

space constraints, details about the survey questionnaire

results are provided in a technical report [51].

3.3.3 Data Collection

After the experiment, the test drivers produced by
participants were executed on the original code of the class
clusters to inspect their correctness and to eliminate
inadequate drivers, which could not be used for the
experiment analysis, e.g., state drivers that did not imple-
ment RTPs or did not have oracle implementations. The
latter was necessary as it was impossible for us to ensure a
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satisfactory compliance of the participants with the lab task
instructions.

Perl scripts were used to automatically execute drivers
on mutants and on code instrumented versions in order to
collect data required to compute mutation scores, node and
edge coverage, and distributions of undetected fault types.
The Eclipse TPTP Project [3] plug-in was used to measure
the number of method calls when executing test drivers.
The Eclipse Metrics plug-in [2] was used for statically
counting the number of statements in collected drivers.

3.4 Experiment Replication

There are many reasons why replications are necessary in
experimentation, and in particular, for software engineering
experiments [61]. In our context, replications were useful
1) to address or mitigate threats to validity discovered in the
first experiment, 2) to use an additional class cluster, thus
strengthening the external validity of our results, and 3) to
collect results from at least two distinct geographical
locations and organizational settings, once again improving
external validity. Though the experimental design (shown
in Table 3) did not change across replications, other changes
are summarized in Table 4 and motivated below.

Using different objects. In both the Carleton 2 and
Sannio 2 experiments, we replaced OrdSet with Eleva-

tor, which is a control class cluster (eight classes) for an
elevator control system. This was motivated by the first two
experiments, Carleton 1 and Sannio 1, which showed clear
limitations for state testing when applied to real-time
control classes (Cruise Control). Therefore, we wanted
to further explore the matter on another, more complex
instance of real-time class cluster to make sure that the
limitations we had observed were not specific to Cruise

Control and also investigate how increased complexity
would affect the results.

Extending the RTP criterion to cover sneak paths. Our
qualitative analysis of undetected faults in Carleton 1
(discussed in Section 6) pointed to a deficiency in the state
testing technique. In its original form, as is common
practice, Cruise Control’s state machine did not include
implicit transitions (self-transitions with no actions, named

sneak path in [12]), which are not taken into consideration
by the RTP criterion. As a result, many faults remained
undetected. Therefore, in all three replications, the testing of
sneak paths was made part of our state test strategy in
addition to round-trip paths.

Use of different oracles. In the last three experiments
(Sannio 1, Carleton 2, and Sannio 2), participants working
with state testing were instructed to use contract assertions
in addition to state invariant assertions in their oracles. This
is because a qualitative analysis of undetected faults
(Section 6) from Carleton 1’s results suggested that the use
of contract assertions in oracles would have led to the
detection of a significant number of these faults (the average
mutation score of OrdSet drivers went from 50 percent in
Carleton 1 to 72 percent in Sannio 1).

Providing support to write oracles. In Carleton 1, we
noticed that the implementation of state invariants (from
OCL to Java code) took considerable lab time. Therefore, to
give participants more time to implement their drivers, we
provided them with an oracle class helper, including
methods for checking a class invariant, a state invariant,
preconditions, and postconditions for methods. Participants
working with structural testing were provided with an
implementation of an oracle method comparing all attri-
butes values against expected ones.

Using longer labs. Since survey questionnaires [51] from
the Carleton 1 experiment suggested a lack of time to
perform the experimental tasks, whenever possible, i.e., for
the Sannio 1 and Sannio 2 experiments, we used labora-
tories of four hours instead of three. In addition, class
clusters were introduced in the morning, before the four
laboratory hours started, so that participants had four hours
to be entirely dedicated to the experimental tasks.

In summary, given the replication classification provided
in [9], our replications fall into the following categories:
1) Replications that do not vary any research hypothesis but
that vary the experiment procedure and material (e.g.,
changing lab duration and class clusters) and 2) replications
that vary research hypotheses by varying variables intrinsic
to the object of study (e.g., contract assertions in oracles and
sneak path testing).
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3.5 Overview of Statistical Analysis

We provide here a short overview of the statistical
techniques we applied to address our research questions.
Univariate analysis was performed to assess the isolated
effect of an independent variable on a dependent variable.
In particular, two-sample t-tests were performed to com-
pare test techniques in terms of fault detection effectiveness
and cost, and determine whether differences in means
could be due to chance. The level of significance is set to
� ¼ 0:05 for all tests, though we also report p-values.

To avoid potential threats due to the violation of the
t-test assumptions, equivalent nonparametric tests (Wilcox-
on rank sum tests [28]) were also performed to verify that
negative results are not due to strong departures from the
normality assumptions, which are known to make t-tests
conservative. In the rare cases where different results are
observed, this is clearly stated. The t-test is a parametric test
and requires data to be normally distributed. We use the
Anderson-Darling test to check for normality [30] (H0:
samples significantly deviate from a normal distribution) to
verify the normality of the data studied. We report
normality results whenever samples deviate significantly
from the normal distribution. Fortunately, in experiments
where a significant deviation from normality was found,
the number of participants (and thus, data points) is large
enough (48 and 25) to make parametric tests robust to the
encountered normality deviation [62].

Performing multiple tests on the collected sample data to
address a number of distinct hypotheses may introduce
chance capitalization of type I error. A number of statistical
corrections were proposed to address this issue, among
them the Bonferroni correction [34]. In our context, we
apply the Holm’s procedure [35] to the data pooled from all
four experiments. It is suitable to small sample sizes (as in
our case), is less restrictive than Bonferroni, and accounts
for the correlation between tests. Specifically, it sorts
p-values in ascending order, resulting from the n distinct
tests, and multiplies the smallest p-value by n, the next by
n� 1, and so on. Finally, to be compared to the significance
level, given the resulting ordering index i, p-values are
corrected as follows: pi ¼ maxj�iðpjÞ.

When dealing with small sample sizes, it is also
interesting to look at the power of statistical tests. The
power of a statistical test is the probability that the test will
reject a false null hypothesis (that it will not make a Type II
error) and is function of three factors: the specific statistical
test used (e.g., t-test), sample sizes, sample standard
deviations for the different treatments, and the selected
effect size4 [52]. There are several potential applications for
power analysis [29], among others to determine an
appropriate sample size for an experiment. However, in
our case, this is not possible as the sample size is dictated,
as often in our field, by the availability of participants.
Instead, we used the power analysis for a different purpose:
to determine the minimum effect size above which we

achieve a certain power, typically 80 percent, i.e., above
which we can be confident about our conclusions. In other
words, if we do not observe any statistically significant
result for small sample sizes, we cannot confidently claim
there is no effect of the treatment. We can, on the other
hand, be confident that there is no effect above a certain
effect size for which the power of our test reaches 80 percent
or more.

To visualize distributions and allow for the comparison
of results, we use box plots showing selected quantiles of
continuous distributions and extreme values. In particular,
boxes span between the 25th and 7th percentiles and the
line in between the box indicates the median. The dashed
lines, sometimes called whiskers, are placed at a distance
equal to 1.5 times the interquartile distance below the
25th percentile and above the 75th percentile, respectively.

The analysis of cofactor effects, and their interaction with
the treatments, is done using a two-way analysis of variance
(ANOVA) or a bivariate least-squares regression [28].

4 THREATS TO VALIDITY

This section discusses the main threats to validity [69] that
can affect our experiments.

4.1 Conclusion Validity

Threats to conclusion validity are concerned with issues that
affect the ability to draw the correct conclusion about
relations between the treatment and the outcome of the
experiment [69]. In our experiments, threats to conclusion
validity could be essentially due to low statistical power,
resulting from the relatively small number of participants.
We were limited by the number of students enrolled in the
testing courses within which we conducted the experiments.
To limit the impact of this threat on our conclusions, we
designed the experiment in such a way that each group
would work on a different treatment for two subsequent
labs, and thus doubled the number of observations.
Replicating the experiment four times also increased our
capability to identify significant results. In addition, we
performed a power analysis (fault detection analysis, item 3,
in Section 5.1.1) with the aim of determining the minimum
effect size that could be observed with 80 percent power.

Statistical conclusions were supported by proper tests, in
particular, t-tests for pairwise comparisons and ANOVA for
the analysis of cofactors. As discussed in Section 5.1.1,
results of a t-test were also confirmed by an equivalent,
nonparametric test (Wilcoxon) when required. To account
for possible Type I error chance capitalization due to
repeated significance testing, the significance level of the
different t-tests was adjusted using Holm’s procedure [35],
which is less conservative than Bonferroni adjustment.

4.2 Internal Validity

An internal validity threat exists when the outcome of the
experiment may not necessarily be caused by the treatment
applied, but can be caused by another factor not controlled
in the experiment. One example of internal validity threats
is the learning and fatigue effects that can occur during
experiments. This threat is addressed in our experiment by
using different treatments and different class clusters in
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each of the labs conducted for each group, and doing so in
an order that prevents fatigue or learning effects being
conpounded with our treatment.

To tackle the selection threat that is related to the
variation in human performance, we identified a number of
blocks to which the students were assigned. These blocks
are based on marks achieved in earlier courses on software
engineering and design. Students were selected from the
different blocks to obtain a stratified random sampling over
the different groups [69].

Another internal validity threat, the diffusion or imita-
tion of treatments, was also limited by monitoring the labs
and preventing access to the experiment material outside
the lab hours and by other groups’ members. Note that
the experiment material was accessed through the course
Website only during lab hours, with an address only known
during the lab by members of the group working in that
specific lab.

As opposed to participants working with structural
testing, those working with state machines were not
instructed to use equivalence class partitioning or boundary
analysis to identify test cases parameters values. This was
not necessary as, in this experiment, no boundary analysis
was needed: The Cruise Control’s state machine has no
parameters, and boundary analysis of the OrdSet and the
Elevator clusters was already accounted for when
exercising the guard conditions.

The allocated time for the experiments was fixed and
limited: This sometimes caused limited code and state
machine coverage. This is usually unavoidable in the
context of controlled experiments in artificial settings. We
address this issue in the data analysis by using coverage
(state machine and code) as an interaction factor. From a
more general standpoint, it is often the case that, in
controlled experiments, experimenters should choose be-
tween assessing the impact of a treatment on either the time
to perform the tasks or their effectiveness within specific
time constraints, but it is usually impractical to address
both [9]. The work presented here matches the latter case.

Although participants were aware of the laboratory
objectives, they did not know exactly what hypotheses were
tested. Evaluation apprehension is also avoided since
participants were told that their labs were marked based on
the capability of correctly following the lab procedure (and
thus, also correctly applying the testing strategy), rather than
on the performance of the test drivers they produced.

Another threat to internal validity is the use of the
original, correct source code to generate their test cases
based on code coverage analysis rather than using the faulty
code on which the test cases are executed. The reason for this
approximation is that it is impractical, if not impossible, to
provide faulty code to subjects: The number of mutants
varies from 382 to 1,176 in the three clusters, and this would
have required generating different test cases for each
mutant. Also, providing mutated code to participants would
have allowed them to discover where the mutants were
seeded by simply comparing the different files, and this
would have been a major threat. It should be kept in mind,
however, that the differences between each individual
mutant program and the original program are very small.

4.3 Construct Validity

This type of threat is mainly related to our use of mutation
analysis to measure the fault detection effectiveness of
testing strategies as 1) the types of faults seeded may not be
representative of “real” faults and 2) there might be faults
not produced by the chosen mutation strategy [47].
However, the existing literature [5], [6], [26] suggests that
faults seeded using mutation operators can be representa-
tive of real faults. Since, so far, no results contradicting the
above studies have been reported, relying on mutation to
compare test techniques is practical as it provides large,
automatically generated fault samples. The fact that we
used three class clusters with very different code character-
istics—thus, leading to very different samples of mutants—
should, however, limit the likelihood of this threat.

4.4 External Validity

External validity relates to the external aspects that interact
with the treatments and limit the generalization of the
results. The selection of fourth-year engineering students as
participants in Carleton 1 and 2 and Master’s students with
little industry experience in Sannio 1 and 2 could be a threat
to external validity as they may not be representative of the
population of professional software developers. However, it
is well known that productivity can vary a level of
magnitude between the best and worst developers. Second,
students at Carleton were overall good Java developers, as
this is the main language used throughout their four years
of study. Moreover, they are better acquainted with UML
and, in particular, state machine modeling than most
average practitioners: They passed two full-term courses
on UML-based modeling. Students at Sannio already hold
an engineering graduate degree and were also trained in
Java programming and were carefully selected based on
their academic track record. In addition, they all went
through thorough testing training prior to the experiments.
So, overall, for the specific tasks at hand, the participants
used in our experiments can be considered competent.
Issues related to the use of students in experiments are
discussed in previous literature [7], [37], [39], which
indicates that, often, advanced students and professionals
are statistically similar in various performance measures. In
conclusion, the existing literature suggests that though our
results might not generalize to all experienced, professional
developers, existing evidence suggests that they are
probably representative for junior and intermediate devel-
opers. However, in some cases, the work pressure in
industry—e.g., in the context of a major project releases—is
different from that of an academic lab. To alleviate this
problem, we used strictly enforced, fixed laboratory time.

The particular choice of class clusters to test in any
experiment may be considered an external validity threat:
Results can always be somehow specific to the software
under test. Moreover, for controlled experiments, class
clusters’ size must be limited to allow enough time for
performing the tasks in laboratory, controlled settings.
However, while the class clusters we used could appear
relatively simple and small compared to large, industrial
systems or subsystems, we believe that they still can be
considered representative of some of the situations where
state testing would be applied. Though they differ in terms
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of complexity, the Cruise Control and the Elevator

clusters are representative of real-time, reactive classes with
a state-dependent behavior, where class attributes are
evaluated based on elapsed time between events and the
current cluster state. The OrdSet class, on the other hand,
is modeled by a large state machine with complex guard
conditions. It is representative of classes encapsulating
complex data structures. These two common categories of
class clusters are usually modeled using state machines in
UML-based development [21], [33], [42]. This is further
supported by industrial case studies reported in the
literature [22], [36]. Additionally, it is very uncommon in
practice to model subsystems or entire systems using state
machines, as this is far too complex in realistic cases. To
assess testing techniques on such large programs, one
would have to resort to industrial case studies. Controlled
experiments involving humans in artificial settings neces-
sarily use smaller programs, but they have, however, the
advantage of achieving high internal validity. They must
therefore often be complemented with industrial case
studies that are usually strong on external validity (realistic,
possibly larger systems, time constraints, etc.) but weak in
terms of avoiding confounding factors.

The state machines for Cruise Control and Elevator

do not fully model the two clusters under test. They only
model the state behavior of the clusters. This is often the
case in practice. State machines are rarely used to
completely capture the system behavior as this would
result in too large and unmanageable models. In conclusion,
state testing results in practice can significantly depend on
the level of abstraction of the models used, in other words,
of the abstraction gap between the model and its imple-
mentation. This is particularly significant when modeling
large programs, where abstraction becomes a necessity due
to the complexity of the source code under test. It is
therefore possible that our results would be significantly
different on much larger programs and their corresponding
models, which would be at a higher level of abstraction
than that of the models used in our experiments. One
plausible effect would be a decrease in the fault detection
effectiveness of state testing and an even greater necessity to

complement it with structural testing. In general, choosing
an appropriate level of detail when developing state
machines is an important decision which may be in part
driven by testing objectives.

5 EXPERIMENTAL RESULTS

This section presents the results obtained from the four
controlled experiments. The results of each experiment are
first presented separately, then followed by the identifica-
tion and discussion of commonalities and differences.
Wherever necessary, analysis of combined data sets from
all experiments is also performed to increase the statistical
power of the performed tests.

5.1 Impact of Test Techniques on Fault Detection
Effectiveness

This section discusses the impact of the independent
variable “test technique” (structural versus state machine)
on the dependent variable “fault detection effectiveness”
(RQ1, addressed in Section 5.1.1), and the possible interac-
tions between the test technique and a number of cofactors
in terms of their impact on fault detection effectiveness
(RQ2, addressed in Section 5.1.2).

5.1.1 Univariate Analysis

To address RQ1, we perform a univariate analysis of the
fault detection ratios of test drivers (fault detection analysis
in Section 5.1.1), investigate the impact of cluster properties
on the fault detection effectiveness of each test technique
(impact of cluster properties on mutation scores in
Section 5.1.1), and then discuss mutation score variations
across drivers (understanding mutation score variations
across collected drivers in Section 5.1.1).

Fault detection analysis
I. Comparison of mutation scores means across test

techniques, clusters, and experiments. Table 5 reports the
results of a two-tailed t-test [28] performed for each class
cluster to assess the statistical significance of the difference
in terms of mutation scores between the two test techniques.
The following null hypothesis is tested: “There is no
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significant difference between the number of faults detected by
state test cases (Ts) and structural test cases (Tc).” Columns
show the degree of freedom5 (DF), the mutation scores’
mean and variance per treatment, the calculated t-value,
and the corresponding p-value ðPr > jtjÞ. The Anderson-
Darling test [30] (H0: samples significantly deviate from a
normal distribution) indicated that mutation scores are
normally distributed for the Carleton 2 experiment
(p-value ¼ 0:07) and Sannio 2 (p-value ¼ 0:19), while they
significantly deviate from normality in Sannio 1
(p-value ¼ 1e-6) and Carleton 1 (p-value ¼ 0:002). Therefore,
in addition to t-tests, we performed a nonparametric
Wilcoxon test to ensure the validity of the t-test results in
cases where normality assumptions are violated, obtaining
results consistent with those of Table 5. Detailed descriptive
statistics of drivers’ mutation scores are shown in a
technical report [51].

For both OrdSet and Elevator, a t-test yielded a
p-value greater than our selected level of significance, and
therefore, the null hypothesis cannot be rejected. No
statistically significant difference between state and struc-
tural drivers can be observed for these two clusters in terms
of mutation scores. Cruise Control structural drivers
had significantly higher mutation score means than state
drivers in the last two experiments. When further investi-
gating this difference between the results of the first two
and the last two experiments, we note that the state
machine mutation score did not vary significantly between
Sannio 1 and Sannio 2, where all design factors were the
same (same lab duration, oracle precision, and participants’
skills). The mutation score mean dropped slightly in
Carleton , from that observed in Sannio 1 and Sannio 2,
and this may be attributed to the shorter lab time (three
hours instead of four). The variance in mutation scores of
state drivers varied significantly between Sannio 1, on one
hand, and Carleton 2 and Sannio 2, on the other hand. This
can be attributed to the varying number of implemented
RTPs in Carleton 2 (few participants implemented all RTPs)
and to the varying levels of implemented oracles in Sannio 2

(only state invariants, state invariants + class invariants, or
state invariants + contracts checking). In Sannio 1, almost all
participants implemented all RTPs from the Cruise

Control transition tree and consistently used state and
class invariants as oracles without resorting, in most cases,
to pre and postconditions. On the other hand, structural
mutation scores in the last two experiments were higher
than in Sannio 1, especially in Carleton 2, with less variance.

The above suggests that both laboratory time and oracle
precision have an important impact on mutation scores.
This is clear when comparing the results of Carleton 1 to the
results of the subsequent replications, where mutation
scores for both clusters and treatments increased signifi-
cantly compared to those in Carleton 1. Recall that
laboratory time was increased in Sannio 1 and 2 and oracle
precision was increased in the three replications by
including contract assertion checking.

These results were also confirmed when applying the
Holm’s correction procedure (Section 3.5) to the pooled data
from all experiments to account for possible type I error
chance capitalization.

II. Accounting for trivial mutants in the calculated
mutation scores means. To further investigate the fault
detection effectiveness of each technique, we again com-
puted mutation scores after removing “trivial mutants,” i.e.,
mutants that are far too easy to detect and thus are not to be
considered realistic and representative of real faults. In
particular, we classified as trivial mutants killed by all
drivers. The number of trivial mutants was 2 for OrdSet, 12
for Cruise Control, and due to its significantly larger
size, was much higher (144) for Elevator. We recomputed
t-tests considering mutation scores for nontrivial mutants
only, and obtained results consistent with those of Table 5.

III. Power analysis. In some cases, the lack of significant
results in Table 5 may be due to a lack of statistical power
due to small samples. To this aim, we used power analysis
to assess what would have been the minimum effect size for
which we have a reasonable chance of detecting a
statistically significant result.

Table 6 presents the power analysis results showing
1) the observed effect size based on the calculated mean
difference and the pooled standard deviation and 2) the
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TABLE 6
Estimated Effect Size for 80 Percent Power



minimum effect size required to achieve a power of
80 percent at a significance level of 0.05.

We notice that for all four experiments, the minimum
effect size corresponding to 80 percent power is large (0.98
to 1.90 across clusters), and this further justifies our decision
to pool together the data of all experiments (last row),
which shows significantly increasing power, that is,
decreasing the minimum effect size matching 80 percent
power: 0.59 to 1.03 across clusters. In fact, the cases where
results are significant (Cruise Control for Carleton 2,
Sannio 2, and all experiments combined) correspond to the
cases where the actual effect size is close to or above the
80 percent power effect size threshold.

We can therefore conclude that these experiments do not
allow us to draw conclusions about modest effect sizes. If
there are significant differences, other than those already
reported, between structural and state testing mutation
scores, the unknown, actual effect size is significantly lower
than 1, e.g., lower than 0.59, 0.74, or 1.03 for all experiments
combined (the last three rows and last column in Table 6).

Impact of cluster properties on mutation scores. Here,
we investigate whether the properties of the three class
clusters used in the experiments had an impact on the fault
detection effectiveness of the applied testing techniques.

For OrdSet, the high mutation score obtained with state
testing is mainly due to the availability of a state machine
providing an accurate description of the class behavior. For
structural testing, the rather intuitive functionality of
OrdSet leads to a high mutation score as well.

For Cruise Control, we observe a low mutation score
and low code coverage for both state and structural drivers.
For the former, this is mainly due to the real-time properties
of Cruise Control not modeled in the state machine
model. This was a choice of the original designers to avoid an
overly complex and difficult-to-understand state machine
that would attempt to specify actions on transitions triggered
by timers to model the complex algorithms managing the
variation of class attribute values over time, as discussed in
[51]. We believe that this would often be the case in practice:
Implicit transitions that do not affect current state and bear
no actions—as for timer-controlled transitions of Cruise
Control—are usually left out from the state machine to
avoid cluttering the state machine diagram [12]. In many
cases, developers and testers separate concerns, e.g., model
real-time properties by means of other diagrams, such as
activity or timing diagrams, or of many state machine
diagrams instead of one complete model [65]. Participants
working with the Cruise Control code also had difficul-
ties—confirmed in survey questionnaire answers [51]—
understanding the system real-time properties without the
availability of proper documentation or a model. Basically,
we did not provide any description of the clusters’ real-time
properties to any of the groups. Although a few participants
noticed a relationship between the time factor and a number
of class attributes, it was hard for them to understand the
real-time algorithm that manages the class attributes solely
based on code. A thorough understanding would have
required the availability of models, such as communication
diagrams or timing diagrams, thoroughly describing real-
time properties.

The Elevator cluster also features a real-time behavior
and includes concurrency. In contrast to Cruise Control,
the real-time properties of Elevator not only affect class
attribute values (concrete state), but also its current state as
modeled by its state machine (abstract state). In other words,
the real-time properties of Elevator are naturally modeled
as state transitions. Despite that, state drivers’ mutation
scores in Elevator were relatively low (35.44 and 35.06 in
Carleton 2 and Sannio 2). This may be due to 1) the high
complexity of the state machine if compared, for example, to
those of OrdSet and Cruise Control and 2) the fact that
the state machine did not model concurrency, which is a
peculiar aspect of the Elevator class cluster. Elevator’s
structural drivers did not do any better than state drivers
(40.54 and 36.97 in Carleton 2 and Sannio 2) because
Elevator’s source code is by far more complex than that
of the other two clusters (see Table 1).

Understanding mutation score variations across col-
lected drivers. Results highlight a high variability of
mutation scores achieved by structural drivers. This is not
always the case with state drivers for which little variability is
observed, at least for Cruise Control’s drivers. The
variation in the drivers’ mutation scores was measured as a
standard deviation and had the lowest value for state drivers
in Cruise Control/Carleton 1. When applying RTP
testing, participants had to produce test cases following a
well-defined criterion and using a specific transition tree:
This leaves little degree of freedom to the tester, also
considering that—for Cruise Control—transitions have no
guard conditions and require no parameter setting. The
standard deviation of state drivers’ mutation scores in the
other three experiments was higher than in Carleton 1
(between 5 and 8 percent) and this is most likely caused by
the increased, targeted precision of oracles. Different
participants, however, implemented different levels of oracle
precisions, ranging from state invariants, state invariants +
class invariants to state invariants + contract checking.

As opposed to Cruise Control, the mutation scores’
standard deviation for OrdSet state drivers is fairly large
(17 percent as opposed to 1.5 percent for Cruise Control
in Carleton 1). This can be explained as follows:

1. Only a few participants were able to cover all RTPs
(35 percent RTP coverage, on average) and test cases
in their drivers covered various numbers of RTPs [51].

2. The state machine has complex guard conditions
and requires parameter settings which introduce
variation in test cases.

3. Some faults can be detected only with very specific
parameter values or set content.

4. Oracles often feature wrong or incomplete imple-
mentation of state invariants.

The standard deviation for OrdSet state drivers decreased
in Sannio 1 to 12 percent, which can be attributed to the
increased lab time, allowing participants to cover more
RTPs.

For Elevator, the state drivers’ mutation scores
variation was limited (around 9 percent) and mainly due
to the high complexity of the state machine.

Overall, for all class clusters and experiments, variations
in structural drivers’ mutation scores were higher than for
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state drivers’ mutation scores. While participants working
with state machines had a precise strategy to follow, and a
predetermined number of test cases (corresponding to the
number of paths in the transition tree) to implement, and
predefined oracles, participants working with source code
were only required to achieve edge coverage, without
further guidelines or instructions.

5.1.2 Interaction Effects

To address RQ2, in this section we analyze, using a two-
way ANOVA, the interaction effects on mutation score
between the test technique and the following factors: code
coverage, cluster, laboratory order, and subject ability.

Interaction effects with code coverage. There is a strong
linear correlation between node and edge coverage
(R2 ¼ 0:9; 0:89; 0:93, and 0:97 for the four experiments,
respectively), and as a result, we limit any subsequent
analysis to node coverage. For Cruise Control, the
ANOVA tests showed significant main and interaction
effects of test technique with node coverage on mutation
score, with the exception of Carleton 2. This may be
attributed to the relatively small number of observations
(16) in Carleton 2. No significant main or interaction effect is
observed for the other two clusters. Note, however, that
when performing a two-way ANOVA of mutation score by
test technique and node coverage without interaction, node
coverage has a significant effect on mutation score: As
expected, higher code coverage corresponds to higher
mutation score.

Fig. 1 shows interaction effect diagrams of test technique
and node coverage for Cruise Control for experiments
where the interaction effect was found significant. Similar
behavior is observed in the three diagrams.

When code coverage increases, structural drivers tend to
have higher mutation scores than state drivers. This can
be explained by the fact that participants working with
state machines cannot infer information related to real-time
behavior that, as discussed above, is not modeled by the
state machines. On the other hand, for low code coverage,
state drivers show higher mutation scores than structural
drivers. This is likely due to the use of state invariant
assertions in oracles. Note that the intersection between the
interaction lines corresponding to structural testing and
state testing occurs at around 85 percent node coverage in

all three graphs (node coverage average across experiments
and test techniques). This suggests that the structural
testing technique starts to be more effective than the state
technique when the coverage is rather high (i.e., above
85 percent). For Sannio 2 (Fig. 1c), the interaction lines did
not go below 85 percent of node coverage as this threshold
corresponds to the minimum node coverage across drivers.

No interaction effect was found between node coverage
and test technique for Carleton 2. This may be due to the
relatively small number of observations (16) in Carleton 2 (of
which 6 were state drivers and 10 were structural drivers).

Interaction effects with lab order and participant

ability. No significant impact of lab order and participant
ability through interactions with test technique was ob-
served on mutation scores. For lab order, a plausible reason
is that participants were well trained for the tasks from the
start and learning effects were therefore limited. Only one
exception was observed in Cruise Control—Carleton 2,
where a significant interaction effect was observed between
lab order and test technique (p-value ¼ 0:04). For participant
ability, one possible problem is that ability as measured
may not properly reflect testing skills, but rather the overall
software engineering skills.

5.2 Combining Test Techniques Impact on Fault
Detection Effectiveness

To address RQ3, we need to investigate whether it would be
useful to complement test cases generated based on state
machines (Ts) at design time with those generated based on
code coverage analysis (Tc).

When combining test cases, all pairs of drivers (state
drivers� structural drivers) must be taken into consideration
to capture the variability among drivers written by different
participants. Having m state drivers and n structural drivers
implies that m� n combinations would be considered.
However, we do not consider drivers with low coverage, as
we want to consider only realistic scenarios with competent
developers and a reasonably disciplined process. Some
drivers had very low coverage due to a combination of poor
development skills, lack of compliance with the provided
task instructions, and limited time. Therefore, in order to
improve the external validity of results to contexts with
competent personnel and a reasonably disciplined process,
we decided to compare only a subset of the drivers whose
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coverage was above a certain threshold, as described below.

However, though it is common practice to seek high-

statement coverage rates during testing in industrial test

environments [59], this rate does not usually reach

100 percent due to budget and time restrictions, as well as

the presence of unreachable code. Thus, we chose 85 percent

as a reasonable threshold for the selection of structural

drivers in OrdSet and Cruise Control, and we lowered it

to 65 percent in Elevator as only low coverage rates were

achieved because of its complexity.
As for RTP, the decision is more complex as there is not

much reported practice in state testing. We chose a 100percent

threshold forCruiseControlas only a few participants did

not cover all RTPs in their drivers. But, for OrdSet and

Elevator, very few participants were able to cover all RTPs

or even achieve high RTP coverage rates. In any case, we

suspect that in a typical industrial environment, for a complex

state machine with a large number of RTPs, only a subset of

them is likely to fit within budgeted time and effort. Thus, we

selected a 60 percent RTP coverage threshold forOrdSet and

45 percent for Elevator so as to obtain a reasonably large

subset of almost half-complete drivers. Table 7 lists the

number of selected and discarded drivers and the resulting

total number of driver pairs that will be considered for the

analysis in this section.

5.2.1 Complementarity of Testing Techniques

In order to address question RQ3, we analyze the set of
mutants killed by one type of drivers and not the other.
How complementary structural testing is to state testing is
captured by jFc� Fsj=jF j percent.6 In a realistic scenario,
one would first generate state test cases, measure code
coverage, and complement the test suite to achieve a certain
level of structural coverage. The main motivation to follow
that order is that generating large test suites being guided
by code coverage analysis only is a highly tedious and time-
consuming task [48]. Boxplots representing distributions of
jFc� Fsj=jF j percent are provided in Fig. 2.

Results show that, on average, the percentage of mutants
killed only by structural drivers ranges from 14 to 27 percent
for Cruise Control, 16 to 17.5 percent for OrdSet, and 8.4
to 11.5 percent for Elevator. The highest increase in
mutation scores brought by structural drivers is for Cruise
Control for which real-time behavior-related code was not
fully covered by state drivers. The lowest increase is for
Elevator, which can be considered the most complex in
terms of code and state machine when compared to the
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Drivers Selection Data for Combining Test Techniques

Fig. 2. Distribution of jFc� Fsj=jF j percent across experiments and clusters.

6. F is the set of all faults (mutants), Fs is the set of faults detected by a
state driver, and Fc is the set of faults detected by a structural driver (based
on source code). jFc� Fsj=jF j% is the percentage ratio of faults detected by
a structural driver and not detected by a state driver out of the total number
of faults.



other tested clusters. These results suggest that the con-
tribution of structural drivers to a comprehensive global
testing solution is significant but its extent depends on the
complexity of the tested code.

5.2.2 Impact of Combining Test Techniques on Fault

Detection Effectiveness

The jFs [ Fcj=jF j percent measure represents the mutation
score in percentage when combining state and structural
drivers. Boxplots representing distributions of jFs [ Fcj=jF j
percent are shown in Fig. 3. As expected from the previous
section, combining test cases from both test techniques clearly
increased the mutation scores of combined drivers. The gain
in mutation scores varied considerably across clusters and
experiments. For instance, the mutation score of state drivers
was, on average, doubled in Sannio 1/Cruise Control,
while we only observe around 15 percent, on average,
increase in Carleton 2/Elevator. When combining techni-
ques, high mutation scores were achieved for OrdSet (e.g.,
an average of 85 percent in Sannio 1), while lower rates were
obtained for Cruise Control (e.g., an average of 60 percent
in Carleton 2) and for Elevator (e.g., an average 55 percent
in Sannio 2). This again can be due to the already discussed
real-time behavior and complexity of these clusters.

To formally address question RQ3, we need to analyze
the statistical significance of the gain in mutation scores
when combining state and structural test cases. The
following null hypothesis is tested: “The fault detection rate
when combining state testing and structural testing is equivalent
to that obtained with structural testing alone and to that obtained
with state testing alone.” Across the different clusters and
experiments, 16 one-tailed t-tests for paired samples were
performed to compare: 1) the means of mutation scores
when including only structural test cases and after adding
state test cases to them and 2) the means of mutation scores
when including only state test cases and after adding
structural test cases to them.

Results (p-values are reported in [51]) always indicate
that the gain in mutation scores, from either structural
testing or state testing, is statistically significant when
combining test cases from the two testing techniques. The
application of Holm’s procedure to the pooled data from all
experiments to account for possible type I error chance
capitalization as described in Section 3.5 did not result in

any change to the results presented and discussed in this
section. Therefore, when testing clusters with state-depen-
dent behavior, it is recommended to adopt a testing
approach in which state testing is applied first and then
complemented with structural testing.

In terms of practical significance, the improvements in
mutation scores average between approximately 7 and
13 percent of all mutants across the three clusters when
compared to structural testing alone and between 13 and
24 percent when compared to state testing. The improve-
ments, for both test techniques, were higher in the replica-
tions for both OrdSet and Cruise Control. This indicates
that the changes made to the experiment design improved
not only the specific mutation scores of state drivers and
structural drivers but also their combined mutation scores.

5.3 The Cost of Test Techniques

In this section, we address RQ4 by analyzing the difference
between state testing and structural testing in terms of cost.
This is complementary to the effectiveness analysis pre-
sented in the previous section as both differences in cost
and effectiveness would have to be considered to select
appropriate test strategies.

Testing cost can be generally divided into test generation
cost and test execution cost. Regarding the former, we use
as a surrogate measure the size of test drivers in terms of
LOC to compare the effort required for generating the test
cases. Keeping testers’ skills constant, such a measure
assumes that the test generation cost is proportional to the
driver’s size. Test cases execution cost would be measured
with two different measures, capturing different aspects:
CPU time and number of method calls in tested clusters.
CPU time, measured in milliseconds (ms), provides an exact
value for the time interval the CPU needed to execute the
test cases. An alternative measure is the number of method
calls, which focuses more on resources consumed—that are
assumed to be proportional to the number of method
calls—rather than on the CPU usage. Though this is clearly
a strong assumption, for practical reasons it has been a
common one in testing studies [6], [11], [20], [40], [67],
where very often one test case corresponds to one execution
of a function/program. Given that most methods in object-
oriented software are small, as the number of methods
called grows this count is likely to become a precise
surrogate measure for test execution cost.
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Two-sample t-tests were performed to obtain statistical
evidence about the impact of test technique on the cost of
test drivers (RQ4). Results show that the cost differences
between the two test techniques are not consistently
significant. We performed a nonparametric Wilcoxon test
to ensure that this was not due to a violation of the t-test
assumptions. Results are presented in Table 8.

For OrdSet, which has no real-time behavior, both state
and structural drivers had almost instantaneous—and not
significantly different—CPU execution time. The application
of Holm’s procedure (see Section 3.5) adjusted the p-value in
Sannio 1 to 0.2, thus indicating that there is no significant
difference in terms of cost between structural and state
drivers. For Cruise Control, we found significant differ-
ences: While state drivers were almost instantaneous, it was
not the case for structural drivers, as they more thoroughly
exercise the cluster real-time behavior. For Elevator

drivers, there is a difference between state and structural
drivers, although not statistically significant. Differently
from Cruise Control, the real-time behavior was modeled
inElevator’s state machine, and therefore it was accounted
for by state drivers.

The results for method calls are not consistent across
experiments and clusters. Significant differences in method
calls were found for Cruise Control. This wasn’t the case
for Elevator. For OrdSet, the results were not consistent
across experiments. The lack of significance in some
experiments can be due to the small size of our samples.
However, when combining data from all experiments, state
drivers exhibit a cost significantly higher than structural
drivers. An investigation of the high cost of state testing is
presented in Section 6.2.

Comparing the test drivers’ LOC, the results show that
state drivers tend to have a higher cost than structural
drivers, though this difference is consistently statistically
significant for Cruise Control only. Also, state drivers’
cost increased in the replication experiments for both
OrdSet and Cruise Control. All of these observations

lead to the following question: “What are the factors that
have an impact on the cost of state drivers?” An attempt to
answer this question is provided in Section 6.2.

5.4 Investigating the Cost-Effectiveness of
Combining Test Techniques

This section addresses research question RQ5. We analyze
the impact of augmenting state testing with structural testing
on cost and compare the improvement brought to fault
detection ratios to the cost increase, an analysis referred to as
cost-effectiveness. Simply combining drivers by merging all
test cases from both types of drivers may lead to erroneous
conclusions regarding cost. The combined drivers may
include a significant number of redundant test cases in terms
of code coverage. In practice, a test driver would be first
generated based on the state machine of the cluster under
test. Next, when the code becomes available, based on
coverage analysis, the state driver would be complemented
to improve code coverage with structural test cases, keeping
coverage redundancy among test cases to a minimum. The
analysis in this section uses some of the drivers developed in
this experiment to emulate and assess this procedure in terms
of its impact on mutation score and cost.

Combining test drivers while eliminating redundant test
cases has been performed as follows: For each pair of drivers
Ds and Dc (state and structural drivers), we start by
combining all test cases into one driver Dsc for which the
node and edge coverage are calculated (Nsc and Esc). Nsc
and Esc represent the highest code coverage that can be
achieved by augmenting Ds with Dc (i.e., state machine
testing with structural testing). However, this code coverage
can perhaps be achieved with a subset of nonredundant (in
terms of code coverage) test cases from Dsc. To remove any
potential redundant test case from the augmented driver
Dsc, we proceed by removing one structural test case at a
time. If the code coverage measured after removing the test
case does not change (from Nsc and Esc), then we consider
the removed test case as a redundant test case which should
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be eliminated from the augmented driver Dsc. Instead, if the
code coverage drops, the test case should be kept in the
augmented driver Dsc. We repeat this procedure for all
structural test cases in Dc. This results in an augmented
driver with no redundant test cases and the highest possible
code coverage, given available structural test cases. The
procedure presented above is intended to be representative
of situations where RTP is adequately applied and code
coverage is maximized within time constraints.

To address RQ5 using the test drivers developed in the
experiment, the analysis proceeded by selecting three
complete state test drivers (one for each cluster under test),
implementing all RTPs with contract checking in oracle
assertions. Similarly, we selected for each cluster three
structural drivers to be used for augmenting the state driver
among those collected drivers having the highest code
coverage. Recall that our goal is to emulate the process of
augmenting state drivers with structural test cases based on
coverage analysis in order to maximize coverage based on
realistic test cases and within time constraints. The selected
high coverage drivers were generated by participants
within the experiment time constraints and provide more
opportunities (than other structural drivers) of finding test
cases to augment and maximize coverage. The reason for
selecting three structural test drivers for each cluster is to
account for the significant variation observed among these
drivers in terms of test cases.

Let us look first at the impact on mutation scores of using
the procedure described above to form test drivers. Let Ms
be the mutation score of state drivers and Msc the mutation
score achieved by augmented drivers (i.e., after eliminating
redundant test cases). Table 9 presents mutation score
results of augmented drivers and their relative increase in
mutation scores, i.e., �Ms ¼ ðMsc� MsÞ=Ms (when compared
to state drivers) and �Mc ¼ ðMsc� McÞ=Mc (when compared
with structural drivers).

The relative increase in mutation scores of augmented
drivers with respect to state drivers is the highest in
Cruise Control (increase up to 95 percent), while it is
much lower for OrdSet (increase up to 12 percent) and

Elevator (increase up to 14 percent), for which state
drivers had high mutation scores. The relative increase in
mutation scores of augmented drivers with respect to
structural drivers is the highest in Elevator (increase up
to 41 percent), while it is much lower for Cruise Control
(increase up to 5 percent).

Similarly to mutation scores, for each cost metric we
compute the increase in cost due to augmenting drivers
relative to the original cost of state and structural drivers.
For example, let Cs be the cost of state drivers, Cc the cost of
structural drivers, and Csc the cost of augmented drivers,
then the relative increase in cost is computed as
�Cs ¼ ðCsc� CsÞ=Cs (with respect to state drivers) and
�Cc ¼ ðCsc� CcÞ=Cc (with respect to structural drivers).
Finally, we define the cost-effectiveness of augmenting state
with structural test cases as the ratios �Ms=�Cs and
�Mc=�Cc, considering the cost-effectiveness of augmented
drivers with respect to state and structural drivers, respec-
tively. The motivation is to compare the increase in mutation
score to the increase in cost. For example, a cost-effective-
ness of one tells us the relative increases in mutation score
and cost are equal. A value below 1 suggests that the
increase in mutation score is smaller than that of cost and a
value above 1 suggests the contrary. Table 10 shows the cost-
effectiveness results for state and structural drivers for the
three cost metrics.

For Cruise Control, the cost-effectiveness of augmen-
ted drivers is higher with respect to state drivers when
considering the cost metrics “Number of method calls” or
“Lines of Code” (gray cells). The gain in mutation score is
much larger than the increase in cost. This is not the case
with respect to structural drivers where the increase in cost
is larger than the gain in mutation score. This can be
explained by the fact that Cruise Control’s state drivers
had limited code coverage as the real-time behavior of the
cluster was not modeled in the state machine. When
considering the “CPU execution time metric,” results are
different from the other two metrics. Though the gain in
mutation scores of state drivers was high (Table 9), the cost
increased so much that the cost-effectiveness of adding
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structural test cases to a state driver was close to 0. With
respect to structural drivers, the cost effectiveness is even
negative. This is because augmented drivers led to a slight
increase in mutation score (Table 9), while they exhibited a
decrease in CPU execution time with respect to structural
drivers. This is because augmented drivers did not contain
the structural test cases which were redundant with respect
to the chosen state drivers and particularly expensive in
terms of CPU time.

For OrdSet, the cost-effectiveness of combining drivers
is, in general, low. The gain in mutation score was small
compared to the increase in cost, regardless of the specific
drivers and cost metrics used. On one hand, OrdSet’s state
machine fully modeled the functionalities of the cluster,
leading to high mutation scores and high coverage in state
drivers when covering all RTPs, and on the other hand,
the rather intuitive functionality implemented in the source
code of one class led to high mutation scores and high
coverage in structural drivers. Therefore, the increase in
mutation scores when augmenting state drivers was smaller
than the cost increase to achieve higher coverage.

For Elevator, the cost-effectiveness of augmented
drivers with respect to state drivers ð�Ms=�CsÞ was only
high with respect to “Number of method calls.” The
increase in state drivers’ mutation scores was related to
covering specific functionalities of the cluster not modeled
by the state machine (mainly concurrency). With dedicated
test cases covering parts of the code implementing con-
currency, structural drivers led to an increase in code
coverage and mutation score while incurring a relatively
small increase in cost.

We may not be able to generalize the results of this
section, but we can identify a trend: The cost-effectiveness
of complementing state drivers with structural test cases is
relatively high when the state machine modeling a cluster
under test does not fully model its functionalities. This is
rather the general case as state machines are rarely used to
model the entire system (further discussions of this point
can be found in Sections 3.1 and 4.4). Structural test cases
covering code implementing the nonmodeled functionality

would bring an increase in the mutation score of the
augmented driver with relatively low cost.

5.5 Equivalent Mutants’ Analysis

While processing the data collected from the different
experiments, we analyzed all undetected (live) mutants for
the purpose of understanding the limitations of test techni-
ques, with a particular focus on state drivers (Section 6.1). For
each live mutant by state drivers, we created execution traces
for the faulty program to understand why some faults were
not detected. This helped us identify equivalent mutants
that do not change programs’ outputs and behavior. For
instance, a mutant that deletes an initialization of an integer
to zero is an equivalent mutant as the compiler would
automatically assign an initial value of zero to uninitialized
attributes. Other types of mutants are more complex and
may, for example, require studying boundaries of attributes
in some loops.

In total, 40 mutants were found to be equivalent mutants in
CruiseControl, 63 inOrdSet, and 133 inElevator. This
corresponds to 10, 10, and 11 percent of the total number of
generated mutants in the three clusters, respectively. Table 11
provides details on the percentage of live mutants from the
total number of generated mutants and the ratio of equivalent
to the live mutants for each treatment. We consider live
mutants to be those still undetected when running all the
available state drivers and structural drivers. jF � Fcj
percent represents the percentage of live mutants corre-
sponding to faults undetected by structural drivers and jF �
Fsj percent represents the percentage of live mutants
corresponding to faults undetected by state drivers.
jNej=jF � Fcj and jNej=jF � Fsj, where Ne is the set of
equivalent mutants, represent the ratio of equivalent
mutants out of live mutants undetected by structural
drivers and state drivers, respectively.

The number of live mutants is much higher than the
number of equivalent mutants in the tested clusters. This
suggests that a heuristic—previously used on other empiri-
cal studies on software testing [5], [8]—considering all
faults undetected by any driver as equivalent mutants and
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eliminating them from the total set of mutants—cannot be

applied in our case, especially in the case of Cruise

Control. We tried to repeat the analyses of Section 5 after

removing the equivalent mutants, and although mutation

scores obviously increased, these changes turned out not to

make any difference in terms of the conclusions we have

drawn in the previous sections. A detailed, qualitative

analysis of live mutants will be presented in Section 6.1.

6 QUALITATIVE ANALYSIS

Results in Section 5 indicated a number of unkilled mutants,
higher for Cruise Control and Elevator, and lower for
OrdSet. To better understand why certain faults are
difficult to detect by state drivers and structural drivers,
we report on a qualitative analysis to identify what
execution conditions would be required to detect those
faults and whether these conditions were likely to be
fulfilled by either state testing or structural testing
(Section 6.1). Also, we report on a qualitative analysis
(Section 6.2) aimed at better understanding the higher cost
of state drivers compared to structural drivers. Finally, we
investigate reasons for the limited structural coverage
achieved by state drivers (Section 6.3).

6.1 Qualitative Analysis of Live Mutants

The main motivation for the qualitative analysis we

performed on live mutants is to identify ways to improve

the state testing strategy to increase its fault detection

effectiveness. Another motivation is to classify faults

detected by one technique and not by the other. To this

aim, we identified the following disjoint sets of faults:

1. F� ðFs [ FcÞ, the set of all faults not detected by any
driver.

2. Fc� Fs, the set of all faults detected only by
structural drivers.

3. Fs� Fc, the set of all faults detected only by state
drivers.

4. Fs [ Fc, the set of all faults detected by both types of
drivers.

Then, we identified reasons for not detecting faults

(Section 6.1.1), and finally, we classified undetected faults

according to these reasons (Section 6.1.2).

6.1.1 Identifying the Reasons for Not Detecting Faults

We identified the reasons for not detecting faults with a
focus on faults that were not found at all F� ðFs [ FcÞ, and
those found by one technique and not the other: Fs� Fc
and Fc� Fs. This was done by executing the corresponding
mutants and generating execution traces. If the fault does
not affect the output, the trace can then help us identify the
reason. Also, if the fault does indeed affect the output, the
trace then helps us understand why the oracle did not
detect any failure. An example of such a fault is one created
by seeding a fault in the method resizeArray() of the
OrdSet class, as shown below (the index k highlighted in
the code was replaced by k++):

Method resizeArray() is called whenever an element
is to be added to a full set and that element is not already in
the set. A resize can occur if two conditions are true: 1) The
resized set size does not exceed the maximum set size (a
constant) and 2) the number of resizes done on the set does
not exceed the maximum resizes allowed (a constant). The
fault gets executed if those conditions are met, and when
this is the case, the set is resized as expected, but with
wrong content. To detect the fault, it is necessary to check
the exact content of the set. This can be done by verifying
the class invariant or the resizeArray postcondition in
the oracle. An example of a test case that causes a failure if
this fault is executed is to create an ordered set with content
{1, 2, 3, 6}, and then add the element “4” to the set. The
result one gets, assuming the two conditions mentioned
above hold, is {0, 2, 0, 4, 6} instead of {1, 2, 3, 4, 6}. Such a
fault was not detected by Carleton 1’s state drivers, while it
was detected by Sannio 1’s state drivers, where oracle
helpers contained implementations of contract assertions.

As a result of this process, live mutants were divided
into two sets: 1) the set of equivalent mutants and 2) the set
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of remaining live mutants, which should be considered as
undetected faults and which are classified into categories
and discussed in Section 6.1.2. Note that equivalent mutants
represent 19 percent of live mutants in Cruise Control,
84 percent in OrdSet, and 37 percent in Elevator. They
are omitted from the remaining discussions as they do not
represent faults.

6.1.2 Classification of Undetected Faults

This analysis was first performed on drivers collected
from Carleton 1, with the aim of identifying changes to
the experiment design and context for replications from
Sannio 1, as described in Section 3.4. The qualitative
analysis on the collected drivers from the replications
aimed at identifying further ways to improve the state
testing strategy. As an outcome of the qualitative analysis,
the identified categories of undetected faults are:

1. Faults requiring precise oracles in order to be detected:
Introducing such faults in the code causes changes in
one or more attributes’ computation that cannot be
detected without precise oracles. This is the most
frequent category in Cruise Control (Table 13). By
using contract assertions in replications (Sannio 1,
Carleton 2, Sannio 2), the number of undetected faults
in this category dropped from the original experiment
(Carleton 1), although a significant percentage of these
faults (79 percent) remained undetected. To detect
these faults, it would have been necessary to build an
oracle that would nearly replicate the behavior of the
code under test, which is not realistic in practice. The
real-time behavior ofCruiseControlwas tested by
experiment participants writing structural test cases.
The availability of source code helped them to
understand the algorithm managing the relationship
between time and the value of class attributes such as
speed and distance. In OrdSet, the use of contract
assertions in oracles decreased the number of un-
detected faults belonging to this category from 32
(31 percent of undetected faults) in Carleton 1 to no
fault in Sannio 1.

2. Faults requiring specific scenario (e.g., a specific path in
the state machine that is not covered by RTP) in order to
be detected such as repeating some command call in
Cruise Control. Specific sequences of events
would be required in order for test case executions
to reach specific attributes’ values. Detecting some
faults of this category would have required trigger-
ing an event (or a sequence of events) several times
in the same test case (tested path). This, however, is
not accounted for by the RTP testing technique,
which limits the lengths of paths traversing the state
machine graph, and therefore can be considered as a
limitation of that technique. Some paths, even when
they represent common usage scenarios of the
system, are not necessarily covered by transition
trees generated with the RTP testing technique.
An example is the scenario of a real journey of an
elevator: getting a number of requests, servicing
them one after the other, and finally, stopping in the
Idle state. This scenario, as well as many others, is

not present in transition trees derived from the
Elevator state machine. In Cruise Control, in
order to be detected, some faults require calling a
command (firing a transition) multiple times, as
accelerating many times to get to the maximum
throttle attribute value. Again these scenarios are
not part of the transitions trees. In the replication
experiments, sneak path testing was included as
part of state testing (in addition to RTP). This
decreased the undetected faults of this category for
Cruise Control.

3. Faults requiring specific parameters to be passed in the
test case (such as specific set content in OrdSet or
covering boundaries) in order to be detected. Such
faults suggest that a combination of boundary
analysis or category partition techniques with the
state testing technique would be beneficial.

4. Faults requiring specific execution time (to allow for
real-time attributes values to change) in order to be
detected. These faults are specific to the real-time
clusters. In Elevator, the number of undetected
faults of this category was much lower than in
Cruise Control because the real-time properties
of Elevator are naturally modeled as state
transitions and state actions in its state machine
(impact of cluster properties on mutation scores in
Section 5.1.1). This category of faults is mainly
observed in Cruise Control, where state drivers
did not execute for a long enough period of time
(e.g., to reach the maximum speed) to detect faults in
this category. This is the second important category
of undetected faults in Cruise Control (25 percent
of undetected faults— Table 13).

5. Faults affecting static attributes: modifying a class’
static attribute into a nonstatic attribute or vice versa.
Those faults were not detected in any experiment.
Test cases always included one instance of the class
under test at a time. For instance, in Elevator, these
faults were not detected by state drivers as the state
machine models only one elevator.

6. Faults causing wrong intermediate behavior without
affecting the final outputs: These faults are observed
in Elevator when the exact behavior of each
elevator is not checked by state drivers. For instance,
an elevator may service a floor by going down first,
then going up instead of going up right away. The
state machine does not distinguish between moving
up or moving down and how many floors are visited
before the requested floor is serviced (as long as the
requested floor is indeed serviced).

7. Faults not observable based on the state machine: These
faults can be mainly observed in algorithms
implemented in the source code, but not modeled
by the state machines. This category represents the
most important category in the Elevator cluster
(51 percent of undetected faults—Table 13). These
faults are mainly observed in the algorithm
managing the selection of the best elevator to
service a job. This algorithm is not modeled by the
state machine, and therefore state drivers could not
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detect the faults. In the Cruise Control cluster,
such faults occur in the cruise control algorithm
and in the algorithm implementing the real-time
behavior of the simulated car.

8. Faults affecting state behavior: As a result of the
execution of the fault, the state of the cluster is
different from the expected state result. These faults
went mainly undetected by structural drivers in
Elevator, where the state behavior is more com-
plex than in the other two clusters. Implementing
state invariants in oracle assertions of state drivers
ensured the detection of those faults.

9. Faults affecting class invariants: As a result of the
execution of the fault, the class invariant evaluates to
a wrong value. A class invariant represents a set of
constraints on class attributes values. Implementing
class invariants in oracle assertions of state drivers
ensured the detection of faults where an attribute’s
value is set out of specified boundaries. In Eleva-

tor, the number of elevators and floors defined in
the group of elevators is specified in the class
invariant. A fault changing such numbers is detected
by state drivers. In OrdSet, the minimum and
maximum size of an ordered set is specified as well
in the class invariant. Having a set size smaller than
the minimum size or greater than the maximum size
is easily detected by state drivers.

10. Faults affecting method results: They may occur when
the method postcondition depends on the object
state. These faults might not be detected by
structural drivers as they may require that the object
be in a specific state to trigger failures.

Table 12 shows the distribution of undetected fault

categories among the three subsets of undetected faults:

1) F� ðFs [ FcÞ, the set of all faults not detected by any

driver; 2) Fc� Fs, the set of all faults detected only by

structural drivers; and 3) Fs� Fc, the set of all faults

detected only by state drivers.
The categories of faults detected by structural drivers

and not detected by state drivers (Fc-Fs) appear to be a

subset of the categories of faults undetected by any driver.

In fact, while most of the faults belonging to these categories
were undetected by any strategy, a number of them were,
however, detected by structural drivers.

Table 13 reports, for each cluster, the counts of mutants
corresponding to each category of undetected faults and
what these counts represent as percentages of live mutants
not including equivalent mutants.

6.2 Investigating the Variation in Cost

Results in Section 5.3 suggest that the cost—in terms of
generation cost (LOC)—of structural testing is higher than
that of state testing. The results of our qualitative analysis
show that the main cause for cost variability in structural
drivers is a high level of redundancy in test cases where
multiple test cases partially cover the same nodes and
edges. Redundancy is limited during state testing, as test
cases are precisely specified by a test strategy (RTP), leading
to a limited redundancy when coding drivers. Another
source of variability is the ineffective use of the available
public methods to implement pieces of functionality
required to create test drivers. For example, in OrdSet, a
set can be created with two constructors, one creates an
empty set and another creates a set with content from an
array of integers. Some participants did not use the second
constructor to create a nonempty set. Instead, they created
an empty set and iteratively added elements to it with the
“add one element” method. This increased the number of
called methods in their drivers considerably. One factor
causing variability in state drivers’ cost is the number of
implemented RTPs—varying widely, especially for OrdSet
(from 10 to 100 percent) and for Cruise Control, where,
in order to cover sneak paths, the number of covered RTPs
for experiment replications was 25, including 13 sneak
paths, instead of the 12 of Carleton 1.

Another factor causing variability in state drivers’ cost is
the variation in precision of implemented oracles (state
invariant assertions only, state invariant + class invariant
assertions, or state invariant + contract assertions). When
profiling the execution of a driver, we found that getters
were the most called methods. This indicates that oracle
precision heavily contributes to the high cost of state
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drivers. In fact, the cost significantly increased for replica-

tions where we increased the oracle precision by including

contract assertions.
We can summarize the factors that contribute to the high

cost of state drivers as follows:

1. The use of precise oracles after every event call
(includes a high number of method calls).

2. A number of RTPs have common subpaths (i.e., the
initial setting may be common to a number of RTPs
and repeated in a number of test cases), and
therefore common code coverage.

3. A high number of RTPs.
4. Poor usage of public methods, mainly in test case

setup.

6.3 Analysis of Code Coverage

Another point worth being qualitatively investigated is the

code coverage achieved by state drivers. Uncovered nodes

and edges are due to the following:

1. Methods not triggered by the state machine tests nor by
oracles (state invariants + contracts): Some of the
public methods are not triggered by state machine
events, actions, or activities, nor by oracles (state
invariants and contracts checks), either directly or
indirectly. These methods do not model function-
ality or behavior, but they implement helper
methods (e.g., toString() methods) or getters.

2. Untested functionality: Some cluster functionalities
are modeled in the state machine but not exercised,
or at least not fully exercised from the state drivers.
For instance, in Cruise Control, the functionality
of “Cruising,” i.e., keeping the speed of the car at a
fixed value, is modeled in the state machine but not
fully exercised by the state drivers. This mainly
depends on the real-time characteristics of the
Cruise Control cluster. In Elevator, the state
machine does not distinguish between moving the
elevator up or down as only one state “moving”
models both behaviors. The state drivers covered

that state, however, only letting the elevator move
up because, when the system is initialized, the
elevator starts its operation from the ground floor,
and therefore moving would always start as moving
up. The constraints of the RTP testing technique on
the generation of paths in the state machine would
not allow the generation of a path in which the
elevator would move up to get to some floor, and
then change direction and move down.

3. Catching exceptions: A number of the exception

handling nodes and edges were not exercised by

state drivers. Only two nodes and edges in this

category are found in Elevator. Testing strategies

dealing with exception coverage are proposed in [63].
4. Unmodeled functionality: The state machine does not

model all cluster functionalities. This is the case for
Elevator, where the concurrent behavior of eleva-

tors is not modeled by the state machine, which

models only one elevator instance.
5. Handling boundary cases and unexpected entries: A

number of nodes and edges handling boundary

cases and unexpected entries have not been ex-

ercised in state drivers. For instance, the code

handling a nonrecognized command in Cruise

Control was not exercised in state drivers.

6.4 Lessons Learned

This section summarizes lessons learned about the combi-

nation of state-based testing and structural testing, based on

both the results of our empirical study and the qualitative

analysis presented earlier in this section. Although some of

our conclusions may seem common wisdom, to the best of

our knowledge this represents the first attempt to investi-

gate them based on qualitative and quantitative empirical

analyses.
The goal of the lessons we summarize below is to

improve fault detection effectiveness and code coverage of

state testing while limiting its cost. Empirical evidence of

the effectiveness of the recommendations provided in this

MOUCHAWRAB ET AL.: ASSESSING, COMPARING, AND COMBINING STATE MACHINE-BASED TESTING AND STRUCTURAL TESTING:... 183

TABLE 13
Mutant Count (Percentage) per Category of Undetected Faults and per Cluster



section and further recommendations on how to improve
state-based testing strategies can be found in [51].

State testing is not a silver bullet as it cannot address all

clusters’ properties. A state machine is not able to represent
all of the properties of a system that would be relevant for
implementing it, and therefore, also for thoroughly testing it.
In particular, it is often not practical to model all real-time
and concurrency properties in a state machine (impact of
cluster properties on mutation scores in Section 5.1.1). Real-
time properties may be difficult to model in a state machine,
especially when other factors affect attributes’ variations
over time (e.g., car speed is determined through a relation-
ship involving air resistance, throttle, and current speed over
time). Also, concurrency adds considerable complexity to
state machine models. These limitations of state testing were
outlined by the results of the qualitative analysis: Section 6.1.2
(items 2, 4, 6, and 7) and Section 6.3 (items 2 and 4). Separating
concerns, i.e., state-dependent behavior versus time-depen-
dent behavior or concurrent behavior, addresses this com-
plexity issue by taking the modeling of real-time and
concurrency properties away from the state machine and
modeling them with other means. Therefore, we consider
that state testing is sufficient by itself only when the state
machine precisely and completely represents the behavior of
a sequential component with no real-time and concurrent
behavior. However, for complex real-time or concurrent
components, a model-based testing strategy should not be
limited to state testing. A complete model-based testing
strategy would include other model-based testing techniques
such as a use-case-based testing technique to cover common
use case scenarios and high-stress use case scenarios not
covered by RTPs. Techniques based on activity diagrams or
sequence diagrams would be required to fully exercise
methods with complex control flow or functionality repre-
senting the cluster’s real-time behavior.

Sneak paths should be covered by state testing. For the
sake of simplification, self-transitions with no actions
are often omitted when modeling state machines. Qualita-
tive analysis (Section 6.1.2—item 2) and the results of the
replication experiments (fault detection analysis in Sec-
tion 5.1.1) proved the importance of including sneak path
testing to improve state testing fault detection effectiveness.
Therefore, it is recommended to complement the original
RTP technique with sneak path testing as it was originally
suggested by Binder [12].

One must reach an appropriate compromise between

highly precise oracles and testing cost. Increasing oracle
precision proved to improve fault detection effectiveness but
also increase the cost of state testing (Section 6.1.2—item 1
and Section 6.2—item 1). Testers might want to reach a
compromise between having a highly precise oracle and
keeping the testing cost down—in terms of resource
consumption and time needed to run the test cases. For
instance, we observed (see Section 6.2—item 2) that RTPs
have common subpaths, and therefore oracle checks for
events (and actions) in these common subpaths are
performed several times (each time the common subpath
appears in a test case). To reduce the testing cost, we
recommend only checking oracles in a common subpath
once. The oracle cost can also be reduced by simplifying

Boolean expressions in oracle checks, i.e., by putting them
in a disjunctive form.

Useful heuristics can be used to reduce the cost of state
testing. State testing cost can also be reduced by reducing
the number of RTPs in the generated transition tree (see
Section 6.2—item 3). To this aim, a depth-first traversal of
the state machine would often generate less, but longer,
RTPs, with a smaller number of method calls in total, than
breadth-first traversal. Common subpaths in depth-first
traversal RTPs are expected to be reduced as well. This is
supported by the examples in [51].

Complementing state-based testing with structural
testing is cost-effective when state machines do not fully
capture the class cluster behavior. As shown in Section 5.4,
if state machine models are very detailed—e.g., as happens
for OrdSet—the cost-effectiveness of complementing state-
based drivers with structural drivers ð�Ms=�CsÞ is rela-
tively low, as the added drivers are not able to exercise a
substantial, additional portion of the source code (not
covered yet by state drivers) and thus detect additional
faults. These additional drivers might be expensive in terms
of source code to be written and of methods to be invoked
(as they require developing precise oracles), thus the overall
cost-effectiveness of complementing state drivers with
structural drivers is generally low. On the other hand, the
cost-effectiveness of complementing state drivers with
structural drivers is higher (measuring the cost in terms of
method calls or drivers’s LOC, see the gray columns in
Table 10) for state machine models when they are not
precise enough to fully capture the class cluster behavior.
This is the case for Cruise Control and Elevator,
where real-time behavior and exceptions are not captured
by the state machine models.

7 CONCLUSIONS

This paper investigated, through a series of controlled
experiments involving human participants (senior, carefully
trained undergraduate students and experienced graduate
students), the fault detection effectiveness and cost of state
testing of class clusters with state-driven behavior. This is of
practical importance as state-driven testing has often been
recommended for complex class clusters in the literature
[13], [15], [20], [23], [54], [56]. To provide a baseline of
comparison, we compared state testing with structural
testing based on code coverage analysis, which can be
considered a common, widely adopted practice for testers.
Furthermore, we investigated whether the two strategies are
complementary in detecting faults and could be combined.
Finally, we investigated factors that may affect the effec-
tiveness of these testing strategies.

Results show—in a context where testers have limited
time and where state machines closely (but realistically)
model the functionalities of the cluster—that testing driven
by code coverage analysis is not less effective at detecting
faults than a well-known strategy for state testing, i.e., the
W-method [24] or round-trip path testing for UML state
machines [12]. However, the two test strategies seem to be
complementary in terms of the faults they are able to detect.
This suggests that they should probably be used together, as
opposed to being considered as alternatives. Since state
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machines are often produced before code and since testing
based on code coverage analysis is notoriously tedious and
time-consuming, it is probably wise to first test class
clusters based on state machines and then complement test
suites based on coverage analysis.

The obtained results also suggest that the effectiveness of
state testing strongly depends on the nature of the software
under test, the state machine model itself, but also the
choice of test oracles. Our investigation shows that state
testing alone is not sufficient to test class clusters with real-
time and concurrent properties. Other model-based testing
techniques would be required for this purpose. For
example, in some cases it may be advisable to complement
the state machine with activity, timing, or sequence
diagrams, describing properties not fully modeled by state
machines (e.g., modeling the way time-dependent class
attributes are updated), and then trying to cover such
diagrams to complement state testing. Our results also
show the benefits of using precise oracles based on contract
assertions and class invariants, as well as the usefulness of
testing illegal and implicit transitions in state machines.
When considering the generation and execution cost of the
test techniques, state testing is found to be more costly than
structural, code coverage testing, mainly because of the
higher cost of its oracles.

The cost-effectiveness of augmenting state drivers with
structural test cases is found to be related to the extent to
which the state machine of the cluster under test closely
captures the cluster’s behavior. A high cost-effectiveness is
observed when the state machine does not fully model the
cluster’s behavior, and in particular, aspects related to
concurrency and time.

This paper is the first to report a thorough and detailed
assessment, comparison, and combination of structural and
state testing, two commonly recommended and used
approaches to systematic testing. Though the above experi-
ments involved trained and competent students as subjects,
to confirm and generalize our results it is necessary to
replicate the experiment on other populations, including
professionals with different levels of experience. Future
work will investigate how state testing can be improved—
even augmented with other models—to detect faults that
have been shown to be detected only by structural drivers
and how its cost can be further decreased.
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