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SUMMARY

A number of coverage criteria have been proposed for testing classes and class clusters modeled with
state machines. Previous research has revealed their limitations in terms of their capability to detect
faults. As these criteria can be considered to execute the control flow structure of the state machine, we
are investigating how data flow information can be used to improve them in the context of UML state
machines. More specifically, we investigate how such data flow analysis can be used to further refine the
selection of a cost-effective test suite among alternative, adequate test suites for a given state machine
criterion. This paper presents a comprehensive methodology to perform data flow analysis of UML state
machines—with a specific focus on identifying the data flow from OCL guard conditions and operation
contracts—and applies it to a widely referenced coverage criterion, the round-trip path (transition tree)
criterion. It reports on two case studies whose results show that data flow information can be used to
select the best transition tree, in terms of cost effectiveness, when more than one satisfies the transition
tree criterion. The results also suggest that different trees are complementary in terms of the data flow
that they exercise, thus, leading to the detection of intersecting but distinct subsets of faults. Copyright ©
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the context of object-oriented (OO) development, the Unified Modelling Language (UML) [1]
has become the de facto standard language for analysing and designing software systems. As the
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most formalized component of UML, state machines’ have long been used as a basis for generating
test data for testing the state-dependent behaviour of a class and larger entities such as class clusters
or subsystems.

A number of papers have proposed coverage criteria for test data selection from UML state
machines, e.g. transition coverage, full predicate coverage, and transition-pair coverage [3], all paths
in transition trees (round-trip paths) [4]. Empirical evaluations have revealed that these criteria,
i.e. the (possibly numerous) test suites that achieve full coverage, have widely varying cost (e.g.
devising and executing test cases) and effectiveness (at finding faults) [5]. The motivation of our
research is, therefore, to propose strategies to refine and improve these criteria by providing a
mechanism to select the best (most cost effective) test suite among alternative adequate test suites
for a given criterion. We especially focus on the transition tree criterion that appears to be a good
compromise between transition coverage and transition-pair coverage, which are, respectively, the
least and the most expensive criteria experimented so far [5].

Researchers have pointed out, based on theoretical considerations and empirical studies, that
data flow testing strategies may be complementary to control flow testing strategies [6,7]. As the
abovementioned state-based criteria can be viewed as exercising the control flow structure of the
state machine, we are interested in complementing them with data flow analysis. Specifically, we
want to identify, among alternative, adequate test suites for a criterion (in our case the transition tree
criterion), the test suite that exercises the most state machine data flow, as we make the assumption
that this test suite has the highest fault detection cost effectiveness. Note that one important difference
with the previously published work on data-flow criteria (e.g. [6,7]) is that we do not intend to use
data flow criteria to build test suites. Rather we want to study the data flow coverage of existing
test suites to select one of them, which is a much less expensive endeavour.

Some attempts have already been made to derive control and data flow criteria on UML state
machines, for example, by analysing uses of variables in guard conditions [7]. These attempts,
however, have important limitations such as the partial analysis of guard conditions by only
accounting for (in)equalities on variables [7]. We address those limitations by thoroughly examining
event/action contracts and guard conditions, that we assume to be written in the Object Constraint
Language (OCL) [8]. OCL is a natural choice as it is the standard formal constraint language in
the context of UML. Furthermore, its use is advised by current and emerging software paradigms
[9], and it is promoted in OO software engineering development methods (e.g. [10]).

In this paper, we propose a comprehensive methodology to conduct data flow analysis of UML
state machines. It involves three steps: (1) automatically transforming a UML state machine into
an event/action flow graph (EAFG) that explicitly specifies the control flow relationships among
the events and actions in the state machine, while accounting for control flow inferred from OCL
postconditions; (2) identifying definitions and uses from operation contracts and guard conditions
with a set of precise, automatable rules; (3) deriving data flow information from the EAFG using
a set of well-known algorithms [11]. Our model-based data flow analysis is therefore automatable,
thereby making the data flow coverage analysis of existing test suites inexpensive. This is particularly
important in the context of UML, model-based testing, an area that is receiving growing interest in
the testing community. Among other things, UML, model-based testing will allow certain testing

INote that the term ‘statechart’ was used up to UML 1.5 [2]. UML 2.0 now uses the term ‘state machine’ [1].
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activities (e.g. test planning) to take place earlier during the development process and rely on the
existing design models.

Using this data flow coverage analysis methodology, we show how to compare the data flow
coverage of different adequate test suites for a given state machine criterion, and we investigate
whether the adequate test suite that exercises the most data flow in a state machine is the most
effective in terms of fault detection. If this is the case, we can conclude that data flow informa-
tion can be used to select an adequate test suite from a set of alternatives. Another objective of
our research is to investigate how such data flow information can be used to improve the state
machine testing criteria. In this paper we selected the transition tree criterion [4] since (1) empirical
results [5] suggest that it is more likely to be useful in practice, and (2) it is a widely refer-
enced and known strategy adapted from the renowned work of Chow [12]. The methodology is
applied on two case studies to empirically investigate how data flow information is related to
the fault detection effectiveness of transition trees, and how the transition tree criterion can be
improved based on the data flow information. Future research will expand this investigation to other
criteria.

In summary, we propose a data flow analysis of UML state machines that extends the previous
work in three important ways: (i) by analysing both guard conditions and operations contracts
to identify data flow, (ii) by thoroughly and comprehensively analysing OCL predicates in those
expressions to discover control and data flow information, and (iii) by accounting for all major
components of the UML state machine notation thereby allowing the application of our work in a
very large number of situations. Our second main contribution is more of a methodological nature.
We propose that the model transformations that lead us to identify the data flow information (i.e.
the three steps discussed earlier) be carefully and precisely specified with metamodels and OCL
rules (between metamodel instances). This way of specifying testing criteria is relevant in the
general context of UML model-based testing and is specifically important in the context of this
paper since without such precise specifications, it will be difficult for others to compare with our
approach and build on it. The third contribution is an empirical evaluation of our approach on two
different, representative case studies. Lastly, our findings on the relation between data flow coverage
and fault detection effectiveness of transition trees lead us to define a new alternative construc-
tion of a transition tree (the round-trip path criterion) that shows to be more effective at finding
faults, with only a small increase in cost when compared with previous transition tree construction
approaches.

The rest of this paper is organized as follows: Section 2 discusses the related work. Section 3
presents our data flow analysis of UML state machines. Section 4 reports on two case studies.
Section 5 presents the conclusions and points out the directions for future work.

Note that this work started with UML 1.5, that is, before the adoption of UML 2.0. But we do not
expect the changes in the UML standard to impact the applicability of our approach or the results
observed on the case studies. This is further discussed in Section 3.5.3.

2. RELATED WORK

This section looks at the state of the art in the fields related to our research. Sections 2.1 and 2.2
review the coverage criteria based on UML state machines that focus on control and data flow
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information, respectively. Section 2.3 presents the approach taken by Zweben and Heym [13] to
derive the data flow information from postconditions. Section 2.4 states more precisely the objective
of this research in the light of existing works.

2.1. Control flow coverage criteria based on UML state machines

Four well-known adequacy criteria for state-based specifications have been defined and we adapt the
definitions provided in [3]: The transition coverage criterion requires that all transitions in the state
machine be tested; the full predicate coverage criterion requires that the test set includes tests that
cause each term of guard conditions to control the value of the guard condition; the transition-pair
coverage criterion requires that each pair of adjacent transitions be tested; the complete sequence
criterion requires that all transition sequences that form a complete practical use of the system be
tested.

The generation of test paths for the first three abovementioned criteria can be automated. As for
the complete sequence criterion, authors in [3] argue that since the number of possible transition
sequences may be infinite in many realistic applications, the selection of meaningful sequences of
transitions depends on the experience and judgment of test engineers, and hence cannot be fully
automated. The W-method, originally proposed in [12], is however a solution intended to automate
the testing of transition sequences in a systematic and cost-effective way. The W-method was
focused on finite state machines with no hierarchy or guard conditions on transitions, and Binder
adapted it to UML state machines [4]. This method traverses the state machine to build a transition
tree (see [4] for details) and the set of paths (from the tree root to a tree leaf) represent test cases.
Binder also proposes an adaptation of the traversing algorithm to account for guard conditions
in UML state machines [4]. As the state machine can be traversed either depth or breadth first,
different tree structures can be generated, but are all considered equivalent in the sense that they
satisfy the criterion.

It is worth mentioning that the criteria discussed so far are based on flat state machines without
hierarchical or concurrent structures, though the authors in [14] generate test cases directly from
hierarchical state machines®. Steps for flattening state machines are provided in [7], though the
authors do not address the transformation of OCL expressions! and do not account for the new
modelling capabilities of UML 2.0 (e.g. the possibility to reuse state machines [15]).

As one of the most established state-based testing strategies, the W-method has been widely used
in protocol testing. Several empirical studies [5,16], however, have revealed some limitations of the
strategy in the context of testing software components: Certain kinds of faults cannot be detected
by the strategy, suggesting that black-box testing, such as category-partition [17], can play a role
complementary to state-based testing, though a manual and expensive one [16]; the round-trip path
strategy appears to be a good compromise between transition coverage and transition-pair coverage
(or full predicate) in terms of cost-effectiveness, provided that there exists a mechanism to select

$The authors adapt a probabilistic method, called statistical functional testing, to the generation of test cases for the all
transition criterion. They do not consider the data flow involved in state machines and their work is thus not further
described in this paper.

TFor example, the OCL constraints that refer to composite states in a hierarchical state machine need to be transformed so
that the composite states are replaced by their substates.
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effective transition trees when alternative trees are possible [5]. Indeed, alternative test suites from
adequate transition trees seem to exhibit significantly different fault detection effectiveness.

2.2. Data flow coverage criteria based on UML state machines

State machine-based criteria are based on the control flow of finite state machines or UML state
machines, and have been complemented with data flow criteria [6,18] which examine the associa-
tions between the definition of a variable and its uses. To that aim, the authors in [7] first transform
the state machine into an Extended Finite State Machine (EFSM) and then transform the EFSM
into a flow graph. The authors consider a variable as being defined when the variable is assigned a
value in an assignment action, and a variable as being used when it is referenced in an assignment
action or in a guard condition. Though a significant step forward, this approach is not complete as
definitions and uses caused by events are ignored (e.g. a call event may assign a value to a vari-
able, as described in the postcondition of the call event), and only assignment actions are handled
whereas UML state machines may contain up to four kinds of events and eight kinds of actions.

To capture a complete set of variable definitions and uses in UML state machines, one can
examine the pre and postconditions of events and actions as well as guard conditions. The work
done by Zweben and Heym [13], which focuses on testing ADT module specifications, was one
of the earliest attempts to examine function postconditions to determine variable definitions and
uses. This work is very relevant to our objectives but was performed in a very different context, as
described next.

2.3. Deriving data flow information from postconditions

Zweben and Heym [13] focused on applying control flow and data flow testing criteria to ADT
modules which are specified in terms of operation pre and postconditions. Edwards [19] extended
it to OO software components, where a component has a well-defined interface that is clearly
distinguishable from its implementation together with a formal description of its intended behaviour
(e.g. a class can be considered a component). In both cases, the approach involves generating a
specification flow graph to depict the operations of a component and the control flow relationships
between them. Each node in the graph represents one operation, a directed edge from node i to
node j indicates that the operation in node j may be invoked following the operation in node i.

Zweben and Heym [13] determined whether there is a definition or a use of a variable by
examining the postcondition of an operation, based on the assumption that a postcondition describes
whether a variable is changed or not during the operation, e.g. whether the postcondition contains
a predicate of the form x =--- indicating a definition of variable x. (The same strategy is used in
[19].) Definitions and uses are derived from the postconditions of each node according to a set
of rules [13]. Then program-based criteria such as all definitions, all uses, and all du paths were
applied to the ADT module.

Though very relevant for ADT modules specified by postconditions, this approach has three
limitations if one wants to apply it in the context of UML state machines and OCL. First, the
precondition of an operation is not taken into account. Second, this approach is not based on
state machines or any other state model. Third, the analysis of postconditions to discover uses and
definition is incomplete.
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Table I. Summary of contributions and limitations of existing works.

Existing UML Operation Analysis of

works notation Guard Event Action contract guards or contracts

[7] Yes Yes No Only assignment No (In)Equalities, assignments
[13,19] No N/A N/A  N/A Only postcondition  Assignments

2.4. Detailed objectives

As previously discussed, the overall objective of our research is to use data flow analysis to refine and
improve the test criteria defined on UML state machines with OCL guard conditions and contract
expressions for events and actions. Although our approach can apply to any criterion yielding
alternative transition sequences, we focus in the current paper on the transition tree criterion since,
as discussed above, previous research has shown that it is a reasonable compromise in terms of cost
effectiveness. However, when more than one transition tree can be obtained by traversing the state
machine, it is then relevant to explore the relationship between the fault detection effectiveness of
a tree and the data flow it exercises. In other words, we want to investigate whether the transition
tree that exercises the most data flow is the most effective in terms of fault detection. If this is the
case, we can conclude that data flow information can be used to select a tree which is more likely
to detect a larger number of faults.

To summarize, three different pieces of work are relevant to our objectives, as discussed in
Sections 2.2 and 2.3. Their contributions and limitations are summarized in Table I. Most impor-
tantly, the existing strategies do not fully exploit the information available in guard conditions and
operation contracts, either by avoiding some of them in the analysis (e.g. only postconditions are
used in [13,19]) or by employing a rudimentary analysis of the predicates they contain (e.g. limited
to assignment actions in [7]). Our intent is to extend (with a more extensive support of the UML
notation and a more extensive analysis of OCL predicates) and combine them for the purpose of
improving the existing criteria based on UML state machines, with a focus on the transition tree
criterion in this paper.

3. DATA FLOW ANALYSIS OF UML STATE MACHINES

Our data flow analysis of UML state machines consists of three steps. The first step (Section 3.1)
is to transform a UML state machine into an EAFG to facilitate subsequent analysis. The trans-
formation also relies on the analysis of postconditions, assumed to be written in OCL, to infer the
control flow of events/actions. The purpose is to explicitly represent the control flow relationship
among the events and actions of UML state machines. In the EAFG, nodes represent what executes
whereas edges indicate (alternative) flows of execution and under which conditions those flows
execute. Operation preconditions and transition guard conditions are associated with edges, and
postconditions are associated with nodes.

The elements composing the EAFG (node, edge, condition, etc.) are formalized under the form
of a metamodel (Section 3.2). This metamodel (i) summarizes in a concise way the structure of
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the EAFG, which is important for future extensions or comparisons with our work and (ii) will
facilitate the formal definition of data flow identification rules.

By analysing the OCL expressions associated with the nodes and edges of the EAFG, Section 3.3
formally specifies the rules that classify the model elements that appear in those expressions as defi-
nitions, c-uses, and p-uses. Those rule specifications are OCL constraints on the EAFG metamodel.
This formalization phase is important for different reasons. First, using these OCL expressions, we
ensure that our EAFG metamodel contains the information (attributes, associations, etc.) required
to derive the data flow information. Second, these OCL rules can be regarded as a precise speci-
fication of any tool that implements our approach. Lastly, such a specification is important if we
want other researchers and practitioners to precisely understand our approach, replicate our work
or build on it. Section 3.4 discusses the notions of definition—use pairs and definition clear paths,
which are derived from an EAFG by using a well-established algorithms proposed for compiler
optimization [11]. Section 3.5 provides additional discussions on the construction of an EAFG.
Section 3.6 applies the approach to the transition tree criterion.

We assume that the state machines have already been flattened and OCL constraints have been
transformed accordingly. Such a process, however, can be fully automated, and the resultant flattened
state machine can be regarded as an intermediate form, being used by the test case generation
algorithms only, rather than being visualized by modelers or testers. Additionally, we assume that
the different UML views, including the state machine view and the OCL constraints view, are
consistent (e.g. there is no semantic error between OCL and state diagrams). Ensuring that UML
views are consistent is an interesting problem but is out of the scope of this paper.

3.1. Transforming UML state machines into EAFGs

Our analysis of data flow information in state machines is based on an EAFG that is a directed graph
where nodes denote postconditions of events or actions in the state machine, and edges indicate,
under the form of predicates, the conditions under which the successor node may be invoked after
the predecessor node. Section 3.1.1 presents some initial principles underlying our EAFG. Given
those principles, Section 3.1.2 shows how we account for the complete UML state machine notation,
and Section 3.1.3 shows how we account for additional control flow as suggested by event/action
postconditions. Section 3.1.4 summarizes the differences between our flow graph and the ones used
in the literature.

3.1.1. Principles of an EAFG

First, the state machine needs to be modified to facilitate further analysis. Entry and exit actions
are moved to transitions, and internal transitions are promoted to external transitions according to
standard rules [20]. Figure 1 (parts (a) and (b)) shows an example of such a transformation for state
s4: its entry (resp. exit) action is moved to incoming (resp. outgoing) transitions. The figure also
shows how an internal transition is transformed (i.e. in state s4). This transformation is performed
for analysis purposes only and the intermediate state machine (Figure 1(b)) does not need to be
visualized by the tester.

The intent of our EAFG is to eventually associate p-uses with edges and c-uses as well as
definitions with nodes, similarly to standard control and data flow graphs [21]. The predicate for
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e5/ab
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pre(a6)

pre
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| post(e3) (a2) post(a2)| | post(a6)

(a) (b) ©

Figure 1. (a) State machine; (b) transformed state machine; and (c) corresponding EAFG.

an edge leading to an event’s postcondition is the conjunction of the event precondition and the
guard condition of the corresponding transition: the result described in the event’s postcondition is
obtained when both the guard and the event’s precondition are true. Since actions do not have guard
conditions, the incoming edges for actions are only associated with preconditions. Since an action
on a transition is executed when the transition fires, the edge labelled by the action’s precondition
links the event’s postcondition’s node to the action’s postcondition’s node. When more than one
action appears in a transition (i.e. there is an action sequence), we analyse them according to their
written order since they are usually assumed to be independent and their order therefore does not
matter [20]. Each action in an action sequence in a state machine is denoted by a separate node in
the EAFG, and is connected to other actions according to their written order. Figure 1(b) shows
two examples of action sequence in the state machine: transition from s2 to s3, transition from
s5 to s4. The corresponding nodes and edges in the EAFG of Figure 1(c) are highlighted in light
grey. In Figure 1(c), pre(x) and post(x) denote the pre and postconditions of event (or action) x,
respectively.

When an event triggers multiple transitions, each occurrence of the event is represented by a
separate node in the EAFG. In Figure 1(b), event e2 triggers two transitions: from s3 to s5 and from
s2 to s4. In the corresponding EAFG, post(e2) occurs twice (highlighted in dark grey). Note that
an EAFG has a start node, and an end node when the state machine has a final state. Furthermore,
an EAFG can have cycles when there are cycles in the state machine, as illustrated in Figure 1:
cycles in the state machine involving events e2 and e4 (states s3 and s5); nodes labeled post(e2)
and post(e4) are in a cycle with edges pre(e2) and pre(e4) in the EAFG (highlighted with a dotted
line ellipse).

Two nodes in Figure 1(c) do not show any postconditions (empty nodes on the right of the
figure). One is due to the change event from state s4 to the final state (Figure 1(a)), which is
further discussed in the next section. The other illustrates the transformation of self transitions:
internal transition e5/a6 in state s4 in Figure 1(a) has been promoted to a regular (self) transition
in Figure 1(b).
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Table II. Mapping between UML state machine elements and EAFG.

UML model element

Signal event

state1 state 2

I

- EAFG mappin
Name Notation ppIng
aCallEvent pre(aCallEvent)
Call event post(aCallEvent)
signalEvent )

pre(signalEvent
post(signalEvent)

Change event

when(a boolean expression)
state1 state2

i

a boolean expression

Time event

a time expression

state1 state2

I

a time expression

Call action

vent/action

pre(action)

post(action)

Send action

vent/sendAction
state

@
@
=3
@
N

pre(actionHandler)
post(actionHandler)

vent/assignmentAction

state1 state2

I"

Assignment action post(assignmentAction)

pre(constructor)
post(constructor)

pre(destructor)
post(destructor)

3.1.2.  Mapping of events, actions, and activities to the EAFG

vent/new ClassName

state1 state2

I"

Create action

vent/obj.destroy()
state2

Iﬂ

Destroy action state

A UML state machine may contain four kinds of events and eight kinds of actions [20]. Table II
summarizes how each event and action kind is transformed into elements of an EAFG, keeping in
mind that, as mentioned earlier, nodes of the EAFG represent things that are performed (executed)
whereas edges of the EAFG represent the flow and under which conditions those things are
performed. The reader interested in a more complete discussion of the mapping is referred to [22].

The discussion in Section 3.1.1 addressed call events and call actions. A call event becomes a
node holding the event’s postcondition and an edge holding the event’s precondition (possibly with
a guard condition). In the case of a signal event, ultimately, the event is realized by an operation,
usually called the event handler. The transformation is then similar to a call event, using the event
handler!. A change event or a time event specifies a condition only and is thus transformed into a
node holding an empty postcondition and an edge holding that condition.

As shown in Section 3.1.1, a call action becomes a node holding the action’s postcondition
and an edge holding the action’s precondition**. A send action denotes non-determinism but, to
account for as many data flow interactions as possible, we assume that the signal will always be

IThe handler can be an operation, with the same name as the signal, declared in the class or interface that accepts the
signal (such an operation has the stereotype << signal >>) [23]. For our purpose, this is equivalent to a call event (the
operation called is the handler). (This case is represented in Table II.) Another solution is to consider that the handler of
the signal event is the action triggered by the transition [20]. For our purpose, this is equivalent to a call event where the
pre and postconditions of the operation are empty.

**Note that the case when the target of the call action is a set of objects does not make a difference since we account for
all potential data flows: whether there is one target object or ten does not change the potential data flows.
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received and processed by the receiver handler. A send action is therefore transformed like a call
action, using the handler. An assignment action is transformed like a call action since it can be
considered as an action with an empty precondition and a postcondition (the assignment) that is the
assignment itself in which the @pre (OCL) postfix is placed after each model element occurring
on the right-hand side of the assignment expression. For a create (resp. destroy) action, we use the
pre and postconditions of constructor (resp. destructor).

Note that a terminate action results in the self-destruction of the owning object of the state
machines [1]. Since the owning object does not exit after a terminate action, we are not interested in
such kind of actions. We do not need to consider return actions since a return action simply returns the
control to the caller and no flow of data is involved; uninterpreted actions are not accounted for either
because their semantics can only be completely specified by a specific implementation language.

An activity is an ongoing non-atomic execution while an object is in a state [20]. An activity,
either a single activity, a sequence of activities, or a sequence of actions, either completes its
execution and then a completion event is sent, or is interrupted by the arrival of an event. Since we
cannot foresee the occurrence of an event and thus when the activity will be interrupted, we have to
model every possible interruption in the EAFG. If the sequence has n actions and can be interrupted
by the firing of m transitions, this translates into (n— 1)*m possible interruptions. Considering that
do transitions normally represent, according to recommended practice, ongoing activities that do
not change the state and do not participate in any data flow within the state machine, we ignore
them in the construction of the EAFG.

3.1.3.  Accounting for OCL expressions

If we assume, like for any other logical expression expressed in a conjunctive normal form, that
OCL postconditions are composed of conjuncts, those conjuncts can contain connectives or, Xor,
implies and if-then-else. We further decompose the conjuncts into terms, that is, OCL
expressions without connectives. For instance, the postcondition in Figure 3(a) has two conjuncts
and four terms. This decomposition is used to distinguish between compound nodes and basic nodes
in the EAFG. An operation postcondition is associated with a compound node, and a compound node
is composed of basic nodes, among which are a start node and an end node. The sequence of basic
nodes, linked by edges in a compound node, corresponds to the order of appearance of the corre-
sponding conjuncts in the OCL postcondition of the compound node: the starting (resp. ending) basic
node for the compound node corresponds to the first (resp. last) conjunct in the OCL expression.
If a conjunct contains any of the four connectives or, xor, implies and if-then-else,
the corresponding basic node is further decomposed according to the four templates in Figure 2.
In these templates, nodes are associated with terms connected by xor or or operators, terms
in the then or else parts of if-then-else operations, or on the right part of implies
expressions. The predicate parts of if-then-else or implies expressions are associated with
edges. In case those nodes also contain one or more of the four connectives, they are further
decomposed using the same templatesﬁ. The rationale is that those operators are used in OCL
expressions to specify alternative operation results, and therefore suggest some control flow in the

Tt For instance, with postcondition 1f ¢ then a or b else true, first the 1f-then-else is decomposed and then a
or b is also decomposed.
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- start

W|:L !
| att1=1 | att2 2 |att1=1 and att2=2 |
— % '
(a)
att1>0 - ot att1=0 att1>0 start
not att1>0
| atto=1 | | atto=2 |
- end end

© (d)

Figure 2. Templates for connectives: (a) template for the xor operator (post: attl =1 xor att2=2); (b) template
for the or operator (post: attl =1 or att2=2); (c) template for the if-then-else operator (post: if att1>0 then
att2=2 else att2=1); and (d) template for the implies operator (post: attl>0 implies att2 =2).

anOperation ()
pre: .. \l/pre(anOperation)
post:

if ( Conjunct one post(anOperation)

: self.a@pre > self.b Terml not(Term1)
then Term1

self.b = self.a / self.c +

(self.a@pre - self.d) / self.e Term2 | Term2 | | Term3 |
else
endif end

and Conjunct two pre(nextEvent)
self.state =#StateA Term4
post(nextEvent)
(@) (®)

Figure 3. Example of terms in a postcondition (a), with corresponding EAFG (b).

operation execution. This is obvious for operators implies and if-then-else: in addition to
the alternative results, they state the conditions under which those results are obtained (Boolean
expression on the left of the implies operator, predicate in the 1f-then-else expression).
For instance, in postcondition att1=1 implies att2=2, att2 is given a value under a specific
condition: attl=1. Operators or and xor can also be used to state alternative results, though,
not necessarily along with the conditions under which those results are obtained. For instance,
postcondition state=#0n xor state=#0f f states that the operation may result in two different
states, without providing a condition that would lead to #0n or #O£f £. Although this postcondition
seems underspecified, we have to account for such situations in practice. The level of details of
OCL expressions in postconditions is further discussed in Section 3.5.1.

As an example, the compound node for anOperation () (Figure 3(a)) is shown in Figure 3(b).
For the sake of brevity, the terms’ OCL expressions have been replaced by term numbers.

Note that the Boolean expression on the left of an implies expression and the predicate part
of an if-then-else expression are always considered as one term even when they contain
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disjuncts or i f-then-else or implies expressions. The reason is that we consider that those
OCL expressions only contain uses of model elements (Section 3.3) and do not suggest any control
flow during the operation’s execution: if a model element is constrained in the Boolean expression
on the left of the implies expression or the predicate part of the 1 f-then-else expression, it
is likely because that element is used in the operation. Definitions only appear in the then or else
parts of if-then-else operations or on the right part of the implies expressions. Although
a good specification practice that should be encouraged, this however constitutes an assumption as
a designer is allowed by the OCL syntax to describe how a model element is set a value in the
predicate part of an if-then-else expression, thus, suggesting a definition in that predicate.
This limitation will be further investigated in future work.

3.1.4. Comparison with flow graphs in the literature

Our EAFG control flow graph fundamentally differs from flow graphs described in the related work
(i.e. [7,13,19]) in several ways. The first main difference is the sources of information used to build
the flow graph: operation contracts [13,19], and finite state machines [7], as opposed to a UML state
machine. The flow graphs also differ in structure: no notion of compound node to account for control
flow possibly suggested in postconditions [7,13,19]; state and transitions become nodes in [7] and
edges show the possible flow of control between the nodes as specified by states changes through
transitions. A third important difference is that we build our flow graph with full suppor‘[ii for the
UML notation, which is now the de facto standard for the analysis and design of OO software
systems.

3.2. EAFG metamodel

We formalize the structure and well formedness of EAFGs as described in the previous section by
means of the metamodel in Figure 4. The metamodel defines precisely the form an EAFG can take,
i.e. how both control and data flow from a state machine are represented. Metaclasses for the data
flow aspects are highlighted in Figure 4 and discussed next.

An EAFG consists of Nodes and Edges. ANode is either a BasicNode or a CompoundNode.
A CompoundNode can be an EventNode, ActionNode, or ActivityNode. A
CompoundNode consists of a set of basic nodes (rolename theNodes), among which are a start
BasicNode and an end BasicNode®'. Nodes have predecessors and successors. Each Node
has zero or more Incoming edges and zero or more Outgoing edges, whereas each Edge
has one Head node and one Tail node. A Node contains zero or more Terms depending on
whether it is a basic or compound node and the complexity of the postcondition associated with
the compound node. An Edge may contain zero or one Precondition and zero or one Guard.
Postcondition, Precondition, and Guard are subclasses of abstract class Constraint
which is associated with Terms.

1 With a few minor exceptions that we discussed earlier, and that we showed do not introduce practical limitations to our
approach.

$%1n the context of CompoundNode, we have: self.theNodes->includesAll (self.start->union(self.
end)) .
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Typel | Iterative CollectionTypeOperation | | BasicTypeOperation |
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DataFlow Value
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1
Postcondition l—

Term

Link

isFrameRule:Boolean

*

className:String

. *

Attribute predecessor head incoming
className:String MedlslE 2 * Node tai outg;oing Edge [
Parameter successor 1 :

kind: enum{in, out, inout, return} ZF

opName:String [ 0.1 |
] EventNode

EndNode > BasicNode start 0.1 compoundNode

Ewemmm— ActivityNode

end 0.1
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Figure 4. EAFG metamodel.

As mentioned previously, OCL expressions are assumed to be in conjunctive normal form (or
transformed into it) and are decomposed into conjuncts terms, that is, OCL expressions without
connectives. A Termis associated with ModelElements and Operations. A ModelElement
refers to the Attributes and Links of an instance of a class, and Parameters of a context
operation. (These are the only elements in OCL terms since, as further discussed in Section 3.3.1,
all let expressions and query operations are replaced with their corresponding definitions.)
A term can also contain operations which can be either operations on OCL basic types or
OCL collection types (classes CollectionTypeOperation and BasicTypeOperation,
respectively), which is further classified into iterative and non-iterative operations (e.g. operation
size () vs operation forAll ()). NonIterative collection operations are of two different
types that we further discuss in Section 3.3.5. An OCL collection operation takes the form
collection->op (parameter). The collection of a CollectionTypeOperation
refers to the Link (instance of association) of an instance of a class. The ModelElements
involved in the parameter of a CollectionTypeOperation can be the parameters of the
context operation or can refer to the links and attributes of the context object. For instance, in the
OCL expression self.roleName->includes (obj), self.roleName is an instance of
Link, includes is an instance of a subclass of CollectionTypeOperation, and obj is
an instance of ModelElement involved in the parameter of the collection operation.

Association class ValueInTerm is associated with the Values of a model element in a Term.
The kind of Value appearing in a term can be either a PrevValue or an Aftervalue. A
prevalue is the value of a model element at the start of an operation, whereas an aftervalue is
the value of a model element at the end of an operation. Pre-values appear in precondition, and
postcondition when postfixed by symbol @pre, and postvalues typically appear in postconditions.
Both the Prevalue and AfterValue of a model element may occur in a Term, thus, the
multiplicity of 1. .2. Note that in case the Prevalue (or Aftervalue) of the same model
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element appears several times in a term, only one instance of Value is created. For example,
in the OCL expression attl=f (att2@pre)+g(att2@pre), the prevalue of att2 occurs
twice, but only one instance of Value for att2 (with kind=#PreValue) is created for this
term. PreValue and AfterValue correspond to different DataF1ow informations. The kinds
of DataFlow information are Def, Cuse, Puse, and Null (though not standard data flow
information, Null will be used to specify that a value is not involved in any data flow).

An in parameter can always be considered as a prevalue, whereas an out (or result) parameter can
always be considered an aftervalue. This is specified as an OCL constraint on our EAFG metamodel:

Context : Parameter

self.kind=#in implies self.valueInTerm.value->forAll (kind = #Prevalue)
and

self.kind=#out or self.kind=#result implies self.valueInTerm.value
->forAll (kind = #AfterValue)

3.3. Determining definitions and uses in edges and nodes

In this section we specify, using OCL rules on our metamodel, how definitions and uses of model
elements can be identified from OCL expressions. Section 3.3.1 discusses how OCL expressions
are transformed to remove query operations and local definitions. The following sections use our
EAFG metamodel to formally define the rules in OCL for determining definitions and uses in
nodes and edges. Section 3.3.2 discusses edges, whereas Sections 3.3.3 and 3.3.4 discuss nodes,
i.e. OCL expressions in postconditions that are not in the predicate part of an i f-then-else
expression or on the left part of an implies expression (Section 3.1.3). Specifically, a term in a
node (i.e. in a postcondition) can describe what is changed during the operation, as well as what
is not changed and remains true after the operation, which are referred to as change specifications
and frame rules [24], respectively. Section 3.3.3 discusses frame rules and Section 3.3.4 discusses
change specifications. These rules are sufficient when an OCL expression does not contain any
collection operation. However, when collection operations are involved, these rules need to be
extended, a topic addressed in Section 3.3.5. Note that the rules presented in Sections 3.3.2 to 3.3.5
for identifying definition and uses can be fully automated (through parsing of OCL expressions).
These sections focus on the main principles and more details, especially with concrete and/or
abstract examples illustrating each situation, are available in [22].

3.3.1.  Query operations and local definitions

Since OCL is a declarative language, OCL expressions only contain query operations, that is,
operations that do not have any impact on the system state [25]. A query operation simply returns
a value and its postcondition describes how that value is computed using the keyword result.
Since we are attempting to reveal all the data flow information contained in postconditions, we
need to replace every occurrence of a query operation with the expression it assigns to result in
its postcondition.

Furthermore, 1et expressions in OCL allow modelers to define a variable or operation that can
be used (possibly several times) in a constraint [8]. To simplify the analysis, every occurrence of
variables or operations defined by 1et expressions is replaced by the defining expression.
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Local variables may also be defined and used in a transition’s action sequence [26]. For instance,
a transition can trigger the following two actions in sequence: v=opl () and op2 (v). In such
a case, every use of the variable is replaced with the result part of the postcondition of the
operation that defines it. In our example, v is replaced with the result part of the postcondition
of opl ().

3.3.2.  Model elements in edges

Recall that an edge in an EAFG is possibly labelled with a precondition, a guard, the Boolean
expression on the left of the implies operator, or the predicate part of an if-then-else
expression (Section 3.1.3). Since these constraints are typically implemented as conditional state-
ments, the model elements that appear in an edge are classified as p-uses, whatever the model
element type (link, attribute, or parameter), which is stated in Rule 1 below. For example, in an OCL
precondition of the form self.state = #idle, self.state is p-used. This also applies to
parts of postconditions that label edges. For example, in the postcondition of Figure 3, the prevalue
of self.ain Terml is a p-use of self.a. Similarly, the aftervalue of self.b (in Terml) is
considered a p-use.

Rule 1 Model elements in edges
context Edge
self.term.valueInTerm.value.dataFlow->forall (kind = #Puse)

3.3.3.  Frame rules in nodes

A frame rule specifies what does not change during an operation [24]. A term T, is a frame rule if
either of the following two conditions holds:

1 T takes the format aModelElement = aModelElement@pre.

2 T takes the format coll->aCollectionOperation = coll@pre->
aCollectionOperation, specifying that whole or part (as specified by collection
operation aCollectionOperation) of collection coll is not changed by the operation.

Because frame rules specify what does not change, they do not really provide any data flow
information: if a variable or link is defined or used during an operation, a change specification will
certainly assert such information. Therefore, frame rules do not contain any definition or use, which
is stated in Rule 2 below. Frame rules may however help the identification of definitions and uses
in postconditions as discussed next.

Rule 2 Frame rules in nodes
context BasicNode
self.term.isFrameRule = true
implies self.term.valueInTerm.value.dataFlow->forAll (kind = #Null)

3.3.4. Change specifications in nodes

A change specification can contain both pre-values (Section 3.3.4.1) and after-values (Section
3.3.4.2) of model elements.
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3.3.4.1. Pre-values in nodes. The occurrence of a prevalue in a change specification is considered
to be a c-use, as this states that the operation uses the value to set another element’s value. For
example, in the postcondition of Figure 3, Term2 shows that attribute self.b’s after-value
is changed using self .a’spre-value. The occurrence of self.a@preisac-useof self.a.

Rule 3 below states that the pre-values of model elements appearing in a node are considered to
be c-uses provided that the terms in which these pre-values occur are not frame rules.

Rule 3 Pre-values in nodes
context BasicNode
self.term.isFrameRule = false
implies self.term.valueInTerm.value->select (kind = #PreValue) .dataFlow
->forAll (kind = #Cuse)

Since an in parameter in a node can always be considered to be a pre-value, Rule 3 applies,
that is, an in parameter in a node is a c-use. Similarly, the pre-value of an inout parameter in
a node is a c-use (Rule 3 applies). out and return parameters in nodes are after-values, which
are discussed next.

3.3.4.2. After-values in nodes. Two cases can be identified when an after-value, say v, occurs in a
node (i.e. in a term):

Case I: v is the only after-value in a term. In this case, other values in the term are either literals,
e.g. v=1, or pre-values of model elements, e.g. v=u@pre+1. Since the term shows the change of
v during the operation, v is a definition.

Case 2: v is not the only after-value in a term ¢#;. If the intent of the designer is to specify
that v is not changed by the operation (i.e. the complete postcondition), then there must be
a frame rule with respect to v in another term #, (otherwise, the term of the postcondition is
ambiguous!!). Alternatively, if the intent is to specify that v is changed, there is a change specifi-
cation in a term #, that defines v. Therefore, if v appears in another term #, that is either a frame
rule or a change specification for v, then the occurrence of v in term #; is a c-use of v; otherwise,
term ¢ is a change specification that defines v. When looking for the potential frame rule or change
specification for v, we need to focus on the control flow paths in the compound node that involve
the term of interest since the operation may modify v in some of those paths, and leave v unchanged
in other paths.

Below are three examples. In the postcondition of Op4 (), Term?2 has two after-values, self.a
and self.b. self.b also appears in Terml, which is a frame rule. Therefore, in Term2,
self.bis a c-use whereas self.a is a definition. In the postcondition of Op5 (), self.bis
defined in Term1. Hence, its appearance in Term? is again a c-use and the occurrence of self.a
is again a definition. In the postcondition of Op6 (), Terml (resp. Term?2) is a frame rule for
a (resp. b). In this particular case, the intent of the designer was to specify that depending on
condition self . c whether the value of a is changed or not. It is changed when self . c is false,
in which case a is set a value using b: in Term3, self.a is a definition and self.b is a c-use.
In such cases where the control flow of the postcondition is complex, the search for a frame rule

1 For instance, a postcondition that reads self.a=self.b+1 is ambiguous since we cannot decide whether a and b are
defined or used. Instead, if the postcondition reads self.a=self.a@pre and self.a=self.b+1 (the first part of
the conjunct being a frame rule for a), we know a is not changed but b is changed in the second conjunct.
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involving v when v is not the only after-value in a term is limited to a consecutive set of terms,
e.g. within the then or else block of an 1 f-then-else statement (a similar search can be
made in case of implies, or, and xor statements). Such a simplification is necessary to avoid
complex data flow analysis in each feasible control flow path of the postcondition. This limitation
is further discussed below and could be addressed by more complex analyses in the future if we
find it practically justifiable.

Op4 ()
post: gggé%
ziéf.b = self.b@pre Terml if (self.c) then
self.a = self.b + 1 Term? self.a=self.alpre Terml
- . else
ggzé? self.b = self.b@pre Term2
: _ and
iiéf'b = self.c@pre Terml self.a = self.b + 1 Term3
self.a = self.b + 1 Term2 endif

Rule 4 summarizes the cases when an after-value of a model element appears in a node. Operation
nodesInBlock () of class BasicNode returns the set of BasicNode instances (i.e. terms)
that belong to the same block of consecutive BasicNodes of an if-then-else, implies,
or, xor statement (recall the templates of Figure 2) as the BasicNode instance on which the
operation is called (e.g. when called on the BasicNode for Term3 in Op6 () ’s postcondition,
the operation returns Term2 and Term3 but not Terml). £Term (line 1) refers to all the terms
of the same block (as self) that are frame rules, and nfTerm (line 2) refers to all the terms of
the same block (as self) that are not frame rules. dval (line 3) refers to those values in nfTerm
that are definitions. Lines 8 and 9 correspond to the case when v is the only after-value in a term
and v is identified as a definition. Lines 11-19 correspond to the case when v is not the only
after-value in a term: v is c-used if it appears in a frame rule of the compound node (lines 13 and
14), or defined in another term in the compound node (lines 15 and 16), otherwise it is a definition
(line 17).

Rule 4 After-values in nodes
context BasicNode
1 let fTerm:Set(Term)=self.nodesInBlock()->select(isFrameRule=true)
2 let nfTerm:Set (Term)=self.nodesInBlock()->select (isFrameRule=false)
3 let dval:Set (Value)=nfTerm.valueInTerm.value->select (dataflow.kind =#Def)
4 in
5 self.term.isFrameRule = false
6 implies (
7 self.term.valueInTerm.value->select (kind=#AftervValue) ->forAll (v:Value|
8 self.term.valueInTerm.value->select (kind = #AftervValue) ->size=1
9 implies v.dataFlow.kind = #Def
10 and
11 self.term.valueInTerm.value->select (kind = #AftervValue) ->size>1
12 implies
13 if fTerm.valueInTerm.value->includes (v)
14 then v.dataFlow.kind = #Cuse
15 else if dval-s>includes (v)
16 then v.dataFlow.kind = #Cuse
17 else v.dataflow.kind = #Def
18 endif
19 endif
20 )
21 )
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The search of frame rules in a block, as performed by operation nodesInBlock (), is limited
as we do not consider nested conditional structures (e.g. nested 1 f-then-else statements). This
is admittedly a restriction since by doing so we may not discover all the c-uses and definitions.
However, we consider this to be a reasonable approximation since (1) nested conditional structures
rarely occur in postconditions (e.g. in the two representative case studies we discuss in Section 4,
no such situation was encountered) and (2) we believe that when nested conditional statements are
used, the terms that would be used to identify definitions following our approach—i.e. a term with
more than one after-value and term(s) with frame rule(s)—would most likely appear in the same
block instead of different blocks (e.g. the frame rule in one block and the term with multiple after
values in another block).

3.3.5.  Contracts with collection operations

A collection can be defined explicitly by a literal (e.g. Set {1, 2, 3, 5}), obtained by navigation
(e.g. self.roleName), or operations on collections (e.g. c1->union(c2) where c1 and c2
are two collections) [8]. Collection operations can be broadly divided into two categories: Iterative
collection operations (Section 3.3.5.2) and non-iterative collection operations (Section 3.3.5.1).
Iterative collection operations in this work refer to those operations that iterate over collection
elements and take an OclExpression as parameter. We make this distinction because iterative
and non-iterative collection operations involve different data flow information and hence require
separate rules.

3.3.5.1. Non-iterative collection operations. Some non-iterative collections require a parameter
(either a pre- or after-value) that does not suggest any change to the model element(s) involved in the
parameter. These parameters are simply used when evaluating the collection operation. Therefore,
when the collection operation appears in an edge, parameters are p-used and Rule 1 applies, and
when it appears in a node, parameters are c-used. In this latter case, a new rule, Rule 5 below, is
required since Rule 3 only applies to pre-values.

Rule 5 Parameters of non-iterative collection operations in nodes
context BasicNode
self.term.isFrameRule = false
implies self.term.operation->select (o:Operation|o.oclIsTypeOf (NonIterative))
.involvedInOpParam.dataflow->forAll (d:DataFlow|d.kind = #Cuse)

The collection, on which the non-iterative collection operation is used, can be involved in some
data flow. When a non-iterative collection operation appears in an edge, the collection is considered
a p-use (Rule 1). When the pre-value of the collection appears in a node, it is considered a c-use,
provided that the term in which it occurs is not a frame rule: Rule 2, and Rule 3 apply.

When the after-value of the collection appears in a node, we need to distinguish between the
collection operations that return a new collection (e.g. union(...) or asSet(...)), referred to
as Type (1) operations, and the operations that constrain some characteristic of the collection and
return a Boolean, Integer, or an element of the collection (e.g. size (), includes(...)), referred
to as Type (2) operations. (See [22] for the complete list of Type (1) and Type (2) operations.)
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When the after-value of a collection in a Type (1) operation appears in nodes, it is identified
as a c-use (provided that the collection does not appear in a frame rule) since these operations
do not modify the collection on which they are applied but generate new collections from them.
They are typically used in OCL contracts to define a constraint on the resulting collection
(e.g. self.roleName2->union (param)->size()=10) or to define the value of model
elements (e.g. self.roleNamel=self.roleName2->asSet ()). In both cases, the collec-
tion on which the operation is applied (i.e. self.roleName?2) is only used. A new rule, Rule 6
below, specifies this situation.

Rule 6 After-values of collections in Type (1) non-iterative operations
context BasicNode
self.term.isFrameRule = false
implies self.term.operation->select (oclIsTypeOf (Typel)) .collection
->select (v:Value|v.kind = #AfterValue) .dataFlow
->forAll (d:DataFlow|d.kind = #Cuse)

Unlike Type (1) non-iterative collection operations, Type (2) non-iterative collection
operations specify possible modifications to the collection on which they are applied. For
instance, self.roleName->includes (param) in a postcondition specifies a modifica-
tion to self.roleName during the execution of the operation: param is not an element
of self.roleName before the execution but it is after the execution. Therefore, Rule 4
(Section 3.3.4) is used to determine definitions and c-uses of the collection.

3.3.5.2. Iterative collection operations. lIterative collection operations in this work refer to those
operations that iterate over the elements of a collection and take an Oc1Expression as parameter
(e.g. select (), exist()). OclExpression may refer to the elements of the collection on
which the operation is applied, attributes/links of the context object or any element in the collection,
and parameters of the context operation.

Note that we interpret the definition of an object as the definitions of the attributes and links of
the object, and the c-use (or p-use) of the object as the c-use (or p-use) of the attributes and links
of the object. This is based on the convention for structured variables such as records in procedural
languages [6].

With iterative collection operations, not only the collection on which the operation is applied
but also the attributes, links, and parameters involved in OclExpression may be defined (or
used) in contracts. However, it is difficult to characterize the exact objects whose attributes and
links are defined (or used). This would require (likely very complex) semantic analysis of OCL
expressions. However, those collection operations are typically used in postconditions to specify
changes to elements of the collection (definitions) or uses of those elements (e.g. to define a new
collection). Our approach is therefore to consider that all the objects in the collection are defined
(or used). This is a conservative approach as it will not miss any definition (or use) but may lead
to the identification of definitions (or uses) that do not actually exist. This approach has an impact
on the identification of def clear paths and du pairs which will be investigated in future work.

As for the previous cases, when an iterative collection operation appears in an edge, Rule 1
applies: the model elements that are considered as p-uses are the collection on which the operation
is applied, the attributes/links that are referred to in OclExpression and parameters of the
context operation that are referred to in Oc1Expression.
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When an iterative collection operation appears in a node, and is applied on the pre-value of
a collection, the collection and the model elements involved in OclExpression are c-used
provided that the term in which the collection operation occurs is not a frame rule. Note that
after-values of attributes/links may be referred to in OclExpression; they are considered
as c-uses as they are typically used to define another collection. For instance, in the following
postcondition, the after-value of attl in the parameter of self.roleName@pre->select
is used: self.roleName->select (attl=param)->size=self.roleName@pre->
select (attl =param) ->size+1. Hence, we cannot simply apply Rule 3, which is for pre-
values only, and we use Rule 7 below instead.

Rule 7 Pre-values of collections in iterative collection operations in nodes
context BasicNode
let op:Set(Iterative) = self.term.operation->select(o:Operation]|
0.0clIsTypeOf (Iterative) and o.collection.kind = #PreValue)
in
self.term.isFrameRule = false
implies (
op.collection.dataFlow.kind = #Cuse)
and op.involvedInOpParam.dataFlow->forAll (kind = #Cuse)

When an iterative collection operation is applied on the after-value of a collection, the collec-
tion itself and the attributes/links referred to in Oc1Expression are considered as definitions,
provided that the term in which the operation occurs is not a frame rule. This is because iterative
collection operations are typically used in postconditions to specify the changes to a collection and
the creation of objects (through defining the attributes and links of the objects). This is the purpose
of Rule 8.

Rule 8 After-values of collections in iterative collection operations in nodes
context BasicNode
let op:Set(Iterative) = self.term.operation->select (o:Operation|
0.0clIsTypeOf (Iterative) and o.collection.kind = #AfterValue)
in
self.term.isFrameRule = false
implies (
op.collection.dataFlow.kind = #Def)
and op.involvedInOpParam->select (kind = #AfterValue) .dataFlow
->forAll (kind = #Def)
and op.involvedInOpParam->select (kind = #PreValue) .dataFlow
->forAll (kind = #CUse)

3.4. Identifying definition—use pairs and definition clear paths in EAFG

A definition clear path (def clear path) with respect to a model element e is a path in a flow graph
(in our case the EAFQG) that starts at a node where e is defined and ends at a node (or edge) where
e is used and e is not redefined on the path. A definition use pair (du pair) with respect to a model
element e is represented by a triplet (e, d, u) where d is a node that defines e, u is a node (or
edge) that uses e, and there is at least one def clear path from d to u.
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Our approach of deriving du pairs in EAFGs is to first obtain def clear paths in an EAFG, using
a set of well-established algorithms proposed in the literature for compiler optimization [11]. The
second step is to derive du pairs from def clear paths. This is done by identifying du pairs from the
set of def clear paths and removing duplicates.

Note that we do not consider def clear paths inside compound nodes, i.e. def clear paths for which
the defining and usage nodes are within the same compound node. Those paths are a side effect
of our decomposition of compound nodes and do not correspond to the actual data flow since the
postcondition is simply a logical expression that does not specify any order between its conjuncts
(the EAFG artificially introduces one).

3.5. Discussion

We discuss in this section a number of issues potentially impacting the practical use of our approach.

3.5.1. Levels of precision in postconditions

One issue is that postconditions can be specified at different levels of precision. Three levels of
precision for writing postconditions were defined in [27]. The lowest level of precision only defines
the ranges/enumerations of values expected upon the completion of the method. The intermediate
level of precision distinguishes the standard situations from exceptional situations, while with the
highest level of precision, every distinct condition, possibly resulting from a different set of inputs
or system state, is distinguished in the postcondition.

Because we want to capture all the data flow information reflected by postconditions, ideally we
would prefer postconditions to be as precise as possible. However, our strategy is still applicable to
the intermediate and lowest levels of precision, though with lower levels of precision, predicate uses
of a model element may be missed, which will lead to less precise data flow analysis. Assessing
the impact of the precision of postcondition on the data flow analysis results will be the subject of
future work.

3.5.2. Infeasible paths

As for traditional control flow graphs, EAFGs may contain paths that are infeasible. For instance,
some sequences of transitions in the state machine may not be feasible because of conflicting guard
conditions. In addition, some paths in EAFGs may not be feasible because of incompatible sub-
path in compound nodes, leading to infeasible du-paths. (Concrete examples are provided in [22].)
Theoretically speaking, determining these infeasible paths in EAFGs cannot be fully automated.

If an EAFG is used to derive test cases based on data flow information, then the user currently
has to remove infeasible paths. Future work will investigate ways to facilitate this task.

Since, as we will see in Section 3.6, we intend to use this technique to analyse the data flow
coverage of an existing test suite (in our case a transition tree test suite), we can assume that the
test suite already contains feasible state machine transition sequences. In other words, we rely on
a (partially automated) mechanism that builds feasible transition sequences. Then, once the data
flow coverage of an existing test suite is determined, uncovered du pairs may be an indication of
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infeasible paths, and this has to be investigated. In other words, instead of evaluating the feasibility
of each du pair, the tester can focus on the uncovered ones.

3.5.3. UML 1.5 vs UML 2.0

The changes from UML 1.5 to UML 2.0 are mostly related to terminology (e.g. state machine vs
statechart, constraint vs guard condition, triggers vs events) and the underlying metamodel (e.g.
class ProtocolStateMachine specializes class StateMachine) plus new concepts to help
reuse (e.g. submachines, state machine specialization) [15]. Similarly, the OCL language has been
enhanced in UML 2.0 (from UML 1.5), mainly at the metamodel level. Other changes to the OCL
language do not have any impact on our approach (e.g. the new collection type OrderedSet has
no impact since we do not rely on collection types) or would only lead to minor modifications of
our rules (specifically, to account for the Oc1Message type and its operations).

As already mentioned, our research assumes that the state machines have already been flattened
and OCL constraints have been transformed accordingly. In other words, our research assumes that
the state machine does not contain any concurrency between states or composition of states (in the
UML 1.5 notation), or any state machine specialization or sub-machine (in UML 2.0).

This is the reason why the changes in the UML standard (from version 1.5 that we use in this
research to version 2.0) do not impact the applicability of our approach or the results observed on
the case studies presented below.

The flattening process, which can be automated, is out of the scope of this paper but does not
present specific technical difficulties and is assumed to be a required initial step. The resultant
flattened state machine can be regarded as an intermediate form, being used in the context of our
approach only, rather than being visualized by modelers or testers.

3.6. Data flow analysis of transition trees

Recall that our objective is not to apply data flow criteria alone to UML state machines. Rather, we
aim to use data flow analysis to refine and improve the existing state-based criteria. Although the
previous sections are not specific to any coverage criterion, for reasons explained in Section 2, we
are focusing in this paper on the transition tree criterion.

It is rather straightforward to apply the data flow analysis approach to the transition tree criterion
since each tree edge corresponds to a state transition and each tree node to a state. Thus, each
transition tree is transformed into an EAFG by simply using the approach used for flattened state
machines. But in that case the resulting EAFG is also a tree. As an example, we present in Figure 5(a)
a simple, abstract transition tree (obtained from Figure 1(b) using a breadth first traversal) and its
corresponding EAFG in Figure 5(b). Owing to space constraints, Figure 5(b) does not show the
details of compound nodes.

After the transition tree EAFGs are generated, definitions and uses are determined (Section 3.3),
and def clear paths and du pairs contained in the transition tree EAFGs are then derived (Section 3.4).
Similar to an EAFG produced from a state machine, an EAFG produced from a transition tree may
contain unfeasible paths. The analysis of def clear paths in a transition tree EAFG is therefore an
approximation, unless the designer manually (or semi-automatically) removes the unfeasible paths
(Section 3.5.2).

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:177-207
DOI: 10.1002/stvr



@ IMPROVING THE COVERAGE CRITERIA OF UML STATE MACHINES 199

pre(el) and

re(e2)
§2 pre(al) pre(a4)
e1[91]/a1;a3/\2/a4 post(al) Sost(ad)
| s3 | | s4 | pre(a3) g2 pre(e5)
e2 l [g2]/a5/ \95/6‘6 | post(@3) | | | [post(e5) |
| s5 | |end | | | pre(e2) pre(a5)l pre(a6)
| post(e2) [ post(a5) | | post(a6) |

e4 e3[g3)/a2;a4 pre 94/\pre (e3)and
Coosten) | [postear |
(a) pre(a2)
pre(a4)
post(a2) post(a4)

(b)

Figure 5. Transition Tree (a) and corresponding EAFG (b).

4. EMPIRICAL RESULTS

For our experiments we have selected two state machine subjects where multiple transition trees can
be generated by following Binder’s algorithm [4]. The first subject is a Cruise Control (CC) system
[5] that has three transition trees and the second subject is a VCR system that is more complex
than the CC system because of a larger number of states and transitions, guard conditions, and
event parameters. As a result, the VCR state machine yields 12 transition trees with a Breadth First
Search. To determine the fault detection effectiveness of a transition tree, we seeded faults into the
code of the two subjects, using mutation operators proposed in [28—30]. When a large number of
faults are needed to enable quantitative analysis, using mutation to seed faults is a common practice
that has shown to yield realistic results in the past and is commonly used throughout testing research
[31]. Our seeding strategy was to cover all the mutation operators that were applicable in the code
under test and to seed the faults in a balanced way across operators given the characteristics of the
code of each subject. To derive data flow information contained in a transition tree, we apply the
approach proposed in Section 3.

Although our two subjects may appear to be of modest size, we consider that the CC, and
the VCR subjects are representative examples of a large portion of state-based components that
designers and testers would encounter in practice. Indeed, it is common to use state machines to
design control classes in charge of the execution flow of use cases, such as the control of devices
in reactive, real-time systems. Following standard UML-based development methodologies, state
machines are often designed for classes and class clusters, sometimes for sub-systems, but rarely
for complete systems. Indeed, in most cases, building a state machine for a complete system, if ever
feasible, would result in a too large and unmanageable model for modelers and testers. This is also
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supported by industrial case studies reported in the literature. For instance, part of a flight guidance
system developed at Rockwell-Collins is used as a case study in [14]. No state machine modeling
the complete system is built and instead one of the most complex (flattened) state machines, built
for a sub-system, consists in eight state and 44 transitions. Similarly, in [32], a safety controller
subsystem for a system developed at ABB is modelled with a (flattened) state machine of 12 states
and 51 transitions. These are to be compared with the nine states and 41 transitions of the flattened
state machine of the VCR case study.

4.1. Subject descriptions

The VCR system is implemented in Java using the state design pattern. At the analysis level, one
single class VcrController can be used to model the state-dependent behaviour of VCR, and
the application of the state design pattern leads to a design of 29 classes. The class diagram and
state machine, at the analysis level, as well as operation contracts are provided in [22]. The original
hierarchical state machine has nine simple states, three composite states, 31 transitions, 10 distinct
events, and seven guard conditions. (The flattened state machine has nine states and 41 transitions.)
The code of the implementation contains a total of 1000 LOC. By following Binder’s Algorithm,
12 transition trees are generated with Breadth First Search.

Following a similar implementation strategy, the CC is made of six classes for a total of 460 LOC.
Its state-dependent behaviour is represented by a state machine of four states and 15 transitions.
The class diagram and state machine, at the analysis level, as well as operation contracts are also
provided in [22]. Three transition trees are generated.

4.1.1. Mutation scores

After analysing the VCR code, eight applicable mutation operators!!l were used, yielding a total of
131 mutants to be seeded. Mutation scores for the 12 transition trees are listed in Table III. Note
that some of the transition trees have the same mutation scores. When looking at live mutants for
each transition tree, it appears that some of the transition trees have exactly the same set of live
mutants. Transition trees with the same set of live mutants can be grouped together, hence, four
groups are formed: Group 1 (TT1, TT7), Group 2 (TT2, TT5, TTS8, TT11), Group 3 (TT3, TT9),
and Group 4 (TT4, TT6, TT10, TT12). In fact, Group 1 and Group 4 are complementary in the
sense that Group 1 kills all the mutants that are missed by Group 4 whereas Group 4 kills all the
mutants that are missed by Group 1. Similarly, Group 2 is complementary to Group 3. The next
section discusses how the data flow information is related to the mutation scores.

For CC, six mutation operators were used to seed faults based on an analysis of the code (AOR,
CRP, MNR, ROR, RSR, SDL), leading to the seeding of 91 faults. Important variations were
observed in terms of fault detection ratio among the three possible transition trees: 91, 96, and 85%,
for TT1, TT2, and TT3, respectively.

Il Arithmetic Operator Replacement (AOR), Constant Replacement (CRP), Method Name Replacement (MNR), Relational
Operator Replacement (ROR), Return Statement Replacement (RSR), Statement Deletion (SDL), Instance Creation Expres-
sion Changes (ICE), and Overriding Method Removal (OMR) [28-30].

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:177-207
DOI: 10.1002/stvr



@ IMPROVING THE COVERAGE CRITERIA OF UML STATE MACHINES 201

Table III. Mutation scores for transition trees (VCR).

Transition tree (TT) 1 2 3 4 5 6 7 8 9 10 11 12

Mutation score (%) 76 74 74 71 74 71 76 74 74 71 74 71

Table IV. Def clear paths/du pairs in transition tree EAFGs (VCR).
Group 1 2 3 4

EAFG 1 7 2 5 8 11 3 9 4 6 10 12
Du pairs 188 188 185 185 185 185 185 185 182 182 182 182

Def clear paths vs. Mutation Scores (VCR) Def clear paths vs Mutation Scores (CC)
77 98
76 +Greupt 96 o FF2
3 3
§ 75 § 94
n 74 + Group2/Group3 o 92
c c *TT1
2 73 2 9
© ©
5 72 S 88
= =
71 +Groupd 86
+ TT3
70 - T T T 84 - - r r
180 182 184 186 188 190 80 82 84 86 88 90
(a) Number of Def clear paths (b) Number of Def clear paths

Figure 6. Def clear paths/du pairs vs mutation scores (VCR).

4.1.2.  Comparison of data flow information in each transition tree

Applying the approach in Section 3 to VCR, we compute the def clear paths and du pairs in each
of the EAFG transition trees. For each EAFG transition tree, the number of def clear paths happens
to equal the number of du pairs. This is explained by the fact that these EAFGs are in essence trees
that have no cycles and there are no alternative branches in compound nodes as infeasible paths
have been removed. Hence, each du pair is traversed by one def clear path. Table IV reports the def
clear paths/du pairs data for each EAFG (numbered after their Transition Tree). We can see from
Table IV that some EAFGs have the same number of def clear paths/du pairs. In fact, transition
trees with the same mutation scores (i.e. within the same group) have the same number of def clear
paths/du pairs, as illustrated in Table IV. The relationship between mutation scores and def clear
paths for each group is depicted in Figure 6(a), showing a linear relationship between the number
of def clear paths/du pairs and mutation scores.

Similar results are presented for CC in Table V and Figure 6(b). Similar to VCR, the number
of def clear paths is the same as the number of du pairs and we can see from Figure 6(b) that the
mutation score of a transition tree is related to the number of def clear paths/du pairs it covers:
TT2, which has the highest mutation score, covers the largest number of def clear paths/du pairs.
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Table V. Def clear paths/du pairs in transition tree EAFGs (CC).
EAFG EAFG for TT1 EAFG for TT2 EAFG for TT3

Def clear paths/DU pairs 81 88 81

Table VI. Number of definitions for EAFGs (VCR).
Group 1 2 3 4

EAFG 1 7 2 5 8 11 3 9 4 6 10 12
Definitions 166 166 160 160 160 160 160 160 154 154 154 154

For TT1 and TT3, however, though they contain the same number of def clear paths/du pairs, the
mutation score for TT1 is 7% higher than that for TT3.

Analysing the correlation between def clear paths/du pairs and mutation scores is a necessary
first step. But to ensure that this is not a spurious result, we need to understand the mechanisms
explaining the observed relationships. For VCR, we then look at the specific sets of def clear
paths/du pairs covered. The results show that for EAFGs within the same group, their sets of def
clear paths/du pairs are not identical, but they tend to have more common def clear paths and
du pairs than EAFGs from different groups. Take EAFG1, EAFG7, and EAFG4 as an example.
EAFG1 and EAFG7 belong to Group 1, whereas EAFG1 and EAFG4 are from different groups.
Over 87% def clear paths and du pairs traversed by EAFG1 are also traversed by EAFG7 whereas
EAFG1 only has 59% of its def clear paths and du pairs in common with EAFG4.

Furthermore, the analysis of live mutants suggests that traversing certain du pairs ensures that
certain mutants be detected. These observations are also confirmed when analysing the mutants in
CC. Mutation scores are explained not only by the number of du pairs covered but specific sets of
du pairs tend to kill more mutants.

We also analyse the number of definitions in each EAFG, to see if it appears to be a good indicator
of fault detection effectiveness as well (Table VI). For VCR, as in the case of def clear paths/du
pairs, EAFGs within the same group have the same number of definitions, and there is again a clear
linear relationship between the number of definitions and mutation scores (Figure 7(a)). Similar
results can be observed for CC in Figure 7(b) for the three transition trees.

For VCR, we further investigated the specific sets of definitions in each EAFG and we determined
that EAFGs within the same group have an identical set of definitions. The results show that many
of the definitions that are present in one group, say Group A, but absent in another group, say
Group B, belong to those paths that have du pairs that guarantee some mutants to be detected by
Group A but missed by Group B.

4.2. Summary of results
The two case studies, based on state machines of very different nature and complexity, suggest

that by following Binder’s adaptation of Chow’s algorithm, multiple transition trees with different
mutation scores may be generated from one single state machine. In the VCR case study, which
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Figure 7. Definitions vs mutation scores.

is the most complex one, transition trees can be divided into groups based on mutation scores and
their specific set of missed mutants. EAFGs within one group are found to contain the same number
of du pairs/def clear paths and an identical set of definitions. A careful analysis of live mutants
in each group shows that certain du pairs need to be covered to kill them, thus, explaining the
relationship between du pairs covered by a transition tree and mutation scores.

Results therefore suggest that both du pairs and definitions are good indicators of the fault
detection effectiveness of a transition tree and can be used to determine the effectiveness of a
transition tree: when alternative trees exist, the tree with the largest number of du pairs or definitions
should be selected. From a practical point of view, using definitions is less expensive than du pairs as
identifying definitions is less costly than identifying du pairs: First identifying definitions requires
that only after-values in nodes in an EAFG be considered since edges and pre-values in nodes do
not contain any definitions (Section 3.3). Consequently, less complex and fewer rules, requiring
simple OCL expression analysis, will be needed. Second, definitions can be easily collected by
simply traversing the graph whereas deriving du pairs from an EAFG needs sophisticated algorithms
(Section 3.4).

In both case studies, we have looked at the live mutants with each transition tree. In many cases,
the live mutants with one transition tree are a complement set of the live mutants with another
transition tree. For instance, in CC, the mutants missed by TT1 are all detected by TT2, and the
mutants missed by TT2 are all detected by TT1. In the VCR case study, the live mutants with
Group 1 are all killed by Group 4 and the live mutants with Group 4 are all killed by Group 1. In
other words, the effectiveness of a transition tree could be improved by adding paths from other
trees that cover du pairs that are not already covered. Additionally, this result appears to hold for
uncovered definitions too: covering the definitions that are not already covered by a transition tree
would increase the transition tree effectiveness. Following this heuristic, we next present a way to
build augmented transition trees to improve fault detection effectiveness.

4.3. Augmenting transition trees

Building an augmented tree takes a sequence of steps. First, transition trees with an identical set
of definitions are grouped together (Step 1). Then, we select from each group a transition tree with
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Table VII. Comparing different criteria for the Cruise Control.

Transition Transition tree Augmented transition tree  Transition-pair
Cost 25 (on average) 38 43 100
Mutation score (%) 96 (on average™®) 85, 91, and 96 100 100

(for the three trees)

*The distribution of mutation scores of transition adequate test suites is wide, making it unlikely to detect all
faults, although the average may seem high.

minimal cumulative length to form a tree set, say tSet (Step 2). Cumulative length, i.e. the total
number of arcs in the tree, is an indication of cost (test set up, test execution, etc.) of a test suite.
Next, we choose a transition tree with the largest number of definitions from tSet as the initial
tree (Step 3). Step 4 uses an exhaustive search™** to select a set of tree paths from tSet that cover
all the definitions not already covered by the initial tree and has minimal cumulative length.

For the CC, the optimal transition tree built according to this strategy kills all the mutants, at
the expense of a 13% increase in cumulative length of the test suite, our surrogate measure for
cost. Note that following the same strategy but selecting du pairs instead of definitions leads to
the same effectiveness but leads to an 89% increase in cumulative length. Comparing these results
with the ones reported in [5] (see Table VII), for which the same mutants and cost measure have
been used for the CC to study the cost effectiveness of the transition, transition-pair, and transition
tree criteria, we can see that the augmented transition tree becomes a more interesting alternative
(than the initial transition tree criterion) to the ineffective transition coverage criterion and the
very expensive transition-pair coverage criterion. Similarly, for the VCR case study, the optimal
transition tree built according to this strategy kills all the mutants, at the expense of a 29% increase
in cumulative length. Using du pairs instead of definitions leads to the same effectiveness but a
106% increase in cumulative length. (VCR has not been used in [5].)

From the above results, we can conclude that with moderate increases in cost, all mutants are
killed by test suites based on augmented transition trees. Such a strategy therefore seems promising
from a practical standpoint.

5. CONCLUSIONS

The objective of this research is to investigate how data flow information can be used to improve
state machine-based testing criteria. This is very important as recent research has shown that the
existing coverage criteria are either too expensive, too weak, or too unpredictable in terms of fault
detection effectiveness when applied to software components. To this end, we provide a methodology
to conduct data flow analysis of UML state machines, apply it to a specific, well-known testing

***The exhaustive search is O(2P), where p is the number of paths in trees. This is usually all right for most state
machines in practice. But for exceptionally large sets of trees, other search strategies, such as genetic algorithms, could
be investigated in future work.
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criterion (round-trip paths, an adaption for UML state machines of Chow’s W-method based on
transition trees), and use it on two case studies that are representative models of state-based software
components being produced in OO systems. Our data flow analysis is comprehensive as it accounts
for all types of events and actions in UML state machines and relies on an extensive analysis of
OCL guard conditions and OCL contracts (operation pre and postconditions). The precise rules for
detecting definition—use (du) pairs are defined by deriving a specific representation of control and
data flow in state machines. We define the structure and well formedness of a state machine control
and data flow using a metamodel (class diagram notation), and define the conditions under which
definitions and uses are expected using the Object Constraint Language (OCL) on the metamodel.
It is important to note that we do not use data flow criteria to create test cases. Rather we analyse
the data flow coverage of alternative, adequate test suites for the existing state machine criteria, in
order to select the suite with the highest fault-revealing power. Additionally, our model-based data
flow analysis is automatable, thereby making the whole approach inexpensive.

The results of the case studies suggest that both du pairs and definitions are good indicators of
the fault detection effectiveness of a transition tree: when multiple transition trees can be generated
from one state machine, the transition tree that is the most effective at detecting faults tends to
cover the largest number of du pairs and definitions. We examine undetected faults in both of the
case studies. The results show that certain du pairs and definitions guarantee that some faults be
detected. From these results, we can draw the conclusion that data flow information contained in a
transition tree can be used to select a tree with greater fault detection rates, i.e. the transition tree
that contains the largest number of du pairs or definitions would be most effective at detecting faults.
Since both du pairs and definitions can be used to select trees, using the latter, however, may be a
better choice in practice since identifying definitions is easier and less costly than identifying du
pairs. The research also suggests that combining different parts of transition trees so as to optimize
data flow coverage could yield highly cost-effective results but this is the topic of current research.
Following this heuristic we propose a new way to build augmented transition trees, based on data
flow analysis, that improve fault detection effectiveness while only incurring a modest additional
cost.

There are several limitations of this research. Currently, we rely on the user input to determine
the incompatible sequences of operations and infeasible paths within a compound node in EAFGs.
Although this cannot be fully automated from a theoretical point of view, future work will explore
practical heuristics that can provide the approximate solutions. Furthermore, since we apply our
data flow analysis to an existing test suite, we can reasonably assume that the test suite contains
feasible transition sequences. And, since we analyse the data flow coverage of the test suite, user
input is only required when some du pairs (or definitions) are not covered, instead of requiring the
analysis of every single du pair (definition).

As for any empirical work, additional case studies should be performed to evaluate the generality
of our approach and to confirm our results. An interesting case study would be one that has a rich
set of collection operations in its operation contracts. This will help to assess the rules we defined
for determining definitions and uses in collection operations. In addition, since our results are based
on transition trees generated using Breadth First Search, transition trees that are obtained by Depth
First Search should be investigated to confirm our results. Lastly, our approach uses a flattened state
machine as input and work remains to be done to automatically flatten UML 2.0 state machine and
transform the OCL guard conditions and OCL operation contracts accordingly.
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Other future work will study the impact of the level of precision in OCL contracts, as well as

the writing practices of OCL expressions (e.g. we assume that the predicate part of an if—then—else
expression does not contain definitions of model elements). A study of whether a more advanced
analysis technique for OCL expressions is warranted should also be conducted.
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