[simula . research laboratory]

Meeting the Quality Goals –
Better Software Products through
Accelerated Technology Evaluation in a
Virtual Software Production Laboratory
(VSPL)

20 October 2008

Dietmar Pfahl

1

The Issue - SPS Modeling

- Process Simulation Modeling is costly
 - Complex
 - Each time done from scratch
- Have an agile modeling process (i.e., Agile-IMMoS) and a set of customizable and reusable model building blocks.

5

20 October 2008 Dietmar Pfahl

SPS Model – Process Architecture Example

GENSIM 2.0 Process Structure

Requirements
System Level

Design
Integration Test
Subsystem Level

V-Model:
Development,
Verification (Inspection),
Validation (Test)

20 October 2008

Dietmar Pfahl

GENSIM 2.0 Process Structure

System Test
System Level

V-Model:
Development,
Verification (Inspection),
Validation (Test)

Prototype Implementation: GENSIM 2.0

- GENSIM 2.0 is implemented in Vensim®
- Besides applying macro-patterns, 3 features of Vensim® were used to add to the reusability of GENSIM 2.0:
 - Views: to capture the main dimensions of project performance, i.e., duration, cost and quality as well as the states of the software development process
 - Increased Understandability
 - Subscripting: to model individual software
 - Customizable to different projects with different
 - Dynamic Link Libraries (DLL): to extract of policies and heuristics from the model, e.g.
- View C-P
 View C-Q
 View C-W
 View C-S
- Increased adaptability to various organizations

SPS Model – Macro-Patterns

 Process and State Views – Development & Verification

20 October 2008

Dietmar Pfahl

9

SPS Model – Macro-Patterns

Process and State Views – Test Case Development
 & Validation

20 October 2008

Dietmar Pfahl

10

Prototype Implementation: GENSIM 2.0

- GENSIM 2.0 is implemented in Vensim®
- Besides applying macro-patterns, 3 features of Vensim® were used to add to the reusability of GENSIM 2.0:
 - Views: to capture the main dimensions of project performance, i.e., duration, cost and quality as well as the states of the software development process
 - Increased Understandability
 - Subscripting: to model individual software artifacts
 - Customizable to different projects with different (types of) products
 - Dynamic Link Libraries (DLL): to extract organization-specific policies and heuristics from the model, e.g., workforce allocation
 - Increased adaptability to various organizations

20 October 2008

Dietmar Pfahl

11

Prototype Implementation: GENSIM 2.0

- GENSIM 2.0 is implemented in Vensim®
- Besides applying macro-patterns, 3 features of Vensim® were used to add to the reusability of GENSIM 2.0:
 - Views: to capture the main dimensions of project performance, i.e., duration, cost and quality as well as the states of the software development process
 - Increased Understandability
 - Subscripting: to model individual software artifacts
 - Customizable to different projects with different (types of) products
 - Dynamic Link Libraries (DLL): to extract organization-specific policies and heuristics from the model, e.g., workforce allocation
 - Increased adaptability to various organizations

20 October 2008

Dietmar Pfahl

13

SPS Model – External DLLs

- Heuristic for Developer Allocation to Tasks
- Skill Matrix

$$S_{n \times m} = \begin{bmatrix} s_{11} & \cdots & s_{1m} \\ \vdots & \ddots & \vdots \\ s_{n1} & \cdots & s_{nm} \end{bmatrix}, s_{ij} \in [0,1]$$

- Assignment Algorithm
 - E.g.: Assign available developers to waiting activities (tasks) depending on task weight and the number of tasks a developer can do.

SPS Model – Parameters

 Model parameters related to code development and verification

(list not complete)

	Parameter Name	Attribute	Type	View
1	Verify code or not	Process	Input	C-P
2	# of modules per subsystem	Product	Input	C-P
3	Code doc quality threshold per size unit	Project	Input	C-Q
4	Required skill level for code dev	Project	Input	C-W
5	Required skill level for code ver	Project	Input	C-W
6	Developers' capabilities for code dev	People	Input	C-W
7	Developers' capabilities for code ver	People	Input	C-W
8	Maximum code ver. effectiveness	Process	Calibrated	C-P
9	Maximum code ver. rate per person per day	Process	Calibrated	C-P
10	Average design to code conversion factor	Product	Calibrated	C-P
11	Average # of UT test cases per code size unit	Product	Calibrated	C-P
12	Minimum code fault injection rate per size unit	Product	Calibrated	C-Q
13	Average design to code fault multiplier	Product	Calibrated	C-Q
14	Code rework effort for code faults detected in CI	Product	Calibrated	C-Q
15	Code rework effort for code faults detected in UT	Product	Calibrated	C-Q
16	Code rework effort for code faults detected in IT	Product	Calibrated	C-Q
17	Code rework effort for code faults detected in ST	Product	Calibrated	C-Q
18	Initial code dev. rate per person per day	People	Calibrated	C-W
19	Initial code ver. rate per person per day	People	Calibrated	C-W
20	Code doc size (actual)	Product	Output	C-P
21	Code to rework (actual)	Process	Output	C-P
22	Code development rate (actual)	Process	Output	C-P
23	Code verification rate (actual)	Process	Output	C-P
24	Code faults undetected	Product	Output	C-Q
25	Code faults detected	Product	Output	C-Q
26	Code faults corrected	Product	Output	C-Q
27	Code dev. effort (incl. rework; actual)	Process	Output	C-W
28	Code ver. effort (actual)	Process	Output	C-W
#=n	umber, CI=Code Inspection, UT=Unit Test, IT=	Integration Te	est, ST=Syste	em Test

15

20 October 2008 Dietmar Pfahl

SPS Model – Calibration

- Different sources for calibration:
 - Expert opinion
 - Organization-Specific repositories
 - Public repositories (often cross-organizational)
 - SE Literature
- Detailed specification of all parameters and the way they can be calibrated allows for calibrating GENSIM 2.0 to any of the above sources.

SPS Model – Calibration Example 2

- Reported data on defect injection, detection, and rework effort
- Sources:
 - [5] Damm L, Lundberg L, Wohlin C (2006) Faults-slip-through a concept for measuring the efficiency of the test process. Software Process: Improvement and Practice 11(1): 47-59
 - [8] Frost A, Campo M (2007) Advancing Defect Containment to Quantitative Defect Management. CrossTalk – The Journal of Defense Software Engineering 12(20): 24-28
 - [24] Wagner S (2006) A Literature Survey of the Quality Economics of Defect-Detection Techniques. ISESE 2006, pp 194-203

Calibration Parameter	V	alue
Cambration Farameter	Calibration A	Calibration B
Minimum code fault injection rate per size unit	14.5 Defe	ct/KLOC [8]
Maximum code verification effectiveness	code verification effectiveness 0.53 [8]	
Max. code verification rate per person per day	0.6 KLC	OC/PD [24]
Code rework effort for code faults detected in CI	0.34 PE	D/Def. [24]
Code rework effort for code faults detected in UT	0.43 PE	D/Def. [24]
Code rework effort for code faults detected in IT	0.68 PD/Def. [24]	1.08 PD/Def. [5, 24]
Code rework effort for code faults detected in ST	1.05 PD/Def. [24]	5.62 PD/Def. [5, 24]

KLOC: Kilo Lines of Code, PD: Person-Day, Def: Defect.

SPS Model Application Example

Scenario 1:

Impact of different combinations of verification and validation (V&V) activities on project duration, product quality, and effort.

- Verification activities include Requirements Inspections (RI),
 Design Inspections (DI) and Code Inspections (CI).
- Validation activities include Unit Test (UT), Integration Test (IT), and System Test (ST).
- Per V&V activity exactly one technique with given efficiency and effectiveness is available.
- A V&V technique is either applied to all documents of the related type (e.g., requirements, design, and code documents) or it is not applied at all.

SPS Model Application Example Scenario 1: Impact of different combinations of verification and validation (V&V) activities on project duration, product quality, and effort. Calibration A Calibration B Calibration B

Dietmar Pfahl

20 October 2008

SPS Model Application Example

Scenario 1:

Impact of different combinations of verification and validation (V&V) activities on project duration, product quality, and effort.

Results with Calibration B:

Dietmar Pfahl

SPS Model Application Example Scenario 1: Calibration A Calibration B Impact of different combinations of verification and validation (V&V) activities on project duration, product quality, and effort. Comparison of results for those cases where all test activities are performed. → Performing all verification activities is optimal only for Calibration B. 20 October 2008 Dietmar Pfahl

SPS Model Application Example

- Scenario 2:
 - Impact of different combinations of verification activities on project duration, product quality, and effort.
 - Alternative Inspection Techniques
 - T-type 10% more effective but 25% less efficient than S-Type
 - All test activities are conducted

		Requirements	Design	Code
		Inspection (RI)	Inspection (DI)	Inspection (CI)
S-type	Effective-	75%	76%	53%
	ness			
	Efficiency	8 Pages/PD	30 Pages/PD	0.6 KLOC/PD
T-type	Effective-	82.5%	83.6%	58.3%
	ness			
	Efficiency	6 Pages /PD	22.5 Pages /PD	0.45 KLOC /PD

KLOC: Kilo Lines of Code, PD: Person-Day

SPS Mo	de		A	p	pl	icat	tion	Exa	ample		
		low							Duration [Day]	Effort [PD]	Ouality [UD]
Scenario 2	D	1	0	1	1		T	S	*1281	24163	49
Scenario 2	D	2	1	1	1	S	T	S	1296	21341	39
_	D	3	1	1	1	T	T	S	1297	20996	37
Simulation		4	0	1	1		T	T	1299	24068	47
	D	5	1	1	1	S	T	T	1302	21189	36
Results:	D	6	1	1	1	T	T	T	1306	*20881	*35
		7	1	1	1	S	S	S	1308	22160	44
		8	1	1	1	T	S	T	1313	21610	39
		9	1	1	1	T	S	S	1313	21769	42
		10	1	1	1	S	S	T	1323	21989	41
		11	0	1	1		S	S	1326	25697	58
		12	0	1	1		S	T	1333	25395	54
		13	1	0	1	T		S	1417	27409	77
		14	1	0	1	S		T	1432	28156	78
		15	1	0	1	T		T	1435	27147	73
		16	0	1	0		T		1448	27827	90
		17	1	0	1	S		S	1449	28818	86
	/	18	1	1	0	S	S		1465	25545	83
,		19	1	1	0	S	T		1466	24569	76
(20	1	1	0	T	S		1466	25065	81
· ·		21	0	1	0		S		1468	29790	104
	A	22	1	1	0	T	T		1469	24209	75
		23	1	0	0	T			1563	32507	132
		24	1	0	0	S		_	1571	34080	142
		25	0	0	1			T	2138	37386	116
		26	0	0	1			S	2177	38223	126
		27	0	0	0				2704	48584	232
							etmar Pfah				

Other Possible Questions

- What combinations (and intensity levels) of development, verification, and validation techniques should be applied in a given context to achieve defined time, quality or cost goals?
- What staffing levels should be assigned to achieve time, quality or cost targets?
- Does investment in training pay off for specific development contexts and goals?
- Do investments in improving development, verification, and validation techniques pay off for specific development contexts and goals?
- What are promising areas of research for improving development, verification, and validation techniques?
- ...

20 October 2008

Dietmar Pfahl

27

