Presentation for ISCAS - 23/10/2008

# Simulation-Based Planning, Re-Planning and Stability Analysis for Operational Release Plans

Dietmar Pfahl Simula Research Laboratory & University of Oslo

[ simula . research laboratory ]



#### **Outline**

- Software Release Planning Problem
- Simulation-Based Operational Release Planning
- Planning and Dynamic Re-Planning
- Stability Analysis
- Work-in-Progress and Future Work
- > Conclusion

[ simula , research laboratory ]





### **Operational Release Planning Problem**

Consider this 7-tuple <F, T, FT, D, E, P, Dep>:

```
- set of release-specific features f

set of task types t
set of task types t
set of feature/task type-combinations (= tasks) ft

- set of developers d
                                                                                  [1, ..., n] <sup>1</sup>
[1, ..., km]
```

set of developers d
set of estimated efforts eff per task
set of estimated (relative) productivities prod

per task [1, ..., nm] Dep – dependency relationships dep between subsequent task types [1, ..., m-1]

#### Goal:

assign developers  $d \in D$  to tasks  $ft \in FT$  such that



[ simula , research laboratory ]

**Example with Start-Start Dependency** 

- Features (F)
  - Estimated workload (effort) per task type [e.g., Person-Weeks (PW)]
- Task Types (T): design, implementation, test, etc.
  - dependency
- Developers (D)
  - (relative) productivity per task type [0 ... 2]
  - one task at a time
  - no task change once assigned

|                | F <sub>1</sub> | F <sub>2</sub> | <br> | <br>$F_k$ |
|----------------|----------------|----------------|------|-----------|
| T <sub>1</sub> | 4              | 3              | <br> | <br>2     |
|                |                |                | <br> | <br>      |
| T <sub>m</sub> | 5              | 7              | <br> | <br>9     |



|                | D <sub>1</sub> | D <sub>2</sub> | <br> | <br>D <sub>n</sub> |
|----------------|----------------|----------------|------|--------------------|
| T <sub>1</sub> | 1              | 0.5            | <br> | <br>2              |
|                |                |                | <br> | <br>               |
| T <sub>m</sub> | 0.5            | 1.5            | <br> | <br>1              |

[ simula , research laboratory ]



#### **Outline**

- Software Release Planning Problem
- Simulation-Based Operational Release Planning
- > Planning and Dynamic Re-Planning
- Stability Analysis
- Work-in-Progress and Future Work
- Conclusion

[ simula , research laboratory ]

#### **Operational Release Planning (ORP)** Example: Allocate developers to tasks such that: $\max_{i=1...8} \{ \text{end-time}(\text{task}_{i,3}) \} \rightarrow \min$ **Productivity Effort Estimates** m **Estimates** [person-week] [dimensionless] D1 D2 D3 D4 D5 k Features • F3 F4 F5 F6 F7 2 T1: Design 3 8 10 Task T2: Implementation 6 3 10 3 5 5 8 2 1.5 1 2 1.5 6 **Type** 5 3 2 0 T3: Test 2 6 10 End-start dependency between subsequent tasks 1-to-1 mapping between developers and tasks [ simula . research laboratory ]



#### **Simulation-Based ORP**

- > Why?
  - More flexibility with regards to
    - dynamic re-planning,
    - > stability analyses, and
    - > problem refinement

as compared to (static) optimization algorithms

- ▶ How?
  - Using either discrete-event or continuous process simulation models (have both)
- What?
  - > (Planning and) Re-planning
  - Stability Analysis

[ simula , research laboratory ]

. .

#### **Outline**

- Software Release Planning Problem
- Simulation-Based Operational Release Planning
- > Planning and Dynamic Re-Planning
- Stability Analysis
- Work-in-Progress and Future Work
- Conclusion

[ simula , research laboratory ]





# Planning - Heuristic

 Assign the next available developer with the highest task-specific productivity to the next waiting feature with the largest effort (for a specific task).

#### Note:

- If only developers with very low productivity are currently idle, this mapping rule can result in assigning a developer with low productivity to a large feature → will become a bottleneck!
- To avoid such a worst case situation, threshold variables are defined which exclude developers with a productivity that is too low.
- Finding a good set of threshold values can be automized (using a built-in optimization functionality)

[ simula , research laboratory ]

[ simula , research laboratory ]

15

# | Planaming Re-Planning | Effort per | Task (PW) | Period (Week) | Task (Effort per | Task (PW) | Period (Week) | Task (Effort per | Task (PW) | Period (Week) | Task (Effort per | Task (PW) | Period (Week) | Task (Effort per | Task (PW) | Period (Week) | Task (Effort per | Task (PW) | Period (Week) |





# **Re-Planning – Other Possible Analyses**

- Drop in/out of developers
- Addition/deletion of features
- Overestimated or underestimated efforts
- Overestimated or underestimated productivities
- Varying task type dependencies

#### All the above:

- In any combination
- At any point in time (repeatedly)

[ simula , research laboratory ]

10

# Re-Planning – Additional Analyses after Model Enhancement

In addition or complimentary to the previous:

- Productivities defined per feature (not task type)
- Feature dependencies

#### Other aspects:

- Learning effects during development
- Time pressure effects
- ... and many others

[ simula , research laboratory ]

# **Outline**

- Software Release Planning Problem
- Simulation-Based Operational Release Planning
- Planning and Dynamic Re-Planning
- > Stability Analysis
- Work-in-Progress and Future Work
- Conclusion

[ simula . research laboratory ]

21

#### Stability Analysis – Why?

#### Problem:

- Planning parameters are <u>estimates</u>
  - Based on empirical data
  - Based on expert knowledge
- It makes sense to assume distributions that define a "probable range" for actual parameter values



# **Stability Analysis**

#### Main question in the following:

- How sensitive does the initial operational plan react to changes in any of the planning parameters, i.e.
  - Effort estimates
  - Productivity estimates
  - Task type dependencies

#### Two classes of analyses currently possible:

- Developer allocations to tasks are
  - □ Fixed → Analyze effect on work-backlog
  - □ Flexible → Analyze effect on duration and plan structure

[ simula , research laboratory ]

23

#### **Stability Analysis**

#### Main Question:

- How sensitive does the initial operational plan react to changes in any of the planning parameters, i.e.
  - Effort estimates
  - Productivity estimates
  - Task type dependencies

#### Two classes of analyses currently possible:

- Developer allocations to tasks are
  - □ Fixed → Analyze effect on work-backlog
  - □ Flexible → Analyze effect on duration and plan structure

[ simula , research laboratory ]









# Stability Analysis - Example 2

 Task type-specific work backlog (cumulated over features) for varying effort estimates



# Stability Analysis - Example 3

 Task type-specific work backlog (cumulated over features) for varying productivity estim.



# Stability Analysis – Example 1+2

 Task type-specific work backlog (cumulated over features) for varying task dependencies and varying effort estimates



[ simula . research laboratory ]

# **Stability Analysis**

#### Main Question:

- How sensitive does the initial operational plan react to changes in any of the planning parameters, i.e.
  - Effort estimates
  - Productivity estimates
  - Task type dependencies

#### Two classes of analyses currently possible:

- Developer allocations to tasks are
  - □ Fixed → Analyze effect on work-backlog
  - □ Flexible → Analyze effect on duration and plan structure

[ simula , research laboratory ]







# Stability Analysis - Hypotheses

- Decrease (increase) of productivity and increase (decrease) of effort results in ...
  - H1: significant increase (decrease) of release duration.
  - H2: significant instability in the assignment of developers to tasks.
  - H3: significant instability in the start and end times of tasks.

[ simula , research laboratory ]







# Stability Analysis - Results

Effect on Duration (with Effect Sizes)

| Case     | Duration | Duration | Duration  | Duration   | Duration    |
|----------|----------|----------|-----------|------------|-------------|
| (n = 50) | Baseline | Mean     | Std. Dev. | Difference | Effect Size |
| Case 1   | 22.71875 | 23.811   | 1.611     | 1.092      | 0.678       |
| Case 2   | 22.71875 | 23.146   | 1.608     | 0.427      | 0.266       |
| Case 3   | 22.71875 | 24.755   | 2.21      | 2.036      | 0.921       |
| Case 4   | 22.71875 | 23.526   | 2.428     | 0.807      | 0.332       |
| Case 5   | 22.71875 | 23.78    | 1.012     | 1.061      | 1.049       |
| Case 6   | 22.71875 | 23.075   | 1.25      | 0.356      | 0.285       |
| Case 7   | 22.71875 | 24.849   | 2.034     | 2.130      | 1.047       |
| Case 8   | 22.71875 | 23.508   | 2.141     | 0.789      | 0.369       |
| Case 9   | 22.71875 | 24.541   | 1.434     | 1.822      | 1.271       |
| Case 10  | 22.71875 | 23.038   | 2.08      | 0.319      | 0.153       |
| Case 11  | 22.71875 | 26.367   | 2.495     | 3.648      | 1.462       |
| Case 12  | 22.71875 | 23.95    | 3.331     | 1.231      | 0.370       |

[ simula , research laboratory ]

# Stability Analysis - Results

- Effect on Developer Allocation
- Total number of allocations = 8 x 3 = 24
- With 6 developers:

| rapi | e SD. Summary statistics of ORP    |
|------|------------------------------------|
| per  | rformance parameter Alloc_diff     |
|      | Difference in developer allocation |

| Case    | Difference in developer allocation<br>Alloc diff [no unit] |               |  |  |
|---------|------------------------------------------------------------|---------------|--|--|
|         | Mean                                                       | Standard dev. |  |  |
| Case 1  | 7.2                                                        | 3.289         |  |  |
| Case 2  | 9.04                                                       | 3.194         |  |  |
| Case 3  | 9.765                                                      | 2.688         |  |  |
| Case 4  | 10.14                                                      | 2.298         |  |  |
| Case 5  | 11.38                                                      | 3.562         |  |  |
| Case 6  | 12.26                                                      | 2.776         |  |  |
| Case 7  | 13.3                                                       | 2.644         |  |  |
| Case 8  | 14.06                                                      | 3.191         |  |  |
| Case 9  | 11.96                                                      | 3.201         |  |  |
| Case 10 | 12.16                                                      | 2.78          |  |  |
| Case 11 | 13.08                                                      | 2.806         |  |  |
| Case 12 | 13.3                                                       | 2.652         |  |  |



[ simula . research laboratory Median: 29% change Median: 58% change

# Stability Analysis - Results

- Effect on Task Scheduling
- Formulas:

$$Dv_{-}diff_{i} = \frac{d_{i,1} + d_{i,2}}{d_{i,1} + d_{i,2} + d_{i,3}}, \text{ with}$$

$$d_{i,1} = \sqrt{\sum_{j=1}^{24} (ST_{j}^{i} - ST_{j}^{baseline})^{2}},$$

$$d_{i,2} = \sqrt{\sum_{j=1}^{24} (ET_{j}^{i} - ET_{j}^{baseline})^{2}},$$

$$d_{i,3} = \sqrt{\sum_{j=1}^{24} (overlap_{j}^{i})^{2}},$$

[ simula , research laboratory ]

Data:

Table 3c. Summary statistics of ORP performance parameters ST\_diff, ET\_diff. Dv\_diff

| mance parameters of um, L din. DV un |         |              |         |              |         | v uiii       |
|--------------------------------------|---------|--------------|---------|--------------|---------|--------------|
|                                      | ST_diff |              | ET_diff |              | Dv_diff |              |
| Case                                 | Mean    | Std.<br>Dev. | Mean    | Std.<br>Dev. | Mean    | Std.<br>Dev. |
| Case 1                               | 19.26   | 11.34        | 25.44   | 11.9         | 0.4214  | 0.1503       |
| Case 2                               | 27.67   | 16.67        | 35.28   | 17.79        | 0.5026  | 0.1533       |
| Case 3                               | 32.72   | 17.02        | 42.93   | 17.76        | 0.5345  | 0.136        |
| Case 4                               | 40.76   | 17.8         | 52.43   | 19.52        | 0.6002  | 0.1299       |
| Case 5                               | 28.15   | 17.8         | 33.71   | 17.84        | 0.4958  | 0.1465       |
| Case 6                               | 34.28   | 17.55        | 40.8    | 17.48        | 0.5536  | 0.1344       |
| Case 7                               | 46.01   | 20.96        | 54.09   | 21.32        | 0.6096  | 0.1306       |
| Case 8                               | 47.95   | 20.49        | 57.06   | 21.55        | 0.6368  | 0.112        |
| Case 9                               | 38.29   | 18.62        | 47.41   | 19.19        | 0.5742  | 0.123        |
| Case 10                              | 41.05   | 16.03        | 49.71   | 16.26        | 0.61    | 0.0987       |
| Case 11                              | 60.34   | 22.13        | 75.17   | 26.19        | 0.6902  | 0.0817       |
| Case 12                              | 62.53   | 32.56        | 75.81   | 30.18        | 0.7052  | 0.0717       |

**Dv\_diff** ∈ [0, 1]

# Stability Analysis - Results

Details of Case 10



[ simula , research laboratory ]

43

# **Stability Analysis – Summary**

- H1: Variation Impact on Duration → ?
  - Asymmetric Variation: duration is always significantly different
  - Symmetric Variation: Cases 2 and 10 (and almost 8) have no significantly difference in duration (and effect size < 0.5, i.e., no "practical significance" according to Cohen)
- H2: Variation Impact on Developer Allocation → yes
  - Average change of developer allocation is in the range of 29-58% of all allocations
- H3: Variation Impact on Task Scheduling → yes
  - Average change of feature/task scheduling is in the range of 0.42-0.71 (where 1 is equivalent to zero overlap).
- Note:
  - These results have been corroborated in simulations with much larger releases (>60 features; up to 13 developers).

[ simula , research laboratory ]



# **Outline**

- > Software Release Planning Problem
- Simulation-Based Operational Release Planning
- Planning and Dynamic Re-Planning
- Stability Analysis
- Work-in-Progress and Future Work
- > Conclusion

[ simula , research laboratory ]

# **Work in Progress**

- Model Enhancements
  - □ Facilitate more types of analyses
    - e.g., feature-dependency, (partly) fixed developer allocations in re-planning
  - Relax assumptions
    - e.g., 1-to-1 relationships between task types,
       1-to-1 assignment of developers to tasks
- Complement with Empirical Studies

[ simula , research laboratory ]

47

#### Conclusion

- Simulation-based planning/re-planning of releases on operational level may support decision makers in dynamic environments
- Simulation-based stability (or uncertainty) analysis could be an input to risk management
- Limitations:
  - Initial plans are not optimal (about 5-10%)
  - Experimental basis still small
  - "Risk-drivers" (internal properties) of ORPs not yet fully clear

[ simula , research laboratory ]

# **Future Work**

- Analyze properties of ORPs to better understand when duration is significantly effected by estimate uncertainty
- Improve heuristics or find way to integrate with (static) optimization algorithms
- Integrate with strategic product management (multi-release perspective)

[ simula . research laboratory ]

49



[ simula . research laboratory ]

# References

- Al-Emran, A.; Khosrovian, K.; Pfahl, D.; Ruhe, G.: Studying the Impact of Uncertainty in Operational Release Planning. Submitted to ESEM 2007.
- Al-Emran, A.; Pfahl, D.: Operational Planning, Re-Planning and Risk Analysis for Software Releases. Accepted for publication in Proceedings of PROFES 2007.
- Al-Emran, A.; Pfahl, D.; Ruhe, G.: DynaReP A Discrete Event Simulation Model for Re-planning of Software Releases. Accepted for publication in Proceedings of ICSP 2007.
- Pfahl, D.: ProSim/RA Software Process Simulation in Support of Risk Assessment. In: S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher (eds.), Value-based Software Engineering, Berlin: Springer, 2005, 263-286, ISBN 3-540-25993-7.
- Pfahl, D., Al-Emran, A., Ruhe, G.: Simulation-Based Stability Analysis for Software Release Plans. In: Wang, Q. et al. (eds.): SPW/ProSim 2006 - Proceedings. LNCS 3966, Berlin-Heidelberg: Springer, 2006, 262-273.
- Pfahl, D.; Al-Emran, A.; Ruhe, G.: A System Dynamics Model for Analyzing the Stability of Software Release Plans. In: Software Process Improvement and Practice (in print).
- Ngo-The, A., Ruhe, G.: Optimized Resource Allocation for Incremental Software Development. TR 062/2006, Laboratory for Software Engineering Decision Support, University of Calgary (2006)

[ simula , research laboratory ]

51

# Simulated Plan vs. Optimal Plan [NgR05] Feature Host per | Period (Week) | Pe

