
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 1

A Systematic Survey of Program
Comprehension through Dynamic Analysis

Bas Cornelissen, Member, IEEE Computer Society, Andy Zaidman, Member, IEEE Computer Society,
Arie van Deursen, Member, IEEE Computer Society, Leon Moonen, Member, IEEE Computer Society,

and Rainer Koschke, Member, IEEE Computer Society

Abstract—Program comprehension is an important activity in software maintenance, as software must be sufficiently understood
before it can be properly modified. The study of a program’s execution, known as dynamic analysis, has become a common technique
in this respect and has received substantial attention from the research community, particularly over the last decade. These efforts
have resulted in a large research body of which currently there exists no comprehensive overview. This paper reports on a systematic
literature survey aimed at the identification and structuring of research on program comprehension through dynamic analysis. From
a research body consisting of 4,795 articles published in 14 relevant venues between July 1999 and June 2008 and the references
therein, we have systematically selected 176 articles and characterized them in terms of four main facets: activity, target, method, and
evaluation. The resulting overview offers insight in what constitutes the main contributions of the field, supports the task of identifying
gaps and opportunities, and has motivated our discussion of several important research directions that merit additional consideration
in the near future.

Index Terms—Survey, program comprehension, dynamic analysis.

✦

1 INTRODUCTION

ONE of the most important aspects of software main-
tenance is to understand the software at hand. Un-

derstanding a system’s inner workings implies studying
such artifacts as source code and documentation in order
to gain a sufficient level of understanding for a given
maintenance task. This program comprehension process is
known to be very time-consuming, and it is reported that
up to 60% of the software engineering effort is spent on
understanding the software system at hand [1], [2].

Dynamic analysis, or the analysis of data gathered
from a running program, has the potential to provide an
accurate picture of a software system because it exposes
the system’s actual behavior. This picture can range from
class-level details up to high-level architectural views [3],
[4], [5]. Among the benefits over static analysis are the
availability of runtime information and, in the context of
object-oriented software, the exposure of object identities
and the actual resolution of late binding. A drawback is
that dynamic analysis can only provide a partial picture
of the system, i.e., the results obtained are valid for the
scenarios that were exercised during the analysis.

Dynamic analyses typically comprise the analysis of
a system’s execution through interpretation (e.g., using

• Bas Cornelissen, Andy Zaidman, and Arie van Deursen are with the Delft
University of Technology, The Netherlands.
E-mail: {s.g.m.cornelissen, a.e.zaidman, arie.vandeursen}@tudelft.nl

• Leon Moonen is with Simula Research Laboratory, Norway.
E-mail: leon.moonen@computer.org

• Rainer Koschke is with the University of Bremen, Germany.
E-mail: koschke@informatik.uni-bremen.de.

the Virtual Machine in Java) or instrumentation, after
which the resulting data is used for such purposes as
reverse engineering and debugging. Program compre-
hension constitutes one such purpose, and over the
years, numerous dynamic analysis approaches have been
proposed in this context, with a broad spectrum of
different techniques and tools as a result.

The existence of such a large research body on pro-
gram comprehension and dynamic analysis necessitates
a broad overview of this topic. Through a characteriza-
tion and structuring of the research efforts to date, ex-
isting work can be compared and one can be assisted in
such tasks as finding related work and identifying new
research opportunities. This has motivated us to conduct
a systematic survey of research literature that concerns
the use of dynamic analysis in program comprehension
contexts.

In order to characterize the articles of interest, we have
first performed an exploratory study on the structure of
several articles on this topic. This study has led us to
decompose typical program comprehension articles into
four facets:

• The activity describes what is being performed or
contributed [e.g., view reconstruction or tool sur-
veys].

• The target reflects the type of programming lan-
guage(s) or platform(s) to which the approach is
shown to be applicable [e.g., legacy or web-based
systems].

• The method describes the dynamic analysis methods
that are used in conducting the activity [e.g., filter-
ing or concept analysis].

Digital Object Indentifier 10.1109/TSE.2009.28 0098-5589/$25.00 © 2009 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

• The evaluation outlines the manner(s) in which the
approach is validated [e.g., industrial studies or
controlled experiments].

Within each facet one can distinguish a series of generic
attributes: the examples given above (in brackets) are in
fact some of the attributes that we use in our framework.
With this attribute framework, the papers under study
can be characterized in a comprehensive fashion.

The goal of our survey is the systematic selection
and characterization of literature that concerns program
comprehension through dynamic analysis. Based on the
four facets mentioned above, we derive attribute sets
to characterize the articles of interest by following a
structured approach that involves four main phases and
two pilot studies. While our initial focus is on a selection
of 14 relevant venues and on the last decade, we include
additional literature by following the references therein.
The resulting overview offers insight in what constitutes
the main contributions of the field and supports the task
of identifying gaps and opportunities. We discuss the im-
plications of our findings and provide recommendations
for future work. Specifically, we address the following
research questions:
1) Which generic attributes can we identify to charac-

terize the work on program comprehension through
dynamic analysis?

2) How is the attention for each of these attributes
distributed across the relevant literature?

3) How are each of the main activities typically evalu-
ated?

4) Which recommendations on future directions can
we distill from the survey results?

Section 2 presents an introduction on dynamic analysis
for program comprehension. The protocol that lies at
the basis of our survey is outlined in Figure 1, which
distinguishes four phases that are described in Sections 3
through 6. Section 7 evaluates our approach and find-
ings, and in Section 8 we conclude with a summary of
the key contributions of this paper.

2 PROGRAM COMPREHENSION THROUGH DY-
NAMIC ANALYSIS

To introduce the reader to the field of program com-
prehension through dynamic analysis, we first provide
definitions of program comprehension and dynamic anal-
ysis. The benefits and limitations of dynamic analysis
are discussed. We then present a historical overview
of the literature in the field, in which we distinguish
between early literature and research conducted in the
last decade. Finally, we motivate the need to perform a
literature survey.

2.1 Definitions

Although we intuitively know that we need to under-
stand a software system before being able to maintain it,
a general definition of “program comprehension” should

prove useful in the context of this survey. The program
comprehension definition as introduced by Biggerstaff
et al. reflects what constitutes software understanding:
“A person understands a program when he or she is able to
explain the program, its structure, its behavior, its effects on
its operation context, and its relationships to its application
domain in terms that are qualitatively different from the
tokens used to construct the source code of the program.” [6]
Following this definition, one should understand that
int z = x + y actually corresponds to the addition
of two numbers.

The other central concept of this paper is dynamic
analysis, which Ball defines as “the analysis of the proper-
ties of a running software system” [7]. Note that this def-
inition remains purposely vague, as it does not specify
which properties are analyzed. To allow the definition to
serve in multiple problem domains, the exact properties
under analysis are left open.

While the definition of dynamic analysis is rather
abstract, we can elaborate on the benefits and limitations
of using dynamic analysis in program comprehension
contexts. The benefits that we consider are:

• The precision with regard to the actual behavior of
the software system, for example, in the context
of object-oriented software with its late binding
mechanism.

• The fact that a goal-oriented strategy can be used,
which entails the definition of an execution scenario
such that only the parts of interest of the software
system are analyzed.

The limitations that we distinguish are:
• The inherent incompleteness of dynamic analysis, as
the behavior or traces under analysis capture only
a small fraction of the usually infinite execution
domain of the program under study. Note that the
same limitation applies to software testing.

• The difficulty of determining which scenarios to
execute in order to trigger the program elements
of interest. In practice, test suites can be used, or
recorded executions involving user interaction with
the system.

• The scalability of dynamic analysis due to the large
amounts of data that may be introduced in dynamic
analysis, affecting performance, storage, and the
cognitive load humans can deal with.

• The observer effect, i.e., the phenomenon in which
software acts differently when under observation,
might pose a problem in cases where timing issues
play a role. Examples include multithreaded and
multi-process programs [8], real time software, and
device drivers.

In order to deal with these limitations, many techniques
propose abstractions or heuristics, allowing to group
program points or execution points that share certain
properties. In such cases, a trade-off must be made
between recall (are we missing any relevant program
points?) and precision (are the program points we direct
the user to indeed relevant for his or her comprehension

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 3

problem?).

2.2 Early research

From a historical perspective, dynamic analysis was
initially used for debugging, testing and profiling. While
the purpose of testing is the verification of correctness
and while profiling is used to measure (and optimize)
performance, debugging is not used to merely locate
faults, but also to understand the program at hand.

As programs became larger and more complex, the
need to understand software became increasingly im-
portant. Originating from the discipline of debugging,
the use of dynamic analysis for program comprehen-
sion purposes steadily gained more interest. As pro-
gram comprehension is concerned with conveying (large
amounts of) information to humans, the use of visualiza-
tion attracted considerable attention.
Our study of this field showed that the first paper

that can be labeled as “program comprehension through
dynamic analysis” can be traced back to as early as 1972,
when Biermann and Feldman synthesized finite state
machines from execution traces [9]. Since then, this type
of research has steadily gained momentum, resulting
in several important contributions throughout the 1980s
and 1990s, which we summarize below.

In 1988, Kleyn and Gingrich [10] proposed structural
and behavioral views of object-oriented programs. Their
tool, called TraceGraph, used trace information to ani-
mate views of program structures.

Five years later, De Pauw et al. [11], [12], [13] started
their extensive (and still on-going) research on program
visualization, introducing novel views that include ma-
trix visualizations, and the use of “execution pattern”
notations to visualize traces in a scalable manner. They
were among the first to reconstruct interaction dia-
grams [14] from running programs, and their work has
later resulted in several well-known tools, most notably
Jinsight and the associated Eclipse plug-in, TPTP1.

Wilde and Scully [15] pioneered the field of feature
location in 1995 with their Software Reconnaissance tool.
Feature location concerns the establishment of relations
between concepts and source code, and has proven a
popular research interest to the present day. Wilde et al.
continued the research in this area in the ensuing years
with a strong focus on evaluation [16], [17], [18]. At the
same time, Lange and Nakamura [19], [20] integrated
static and dynamic information to create scalable views
of object-oriented software in their Program Explorer
tool.

Another visualization was presented by Koskimies
and Mössenböck [21] in 1996, involving the reconstruc-
tion of scenario diagrams from execution traces. The
associated tool, called Scene, offers several abstraction
techniques to handle the information overload. Sefika et
al. [22] reasoned from a higher level of abstraction in

1. The Eclipse Test & Performance Tools Platform Project, http://
www.eclipse.org/tptp/

their efforts to generate architecture-oriented visualiza-
tions.

In 1997, Jerding et al. [23], [24] proposed their well-
known ISVis tool to visualize large execution traces.
Two linked views were offered: a continuous sequence
diagram, and the “information mural” [25]: a dense,
navigable representation of an entire trace.

Walker et al. [5] presented their AVID tool a year later,
which visualizes dynamic information at the architec-
tural level. It abstracts the number of runtime objects
and their interactions in terms of a user-defined, high-
level architectural view (cf. Reflexion [26]).

Finally, in 1999, Ball [7] introduced the concept of fre-
quency spectrum analysis. He showed how the analysis
of frequencies of program entities in execution traces
can help software engineers decompose programs and
identify related computations. In the same year, Richner
and Ducasse [3] used static and dynamic information
to reconstruct architectural views. They continued this
work later on [27], with their focus shifting to the
recovery of collaboration diagrams with Prolog queries
in their Collaboration Browser tool.

2.3 Research in the last decade

Around the turn of the millennium, we witness an
increasing research effort in the field of program compre-
hension through dynamic analysis. The main activities in
existing literature were generally continued, i.e., there do
not seem to have emerged fundamentally new subfields.
Due to the sheer size of the research body of the last
decade, we limit ourselves to a selection of notable
articles and discuss them in terms of their activities.

As program comprehension is primarily concerned
with conveying information to humans, the use of visu-
alization techniques is a popular approach that crosscuts
several subfields.

One such purpose is trace analysis. A popular visual-
ization technique in this respect is the UML sequence
diagram, used by (e.g.) De Pauw et al. [28], Systä et
al. [29], and Briand et al. [30]. Most of these approaches
offer certain measures to address scalability issues, such
as metrics and pattern summarization. Popular trace
compaction techniques are offered by Reiss and Re-
nieris [31] and by Hamou-Lhadj et al. [32], [33], [34].

From a higher level perspective, there have been sev-
eral approaches toward design and architecture recovery.
Among these efforts are influential articles by Heuzeroth
et al. [35], [36], who combine static and dynamic analyses
to detect design patterns in legacy code. Also of interest
is the work on architecture reconstruction by Riva [37],
[38], and DiscoTect, a tool by Schmerl et al. [4], [39] that
constructs state machines from event traces in order to
generate architectural views.

Another portion of the research body can be char-
acterized as the study of behavioral aspects. The afore-
mentioned work by Heuzeroth et al. analyzes running
software by studying interaction patterns. Other notable

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

Fig. 1. Overview of the systematic survey process.

approaches include a technique by Koskinen et al. [40],
who use behavioral profiles to illustrate architecturally
significant behavioral rules, and an article by Cook
and Du [41] in which thread interactions are exposed
in distributed systems. Furthermore, recently there has
been considerable effort in the recovery of protocols [42],
specifications [43], and grammars [44].

The final subfield that we distinguish is feature analysis.
While in this context there exist fundamental analyses
of program features such as those by Greevy et al. [45],
[46] and by Kothari et al. [47], particularly the activity
of feature location has become increasingly popular since
the aforementioned work by Wilde and Scully [15]. In-
fluential examples include techniques by Wong et al. [48]
(using execution slices), Eisenbarth et al. [49] (using
formal concept analysis), Antoniol and Guéhéneuc [50]
(through statistical analyses), and Poshyvanyk et al. [51]
(using complementary techniques).

2.4 Structuring the field

The increasing research interest in program comprehen-
sion and dynamic analysis has resulted in many tech-
niques and publications, particularly in the last decade.
To keep track of past and current developments and to
identify future directions, there is a need for an overview
that structures the existing literature.

Currently, there exist several literature surveys on
subfields of the topic at hand. In 2004, Hamou-Lhadj and
Lethbridge [32] discussed eight trace exploration tools in
terms of three criteria: trace modeling, abstraction level,
and size reduction. In the same year, Pacione et al. [52]
evaluated five dynamic visualization tools on a series

of program comprehension tasks. Greevy’s Ph.D. the-
sis [53] from 2007 summarized several directions within
program comprehension, with an emphasis on feature
analysis. Also from 2007 is a study by Reiss [54], who de-
scribed how visualization techniques have evolved from
concrete representations of small programs to abstract
representations of larger systems.

However, the existing surveys have several character-
istics that limit their usability in structuring the entire
research body on program comprehension and dynamic
analysis. First, they do not constitute a systematic ap-
proach because no explicit literature identification strate-
gies and selection criteria are involved, which hinders
the reproducibility of the results. Second, the surveys do
not utilize common evaluation or characterization crite-
ria, which makes it difficult to structure their collective
outcomes. Third, their scopes are rather restricted, and
do not represent a broad perspective (i.e., all types of
program comprehension activities).

These reasons have inspired us to conduct a system-
atic literature survey on the use of dynamic analysis
for program comprehension. In doing so, we follow a
structured process consisting of four phases. Figure 1
shows the tasks involved, which are discussed in the
following sections.

3 ARTICLE SELECTION

This section describes the first phase, which consists of
a pilot study, an initial article selection procedure, and a
reference checking phase.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 5

TABLE 1
Venues involved in the initial article selection.

Type Acronym Description Total no. articles
July’99-June’08

Journal TSE IEEE Transactions on Software Engineering 583
TOSEM ACM Transactions on Software Engineering & Methodology 113
JSS Journal on Systems & Software 965
JSME Journal on Software Maintenance & Evolution 159
SP&E Software – Practice & Experience 586

Conference ICSE International Conference on Software Engineering 429
ESEC/FSE European Software Engineering Conference / Symposium on the Foundations of Software

Engineering
240

FASE International Conference on Fundamental Approaches to Software Engineering 198
ASE International Conference on Automated Software Engineering 233
ICSM International Conference on Software Maintenance 413
WCRE Working Conference on Reverse Engineering 254
IWPC/ICPC International Workshop/Conference on Program Comprehension 218
CSMR European Conference on Software Maintenance and Reengineering 270
SCAM International Workshop/Working Conference on Source Code Analysis and Manipulation 134

3.1 Initial article selection

Since program comprehension is a broad subject that has
potential overlaps with such fields as debugging, a clear
definition of the scope of our survey is required.

Identification of research. Search strategies in litera-
ture surveys often involve automatic keyword searches
(e.g., [55], [56]). However, Brereton et al. [57] recently
pointed out that (1) current software engineering digital
libraries do not provide good support for the identifi-
cation of relevant research and the selection of primary
studies, and that (2) in comparison to other disciplines,
the standard of abstracts in software engineering pub-
lications is poor. The former issue exists because in
software engineering and computer science, keywords
are not consistent across different venues and organiza-
tions such as the ACM and the IEEE. Moreover, within
the field of program comprehension there is no usable
keyword standard that we are aware of.

Similar to Sjøberg et al. [58], we therefore employ
an alternative search strategy that involves the manual
selection of articles from a series of highly relevant
venues.

Given our context, we consider the five journals and
nine conferences in Table 1 to be the most closely related
to program comprehension, software engineering, main-
tenance, and reverse engineering. Our focus is primarily
on the period of July 1999 to June 2008; the initial
research body thus consists of 4,795 articles that were
published at any of the relevant venues as a full paper
or a short paper.

It could be argued that the International Workshop
on Program Comprehension through Dynamic Analysis
and the International Workshop on Dynamic Analysis
should also be included for their relevance to the topic.
However, as most of the (influential) papers in these
two workshops were republished later on, we will only
consider journals and conferences in this survey.

Selection criteria. Against the background of our
research questions, we define two selection criteria in

advance that are to be satisfied by the surveyed articles:
1) The article exhibits a profound relation to program

comprehension. The author(s) must state program
comprehension to be a goal, and the evaluation
must demonstrate the purpose of the approach
from a program comprehension perspective. This
excludes such topics as debugging and performance
analysis.

2) The article exhibits a strong focus on dynamic analy-
sis. For this criterion to be satisfied, the article must
utilize and evaluate one or more dynamic analysis
techniques, or concern an approach aimed at the
support of such techniques (e.g., surveys).

The suitability of the articles is determined on the basis
of these selection criteria, i.e., through a manual analysis
of the titles, abstracts, keywords, and (if in doubt) con-
clusions [57]; borderline cases are resolved by discussion
amongst the authors.

3.2 Selection pilot study

While the selection criteria being used may be perfectly
understandable to the authors of this survey, they could
be unclear or ambiguous to others. Following the advice
of Kitchenham [59] and Brereton et al. [57], we therefore
conduct a pilot study in advance to validate our selection
approach against the opinion of domain experts. The
outcomes of this study are used to improve the actual
article selection procedure that is performed later on.

To conduct the pilot study, the first two authors ran-
domly pre-selected candidate articles, i.e., articles from
relevant venues and published between July 1999 and
June 2008, of which the titles and abstracts loosely
suggest that they are relevant for the survey. Note that
this selection also includes articles that are beyond the
scope of the survey and should be rejected by the raters.2

The domain experts that serve as raters in the pilot are
the last three authors of this survey. Since these authors

2. This latter characteristic intentionally makes the task more chal-
lenging for the raters.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

Fig. 2. Distribution of the final article selection across the different venues. Dark bars denote journals; light bars
denote conferences.

were involved in neither the article selection procedure
nor in the design thereof, they are unbiased subjects with
respect to this study.

Each of the subjects is given the task of reading these
articles in detail and identifying, on the basis of the
selection criteria defined above, the articles that they feel
should be included.

The outcomes are then cross-checked with those of the
first two authors, who designed the selection procedure.
Following these results, any discrepancies are resolved
by discussion and the selection criteria are refined when
necessary.

Pilot study results The results of the pilot study were
favorable: out of the 30 article selections performed,
29 yielded the same outcomes as those produced by
the selection designers. These figures suggest that our
selection criteria are largely unambiguous. The one arti-
cle that was assessed differently by one of the subjects
concerned the field of impact analysis, which, following
a discussion on its relation to program comprehension,
was considered beyond the scope of this survey.

3.3 Reference checking
As previously mentioned, the initial focus of this survey
is on selected venues in the period of July 1999 to June
2008. To cover articles of interest published before that
time or in alternative venues, we (non-recursively) ex-
tend the initial selection with relevant articles that have
been cited therein, regardless of publication date and
venue but taking the selection criteria into account. This
procedure minimizes the chance of influential literature
being missed, and results in a final article selection.

3.4 Article selection results

The initial selection procedure resulted in 127 relevant
articles that were published between July 1999 and

June 2008 in any of the 14 venues in Table 1. The
reference checking yielded another 49 articles (and 17
additional venues), which were subsequently included
in the selection. Interestingly, we also identified quite
a number of papers from the ACM Symposium on
Software Visualization (SOFTVIS); to avoid missing too
many papers from this venue, we decided to include it
in our systematic process.

The end result is a research body that comprises 176
articles. The full listing of these articles is available
online3 and in a technical report [60]. Figure 2 shows
the distribution of all surveyed articles across the venues
from which at least three articles were selected.

4 ATTRIBUTE FRAMEWORK

As shown in Figure 1, the step after identifying the
papers of interest is the construction of an attribute
framework that can be used to characterize the selected
papers. In this section we describe the process we used
to arrive at such a framework, as well as the resulting
framework.

4.1 Attribute identification

As stated in Section 1, our framework distinguishes four
facets of interest: the activity performed, the type of target
system analyzed, the method developed or used, and
the evaluation approach used. The goal of our attribute
identification step is to refine each of these four facets
into a number of specific attributes.

In a first pass, we study all papers, and write down
words of interest that could be relevant for a particular
facet (e.g., “survey”, or “feature analysis” for the activity
facet). This data extraction task is performed by the first

3. http://swerl.tudelft.nl/bin/view/Main/ProgCompSurvey

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 7

two authors of this survey. The result after reading all
articles is a (large) set of initial attributes.

Note that to reduce the reviewer bias, we do not
assume to know any attributes or keywords in advance.

4.2 Attribute generalization

After the initial attribute sets have been identified, we
generalize them in order to render their number man-
ageable and to improve their reusability. This is achieved
through a discussion between the first three authors
of this survey. Regarding the target facet, for example,
the attributes “Java” and “Smalltalk” can intuitively be
generalized to “object-oriented languages”. After this
data synthesis task, the resulting attribute sets are doc-
umented.

4.3 Resulting attribute framework

The use of our attribute framework on the article selec-
tion has resulted in seven different activities, six targets,
13 methods, and seven evaluation types. Table 2 lists the
attributes and their descriptions.

The activity facet distinguishes between five established
subfields within program comprehension: design and ar-
chitecture recovery, visualization, feature analysis, trace
analysis, and behavioral analysis. Each of these five at-
tributes encapsulates a series of closely related activities,
of which some were scarcely found: for example, very
few authors propose new dynamic slicing techniques4,
and only a handful of articles aim at the reconstruction of
state machines for program comprehension. In addition
to the five major subfields, we have defined attributes
for surveys and general purpose activities. The latter at-
tribute denotes a broad series of miscellaneous activities
that are otherwise difficult to generalize, e.g., solutions to
the year 2000 problem, new dynamic slicing techniques,
or visualizations with no specific focus.

The target facet contains six different types of pro-
gramming platforms and languages. While we found it
interesting to distinguish “legacy” software, this turned
out to be difficult in practice, as such a classification de-
pends greatly on one’s perspective. For instance, a legacy
system could have been written in Fortran or COBOL,
lack any documentation, or simply be over 20 years
old; on the other hand, it could also be a more modern
system that is simply difficult to maintain. Therefore,
with respect to the legacy attribute, we rely on the type
of the target platform as formulated by the authors of
the papers at hand. Other targets include procedural
languages, object-oriented languages, web applications,
distributed systems, and software that relies heavily on
multithreading.

The method facet is the most versatile of facets, and
contains 13 different techniques. Note that we have cho-
sen to distinguish between standard and advanced visu-
alizations: the former denotes ordinary, widely available

4. There exist numerous papers on dynamic slicing, but we found
only two that use it in a program comprehension context.

techniques that are simple in nature, whereas the latter
represents more elaborate approaches that are seldomly
used (e.g., OpenGL) or simply not publicly available
(e.g., information murals [25]). The remaining attributes
represent a variety of largely orthogonal techniques that
are often used in conjunction with others.

The evaluation facet distinguishes between seven
types of evaluations. The “preliminary” attribute refers
to early evaluations, e.g., on relatively small programs or
traces; in contrast, the “case study” predicate indicates
a mature validation that involves (reasonably) large sys-
tems or answers actual research questions. Additionally,
we have defined an attribute used to express case studies
of an industrial nature. Furthermore, comparisons refer
to evaluation types in which an approach is compared
to existing solutions side-by-side; the involvement of hu-
man subjects measures the impact of an approach from a
cognitive point of view; and quantitative evaluations are
aimed at the assessment of various quantifiable aspects
of an approach (e.g., the reduction potential of a trace
reduction technique).

5 ARTICLE CHARACTERIZATION

The third phase comprises the assignment of attributes
to the surveyed articles, and the use of the assignment
results to summarize the research body.

5.1 Attribute assignment

Using our attribute framework from the previous sec-
tion, we process all articles and assign appropriate at-
tribute sets to them. These attributes effectively capture
the essence of the articles in terms of the four facets, and
allow for a clear distinction between (and comparison
of) the articles under study. The assignment process is
performed by the first two authors of this survey.

When assigning attributes to an article, we do not
consider what the authors claim to contribute, but rather
attempt to judge for ourselves. For example, papers on
sequence diagram reconstruction are not likely to recover
high-level architectures; and we consider an approach
to target multithreaded systems if and only if this claim
is validated through an evaluation or, at the very least,
a plausible discussion. As we discuss later on, legacy
systems are an exception because their definition is
rather vague.

5.2 Summarization of similar work

Certain articles might be extensions to prior work by
the same authors. Common examples are journal publi-
cations that expand on earlier work published at con-
ferences or workshops, e.g., by providing extra case
studies or by employing an additional method, while
maintaining the original context. While in our survey
all involved articles are studied and characterized, in
this report they are summarized to reduce duplication
in frequency counts.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

TABLE 2
Attribute framework.

Facet Attribute Description
Activity survey a survey or comparative evaluation of existing soltuions fulfilling a common goal.

design/arch. the recovery of high-level designs or architectures.
views the reconstruction of specific views, e.g., UML sequence diagrams.
features the analysis of features, concepts, or concerns, or relating these to source code.
trace analysis the understanding or compaction of execution traces.
behavior the analysis of a system’s behavior or communications, e.g., protocol or state

machine recovery.
general gaining a general, non-specific knowledge of a program.

Target legacy legacy software, if classified as such by the author(s).
procedural programs written in procedural languages.
oo programs written in object-oriented languages, with such features as late binding

and polymorphism.
threads multithreaded systems.
web web applications.
distributed distributed systems.

Method vis. (std.) standard, widely used visualization techniques, e.g., graphs or UML.
vis. (adv.) advanced visualization techniques, e.g, polymetric views or information murals.
slicing dynamic slicing techniques.
filtering filtering techniques or selective tracing, e.g., utility filtering.
metrics the use of metrics.
static information obtained through static analyses, e.g., from source code or documen-

tation.
patt. det. algorithms for the detection of design patterns or recurrent patterns.
compr./summ. compression, summarization, and clustering techniques.
heuristics the use of heuristics, e.g., probabilistic ranking or sampling.
fca formal concept analysis.
querying querying techniques.
online online analysis, as opposed to post mortem (trace) analysis.
mult. traces the analysis or comparison of multiple traces.

Evaluation preliminary evaluations of a preliminary nature, e.g., toy examples.
case study case studies on medium-/large-scale open source systems (10K+ LOC) or traces

(100K+ events).
industrial evaluations on industrial systems.
comparison comparisons of the authors’ approach with existing solutions.
human subj. the involvement of human subjects, i.e., controlled experiments & questionnaires.
quantitative assessments of quantitative aspects, e.g., speed, recall, or trace reduction rate.
unknown/none no evaluation, or evaluations on systems of unspecified size or complexity.

We summarize two or more articles (from the same
authors) if they concern similar contexts and (largely)
similar approaches. This is achieved by assigning the
union of their attribute subsets to the most recent article,
and discarding the other articles at hand. The advantage
of this approach is that the number of articles remains
manageable at the loss of virtually no information. The
listing and characterization of the discarded articles are
available in the aforementioned technical report and
website.

5.3 Characterization pilot study

As previously mentioned, the attributes were defined
and documented by the first two authors of this sur-
vey. Since the actual attribute assignment procedure is
performed by the same authors, there is a need to verify
the quality of the framework because of reviewer bias:
the resulting attributes (and by extension, the resulting

article characterization) may not be proper and unam-
biguous. In other words, since the process is subject to
interpretation, different reviewers may envision different
attribute subsets for one and the same article.

We therefore conduct another pilot study to assess the
quality of the attributes and the attribute assignment
procedure. The approach is similar to that of the first
pilot. From the final article selection, a subset of five
articles are randomly picked and given to the domain
experts (the last three authors of this survey), along with
(an initial version of) the attribute framework in Table 2.

The task involves the use of the given framework to
characterize each of the five articles. A comparison of the
results with those of the first two authors again yields
a measure of the interrater agreement, upon which we
discuss any flaws and strengthen the attribute sets and
their descriptions.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 9

5.4 Characterization pilot results & implications

The results of the characterization pilot resulted in gen-
erally high agreement on the activity, target, and evalua-
tion facets. Most disagreement occurred for the method
facet, which is also the one with the most attributes.
This disagreement can be partly attributed to the fact
that one rater tried to assign the single most suitable
attribute only, whereas the others tried to assign as
many attributes as possible. In the ultimate attribute
assignments (discussed in the next section), we adopt
the latter strategy: for each article, we select all attributes
that apply to the approach at hand.

In several cases, the action taken upon interrater dis-
agreement was to adjust the corresponding attributes
and their descriptions. These adjustments have already
been incorporated in Table 2.

As an example of some of the adjustments, within
the activity facet we renamed our original “communi-
cation” attribute to “behavior”, and decided to remove
our original “framework” attribute because determining
whether an article constitutes a framework often turned
out to be difficult. Within the method facet, we had some
discussions on trace comparisons, and decided to call the
attribute “multiple traces” to make it more general. Fur-
thermore, we unified compression, merging, and clus-
tering techniques into “compression/summarization”,
and we included selective tracing into the “filtering”
attribute, as the distinction between the two is generally
subtle and largely dependent on the manner in which
these techniques are described by the authors. Within the
evaluation facet, we decided to add “open source” to the
description of “case study”, and to explicitly mention the
use of questionnaires as an evaluation approach.

A full listing and description of the changes made is
given in the technical report [60].

5.5 Measuring attribute coincidence

To further evaluate our attribute framework, we analyze
the degree to which the attributes in each facet coincide.
Against the background of our characterization results,
we examine if there are certain attributes that often occur
together, and whether such attributes in fact exhibit such
an overlap that they should be merged.

We measure this by determining for each attribute
how often it coincides with each of the other attributes
in that facet. This results in a fraction between 0 and 1
for each attribute combination: 0 if they never coincide,
and 1 if each article that has the one attribute also has
the other.

5.6 Characterization results

The characterization and summarization of the 176 se-
lected articles resulted in an overview of 114 articles,
shown in Tables 3 and 4 (at the end of this paper).
The second column denotes the number of underlying
articles (if any) by the same author; the third column

indicates whether we could find a reference to a publicly
available tool in the article. In rare cases, none of our at-
tributes fitted a certain aspect of an article; in such cases
the value for the facet at hand can be considered “other”,
“unknown”, or “none”. The characterization of all 176
articles is available online and in the aforementioned
technical report [60]; in the remainder of this survey,
however, we speak only in terms of the 114 summarized
articles because they constitute unique contributions.

As previously mentioned, in each article we have
focused on its achievements rather than its claims. On
several occasions the titles and abstracts have proven
quite inaccurate or incomplete in this respect. However,
such occasions were not necessarily to the disadvantage
of the author(s) at hand: for example, occasionally the
related work section is of such quality that it constitutes
a respectable survey (e.g., [30], [61]).

The overview in Tables 3 and 4 serves as a useful refer-
ence when seeking related work in particular subfields.
For example, when looking for literature on trace visual-
ization, one needs only to identify the articles that have
both the “views” and the “trace analysis” attributes. In a
similar fashion, one can find existing work on (e.g.) the
use of querying and filtering techniques for architecture
reconstruction, or learn how fellow researchers have as-
sessed the quantitative aspects of state machine recovery
techniques.

Our attribute coincidence measurements yielded no
extraordinary results: while certain high fractions were
found, none of these merited merges between the at-
tributes involved because these attributes were obvi-
ously different in nature. The full results of this experi-
ment are given in the technical report.

Figure 3 shows for each facet the distribution of the
attributes across the summarized articles, which we dis-
cuss in the next section.

6 AVENUES FOR FUTURE RESEARCH

Given the article selection and attribute assignments of
Tables 3 and 4, our final survey step (see Figure 1) con-
sists of interpreting our findings: what patterns can we
recognize, what explanations can we offer, which lessons
can we learn, and what avenues for further research can
we identify? To conduct this step, we analyze the tables,
looking for the most and least common attributes, and
for interesting attribute combinations. In this section, we
offer a selection of the most important outcomes of this
analysis.

6.1 Most common attributes

Understanding the most common attributes (as dis-
played in Figure 3) gives an impression of the most
widely investigated topics in the field.

Starting with the first facet, the activity, we see that
the view attribute is the most common. This is not sur-
prising as program comprehension deals with conveying
information to humans, and particularly in the context

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

Fig. 3. Distribution of the attributes in each facet across the summarized articles. From left to right: activity, target,
method, and evaluation.

of dynamic analysis the amounts of information are typ-
ically large [62]. We also found many articles to concern
general activities, i.e., miscellaneous purposes that could
not be generalized to any of the main subfields.

Moving on to the next facet, object-oriented software
turns out to be the most common target in the research
body: 79 out of the 114 articles propose techniques for,
or evaluate techniques on, systems written in (predomi-
nantly) Java or Smalltalk. We are not sure why this is the
case. Reasons might include ease of instrumentation, the
suitability of certain behavioral visualizations (e.g., UML
sequence diagrams) for OO systems, the (perceived)
complexity of OO applications requiring dynamic analy-
sis, or simply the fact that many program comprehension
researchers have a strong interest in object orientation.
Regarding the third facet, the method, we observe that

standard visualizations occur more than twice as often
as advanced ones. This may have several reasons, among
which are the accessibility of standard tools (for graphs,
sequence diagrams, and so forth) and possibly the belief
that traditional visualizations should suffice in conjunc-
tion with efficient abstractions techniques (e.g., filtering).
Furthermore, we observe that half of the surveyed arti-
cles employ static information. This is in accordance with
Ernst’s plea for a hybrid approach in which static and
dynamic analysis are combined [63].

Finally, within the evaluation facet, we note that case
studies (typically using open-source systems) are the
most typical, and that comparisons, industrial studies,
and involvements of human subjects (discussed later on)

are rather uncommon. Furthermore, while the assess-
ment of a technique’s quantitative aspects is not very
commonplace, this evaluation type does appear to be
gaining momentum, as more than half (18 out of 30) such
evaluations were carried out in the last 21

2
years. Inter-

estingly, more than half of these evaluations involved
the feature location activity; this is further discussed in
Section 6.5.

Paraphrasing, one might say that the most popular
line of research has been to work on dynamic visual-
ization of open-source object-oriented systems. In the
remainder of this section we will look at some of the
less popular topics, analyze what the underlying causes
for their unpopularity might be, and suggest areas for
future research.

6.2 Least common activities

Within the activity facet, surveys and software architec-
ture reconstruction occurred least.

As discussed in Section 2.4, the fact that a satisfactory
survey of the field was not available was the starting
point for our research, so this did not come as a surprise.
Nevertheless, nine papers are labeled as survey, also
since we marked papers containing elaborate discussions
of related work as surveys (as explained in Section 5.6).

In our survey are 13 papers dealing with the use of
dynamic analysis to reconstruct software architectures
and designs. Some of these papers make use of fairly
general tracing techniques, e.g., registering method calls,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 11

from which occurrences of design patterns such as the
Observer or Mediator can be identified [36].

Another line of research makes use of architecture-
aware probing, and aims at visualizing system dynam-
ics in terms of architectural abstractions, such as con-
nectors, locks, dynamically loaded components, client-
server configurations, and so on [4], [22], [64]. While
there are not many papers addressing these topics, the
initial results do suggest that successful application is
possible. We expect that the importance of this field will
grow: for complex adaptive systems or dynamically or-
chestrated compositions of web services, dynamic infor-
mation may be the only way to understand the runtime
architecture.

6.3 Least common targets

Web applications. We were surprised to see that web
applications occurred least frequently as target. While
traditional web sites consisting of static HTML pages can
be easily processed using static analysis alone, modern
web applications offer rich functionality for online bank-
ing, shopping, e-mailing, document editing, and so on.
The logic of these applications is distributed across the
browser and the web server, and written using a range
of technologies (such as PHP, Javascript, CSS, XSLT, etc.).
While this severely complicates static analysis, dynamic
analysis might still be possible, for example by monitor-
ing the HTTP traffic between the client and the server.

One complicating factor might be that web applica-
tions require user interaction, and hence, user input.
Several solutions to this problem exist, such as the use
of webserver log files of actual usage, or the use of
capture and playback tools for web applications. Fur-
thermore, techniques have been developed to analyze
web forms and to fill them in automatically based on a
small number of default values provided by the software
engineer [65].

The growing popularity of Javascript in general and
Ajax (Asynchronous Javascript and XML) in particular,
is another argument in favor of dynamic analysis of
web applications. With Javascript, events can be pro-
grammatically attached to any HTML element. In this
setting, even determining the seemingly simple naviga-
tion structure of the web application can no longer be
done statically, as argued by Mesbah et al. [66]. To deal
with this problem, they propose a “crawler” capable of
executing Javascript, identifying clickable elements, and
triggering clicks automatically: a solution that can also
serve as the starting point for dynamic analysis in which
client-side logic is to be executed automatically.

Distributed systems. As it turns out, the understanding
of distributed systems has received little attention in
literature: no more than seven articles are concerned
with this target type. Such systems are, however, be-
coming increasingly popular, e.g., with the advent of
service-orientation. Gold et al. paraphrase the core issue

as follows: “Service-oriented software lets organizations
create new software applications dynamically to meet
rapidly changing business needs. As its construction be-
comes automated, however, software understanding will
become more difficult” [67]. Furthermore, distributed
systems often behave differently than intended, because
of unanticipated usage patterns that are a direct con-
sequence of their dynamic configurability [68]. This in-
creases the need to understand these systems, and due to
their heterogeneous nature, dynamic analysis constitutes
a viable approach.

Multithreaded applications. In recent years, multicore
CPUs have become mainstream hardware and multi-
threading has become increasingly important. The evolu-
tion towards multithreaded software is in part evidenced
by the foundation of the International Workshop on
Multicore Software Engineering (IWMSE), first held at
ICSE in 2008: in the proceedings of this workshop it is
stated by Pankratius et al. [69] that in the near future
“every programmer will be confronted with program-
ming parallel systems”, and that in general “parallel
components are poorly understood”.

The importance of understanding multithreading be-
havior is not reflected by the current research body: a
total of 12 articles are explicitly targeted at multithreaded
applications. The use of dynamic analysis on such sys-
tems has the important benefit that thread management
and interaction can be understood at runtime. A prob-
lematic issue in multithreaded systems can be reproduc-
ing behavior: does replaying the same scenario result in
the same trace? An interesting route to deal with this is
to explore the use of multiple traces and suitable trace
comparison techniques to highlight essential differences
between traces. According to our findings, this is largely
unexplored territory: there are only few papers combin-
ing the multithreading and trace comparison attributes
in our tables.

Legacy systems Legacy systems are often in need of
a reverse engineering effort, because their internals are
poorly understood. Nevertheless, our survey shows that
very few papers explicitly mention legacy environments
as their target, meaning that dynamic analysis is rarely
applied to legacy software systems. This can be partly
explained by (1) the fact that researchers do not have
access to legacy systems, (2) a lack of available instru-
mentation tools for legacy platforms, or (3) the fact that
instrumented versions of the application are difficult
to deploy and, subsequently, run. Another hindering
factor is the difficulty of integrating the instrumentation
mechanism into the legacy build process, which is of-
ten heterogeneous, i.e., with several kinds of scripting
languages in use, and few conventions in place [70].

6.4 Least common evaluations

Industrial studies In our survey we have distinguished
between evaluations on industrial and open-source sys-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

tems. Industrial systems may differ from open-source
systems in terms of the way of working, size, complexity,
and level of interaction with other systems. Furthermore,
industrial systems may share some of the problems of
legacy systems as just discussed [71].

We found industrial evaluations to be uncommon,
with a total of 11 articles involving industrial cases. Most
of these are conducted within the context of research
projects with industrial partners, in which the industrial
partners have a particular need for reverse engineering.

We have also observed that the degree to which de-
velopers or maintainers are involved in the validation
is generally low, as their feedback is often limited to
answering several general questions, if given at all. This
may be a consequence of a lack of time on the part of
the developers, or because the industry is not fully aware
of the potential benefits of dynamic analysis. This may
be resolved by familiarizing practitioners with the bene-
fits, e.g., through the development environment (IDE),
as proposed by Röthlisberger et al. [72] who provide
dynamic information during programming tasks.

Another impediment for industrial involvement in
publications can be fear of disclosing proprietary ma-
terial. Apart from open discussions with management
about the mutual interest, anonymizing traces or pre-
senting aggregated data only might be an option, al-
though obfuscated traces will be even harder to under-
stand.

Finally, a more technical obstacle is the lack of re-
sources, be it memory or processor cycles for the tracing
mechanism or disk space for the storage of execution
traces. A potential solution to these problems is found
in lightweight tracing techniques (e.g., [73]) or cap-
ture/replay techniques (e.g., [74], [75]).

Involvement of human subjects. In the field of pro-
gram comprehension, an evaluation that involves human
subjects typically seeks to measure such aspects as the
usefulness and usability of a tool or technique in prac-
tice. The involvement of human subjects is important for
program comprehension because this field has the task of
conveying information to humans. Moreover, dynamic
analyses are particularly notorious for producing more
information than can be comprehended directly [76].

In spite of its importance, this type of evaluation was
used in no more than six articles. Bennett et al. [77]
use four experts and five graduate students to assess
the usefulness of reverse engineered UML sequence dia-
grams in nine specific comprehension tasks. Quante [78]
reports on a controlled experiment with 25 students that
involves the use of “object process graphs” in a program
comprehension context. Röthlisberger et al. [72] prelimi-
narily assess the added value of dynamic information
in an IDE by having six subjects conduct a series of
tasks; the authors remain unclear as to the background
of the subjects and the nature of the tasks at hand.
Hamou-Lhadj and Lethbridge [33] report on a question-
naire in which the quality of a summarized execution

trace is judged by nine domain experts; however, no
real comprehension tasks are involved. Finally, Wilde et
al. [16] and Simmons et al. [79] conduct experiments
to assess the practical usefulness of different feature
location techniques in legacy Fortran software and in a
large 200 kLOC system, respectively.

The design and execution of a controlled experiment is
quite elaborate, and requires a great deal of preparation
and, preferably, a substantial number of test subjects.
Nonetheless, such efforts constitute important contribu-
tions to the field of program comprehension and must
therefore be encouraged, particularly in case of (novel)
visualizations. On a positive note, the fact that three out
of the six experiments mentioned above were conducted
in 2008 could suggest that this type of evaluation is
already gaining momentum.

Comparisons. Comparisons (or comparative evalua-
tions) are similar to surveys in the sense that the article
at hand involves one or more existing approaches. The
difference in terms of our attribute framework is that
the authors of side-by-side comparisons do not merely
discuss existing solutions, but rather use them to evaluate
their own. Such a comparison can be more valuable
than the evaluation of a technique by itself through
anecdotal evidence, as it helps to clarify where there is
an improvement over existing work.

Our survey has identified a total of 12 comparative
evaluations. The majority of these comparisons was con-
ducted in the context of feature location. As an example,
Eaddy et al. [80] discuss two recently proposed feature
location techniques, devise one of their own, and subject
combinations of the three techniques to a thorough
evaluation. Similar approaches are followed by Antoniol
and Guéhéneuc [50] and by Poshyvanyk et al. [51]; in
the same context, Wilde et al. [16] offer a comparison
between a static and a dynamic technique.

Apart from the field of feature location, in which
complementary techniques have already proven to yield
the best results, the degree to which existing work is
compared against is generally low. One can think of
several causes (and solutions) in this context.

First, it must be noted that work on program com-
prehension cannot always be easily compared because
the human factor plays an important role. The afore-
mentioned feature location example is an exception,
since that activity typically produces quantifiable results;
Evaluations of qualitative nature, on the other hand, may
require hard to get domain experts or control groups,
as well as possibly subjective human interpretation and
judgements.

Second, we have determined that only 14 out of the
114 articles offer publicly available tools. The lack of
available tooling is an important issue, as it hinders
the evaluation (and comparison) of the associated ap-
proaches by third party researchers. In our earlier work
on the assessment of four existing trace reduction tech-
niques [81], for example, we had to resort to our own

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 13

implementations, which may have resulted in interpre-
tation errors (thus constituting a threat to the internal
validity of the experiments). We therefore encourage
researchers to make their tools available online, and
advocate the use of these tools to compare new solutions
against.

Third, the comparison of existing approaches is hin-
dered by the absence of common assessment frameworks
and benchmarks, which, as Sim et al. [82] observed, can
stimulate technical progress and community building.
In the context of program comprehension through dy-
namic analysis, one could think of using common test
sets, such as execution trace repositories (e.g., [81]), and
common evaluation criteria, such as the precision and
recall measures that are often used in the field of feature
location (e.g., [80]). Also of importance in this respect is
the use of open-source cases to enable the reproducibility
of experiments.

6.5 How activities are evaluated

In the historical overview in Section 2 we identified five
main subfields in program comprehension: feature anal-
ysis, visualization, trace analysis, design and architecture
recovery, and behavioral analysis, which correspond to
the activity facet of our attribute framework. Here we
consider these fields from the perspective of the evalua-
tion facet.

The literature on feature analysis mostly deals with
feature location, i.e., relating functionality to source code.
What is interesting is not only that this field has received
significant attention from 1995 to the present day, but
also that comparative evaluations are a common practice
in this field, as noticed in Section 6.4. The introduction
of common evaluation criteria (i.e., precision and recall)
may have contributed to this development. Furthermore,
feature analysis accounts for seven out of the 11 indus-
trial evaluations identified in this survey, and for four
out of the six evaluations that involve human subjects.

Visualization is a rather different story: for reasons
mentioned earlier, the effectiveness of visualization tech-
niques is more difficult to assess, which hinders their
comparison and their involvement in industrial contexts.
Furthermore, there is still a lot of experimenting going
on in this field with both traditional techniques and
more advanced solutions. As an example of the former,
consider the reverse engineering of UML sequence dia-
grams: this has been an important topic since the earliest
of program comprehension articles (e.g., [11], [21]) and
has only recently been subjected to a controlled exper-
iment [77]. In general, the evaluation of visualizations
through empirical studies is quite rare, as are industrial
studies in this context.

Execution trace analysis, and trace reduction in par-
ticular, has received substantial attention in the past
decade. This has seldomly resulted in industrial stud-
ies and never in controlled experiments. Furthermore,
while comparisons with earlier approaches are not very

common either, recently there has been a first effort at
(quantitatively) evaluating a series of existing reduction
techniques side-by-side [81].

Finally, behavioral analysis and architecture recovery
are somewhat difficult to assess: the latter has been
treated in only five articles, while the former is a rather
heterogeneous subfield that comprises various similar,
but not equal, disciplines. They are mostly small and
involve limited numbers of researchers, and generally
these areas of specialization cannot be compared with
each other. However, as a behavioral discipline receives
more attention in literature, it may grow to become a
subfield on its own: the automaton-based recovery of
protocols, for example, is a recent development that
is adopting common evaluation criteria and thorough
comparisons [42], [43].

7 EVALUATION

In the previous sections we have presented a series of
findings based on our paper selection, attribute frame-
work, and attribute assignments. Since conducting a
survey is a largely manual task, most threats to validity
relate to the possibility of researcher bias, and thus to
the concern that other researchers might come to dif-
ferent results and conclusions. One remedy we adopted
is to follow, where possible, guidelines on conducting
systematic reviews as suggested by, e.g., Kitchenham [59]
and Brereton et al. [57]. In particular, we documented
and reviewed all steps we made in advance (per pass),
including selection criteria and attribute definitions.

In the following sections, we successively describe
validity threats pertaining to the article selection, the
attribute framework, the article characterization, and the
results interpretation, and discuss the manners in which
we attempted to minimize their risk.

7.1 Article selection

Program comprehension is a broad subject that, ar-
guably, has a certain overlap with related topics. Exam-
ples of such topics are debugging and impact analysis.
The question whether articles of the latter categories
should be included in a program comprehension survey
is subject to debate. It is our opinion that the topics
covered in this survey are most closely related to pro-
gram comprehension because their common goal is to
provide a deeper understanding of the inner workings
of software. Following the advice of Kitchenham [59] and
Brereton et al. [57], we enforced this criterion by utilizing
predefined selection criteria that clearly define the scope,
and evaluated these criteria through a pilot study that
yielded positive results (Section 3.2).

In the process of collecting relevant articles, we chose
not to rely on keyword searches. This choice was moti-
vated by a recent paper from Brereton et al. [57], who
state that “current software engineering search engines

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

are not designed to support systematic literature re-
views”; this observation is confirmed by Staples and Ni-
azi [83]. For this reason, we have followed an alternative
search strategy that comprises the manual processing of
relevant venues in a certain period of time.

The venues in Table 1 were chosen because they are
most closely related to software engineering, mainte-
nance, and reverse engineering. While this presumption
is largely supported by the results (Figure 2), our article
selection is not necessarily unbiased or representative
of the targeted research body. We have addressed the
threat of selection bias by utilizing the aforementioned
selection criteria. Furthermore, we have attempted to
increase the representativeness of our selection by fol-
lowing the references in the initial article selection and
including the relevant ones in our final selection. We
found a non-recursive approach sufficient, as checking
for citations within citations typically resulted in no
additional articles. As a result, we expect the number of
missed articles to be limited; particularly those that have
proven influential have almost certainly been included
the survey, as they are likely to have been cited often.

7.2 Attribute framework

We acknowledge that the construction of the attribute
framework may be the most subjective step in our
approach. The resulting framework may depend on
keywords jotted down in the first pass, as well as on the
subsequent generalization step. However, the resulting
framework can be evaluated in terms of its usefulness:
Specifically, we have performed a second pilot study,
and measured the degree to which the attributes in
each facet coincide. Both of these experiments yielded
favorable results and demonstrate the applicability of
our framework.

7.3 Article characterization

Similar to the construction of the attribute framework,
the process of applying the framework to the research
body is subjective may be difficult to reproduce.

We have addressed this validity threat through a
second pilot study (Section 5.3), of which the results
exposed some discrepancies, mostly within the method
facet. The outcomes were discussed among the authors
of this survey and resulted in the refinement of several
attributes and their descriptions; a detailed description
of these refinements is given in the technical report [60].

In order to identify topics that have received little
attention in the literature, we counted the occurrences of
all attributes in the selected articles (shown in Figure 3).
A threat to validity in this respect is duplication among
articles and experiments: one and the same experiment
should not be taken into account twice, which is likely
to occur when considering both conference proceedings
and journals. We have addressed this threat by summa-
rizing the article selection and using the summarized
articles for the interpretation phase, while making the

full selection available in a technical report and on a
website.

7.4 Results interpretation

A potential threat to the validity of the results inter-
pretation is researcher bias, as the interpretation may
seek for results that the reviewers were looking for.
Our countermeasure has been a systematic approach
towards the analysis of Tables 3 and 4: in each facet
we have discussed the most common and least common
attributes. In addition, we have examined the relation
between activities and evaluations in particular, as this
combination pertains to one of our research questions.

8 CONCLUSION

In this paper we have reported on a systematic literature
survey on program comprehension through dynamic
analysis. We have characterized the work on this topic
on the basis of four main facets: activity, target, method,
and evaluation. While our initial focus was on nine
conferences and five journals in the last decade, the use
of reference checking to include earlier articles and al-
ternative venues yielded a research body that comprises
31 venues, and relevant articles of up to thirty years old.

Out of 4,795 scanned articles published between July
1999 and June 2008 in 14 relevant venues, we selected
the literature that strongly emphasizes the use of dy-
namic analysis in program comprehension contexts. The
addition of relevant articles that were referenced therein
resulted in a final selection of 176 articles. Through a
detailed reading of this research body, we derived an
attribute framework that was consequently used to char-
acterize the articles under study in a structured fashion.
The resulting systematic overview is useful as a reference
work for researchers in the field of program comprehen-
sion through dynamic analysis, and helps them identify
both related work and new research opportunities in
their respective subfields.

In advance, we posed four research questions pertain-
ing to (1) the identification of generic attributes, (2) the
extent to which each of these attributes is represented in
the research body, (3) the relation between activities and
evaluations, and (4) the distillation of future directions.

The identified attributes are shown in Table 2. While
being generic in the sense that they characterize all
of the surveyed articles, they are sufficiently specific
for researchers looking for related work on particular
activities, target system types, methods, and evaluation
types.

The characterization of the surveyed articles is shown
in Tables 3 and 4. The frequencies of the attributes are
provided by Figure 3, which clearly shows the distribu-
tion of the attributes in each facet across the research
body. We discussed the results, highlighted research
aspects that have proven popular throughout the years,
and studied the manners in which the major subfields
are evaluated.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 15

Based on our analysis of the results, we report on
three lessons learned that we feel are the most signif-
icant. First, we have observed that the feature location
activity sets an example in the way research results are
evaluated: this subfield exhibits a great deal of effort
in comparing and combining earlier techniques, which
has led to a significant technical progress in the past
decade (Section 6.5). Second, we conclude that standard
object-oriented systems may be overemphasized in the
literature, at the cost of web applications, distributed
software, and multithreaded systems, for which we have
argued that dynamic analysis is very suitable (Section 6.1
and Section 6.3). Third, with regard to evaluation, we
have learned that comparisons and benchmarking do not
occur as often as they should, particularly in activities
other than feature location. To support this process,
we encourage researchers to make their tools publicly
available, and to conduct controlled experiments in case
of visualization techniques because these are otherwise
difficult to evaluate (Section 6.4).

In summary, the work described in this paper makes
the following contributions:
1) A historical overview of the field of program com-

prehension through dynamic analysis.
2) A selection of key articles in the area of program

comprehension and dynamic analysis, based on ex-
plicit selection criteria.

3) An attribute framework that can be used to charac-
terize papers in the area of program comprehension
through dynamic analysis.

4) An actual characterization of all selected articles in
terms of the attributes in this framework.

5) A series of recommendations on future research
directions.

ACKNOWLEDGMENTS

Part of this work was conducted at Delft University of
Technology in the Reconstructor project, sponsored by
NWO/Jacquard.

REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[2] R. K. Fjeldstad and W. T. Hamlen, “Application program mainte-
nance study: Report to our respondents,” in Proc. GUIDE, vol. 48,
1979.

[3] T. Richner and S. Ducasse, “Recovering high-level views of
object-oriented applications from static and dynamic informa-
tion,” in Proc. 15th Int. Conf. on Software Maintenance, pp. 13–22,
IEEE C.S., 1999.

[4] B. R. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan,
“Discovering architectures from running systems,” IEEE Trans.
Software Eng., vol. 32, no. 7, pp. 454–466, 2006.

[5] R. J. Walker, G. C. Murphy, B. N. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak, “Visualizing dynamic software system
information through high-level models,” in Proc. 13th Conf. on
Object-Oriented Programming Systems, Languages & Applications,
pp. 271–283, ACM, 1998.

[6] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proc. 15th
Int. Conf. on Software Engineering, pp. 482–498, IEEE C.S., 1993.

[7] T. Ball, “The concept of dynamic analysis,” in Proc. 7th European
Software Engineering Conf. & ACM SIGSOFT Symp. on the Founda-
tions of Software Engineering (ESEC/FSE), pp. 216–234, Springer,
1999.

[8] J. Andrews, “Testing using log file analysis: tools, methods, and
issues,” in Proc. 13th Int. Conf. on Automated Software Engineering,
pp. 157–166, IEEE C.S., 1997.

[9] A. W. Biermann, “On the inference of turing machines from
sample computations,” Artif. Intell., vol. 3, no. 1-3, pp. 181–198,
1972.

[10] M. F. Kleyn and P. C. Gingrich, “Graphtrace - understanding
object-oriented systems using concurrently animated views,” in
Proc. 3rd Conf. on Object-Oriented Programming Systems, Languages,
and Applications, pp. 191–205, ACM, 1988.

[11] W. De Pauw, R. Helm, D. Kimelman, and J. M. Vlissides,
“Visualizing the behavior of object-oriented systems,” in Proc.
8th Conf. on Object-Oriented Programming Systems, Languages, and
Applications, pp. 326–337, ACM, 1993.

[12] W. De Pauw, D. Kimelman, and J. M. Vlissides, “Modeling
object-oriented program execution,” in Proc. European Object-
Oriented Programming Conf., pp. 163–182, Springer, 1994.

[13] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman, “Execution
patterns in object-oriented visualization,” in Proc. 4th USENIX
Conf. on Object-Oriented Technologies and Systems, pp. 219–234,
USENIX, 1998.

[14] I. Jacobson, Object-Oriented software engineering: a use case driven
approach. Addison-Wesley, 1995.

[15] N. Wilde and M. C. Scully, “Software Reconnaissance: Mapping
program features to code,” J. Softw. Maint.: Res. Pract., vol. 7,
no. 1, pp. 49–62, 1995.

[16] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds, “A
comparison of methods for locating features in legacy software,”
J. Syst. Software, vol. 65, no. 2, pp. 105–114, 2003.

[17] N. Wilde, M. Buckellew, H. Page, and V. Rajlich, “A case study of
feature location in unstructured legacy fortran code,” in Proc. 5th
European Conf. on Software Maintenance and Reengineering, pp. 68–
76, IEEE C.S., 2001.

[18] N. Wilde and C. Casey, “Early field experience with the Software
Reconnaissance technique for program comprehension,” in Proc.
Int. Conf. on Software Maintenance, pp. 312–318, IEEE C.S., 1996.

[19] D. B. Lange and Y. Nakamura, “Interactive visualization of
design patterns can help in framework understanding,” in Proc.
10th Conf. on Object-Oriented Programming Systems, Languages, and
Applications, pp. 342–357, ACM, 1995.

[20] D. B. Lange and Y. Nakamura, “Program Explorer: A program
visualizer for C++,” in Proc. 1st USENIX Conf. on Object-Oriented
Technologies and Systems, pp. 39–54, USENIX, 1995.

[21] K. Koskimies and H. Mössenböck, “Scene: Using scenario dia-
grams and active text for illustrating object-oriented programs,”
in Proc. 18th Int. Conf. on Software Engineering, pp. 366–375, IEEE
C.S., 1996.

[22] M. Sefika, A. Sane, and R. H. Campbell, “Architecture-oriented
visualization,” in Proc. 11th Conf. on Object-Oriented Programming
Systems, Languages, and Applications, pp. 389–405, ACM, 1996.

[23] D. F. Jerding and S. Rugaber, “Using visualization for architec-
tural localization and extraction,” in Proc. 4th Working Conf. on
Reverse Engineering, pp. 56–65, IEEE C.S., 1997.

[24] D. F. Jerding, J. T. Stasko, and T. Ball, “Visualizing interactions
in program executions,” in Proc. 19th Int. Conf. on Software
Engineering, pp. 360–370, ACM, 1997.

[25] D. F. Jerding and J. T. Stasko, “The information mural: A tech-
nique for displaying and navigating large information spaces,”
IEEE Trans. Vis. Comput. Graph., vol. 4, no. 3, pp. 257–271, 1998.

[26] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion
models: Bridging the gap between design and implementation,”
IEEE Trans. Software Eng., vol. 27, no. 4, pp. 364–380, 2001.

[27] T. Richner and S. Ducasse, “Using dynamic information for the
iterative recovery of collaborations and roles,” in Proc. 18th Int.
Conf. on Software Maintenance, pp. 34–43, IEEE C.S., 2002.

[28] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang, “Visualizing the execution of Java programs,” in
Proc. ACM 2001 Symp. on Software Visualization, pp. 151–162,
ACM, 2001.

[29] T. Systä, K. Koskimies, and H. A. Müller, “Shimba: an envi-
ronment for reverse engineering Java software systems,” Softw.,
Pract. Exper., vol. 31, no. 4, pp. 371–394, 2001.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

[30] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse
engineering of UML sequence diagrams for distributed Java
software,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 642–663,
2006.

[31] S. P. Reiss and M. Renieris, “Encoding program executions,” in
Proc. 23rd Int. Conf. on Software Engineering, pp. 221–230, IEEE
C.S., 2001.

[32] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace
exploration tools and techniques,” in Proc. 2004 Conf. of the Centre
for Advanced Studies on Collaborative Research, pp. 42–55, IBM
Press, 2004.

[33] A. Hamou-Lhadj and T. C. Lethbridge, “Summarizing the con-
tent of large traces to facilitate the understanding of the be-
haviour of a software system,” in Proc. 14th Int. Conf. on Program
Comprehension, pp. 181–190, IEEE C.S., 2006.

[34] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “Challenges and
requirements for an effective trace exploration tool,” in Proc. 12th
Int. Workshop on Program Comprehension, pp. 70–78, IEEE C.S.,
2004.

[35] D. Heuzeroth, T. Holl, and W. Löwe, “Combining static and
dynamic analyses to detect interaction patterns,” in Proc. 6th
Int. Conf. on Integrated Design and Process Technology, Society for
Design and Process Science, 2002.

[36] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, “Automatic
design pattern detection,” in Proc. 11th Int. Workshop on Program
Comprehension, pp. 94–103, IEEE C.S., 2003.

[37] C. Riva and J. V. Rodriguez, “Combining static and dynamic
views for architecture reconstruction,” in Proc. 6th European Conf.
on Software Maintenance and Reengineering, pp. 47–55, IEEE C.S.,
2002.

[38] C. Riva and Y. Yang, “Generation of architectural documentation
using XML,” in Proc. 9th Working Conf. on Reverse Engineering,
pp. 161–179, IEEE C.S., 2002.

[39] H. Yan, D. Garlan, B. R. Schmerl, J. Aldrich, and R. Kazman,
“Discotect: A system for discovering architectures from running
systems,” in Proc. 26th Int. Conf. on Software Engineering, pp. 470–
479, IEEE C.S., 2004.

[40] J. Koskinen, M. Kettunen, and T. Systä, “Profile-based approach
to support comprehension of software behavior,” in Proc. 14th
Int. Conf. on Program Comprehension, pp. 212–224, IEEE C.S., 2006.

[41] J. E. Cook and Z. Du, “Discovering thread interactions in a
concurrent system,” J. Syst. Software, vol. 77, no. 3, pp. 285–297,
2005.

[42] J. Quante and R. Koschke, “Dynamic protocol recovery,” in Proc.
14th Working Conf. on Reverse Engineering, pp. 219–228, IEEE C.S.,
2007.

[43] D. Lo, S. Khoo, and C. Liu, “Mining temporal rules for software
maintenance,” J. Softw. Maint. Evol.: Res. Pract., vol. 20, no. 4,
pp. 227–247, 2008.

[44] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin,
“Reverse engineering state machines by interactive grammar
inference,” J. Softw. Maint. Evol.: Res. Pract., vol. 20, no. 4, pp. 269–
290, 2008.

[45] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing feature traces
to incorporate the semantics of change in software evolution
analysis,” in Proc. 21st Int. Conf. on Software Maintenance, pp. 347–
356, IEEE C.S., 2005.

[46] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing software evo-
lution through feature views,” J. Softw. Maint. Evol.: Res. Pract.,
vol. 18, no. 6, pp. 425–456, 2006.

[47] J. Kothari, T. Denton, A. Shokoufandeh, and S. Mancoridis,
“Reducing program comprehension effort in evolving software
by recognizing feature implementation convergence,” in Proc.
15th Int. Conf. on Program Comprehension, pp. 17–26, IEEE C.S.,
2007.

[48] W. E. Wong, S. S. Gokhale, and J. R. Horgan, “Quantifying the
closeness between program components and features,” J. Syst.
Software, vol. 54, no. 2, pp. 87–98, 2000.

[49] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in
source code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210–
224, 2003.

[50] G. Antoniol and Y.-G. Guéhéneuc, “Feature identification: An
epidemiological metaphor,” IEEE Trans. Software Eng., vol. 32,
no. 9, pp. 627–641, 2006.

[51] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of meth-

ods based on execution scenarios and information retrieval,”
IEEE Trans. Software Eng., vol. 33, no. 6, pp. 420–432, 2007.

[52] M. J. Pacione, M. Roper, and M. Wood, “Comparative evaluation
of dynamic visualisation tools,” in Proc. 10th Working Conf. on
Reverse Engineering, pp. 80–89, IEEE C.S., 2003.

[53] O. Greevy, Enriching Reverse Engineering with Feature Analysis.
PhD thesis, Universität Bern, 2007.

[54] S. P. Reiss, “Visual representations of executing programs,” J. Vis.
Lang. Comput., vol. 18, no. 2, pp. 126–148, 2007.

[55] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Inform. Softw. Technol., vol. 50, no. 9-10, pp. 860–878,
2008.

[56] T. Dybå and T. Dingsøyr, “Empirical studies of agile software de-
velopment: A systematic review,” Inform. Softw. Technol., vol. 50,
no. 9-10, pp. 833–859, 2008.

[57] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,” J. Syst.
Software, vol. 80, no. 4, pp. 571–583, 2007.

[58] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal, “A survey
of controlled experiments in software engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733–753, 2005.

[59] B. A. Kitchenham, “Procedures for performing systematic re-
views,” in Technical Report TR/SE-0401, Keele University, and
Technical Report 0400011T.1, National ICT Australia, 2004.

[60] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” Tech. Rep. TUD-SERG-2008-033,
Delft University of Technology, 2008.

[61] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
location via information retrieval based filtering of a single
scenario execution trace,” in Proc. 22nd Int. Conf. on Automated
Software Engineering, pp. 234–243, ACM, 2007.

[62] A. Zaidman and S. Demeyer, “Managing trace data volume
through a heuristical clustering process based on event execution
frequency,” in Proc. 8th European Conf. on Software Maintenance
and Reengineering, pp. 329–338, IEEE C.S., 2004.

[63] M. D. Ernst, “Static and dynamic analysis: synergy and duality,”
in Proc. 1st ICSE Int. Workshop on Dynamic Analysis, pp. 25–28,
IEEE C.S., 2003.

[64] T. Israr, M. Woodside, and G. Franks, “Interaction tree algorithms
to extract effective architecture and layered performance models
from traces,” J. Syst. Software, vol. 80, no. 4, pp. 474–492, 2007.

[65] M. Benedikt, J. Freire, , and P. Godefroid, “VeriWeb: Automati-
cally testing dynamic web sites,” in Proc. 11th Int. Conf. on World
Wide Web, 2002.

[66] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling Ajax by
inferring user interface state changes,” in Proc. 8th Int. Conf. on
Web Engineering, pp. 122–134, IEEE C.S., 2008.

[67] N. Gold, A. Mohan, C. Knight, and M. Munro, “Understanding
service-oriented software,” IEEE Software, vol. 21, no. 2, pp. 71–
77, 2004.

[68] J. Moe and D. A. Carr, “Understanding distributed systems
via execution trace data,” in Proc. 9th Int. Workshop on Program
Comprehension, pp. 60–67, IEEE C.S., 2001.

[69] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy, “Soft-
ware engineering for multicore systems: an experience report,”
in Proc. 1st ICSE Int. Workshop on Multicore Software Engineering,
ACM, 2008.

[70] A. Zaidman, S. Demeyer, B. Adams, K. De Schutter, G. Hoffman,
and B. De Ruyck, “Regaining lost knowledge through dynamic
analysis and aspect orientation,” in Proc. 10th European Conf. on
Software Maintenance and Reengineering, pp. 91–102, IEEE C.S.,
2006.

[71] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[72] D. Röthlisberger, O. Greevy, and O. Nierstrasz, “Exploiting run-
time information in the IDE,” in Proc. 16th Int. Conf. on Program
Comprehension, pp. 63–72, IEEE C.S., 2008.

[73] S. P. Reiss, “Visualizing Java in action,” in Proc. ACM 2003 Symp.
on Software Visualization, pp. 57–65, ACM, 2003.

[74] S. Joshi and A. Orso, “SCARPE: A technique and tool for
selective record and replay of program executions,” in Proc. 23rd
Int. Conf. on Software Maintenance, pp. 234–243, IEEE C.S., 2007.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 17

[75] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient checkpointing
of Java software using context-sensitive capture and replay,” in
Proc. 15th European Software Engineering Conf. & ACM SIGSOFT
Symp. on the Foundations of Software Engineering (ESEC/FSE),
pp. 85–94, ACM, 2007.

[76] A. Zaidman, Scalability Solutions for Program Comprehension
through Dynamic Analysis. PhD thesis, University of Antwerp,
2006.

[77] C. Bennett, D. Myers, D. Ouellet, M.-A. Storey, M. Salois, D. Ger-
man, and P. Charland, “A survey and evaluation of tool features
for understanding reverse engineered sequence diagrams,” J.
Softw. Maint. Evol.: Res. Pract., vol. 20, no. 4, pp. 291–315, 2008.

[78] J. Quante, “Do dynamic object process graphs support program
understanding? – a controlled experiment,” in Proc. 16th Int.
Conf. on Program Comprehension, pp. 73–82, IEEE C.S., 2008.

[79] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M. Groble,
“Industrial tools for the feature location problem: an exploratory
study,” J. Softw. Maint. Evol.: Res. Pract., vol. 18, no. 6, pp. 457–
474, 2006.

[80] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “CER-
BERUS: Tracing requirements to source code using information
retrieval, dynamic analysis, and program analysis,” in Proc. 16th
Int. Conf. on Program Comprehension, pp. 53–62, IEEE C.S., 2008.

[81] B. Cornelissen, L. Moonen, and A. Zaidman, “An assessment
methodology for trace reduction techniques,” in Proc. 24th Int.
Conf. on Software Maintenance, pp. 107–116, IEEE C.S., 2008.

[82] S. E. Sim, S. M. Easterbrook, and R. C. Holt, “Using benchmark-
ing to advance research: A challenge to software engineering,”
in Proc. 25th Int. Conf. on Software Engineering, pp. 74–83, IEEE
C.S., 2003.

[83] M. Staples and M. Niazi, “Experiences using systematic review
guidelines,” J. Syst. Software, vol. 80, no. 9, pp. 1425–1437, 2007.

[84] G. Antoniol and M. Di Penta, “A distributed architecture for
dynamic analyses on user-profile data,” in Proc. 8th European
Conf. on Software Maintenance and Reengineering, pp. 319–328,
IEEE C.S., 2004.

[85] G. Antoniol, M. Di Penta, and M. Zazzara, “Understanding
web applications through dynamic analysis,” in Proc. 12th Int.
Workshop on Program Comprehension, pp. 120–131, IEEE C.S., 2004.

[86] T. Ball, “Software visualization in the large,” IEEE Computer,
vol. 29, no. 4, pp. 33–43, 1996.

[87] J. Bohnet and J. Döllner, “Visual exploration of function call
graphs for feature location in complex software systems,” in
Proc. ACM 2006 Symp. on Software Visualization, pp. 95–104, ACM,
2006.

[88] D. Bojic and D. M. Velasevic, “A use-case driven method of ar-
chitecture recovery for program understanding and reuse reengi-
neering,” in Proc. 4th European Conf. on Software Maintenance and
Reengineering, pp. 23–32, IEEE C.S., 2000.

[89] A. Chan, R. Holmes, G. C. Murphy, and A. T. T. Ying, “Scaling an
object-oriented system execution visualizer through sampling,”
in Proc. 11th Int. Workshop on Program Comprehension, pp. 237–244,
IEEE C.S., 2003.

[90] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman,
“Visualizing testsuites to aid in software understanding,” in Proc.
11th European Conf. on Software Maintenance and Reengineering,
pp. 213–222, IEEE C.S., 2007.

[91] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J. J. van Wijk, “Execution trace analysis through
massive sequence and circular bundle views,” J. Syst. Software,
vol. 81, no. 11, pp. 2252–2268, 2008.

[92] A. R. Dalton and J. O. Hallstrom, “A toolkit for visualizing the
runtime behavior of TinyOS applications,” in Proc. 15th Int. Conf.
on Program Comprehension, pp. 43–52, IEEE C.S., 2008.

[93] J. Deprez and A. Lakhotia, “A formalism to automate mapping
from program features to code,” in Proc. 8th Int. Workshop on
Program Comprehension, pp. 69–78, IEEE C.S., 2000.

[94] S. Ducasse, M. Lanza, and R. Bertuli, “High-level polymetric
views of condensed run-time information,” in Proc. 8th European
Conf. on Software Maintenance and Reengineering, pp. 309–318,
IEEE C.S., 2004.

[95] D. Edwards, S. Simmons, and N. Wilde, “An approach to feature
location in distributed systems,” J. Syst. Software, vol. 79, no. 1,
pp. 457–474, 2006.

[96] A. D. Eisenberg and K. De Volder, “Dynamic feature traces:
finding features in unfamiliar code,” in Proc. 21st Int. Conf. on
Software Maintenance, pp. 337–346, IEEE C.S., 2005.

[97] M. El-Ramly, E. Stroulia, and P. G. Sorenson, “From run-time
behavior to usage scenarios: an interaction-pattern mining ap-
proach,” in Proc. 8th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pp. 315–324, ACM, 2002.

[98] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind, “System
evolution tracking through execution trace analysis,” in Proc.
13th Int. Workshop on Program Comprehension, pp. 237–246, IEEE
C.S., 2005.

[99] M. Fisher II, S. G. Elbaum, and G. Rothermel, “Dynamic charac-
terization of web application interfaces,” in Proc. 10th Int. Conf.
on Fundamental Approaches to Software Engineering, pp. 260–275,
Springer, 2007.

[100] J. Gargiulo and S. Mancoridis, “Gadget: A tool for extracting the
dynamic structure of Java programs,” in Proc. 13th Int. Conf. on
Software Engineering & Knowledge Engineering, pp. 244–251, 2001.

[101] P. V. Gestwicki and B. Jayaraman, “Methodology and architec-
ture of JIVE,” in Proc. ACM 2005 Symp. on Software Visualization,
pp. 95–104, ACM, 2005.

[102] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing live software
systems in 3D,” in Proc. ACM 2006 Symp. on Software Visualiza-
tion, pp. 47–56, ACM, 2006.

[103] T. Gschwind, J. Oberleitner, and M. Pinzger, “Using run-time
data for program comprehension,” in Proc. 11th Int. Workshop on
Program Comprehension, pp. 245–250, IEEE C.S., 2003.

[104] Y.-G. Guéhéneuc, R. Douence, and N. Jussien, “No Java without
Caffeine: A tool for dynamic analysis of Java programs,” in Proc.
17th Int. Conf. on Automated Software Engineering, pp. 117–126,
IEEE C.S., 2002.

[105] Y.-G. Guéhéneuc, “A reverse engineering tool for precise class
diagrams,” in Proc. 2004 Conf. of the Centre for Advanced Studies
on Collaborative Research, pp. 28–41, IBM Press, 2004.

[106] S. A. Hendrickson, E. M. Dashofy, and R. N. Taylor, “An
architecture-centric approach for tracing, organizing, and under-
standing events in event-based software architectures,” in Proc.
13th Int. Workshop on Program Comprehension, pp. 227–236, IEEE
C.S., 2005.

[107] H. Huang, S. Zhang, J. Cao, and Y. Duan, “A practical pattern
recovery approach based on both structural and behavioral
analysis,” J. Syst. Software, vol. 75, no. 1-2, pp. 69–87, 2005.

[108] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing
usage scenarios for API redocumentation,” in Proc. 15th Int. Conf.
on Program Comprehension, pp. 259–264, IEEE C.S., 2007.

[109] M. Jiang, M. Groble, S. Simmons, D. Edwards, and N. Wilde,
“Software feature understanding in an industrial setting,” in
Proc. 22nd Int. Conf. on Software Maintenance, pp. 66–67, IEEE
C.S., 2006.

[110] Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” J.
Softw. Maint. Evol.: Res. Pract., vol. 20, no. 4, pp. 249–267, 2008.

[111] P. Kelsen, “A simple static model for understanding the dynamic
behavior of programs,” in Proc. 12th Int. Workshop on Program
Comprehension, pp. 46–51, IEEE C.S., 2004.

[112] R. Kollmann and M. Gogolla, “Capturing dynamic program be-
haviour with UML collaboration diagrams,” in Proc. 5th European
Conf. on Software Maintenance and Reengineering, pp. 58–67, IEEE
C.S., 2001.

[113] B. Korel and J. Rilling, “Program slicing in understanding of
large programs,” in Proc. 6th Int. Workshop on Program Compre-
hension, pp. 145–152, IEEE C.S., 1998.

[114] R. Koschke and J. Quante, “On dynamic feature location,” in
Proc. 20th Int. Conf. on Automated Software Engineering, pp. 86–95,
ACM, 2005.

[115] A. Kuhn and O. Greevy, “Exploiting the analogy between traces
and signal processing,” in Proc. 22nd Int. Conf. on Software
Maintenance, pp. 320–329, IEEE C.S., 2006.

[116] D. Lange and Y. Nakamura, “Object-oriented program tracing
and visualization,” IEEE Computer, vol. 30, no. 5, pp. 63–70, 1997.

[117] D. R. Licata, C. D. Harris, and S. Krishnamurthi, “The feature
signatures of evolving programs,” in Proc. 18th Int. Conf. on
Automated Software Engineering, pp. 281–285, IEEE C.S., 2003.

[118] A. Lienhard, O. Greevy, and O. Nierstrasz, “Tracking objects to
detect feature dependencies,” in Proc. 15th Int. Conf. on Program
Comprehension, pp. 59–68, IEEE C.S., 2007.

[119] D. Lo and S. Khoo, “QUARK: Empirical assessment of
automaton-based specification miners,” in Proc. 13th Working
Conf. on Reverse Engineering, pp. 51–60, IEEE C.S., 2006.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

[120] D. Lo and S. Khoo, “SMArTIC: Towards building an accurate,
robust and scalable specification miner,” in Proc. 14th European
Software Engineering Conf. & ACM SIGSOFT Symp. on the Foun-
dations of Software Engineering (ESEC/FSE), pp. 265–275, ACM,
2006.

[121] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, and U. de
Carlini, “Abstracting business level UML diagrams from web
applications,” in Proc. 5th Int. Workshop on Web Site Evolution,
pp. 12–19, IEEE C.S., 2003.

[122] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey, “TraceGraph:
Immediate visual location of software features,” in Proc. 16nd
Int. Conf. on Software Maintenance, pp. 33–39, IEEE C.S., 2000.

[123] B. A. Malloy and J. F. Power, “Exploiting UML dynamic object
modeling for the visualization of C++ programs,” in Proc. ACM
2005 Symp. on Software Visualization, pp. 105–114, ACM, 2005.

[124] L. Martin, A. Giesl, and J. Martin, “Dynamic component program
visualization,” in Proc. 9th Working Conf. on Reverse Engineering,
pp. 289–298, IEEE C.S., 2002.

[125] J. Moe and K. Sandahl, “Using execution trace data to improve
distributed systems,” in Proc. 18th Int. Conf. on Software Mainte-
nance, pp. 640–648, IEEE C.S., 2002.

[126] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic program vi-
sualization with object and sequence diagrams using the Java
Debug Interface (JDI),” in Proc. ACM 2001 Symp. on Software
Visualization, pp. 176–190, ACM, 2001.

[127] A. Orso, J. A. Jones, and M. J. Harrold, “Visualization of
program-execution data for deployed software,” in Proc. ACM
2003 Symp. on Software Visualization, pp. 67–76, ACM, 2003.

[128] M. J. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,” in
Proc. 11th Working Conf. on Reverse Engineering, pp. 70–79, IEEE
C.S., 2004.

[129] W. De Pauw, S. Krasikov, and J. F. Morar, “Execution patterns for
visualizing web services,” in Proc. ACM 2006 Symp. on Software
Visualization, pp. 37–45, ACM, 2006.

[130] S. Pheng and C. Verbrugge, “Dynamic data structure analysis for
Java programs,” in Proc. 14th Int. Conf. on Program Comprehension,
pp. 191–201, IEEE C.S., 2006.

[131] L. Qingshan, H. Chu, S. Hu, P. Chen, and Z. Yun, “Architecture
recovery and abstraction from the perspective of processes,” in
Proc. 12th Working Conf. on Reverse Engineering, pp. 57–66, IEEE
C.S., 2005.

[132] S. P. Reiss, “Event-based performance analysis,” in Proc. 11th Int.
Workshop on Program Comprehension, pp. 74–83, IEEE C.S., 2003.

[133] S. P. Reiss, “Visualizing program execution using user abstrac-
tions,” in Proc. ACM 2006 Symposium on Software Visualization,
pp. 125–134, ACM, 2006.

[134] M. Renieris and S. P. Reiss, “Almost: Exploring program traces,”
in Proc. 1999 Workshop on New Paradigms in Information Visualiza-
tion and Manipulation, pp. 70–77, ACM, 1999.

[135] J. Rilling, “Maximizing functional cohesion of comprehension
environments by integrating user and task knowledge,” in Proc.
8th Working Conf. on Reverse Engineering, pp. 157–165, IEEE C.S.,
2001.

[136] H. Ritsch and H. M. Sneed, “Reverse engineering programs
via dynamic analysis,” in Proc. 1st Working Conf. on Reverse
Engineering, pp. 192–201, IEEE C.S., 1993.

[137] C. Riva, “Reverse architecting: An industrial experience report,”
in Proc. 7th Working Conf. on Reverse Engineering, pp. 42–50, IEEE
C.S., 2000.

[138] A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for
mapping features to code based on static and dynamic analysis,”
in Proc. 16th Int. Conf. on Program Comprehension, pp. 236–241,
IEEE C.S., 2008.

[139] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and T. D’Hondt,
“An approach to high-level behavioral program documentation
allowing lightweight verification,” in Proc. 14th Int. Conf. on
Program Comprehension, pp. 202–211, IEEE C.S., 2006.

[140] H. Safyallah and K. Sartipi, “Dynamic analysis of software
systems using execution pattern mining,” in Proc. 14th Int. Conf.
on Program Comprehension, pp. 84–88, IEEE C.S., 2006.

[141] M. Salah and S. Mancoridis, “Toward an environment for com-
prehending distributed systems,” in Proc. 10th Working Conf. on
Reverse Engineering, pp. 238–247, IEEE C.S., 2003.

[142] M. Salah and S. Mancoridis, “A hierarchy of dynamic software
views: From object-interactions to feature-interactions,” in Proc.
20th Int. Conf. on Software Maintenance, pp. 72–81, IEEE C.S., 2004.

[143] M. Salah, S. Mancoridis, G. Antoniol, andM. Di Penta, “Scenario-
driven dynamic analysis for comprehending large software sys-
tems,” in Proc. 10th European Conf. on Software Maintenance and
Reengineering, pp. 71–80, IEEE C.S., 2006.

[144] K. Sartipi and N. Dezhkam, “An amalgamated dynamic and
static architecture reconstruction framework to control compo-
nent interactions,” in Proc. 14th Working Conf. on Reverse Engi-
neering, pp. 259–268, IEEE C.S., 2007.

[145] M. Shevertalov and S. Mancoridis, “A reverse engineering tool
for extracting protocols of networked applications,” in Proc. 14th
Working Conf. on Reverse Engineering, pp. 229–238, IEEE C.S.,
2007.

[146] M. Smit, E. Stroulia, and K. Wong, “Use case redocumentation
from gui event traces,” in Proc. 12th European Conf. on Software
Maintenance and Reengineering, pp. 263–268, IEEE C.S., 2008.

[147] T. S. Souder, S. Mancoridis, and M. Salah, “Form: A framework
for creating views of program executions,” in Proc. 17th Int. Conf.
on Software Maintenance, pp. 612–620, IEEE C.S., 2001.

[148] F. C. de Sousa, N. C. Mendonça, S. Uchitel, and J. Kramer,
“Detecting implied scenarios from execution traces,” in Proc. 14th
Working Conf. on Reverse Engineering, pp. 50–59, IEEE C.S., 2007.

[149] E. Stroulia, M. El-Ramly, L. Kong, P. G. Sorenson, and
B. Matichuk, “Reverse engineering legacy interfaces: An
interaction-driven approach,” in Proc. 6th Working Conf. on Re-
verse Engineering, pp. 292–302, IEEE C.S., 1999.

[150] P. Tonella and A. Potrich, “Static and dynamic C++ code analysis
for the recovery of the object diagram,” in Proc. 18th Int. Conf.
on Software Maintenance, pp. 54–63, IEEE C.S., 2002.

[151] R. J. Walker, G. C. Murphy, J. Steinbok, and M. P. Robillard,
“Efficient mapping of software system traces to architectural
views,” in Proc. 2000 Conf. of the Centre for Advanced Studies on
Collaborative Research, pp. 12–21, IBM Press, 2000.

[152] L. Wang, J. R. Cordy, and T. R. Dean, “Enhancing security
using legality assertions,” in Proc. 12th Working Conf. on Reverse
Engineering, pp. 35–44, IEEE C.S., 2005.

[153] W. E. Wong and S. S. Gokhale, “Static and dynamic distance
metrics for feature-based code analysis,” J. Syst. Software, vol. 74,
no. 3, pp. 283–295, 2005.

[154] A. Zaidman and S. Demeyer, “Automatic identification of key
classes in a software system using webmining techniques,” J.
Softw. Maint. Evol.: Res. Pract., vol. 20, no. 6, pp. 387–417, 2008.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CORNELISSEN ET AL.: A SYSTEMATIC SURVEY OF PROGRAM COMPREHENSION THROUGH DYNAMIC ANALYSIS 19

TABLE 3
Article characterization results.

activity target method evaluation

ad
d
’l
ar
ti
cl
es

to
ol

av
ai
l.

su
rv
ey

d
es
ig
n/

ar
ch

.

vi
ew

s

fe
at
ur
es

tr
ac
e

be
ha

vi
or

ge
ne

ra
l

le
ga

cy

pr
oc
ed

ur
al

oo th
re
ad

s

w
eb

d
is
tr
ib
ut
ed

vi
s.

(s
td
.)

vi
s.

(a
d
v.
)

sl
ic
in
g

fi
lt
er
in
g

m
et
ri
cs

st
at
ic

pa
tt
.d

et
.

co
m
pr
./
su

m
m
.

he
u
ri
st
ic
s

fc
a

qu
er
yi
ng

on
lin

e

m
ul
t.
tr
ac
es

pr
el
im

in
ar
y

ca
se

st
ud

y

in
d
us

tr
ia
l

co
m
pa

ri
so
n

hu
m
an

su
bj
.

qu
an

ti
ta
ti
ve

u
nk

no
w
n/

no
ne

Antoniol, 2004 [84] o . . . o o o o o . . . o .
Antoniol, 2004 [85] . o o o . o . . o . o o . . . o .
Antoniol, 2006 [50] 1 o . . o o o o o . o o . o . o . o .
Ball, 1996 [86] . . o . . . o . o o o . o o o
Ball, 1999 [7] o . o o o . . . o . . . o
Bennett, 2008 [77] o . o . . . o . . o . . . o . . o . . o o o . . o . .
Bohnet, 2006 [87] . . . o o o o o . . o o o
Bojic, 2000 [88] . o o o . . . o o . o . . . o
Briand, 2006 [30] 2 o . o . . . o . . o o . o o o o . . . o .
Chan, 2003 [89] o o o o o o
Cook, 2005 [41] 2 o . . o . o . . o . . . o . o . o o
Cornelissen, 2007 [90] . . o . . . o . . o . . . o . . o o o
Cornelissen, 2008 [91] 1 o . . o o o . o . . o . . . o o . o . o . o o o
Cornelissen, 2008 [81] o . . . o o o o . o o o . . . o . o . . . o .
Dalton, 2008 [92] . . o . . . o o . . o . o o o .
Deprez, 2000 [93] . . . o o o o o o
Ducasse, 2004 [94] o . . o . . . o . . o o . o o o
Eaddy, 2008 [80] o . . . o o o o . o . . o . o . o . o . o . o .
Edwards, 2006 [95] . . . o o o o . o o
Eisenbarth, 2003 [49] 4 . . o o o o . . o . o . . . o . . o . o o
Eisenberg, 2005 [96] . . . o o o o . . o . o . . . o . o . o .
El-Ramly, 2002 [97] 3 . . . o . o . o o . . . o . o o o o . o .
Fischer, 2005 [98] . . o . o . . . o . o . . . o . . o o . o
Fisher II, 2007 [99] o o o o o . . . o .
Gargiulo, 2001 [100] o . . o . . . o . . o . . . o . . o . . . o o
Gestwicki, 2005 [101] . . o . . . o . . o o . . o o . o o
Greevy, 2006 [46] 1 . . o o o o . o o . . o o . o
Greevy, 2005 [45] . . . o o o o o o . o
Greevy, 2006 [102] 1 . . o o o o . o o o o . o . o
Gschwind, 2003 [103] 1 . . o . . . o . . o . . . o . . o o
Guéhéneuc, 2002 [104] o o . . o o o o . . o . . . o .
Guéhéneuc, 2004 [105] o . . o . . . o . . o . . . o . . o . o . o . . o o . . o
Hamou-Lhadj, 2004 [34] 5 . . o . o . . . o o . . . o . . o o . o o o . . . o o
Hamou-Lhadj, 2004 [32] o . . . o o . o
Hamou-Lhadj, 2006 [33] 1 . . o . o o . . . o . . . o . . o o o . o o . . o o .
Hendrickson, 2005 [106] 1 . . o . . o . . o . o . o o o . o . . . o
Heuzeroth, 2003 [36] 1 . o . . . o . o . o o . o o o . . . o .
Huang, 2005 [107] . o . . . o . . . o o . o o . . . o . o . o . . . o .
Israr, 2007 [64] . o . . o o o o o . o
Jerding, 1997 [23] 2 . . o . o . . . o o . . . o o . o . o o o
Jiang, 2007 [108] o . . o o . . o o
Jiang, 2006 [109] . . . o o o
Jiang, 2008 [110] o o o . . o o o o o . o .
Kelsen, 2004 [111] . . o . . . o . . o . . . o o o
Kleyn, 1988 [10] . . o . . . o . . o . . . o o o
Kollmann, 2001 [112] o . . o . . . o o o
Korel, 1998 [113] 1 o . o o o o . . o . o o
Koschke, 2005 [114] o . . o o o o . . o o o . . . o . . o . o . o . o .
Koskimies, 1996 [21] o . . o . o . o . . o . . . o . . o . o o o o
Koskinen, 2006 [40] . . o . . o . . . o . . . o o o
Kothari, 2007 [47] 1 . . . o o o o . . o . . o o . o
Kuhn, 2006 [115] . . o o o o o . o o . . o o . o
Lange, 1995 [19] 1 . . o . . . o . . o . . . o . . o . o o . . . o . . o
Lange, 1997 [116] . . o . . . o . . o . . . o . o o . o o o
Licata, 2003 [117] . . . o o . . . o o . o o . o
Lienhard, 2007 [118] . . o o o o . o o . o . o .
Liu, 2007 [61] o . . o o o . o . . o . o . . . o . o . o .

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

TABLE 4
Article characterization results (continued).

activity target method evaluation

ad
d
’l
ar
ti
cl
es

to
ol

av
ai
l.

su
rv
ey

d
es
ig
n/

ar
ch

.

vi
ew

s

fe
at
ur
es

tr
ac
e

be
ha

vi
or

ge
ne

ra
l

le
ga

cy

pr
oc
ed

ur
al

oo th
re
ad

s

w
eb

d
is
tr
ib
ut
ed

vi
s.

(s
td
.)

vi
s.

(a
d
v.
)

sl
ic
in
g

fi
lt
er
in
g

m
et
ri
cs

st
at
ic

pa
tt
.d

et
.

co
m
pr
./
su

m
m
.

he
u
ri
st
ic
s

fc
a

qu
er
yi
ng

on
lin

e

m
ul
t.
tr
ac
es

pr
el
im

in
ar
y

ca
se

st
ud

y

in
d
us

tr
ia
l

co
m
pa

ri
so
n

hu
m
an

su
bj
.

qu
an

ti
ta
ti
ve

u
nk

no
w
n/

no
ne

Lo, 2006 [119] o . o . . o . . . o o . . . o .
Lo, 2006 [120] . . o . . o . . . o . . . o . . o o . o o o o . o . o .
Lo, 2008 [43] o o . . o . o o
Di Lucca, 2003 [121] 3 . . o . . . o o . o o . o o . o . . o o
Lukoit, 2000 [122] . . o o o o o . . o o
Malloy, 2005 [123] . . o . . . o . . o . . . o . . o . o o . o
Martin, 2002 [124] . . o . . o o . o o
Moe, 2002 [125] 2 o o . o . o o . o . . . o . . . o o
Oechsle, 2001 [126] . . o . . . o . . o o . . o . . o o
Orso, 2003 [127] . . o . . . o . . o o . o . o . o o o
Pacione, 2003 [52] o . o . . . o . . o . . . o o o
Pacione, 2004 [128] o . . o o o
De Pauw, 1994 [12] 1 . . o . . . o . . o o o . . o
De Pauw, 2001 [28] 1 o . . o . o . o . . o o . . o o . o . . o . o o
De Pauw, 2006 [129] o . . o . . . o o o . o o o
Pheng, 2006 [130] o . . o . . . o o . . o o
Poshyvanyk, 2007 [51] 1 . . . o o o o o . . o . . . o . o . o . o .
Qingshan, 2005 [131] . o o o . . . o . o . . o o
Quante, 2007 [42] 3 . . o . . o o . o o o . . o . o o o . o o . . . o . . o . o . o .
Quante, 2008 [78] . . o o . . o . . o . . . o . . o . . . o o . . o . .
Reiss, 2001 [31] o o . . . o o o o . . . o .
Reiss, 2003 [132] . . o . . . o . . o o o
Reiss, 2006 [133] 3 o . . o . . . o . . o o . . . o . . . o . o . . . o . . o
Reiss, 2007 [54] o . o . . . o . o o o . . o o o
Renieris, 1999 [134] . . o . o . . . o o . o . o o . . o
Richner, 1999 [3] . o o o . . . o o . o . . o . . . o
Richner, 2002 [27] . . o . . . o . . o o . o . . o . . . o . . . o
Rilling, 2001 [135] . . o . . . o . . o . . . o . o o o o . o o
Ritsch, 1993 [136] o o o o
Riva, 2000 [137] . o o o o . . . o o . o o
Riva, 2002 [38] 1 . o o o o . o o . o . o o
Rohatgi, 2008 [138] . . . o o o o o . . o o
De Roover, 2006 [139] o . . o o o
Röthlisberger, 2008 [72] o . . o o . o o . . o . .
Safyallah, 2006 [140] . . . o o o o o o
Salah, 2003 [141] . . o . . . o o o o o . . o
Salah, 2004 [142] . . o o o . . . o . . o . o . o . . o . o . o
Salah, 2006 [143] 2 . . o o o . . . o . . . o . o o . . o . o . o
Sartipi, 2007 [144] 2 . o o o o o . . o o o o o . o o . . . o . . . o .
Schmerl, 2006 [4] 1 . o o . . o . . . o . . . o . . o . . o . . . o . . . o
Sefika, 1996 [22] . o o o . . . o . . o . o o . . . o . . . o .
Shevertalov, 2007 [145] . . o . . o . o o . . o . . . o o
Simmons, 2006 [79] . . o o o o o o . o . . o o .
Smit, 2008 [146] . . o . . o . . . o . . . o . . o o . . o o . o
Souder, 2001 [147] . . o . . . o . . o . . o o . . o o
Sousa, 2007 [148] o . o . o . . o . . o o
Stroulia, 1999 [149] o . o o . . . o o o
Systä, 2001 [29] 3 . . o . o . o . . o o . . o . o . o o o . . . o . . . o
Tonella, 2002 [150] . . o . . . o . . o . . . o o o
Walker, 2000 [151] 1 . . o . . . o . . o . . . o . . o . . . o . . o . . o o
Walkinshaw, 2008 [44] 1 o . . . o . . . o . . . o o o o . . o . . . o
Wang, 2005 [152] . o o o o . . . o . . . o . . . o .
Wilde, 1995 [15] 4 o . . . o . . o o o o . . . o . . . o o o o o o . .
Wong, 2005 [153] 2 o . . . o o o . o . o o . . o o . . . o .
Zaidman, 2004 [62] o o o . o o . . o o o
Zaidman, 2006 [70] o . o o o o . . o . . . o o
Zaidman, 2008 [154] 2 o . . o o o . . o o . . . o .

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

