A Classification of Crosscutting Concerns

Marius Marin

Software Evolution Research Lab
Delft University of Technology
The Netherlands
A.M.Marin @ewi.tudelft.nl

Abstract

Refactoring software to apply aspect oriented solutions re-
quires a clear understanding of what are the potential cross-
cutting concerns and which aspect solutions to replace them
with. This process can benefit from the recognition of recur-
ring generic concerns and their reusable aspect solutions.

In this paper, we propose a classification of crosscutting
concerns in sorts based on the analysis of various refactoring
efforts. We discuss how sorts help concern understanding and
refactoring, how they support the identification of crosscut-
ting concerns, and how they can contribute to the evolution of
aspect languages.

1. Introduction

The identification and refactoring of crosscutting concerns in
legacy code aims at improving the evolvability of existing sys-
tems. To achieve this goal, it is important to understand what
are the crosscutting concerns in a system, and how their mod-
ularization can be improved through aspect refactoring.

Existing work in area of aspect refactoring proposed a sig-
nificant number of examples of crosscutting functionality and
associated aspect-oriented solutions, such as logging, design
patterns [3, 2], aspectizable interfaces [9], and transaction
management and business rules in enterprise applications [5].
However, these are generally small demonstrative examples
that lack the structure and organization that would allow their
use for recognition and understanding of specific crosscutting
functionality. Furthermore, in many of the examples more
than one crosscutting concern is involved and the same cross-
cutting concerns occur in various contexts. For instance: the
distinctive crosscutting elements in the Observer pattern are
the roles (Subject and Observer) superimposed to the classes
participating in the implementation of the pattern, and the
consistent behavior of notifying the observers required from
the methods changing the state of the Subject object. The
same role superimposition is present in other design patterns,
like Visitor, which defines crosscutting roles (Element/Node)
to accept visitors. Similarly, an authentication mechanism
would rely on the consistent behavior of the methods requir-
ing authentication to actually call a verification method.

Our investigations show that role superimposition and con-
sistent behavior are a kind of generic concerns that come up

Leon Moonen
Software Evolution Research Lab
Delft Univ. of Technology & CWI

The Netherlands
Leon.Moonen @computer.org

Arie van Deursen

Software Evolution Research Lab
CWI & Delft Univ. of Technology
The Netherlands
Arie.van.Deursen @cwi.nl

repeatedly in many of the proposed refactorings. In spite of
this, they are not emphasized in literature as recurring distinc-
tive elements to which a generic reusable aspect solution can
be associated. As a result, it is harder to identify them in new
contexts and to apply a consistent aspect solution.

This paper aims to fill this gap by proposing a classifica-
tion system for crosscutting concerns that distinguishes re-
current, atomic concerns as sorts. Sorts are described by a
number of distinctive properties which will help in recogniz-
ing them and in guiding their refactoring towards an aspect-
oriented solution. We believe that such an approach will im-
prove aspect-based reasoning about the legacy code by mak-
ing the developer aware of the possible crosscutting concerns
and their generic characteristics and symptoms.

2. Sorts of Crosscuttingness

Crosscutting concern sorts [6] are generic descriptions of
crosscutting functionality that can be classified based on three
main characteristics:

e intent of the concern (behavioral, design or policy re-
quirements);

e legacy (non-aspect) implementation idiom;

e (desired) aspect language mechanism that supports the
modularization of the sort’s concrete instances.

An important property of a concern sort is its atomicity:
each sort is associated with the smallest unit that can be used
to individually express and modularize a crosscutting concern.
L.e. there is one (desired) aspect language mechanism to ad-
dress the specific crosscutting functionality of a sort, and one
associated legacy implementation idiom. Consequently, the
implementation of a concrete crosscutting concern can be ex-
pressed as a combination of one or more sort instantiations.
We add new sorts to our list whenever they (1) cannot be com-
posed of elements already in the list, and (2) they cannot be
split in smaller units. Note that not all sorts need to be asso-
ciated with a concrete mechanism in an existing aspect lan-
guage, they can also refer to desired mechanisms which can
help language designers to evolve their languages.

We propose the following template for describing a sort.
Although the description is language specific, using Aspect]

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

Name Consistent behavior

Intent Implement consistent behavior for a number of ele-
ments that can be captured by a natural pointcut. The
enforced consistent behavior is a precise step in the
execution of each method in the set defining the for-
malized context.

00 idiom Method calls invoking the desired functionality

Aspect Pointcut to map the formalized context, such as spe-

mechanism cific methods in a class hierarchy, and Advice to en-
capsulate the desired functionality

Authentication; Wrap service level exceptions of
business services into application level excep-
tions [7]; Notify listeners (Observer pattern); Log ex-
ception throwing events in a system[5].

Instances

Figure 1. Consistent Behavior Sort

and Java as reference languages, complementary descriptions
could be made for other languages as well.

Our classification gives a name to each sort to develop a
common language for referring to instances of crosscutting
functionality. Next, we describe the sort’s intent in terms of
behavioral, design, and/or policy requirements. An object-
oriented idiom describes the typical (Java) implementation
of the sort’s concerns. We associate the sort with a single
aspect mechanism that can be used to refactor the sort’s in-
stances (and thus their idiomatic object-oriented implemen-
tation). For each sort, we discuss a number of instances to
enhance the understanding of sorts through examples.

In our classification, the aspect language mechanisms pro-
vide the consistent criterion to classify the crosscutting con-
cerns, and establish the level of granularity for this classifi-
cation. An aspect mechanism is a minimal combination of
constructs that can be used to aspectize a concern, as, for in-
stance, static introduction, typically implemented by declare
parents and inter-type declaration constructs.

A number of elements to additionally describe a sort are
specific to the aspect mechanism addressing the sort, and,
thus, shared by a number of sorts. These elements include
risks, limitations and benefits of migrating the instances of
a sort from a legacy implementation to an aspect oriented so-
Iution. In addition, the behavior preservation constraints re-
quire to analyze the testing implications that follow from
each refactoring.

3. Example: Consistent Behavior

This section discusses in detail Consistent Behavior, one of
the proposed sorts. Figures 1 and 2 summarize the elements
characterizing this sort.

The purpose of concerns of the consistent behavior sort
is to enforce and ensure that specific functionality is consis-
tently executed by a number of methods. To exclude ordinary
delegation of functionality, the set of elements which should
behave consistently should be captured by a natural pointcut

Risks, limi- Advice constructs in a privileged aspect can break

tations encapsulation; High degree of tangling might prevent
refactoring; Anonymous classes cannot be referred
consistently; Calls to the super’s functionality cannot
be migrated into advice;

Benefits Improved modularity; Reduced code size;

Testing im- Fault model and test adequacy for pointcut and ad-
plications vice constructs [1]

Figure 2. Pointcut and Advice specific issues

definition, i.e., these elements should follow a regular pattern
and not be a random selection of all elements.

The way of implementing such concerns in, for example,
Java, is to call a method implementing the desired function-
ality from the scattered places where we want this consistent
behavior. This idiom is exploited by the fan-in analysis tech-
nique for aspect mining, which specifically looks for such
scattered calls [7].

The Aspect] pointcut and advice mechanism captures and
modularizes such symptoms of enforced consistent behavior
like scattered calls. The benefits of aspectizing concerns of
this sort are in terms of concern localization and modulariza-
tion, but also in reliability: elements in the targeted context
will not be forgotten from implementing the desired behavior.

The practical activities we have conducted to refactor in-
stances of this sort in real applications [1] revealed some risks
and limitations of the aspect solutions. One of the risks is that
the joinpoints captured by the defined pointcut include inten-
tional omissions in the original application. These omissions
should be checked. Other risks are that sophisticated point-
cuts or preliminary refactorings might be required in some
cases to unplug the crosscutting functionality before it can be
refactored into an aspect solution.

Limitations include the lack of direct support for capturing
anonymous classes in a pointcut, or to refer the super’s func-
tionality of the advised method from within the advice. Our
previous work [1] contains detailed discussions of these risks
and limitations for a number of larger refactorings.

The testing implications related to the employed aspect
language feature comprise the faults for the pointcut and ad-
vice constructs [1]. These include the use of a wrong primi-
tive pointcut, a wrong type pattern in the pointcut, or logical
errors in the pointcuts’ conditions. Possible faults for the ad-
vice could be in its specification or precedence, as well as its
code that can break the advised method, or prevent it to com-
ply with postconditions or class invariants.

4. Thirteen Canonical Sorts

We propose an initial set of canonical sorts based on the pre-
vious considerations. The sorts and their attributes are shown
in Table 1 and are grouped by the aspect mechanism that ad-
dresses the specific crosscutting functionality of the sort.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

[Sort

[Intent

[Object-oriented Idiom

[Aspect mechanism [Instances

Consistent Behavior

Implement consistent behavior as a
controlled step in the execution of a
number of methods that can be cap-
tured by a natural pointcut.

Method calls to the desired func-
tionality

Pointcut and advice

Log exception throwing events in
a system; Wrap/Translate business
service exceptions [7]; Notify lis-
teners; Authorization;

Contract enforcement

Comply to design by contract rules,
e.g., pre- and post-conditions checking

Method calls to method imple-
menting the condition checking

Pointcut and advice

Contract enforcements specific to
design by contract

Entangled roles

Extend a method with a secondary role
or responsibility which is entangled
with its primary concern

Implement a method with (entan-
gled) functionality that belongs
to a different concern than main
concern of that method

Pointcut and around
advice that overrides
the method

Roles overlapping in Swing, such
as view and controller; make meth-
ods belonging to the view role im-
plement controller logic.

Redirection Layer

Define an interfacing layer to an object
(add functionality or change the con-
text) and forward the calls to the object

Declare a routing layer (decora-
tor/adapter), and have methods in
this layer to forward the calls

Pointcut and around
advice

Decorator pattern, Adapter pat-
tern [3]; Local calls redirection to
remote instances (RMI) [8];

Add Variability

Use method objects to pass a method
as a parameter

Build and pass objects of (anony-
mous) types implementing a sin-
gle, specific action: ActionLis-
tener.actionPerformed(), Com-
mand.execute(), Runnable.run()

Pointcut and around
advice that creates
the method object

Concurrent access - Thread safety,
Authorization[5]; Callbacks in
GUISs (e.g., ActionListener(s))

Expose Context

Expose the caller’s context to a callee
by passing information to each method
in the call stack to that callee (aka
‘Wormhole [5]).

Add arguments to each method
in the call stack

Pointcut and advice,
where the pointcut
collects the context
to be passed

Transaction management, autho-
rization [5].

Role superimposition

Implement a specific secondary role or
responsibility

Interface implementation, or di-
rect implementation of methods
that could be abstracted into an
interface definition

Introduction mecha-
nisms

Roles specific to design patterns:
Observer, Command, Visitor, etc.;
Persistence [7]

Support classes for
role superimposition

Make the relationship between classes
explicit (through nested classes) to su-
perimpose a role (to a hierarchy)

Nested classes implementing a
role/responsibility

Not supported; De-
sired: introduction
for nested classes

Undo concern [1]

Policy enforcement

Impose a policy to a group of elements
in the system

Not supported by language but
by documentation/comments

Declare warning / er-
ror mechanisms

Limit access to a given functional-
ity, e.g., accessing AWT function-
ality from EJB components [5]

Exception
tion

propaga-

Propagate an exception for which nei-
ther the method nor its callers have an
appropriate response.

Exception is to

callers

propagated

Use declare soft
mechanism (risks:
identity of exception
is lost)

Checked SQLException thrown
from methods in the JDBC API .

Declare throws clause

Add a specific exception to the throws
clause of all the methods within a for-
malized context

Directly add the new throws
clause

Not supported; De-
sired: declare throws
mechanism [8]

Add RMI specific exception [8];
Add transaction exceptions [4].

clean-up

Design enforcement | Enforce design, such as classes in an | Not supported by language but | Not supported Persistence [7]; Bean objects
hierarchy must declare no-args con- | by documentation/comments
structors
Dynamic behavior | Enforce rules for object use, like | Not supported by language but | Not supported Lifecycle [7]; Replace finalizers
enforcement before-use initialization and post-use | by documentation/comments with methods to be invoked.

The Contract enforcement and Consistent behavior sorts
share a number of characteristics; however, they refer to con-
contract enforcement ensures
conditions due to relations between a method and its callers.

cerns with different intents:

Concerns of the Entangled roles sort are specific to roles
overlapping at method level. In Java Swing design, for exam-
ple, it is common to have classes implementing both the view
and controller roles. A menu item in a GUI, for instance, will
be set as enabled/disabled if the command to be executed at
the item’s selection is enabled/disabled for the particular con-
figuration of the application at the moment of selection. The
implementation of the method relies on controller decisions,

Table 1.

although the method is part of the view interface.

Sorts of crosscuttingness.

The refactoring of these concerns consist of overriding
the method with an advice implementing the secondary role
(which is the controller role in the GUI example).

The Redirection layer sort generalizes concerns that mani-
fest themselves at the class level for a group of methods. The
methods assume responsibility for the calls to an object, pos-
sibly perform additional actions like attaching responsibilities
or modifying/casting the parameters of the calls, and then for-
ward the calls to the object. Concerns of this sort are specific
to implementations of the Decorator and Adapter pattern [7, 3]
and are also discussed by Soares et al [8] when refactoring
the distribution aspects for a web-based information system.

The straightforward aspect solution consists of a pointcut and

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY

around advice to capture the calls and forward them [3]. How-
ever, this solution suffers from loss of flexibility because it is
not dynamic [3, 8].

The two next sorts, Add Variability and Expose context, are
very similar to two patterns proposed in [5]: Worker object
and Wormhole. The concerns described in these patterns can
be associated an object oriented idiom and a refactoring aspect
mechanism, and they qualify as sorts. Our renaming aims to
better show the intent of the concerns in this sort.

The associated refactoring of Add Variability is aimed at
replacing the repetitive creation of method objects by putting
it into an around advice, and triggering the advised method
from the object’s (execute) method.

Most of the sorts discussed up to now, are aimed in some
way at providing a consistent behavior, so they can be generi-
cally included in a behavioral category of sorts. However, the
object implementation idioms are different and this implies
different guidelines for refactoring them. The next groups of
sorts are addressed by aspect mechanisms that are relevant to
static crosscutting and composition.

Role superimposition consists of extending the function-
ality of a class with crosscutting concerns by implementing
multiple interfaces. Support classes for role superimposition
follow a similar goal. Concerns in this sort are implemented
by adding nested classes to the members of a hierarchy in or-
der to enable the support for additional features. While the
additional feature can be modularized in its own hierarchy,
the relation enforced through nested classes results in code
that crosscuts the enclosing classes. The introduction of sup-
porting classes through inter-type declarations would enforce
the same logical relationship provided by Java’s nested classes
mechanism, but would avoid the crosscutting.

Policy enforcement is an unsupported feature in object lan-
guages, but an object idiom can be recognized in the use of
documentation and comments in the source code to define the
policy. Two Aspect] language constructs, declare warning
and declare error, support this sort of concerns by indicating
at compile-time that a policy is violated. However, the main
task of implementing this sort of concerns is still on the point-
cuts definition to capture the access points.

A similar static mechanism, exception softening, can ad-
dress Exception propagation. This allows to avoid the en-
forced rule of consistently propagating checked exceptions,
by converting them into run-time exceptions.

The last three roles in Table 1 are currently unsupported by
any aspect language mechanism. Declare throws mechanism
was reported and requested in [8]. Instances of the next two
are described in [7]. The object idiom in these two cases re-
lies again on documentation and comments in the source code.
However, an idiom can be observed for dynamic behavior en-
forcement in Java’s use of finalizers to enforce the execution
of specific code at the end of an object’s lifecycle. These two
sorts emphasize a consistent design discipline and object use,
respectively.

5. Conclusions

The understanding and aspectization of crosscutting concerns
proves to be difficult due to the lack of a coherent system to or-
ganize and describe such concerns. Aspect identification and
refactoring is challenged by questions about (1) what symp-
toms or smells are specific to the crosscutting functionality at
the implementation level, (2) what concerns are associated to
these symptoms, and (3) which aspect mechanisms are ade-
quate for refactoring and modularizing these concerns.

Contributions of this paper are as follows: we have pro-
posed a classification system for crosscutting concerns based
on sorts. In addition, we have proposed a first set of canonical
sorts based on literature reviews and our practical experience
with aspect refactoring [7, 1].

The classification of crosscutting concerns in sorts has a
number of benefits: First, concern sorts help to develop a com-
mon language for consistently describing common situations
of crosscutting functionality.

Second, the properties of a sort support the identification
of crosscutting concerns in existing systems. On the one hand
they help with the development of new aspect mining tech-
niques by identifying the object-oriented idioms to search for.
On the other hand they help developers understand results of
aspect mining by mapping symptoms that were found in the
legacy implementation to more abstract and generic concerns.

Sorts also allow to put together the theory and practice of
refactoring, by showing risks and limitations in achieving as-
pect solutions for various concerns. These observations can
provide feedback and contribute to the development of aspect
languages that provide better support for refactoring.

References

[1] A. van Deursen, M. Marin, and L. Moonen. A Systematic Aspect-
Oriented Refactoring and Testing Strategy, and its Application to JHot-
Draw. Technical Report SEN-R0507, CWI, 2005.

[2] J. Hannemann, Murphy G.C., and Kiczales. G. Role-Based Refactor-
ing of Crosscutting Concerns. In Proc. of Int. Conf. on Aspect-Oriented
Software Development, 2005.

[3] J. Hannemann and G. Kiczales. Design Pattern Implementation in Java
and Aspect]. In Proc. of the 17th Annual ACM conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM
Press, 2002.

[4] J. Kienzle and R. Guerraoui. AOP: Does It Make Sense? The Case

of Concurrency and Failures. In Proc. of the 16th European Conf. on

Object-Oriented Programming, pages 37-61. Springer-Verlag, 2002.

R. Laddad. AspectJ in Action - Practical Aspect Oriented Programming.

Manning Publications Co., 2003.

[6] M. Marin. An approach to aspect refactoring: Defining Crosscutting
Concern Types. In Int. Workshop on the Modeling and Analysis of Con-
cerns in Software, ICSE, 2005.

[71 M. Marin, A. van Deursen, and L. Moonen. Identifying Aspects using
Fan-In Analysis. In Proc. of the 11th Working Conf. on Reverse Engi-
neering. IEEE Computer Society Press, 2004.

[8] S. Soares, E. Laureano, and P. Borba. Implementing Distribution and

Persistence Aspects with Aspectl. In Proc. 17th Conf. on Object-oriented

programming, systems, languages, and applications. ACM Press, 2002.

P. Tonella and M. Ceccato. Migrating Interface Implementation to Aspect

Oriented Programming. In Proc. Int. Conf. on Software Maintenance.

IEEE Computer Society, 2004.

[5

—

9

[t

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

