Exploring Software Systems
— Ph.D. Dissertation Synopsis —

Leon Moonen!2*

! Delft University of Technology, Software Evolution Research Lab,
Faculty Information Technology and Systems, Mekelweg 4, 2628 CD, Delft, The Netherlands
2 CWI (Centrum voor Wiskunde en Informatica), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

http://www.cwi.nl/ " leon/

Abstract

Software evolution is required to keep a software system in
sync with the ever-changing needs of the system’s users and
environment. An unfortunate side-effect of evolution is that
it often causes the knowledge about a system to degrade,
which in turn impedes further evolution.

In the dissertation, we investigate techniques and tools
that help remedy this situation by supporting the explo-
ration of a software system and improving its legibility [1].
We examine the analogy with urban exploration and present
innovative techniques for the extraction, abstraction, and
presentation of information needed for understanding soft-
ware.

1. Introduction

Just like traditional exploring is about traveling to unknown
places for discovery, software exploration is about inves-
tigating the unknown aspects of a software system to find
out what is there. The objectives of these investigations can
range from obtaining a birds eye view of the system (cf. re-
connaissance flights) to a detailed examination of a system’s
“white spots” (cf. surveying previously uncharted territory).

One might wonder why software exploration is needed,
and how these unknown areas appear in a software sys-
tem. The answer to both these questions is software evo-
lution: every software system that is used for an extended
period of time needs to be modified and extended a num-
ber of times during that lifetime to keep the system oper-
ational. In fact, the majority of software engineers today
are not involved with the production of new systems but
are busy with changing and extending existing software sys-
tems [17]. Common reasons for these modifications include
removal of program defects, improvement of the system’s
performance, adaptation to a new hardware or software en-
vironment and extensions or changes to the functionality of
the system.

* The work described in the dissertation has been carried out at CWI.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Leon.Moonen@acm. org

Recurring changes and extensions to a system deteriorate
its structure and pollute originally “clean” designs. Gradu-
ally, the relation between the system and its design docu-
mentation diminishes and the system becomes less and less
maintainable. When less information is available, subse-
quent changes will have an even more damaging impact on
structure and maintainability. It is a well-known fact that as
aresult of this evolution process, the complexity of a system
increases and the knowledge about the system degrades, un-
less specific actions are undertaken to prevent this [11, 18].

Although software systems are designed to be flexible,
in practice they often show a strong resistance to change,
especially in the case of legacy software systems. In fact,
Brodie and Stonebreaker define a legacy system as: “any
information system that resists change” [14]. To overcome
this resistance, software engineers need techniques that help
them manage the increasing complexity that results from
evolution.

Another complicating factor in software maintenance is
the fact that these maintenance tasks are often performed
by others than the original developers of the software (who
might still remember how and why a piece of code was writ-
ten). These newcomers to the system have been called soft-
ware immigrants since they are faced with the difficult task
of finding their way in an existing software system, an expe-
rience similar to that of people who arrive in a new country
and need to learn a new language and understand a new cul-
ture [21].

Several studies report that the bulk of today’s software
budgets are being spent on software maintenance. Estimates
range from approximately 70% [12] up to 90% [20] of the
total software costs. Bohner and Arnold report that the two
most expensive activities in software maintenance are un-
derstanding the software system that has to be maintained
and determining the impact of proposed change requests
[13].

It is our objective to lower these costs by improving the
support for the exploration of software systems. We inves-
tigate various possibilities of providing software engineers

YF]',F.

COMPUTER

SOCIETY

with tools that assists them in surveying the uncharted ter-
rain that results from software evolution and collect up-to-
date information about what is going on in the system [1].

2. Exploring Software Systems

Whenever we visit a new city or building, we use ex-
ploratory techniques to learn about the space and get to the
places we want to visit. The cognitive process that is applied
during such visits can be thought of as continually trying to
answer the following three questions:

1. Orientation: Where am 1?
2. Discovery: What else is out there?
3. Navigation: How do I get there?

This wayfinding process is studied intensively in architec-

ture and city planning. The goal is to collect principles and

guidelines for the design of cities and buildings that allow
their users to better orient themselves and improve how they
navigate through the space.

In his book “The Image of the City”, city planner Kevin
Lynch uses the concept of legibility of a city to develop a
theory of city planning and urban design where he defines
legibility as “the ease with which its parts may be recog-
nized and can be organized into a coherent pattern” [19].
Lynch studied how people organize information about their
environment by asking them to draw simple maps of their
hometowns. Based on these surveys, he identified five prin-
cipal elements that are used to build a mental model of a
city:

Landmarks: The outstanding (static) features in a city. Ex-
amples include prominent buildings, monuments, and
shop-fronts. Landmarks are used as reference points
by the observer: they give a sense of location and bear-
ing.

Paths: Streets or footpaths that allow the observer to travel
through the city.

Nodes: The important points of interest along paths, for ex-
ample, street intersections, bridges or town squares.

Districts: The areas in a city that have a common property
allowing them to be viewed as a single entity. Exam-
ples of districts are shopping areas, residential areas,
but also the historic center or the business district.

Edges: The boundaries to areas. They form a physical bar-
rier to travelers. Examples include rivers or major
roads for pedestrians.

These structural elements can be used to divide a complex
environment into smaller, connected and more manageable
pieces that can be used directly to create a mental map de-
tailing knowledge about that environment.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

2.1.

We argue that the cognitive process of exploring software
systems is very similar to that of urban exploration and
that corresponding principles and techniques can be used
to support both processes. We define legibility of software
using the same terms as Lynch used for legibility of the
city: “the ease with which its parts may be recognized and
can be organized into a coherent pattern”. Improving the
legibility of software is an important aspect of supporting
the exploration of software systems because legible systems
are more memorable and generate stronger mental models,
which makes them easier to explore, and therefore easier to
maintain.

However, in urban environments legibility is defined in
the context of solving the spatial exploration problem that
has a rather static nature. The set of structural elements for
a given space are largely fixed (although there will be some
variation between people based on cultural backgrounds
and mobility). In contrast, the legibility of a software sys-
tem is much more dependent on the particular problem that
an engineer has to solve [15]. For example, the elements of
interest that are used to explore the impact of a Euro conver-
sion on a software system will differ significantly from the
elements for exploring quality aspects of that same system.
Consequently, we focus on flexible techniques that allow us
to improve the legibility of software in respect to a given
task instead of aiming at overall legibility improvement.

Some examples of software legibility elements are:

Application to Software

Landmarks: Particular variable types such as dates, ac-
count numbers, or currencies. Code characteristics
such as code smells or design patterns that have been
applied.

Nodes: “Structural” entities in software such as programs,
modules, functions, types, classes, methods, variables.

Paths: Relations between these nodes such as call relations,
inheritance, variables of the same type, etc.

Districts: Separation of business logic that describes how
a system contributes to an organization’s bottom line
from technical aspects such as database access, com-
munication with the environment, user interfacing, etc.

The modules in a software architecture, for example,
the Linux kernel can be thought of as separate districts
for scheduling, memory management, file system ac-
cess, networking, and interprocess communication.

Edges: Boundaries between libraries (both system libraries
and third party libraries) and the application code writ-
ten by the developers, boundaries between parts that
were produced by different teams that have code own-
ership, or the boundaries between client and server
code.

YF]',F.

COMPUTER

SOCIETY

3. Research Questions

The research described in the dissertation concerns the cre-
ation of tools that support the exploration of software sys-
tems. The work is structured around four central questions:

3.1. Effective Extraction

Question 1: How can we effectively extract informa-
tion from a software system’s artifacts that can be used
in a software exploration tool?

One of the first challenges in a software exploration tool
is parsing the artifacts during source model extraction: the
automated extraction of information from software artifacts.

We argue that, in reverse engineering domain, these ar-
tifacts typically contain irregularities that make it hard (or
even impossible) to parse the code using common parser
based approaches. Examples of such irregularities are syn-
tax errors, programming language dialects, embedded lan-
guages, incomplete source code, etc. Furthermore, since the
information needed to improve legibility is task dependent,
one can not a priori determine what source model should
be extracted. Consequently, we need techniques for robust
parsing of artifacts that allow flexible specification of the
extracted models.

To resolve these issues, we propose island grammars, a
special kind of grammars that can be used to generate robust
parsers that combine the detail and accuracy of syntacti-
cal analysis with the speed, flexibility and tolerance usually
only found in lexical analysis [2, 3].

We have created MANGROVE, a generator for source
model extractors based on island grammars that provides its
user with generated traversals that ease the mapping from
parse results to source models. The combination of island
grammars with generated traversals blends two forms of at-
tractive default behavior: (i) island grammars allow us to
limit ourselves to that part of the grammar necessary to de-
scribe the problem at hand, and (ii) generated traversals al-
low us to treat only those cases for which we need specific
behavior. Consequently, extractor specifications are small
and easy to write, modify and combine. The resulting flexi-
bility contributes to software exploration because it enables
task specific improvements of a software system’s legibility.

3.2. Creating New Knowledge

Question 2: How can we combine and abstract facts
about a software system to create new knowledge?

The second challenge is to find (new) abstraction levels that
are not explicitly available in the code and help software
engineers gain knowledge about the system. There are two

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

ways in which abstractions can contribute to the knowledge
about a system: (i) they identify new landmarks that act
as beacons for comprehension, and (ii) they disclose new
routes for navigation through the system. Example abstrac-
tions one can think of are: architectural views that show the
modules in a system and how they depend on each other,
data flow that shows how data propagates through the state-
ments in a program and between the programs in a system
(for example via program calls, but also via databases), and
types that group the variables in a system to make them
more manageable.

The types of variables are an interesting starting point
for software exploration (just think of Y2K remediations
or Euro currency conversions) [7]. Unfortunately, not all
software systems that require exploration were written in a
language with an adequate type system. Furthermore, de-
velopers often use the built-in types of a language to rep-
resent different “logical” types, rendering them unusable as
abstractions since they group variables that should be in dif-
ferent groups.

To resolve these issues, we propose a method to infer
“substitute” types for the variables in such systems that can
be used like ordinary types in the exploration process [4].
Our method groups variables in types by considering the
way in which they are actually used in the system. We
present the formal type system and inference rules for this
approach, show their effect on various real life COBOL frag-
ments, and describe the implementation of these ideas in a
prototype tool.

A potential problem with this method is type pollution:
the phenomenon that inferred types become too large and
contain variables that intuitively should not belong to the
same type. We analyze this problem and present an im-
proved version of our type inference algorithm that uses
subtyping [5]. In addition, we provide empirical evidence
that subtyping is an effective way for dealing with pollution.

Furthermore, we combine type inferencing with mathe-
matical concept analysis to create a new level of abstrac-
tions that group the procedures in a legacy system together
with the data types they operate on [6]. These abstractions
are very similar to abstract data types and can be used as
starting points to explore an object oriented re-design of the
system.

3.3. Supporting Maintenance

Question 3: How can we use the information obtained
in the first two questions to support maintenance?

Several issues have to be addressed before the information
obtained in the first two questions can be used to support
maintenance tasks: What are useful methods for presenting
the results of our analysis to the user? How to deal with the

COMPUTER
SOCIETY

YF]',F.

differences between the conceptual view in the program-
mer’s mind and the technical view used by the machine
(e.g. in a compiler, but also in a reverse engineering tool
like ours)? To address these issues, the thesis presents a
number of case studies that were performed to investigate
how software exploration techniques can be used to support
particular tasks.

We start with two smaller case studies to illustrate how
island grammars can be used to compute the cyclomatic
complexity of COBOL programs and to document compo-
nent coupling in systems written in a 4th generation lan-
guage [2].

Next, we show how island grammars can be used for
goal directed parsing, in this case lightweight impact anal-
ysis for estimating and planning software maintenance
projects [3]. We give a detailed description of the pro-
cess of translating an impact analysis problem into an island
grammar and discuss the advantages that this approach has
over other techniques. We present a generative framework
that allows a maintainer to create lightweight and problem-
directed impact analyzers and demonstrate our technique
using a real-world case study where island grammars are
used to find account numbers in the software portfolio of a
large bank.

Subsequently, we consider the gap between conceptual
and technical views on a software system that may appear
when combining concept analysis with type inferencing to
find abstractions in a system. To remedy this situation, we
present CONCEPTREFINERY, a tool that allows a software
engineer to bridge this gap by manipulating an additional
view on the calculated concepts while maintaining the rela-
tion with both the original concepts and the legacy source
code [6].

Finally, we investigate how an invented abstraction as
inferred types can be presented meaningfully to software
engineers [7]. We describe the construction of TYPEEX-
PLORER: a tool that supports exploration of COBOL soft-
ware systems based on inferred types and illustrate its use
on an industrial COBOL legacy system of 100,000 lines of
code.

3.4. Software Quality Assurance

Question 4: How can we use software exploration
tools to investigate and improve the quality of a soft-
ware system?

The fourth question addresses the use of software explo-
ration tools for the purpose of software quality assurance.
In particular, we look at the quality aspects of a software
system from a refactoring and testing perspective.
Software exploration tools may be used to find places in
the code that can be improved using refactoring. “Refactor-

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

ing is the process of changing a software system in such a
way that it does not alter the external behavior of the code
yet improves its internal structure* [16]. The places that
could benefit from refactoring are identified using so-called
code smells. Code smells are a metaphor for patterns in
code that are generally associated with bad program design
and bad programming practices. As such, code smells are
landmarks that can be used to assess and explore the qual-
ity of a software system: when a system possesses a lot of
smells, its quality is questionable and the smells guide the
way to the places that need to be improved. Some exam-
ples of code smells are: duplicated code, methods that are
too long, classes that perform too much tasks, classes that
violate data hiding or encapsulation rules or classes that del-
egate the majority of their functionality to other classes.

We present an approach for the automatic detection and
visualization of code smells in JAVA code [8]. These results
were used to support automatic code inspections where de-
tected smells guide the inspection process. The graphical
overviews immediately show the maintainers if the system
contains bad smells, what parts are affected, and where the
concentration of smells is the highest. Another promising
application for smell detection is in refactoring tools. Cur-
rently, such tools only assist the developer with performing
the actual transformation steps that are needed for a given
refactoring. Combined with our smell detection, it would
be possible to build more intelligent refactoring tools which
actively suggest that a certain refactoring can be applied at
a given point.

Unit tests are used to verify that refactorings do not
change external behavior of the system [16]. Besides act-
ing as safe-guard, unit tests help the maintainer understand
the functionality and usage of the code that is tested. Con-
sequently, it is not surprising that unit tests are also being
refactored to improve their structure.

We discuss how refactoring test code is different from
refactoring production code and present a set of bad smells
that indicate trouble in test code and a collection of test spe-
cific refactorings to remove these smells [9]. Furthermore,
we explore the relation between testing and refactoring and
investigate how they can become intertwined when refac-
torings invalidate tests (e.g. by removing a method that is
expected by a test) [10]. We describe the conditions un-
der which such invalidation can occur and survey which of
the refactorings from [16] affect the test code. Finally, we
present the notion of “fest-first refactoring”: a method for
improving the quality of software that uses smells in the test
code as landmarks to explore where production code may be
improved.

YF]',F.

COMPUTER

SOCIETY

4. Contributions

The main contributions of the dissertation include (i) an in-
vestigation of the analogy between software exploration and
urban exploration which results in the concept of legibility
of a software system, (ii) island grammars that can be used
for robust and goal directed parsing of software artifacts,
(iii) a type inferencing technique to abstract from COBOL
code, and (iv) the detection and use of code smells to assess
and improve the quality of software.

The various case studies show how these software explo-
ration techniques and tools can be applied to solve real-life
problems on industrial-size software systems.

5. Author’s Publications

The following publications have appeared in the context of
this dissertation:

[1] L. Moonen. Exploring Software Systems. PhD thesis, Fac-
ulty of Natural Sciences, Mathematics, and Computer Sci-
ence, University of Amsterdam, December 2002. An elec-
tronic version is available for download from:
http://www.cwi.nl/leon/papers/phdthesis/

[2] L. Moonen. Generating Robust Parsers using Island Gram-
mars. In Proceedings of the 8th Working Conference on Re-
verse Engineering (WCRE 2001). 1EEE Computer Society,
Oct. 2001.

[3] L. Moonen. Lightweight Impact Analysis Using Island
Grammars. In Proceedings of the 10th International Work-
shop on Program Comprehension (IWPC 2002). IEEE Com-
puter Society, June 2002.

[4] A.van Deursen and L. Moonen. Type Inference for COBOL
Systems. In Proceedings of the 5th Working Conference on
Reverse Engineering (WCRE 1998), pages 220-230. IEEE
Computer Society, Oct. 1998.

[5] A. van Deursen and L. Moonen. An Empirical Study into
CoBOL Type Inferencing. Science of Computer Program-
ming, 40(2-3):189-211, July 2001.

[6] T. Kuipers and L. Moonen. Types and Concept Analysis
for Legacy Systems. In Proceedings of the International
Workshop on Programming Comprehension (IWPC 2000).
IEEE Computer Society, June 2000.

[7]1 A.van Deursen and L. Moonen. Exploring Legacy Systems
Using Types. In Proceedings of the 7th Working Conference
on Reverse Engineering (WCRE 2000), pages 32-41. IEEE
Computer Society, Oct. 2000.

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

[8] E. van Emden and L. Moonen. Java Quality Assurance by
Detecting Code Smells. In Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE 2002). 1EEE
Computer Society, Oct. 2002.

[9] A.van Deursen, L. Moonen, A. van den Bergh and G. Kok.
Refactoring Test Code. In Proceedings of the 2nd Inter-
national Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP 2001), May 2001.

Also appears as a chapter in the book eXtreme Programming
Perspectives, edited by M. Marchesi, G. Succi, D. Wells, and
L. Williams. Addison-Wesley, Aug. 2002.

A. van Deursen and L. Moonen. The Video Store Revis-
ited — Thoughts on Refactoring and Testing. In Proceed-
ings of the 3nd International Conference on Extreme Pro-
gramming and Agile Processes in Software Engineering (XP
2002), May 2002.

[10]

References
[11] L. A. Belady and M. M. Lehman. A model of large program
development. IBM Systems Journal, 15(3):225-252, 1976.

K. H. Bennett. An introduction to software maintenance.
Information and Software Technology, 12(4):257-264, 1990.

S. A. Bohner and R. S. Amnold. Software Change Impact
Analysis. IEEE Computer Society, 1996.

[12]

[13]

[14] M. L. Brodie and M. Stonebraker. Migrating Legacy Sys-
tems: Gateways, interfaces and the incremental approach.

Morgan Kaufman Publishers, 1995.

R. Brooks. Towards a theory of the comprehension of
computer programs. Int. Journal of Man-Machine Studies,
18:543-554, 1983.

M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

C. Jones. Estimating Software Costs. McGraw-Hill, 1998.

[15]

[16]

(17]

[18] M. M. Lehman. On understanding laws, evolution and con-
servation in the large program life cycle. Journal of Systems

and Software, 1(3):213-221, 1980.

[19] K. Lynch. The Image of The City. MIT Press, 1960.

[20] T. M. Pigoski. Practical Software Maintenance — Best Prac-

tices for Managing Your Software Investment. Wiley, 1997.

[21] S.E. Sim and R. C. Holt. The ramp-up problem in software
projects: A case study of how software immigrants natural-
ize. In Proc. of 20th Int. Conference on Software Engineering

(ICSE-20), pages 361-370. ACM, 1998.

YF]',F.

COMPUTER

SOCIETY

