
Lightweight Impact Analysis using Island Grammars

Leon Moonen

CWI, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/ ∼leon/
leon@cwi.nl

Abstract

Impact analysis is needed for the planning and estimation of
software maintenance projects. Traditional impact analysis
techniques tend to be too expensive for this phase, so there
is need for more lightweight approaches.

In this paper, we present a technique for the generation
of lightweight impact analyzers from island grammars. We
demonstrate this technique using a real-world case study
in which we describe how island grammars can be used to
find account numbers in the software portfolio of a large
bank. We show how we have implemented this analysis
and achieved lightweightness using a reusable generative
framework for impact analyzers.

Keywords and phrases: Island grammars, parser genera-
tion, impact analysis, program understanding, software ex-
ploration.

1. Introduction

Estimates indicate that 70% of software budgets are spent
on software maintenance [1]. The two most expensive ac-
tivities in software maintenance are understanding the soft-
ware system that has to be maintained and determining the
impact of proposed change requests [3]. Consequently, re-
search that addresses techniques to assist maintainers in per-
forming these tasks can make an important contribution.

A significant part of the program understanding research
focuses on generic tools such as program browsers and doc-
umentation generators. These tools generally try to provide
various means of querying or navigating through a software
system that can be used by maintainers to answer their ques-
tions. There are obvious advantages to such a generic ap-
proach: it offers wide applicability, and it is easy to see
cost-performance benefits of such tools.

However, we think that there is also a need for program
understanding tools that are more tailored towards the ques-
tions to be answered. These tools should generate detailed
reports or browsers that allow a maintainer to understand
code with respect to such a specific question.

A typical task that would benefit from such problem-
directed tooling is, for example, assessing the costs of mass
change project such as Euro-conversion or database migra-
tion. This typically boils down to estimating questions like:
How many systems are affected? How much code needs to
be changed? Where do we need to make changes? Finding
the answers to such questions is the domain of (software
change) impact analysis [3].

One would expect that making such estimates is rela-
tively cheap; It is hard to justify that the costs of estimating
a mass change project are similar to performing the project.
However, that is exactly what would happen if those esti-
mates were based on a full blown impact analysis. Perform-
ing such an analysis would take almost the same amount of
time and resources as the actual project. Consequently, a
more lightweight form of impact analysis is needed.

A common approach for achieving lightweightness is
based on the use of lexical analysis [9]. This has several
advantages: lexical analysis is a flexible and robust solution
that can handle incomplete and syntactically incorrect code.
Additionally, it often takes little time to develop solutions
based on lexical tooling. Unfortunately, there are also some
serious drawbacks: Lexical analysis tends to be sensitive to
the layout of the code that is being analyzed, for example, a
simple newline may prevent recognition of a language fea-
ture. Furthermore, it is hard to write lexical analysers that
take the structure of a language into account. Consequently,
lexical analysis results typically have lower accuracy and
completeness than those of syntactical analysis.

We think that an approach based on island grammars
[19] is better suited for creating lightweight impact analyz-
ers. In this paper, we investigate this hypothesis. We will do
this using a case study in which we revisit a project that was
performed earlier by our spin-off, the Software Improve-
ment Group, for one of their customers.

This project involved estimating in which parts of the
software portfolio of a large Dutch bank changes have to be
made when converting their 9-digit account numbers into
10-digit account numbers. The customer was interested in a
quick-scan of their complete software portfolio for planning

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

and estimation purposes. This portfolio consists of 200 sys-
tems containing a total of 50 000 000 lines of COBOL code.

The paper is organized as follows: Section 2 gives an
overview of the problem and Section 3 sketches the impact
analysis that is needed to solve this problem. Island gram-
mars are described in Section 4, followed by a discussion of
how the impact analysis is translated into island grammars
in Section 5. The implementation of our analyzer is de-
scribed in Section 6. Section 7 generalizes our approach to
other applications . Finally, Sections 8 and 9 summarize re-
lated work, discuss future extensions and draw conclusions.

2. Problem Description

Currently, most Dutch banks use client account numbers
that consist of 9 digits. Collective agreements ensure that
each number is used uniquely and each bank typically uses
certain sub-ranges of the spectrum. The pool of unassigned
account numbers is managed by a subsidiary where banks
can apply for free numbers. Since this supply of unused
numbers is running out, the banks have decided that they
will convert their systems to account numbers that consist
of 10 digits (by prefixing existing numbers with 0 and using
the prefixes 1. . . 9 for fresh numbers).

This poses several questions for managers that are re-
sponsible for the software portfolio of a bank: How much
of our portfolio is affected by this decision? For a given
system, where are the parts that need to be changed? How
many of these changes can be done automatically?

In our case study, we investigate if it is possible to answer
such questions using an impact analysis technique based on
island grammars. It is important to keep in mind that we
are looking for a lightweight technique that can be used to
analyze the impact on the complete software portfolio. The
goal is to enable correct estimation and planning of the next
steps in this mass change project. Consequently, our focus
is more on short development time and enabling quick feed-
back for the complete portfolio, rather than on the detailed
and complete impact analysis that would be needed to actu-
ally remedy the situation.

Furthermore, since the need for this conversion has been
known for some time, some of the newer (or updated) parts
of the software portfolio are already prepared for 10-digit
account numbers. An important aspect of this study is that
we need to handle code that contains a mixture of “good”
and “bad” account numbers, and that we need to distinguish
between them in order to provide correct estimates.

3. Impact Analysis Approach

This section describes how we want to perform the impact
analysis that was described in the previous section. In the
next section, we will describe how we have implemented it.

3.1. Patterns

The case study started with talking to (representatives of)
the maintainers of the software to see how they would nor-
mally perform this kind of impact analysis. From these dis-
cussions, it turned out that it was possible to search the sys-
tem’s artifacts for variables that might represent bank ac-
count numbers. This search is partially based on pattern
matching on the names of the variables, so together with
the maintainers, a list of patterns was compiled that would
signal bank account numbers in the software. The starting
point for the compilation of such a list is the organization’s
data dictionary. Typical examples of patterns in this list are
ACCOUNTNR, ACCNR, ACC-NO and GNR (that last one is used
for giro number).1

3.2. Classification

Besides the variable name, also the type of the variable
plays an important role in the analysis. We would like to
distinguish between variables with a 9-digit type that need
to be changed, and variables with a 10-digit type that are
already correct. Unfortunately, COBOL does not have a
real type system. Instead, with each variable declaration,
a description of the memory layout that this variable uses is
given (so called pictures or picture clauses). Pictures give a
character-by-character definition of the format of variable.
The characters have special meanings. For example, ’X’ is
used to denote a memory position that can hold an alphanu-
meric character; ’9’ is used for a numeric characters, and
many others exist. Typical bank account numbers may be
described in COBOL as follows:

01 ACCNR PIC 9999999999.
01 FMT-ACCNR PIC 99.99.99.999.
01 ACCOUNTNR PIC 9(10).

The first line describes a variable with name ACCNR that
consists of 9 digits (the picture 9 indicates 1 digit, 99 in-
dicates two digits, and so on). The second line declares
a variable FMT-ACCNR consisting of 9 digits but formatted
using dots. The last example, shows a variable with name
ACCOUNTNR consisting of 10 digits (the number between
brackets indicates repetition).

We will classify the variables with matching names
based on their picture clauses. We distinguish four classes:

A. 9-digit variables with numeric pictures such as
999999999, 9(9), 99.99.99.999, and alphanu-
meric pictures such as X(9), and XX.XX.XX.XXX.

B. 10-digit variables with numeric pictures such as
9999999999, 9(10), 999.99.99.999, and alphanu-
meric pictures such as X(10), and XXX.XX.XX.XXX.

1 The examples in this paper were taken from a Dutch software system.
Although we have translated variable names into English, some names or
abbreviations may look strange or uncommon since there is no good trans-
lation. Most notably is “giro”, which is a bank transfer service in Europe.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

island
parser

parse
tree

add island
markup

system
artifacts

source model
extractor

source
model

repository

marked up
artifacts

artifact
presentation

statistics
computation

piechart
generator

hypertext
documentation

Figure 1. ISCAN architecture.

C. Record variables do not have their own picture descrip-
tion but consist of a number of sub-fields. These sub-
fields can be used, for example, to address parts of an
account number (some banks use the first 4 digits of
account numbers to identify the branch where this ac-
count was opened).

D. Other variables whose names match with the patterns
but whose pictures do not fall in the above classes.

3.3. Anti-patterns

As described in Section 3.1, we start with a number of pat-
terns that might indicate that a variable is used as an account
number. However, there are a number of variables that have
names that match with these patterns but we know (for ex-
ample, from code inspection) that they are not used for ac-
count numbers. We call such variables false positives. We
have taken the following steps to reduce false positives:

• During the project, a number of anti-patterns have
been identified that match with field identifiers that are
certainly not used for account numbers;

• Whenever a variable name matches both a pattern and
an anti-pattern, that variable is rejected. When a vari-
able name matches a pattern and none of the anti-
patterns, it is accepted.

This process can be applied iteratively: whenever inspec-
tion of the results shows false positives, anti-patterns are
added and the analysis is repeated. Thus, the precision of
the analysis can be increased by investing in these iterations.

3.4. Presentation

We will report our findings using hypertext documentation
consisting of: (i) pages displaying statistics and pie-charts
summarizing the analysis results, and (ii) hyperlinked and
pretty-printed artifacts that will lead the maintainer to all
affected sites (i.e., all occurrences of account numbers). We
add this second type of reports since they allow the main-
tainer to inspect analysis results and check hypotheses about
impact. Furthermore, they are useful for identifying false
positives and adding anti-patterns. The account numbers in
the hyperlinked code are colored to show their classifica-
tion: e.g., red for 9-digits, green for 10 digits, etc.

3.5. Tool Support

We have created ISCAN, a lightweight impact analysis tool
to derive the described information. The basic structure of
this tool is depicted in Figure 1. It follows the extract-query-
view approach quite common to reverse engineering tools.

We start with parsing the system artifacts using an island
parser. The parse results are processed in two ways:

Source Model Extraction: we extract source models de-
scribing for each artifact, the account numbers that
were found, their classification and details about their
origins (file and position information of the actual
code). This data will be used later on for statistics and
pie charts. The origins can be used for hyperlinking
the results.

Island Markup: to enable problem-directed pretty-
printing, we add markup to the artifacts, tagging all
account numbers for later reference.

The results are stored in a repository which is used by a
number of tools: a statistics tool queries the source models
to generate statistical overviews, summarizing the account
numbers per program, per system and in the complete port-
folio. Another tool generates pie-charts that give a different
view of the impact and affected code. A third tool presents
the artifacts as a hyperlinked website. This tool uses the
markup to pretty-print the code, visualizing the classifica-
tion with different colors. Furthermore, it generates cross-
references such as tables of content and indexes.

4. Island Grammars

One of the challenges of building a lightweight impact anal-
ysis tool is parsing a system’s artifacts to extract the infor-
mation we need. There are a number of reasons why it is
hard (or even impossible) to parse the artifacts using com-
mon parser based approaches:
Grammar availability: We might want to analyze legacy
systems written in a language for which there is no grammar
available. Writing such grammars from scratch is tedious
and expensive, and may not pay back at all. For example,
van den Brand et al. report a period of four months for the
development of a fairly complete COBOL grammar [6].

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Completeness: The source code of a system may be in-
complete. For example, some of the header files (or copy-
books) may be lost making a full reconstruction impossible,
or collecting all files may be too time consuming, making it
unfeasible for cost estimation purposes only.
Dialects: Legacy languages such as COBOL (but also lan-
guages like C) have a number of, slightly different, vendor-
specific dialects. A parser for one dialect may not accept
code written in another.
Embedded languages: Several programming languages
have been upgraded with embedded languages for database
access, transaction handling, screen definition, etc. We
might want to consider both languages in our analysis. Most
parser based approaches have difficulties with that.
Customer-specific idioms: Some systems use specific id-
ioms (e.g., assigning values to “special” variables) in com-
bination with libraries to interface with other systems, or
to bypass limitations in a compiler or runtime system. A
standard parser will not recognize such constructions.
Preprocessing: The use of preprocessor directives can
hinder parsing but analyzing already preprocessed code
might give results that are not expected by the maintainer
(since his mental views are based on unprocessed code).

It has been proposed to use lexical analysis techniques to
remedy these problems [20, 9]. Lexical analysis provides a
flexible and robust solution that can handle incomplete and
syntactically incorrect code. Additionally, it often takes less
time to develop a lexical analyzer than a syntactical one.

However, there are also disadvantages to a lexical ap-
proach: the analysis results typically have lower accuracy
and completeness than those of syntactical analysis. Lower
accuracy means an increase of false positives (analysis finds
properties for code which it does not have in reality). Lower
completeness means an increase of false negatives (analysis
misses properties that are present in reality).

In this paper, we set out to use syntactical analysis based
on island grammars [19] to remedy these problems.

Definition 4.1 An island grammar is a grammar that con-
sists of two parts: (i) detailed productions that describe the
language constructs that we are particularly interested in
(so called islands), and (ii) liberal productions that catch
the remainder of the input (so called water).

In a way, island grammars mix the behavior of parsing with
that of lexical approaches by analyzing the interesting parts
of a grammar and brushing aside the non-interesting parts.
By doing that, they combine the accuracy of syntactical
analysis with the speed, flexibility and robustness of lexi-
cal analysis. Table 1 gives an overview of the approaches.

Note that island grammars do not require the use of a
particular grammar specification formalism or parsing tech-
nique. However, the limitations of the chosen formalism
and technique may influence the island grammar. In this

paper, we express island grammars in SDF, a syntax defi-
nition formalism that is supported by generalized LR pars-
ing [16, 23]. We benefit from the expressive power of this
combination which makes development of island grammars
easier. Other formalisms and parsing techniques can, and
have been used. For example, JAVACC (the Java parser gen-
erator by MetaMata/Sun Microsystems) has been used for
an island grammar developed together with our industrial
spin-off, the Software Improvement Group, as part of the
documentation generator DOCGEN [10]. The requirements
originating from the LL parsing technique used in JAVACC
made development and extension of this grammar unwieldy.
The tooling described in [19] enables re-implementation
based on SDF and generalized LR parsing.

4.1. Syntax Definition in SDF

Before we continue with an island grammar example, we
give a short overview of the syntax definition formalism
SDF. Syntax definitions in SDF combine the definition of
lexical and context-free syntax in the same formalism. The
definitions are purely declarative (e.g., as opposed to defi-
nitions in YACC that can use semantic actions to influence
parsing) and describe both concrete and abstract syntax.

SDF definitions can be modular: productions for the
same non-terminal can be distributed over different mod-
ules and a given module can reuse productions by importing
the modules that define them. This allows for the definition
of a base or kernel grammar that is extended by definitions
in other modules. An example of this is module Water in
Figure 2 that is extended by module DataFields in Figure 3.

SDF provides a number of operators to define optional
symbols (S?), alternatives (S1|S2), iteration of symbols (S+
and S∗), and more. These operators can be arbitrarily nested
to describe more complex symbols. Furthermore, SDF pro-
vides a number of disambiguation constructs such as rela-
tive priorities between productions, preference attributes to
indicate that a production should be preferred or avoided
when alternatives exist, and associativity attributes for bi-
nary productions (for example, S op S → S {left}). Pro-
ductions can be labeled with identifiers using the {cons} at-
tribute. These labels appear in the parse tree so we can see
which production was used to construct a given (sub)term.

SDF is supported by a parser generator that produces
generalized LR (GLR) parsers. Generalized parsing allows

lexical syntactical analysis
analysis full grammar island grammar

accurate – + +
complete – + +
flexible + – +
robust + – +

Table 1. Lexical vs. syntactical analysis.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

module Layout (1)
lexical syntax (2)

[\ \t\n] → LAYOUT (3)

module Water (4)
imports Layout (5)
context free syntax (6)

Chunk* → Input (7)
Water → Chunk (8)

lexical syntax (9)
∼[\ \t\n]+ → Water {avoid} (10)

Figure 2. Base for island grammars.

definition of the complete class of context-free grammars
instead of restricting it to a non-ambiguous subclass such as
LL(k), LR(k) or LALR(1), which is common to most other
parser generators [22, 21]. This allows for a more natural
definition of the intended syntax because a grammar devel-
oper no longer needs to encode it in a restricted subclass.
Moreover, since the full class of context-free grammars
is closed under composition (unlike restricted subclasses),
generalized parsing allows for better modularity and syntax
reuse. For more information on SDF, we refer to [16, 23].

4.2. Island Grammar Example

Figures 2 and 3 show an example island grammar that de-
scribes COBOL data fields. Note that productions in SDF

are reversed with respect to BNF: on the right-hand side of
the arrow is the non-terminal that can be produced by the
symbols on the left-hand side.

The grammar contains three modules: The module Lay-
out specifies the lexical non-terminal symbol LAYOUT
containing white-space characters. This symbol has special
meaning in our parsers since it can be recognized between
any two symbols in a context-free production.

The module Water uses definitions from module Layout
(line 5) and adds two context-free non-terminals: the sym-
bol Input that can be produced from a list of zero or more
Chunks (line 7) and the symbol Chunk that can be produced
from Water (line 8). Later, we will add more productions for
Chunk, thus providing alternatives that can be recognized

module DataFields (1)
imports Water DataParts (2)
context free syntax (3)

Level DataName → Chunk {cons(Data)} (4)

module DataParts (5)
lexical syntax (6)

[A-Z][A-Z0-9\-]* → DataName (7)
[0][1-9] → Level (8)
[1-4][0-9] → Level (9)

Figure 3. COBOL data fields.

module DataFieldsWithContext (1)
imports Water DataParts (2)
context free syntax (3)

”DATA DIVISION” DdChunk* (4)
”PROCEDURE DIVISION”→ Chunk (5)
Level DataName → DdChunk {cons(Data)} (6)
Water → DdChunk (7)

Figure 4. COBOL data fields in context.

instead of Water. The lexical non-terminal Water consists
of a list of one or more characters that are not white-space
(line 10). The attribute “{avoid}” prevents the parser from
using this production if others are applicable. This allows us
to specify default behavior that can be overridden by other
productions (without generating ambiguities).

The grammar specified by module Water is extremely ro-
bust: it describes almost all programming languages. It is,
however, not very useful by itself since the terminal sym-
bols in a parsed sentence are indistinguishable. We can turn
this into a useful grammar by adding islands that specify
constructs of interest: The module DataFields in Figure 3
adds such an island by specifying that a Chunk can also be
produced by a Level number followed by a DataName (line
4). DataNames are characters followed by zero or more
characters or digits (line 7). Level numbers lie between 01
and 49 (lines 8 and 9)

This very simple grammar allows us to generate a parser
that searches for data fields in COBOL code. Although this
may not be a spectacular example (something similar could
be done, for example, using a tool like grep), we will show
below how we can extend this grammar to do a more com-
plicated analysis. Furthermore, the modularity of SDF al-
lows us to reuse the base grammar developed here for other
island grammars.

The grammar in Figure 3 is not very discerning. Con-
sider an input program that contains the following line:

IF C > 10 AND C < 20

The grammar will recognize this line as water containing
the text IF C >, followed by a data field with level 10 and
name AND, followed by water containing C < 20. Some-
thing similar will happen for all other number–name se-
quences in the code. Obviously, this is not correct, so we
need to improve our grammar.

The solution is to restrict the grammar so it will only look
for data fields in the data division of the program. This can
be done by refining the grammar into the one that is shown
in Figure 4. The production on line 4 and 5 specifies that
non-terminals of type DdChunk are only to be recognized in
a context that starts with the text DATA DIVISION and and
ends with the text PROCEDURE DIVISION. Line 6 defines
these DdChuncks to be our data fields that can be produced
by a Level and a DataName (similar as in our original gram-
mar). Furthermore, our grammar needs to be made robust

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

module DataNames (1)
imports Patterns AntiPatterns (2)
lexical syntax (3)

DNPart Pattern DNPart → DataName (4)
DNPart AntiPattern DNPart → DataName {reject} (5)
[A-Z0-9\-]* → DNPart (6)

module Patterns (7)
lexical syntax (8)

”ACCNO” | ”GNR” | . . . → Pattern (9)

module AntiPatterns (10)
lexical syntax (11)

”DAGNR” | . . . → AntiPattern (12)

Figure 5. Matching patterns in data names.

against other data that can occur in this context (i.e., parts
of the input that do not match with the data field definition).
We do this by also allowing water to be recognized between
the markers (line 7).

This example shows some of the advantages that island
grammars have over lexical approaches. Most importantly,
it is much easier to use structure while specifying patterns
to be analyzed. For example, it would be really hard to
limit grep so it would only match in the data division. In
other lexical approaches one would use state manipulation
to achieve such results. However, when parts of the analy-
sis logic are hard-coded, adapting the analyzer or combin-
ing two analyzers into a single new one becomes a tricky
job. In contrast, solutions based on island grammars can
easily be combined and are declarative, making them easier
to understand.

5. Performing Impact Analysis using
Island Grammars

To perform impact analysis, we create an island grammar
in which the islands are based on the patterns, anti-patterns
and classification described in Section 3. When we then
parse the artifacts using a parser generated from this gram-
mar, the parse trees will contain the analysis results.

Unfortunately, the complete grammar that was used for
our case study is too large to show in this paper. It consists
of 148 productions which is mainly due to the large amount
of patterns and anti-patterns (125 to be precise). Below, we
will describe and show the most interesting parts.

When developing the grammar, we start with an “empty”
island grammar that “parses” the complete input as water.
This is the grammar shown in Figure 2.

Next, we extend this grammar with island productions
for data fields with generic field identifiers. The resulting
grammar can be used to extract all data fields from COBOL

sources. However, we are interested in more specific infor-

mation: we are looking for data fields whose names match
with the account number patterns. Therefore, we refine the
identifier syntax so it only matches with the account number
patterns. The consequence of this refinement is that all data
fields whose names do not match are now parsed as water.

The following step is filtering all data fields whose
names match with anti-patterns. In SDF, we can use the
reject attribute to prevent that names that match with an
anti-pattern can be parsed as valid data names. The result-
ing grammar will only parse data fields whose names match
with one of the patterns and with none of the anti-patterns.

The grammar parts responsible for recognizing data
names by matching patterns and rejecting anti-patterns are
shown in Figure 5. The actual data names are described
in module DataNames: line 4 defines that a DataName
contains at least one of the patterns, line 5 defines that a
DataName containing one of the anti-patterns is not valid
(i.e, should be rejected), and line 6 defines the possible pre-
and postfixes for the patterns.

The patterns are defined in modules Patterns and An-
tiPatterns. For brevity, we show only a few patterns of the
actual list. The anti-pattern DAGNR in line 13 is a Dutch
abbreviation for day number which would normally give a
false match with GNR.

Classification of the account number variables is done
by building up all potential picture clauses from a number
of patterns for each class. This is shown in Figure 6 on
the next page. We start with a production describing the 9-
digit pictures (line 1), followed by the 10-digit pictures in
line 2. Furthermore, we want a production for all remain-
ing pictures of variables that match a pattern. We let the
parser construct that class by specifying that it consists of
an arbitrary PictureString (line 3 and 7) but prevent that the
9-digit and 10-digit pictures are parsed by this production
using the reject in line 4. In a way, this reject allows us to
“subtract” a set of pictures from the large set described by
the production in line 7.

The grammar that combines data names with picture
clauses into data descriptions is shown in Figure 7. We can
use these data descriptions to refine the grammar from Fig-
ure 4 by replacing the definition of DdChunk in line 6 with
a production: DataDesc → DdChunk. The resulting island

module DataDesc (1)
imports DataNames Pictures (2)
context free syntax (3)

Level DataName ”.” → DataDesc {cons(Rec)} (4)
Level DataName Water* (5)
”PIC” Picture → DataDesc {cons(Field)} (6)

lexical syntax (7)
[0][1-9] → Level (8)
[1-4][0-9] → Level (9)

Figure 7. Recognizing valid data descriptions.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

module Pictures
context free syntax

”999999999” | ”9(9)” | ”99.99.99.999” | . . . → Pict {cons(Short)} (1)
”9999999999” | ”9(10)” | ”999.99.99.999” | . . . → Pict {cons(Long)} (2)
PictureString → RestPict {cons(Other)} (3)
Pict → RestPict {reject} (4)
Pict | RestPict → Picture (5)

lexical syntax (6)
[0-9XxAa\(\)pZzVvSszBCRD\/\,\$\+\-*\:]+ → PictureString (7)

Figure 6. Recognizing and classifying picture clauses.

grammar can be used to extract account numbers from a
COBOL source and classify them using their picture clauses.

6. Generation of Impact Analyzers

This section describes implementation details of how we
have built the ISCAN impact analyzer. As discussed in the
introduction, we expect that there is general interest for the
kind of lightweight impact analyzers described in Section 3.
Therefore, we set out to build tooling that can help the main-
tainer to create such tools. Our design goal is to minimize
the amount of work needed for creation of a new analyzer.

We have composed a generative framework for the cre-
ation of impact analyzers using island grammars. A main-
tainer can instantiate the framework using simple specifi-
cations detailing the problem at hand. This results in gen-
eration of a new impact analyzer that performs an analysis
dedicated to the given problem. An overview of the gener-
ator framework is shown in Figure 8 on the next page. The
gray boxes depict maintainer inputs.

The minimal amount of work that needs to be done to
create a new analyzer is very small: it consists of writing the
island grammar that specifies affected sites in the artifacts.
This grammar plays a central role in the generation of the
remaining parts. It is used to generate an island parser and
it is part of the inputs needed for the generation of source
model extraction and artifact markup.

For the remaining steps in the process, we supply generic
defaults. These include:

• A source model extractor that stores information re-
garding islands recognized by the island parser in a
repository.

• A transformation that adds markup to the artifacts, tag-
ging islands recognized by the island parser with their
respective types.

• Tools for computing statistics and generating pie charts
based on the types of islands available in the grammar.

These generic components can be refined by the maintainer
to perform a more specific task (the dashed inputs in Fig-
ure 8).

Source Model Extraction The source model extractor
is created using MANGROVE/JAVA, a generator for source
model extractors based on island grammars [19]. The ex-
tractor processes the results of the island parser using JAVA.
The default extractor specification that we provide is a sim-
ple JAVA class that stores information regarding all islands
that were recognized by the parser in a repository. This class
can easily be refined by a user to perform a more specific
task, for example, storing only information about particular
islands or computing extra information based on a combi-
nation of islands.
Island Markup The transformation that adds markup is
generated using MANGROVE/ASF [19]. It processes parse
results in a functional fashion using the term rewriting lan-
guage ASF [2]. Specifications written in ASF can be exe-
cuted using the ASF+SDF Meta-Environment [17, 4]. This
environment contains support for the generation of term
traversal functions [5]. We use these in our default speci-
fication to tag all islands that are recognized by the parser
with their respective types. This specification can also be
refined by the user to perform more specific tasks.

We have chosen to do this transformation using the
ASF+SDF Meta-Environment since it allows us to keep the
original layout intact while transforming the artifacts [7].
Preserving layout is an important feature in a maintenance
tool since it helps a maintainer to orientate when visiting a
system that he has seen before.
Presentation We use XML to mark up the artifacts. The
marked up artifacts are used for pretty-printing and to gen-
erate indexes and tables that cross-reference the various
classes and sources. Our current back end generates a se-
ries of HTML documents. The transformation of XML to
HTML is done using XSL transformations (XSLT). These
transformations can be done either on the server side, for ex-
ample using the XALAN XSLT processor2, or on the client
side using a modern browser such as NETSCAPE 6 or IN-
TERNET EXPLORER 5. The account numbers in the gener-
ated documentation are colored to show their classification:
red for 9-digits, green for 10 digits, etc. The actual colors
that are used can be changed easily by editing a style-sheet.

2 http://xml.apache.org/xalan-j/

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

island
grammar

SDF parser
generator

Mangrove/Java

Mangrove/ASF

island
parser

parse
tree

source model
extractor

add markup
transformation

system
artifacts

source
model

repository

extractor
refinement

default extractor
specification

marked up
artifacts

statistics
computation

piechart
generator

XSLT
processor

default markup
specification

markup
refinement

CSS spec

hypertext
documentation

XSLT artifact
presentation spec

Figure 8. Implementing the ISCAN architecture.

7. Applications

In this paper, we have focused on solving a specific case:
the impact of expanding 9-digit bank account number into
10-digit numbers. There are many more of such problems
to which our technique can be applied:
Product codes: We have encountered a problem that was
very similar to the bank account number analysis in another
project that was done by our spin-off, the Software Im-
provement Group. The problem there was a large software
system that used product codes that consisted of 2 digits.
The goal of the project was a transformation of this system
that expanded the product codes to consist of 3 digits (sur-
prisingly with a maximum of 299 instead of 999).
Trading natural gas: Liberalization of the gas-market in
Western Europe makes it possible for consumers to pick the
gas supplier they like. To enable this, the various gas net-
works have been interconnected, making it easier for pro-
ducers to sell their gas in more remote markets. Before
liberalization, gas trading contracts were based on capaci-
ties in m3 per hour. However, the caloric value of natural
gas differs between gas reserves, so the actual energy value
that is purchased/sold with 1 m3 also differs per gas reserve.
Since this is not a competitive price model when trading be-
tween various gas reserves, gas trading companies want to
convert from capacities in m3 per hour to capacities in kW
per hour. Obviously, this conversion implies mass changes
in their trading and accounting software.
Selling natural gas: Another change that gas trading
companies want to make has to do with consumer account-
ing. Historically, gas supply days run from 6am one day to
6am the next day. This poses several problems for service
integration, for example, when one would like to combine
gas and electricity billing. Therefore these supply days need
to be changed into the standard 0am-12pm schedule.
Date format conversion: Changing the date repre-
sentation in a system from the U.S.A. date for-
mat (MM/DD/YYYY), or the European date format

(DD/MM/YYYY), into the international ISO date format
(YYYY-MM-DD).

8. Related Work

Impact Analysis Bohner and Arnold give a tutorial style
overview of research topics in the area of software change
impact analysis [3]. The articles focus on the traditional
full-blown impact analysis that one would use to process a
change request, and not on the kind of lightweight impact
analysis that we focus on. The techniques described in this
book will be too expensive to be practical for the estimation
and planning phase of a software change project. However,
they will be needed in the next phases of the project.

Most of the traditional impact analysis approaches are
based on program slicing [14] and program dependence
graph analysis [18]. Han describes an impact analysis ap-
proach that is based on direct analysis of the system arti-
facts [15]. Similar to our approach, it analyzes the parse
trees to determine impact and change propagation. Han ar-
gues that such a direct approach is better suited for provid-
ing impact analysis and change propagation as integral parts
of a software engineering environment.

Fyson and Boldyreff describe the use of program under-
standing to support impact analysis [13]. They use informa-
tion derived by a program understanding system to populate
a so called ripple propagation graph. By tracing the edges
of this graph, one can identify all systems that are affected
by a change.
Lexical Approaches Several tools are available to per-
form lexical analysis. The most well-known tools are prob-
ably grep and perl that allows one to search text for
strings using regular expressions.

Murphy and Notkin describe the Lexical Source Model
Extractor (LSME) [20]. Their approach uses a set of hier-
archically related regular expressions to describe language
constructs that have to be mapped to the source model. By

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

using hierarchical patterns they avoid some of the pitfalls
of plain lexical patterns but maintain the flexibility and ro-
bustness of that approach. The MULTILEX system of Cox
and Clarke [8] uses a similar hierarchical approach. The
main difference with LSME is that it focuses at extracting
information at the abstract syntax tree level whereas LSME

extracts higher level source models.
These tools offer no immediate support for impact analy-

sis. They are directed at extracting the facts from system ar-
tifacts and not at querying, combining and presenting those
facts to the maintainer to answer a question or to perform
impact estimation.
Rapid System Understanding Van Deursen and Kuipers
describe techniques for rapid system understanding that are
based on lexical analysis [9]. They describe an open archi-
tecture for system understanding that can be easily adapted
to perform a problem-directed analysis. This makes it easy
to use their technique for performing impact analysis for
estimation and planning.
Island Grammars Island grammars [19] are a technique
for syntactical analysis that allows us to mix the behavior
of parsing with that of lexical approaches by analyzing the
interesting parts of a grammar and brushing aside the non-
interesting parts. Thereby, island grammars combine the
accuracy of syntactical analysis with the speed, flexibility
and robustness of lexical analysis. In our earlier paper, we
describe the definition of island grammars using the syn-
tax definition formalism SDF and present MANGROVE, a
generator for source model extractors based on island gram-
mars that supports refinements in various programming lan-
guages and show how it can be used. For a more detailed
discussion of related work regarding island grammars and
source model extraction using syntactical and lexical anal-
ysis, we refer to [19].

9. Concluding Remarks
9.1. Evaluation

By using an island grammar to perform impact analysis, we
limit ourselves to types of analysis that can actually be de-
scribed using grammars. These are the kind of analyses that
are based on determining the presence, absence, and clas-
sification of features in an artifact. They exclude, for ex-
ample, analyses that are based on data flow information or
dependency tracking. Note that when more detail is needed,
an approach based on island grammars can be improved to
a certain extent by doing more involved computations in the
tools that extract source models and markup artifacts.

We argue that the type of analysis that can be described
using island grammars is sufficient for our goal: lightweight
impact analysis for estimation and planning. This is sup-
ported by the fact that others revert to lexical analysis tech-
niques to achieve this goal (e.g., [9]). The use of island

test no. of total size analysis speed memory
programs (LOC) time (s) (LOC/s) usage

(a) 206 233 252 403 579 49 Mb
(b) 818 901 899 1 549 582 54 Mb

Table 2. Benchmark results

grammars has several advantages over lexical approaches.
Most importantly, it is much easier to use structure in the
specification of the patterns. Furthermore, solutions based
on island grammars can easily be combined and are declar-
ative, making them easier to understand.

We identify two potential sources of problems with is-
land grammars: (i) false positives that occur when the gram-
mar allows constructs to be recognized in places where they
should not have been recognized. (ii) false negatives that
occur when the grammar is too restrictive and does not
allows constructs to be recognized in places where they
should been recognized. These errors can be solved by
strengthening the grammar, we refer to [19] for a discus-
sion of possible approaches.

The expressive power of an island grammar is limited by
the chosen syntax definition formalism and more important
by the chosen parsing technique. We express island gram-
mars in SDF, a syntax definition formalism that is supported
by generalized LR parsing techniques. Consequently, we in-
herit their expressive power, which allows us to express the
complete class of context free languages.3

To get an indication of the speed and scalability of our
approach, we have tested the generated impact analyzer on
representative parts of the earlier described software port-
folio (the complete portfolio could not be used due to dis-
closure restrictions). We have performed two tests: (a) one
on a single system, and (b) one on a collection of four sys-
tems. Table 2 gives an overview of the test results. The
analysis time is the user CPU time as reported by the GNU
time command and the maximum memory usage was ob-
served using top. The tests were performed on a computer
with an AMD Athlon processor (1.2 Ghz) and 512 Mb main
memory running linux 2.4.9-12.

Since the tests were done on representative systems (with
similar average, largest and smallest program size), we
think that these results can be extrapolated. Thus, impact
analysis of the complete portfolio of 50 000 000 LOC will
take approximately 1 day (24 hours), which is more than
acceptable for estimation purposes on a project of this size.

9.2. Future Work

We are interested in investigating how we can extend our
approach with dependency tracking to perform a more de-
tailed analysis. We want to do this using the type infer-

3 And some non-context free languages because the reject attribute al-
lows us to compute the difference or intersection of two languages. For
more details, see the discussion in [23, p. 52–56].

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

encing technique described in [11, 12]. The basic idea is as
follows: we will use the data fields found by the lightweight
impact analysis as seeds. Initially, these seeds get a unique
type. These types will be propagated through the statements
in the program and track all related (type equivalent) fields
encountered during this propagation.

We need to make the following additions to our frame-
work: First, the island grammar is refined so the gener-
ated parser will recognize assignments and expressions as
islands. Then, we extend the source model extractor, so it
emits primitive type relations for the seeds, type equivalen-
cies for expressions and subtyping for assignments that are
encountered. These relations can be used to find all fields
that are type equivalent with the seeds following the algo-
rithm described in [12, figure 5]. We can classify these sets
using the classification that was found for the seeds since
all type equivalent fields should be in the same category.
Finally, we can use this new information to generate a more
detailed overview of the impact on the code.

9.3. Contributions

Lightweight impact analysis is a prerequisite for estimat-
ing and planning large scale software maintenance projects.
This paper shows that island grammars can be used to gen-
erate such lightweight impact analyzers.

We have given a detailed description of the process of
translating an impact analysis problem into an island gram-
mar. We have discussed the advantages that this approach
has over other techniques for impact analysis. We have
presented a generative framework that allows a maintainer
to create lightweight and problem-directed impact analyz-
ers. We have demonstrated our technique using a real-world
case study where island grammars are used to find account
numbers in the software portfolio of a large bank.

Acknowledgments The author would like to thank Arie
van Deursen, Paul Klint and Joost Visser for providing valu-
able feedback on drafts of this paper.

References
[1] K.H. Bennet. An introduction to software maintenance. In-

formation and Software Technology, 12(4):257–264, 1990.

[2] J. A. Bergstra, J. Heering, and P. Klint. The algebraic specifi-
cation formalism ASF. In Algebraic Specification, chapter 1,
pages 1–66. ACM Press & Addison-Wesley, 1989.

[3] S. Bohner and R. Arnold. Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

[4] M.G.J. van den Brand et al. The ASF+SDF Meta-
Environment: a component-based language development en-
vironment. In Proc. Compiler Construction, LNCS, 2001.

[5] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewrit-
ing with traversal functions. Technical Report SEN-R0121,
CWI, 2001.

[6] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Ob-
taining a Cobol grammmar from legacy code for reengineer-
ing purposes. In Proc. 2nd Int. Workshop on the Theory and
Practice of Algebraic Specifications, EWIC, 1997.

[7] M.G.J. van den Brand and J.J. Vinju. Rewriting with layout.
In Proc. First Int. Workshop on Rule-Based Programming
(RULE’2000), September 2000.

[8] A. Cox and C. Clarke. A comparitive evaluation of tech-
niques for syntactic level source code analysis. In Proc. 7th
Asia-Pacific Softw. Eng. Conf., December 2000.

[9] A. van Deursen and T. Kuipers. Rapid system understand-
ing: Two Cobol case studies. In Proc. 6th Int. Workshop on
Program Comprehension, pages 90–98, 1998.

[10] A. van Deursen and T. Kuipers. Building documentation
generators. In Proc. Int. Conf. on Software Maintenance,
pages 40–49, 1999.

[11] A. van Deursen and L. Moonen. Type inference for Cobol
systems. In Proc. 5th Working Conf. on Reverse Engineering,
pages 220–230, 1998.

[12] A. van Deursen and L. Moonen. An empirical study into
Cobol type inferencing. Science of Computer Programming,
40(2–3):189–211, July 2001.

[13] M.J. Fyson and C. Boldyreff. Using application understand-
ing to support impact analysis. Software Maintenance: Re-
search and Practice, 10:93–110, 1998.

[14] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software En-
gineering, 17(8):751–761, 1991.

[15] J. Han. Supporting impact analysis and change propaga-
tion in software engineering environments. In Proc. 8th Intl.
Workshop on Software Technology and Engineering Practice
(STEP’97), pages 172–182, July 1997.

[16] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
syntax definition formalism SDF—reference manual. SIG-
PLAN Notices, 24(11):43–75, 1989.

[17] P. Klint. A meta-environment for generating programming
environments. ACM Transactions on Software Engineering
and Methodology, 2:176–201, 1993.

[18] J.P. Loyall and S.A. Mathisen. Using dependence analysis
to support the software maintenance process. In Proc. Int.
Conf. on Software Maintenance, pages 282–291, 1993.

[19] L. Moonen. Generating robust parsers using island gram-
mars. In Proc. 8th Working Conf. on Reverse Engineering,
pages 13–22, October 2001.

[20] G.C. Murghy and D. Notkin. Lightweight lexical source
model extraction. ACM Transactions on Software Engineer-
ing and Methodology, 5(3):262–292, July 1996.

[21] J. Rekers. Parser Generation for Interactive Environments.
PhD thesis, University of Amsterdam, 1992.

[22] M. Tomita. Efficient Parsing for Natural Languages. A Fast
Algorithm for Practical Systems. Kluwer, 1985.

[23] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

