
Generating Robust Parsers using Island Grammars

LeonMoonen

CWI, PO. Box 94079
1090 GB Amsterdam, The Netherlands

http://w ww.c wi.nl/-leon/
leon @cwi.nl

Abstract
Source model extraction-the automated extraction of infor-
mation from system artifacts-is a common phase in reverse
engineering tools. One of the major challenges of this phase is
creating extractors that can deal with irregularities in the ar-
tifacts that are qpical for the reverse engineering domain (for
example, syntactic errors, incomplete source code, language
dialects and embedded languages).

This paper proposes a solution in the form of island gram-
mars, a special kind of grammars that combine the detailed
specifkation possibilities of grammars with the liberal behav-
ior of lexical approaches. We show how island grammars can
De used to generate robust parsers that combine the accuracy
of syntactical analysis with the speed, flexibility and tolerance
usually only found in lexical analysis. We conclude with a
discussion of the development of MANGROVE, a generator
for source model extractors based on island grammars and
describe its application to a number of case studies.

Keywords and phrases: Island grammars, parser generation,
source model extraction, partial parsing, f u u y parsing, re-
verse engineering, program analysis.

1. Introduction

Software engineers spend a large amount of their time on un-
derstanding the system that is being maintained (estimates of
up to 50% are not uncommon). Consequently, much research
is being invested in the development of tools that assist with
such program understanding and program maintenance activ-
ities. The majority of these tools consist of three phases: (1)
extraction of information (often referred to as source models)
from the system’s artifacts, (2) manipulation, querying and
abstraction of source models, and (3) presentation of the re-
sults. This paper focuses on the first phase: extracting source
models from system artifacts.

One of the challenges reverse engineering tools have to
cope with is parsing the artifacts during the extraction phase.
These artifacts typically contain irregularities that make it
hard (or even impossible) to parse the code using common

parser based approaches. Our goal is to obtain robust parsers
that can handle artifacts with such irregularities. Examples of
the kind of irregularities we want to deal with include:
Syntax errors: In a program maintenance environment, we
want to be able to deal with systems containing syntax errors
(e.g., browse or query code to fix those errors). Most parser
based techniques will fail when encountering syntactic errors.
Completeness: The source code of a system may be incom-
plete. A typical situation is that some of the header files (or
copybooks) of a system are lost or mutilated over the years,
making a full reconstruction impossible.
Dialects: A legacy language like COBOL (but also a lan-
guage like C) has a large number of, slightly different, vendor-
specific dialects. Ideally, we can support them all. However, a
parser for one dialect may not accept code written in another.
Embedded languages: Several programming languages have
been upgraded with embedded languages for database access,
transaction handling, screen definition, etc. COBOL examples
include SQL, CICS, and IDMS. Whether we choose to ana-
lyze or to ignore such extensions, the extraction should not be
hampered by them. However, a standard parser will.
Grammar availability: When supporting legacy systems, we
will come across languages for which there is no grammar
available. These can be proprietary languages, for which a
grammar was never disclosed, or languages for which there
never was a grammar since the parser (or processor) was hand-
written. Reviving such grammars from scratch is expensive,
and may not pay back at all.
Customer-specific idioms. Systems can use specific idioms
(e.g., assigning values to “special” variables) in combination
with libraries to interface with other systems, or to bypass lim-
itations in a compiler or runtime system. Standard parsers will
not recognize such customer-specific idioms and are generally
not flexible enough to be made aware of them. An example re-
garding COBOL CALL analysis is shown in Section 2.1.
Preprocessing: Conceptual problems can arise with analysis
of code that uses a preprocessor: Parsers usually read prepro-
cessed code so the resulting models are based on preprocessed
code. However, a maintainer’s mental model is based on un-
preprocessed code. It can be very hard to map these models

1095-1350/01 /$10.00 0 2001 IEEE 13

http://w

,

I

onto another, especially when conditional compilation is used.
People have ltried to bypass these problems by reusing

an existing parser via a common exchange format (e.g.,
GXL [18]), or via interface generation (for example, GENII
[141). Although these are good solutions from an engineering
perspective (you may not have to write a parser yourself) they
do not solve the problems described above.

Others have proposed to use lexical analysis techniques to
remedy these problems [28, 1 I]. Lexical analysis provides a
flexible and robust solution that can handle incomplete and
syntactically incorrect code at the cost of losing some accu-
racy and completeness.

An additional advantage of lexical analysis is that it often
takes less time to develop a solution based on lexical analysis
than on syntactical analysis. It is tedious and expensive to
write a parser for a language or to write a grammar that can be
used to generate such a parser. For example, van den Brand
et al. report a period of four months for the development of a
fairly complete COBOL grammar [8].

This paper proposes another solution to remedy these prob-
lems: we describe the use of island grammars to generate ro-
bust parsers that are used to build source model extractors.
Island grammars are grammars that contain detailed produc-
tions (rules) describing the language constructs of interest,
and generic productions that capture the remainder. Island
grammars have been briefly sketched before in [12, 131. In
this paper, we present a more detailed account.

By generating parsers from island grammars, we combine
the accuracy of syntactical analysis with the speed, flexibility
and robustness of lexical analysis. The remainder of this pa-
per presents island grammars and their use in MANGROVE, a
generator for source model extractors based on island gram-
mars. We propose a reusable framework for defining island
grammars and describe how the mapping from parse results to
source models can be specified using patterns in a term rewrit-
ing language and in JAVA. We conclude with the application
of MANGROVE in a number of case studies and a discussion
of related work.

2. Island Grammars
Parsers for reverse engineering tools have a number of re-
quirements: The parser should recognize certain constructs of
interest in a given language. Additionally, the parser should
be robust: it should not be obstructed by irregularities in the
input. In this paper, we study how such parsers can be gener-
ated from (context-free) grammar definitions.

Recall from compiler class that, given a language &, we
can give a description of LQ by defining a context-free gram-
mar G such that the language L(G) generated by G satisfies
L(G) = LQ.' In order to satisfy the requirements stated above,
we need to describe Lo using a grammar that on the one hand
generates more sentences than available in the actual language

(namely also sentences with irregularities) but on the other
hand should give an exact specification of the interesting parts
of that language. This is what an island grammar amounts to:

Definition 2.1 An island grammar is a grammar that consists
of detailed productions describing certain constructs of inter-
est (the islands) and liberal productions that catch the remain-
der (the water).

or expressed in terms of language properties:

Definition 2.2 Given a language LQ, a context free grammar
G = (V,C,P,S) such that L(G) = and a set ofconstructs of
interest I C C* such that V i E I : 3sl ,s2 E E* : SI i s2 E L(G).
An island grammar GI = (V.I ,CI,PI,SI) f o r b has the follow-
ing properties:

I . L(G) C L(GI) GI generates an extension of L(G).

2. Vi E I : 3v E VI : v i i
3s3,s4 E X* : s3 i s4 (2 L(G) As3 i s4 E L(GI)

GI can recognize constructs of interest from I in
at least one sentence that is not recognized by G.

3. K(G) > K(GI) G has higher complexity than GI.*

Note that island grammars do not require the use of a par-
ticular grammar specification formalism or parsing technique.
However, the limitations of the chosen formalism and tech-
nique may influence the island grammar. In this paper, we
express island grammars in SDF, a syntax definition formal-
ism that is supported by generalized LR parsing [17, 381. We
benefit from the expressive power of this combo which makes
development of island grammars easier. Other formalisms
and parsing techniques can, and have been used. For exam-
ple, JAVACC (the Java parser generator by Metah4atdSun Mi-
crosystems) has been used for an island grammar developed
together with our industrial partner, the Software Improve-
ment Group, as part of their documentation generator Doc-
GEN [12, 131. The requirements originating from the LL pars-
ing technique used in JAVACC made development and exten-
sion of this grammar unwieldy. The tooling described in the
next section enables us to reimplement this grammar based on
SDF and generalized LR parsing.

2.1. Island Grammar Example
Figures 1 and 2 show an example island grammar that de-
scribes COBOL CALL statements. The specification uses the

' In short: if G = (V,Z,P,S) is a context-free grammar with sets of nun-
terminals V , terminals C and productions P (V U Z)' x V , a start symbol
S E V , and V f l Z = 0, then a string s E Z' is a sentence of G, iff S < s
(s can be derived from S by repeatedly applying productions from P) . The
language generated by C contains all sentences L(G) = {s I s E Z* A S $ s}.
We refer to [35, pp. 43-64] for more information.

* The complexity of a context free language K(G) can be computed by
analyzing the productions of C. See [16] for a detailed discussion.

module Layout (1)
lexical syntax (2)

[\,\t\nI + LAYOUT (3)

module Water (4)
imports Layout (5)
context free syntax (6)

Chunk* -+ Input (7)
Water + Chunk (8)

lexical syntax (9)
-[\,\t\nI+ -+ Water {avoid} (10))

Figure 1. Base for island grammars.

modular syntax definition formalism SDF. Note that produc-
tions in SDF are reversed with respect to BNF: on the right-
hand side of the arrow is the non-terminal that can be pro-
duced by the symbols on the left-hand side. Section 3.1 gives
a short introduction to SDF.

The grammar contains three modules: The module Lay-
out specifies the lexical non-terminal symbol LAYOUT con-
taining whitespace characters. This symbol has special mean-
ing in our parsers since it can be recognized between any two
symbols in a context-free production.

The module Water uses the definitions from module Layout
(line 5) and adds two context-free non-terminals: the symbol
Input that can be produced from a list of zero or more Chunks
(line 7) and the symbol Chunk that can be produced from Wa-
ter (line 8). Later, we will add more productions for Chunk,
thus providing alternatives that can be recognized instead of
Water. The lexical non-terminal Water consists of a list of one
or more characters that are not whitespace (line IO). The at-
tribute “{ avoid}” prevents the parser from using this produc-
tion if others are applicable. This allows us to specify default
behavior that can be overridden by other productions (without
generating ambiguities).

The grammar specified by module Water is extremely ro-
bust: it describes almost all programming languages. It is,
however, not very useful by itself since the terminal symbols
in a parsed sentence are indistinguishable. We can turn this
into a useful grammar by adding islands that specify con-
structs of interest: The module Call adds such an island by
specifying that a Chunk can also be produced by the literal
CALL followed by an identifier (line 4). Identifiers are charac-
ters followed by zero or more characters or digits (line 7).

This very simple grammar allows us to generate a parser

module Call (1)
imports Water ‘ (2)
context free syntax (3)
”CALL” Id + Chunk (cons(Cal1)) (4)

lexical syntax (6)
[A-Z][A-ZO-9]* + Id (7)

Figure 2. COBOL program calls.

module CallHandler
imports Call p context ”MOVE” free Id syntax ”TO” ”CALLEE” + Chunk (cons(Cal1))

”CALL” ”HANDLER” -+ Chunk {reject} (5)

Figure 3. Dealing with a call-handler.

that searches for program calls in COBOL code. Although this
may not be a spectacular example (something similar could
be done, for example, using a tool like grep), we will show
below how easy it is to extend this grammar to do a much
more complicated analysis. Furthermore, the modularity of
SDF allows us to reuse the base grammar developed here for
other island grammars.

Remember the customer specific idioms described in Sec-
tion 1 ? We found a good example of that situation when an-
alyzing a COBOL system were program calls were not made
using the CALL statement but by setting a global variable and
then calling a generic call-handler. This call-handler enabled
the run-time system to dynamically load and execute the de-
sired program (instead of static linking supported by the com-
piler). A standard call-graph extractor will not be able to gen-
erate useful graphs for such a system.

We can add support for that situation using the grammar in
Figure 3. Suppose the name of the call-handler is HANDLER
and the name of the global variable is CALLEE. We specify
an assignment to CALLEE as if it is a program call (line 4).
Furthermore, we prevent the parser from recognizing calls to
HANDLER using the “{reject}” attribute (line 5) .

The “(cons(Cal1))” attributes in Figures 2 and 3 are used to
explicitly specify the constructor function that has to be used
to create an abstract syntax tree. Using this attribute we can
map different concrete syntax productions to the same abstract
syntax. This will make processing easier.

Note the source for potential errors here: (1) when there
are two subsequent assignments to CALLEE before the call-
handler is called, both will be recognized as calls; (2) when
the value in CALLEE is computed instead of assigned, it will
not be recognized. These problems can be remediated in a
back-end that does a more detailed (data flow) analysis. In
practice, however, we found that such call-handlers were used
in a disciplined manner following strict coding conventions,
so these situations did not occur.

2.2. Island Grammar Applications

The employment of island grammars is especially suitable
for reverse engineering (as opposed to, for example, com-
piler construction) since it takes maximum advantage of the
fact that such applications generally do not need the complete
parse tree. Particularly analyzers that try to arrive at higher
levels of abstraction (for example, architecture extraction) can
profit from this early elimination of detail in the parsing phase.

15

,

source model syntax
tree

Figure 4. MANGROVE architecture.

By varying the amount and details in productions for the
construct of interest, we can trade off accuracy, complete-
ness and development speed. For example, it is possible to
approach island grammars from a completely different side
by starting with a complete grammar for a given language
and extending that grammar with a number of liberal (water)
productions. We will call such a grammar a lake grammar.
This approach is typically useful to allow for arbitrary em-
bedded code in the programs that can be processed by given
tool. Furthermore, we can mix productions for water and is-
lands to allow variations such as: islands with lakes to spec-
ify “nested” constructs such as conditional or iteration state-
ments, and lakes with islands to combine extraction for a lan-
guage with extraction for an embedded extension.

In our opinion, the main application area for island gram-
mars is robust parser generation for source model extraction
and simple analysis. Island grammars can be used for both
local and non-local analysis. Obviously, grammars that only
allow local analysis (for example, the CALL statements of Fig-
ure 2) will be simpler than those that allow non-local analysis.
Additional work has to be done in the back end of a non-local
analyzer to find and combine islands that “belong together”.

The main advantage that island grammars have over lexical
approaches is that it is much easier to use structure while spec-
ifying patterns (which requires state manipulation in a lexical
approach). Moreover, solutions can easily be combined and
are completely declarative making them easier to understand.

In theory, island grammars can be used for program trans-
formations. Since the use is evidently restricted to the parts
that are contained by the islands, applications are probably
limited to local transformations. Examples one can think
of include simple structure modifications, normalization of
conditions, enforcement of some coding standards. In gen-
eral, however, we believe that program transformations re-
quire more in depth knowledge of the source language than
what is usually expressed in an island grammar.

2.3. Processing
There are a number of ways to process the parse trees obtained
after parsing an input sentence. Initial observations indicate
that in most island grammars, the Water symbols always oc-
cur in a sequence of symbols. Consequently, removing those
subtrees from a parse tree does not invalidate the tree. Based

on this observation, we have created a simple filter that re-
moves all subtrees that have been parsed as Water from a parse
tree. After applying this filter, processing the resulting term
becomes both easier and faster (less input to consider). Simple
analysis of the term can even be done using lexical techniques.
Note that it is always possible to create grammars for which
Water does not occur in a list context. Use of the filter will
invalidate parse tree with respect to such grammars. This may
or may not be a real problem depending on the processing that
remains to be done on the tree.

Another way is to process the parse trees using hand-
written C code. Currently, such processing is cumbersome but
this might improve when supportive tooling becomes avail-
able that generates access functions on an AST level

In order to be able to create more involved source model
extractors that are not hand-written in C, we have created
MANGROVE, a generator for source model extractors. MAN-
GROVE is described in the next section.

3. MANGROVE
MANGROVE is a generator for source model extractors based
on island grammars. The design requirements were similar to
those described by Murphy and Notkin for their lexical source
model extractor [28]. The approach has to be:

Lightweight: specification of new extractor should be
small and relatively easy to write.

0 Flexible: few constraints on structure of the artifact that
is analyzed (possible to create analyzers for both source
and structured data).

0 Tolerant: few constrains on the condition of the artifact
that is analyzed (possible to analyze code that cannot
compile).

An overview of the MANGROVE architecture is given in
Figure 4. Tools are drawn as ellipses, artifacts as boxes. The
generation of a extractor is based on two types of input (the
grey boxes in Figure 4): The first defines an island grammar
describing the syntax of constructs that need to be recognized.
It is used to generate an island parser; The second specifies the
mapping of those constructs to the desired source model. It is
used with the grammar to generate an extractor that reads the
output of the island parser and converts it to the source model.

16

artifacts cl w javac

source model

Figure 5. MANGROVE instantiation that allows processing in JAVA.

In contrast to most lexical approaches, our approach sep-
arates parsing and analysis instead of attaching semantic ac-
tions to the constructs to be recognized. This has the advan-
tage that the resulting analyzers are easier to adapt and that it
is easier to combine two existing analyzers into a new one.
Most lexical analyzers are hard to adapt since the analysis
logic is entangled with the constructs that have to be recog-
nized. Combining two of these analyzers into a single new
one is even more tricky.

The two inputs are generally small and easy to write down;
therefore, we feel that our approach satisfies the lightweight
requirement. The flexibility and robustness requirements are
satisfied by using island grammars to generate the parser.

The extractor generator in Figure 4 is drawn with a dotted
line to indicate that there are several possible instantiations.
These allow the user to choose the language in which he de-
scribes the mapping of constructs on the source model. We
have made two instantiations of this tool that are described be-
low. One allows the user to write the mapping using traversals
over the AST in Java, the other using concrete syntax patterns
in a simple functional specification.

3.1. Syntax Definition in SDF
MANGROVE reads island grammars that are written in the
syntax definition formalism SDF [17, 381. These definitions
combine the definition of lexical and context-free syntax in
the same formalism. The definitions are purely declarative
(as opposed to, for example, definitions in YACC that can use
semantic actions to influence parsing) and describe both con-
crete and abstract syntax.

SDF definitions can be modular: productions for the same
non-terminal can be distributed over different modules and a
given module can reuse productions by importing the modules
that define them. This allows for the definition of a base or
kernel grammar that is extended by definitions in other mod-
ules. An example of this is module Water defined in Figure 1
that is extended by module Call in Figure 2.

SDF provides a number of operators to define optional
symbols (S?), alternatives (SI IS*), iteration of symbols (S+
and S*), and more. These operators can be arbitrarily nested
to describe more complex symbols. Furthermore, SDF pro-
vides a number of disambiguation constructs such as relative
priorities between productions, preference attributes to indi-

cate that a production should be preferred of avoided when
alternatives exist, and associativity attributes for binary pro-
ductions (for example, S op S + S {left}).

SDF is supported by a parser generator that generates gen-
eralized LR (GLR) parsers. Generalized parsing allows defi-
nition of the complete class of context-free grammars instead
of restricting it to a non-ambiguous subclass of the context-
free grammars, such as the LL(k), LR(k) or LALR(1) class
restrictions common to most other parser generators [36, 301.
This allows for a more natural definition of the intended syn-
tax because a grammar developer no longer needs to encode
it in a restricted subclass. Moreover, since the full class of
context-free grammars is closed under composition (the com-
bination of two CF grammars is again a CF grammar), gener-
alized parsing allows for better modularity and syntax reuse.
For more information on SDF, we refer to [17, 381.

3.2. MANGROVE/JAVA

MANGROVE/JAVA allows the extractor builder to process the
results of the island parser using the object-oriented program-
ming language JAVA. An overview of the tool is given in
Figure 5. Apart from the obvious advantage of being able
to process using a mainstream object-oriented programming
language, this also allows the tool builder to reuse the large
amount of tools, libraries and interoperability techniques that
are available for JAVA.

From an island grammar in SDF, we generate JAVA code
for the construction, representation, and manipulation of syn-
tax trees in an object-oriented style. The generated classes re-
late to the abstract syntax of the grammar using the following
scheme: (i) for every non-terminal, an abstract class is gener-
ated and (ii) for every production, a concrete class is generated
that refines the abstract class corresponding to the result of the
production. Factory methods are generated to convert a parsed
input string into an abstract syntax tree (object structure). Fur-
thermore, several variants on the Visitor pattern are generated
that provide tree traversals over these ASTs. We have reused
JJFORESTER for the generation of this JAVA code [2 2] .

The generated code can be extended by a tool builder to
perform the actual mapping between the AST and the desired
source model. This is done by refining the generated visitors
and feeding them to the generated accept method of a given
AST node. These accept methods perform the actual traver-

17

Visitor

4 : I h i'"'"""'Ui"""1
getchunkherator

Figure 6. UML class diagram for Call collector.

sal over the AST and call visit methods defined in the visitor.
This approach has the advantage that the user does not have to
reconstruct the traversal behavior when refining visitors. Con-
sequently, it is easier and less error-prone to write extensions
and refinements of the generated code.

User extensions are compiled together with the generated
code using a standard JAVA compiler to create an extractor
(i.e., byte code that can be executed using the JAVA virtual
machine). This extractor interfaces with the generated island
parser using a utility that implodes the parse tree into an ab-
stract syntax tree.

Example: Figure 6 presents an UML class diagram showing
the classes that are generated for the island grammar presented
in the COBOL program call example (Section 2.1). The grey
class (CallCollect) was not generated but is an example of an
analysis that can be added by a user. This class refines the
standard visitor so that it collects the identifiers of all called
programs. The JAVA code that implements this class is shown
in Figure 7.

3.3. MANGROVE/ASF

MANGROVE/ASF allows the extractor writer to process parse
results in a functional fashion using the term rewriting lan-
guage ASF [4].

Programming in ASF is done by creating specifications that
consist of a number of rewrite rules. These rules are defined
using pattern matching on concrete syntax defined in an SDF
grammar. The use of concrete syntax has the advantage that
the extractor writer does not have to learn a new language for

public Set set = new HashSetO;
public void visitCall(Cal1 c) {

set.add(c.getId0) ;

Figure 7. JAVA visitor for collecting program calls.

module CallCollect (1)
imports CallHandler Set (2)
context free syntax (3)

collect(Input) + Set (4)
collect(Input, Set) + Set {traverse} (5)

variables (8)
"in" -+ Input (9)
"set" -+ Set (101

Figure 8. Grammar for collecting program calls.

processing terms. The use of term rewriting allows for a natu-
ral expression of the translation of one language into another.

The combination of syntax definition formalism SDF and
term rewriting language ASF is supported by the ASF+SDF
Meta-Environment [20, 61. This environment generates par-
sers and syntax directed editors from SDF definitions and pro-
vides an interpreter and compiler for ASF specifications.

In MANGROVEIASF, we instantiate the extractor generator
using the ASF+SDF Meta-Environment. For an architectural
overview, we refer to the MANGROVE overview in Figure 4.

The ASF+SDF Meta-Environment contains support for the
generation of term traversal functions [7]. When a user at-
taches a "{traverse}" attribute to a production in SDF, addi-
tional functionality is inferred that can perform a traversal of
the first argument of the production. Conceptually, adding
such an attribute is shorthand for adding a set of productions
and rewrite rules (which can be calculated from the grammar).
The default behavior of the generated rewrite rules is to do
nothing. A user can override that behavior by adding a con-
crete rewrite rule for a particular (sub)term.

Example: Figures 8 and 9 show an example of the use of
generated traversals for the program call example described
in Section 2.1. Again, we will build a tool to collect the iden-
tifiers of all called programs. The grammar (Figure 8) defines
two functions: one that we will use to start the traversal (line
4) and the actual traversal function in line 5. This traversal
function has two arguments, the first contains the term to tra-
verse, the second is the accumulator in which traversal results
are gathered. The ASF equations in Figure 9 define the rewrite
rules. We see that rule [CI] starts the traversal using a copy
of the input and an empty accumulator. The other two rules
contain patterns for which we want specific behavior: Rule
[cz] specifies that whenever a CALL statement is matched with
arbitrary identifier, we add that identifier to the accumulated
set. Call-handlers are supported using rule [cg] that collects all
identifiers that are assigned to the CALLEE variable.

[q] collect(in) = collect(i n , {})
[q] collect(CALL id, set) = {id} U set

[q] collect(MOVE id TO CALLEE , set) = {id} U set

Figure 9. Equations for collecting program calls.

18

4. Case Studies
We have done a number of case studies to validate our hypoth-
esis that island grammars can be used to create robust parsers
that allow for construction of lightweight, flexible and tolerant
source model extractors.

.The first case uses island grammars to build an analyzer
that computes ~ the cyclomatic complexity of COBOL pro-
grams. The second case was done in cooperation with the
Software Improvement Group and involves the creation of a
source model extractor for UNIFACE systems.

4.1. COBOL Cyclomatic Complexity
McCabe's cyclomatic complexity measure [27] is one of the
better known software metrics that can be computed from
source code. In this case study we build a simple analyzer
that computes this complexity measure for COBOL programs
using island grammars.

The cyclomatic complexity metric is based on the control
graph of the program. It computes the number of linearly in-
dependent control flow graphs using the number of nodes (n)
and edges (e) in a control flow graph. For a graph with a
nodes and e edges, McCabe defines the cyclomatic complex-
ity as G(v) = e - n + 2.

However, there is a simpler definition that does not require
us to construct a control flow graph in advance. In the NIST
report on structured testing, McCabe defines the cyclomatic
complexity by counting the number of decision predicates in
the code [40]. We will use this latter approach in this case.
Our analyzer basically traverses a parse tree and counts oc-
currences of decision predicates. We show how we use MAN-
GROVE/JAVA to build the analyzer in four steps.

First, we create an island grammar for COBOL that
describes the constructs that can influence the cyclo-
matic complexity. In the case of COBOL, these are
standard constructs like IF-THEN, REPEAT-UNTIL, and
EVALUATE-WHEN (COBOL'S case Statement) but ah0 con-
structs like GO-DEPENDING that jumps to one O f a list Of IO-

cations based on the value of a variable. Other constructs of
interest are predicates that surround code that has to be exe-

for computational statements, and INVALID-KEY and AT-END
for access to flat-file databases.

Note that we have to take special precautions to prevent oc-
currences of thes,e constructs in strings or comments from be-
ing recognized as real occurrences (so calledfalse positives).
This can be done by adding specific productions to the island
grammar that specify that strings should be recognized as wa-
ter and that comments should be considered LAYOUT. An
example of such productions can be found in Figure 10.

Second, a parser and JAVA classes are generated from this
island grammar as described in Section 3.

Third, we refine the generated visitor so that computes the

cuted in case Of errors, such as ON-ERROR and ON-OVERFLOW

cyclomatic complexity during traversal of the parse tree. This
is done by incrementing a counter every time the abstract syn-
tax tree contains one of the complexity increasing constructs
that were specified in the island grammar.

Finally, we compile the code to build an executable ana-
lyzer. The parts that we had to write to create such an an-
alyzer are small and easy to write: construction, testing and
refinement took 4-5 hours. The grammar consists of 17 pro-
ductions, 10 for describing constructs of interest, 4 we reused
from the base grammar of Figure 1, and 3 were added to pre-
vent false positives. The JAVA code that refines the generated
visitor contains one integer field (the complexity counter) and
seven methods that each perform exactly one statement: in-
crement the complexity.

We have applied our analyzer to a number of COBOL sys-
tems (each around 100.000 lines) that were written in different
dialects and contained various extensions (SQL, CICS, IMS).
These irregularities posed no problems for the analysis. Ini-
tial results show that the performance is good but should be
measured in more detail. For example, the implosion proto-
type that converts parse trees to ASTs is slow for very large
inputs. A reimplementation will solve these issues.

4.2. UNIFACE Component Coupling
In a case study performed in cooperation with the Software
Improvement Group (SIG) we developed an island grammar
and source model extractor to parse UNIFACE components
and collect facts about the coupling between them.

UNIFACE is a 4GL application development environment
that is marketed by Compuware [lo]. It allows for the de-
velopment of both conventional and web-based applications.
The application development is model-driven and component-
based. Developers create models of business processes. These
models are used to generate components that inherit proper-
ties from the model. Whenever the model is changed, compo-
nents are updated accordingly. To eliminate the need to build
systems from scratch, developers can reuse components from
other systems and standard libraries. Components contain op-
erations that specify behavior. Components can interoperate
with each other by activating operations in other components
(similar to objects and methods in an object-oriented setting).

To get insight in UNIFACE systems, a SIG customer would
like to get information about the components in a system and
the coupling between them. To collect this information, we
have build a source model extractor that analyses UNIFACE
components and gathers facts about the activation of other
components and of the activation parameters.

module StringsAsWater
lexical syntax

[\"I -[\"I* [\"I -+ Water

Figure 10. Strings as water.

19

I

The extractor :was generated using an island grammar that
describes module activation and parameter passing in UNI-
FACE. This grammar extends the base grammar from Fig-
ure 1 and was developed without prior knowledge of UNI-
FACE (but with help of activate documentation). It took
approximately one day to develop, test and refine the island
grammar and about the same amount of time to develop the
source model mapping in JAVA.

The complete island grammar contains 38 productions, in-
cluding the base grammar and productions to prevent false
positives. This relatively high number is influenced by the act
that UNIFACE is case insensitive, thus our grammar contains a
number of productions whose sole purpose is to specify case
insensitive variants of keywords that have to be recognized.

The resulting source model extractor can process both
UNIFACE source listings and XML dumps of modules. The
extractor emits a source model that describes component cou-
pling in textual or in GXL format [18].

5. Discussion

5.1. Expressive power
Island grammars do not depend on a particular grammar spec-
ification formalism or parsing technique. However, the ex-
pressive power of an island grammar is limited by the chosen
syntax definition formalism and more important by the chosen
parsing technique. In MANGROVE, we have chosen to express
island grammars in SDF, a syntax definition formalism that is
supported by generalized LR parsing techniques. Since we in-
herit the expressive power, we can express the complete class
of context free languages using our island grammars.

The different MANGROVE instantiations allow an extractor
writer to choose a processing language that fits his needs. The
JAVA instantiation enables processing in a mainstream object-
oriented programming language and allows reuse of the large
amount of tools, libraries and interoperability techniques that
are available for JAVA. The ASF instantiation allows process-
ing using term rewriting with patterns over concrete syntax .
This has the advantage that the extractor writer does not have
to learn a new language and term rewriting allows for natural
expression of translation between languages.

5.2. Accuracy
Island grammars do not give a restrictive description of the
language that is analyzed. On the one hand, we consider this
an advantage since this is, after all, the property that allows
for irregularities, releases structural requirements on the ar-
tifacts and increases development speed. On the other hand,
however, this lack of detail may result in erroneous results.

We distinguish two kinds of extraction errors: (i) falsepos-
itives occur when the grammar allows constructs to be recog-
nized in places were they should not have been recognized.

(ii) false negatives occur when the grammar is too restrictive
and does not allows constructs to be recognized in places were
they should been recognized.

False positives can be solved by extending the part of the
grammar that specifies Water. For example, false recognition
of constructs inside of strings can be prevented by adding a
production that specifies string syntax as Water. Figure 10
gives a simple example of such a specification.. It specifies
strings as starting with a double quote, a number of characters
and ending with a double quote.

False negatives are not that straightforward to solve. One
needs to reconsider the grammar and look for productions that
are too restrictive. A common source of false negatives are
“nested” constructs, for example statements such as i f - the
and while-do that contain statements themselves.

6. Related Work
Related work can be divided into methods that perform lexi-
cal analysis and syntactical analysis. Another division comes
from application domain with research focus-sing on com-
puter language processing or on natural language processing.
Lexical Analysis Several tools are available that perform
lexical analysis of textual files. The most well-known tool
is probably grep and its variants (f grep, egrep, agrep,
etc.) that allows one to search text for strings matching a reg-
ular expression. These tools generally give little to no support
to process the matched strings, they just print matching lines.

Such support is available in more advanced text processing
languages as AWK [2] and PERL [39] and in the LEX scan-
ner generator [25] that allow a user to execute certain actions
when a specific expression is matched. TLEX provides a pat-
tern matching and parsing library for c++ that generates parse
trees for the strings that match a regular expression [191.
Hierarchical Lexical Analysis Murphy and Notkin de-
scribe the Lexical Source Model Extractor (LSME) [28]. Their
approach uses a set of hierarchically related regular expres-
sions to describe language constructs that have to be mapped
to the source model. By using hierarchical patterns they avoid
some of the pitfalls of plain lexical patterns but maintain the
flexibility and robustness of that approach.

The MULTILEX system of Cox and Clarke [1 11 uses a sim-
ilar hierarchical approach. The main difference with LSME is
that it focuses at extracting information at the abstract syntax
tree level whereas LSME extracts higher level source models.

This hierarchical technique is related to work in compu-
tational linguistics that divides natural language into chunks
that can be recognized using a finite-state cascade parser [11.
Syntactic Matching Parser based approaches are used to in-
crease the accuracy and level of detail that can be expressed.
Syntactic matchers create a syntax tree of the input and allow
the user to traverse, query or match the tree to look for certain
patterns. This relieves them from having to handle all aspects
of a language and focus on interesting parts.

Systems in this category are A* [23] that provide traversals
over parse trees with AWK-like pattern matching and process-
ing, TAWK [151 that provides similar operations on abstract
syntax trees with processing in c.

Other tools support querying of the abstract syntax trees
such as GENOA [141 that uses its own traversal language, RE-
FINE [26] that allows queries in first order logic and SCRU-
PLE [29] that allows queries using concrete syntax.

The disadvantage of these systems is that they are all
based on a full parse of the complete language making it
hardimpossible to deal with incomplete sources, dialects or
syntax errors. However, with the proper amount of interfac-
ing, it should be possible to connect them to the island parsers
we generate which would remove such problems.
Fuzzy parsing The notion of fuzzy parsing comes in two
flavors. The first flavor are parsers that recognize a sentence
as belonging to a language with a certain degree of correct-
ness (thus allowing for grammatical errors) [24]. This type of
fuzzy parsers is mainly used in computational linguistics for
natural language processing. Productions in a fuzzy grammar
are annotated with correctness degrees that are used to assess
the quality of the input sentence. This can be used to model
grammatical errors by adding special productions with a cor-
rectness degree less than 1 to an ordinary grammar. For more
information, we refer to [3].

The second flavor of fuzzy parsers are parsers that are able
to discard tokens and recognize only certain parts of a pro-
gramming language [21]. The S N I F F programming environ-
ment was the first to use this kind of fuzzy parsing [5]. Since
then, it has been used in a number of other programming envi-
ronments and program browsers such as: CSCOPE3, SOURCE
NAVIGATOR4, SOURCE EXPLORER’, and the CRTAGS6 tool.
These fuzzy parsers are hand crafted to perform a specific
task. They focus mainly on fuzzy parsing c and c++ to sup-
port program browsing. Typically this involves extracting in-
formation regarding references to a symbol, global definitions,
functions calls, file includes, etc.
Parser Reuse Some approaches address the problems as-
sociated with parser or grammar development by reusing ex-
isting parsers (for example, in G E N O A ~ E N I I [141). Others
reuse or retrieve grammars that are used in existing tools [33].
However, both approaches ignore the fact that the structure of
a grammar used in a tool is often tightly coupled to the design
of that tool. Another tool may need a completely different
grammar. Such parser reuse problems were also signaled by
Reubenstein et al. [32]. Furthermore, this does not solve the
robustness issues (dealing with missing code, embedded ex-
tensions or syntactical errors).
Island Parsing The term island parsing is also used in com-
putational linguistics (for example [9, 341). However, this is

http://cscope.sourceforge.net/
http://sources.redhat.com/sourcenav/
http://www.intland.com/
http://www.vitd.com/crtags.html

different notion referring to island parsers that start at some
point in a sentence (by recognizing an island) and parse the
complete sentence by extending that island to the left and
right (in contrast to left-to-right scanning done by LL and LR
parsers). This technique is used for example for speech recog-
nition. A similar approach has been applied by Rekers and
Koorn for computer languages to provide error recovery and
completion in syntax directed editors [31].

Island Grammars The term island grammars was coined
in [121 which provides an informal definition and small exam-
ple but does not present a detailed discussion, nor does it de-
scribe tool support. We try to fill those gaps by improving the
definition, describing properties of island grammars and pro-
viding a number of detailed examples that result in a reusable
framework for island grammar definitions. Furthermore, we
present a generator for source model extractors based on is-
land grammars that supports various programming languages
and show how it can be used in a number of case studies. A
case study for COBOL island grammars is described in [37].

7. Conclusions

Robust parsing is a prerequisite for most reverse engineering
tools. This paper shows that island grammars can be used
to generate such parsers. The generated parsers combine the
accuracy of syntactical analysis with the speed, flexibility and
tolerance usually only found in lexical analysis.

Contributions of this paper are the extension of previous
work on island grammars [12, 131 with a detailed discussion
and definition of island grammars. We present MANGROVE,
a generator for source model extractors based on island gram-
mars. We provide a reusable framework for the definition
of island grammars in syntax definition formalism SDF and
support various processing languages allowing a developer to
pick the language that fits his needs. We have shown how
MANGROVE supports JAVA and AsF programmers by provid-
ing generated traversals that ease the mapping from parse re-
sults to source models. We report on the application of MAN-
GROVE to a number of case studies and provide a detailed
discussion of related work.

The combination of island grammars with generated traver-
sals combines two forms of attractive default behavior: (i)
island grammars allow us to limit ourselves that part of the
grammar necessary to describe the problem at hand, and (ii)
generated traversals allow us to treat only those cases for
which we need specific behavior. Consequently, extractor
specifications are small and easy to write, modify and com-
bine resulting in a lightweight,Jlexible and tolerant approach.

Acknowledgments The author would like to thank Mark
van den Brand, Tobias Kuipers, and Joost Visser for fruitful
discussions. Arie van Deursen, Jan Heering and Paul Klint
provided valuable feedback on earlier versions of this paper.

21

http://cscope.sourceforge.net
http://sources.redhat.com/sourcenav
http://www.intland.com
http://www.vitd.com/crtags.html

I References [19] S. Kearns. Tlex. Softw. Pract. Exp., 21(8):805-821, Aug. 1991.
[20] P. Klint. A meta-environment for generating programming en-

vironments. ACM Trans. Softw. Eng. Meth., 2:176201, 1993.
[21] R. Koppler. A systematic approach to fuzzy parsing. Softw.

Pract. Exp., 27(6):637-649, 1997.
[22] T. Kuipers and J. Visser. Object-oriented tree traversal with

JJForester. In Proc. Workshop on Language Descriptions, Tools
and Applications, pages 28-52,2001. ENTCS volume 44.

[23] D. Ladd and J. Ramming. A*: A language for implement-
ing language processors. IEEE Trans. Softw. Eng., 21(11):894-
901, 1995.

[24] E.T. Lee and L.A. Zadeh. Note on fuzzy languages. Informa-
tion Sciences, l (4):421434, 1969.

[25] M. Lesk and E. Schmidt. Lex-a lexical analyser generator.
Computer Science Technical Report 39, AT&T Bell Laborato-
ries, Murray Hill, NJ, USA, Oct. 1975.

[26] L. Markosian, P. Newcomb, R. Brand, S. Burson, and
T. Kitzmiller. Using an enabling technology to reengineer
legacy systems. Comm. ACM, 37(5):58-70, 1994.

[27] T.J. McCabe. A complexity measure. IEEE Trans. Softw. Eng.,
2(4):308-320, 1976.

[28] G.C. Murghy and D. Notkin. Lightweight lexical source model
extraction. ACM Trans. Softw. Eng. and Meth., 5(3):262-292,
Jul. 1996.

[29] S. Paul and A. Prakash. A framework for source code search
- using program patterns. IEEE Trans. Softw. Eng., 20(6):463-

475,1994.
[30] J. Rekers. Parser Generation for Interactive Environments.

PhD thesis, University of Amsterdam, 1992.
[31] J. Rekers and W. Koorn. Substring parsing for arbitrary

context-free grammars. SZGPLAN Not., 26(5):59-66, 1991.
[32] H. Reubenstein, R. Piazza, and S . Roberts. Separating parsing

and analysis in reverse engineering tools. In Proc. Ist Working
Con$ on Reverse Engineering, pages 1 17- 125, 1993.

[33] M.P.A. Sellink and C. Verhoef. Generation of software renova-
tion factories from compilers. In Proc. Int. Conj on Software
Maintenance, 1999.

[34] 0. Stock, R. Falcone, and P. Insinnamo. Island parsing and
bidirectional charts. In Proc. 12th Con$ on Computational Lin-
guistics, pages 636-641, 1988.

[35] T.A. Sudkamp. Languages and Machines: An Introduction to
the Theory of Computer Science. Addison-Wesley, 1988.

[36] M. Tomita. Eficient Parsing for Natural Languages. A Fast
Algorithm for Practical Systems. Kluwer, 1985.

[37] E. Verhoeven. COBOL island grammars in SDF. Master’s the-
sis, Informatics Institute, University of Amsterdam, 2000.

[38] E. Visser. Syntax Dejnition f o r Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

[39] L. Wall and R.L. Schwarz. Programming Perl. O’Reilly &
Associates, Inc., 1991.

[40] A. Watson and T. McCabe. Structured testing: A testing
methodology using the cyclomatic complexity metric. NIST
Special Publication, 500-235. U.S. National Institute of Stan-
dards and Technology, Washington, D.C., Sep. 1996.

!

S. Abney. partial parsing via finite-state cascades. In Proc.
ESSLLI ‘96 Robust Parsing Workshop, 1996.
A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Pro-
gramming Language. Addison-Wesley, 1988.
P.R.J. Asveld. A bibliography on fuzzy automata, grammars
and languages. BEATCS, 58: 187-196, 1996.
J. A. Bergstra, J. Heering, and P. Klint. The Algebraic Speci-
fication Formalism ASF. In Algebraic SpeciJication, chapter 1,
pages 1-66. ACM Press & Addison-Wesley, 1989.
W. Bischofberger. Sniff-a pragmatic approach to a C++ pro-
gramming environment. In Proc. I992 USENIX C++ Confer-
ence, pages 67-82, Aug. 1992.
M.G.J. van den Brand et al. The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment. In
Proc. Compiler Construction 2001, LNCS, 2001.
M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewrit-
ing with traversal functions. Technical report, CWI, 2001. To
appear. Contact markvdb@cwi .nl for copies.
M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Ob-
taining a Cobol grammmar from legacy code for reengineering
purposes. In Proc. 2nd Int. Workshop on the Theory and Prac-
tice of Algebraic Specijcations, EWIC. Springer Verlag, 1997.
J. Carroll. An island parsing interpreter for the full augmented
transition network formalism. In Proc. 1st Conj EACL, pages

Compuware. UNIFACE: An Environment for Building Com-
plex, Business-Critical Applications, Sep. 2000. White paper.
A. Cox and C. Clarke. A comparitive evaluation of techniques
for syntactic level source code analysis. In Proc. 7th Asia-
PaciJic Softw. Eng. Con$, Dec. 2000.
A. van Deursen and T. Kuipers. Building documentation gen-
erators. In Proc. Int. Con$ on Software Maintenance, pages
4049, 1999.
A. van Deursen, T. Kuipers, and L. Moonen. Arrangement and
method for a documentation generation system. US. Patent.
Applied Aug. 2000.
P. Devanbu. Genoa - a customizable, front-end retargetable
source code analysis framework. ACM Trans. Softw. Eng.
Meth., 8(2):177-212, Apr. 1999.
W.G. Griswold, D.C. Atkinson, and C. McCurdy. Fast, flex-
ible syntactic pattern matching and processing. In Proc. 4th
Workshop on Program Comprehension, 1996.
Jozef Gruska. Descriptional complexity of context-free lan-
guages. In Proc. Mathematical Foundations of Computer Sci-
ence, pages 71-83, 1973.
J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syn-
tax Definition Formalism SDF-Reference Manual. SIGPLAN

R. Holt, A. Winter, and A. Schurr. GXL: Towards a standard
exchange format. In Proc. 7th Working Con$ on Reverse Engi-
neering, pages 162-171, 2000.

101-105, 1983.

Not., 24(11):43-75, 1989.

22

