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Abstract 
Source model extraction-the automated extraction of infor- 
mation from system artifacts-is a common phase in reverse 
engineering tools. One of the major challenges of this phase is 
creating extractors that can deal with irregularities in the ar- 
tifacts that are qpical for the reverse engineering domain (for 
example, syntactic errors, incomplete source code, language 
dialects and embedded languages). 

This paper proposes a solution in the form of island gram- 
mars, a special kind of grammars that combine the detailed 
specifkation possibilities of grammars with the liberal behav- 
ior of lexical approaches. We show how island grammars can 
De used to generate robust parsers that combine the accuracy 
of syntactical analysis with the speed, flexibility and tolerance 
usually only found in lexical analysis. We conclude with a 
discussion of the development of MANGROVE, a generator 
for source model extractors based on island grammars and 
describe its application to a number of case studies. 

Keywords and phrases: Island grammars, parser generation, 
source model extraction, partial parsing, f u u y  parsing, re- 
verse engineering, program analysis. 

1. Introduction 

Software engineers spend a large amount of their time on un- 
derstanding the system that is being maintained (estimates of 
up to 50% are not uncommon). Consequently, much research 
is being invested in the development of tools that assist with 
such program understanding and program maintenance activ- 
ities. The majority of these tools consist of three phases: (1) 
extraction of information (often referred to as source models) 
from the system’s artifacts, ( 2 )  manipulation, querying and 
abstraction of source models, and (3) presentation of the re- 
sults. This paper focuses on the first phase: extracting source 
models from system artifacts. 

One of the challenges reverse engineering tools have to 
cope with is parsing the artifacts during the extraction phase. 
These artifacts typically contain irregularities that make it 
hard (or even impossible) to parse the code using common 

parser based approaches. Our goal is to obtain robust parsers 
that can handle artifacts with such irregularities. Examples of 
the kind of irregularities we want to deal with include: 
Syntax errors: In a program maintenance environment, we 
want to be able to deal with systems containing syntax errors 
(e.g., browse or query code to fix those errors). Most parser 
based techniques will fail when encountering syntactic errors. 
Completeness: The source code of a system may be incom- 
plete. A typical situation is that some of the header files (or 
copybooks) of a system are lost or mutilated over the years, 
making a full reconstruction impossible. 
Dialects: A legacy language like COBOL (but also a lan- 
guage like C) has a large number of, slightly different, vendor- 
specific dialects. Ideally, we can support them all. However, a 
parser for one dialect may not accept code written in another. 
Embedded languages: Several programming languages have 
been upgraded with embedded languages for database access, 
transaction handling, screen definition, etc. COBOL examples 
include SQL, CICS, and IDMS.  Whether we choose to ana- 
lyze or to ignore such extensions, the extraction should not be 
hampered by them. However, a standard parser will. 
Grammar availability: When supporting legacy systems, we 
will come across languages for which there is no grammar 
available. These can be proprietary languages, for which a 
grammar was never disclosed, or languages for which there 
never was a grammar since the parser (or processor) was hand- 
written. Reviving such grammars from scratch is expensive, 
and may not pay back at all. 
Customer-specific idioms. Systems can use specific idioms 
(e.g., assigning values to “special” variables) in combination 
with libraries to interface with other systems, or to bypass lim- 
itations in a compiler or runtime system. Standard parsers will 
not recognize such customer-specific idioms and are generally 
not flexible enough to be made aware of them. An example re- 
garding COBOL CALL analysis is shown in Section 2.1. 
Preprocessing: Conceptual problems can arise with analysis 
of code that uses a preprocessor: Parsers usually read prepro- 
cessed code so the resulting models are based on preprocessed 
code. However, a maintainer’s mental model is based on un- 
preprocessed code. It can be very hard to map these models 

1095-1350/01 /$10.00 0 2001 IEEE 13 

http://w


, 

I 

onto another, especially when conditional compilation is used. 
People have ltried to bypass these problems by reusing 

an existing parser via a common exchange format (e.g., 
GXL [18]), or via interface generation (for example, GENII 
[ 141). Although these are good solutions from an engineering 
perspective (you may not have to write a parser yourself) they 
do not solve the problems described above. 

Others have proposed to use lexical analysis techniques to 
remedy these problems [28, 1 I]. Lexical analysis provides a 
flexible and robust solution that can handle incomplete and 
syntactically incorrect code at the cost of losing some accu- 
racy and completeness. 

An additional advantage of lexical analysis is that it often 
takes less time to develop a solution based on lexical analysis 
than on syntactical analysis. It is tedious and expensive to 
write a parser for a language or to write a grammar that can be 
used to generate such a parser. For example, van den Brand 
et al. report a period of four months for the development of a 
fairly complete COBOL grammar [8]. 

This paper proposes another solution to remedy these prob- 
lems: we describe the use of island grammars to generate ro- 
bust parsers that are used to build source model extractors. 
Island grammars are grammars that contain detailed produc- 
tions (rules) describing the language constructs of interest, 
and generic productions that capture the remainder. Island 
grammars have been briefly sketched before in [12, 131. In 
this paper, we present a more detailed account. 

By generating parsers from island grammars, we combine 
the accuracy of syntactical analysis with the speed, flexibility 
and robustness of lexical analysis. The remainder of this pa- 
per presents island grammars and their use in MANGROVE, a 
generator for source model extractors based on island gram- 
mars. We propose a reusable framework for defining island 
grammars and describe how the mapping from parse results to 
source models can be specified using patterns in a term rewrit- 
ing language and in JAVA. We conclude with the application 
of MANGROVE in a number of case studies and a discussion 
of related work. 

2. Island Grammars 
Parsers for reverse engineering tools have a number of re- 
quirements: The parser should recognize certain constructs of 
interest in a given language. Additionally, the parser should 
be robust: it should not be obstructed by irregularities in the 
input. In this paper, we study how such parsers can be gener- 
ated from (context-free) grammar definitions. 

Recall from compiler class that, given a language &, we 
can give a description of LQ by defining a context-free gram- 
mar G such that the language L(G) generated by G satisfies 
L(G) = LQ.' In order to satisfy the requirements stated above, 
we need to describe Lo using a grammar that on the one hand 
generates more sentences than available in the actual language 

(namely also sentences with irregularities) but on the other 
hand should give an exact specification of the interesting parts 
of that language. This is what an island grammar amounts to: 

Definition 2.1 An island grammar is a grammar that consists 
of detailed productions describing certain constructs of inter- 
est (the islands) and liberal productions that catch the remain- 
der (the water). 

or expressed in terms of language properties: 

Definition 2.2 Given a language LQ, a context free grammar 
G = (V,C,P,S)  such that L(G) = and a set ofconstructs of 
interest I C C* such that V i  E I : 3sl ,s2 E E* : SI i s2 E L(G). 
An island grammar GI = (V.I ,CI,PI,SI)  f o r b  has the follow- 
ing properties: 

I .  L(G) C L(GI)  GI generates an extension of L(G). 

2. Vi  E I :  3v E VI : v i  i 
3s3,s4 E X* : s3 i s4 (2 L(G) As3 i s4 E L(GI)  

GI can recognize constructs of interest from I in 
at least one sentence that is not recognized by G. 

3. K(G)  > K(GI)  G has higher complexity than GI.* 

Note that island grammars do not require the use of a par- 
ticular grammar specification formalism or parsing technique. 
However, the limitations of the chosen formalism and tech- 
nique may influence the island grammar. In this paper, we 
express island grammars in SDF, a syntax definition formal- 
ism that is supported by generalized LR parsing [17, 381. We 
benefit from the expressive power of this combo which makes 
development of island grammars easier. Other formalisms 
and parsing techniques can, and have been used. For exam- 
ple, JAVACC (the Java parser generator by Metah4atdSun Mi- 
crosystems) has been used for an island grammar developed 
together with our industrial partner, the Software Improve- 
ment Group, as part of their documentation generator Doc- 
GEN [ 12, 131. The requirements originating from the LL pars- 
ing technique used in JAVACC made development and exten- 
sion of this grammar unwieldy. The tooling described in the 
next section enables us to reimplement this grammar based on 
SDF and generalized LR parsing. 

2.1. Island Grammar Example 
Figures 1 and 2 show an example island grammar that de- 
scribes COBOL CALL statements. The specification uses the 

' In short: if G = (V,Z,P,S)  is a context-free grammar with sets of nun- 
terminals V ,  terminals C and productions P ( V U  Z)' x V ,  a start symbol 
S E V ,  and V f l  Z = 0, then a string s E Z' is a sentence of G, iff S < s 
(s can be derived from S by repeatedly applying productions from P ) .  The 
language generated by C contains all sentences L( G )  = {s I s E Z* A S  $ s}. 
We refer to [35, pp. 43-64] for more information. 

* The complexity of a context free language K(G) can be computed by 
analyzing the productions of C. See [16] for a detailed discussion. 



module Layout ( 1 )  
lexical syntax (2) 

[\,\t\nI + LAYOUT (3) 

module Water (4) 
imports Layout ( 5 )  
context free syntax (6)  

Chunk* -+ Input (7) 
Water + Chunk (8) 

lexical syntax (9) 
-[\,\t\nI+ -+ Water {avoid} (10)) 

Figure 1. Base for island grammars. 

modular syntax definition formalism SDF. Note that produc- 
tions in SDF are reversed with respect to BNF: on the right- 
hand side of the arrow is the non-terminal that can be pro- 
duced by the symbols on the left-hand side. Section 3.1 gives 
a short introduction to SDF. 

The grammar contains three modules: The module Lay- 
out specifies the lexical non-terminal symbol LAYOUT con- 
taining whitespace characters. This symbol has special mean- 
ing in our parsers since it can be recognized between any two 
symbols in a context-free production. 

The module Water uses the definitions from module Layout 
(line 5) and adds two context-free non-terminals: the symbol 
Input that can be produced from a list of zero or more Chunks 
(line 7) and the symbol Chunk that can be produced from Wa- 
ter (line 8). Later, we will add more productions for Chunk, 
thus providing alternatives that can be recognized instead of 
Water. The lexical non-terminal Water consists of a list of one 
or more characters that are not whitespace (line IO). The at- 
tribute “{ avoid}” prevents the parser from using this produc- 
tion if others are applicable. This allows us to specify default 
behavior that can be overridden by other productions (without 
generating ambiguities). 

The grammar specified by module Water is extremely ro- 
bust: it describes almost all programming languages. It is, 
however, not very useful by itself since the terminal symbols 
in a parsed sentence are indistinguishable. We can turn this 
into a useful grammar by adding islands that specify con- 
structs of interest: The module Call adds such an island by 
specifying that a Chunk can also be produced by the literal 
CALL followed by an identifier (line 4). Identifiers are charac- 
ters followed by zero or more characters or digits (line 7). 

This very simple grammar allows us to generate a parser 

module Call (1) 
imports Water ‘ (2) 
context free syntax (3) 
”CALL” Id + Chunk (cons(Cal1)) (4) 

lexical syntax (6) 
[A-Z][A-ZO-9]* + Id (7) 

Figure 2. COBOL program calls. 

module CallHandler 
imports Call p context ”MOVE” free Id syntax ”TO” ”CALLEE” + Chunk (cons(Cal1)) 

”CALL” ”HANDLER” -+ Chunk {reject} ( 5 )  

Figure 3. Dealing with a call-handler. 

that searches for program calls in COBOL code. Although this 
may not be a spectacular example (something similar could 
be done, for example, using a tool like grep), we will show 
below how easy it is to extend this grammar to do a much 
more complicated analysis. Furthermore, the modularity of 
SDF allows us to reuse the base grammar developed here for 
other island grammars. 

Remember the customer specific idioms described in Sec- 
tion 1 ? We found a good example of that situation when an- 
alyzing a COBOL system were program calls were not made 
using the CALL statement but by setting a global variable and 
then calling a generic call-handler. This call-handler enabled 
the run-time system to dynamically load and execute the de- 
sired program (instead of static linking supported by the com- 
piler). A standard call-graph extractor will not be able to gen- 
erate useful graphs for such a system. 

We can add support for that situation using the grammar in 
Figure 3. Suppose the name of the call-handler is HANDLER 
and the name of the global variable is CALLEE. We specify 
an assignment to CALLEE as if it is a program call (line 4). 
Furthermore, we prevent the parser from recognizing calls to 
HANDLER using the “{reject}” attribute (line 5) .  

The “(cons(Cal1))” attributes in Figures 2 and 3 are used to 
explicitly specify the constructor function that has to be used 
to create an abstract syntax tree. Using this attribute we can 
map different concrete syntax productions to the same abstract 
syntax. This will make processing easier. 

Note the source for potential errors here: ( 1 )  when there 
are two subsequent assignments to CALLEE before the call- 
handler is called, both will be recognized as calls; (2) when 
the value in CALLEE is computed instead of assigned, it will 
not be recognized. These problems can be remediated in a 
back-end that does a more detailed (data flow) analysis. In 
practice, however, we found that such call-handlers were used 
in a disciplined manner following strict coding conventions, 
so these situations did not occur. 

2.2. Island Grammar Applications 

The employment of island grammars is especially suitable 
for reverse engineering (as opposed to, for example, com- 
piler construction) since it takes maximum advantage of the 
fact that such applications generally do not need the complete 
parse tree. Particularly analyzers that try to arrive at higher 
levels of abstraction (for example, architecture extraction) can 
profit from this early elimination of detail in the parsing phase. 
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Figure 4. MANGROVE architecture. 

By varying the amount and details in productions for the 
construct of interest, we can trade off accuracy, complete- 
ness and development speed. For example, it is possible to 
approach island grammars from a completely different side 
by starting with a complete grammar for a given language 
and extending that grammar with a number of liberal (water) 
productions. We will call such a grammar a lake grammar. 
This approach is typically useful to allow for arbitrary em- 
bedded code in the programs that can be processed by given 
tool. Furthermore, we can mix productions for water and is- 
lands to allow variations such as: islands with lakes to spec- 
ify “nested” constructs such as conditional or iteration state- 
ments, and lakes with islands to combine extraction for a lan- 
guage with extraction for an embedded extension. 

In our opinion, the main application area for island gram- 
mars is robust parser generation for source model extraction 
and simple analysis. Island grammars can be used for both 
local and non-local analysis. Obviously, grammars that only 
allow local analysis (for example, the CALL statements of Fig- 
ure 2) will be simpler than those that allow non-local analysis. 
Additional work has to be done in the back end of a non-local 
analyzer to find and combine islands that “belong together”. 

The main advantage that island grammars have over lexical 
approaches is that it is much easier to use structure while spec- 
ifying patterns (which requires state manipulation in a lexical 
approach). Moreover, solutions can easily be combined and 
are completely declarative making them easier to understand. 

In theory, island grammars can be used for program trans- 
formations. Since the use is evidently restricted to the parts 
that are contained by the islands, applications are probably 
limited to local transformations. Examples one can think 
of include simple structure modifications, normalization of 
conditions, enforcement of some coding standards. In gen- 
eral, however, we believe that program transformations re- 
quire more in depth knowledge of the source language than 
what is usually expressed in an island grammar. 

2.3. Processing 
There are a number of ways to process the parse trees obtained 
after parsing an input sentence. Initial observations indicate 
that in most island grammars, the Water symbols always oc- 
cur in a sequence of symbols. Consequently, removing those 
subtrees from a parse tree does not invalidate the tree. Based 

on this observation, we have created a simple filter that re- 
moves all subtrees that have been parsed as Water from a parse 
tree. After applying this filter, processing the resulting term 
becomes both easier and faster (less input to consider). Simple 
analysis of the term can even be done using lexical techniques. 
Note that it is always possible to create grammars for which 
Water does not occur in a list context. Use of the filter will 
invalidate parse tree with respect to such grammars. This may 
or may not be a real problem depending on the processing that 
remains to be done on the tree. 

Another way is to process the parse trees using hand- 
written C code. Currently, such processing is cumbersome but 
this might improve when supportive tooling becomes avail- 
able that generates access functions on an AST level 

In order to be able to create more involved source model 
extractors that are not hand-written in C, we have created 
MANGROVE, a generator for source model extractors. MAN-  
GROVE is described in the next section. 

3. MANGROVE 
MANGROVE is a generator for source model extractors based 
on island grammars. The design requirements were similar to 
those described by Murphy and Notkin for their lexical source 
model extractor [28]. The approach has to be: 

Lightweight: specification of new extractor should be 
small and relatively easy to write. 

0 Flexible: few constraints on structure of the artifact that 
is analyzed (possible to create analyzers for both source 
and structured data). 

0 Tolerant: few constrains on the condition of the artifact 
that is analyzed (possible to analyze code that cannot 
compile). 

An overview of the MANGROVE architecture is given in 
Figure 4. Tools are drawn as ellipses, artifacts as boxes. The 
generation of a extractor is based on two types of input (the 
grey boxes in Figure 4): The first defines an island grammar 
describing the syntax of constructs that need to be recognized. 
It is used to generate an island parser; The second specifies the 
mapping of those constructs to the desired source model. It is 
used with the grammar to generate an extractor that reads the 
output of the island parser and converts it to the source model. 
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artifacts cl w javac 

source model 

Figure 5. MANGROVE instantiation that allows processing in JAVA. 

In contrast to most lexical approaches, our approach sep- 
arates parsing and analysis instead of attaching semantic ac- 
tions to the constructs to be recognized. This has the advan- 
tage that the resulting analyzers are easier to adapt and that it 
is easier to combine two existing analyzers into a new one. 
Most lexical analyzers are hard to adapt since the analysis 
logic is entangled with the constructs that have to be recog- 
nized. Combining two of these analyzers into a single new 
one is even more tricky. 

The two inputs are generally small and easy to write down; 
therefore, we feel that our approach satisfies the lightweight 
requirement. The flexibility and robustness requirements are 
satisfied by using island grammars to generate the parser. 

The extractor generator in Figure 4 is drawn with a dotted 
line to indicate that there are several possible instantiations. 
These allow the user to choose the language in which he de- 
scribes the mapping of constructs on the source model. We 
have made two instantiations of this tool that are described be- 
low. One allows the user to write the mapping using traversals 
over the AST in Java, the other using concrete syntax patterns 
in a simple functional specification. 

3.1. Syntax Definition in SDF 
MANGROVE reads island grammars that are written in the 
syntax definition formalism SDF [17, 381. These definitions 
combine the definition of lexical and context-free syntax in 
the same formalism. The definitions are purely declarative 
(as opposed to, for example, definitions in YACC that can use 
semantic actions to influence parsing) and describe both con- 
crete and abstract syntax. 

SDF definitions can be modular: productions for the same 
non-terminal can be distributed over different modules and a 
given module can reuse productions by importing the modules 
that define them. This allows for the definition of a base or 
kernel grammar that is extended by definitions in other mod- 
ules. An example of this is module Water defined in Figure 1 
that is extended by module Call in Figure 2.  

SDF provides a number of operators to define optional 
symbols (S?), alternatives (SI IS*), iteration of symbols (S+ 
and S*),  and more. These operators can be arbitrarily nested 
to describe more complex symbols. Furthermore, SDF pro- 
vides a number of disambiguation constructs such as relative 
priorities between productions, preference attributes to indi- 

cate that a production should be preferred of avoided when 
alternatives exist, and associativity attributes for binary pro- 
ductions (for example, S op S + S {left}). 

SDF is supported by a parser generator that generates gen- 
eralized LR (GLR) parsers. Generalized parsing allows defi- 
nition of the complete class of context-free grammars instead 
of restricting it to a non-ambiguous subclass of the context- 
free grammars, such as the LL(k), LR(k) or LALR(1) class 
restrictions common to most other parser generators [36, 301. 
This allows for a more natural definition of the intended syn- 
tax because a grammar developer no longer needs to encode 
it in a restricted subclass. Moreover, since the full class of 
context-free grammars is closed under composition (the com- 
bination of two CF grammars is again a CF grammar), gener- 
alized parsing allows for better modularity and syntax reuse. 
For more information on SDF, we refer to [ 17, 381. 

3.2. MANGROVE/JAVA 

MANGROVE/JAVA allows the extractor builder to process the 
results of the island parser using the object-oriented program- 
ming language JAVA. An overview of the tool is given in 
Figure 5. Apart from the obvious advantage of being able 
to process using a mainstream object-oriented programming 
language, this also allows the tool builder to reuse the large 
amount of tools, libraries and interoperability techniques that 
are available for JAVA. 

From an island grammar in SDF, we generate JAVA code 
for the construction, representation, and manipulation of syn- 
tax trees in an object-oriented style. The generated classes re- 
late to the abstract syntax of the grammar using the following 
scheme: (i) for every non-terminal, an abstract class is gener- 
ated and (ii) for every production, a concrete class is generated 
that refines the abstract class corresponding to the result of the 
production. Factory methods are generated to convert a parsed 
input string into an abstract syntax tree (object structure). Fur- 
thermore, several variants on the Visitor pattern are generated 
that provide tree traversals over these ASTs. We have reused 
JJFORESTER for the generation of this JAVA code [ 2 2 ] .  

The generated code can be extended by a tool builder to 
perform the actual mapping between the AST and the desired 
source model. This is done by refining the generated visitors 
and feeding them to the generated accept method of a given 
AST node. These accept methods perform the actual traver- 
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Figure 6. UML class diagram for Call collector. 

sal over the AST and call visit methods defined in the visitor. 
This approach has the advantage that the user does not have to 
reconstruct the traversal behavior when refining visitors. Con- 
sequently, it is easier and less error-prone to write extensions 
and refinements of the generated code. 

User extensions are compiled together with the generated 
code using a standard JAVA compiler to create an extractor 
(i.e., byte code that can be executed using the JAVA virtual 
machine). This extractor interfaces with the generated island 
parser using a utility that implodes the parse tree into an ab- 
stract syntax tree. 

Example: Figure 6 presents an UML class diagram showing 
the classes that are generated for the island grammar presented 
in the COBOL program call example (Section 2.1). The grey 
class (CallCollect) was not generated but is an example of an 
analysis that can be added by a user. This class refines the 
standard visitor so that it collects the identifiers of all called 
programs. The JAVA code that implements this class is shown 
in Figure 7. 

3.3. MANGROVE/ASF 

MANGROVE/ASF allows the extractor writer to process parse 
results in a functional fashion using the term rewriting lan- 
guage ASF [4]. 

Programming in ASF is done by creating specifications that 
consist of a number of rewrite rules. These rules are defined 
using pattern matching on concrete syntax defined in an SDF 
grammar. The use of concrete syntax has the advantage that 
the extractor writer does not have to learn a new language for 

public Set set = new HashSetO; 
public void visitCall(Cal1 c) { 

set.add(c.getId0) ; 

Figure 7. JAVA visitor for collecting program calls. 

module CallCollect (1) 
imports CallHandler Set (2) 
context free syntax (3) 

collect( Input ) + Set (4) 
collect( Input, Set ) + Set {traverse} (5) 

variables (8) 
"in" -+ Input (9) 
"set" -+ Set (101 

Figure 8. Grammar for collecting program calls. 

processing terms. The use of term rewriting allows for a natu- 
ral expression of the translation of one language into another. 

The combination of syntax definition formalism SDF and 
term rewriting language ASF is supported by the ASF+SDF 
Meta-Environment [20, 61. This environment generates par- 
sers and syntax directed editors from SDF definitions and pro- 
vides an interpreter and compiler for ASF specifications. 

In MANGROVEIASF, we instantiate the extractor generator 
using the ASF+SDF Meta-Environment. For an architectural 
overview, we refer to the MANGROVE overview in Figure 4. 

The ASF+SDF Meta-Environment contains support for the 
generation of term traversal functions [7]. When a user at- 
taches a "{traverse}" attribute to a production in SDF, addi- 
tional functionality is inferred that can perform a traversal of 
the first argument of the production. Conceptually, adding 
such an attribute is shorthand for adding a set of productions 
and rewrite rules (which can be calculated from the grammar). 
The default behavior of the generated rewrite rules is to do 
nothing. A user can override that behavior by adding a con- 
crete rewrite rule for a particular (sub)term. 

Example: Figures 8 and 9 show an example of the use of 
generated traversals for the program call example described 
in Section 2.1. Again, we will build a tool to collect the iden- 
tifiers of all called programs. The grammar (Figure 8) defines 
two functions: one that we will use to start the traversal (line 
4) and the actual traversal function in line 5. This traversal 
function has two arguments, the first contains the term to tra- 
verse, the second is the accumulator in which traversal results 
are gathered. The ASF equations in Figure 9 define the rewrite 
rules. We see that rule [CI] starts the traversal using a copy 
of the input and an empty accumulator. The other two rules 
contain patterns for which we want specific behavior: Rule 
[cz] specifies that whenever a CALL statement is matched with 
arbitrary identifier, we add that identifier to the accumulated 
set. Call-handlers are supported using rule [cg] that collects all 
identifiers that are assigned to the CALLEE variable. 

[q] collect( in ) = collect( i n ,  {} ) 
[q] collect( CALL id, set ) = {id} U set 

[q] collect( MOVE id TO CALLEE , set ) = {id} U set 

Figure 9. Equations for collecting program calls. 
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4. Case Studies 
We have done a number of case studies to validate our hypoth- 
esis that island grammars can be used to create robust parsers 
that allow for construction of lightweight, flexible and tolerant 
source model extractors. 

.The first case uses island grammars to build an analyzer 
that computes ~ the cyclomatic complexity of COBOL pro- 
grams. The second case was done in cooperation with the 
Software Improvement Group and involves the creation of a 
source model extractor for UNIFACE systems. 

4.1. COBOL Cyclomatic Complexity 
McCabe's cyclomatic complexity measure [27] is one of the 
better known software metrics that can be computed from 
source code. In this case study we build a simple analyzer 
that computes this complexity measure for COBOL programs 
using island grammars. 

The cyclomatic complexity metric is based on the control 
graph of the program. It computes the number of linearly in- 
dependent control flow graphs using the number of nodes ( n )  
and edges (e )  in a control flow graph. For a graph with a 
nodes and e edges, McCabe defines the cyclomatic complex- 
ity as G(v)  = e - n + 2. 

However, there is a simpler definition that does not require 
us to construct a control flow graph in advance. In the NIST 
report on structured testing, McCabe defines the cyclomatic 
complexity by counting the number of decision predicates in 
the code [40]. We will use this latter approach in this case. 
Our analyzer basically traverses a parse tree and counts oc- 
currences of decision predicates. We show how we use MAN- 
GROVE/JAVA to build the analyzer in four steps. 

First, we create an island grammar for COBOL that 
describes the constructs that can influence the cyclo- 
matic complexity. In the case of COBOL, these are 
standard constructs like IF-THEN, REPEAT-UNTIL, and 
EVALUATE-WHEN (COBOL'S case Statement) but ah0 con- 
structs like GO-DEPENDING that jumps to one O f  a list Of IO- 

cations based on the value of a variable. Other constructs of 
interest are predicates that surround code that has to be exe- 

for computational statements, and INVALID-KEY and AT-END 
for access to flat-file databases. 

Note that we have to take special precautions to prevent oc- 
currences of thes,e constructs in strings or comments from be- 
ing recognized as real occurrences (so calledfalse positives). 
This can be done by adding specific productions to the island 
grammar that specify that strings should be recognized as wa- 
ter and that comments should be considered LAYOUT. An 
example of such productions can be found in Figure 10. 

Second, a parser and JAVA classes are generated from this 
island grammar as described in Section 3. 

Third, we refine the generated visitor so that computes the 

cuted in case Of errors, such as ON-ERROR and ON-OVERFLOW 

cyclomatic complexity during traversal of the parse tree. This 
is done by incrementing a counter every time the abstract syn- 
tax tree contains one of the complexity increasing constructs 
that were specified in the island grammar. 

Finally, we compile the code to build an executable ana- 
lyzer. The parts that we had to write to create such an an- 
alyzer are small and easy to write: construction, testing and 
refinement took 4-5 hours. The grammar consists of 17 pro- 
ductions, 10 for describing constructs of interest, 4 we reused 
from the base grammar of Figure 1, and 3 were added to pre- 
vent false positives. The JAVA code that refines the generated 
visitor contains one integer field (the complexity counter) and 
seven methods that each perform exactly one statement: in- 
crement the complexity. 

We have applied our analyzer to a number of COBOL sys- 
tems (each around 100.000 lines) that were written in different 
dialects and contained various extensions (SQL, CICS, IMS). 
These irregularities posed no problems for the analysis. Ini- 
tial results show that the performance is good but should be 
measured in more detail. For example, the implosion proto- 
type that converts parse trees to ASTs is slow for very large 
inputs. A reimplementation will solve these issues. 

4.2. UNIFACE Component Coupling 
In a case study performed in cooperation with the Software 
Improvement Group (SIG) we developed an island grammar 
and source model extractor to parse UNIFACE components 
and collect facts about the coupling between them. 

UNIFACE is a 4GL application development environment 
that is marketed by Compuware [lo]. It allows for the de- 
velopment of both conventional and web-based applications. 
The application development is model-driven and component- 
based. Developers create models of business processes. These 
models are used to generate components that inherit proper- 
ties from the model. Whenever the model is changed, compo- 
nents are updated accordingly. To eliminate the need to build 
systems from scratch, developers can reuse components from 
other systems and standard libraries. Components contain op- 
erations that specify behavior. Components can interoperate 
with each other by activating operations in other components 
(similar to objects and methods in an object-oriented setting). 

To get insight in UNIFACE systems, a SIG customer would 
like to get information about the components in a system and 
the coupling between them. To collect this information, we 
have build a source model extractor that analyses UNIFACE 
components and gathers facts about the activation of other 
components and of the activation parameters. 

module StringsAsWater 
lexical syntax 

[\"I -[\"I* [\"I -+ Water 

Figure 10. Strings as water. 
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The extractor :was generated using an island grammar that 
describes module activation and parameter passing in UNI- 
FACE. This grammar extends the base grammar from Fig- 
ure 1 and was developed without prior knowledge of UNI- 
FACE (but with help of activate documentation). It took 
approximately one day to develop, test and refine the island 
grammar and about the same amount of time to develop the 
source model mapping in JAVA. 

The complete island grammar contains 38 productions, in- 
cluding the base grammar and productions to prevent false 
positives. This relatively high number is influenced by the act 
that UNIFACE is case insensitive, thus our grammar contains a 
number of productions whose sole purpose is to specify case 
insensitive variants of keywords that have to be recognized. 

The resulting source model extractor can process both 
UNIFACE source listings and XML dumps of modules. The 
extractor emits a source model that describes component cou- 
pling in textual or in GXL format [18]. 

5. Discussion 

5.1. Expressive power 
Island grammars do not depend on a particular grammar spec- 
ification formalism or parsing technique. However, the ex- 
pressive power of an island grammar is limited by the chosen 
syntax definition formalism and more important by the chosen 
parsing technique. In MANGROVE, we have chosen to express 
island grammars in SDF, a syntax definition formalism that is 
supported by generalized LR parsing techniques. Since we in- 
herit the expressive power, we can express the complete class 
of context free languages using our island grammars. 

The different MANGROVE instantiations allow an extractor 
writer to choose a processing language that fits his needs. The 
JAVA instantiation enables processing in a mainstream object- 
oriented programming language and allows reuse of the large 
amount of tools, libraries and interoperability techniques that 
are available for JAVA. The ASF instantiation allows process- 
ing using term rewriting with patterns over concrete syntax . 
This has the advantage that the extractor writer does not have 
to learn a new language and term rewriting allows for natural 
expression of translation between languages. 

5.2. Accuracy 
Island grammars do not give a restrictive description of the 
language that is analyzed. On the one hand, we consider this 
an advantage since this is, after all, the property that allows 
for irregularities, releases structural requirements on the ar- 
tifacts and increases development speed. On the other hand, 
however, this lack of detail may result in erroneous results. 

We distinguish two kinds of extraction errors: (i) falsepos- 
itives occur when the grammar allows constructs to be recog- 
nized in places were they should not have been recognized. 

(ii) false negatives occur when the grammar is too restrictive 
and does not allows constructs to be recognized in places were 
they should been recognized. 

False positives can be solved by extending the part of the 
grammar that specifies Water. For example, false recognition 
of constructs inside of strings can be prevented by adding a 
production that specifies string syntax as Water. Figure 10 
gives a simple example of such a specification.. It specifies 
strings as starting with a double quote, a number of characters 
and ending with a double quote. 

False negatives are not that straightforward to solve. One 
needs to reconsider the grammar and look for productions that 
are too restrictive. A common source of false negatives are 
“nested” constructs, for example statements such as i f  - the 
and while-do that contain statements themselves. 

6. Related Work 
Related work can be divided into methods that perform lexi- 
cal analysis and syntactical analysis. Another division comes 
from application domain with research focus-sing on com- 
puter language processing or on natural language processing. 
Lexical Analysis Several tools are available that perform 
lexical analysis of textual files. The most well-known tool 
is probably grep and its variants ( f  grep, egrep, agrep, 
etc.) that allows one to search text for strings matching a reg- 
ular expression. These tools generally give little to no support 
to process the matched strings, they just print matching lines. 

Such support is available in  more advanced text processing 
languages as AWK [2] and PERL [39] and in the LEX scan- 
ner generator [25] that allow a user to execute certain actions 
when a specific expression is matched. TLEX provides a pat- 
tern matching and parsing library for c++ that generates parse 
trees for the strings that match a regular expression [ 191. 
Hierarchical Lexical Analysis Murphy and Notkin de- 
scribe the Lexical Source Model Extractor (LSME) [28]. Their 
approach uses a set of hierarchically related regular expres- 
sions to describe language constructs that have to be mapped 
to the source model. By using hierarchical patterns they avoid 
some of the pitfalls of plain lexical patterns but maintain the 
flexibility and robustness of that approach. 

The MULTILEX system of Cox and Clarke [ 1 11 uses a sim- 
ilar hierarchical approach. The main difference with LSME is 
that it focuses at extracting information at the abstract syntax 
tree level whereas LSME extracts higher level source models. 

This hierarchical technique is related to work in compu- 
tational linguistics that divides natural language into chunks 
that can be recognized using a finite-state cascade parser [ 11. 
Syntactic Matching Parser based approaches are used to in- 
crease the accuracy and level of detail that can be expressed. 
Syntactic matchers create a syntax tree of the input and allow 
the user to traverse, query or match the tree to look for certain 
patterns. This relieves them from having to handle all aspects 
of a language and focus on interesting parts. 



Systems in this category are A* [23] that provide traversals 
over parse trees with AWK-like pattern matching and process- 
ing, TAWK [ 151 that provides similar operations on abstract 
syntax trees with processing in c. 

Other tools support querying of the abstract syntax trees 
such as GENOA [ 141 that uses its own traversal language, RE- 
FINE [26] that allows queries in first order logic and SCRU- 
PLE [29] that allows queries using concrete syntax. 

The disadvantage of these systems is that they are all 
based on a full parse of the complete language making it 
hardimpossible to deal with incomplete sources, dialects or 
syntax errors. However, with the proper amount of interfac- 
ing, it should be possible to connect them to the island parsers 
we generate which would remove such problems. 
Fuzzy parsing The notion of fuzzy parsing comes in two 
flavors. The first flavor are parsers that recognize a sentence 
as belonging to a language with a certain degree of correct- 
ness (thus allowing for grammatical errors) [24]. This type of 
fuzzy parsers is mainly used in computational linguistics for 
natural language processing. Productions in a fuzzy grammar 
are annotated with correctness degrees that are used to assess 
the quality of the input sentence. This can be used to model 
grammatical errors by adding special productions with a cor- 
rectness degree less than 1 to an ordinary grammar. For more 
information, we refer to [3]. 

The second flavor of fuzzy parsers are parsers that are able 
to discard tokens and recognize only certain parts of a pro- 
gramming language [21]. The S N I F F  programming environ- 
ment was the first to use this kind of fuzzy parsing [5]. Since 
then, it has been used in a number of other programming envi- 
ronments and program browsers such as: CSCOPE3, SOURCE 
NAVIGATOR4, SOURCE EXPLORER’, and the CRTAGS6 tool. 
These fuzzy parsers are hand crafted to perform a specific 
task. They focus mainly on fuzzy parsing c and c++ to sup- 
port program browsing. Typically this involves extracting in- 
formation regarding references to a symbol, global definitions, 
functions calls, file includes, etc. 
Parser Reuse Some approaches address the problems as- 
sociated with parser or grammar development by reusing ex- 
isting parsers (for example, in G E N O A ~ E N I I  [ 141). Others 
reuse or retrieve grammars that are used in existing tools [33]. 
However, both approaches ignore the fact that the structure of 
a grammar used in a tool is often tightly coupled to the design 
of that tool. Another tool may need a completely different 
grammar. Such parser reuse problems were also signaled by 
Reubenstein et al. [32]. Furthermore, this does not solve the 
robustness issues (dealing with missing code, embedded ex- 
tensions or syntactical errors). 
Island Parsing The term island parsing is also used in com- 
putational linguistics (for example [9, 341). However, this is 

http://cscope.sourceforge.net/ 
http://sources.redhat.com/sourcenav/ 
http://www.intland.com/ 
http://www.vitd.com/crtags.html 

different notion referring to island parsers that start at some 
point in a sentence (by recognizing an island) and parse the 
complete sentence by extending that island to the left and 
right (in contrast to left-to-right scanning done by LL and LR 
parsers). This technique is used for example for speech recog- 
nition. A similar approach has been applied by Rekers and 
Koorn for computer languages to provide error recovery and 
completion in syntax directed editors [31]. 

Island Grammars The term island grammars was coined 
in [ 121 which provides an informal definition and small exam- 
ple but does not present a detailed discussion, nor does it de- 
scribe tool support. We try to fill those gaps by improving the 
definition, describing properties of island grammars and pro- 
viding a number of detailed examples that result in a reusable 
framework for island grammar definitions. Furthermore, we 
present a generator for source model extractors based on is- 
land grammars that supports various programming languages 
and show how it can be used in a number of case studies. A 
case study for COBOL island grammars is described in [37]. 

7. Conclusions 

Robust parsing is a prerequisite for most reverse engineering 
tools. This paper shows that island grammars can be used 
to generate such parsers. The generated parsers combine the 
accuracy of syntactical analysis with the speed, flexibility and 
tolerance usually only found in lexical analysis. 

Contributions of this paper are the extension of previous 
work on island grammars [ 12, 131 with a detailed discussion 
and definition of island grammars. We present MANGROVE, 
a generator for source model extractors based on island gram- 
mars. We provide a reusable framework for the definition 
of island grammars in syntax definition formalism SDF and 
support various processing languages allowing a developer to 
pick the language that fits his needs. We have shown how 
MANGROVE supports JAVA and AsF programmers by provid- 
ing generated traversals that ease the mapping from parse re- 
sults to source models. We report on the application of MAN- 
GROVE to a number of case studies and provide a detailed 
discussion of related work. 

The combination of island grammars with generated traver- 
sals combines two forms of attractive default behavior: (i) 
island grammars allow us to limit ourselves that part of the 
grammar necessary to describe the problem at hand, and (ii) 
generated traversals allow us to treat only those cases for 
which we need specific behavior. Consequently, extractor 
specifications are small and easy to write, modify and com- 
bine resulting in a lightweight,Jlexible and tolerant approach. 
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