
Exploring Legacy Systems Using Types*

Arie van Deursen Leon Moonen
CWI, PO. Box 94079

1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/-{ arie,leon}/

{ arie , leon } @ c wi .nl

Abstract
We show how hypertext-basedprogram understanding tools
can achieve new levels of abstraction by using inferred type
information for cases where the subject software system is
written in a weakly typed language. We propose TYPEEX-
PLORER, a tool for browsing COBOL legacy systems based
on these types. The paper addresses (1) how types, an in-
vented abstraction, can be presented meaningfiilly to soft-
ware re-engineers; (2) the implementation techniques used
to construct TYPEEXPLORER; and (3) the use of TYPE-
EXPLORER for understanding legacy systems, at the level
of individual statements as well as at the level of the soft-
ware architecture - which is illustrated by using TYPEEX-
PLORER to browse an industrial COBOL system of 100,000
lines of code.

Keywords and Phrases: Software maintenance, program
understanding, program analysis, type inference, documen-
tation generation, variable usage, hypertext.

1. Introduction
Software immigrants, employees that are added to an exist-
ing software project in order to conduct maintenance or de-
velopment, are faced with the difficult task of understanding
an existing software system [191. Even the original devel-
opers of a system generally have a hard time understanding
their own code as time between development and mainte-
nance goes by. As a consequence, maintenance tasks be-
come difficult, expensive, and error prone.

To reduce these problems, much research is being in-
vested in the development of tools to assist in program un-
derstanding. One line of research focuses on the use of hy-
pertext for program comprehension purposes [3, 5, 15, 16,
181. Within a hypertext, various layers of abstraction can

*We are in the process of seeking patent protection for the ideas de-
scribed here.

be integrated, ranging ..om t . . ~ system architecture to the
individual statements in the source code. The maintenance
engineer can navigate easily between these, using both top-
down and bottom-up comprehension strategies, as well as
the “opportunistic” combination of these [13, 161.

Such a hypertext can be seen as a (special form of) sys-
tem documentation. Part of it will be hand-written, espe-
cially those sections dealing with domain-specific issues or
the system’s requirements. However, documentation at the
more technical level should be generated whenever possi-
ble, in order to keep it up to date and consistent with the
sources at all times.

The fundamental problem with documentation genera-
tion (and in fact, the key challenge of reverse engineering)
is to arrive at non-trivial levels of abstraction, going beyond
just cross referencing information and source code brows-
ing. Our research aims at achieving such a level of abstrac-
tion by looking at the types that are used in a software sys-
tem.

For typed languages, such as Java, C, and Pascal, using
types for program comprehension is relatively straightfor-
ward: types are explicit, and can help to determine inter-
faces, function signatures, permitted values for certain vari-
ables, etc. Many of the existing software systems, however,
are written in older languages with very weak type systems.
In particular COBOL, the language in which at least 30%
of the world’s software is written, does not offer the possi-
bility of type definitions. The question we ask ourselves is
whether types nevertheless can help in understanding such
COBOL systems.

The solution we propose is to infer types for COBOL
automatically, based on an analysis of the use of vari-
ables [6]. This results in types for variables, program pa-
rameters, database records, literal values, and so on, which
can be used to understand the relationships between pro-
grams, copybooks, databases, screens, and so on.

In earlier work, we presented an algorithm and toolset
for determining types in COBOL systems 16, 71. The cur-

1095-1350/00 $10.00 0 2000 IEEE
32

http://www.cwi.nl

rent paper addresses the problems involved in integrating
inferred types into hypertext-based program understanding
tools. In particular, we will be concerned with the following
three questions:

Presentation Types are an abstraction not directly present
in the (legacy) system - types do not exist in the code,
but must be inferred first. How do we present this ab-
straction in such a way that it provides an understand-
able, meaningful and useful view on a legacy system?

Implementation How do we implement tools to obtain this
presentation?

Use What maintenance or program understanding ques-
tions can be answered using such a presentation, not
only at the individual module level, but also at the ar-
chitectural level‘?

We will explain how we dealt with these issues while
constructing TYPEEXPLORER, a tool for exploring COBOL
systems using types. In Section 2 we give an overview of
related work. Section 3 discusses the theory of type infer-
encing for COBOL. The design of the hypertext structure
used by TYPEEXPLORER is covered in Section 4. The tech-
niques that were used for implementation are described in
Section 5. We discuss the usefulness of TYPEEXPLORER
for various program understanding tasks and describe its
application in a 100,000 lines of code COBOL case study
in Section 6. Finally, we summarize our contributions, and
list possibilities for future work in Section 7 .

2. Related Work
A growing body of literature on web-based program com-
prehension exists [3, 5 , 15, 16, 18, 81. Of these, Brown
discusses a tool that automatically creates links between
program analysis data and hypertext documentation [3].
CHIME is a generator of tools that automatically insert cer-
tain links in source code elements [XI. PAS is a system that
can be used to incrementally add partitioned annotations
of software [161. Documentu derives documentation from
COBOL sources based on special comment tags added by
the programmer [151.

DocGen is a tool for generating hyperlinked visual
and textual documentation from COBOL and batch job
sources [5] . Distinguishing characteristics of DocGen in-
clude extraction based on island grammars rather than full
parsing, emphasis on industrial application’, and integra-
tion of various abstraction layers, ranging from source code
up to system architecture. We will see later how the type

~

‘Documentation generation services using DocGen are available via
the Software Improvement Group, www. so f tware- improvers. com

information derived by TYPEEXPLORER can be integrated
with documentation that was generated by DocGen.

Many architecture extraction tools (such as Rigi [21],
PBS 1181, Dali [12], and also DocGen and TYPEEX-
PLORER) adopt the extract-query-view approach, extract-
ing facts from sources, querying a database filled with facts,
and presenting these facts in various ways, for example us-
ing hypertext. PBS, which has been applied mostly to ana-
lyze C systems such as Linux, uses Tarski relational algebra
for querying, which is also used in the implementation of
TYPEEXPLORER. Dali emphasizes the need for an open
tool set, in which many different tools can be plugged in,
when necessary. New in our work is the addition of type
inferencing to the suite of analysis techniques used by such
tools.

Closest in aims to the integration of type analysis and
program understanding is Lackwit [141, a tool for analyzing
C programs using type inferencing. Lackwit allows one to
ask queries like “Which functions could directly access the
representation of component X of variable Y?’ Other work
based on type inferencing includes “physical type checking
of C”, which is a stronger form of type checking for type
casts involving pointers to structures [4], and the analysis
of Fortran programs in order to find new type signatures
for subroutines [20]. Type-based analysis of COBOL, for
the purpose of year 2000 analysis, is presented by [9, 171:
both provide a type inference algorithm that splits aggregate
structures into smaller units based on assignments between
records that cross field boundaries.

Our own work on type inferencing started with [6],
where we present the basic theory for COBOL type infer-
encing. In [7], we described an implementation using Tarski
relational algebra. Moreover, we carried out a detailed as-
sessment of the benefits of using subtyping to deal with
the problem of pollution (inferring too many type equiva-
lences). In our current paper, we do not extend the theory
of type inferencing: instead we explain how inferred types
can be presented using hyper-text, and used to understand
COBOL systems at various levels of abstraction.

More references to related work can be found in [5]
(documentation generation) and [6, 71 (type inference for
COBOL).

3. Type Inference for COBOL
COBOL programs consist of a procedure division, contain-
ing the executable statements, and a datu division, contain-
ing declarations for all variables used.

From the perspective of types, COBOL variable declara-
tions suffer from a number of problems. First of all, it is
not possible to separate type definitions from variable dec-
larations. Consequently, when two variables for the same
record structure are needed, the full record construction

33

needs to be repeated.* This not only increases the chances
of inconsistencies, it also makes it harder to understand the
program, as the maintainer has to check and compare all
record fields in order to decide that two records indeed have
the same structure.

Furthermore, the absence of type definitions makes it dif-
ficult to group variables that are intended to represent the
same kind of entities. Clearly, all such variables will share
the same physical representation. Unfortunately, the con-
verse does not hold: One cannot conclude that whenever
two variables share the same byte representation, they must
represent the same kind of entity.

Besides these problems regarding type dejnitions,
COBOL only has limited means to indicate the allowed set
of values for a variable (i.e., there are no ranges or enumera-
tion types). Moreover, COBOL uses sections or paragraphs
to represent procedures. Neither sections nor paragraphs
can have formal parameters, forcing the programmer to use
global variables for parameter passing.

In [6], we propose a method to infer types for COBOL to
remedy these problems. This method automatically infers
types for COBOL variables by analyzing the use of these
variables in the procedure division. The remainder of this
section summarizes the essentials of COBOL type inferenc-
ing.

Primitive Types We distinguish three primitive types: (1)
elementary types such as numeric values or strings; (2) ar-
rays; and (3) records. Initially every declared variable gets
a unique primitive type. Since (qualified) variable names
must be unique in a COBOL program, they can be used as
labels within a type to ensure uniqueness. We qualify these
names with program or copybook names to obtain unique-
ness at the system level. We use TA to denote the primitive
type of variable A.

Type Equivalence From expressions occurring in state-
ments, an equivalence relation between primitive types is
inferred. We distinguish three cases:

1. Relational expressions such as v = U or v 5 U result in

2. Arithmetic expressions such as v + U or v * U result in

3 . Array accesses to the same array, such as a[.] and a[.]

We will generally speak of a type, meaning an equiva-
lence class of primitive types. We will give names to
types based on the names of the variables that are of that
type. For example, the type of a variable with the name

an equivalence between T, and T,.

an equivalence between Tv and Tu.

result in an equivalence between T, and Tu.

LlOO -DESCRIPTION will be called DESCRIPTION-type.

Subtyping From assignment statements a subtype rela-
tion between primitive types is inferred. From the assign-
ment v := U we conclude that Tu is subtype of T,, i.e., v can
hold at least all the values U can hold.

Union types From COBOL redejne clauses, a union type
relation between primitive types is inferred. When an entry
v in the data division redefines an entry U , we conclude that
T, and Tu are part of the same union type.

System-Level Analysis The type relations described be-
fore are derived at the program level. We also derive a num-
ber of type relations at the system-wide level: (1) program
parameters: the types of the actual parameters of a program
call (listed in the COBOL U S I N G clause) are subtypes of the
formal parameters (listed in the COBOL LINKAGE section),
(2) filehable access: variables read from or written to the
same file or table have equivalent types, and (3) copybooks:
a variable which is declared in a copybook gets the same
type in all the programs that include this copybook.

Literals Our type inference algorithm can easily be ex-
tended with analysis of literals in a COBOL program. When-
ever a literal value 1 is assigned to, or compared with a vari-
able v, we infer that 1 is a permitted value for the type of v.
If additional analysis indicates that variables in this type are
only assigned values from this set of literals, we can infer
that the type in question is an enumeration type.

Aggregate Structure Identification Whenever the types
of two records are related to each other, types for the in-
dividual fields should be propagated as well. In [6], we
adopted a rule called substructure completion, which infers
such type relations for record fields whenever the two record
structures are identical (having the same number of fields,
each of the same size). Since then, both Eidorff et al. [9]
and Ramalingam et al. [17] have published an algorithm
which splits aggregate structures in smaller “atoms”, such
that types can be propagated through record fields even if
the records do not have the same structure.

Pollution We speak of type pollution when the types of
two variables are inferred to be equivalent but would have
been given different types in case a typed language was
used. Typical situations in which pollution occurs include
the use of a single variable for different purposes in differ-
ent program slices; the use of a global variable for param-
eter passing; and the use of a PRINT-LINE string variable
for collecting values from various variables.

Inference of subtypes for assignments, rather than just
type equivalences was introduced to avoid pollution. In [7],
we describe a range of experimental data showing the effec-
tiveness of subtyping for dealing with pollution.

*In principle the COPY mechanism of COBOL for file inclusion can
be used to avoid code duplication here, but in practice there are many cases
in which this is not done.

34

4. Presenting Types in Hypertext Element
annotation
structure This section describes how types can be presented in a hy-

pertext to support program understanding. We cover the
challenges that need to be addressed, as well as the solu-
tions we adopted in TYPEEXPLORER.

Available Information
hand-written description of this type
the picture or record declaration(s) of variables
of tvue T

4.1. Challenges
4.1.1.

Recall from Section 3 that a type is an equivalence class of
primitive types, and that each primitive type directly corre-
sponds to a variable declaration. In TYPEEXPLORER, we
need to invent names for these equivalence classes. One
way is to pick an arbitrary element, and make that the name
of the type.

An alternative is to try to distill meaningful names from
the variable names involved, by determining the words oc-
curring in them. Such words can be found by splitting the
variable names based on special characters (’-’, ’--), etc.)
or lexical properties (e.g., casechange). The actual split-
ting should be a parameter of the analysis since it is influ-
enced by the coding style that is used in a system. Candidate
names of a given type can then be based on the frequency
of words that occur in names of variable of that type. Since
we want these names to be as descriptive as possible, one
also needs to consider all combinations of words that occur
in variable names. As an example, for the A0 0 -NAME- PART
variable, we not only want to see the words NAME and PART,
but also the word NAME-PART.

Inventing a name for a type

values
type graph
usage

4.1.2. Duality of subtyping

Our type inferencing algorithm uses subtyping to avoid pol-
lution. In some cases, though, there would be no pollution
even if plain equivalences between types would be used.
One could even argue that using subtyping in those cases
obscures understanding since it creates additional levels of
indirection between types that would otherwise be consid-
ered equivalent. Thus, we are faced with the problem that
for some types subtyping is necessary to avoid pollution,
whereas for others subtyping should actually have been type
equivalence.

Our solution is to include an additional abstraction layer,
the type cluster. A cluster consists of all types that have
an equivalence or subtype relation to each other (effectively
regarding the subtyping relation as an equivalence relation).
In case the TYPEEXPLORER user is not interested in the
subtyping details of a particular type, he can move up to the
type cluster level.

all literal values found for T.

visualization of sub and supertypes of 7.
links to source code lines where a variable or lit-

I era1 of T is used.
Darents I links to records with fields of tvDe T.

I I programs I links to urograms that use T.

domain conceuts.

Figure 1. Information presented for a type T.

4.1.3. Statiddynamic hypertext

We distinguish two versions of the hypertext. In the off-
line (static) version all pages are generated in advance. The
advantage of this version is portability; the complete docu-
mentation can be reproduced on a CD, taken anywhere, and
browsed on almost any computer system (only requiring a
standard webbrowser). Disadvantages are the static nature
of the hypertext and the lack of dynamic querying.

In the on-line (dynamic) version the pages are generated
on the fly based on queries on a database attached to the
links clicked on. When the users makes updates, for exam-
ple to improve the name of a type, such changes are prop-
agated immediately. Advantages of this approach are the
ability to generate hypertext based on queries by the user
and the immediate response to changes. Disadvantages are
the lack of portability and relatively high technical require-
ments on the computer system that is used for browsing.

4.1.4.

To be flexible and generic enough to handle the multitude of
program understanding tasks, the resulting hypertext should
support multiple starting points. Example starting points
are persistent data stores, program signatures, types match-
ing a given name pattern (with an effect similar to seed-
ing in year 2000 tools), or a specific variable directly in
the source code. In the off-line version, the top-level in-
dex pages should easily lead to such starting points. In the
on-line version, more flexibility is provided, as queries can
be used to arrive at the desired HTML page.

What are good starting points for browsing?

4.1.5. Annotations

For programs, it is possible in some cases to derive a textual
description explaining their behaviour based on the com-

35

ment prologue [5] . Since types are abstractions that are not
directly present in one particular place in the source code,
it is not possible to find meaningful texts explaining types
automatically. Therefore, we give maintainers the ability
to add (optional) annotations by hand. In practice, such a
feature will be used mostly for types that play a significant
role in the system. Furthermore, there can be a special an-
notation allowing a maintainer to improve the name given
to a type. In the on-line version, annotations can be added
on the fly, and have immediate effect; in the off-line mode
annotations are incorporated after regeneration.

4.2. Information Available Per Type
The most important pages in TYPEEXPLORER are those
that explain an inferred type, so we will first discuss the
contents of these pages. An overview of the various page
elements is shown in Figure 1.

4.2.1. Pictures

The declared COBOL pictures of primitive types provide in-
formation about the bytes occupied and the intended use
(number, character, ...). In most cases, all primitive types
in an equivalence class will have the same picture. If the
pictures are different, this means that the COBOL code us-
ing variables of this type relies on coercions, which may
indicate bad programming style or potential programming
errors.

4.2.2. Records

If the primitive types of a type 7 are all records, the most
common case is that all variables in this type are declared
with the same number of fields, each of the same length.
In this case, our rule of substructure completion will infer
equivalences between these field types, If they are of dif-
ferent shape, aggregate structure identijication [9, 171 can
be used to find subfields that are small enough to unify the
various records in Z. Thus, although the primitive records in
z may be of different shape, we infer one record type with
the smallest necessary fields for Z, and list the fields of z in
its page.

4.2.3. Literals

The inferred literals provide information about the sort of
values that are permitted for this type. Moreover, they show
which literal values are actually used in the system ana-
lyzed. Since a supertype z can hold at least the values of
all its subtypes, we also list the literals in all subtypes of Z.

Figure 2. Example Type Graph

4.2.4. Usage

In addition to structural information about a type 7, we can
provide data on its usage. We include links to source code
lines in which a variable of type z is used, as well to those
lines in which a literal of type ‘5 is used. Moreover, we in-
clude links to the documentation of all programs and copy-
books that use the type.

For types used as jields in other records, we include a
link to each of the parent records.

4.2.5. Type Graphs

An inferred type z can be related to other types via subtype
(or supertype) relationships. As part of the documentation
generated for a type z, we display all sub- and supertypes of
T in a type graph. An example type graph is shown in Fig-
ure 2. This figure comes from the actual type web derived
for the case study described in Section 6.3

The nodes in the graph are types: the text in a node is the
name chosen for a type. This name is obtained by picking
one of its primitive types as representative. Clicking on the
nodes brings up the page for the type clicked on. The type
z itself is shown in a (red) ellipse. In Figure 2 it has name
har006.feature. An arrow from 71 to z2 means that 71 is a
subtype of ‘52.

A number of observations can be made from this graph.
First of all, the subtype relationship on types closely cor-
responds to the assignment relationship between variables.
Thus, one can read an arrow T I + ~2 also as: “variables of
type TI are assigned to variables of type ~ 2 . ”

Second, within the graph, one can recognize groups of
related types: in Figure 2, examples are the three kind types
on the right, or the four payment types in the middle.

3For presentation purposes, we have translated the variable names from
Dutch into English in the figure.

36

Third, the type selected, harO06$eature, happens to be a
supertype of several other types. Thus, har006.feature can
accept values of several different subtypes, dealing with var-
ious sorts of numbers, such as country codes, title codes,
etc. Such a type with several different subtypes is typi-
cally the input parameter of a procedure or program, where
each incoming edge corresponds to the subtype of an ac-
tual parameter. If we would not infer subtypes, but equiva-
lences instead, all these types would become the same (via
har006.feature).

Fourth, some types have dashed outgoing (or incoming)
edges. This means that these types have other supertypes
(subtypes), which are, however, not sub or supertypes of the
type selected, har006.feature. An example is the left most
salutation type. Its outgoing edge to har006.feature means
that salutations are moved to features: its dashed outgoing
edge means that salutations are moved elsewhere as well.

Fifth, the type c502.num only has outgoing edges. This
typically means that c502.num is the output parameter of
procedure or section. Furthermore, the fact that c502.num
has no incoming edges means that there are no assignments
from other types into c502.num. This can mean one of three
things for variables of type c502.num:

1 . They never get a value within the programs analyzed,
but only in extemal libraries.

2. They do get a value, but only from variables also of
type c502.num

3. They do get a value, yet not as a scalar value, but
viewed as an aggregate. This, is in fact the case for
c502.num, which is filled as an array, digit by digit.

In short, type graphs can be used to show a num-
ber of interesting properties regarding types and variables.
For the case studies conducted, most of the type graphs
are reasonably small and understandable. The dashed ar-
rows are an important tool to keep them small: If we
would expand all dashed arrows transitively, the type graph
for har006feature would become several hundreds nodes
larger.

4.3. Qpes in Programs and Copybooks
To present types in the context of programs and copybooks,
we integrate them with system documentation that is auto-
matically derived from legacy sources using DocGen. This
hypertext describes the system at various levels of detail. At
the program level we find copybooks that are included, flat-
files read or written, database tables that are updated or se-
lected, screens that are presented to the user, etc. Zooming
in from the program level, we arrive at the level of the indi-
vidual sections, copybooks, and ultimately the full source.
Zooming out, we arrive at the subsystem level that groups
collections of batch (JCL) jobs, programs, copybooks, etc.
corresponding to subsystem decompositions as used by the

maintenance team (usually visible in naming conventions
or directory structure) or as found by automatic clustering
techniques. A more detailed account can be found in [5] .

One obvious (and straightforward) method of integration
is to provide links from variables and literals occurring in
the source code to their inferred type pages.

Moreover, we derive signatures for modules that are
called or can be called by others. Such a signature docu-
ments the intended use of a module. It gives the types of the
formal parameters, which are derived from the variables de-
clared in the COBOL linkage section. This not only provides
information about the formal parameters: the type graph of
each of the formal parameters also contains subtypes for all
actual parameters used in the system analyzed.

Second, we obtain types for the records that are writ-
ten to or read from persistent data stores such as files or
database tables. In particular in COBOL systems, such
records are likely to hold business-related data. The types of
these records indicate how such business data is used within
individual programs, or across the entire software system
analyzed.

Third, we can find tjpe-dependencies between programs
and copybooks. Clearly, if a program uses a variable de-
clared in a copybook, the program depends on that copy-
book. A second possibility, which we encountered in our
case study, is that a copybook C, containing a section (to be
included in the procedure division), uses variables declared
in a separate copybook Cd (to be included in the data divi-
sion).4 This leads to an inferred type dependency between
the using copybook C, and the declaring copybook Cd. In
our case study, the programmers had tried to document such
dependencies in comments in both copybooks - however,
our analysis found additional dependencies not documented
at all.

Last but not least, we provide index files to types and
programs, listing all words found in types, type names,
types used in signatures, types used in persistent data stores,
and so on. Moreover, we augment existing index files listing
all programs, tables, and so on with additional type infor-
mation, such as the type signature which concisely reveals
the intended purpose of a program. These index files are in-
cluded at the top-level, but also at the subsystem, program,
type cluster, and copybook level.

5. Implementation
The architecture of the TYPEEXPLORER tool set is shown
in Figure 3. The dashed line between documentation and
querying indicates the dynamic queries available in the on-
line TYPEEXPLORER.

4Since COBOL sections cannot have parameters, global variables are
the only way to pass data to sections.

37

a Inferencing

4 I
Repository

4 \

Cobol
sources

Querying Documentation

Figure 3. Overview of the TYPEEXPLORER tool set.

The toolset follows an extract-query-view approach, sep-
arating source code analysis, inferencing and presentation.
This approach makes it easier to adapt to different source
languages or to other ways of presenting the types found.
The TYPEEXPLORER toolset incorporates the COBOL type
inferencing tools presented in [7].

In the first phase, a collection (database) of facts is de-
rived from the COBOL sources. For that purpose, we use a
parser generated from the COBOL grammar discussed in [2] .
The parser produces abstract syntax trees (ASTs) in a tex-
tual representation called the ASFIX format. These ASTs
are then processed using a Java package which implements
the visitor design pattern. The fact extractor is a refinement
of this visitor which emits type facts at every node of inter-
est (for example, assignments, relational expressions, etc.).

In the second phase, the derived facts are combined and
abstracted to infer a number of conclusions regarding type
relations. One of the tools we use for inferring type relations
is grok, a calculator for Tarski relational algebra [ll]. Re-
lational algebra provides operators for relational composi-
tion, for computing the transitive closure of a relation, for
computing the difference between two relations, and so on.
We use it, for example, to turn the derived type facts into the
required equivalence relation. Finally we store the derived
and inferred facts in the MySQL relational database.

In the final phase, we query the database and gener-
ate hypertext documentation. We use PHP6 to generate
HTML code based on queries on the database. PHP is an
HTML-embedded scripting language that was developed to
allow web developers to write dynamically generated pages
quickly. It contains support for a wide range of databases,
including MySQL. The on-line version of TYPEEXPLORER
utilizes PHP as a server-side scripting engine to gener-
ate HTML code dynamically. For the off-line TYPEEX-
PLORER, PHP is used at “compile time” to generate static
HTML pages.

The pages documenting types contain pictures of type
graphs showing the sub- and supertypes of a type. These
type graphs are coupled to imagemaps that connect URLs

’http: //www.mysql.org/ ‘ PHP: PHP Hypertext Preprocessor. Available from:
http://www.php.net/.

to nodes in the picture allowing the user to navigate through
the documentation by clicking in the graph. These graphs
are extracted from the database in a Java program using the
JDBC interface7 to MySQL. The layout and imagemaps for
these images are generated using the dot graph drawing
package [lo].

6. Using Type Explorer
TYPEEXPLORER helps a software engineer to take a type-
ful look at his legacy system. In this section, we will dis-
cuss what sort of questions can be fruitfully answered by
navigating through a legacy system using T Y PEEXPLORER.
Clearly, TYPEEXPLORER reveals so much information that
many different questions can be answered using it. We will
focus on two extremes: first, we will see that types are the
natural way to reveal structure at the detailed level of indi-
vidual variables; next we will cover how TYPEEXPLORER
helps to get a high level overview of the overall system ar-
chitecture. Since the latter is, in our opinion, the most sur-
prising application, we will spend most of our attention to
architectural understanding using types.

Our running example will be a real life COBOWCICS
system called Mortgage of approximately 100,000 lines of
code. It consists of an on-line (interactive) part, as well
as a batch part, and it is in fact a subsystem of a larger (1
MLOC) system. An example screen shot from a session
using TYPEEXPLORER is shown in Figure 4. It shows the
main index, the page derived for copybook ~ ~ 7 0 0 , the page
for type cc700.~700-srt-adres, as well as the type graph for
one of the other types used in ~ ~ 7 0 0 .

6.1. Supporting Maintenance Tasks
One possible way of using TYPEEXPLORER for Mortgage,
is to support maintenance tasks related to specific domain
concepts or variables. A (fairly common) example is to
modify the representation of a group of variables (for ex-
ample, expanding the kind variables in Figure 2 from two
to three digits). Since COBOL has no facilities to encap-
sulate such a representation using explicitly declared types,
this usually involves a painful search for all other variables
affected by this modification, including those via chains of
assignments. TYPEEXPLORER helps the maintainer to op-
erate at the higher type level, which immediately provides
all related variables.

6.2. Architectural Structures
TYPEEXPLORER can be used to analyze the the as-
implemented software architecture of a system. Bass et al.

’ Mark Matthews MySQL JDBC drivers. Available from:
http://www.worldserver.com/mm.mysql/

38

http://www.mysql.org
http://www.php.net
http://www.worldserver.com/mm.mysql

TypeExplorer for
HyposlRelation Administration

'8b Edit V c

i2zZxk

Literals of this type

In cc700 c700-rrtadror 1
I" supertypes 1.23.4
In subtypes "C

ProDams in which this type is used

wAuuL!E- ruaQ2oERA33010Rm

Copybooks in which this type is used

.1 JL

__ -_- - I - ___"

Subtypes
a700 c700-r -odrcs has no subtypes

Supertypes

mare32 corz3i -rwr-udrrs

Fllc Edit V a

All

Programs including this copybook

EAlLQ2E IW331GR FA32020R RA33010R -d35QlJR

Copybooks depending on this copybook

Nocopybooksdepend onCY700

- - - _-_ -_ -
Copybooks needed by this copybook

U E A E A L L C c L

Readwrite of datasets

[l] define this as the system's structure, which comprises
software components, the externally visible properties of
those components, and the relationships among them. Bass
et al. emphasize that there generally are multiple structures
(called architectural structures), and that no one structure
holds the irrefutable claim to being the architecture. Exam-
ple architectural structures manifest themselves at the level
of modules, processes, data flow, control flow, and so on.
We argue that the type structure of a system is an additional
architectural structure, which is important not only for sys-
tems constructed using strongly typed languages, but also
for legacy systems built using untyped languages such as
Cobol. TYPEEXPLORER helps to inspect this type struc-
ture.

Bass et al. [11 provide three reasons why software archi-
tecture is important: (1) it helps in canzmunication among
stakeholders; (2) it makes design decisions explicit; and (3)
it provides a transferable abstraction of a system. TYPEEX-
PLORER helps to achieve these goals for type structures as
well. To illustrate this, we will navigate through the Mort-
gage case study, and discuss some architectural issues of
interest.

e Edit Y a w Go ComnicbOr

y p e graph for ~ ~ 7 0 0 . ~ 7 0 0 - s t r a a t
~

WOZO-STRA4T FIBOZO-STIWAT

\ /
CC700 -

Figure 4. The TYPEEXPLORER in action.

6.3. Exploring Mortgage's Architecture
When exploring Mortgage, a natural starting point is the
index listing all programs together with their inferred sig-
nature. When doing this, one observation can be immedi-
ately made: The type of the first formal parameter of all
batch programs is the same - the program-jelds type. This
raises the question why this is so, and what sort of type
this program-jelds type is. Inspection shows us that it is
a record-type, storing the name of the program, the current
status, the name of the files currently processed, etc. More-
over, it holds data which is not necessary for the proper ex-
ecution of the program. Instead, the data is used to quickly
find the program responsible for the problems if one of the
batch runs crashes.

This shared first parameter shown by TYPEEXPLORER
thus immediately leads to an architectural requirement,
namely that the system should support fast repairs and
restarts at the proper position whenever one of the batch
runs crashes in the middle of the night.

TYPEEXPLORER also shows us that this convention is
actually used. The program-fields record contains one field

39

(the subroutine field) holding the name of the program cur-
rently being run. TYPEEXPLORER lists all literal values
that are used for (i.e., assigned to variables of) the type sub-
routine, This list exactly corresponds to the list of all batch
programs, which is the result of the fact that each program
correctly starts by setting the subroutine field to the pro-
gram’s name.

It is interesting to observe that Mortgage also clearly
shows that just looking at the names of formal parameters
is not sufficient. To see why this is so, we take a look at the
on line part of Mortgage (the part invoked from screens via
CICS) . The first parameter of each on line programs is the
same, namely DFHCOMMAREA. However, they all have a dif-
ferent type! All DFHCOMMAREA variables are strings of dif-
ferent lengths. The specific name DFHCOMMAREA is required
by CICS. The first thing each program does is to assign that
variable to a more structured record variable. It is the type
of that structured record variable that T Y PEEXPLORER rec-
ognizes as the appropriate type for the first parameter of the
linkage sections, which it displays in the inferred signature.

TYPEEXPLORER also helps us to understand the mean-
ing of the program parameters. For example, many pro-
grams in Mortgage have integer-valued numbers as parame-
ters (having picture string s (9) COMP-3). Often, these are
in fact enumeration types, in which case TYPEEXPLORER
recognizes them as such. Several programs turn out to have
a parameter namedfimction, with 5 to 10 permitted values.
Based on this function value, the program performs one of
several functions. This leads us to two design decisions:
different (but related) functions are grouped into programs,
and the mechanism used is a switch on an enumerated value,
instead of the Cobol feature in which one program can have
multiple entry points.

Last but not least, TYPEEXPLORER shows how such
function enumeration parameters are passed from one pro-
gram to another. As an example, one of the Mortgage pro-
grams contains a parameter for determining how a person’s
name is formatted (full first names, one initial only, with ti-
tle, and so on), and another to format street names (capital-
ized, street abbreviated, and so on). One of the top level pro-
grams has 10 different parameters, corresponding to these
formatting codes. The types inferred exactly show how each
of the codes (which are all integer numbers) correspond to
the parameters of the various formatting programs.

In short, TYPEEXPLORER can be used to discuss
whether requirements such as crash recovery are properly
supported, how functionality is grouped in modules, and
how modules are dependent via types. Other architectural
issues can be identified using TYPEEXPLORER by study-
ing the type relationships between copybooks, the use of
database record types across programs, and so on.

7. Concluding Remarks
In this paper, we have shown how hypertext-based program
understanding tools can be achieve higher levels of abstrac-
tion by using inferred type information for cases where the
underlying software system is written in a weakly typed lan-
guage. We proposed TYPEEXPLORER, a tool for browsing
COBOL legacy systems based on these types. The main con-
tributions of the paper are in the following areas:

Presentation Although types are an invented abstraction,
not directly present in the code, we showed how they
can be made tangible by displaying a name for them,
associated domain concepts, literal values, and vari-
able use in the source code. Moreover, type graphs
help to see types in context, and view their relation-
ships to other types. Last but not least, type infor-
mation can be integrated with pages documenting pro-
grams, databases and copybooks, extended them with
type links for program signatures, copybook depen-
dencies, and record types for persistent data stores.

Implementation We have described an implementation
based on the extract-query-view paradigm, using
Tarski relational algebra, SQL, and PHP to realize both
an on-line and off-line version of TYPEEXPLORER.

Use We have shown how navigating through a legacy sys-
tem using TYPEEXPLORER provides useful informa-
tion both at the detailed level of individual programs
and at the higher level of the overall architecture. We
have applied T Y PEEXPLORER to an actual system,
and used it to identify type-dependencies between pro-
grams, understand design decisions, and to highlight
requirements such as support for crash recovery.

Our next step will be to distribute TYPEEXPLORER to
industrial users. Undoubtedly, this will raise additional re-
quirements and questions, on which we will report in the
near future. One possible extension is to propagate types
via batch jobs (JCL) as well, thus arriving at better types for
the datafiles processed.

Another area of future work is to use TYPEEXPLORER
to support the migration of COBOL to the new COBOL stan-
dard, which is an object-oriented extension of COBOL-85.
This new version of COBOL does support types, and offers
the possibility of using type definitions. Our tools provide
the technology to take advantage of this new possibility.

Acknowledgments We would like to thank Jan Heering
(CWI) for commenting on a draft of this paper.

40

References
[I] L. Bass, P. Clements, and R. Kazman. Software Archi-

tecture in Practice. Addison-Wesley, 1998.

[2] M. G. J. van den Brand, A. Sellink, and C. Ver-
hoef. Generation of components for software reno-
vation factories from context-free grammars. In 4th
Working Cor$ on Reverse Engineering; WCRE’97,
pages 144-155. IEEE, 1997.

[3] P. Brown. Integrated hypertext and program under-
standing tools. IBM Systems J., 30(3):363-392, 1991.

Physical type checking
for C. In Workshop on Program Analysis for Soft-
ware Tools and Engineering, PASTE’99, pages 66-75.
ACM Press, September 1999. SIGSOFT Software En-
gineering Notes 24(5).

[4] S. Chandra and T. Reps.

[5] A. van Deursen and T. Kuipers. Building documen-
tation generators. In International Conference on
Software Maintenance, ICSM ’99, pages 40-49. IEEE
Computer Society, 1999.

[6] A. van Deursen and L. Moonen. Type inference for
COBOL systems. In Proceedings of thejfth Working
Conference on Reverse Engineering, WCRE’98, pages
220-230. IEEE Computer Society, 1998.

[7] A. van Deursen and L. Moonen. Understanding
COBOL systems using types. In Proceedings 7th
Int. Workshop on Program Comprehension, IWPC’99,
pages 74-83. IEEE Computer Society, 1999.

[8] P. Devanbu, Y-F. Chen, E. Gansner, H. Muller, and
J. Martin. CHIME: Customizable hyperlink insertion
and maintenance engine for software engineering en-
vironments. In 21st Int. Con$ on Software Engineer-
ing, ICSE-99, pages 473-482. ACM, 1999.

[9] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H.
Sorensen, and M. Tofte. Anno Domini: From type
theory to Year 2000 conversion tool. In 26th Symp.
on Principles of Progr: Languages, POPL’99. ACM,
1999.

[IO] E. R. Gansner, E. Koutsofios, S. North, and K-P. Vo. A
technique for drawing directed graphs. IEEE Transac-
tions on Software Engineering, 19(3):214-230, 1993.

[I 11 R. Holt. Structural manipulations of software archi-
tecture using Tarski relational algebra. In 5th Working
Conference on Reverse Engineering, WCRE’98, pages
210-219. IEEE Computer Society, 1998.

[12] R. Kazman and J. Carrikre. Playing detective: Re-
constructing software architecture from available evi-
dence. Automated Software Engineering, 6 : 107-1 38,
1999.

[13] A. von Mayrhauser and A. M. Vans. Program compre-
hension during software maintenance and evolution.
IEEE Computer, pages 44-55, August 1995.

[14] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In 19th
International Conference on Software Engineering;
ICSE-97. ACM, 1997.

[15] Ch. de Oliveira Braga, A. von Staa, and J. C. S. do
Prado Leite. Documentu: A flexible architecture
for documentation production based on a reverse-
engineering strategy. Journal of Software Mainte-
nance, 10:279-303, 1998.

[161 V. Rajlich and S. Varadarajan. Using the web for soft-
ware annotations. Int. Journal of Software Engineer-
ing and Knowledge Engineering, 9(1):55-72, 1999.

[171 G. Ramalingam, J. Field, and F. Tip. Aggregate struc-
ture identification and its application to program anal-
ysis. In 26th Symp. on Principles of Progr: Languages,
POPL’99. ACM, 1999.

[181 S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M. Cox.
Browsing and searching software architectures. In Inf.
ConJ on SofnYare Maintenance, ICSM’99, pages 38 1-
390. IEEE Computer Society, 1999.

[I91 S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: A case study of how software im-
migrants naturalize. In 20th Int. Con$ on Software
Engineering; ICSE-97, pages 361-370. ACM, 1998.

[20] N. Williams-Preston. New type signatures for legacy
Fortran subroutines. In Workshop on Program Anal-
ysis for Sofhvare Tools and Engineering, PASTE’99,
pages 76-85. ACM Press, September 1999. SIGSOFT
Software Engineering Notes 24(5).

[21] K. Wong, S.R. Tilley, H.A. Muller, and M.-A.D.
Storey. Structural redocumentation: a case study.
IEEE Software, 12(1):46-54, 1995.

41

