
Understanding COBOL Systems using Inferred Types

Arie van Deursen

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/˜arie/

Leon Moonen

University of Amsterdam, Kruislaan 403

1098 SJ Amsterdam, The Netherlands

http://adam.wins.uva.nl/˜leon/

ABSTRACT

In a typicalCOBOLprogram, the data division consists of 50%
of the lines of code. Automatic type inference can help to
understand the large collections of variable declarations con-
tained therein, showing how variables are related based on
their actual usage. The most problematic aspect of type in-
ference ispollution, the phenomenon that types become too
large, and contain variables that intuitively should not belong
to the same type. The aim of the paper is to provide empir-
ical evidence for the hypothesis that the use ofsubtypingis
an effective way for dealing with pollution. The main results
include a tool set to carry out type inference experiments, a
suite of metrics characterizing type inference outcomes, and
the conclusion that only one instance of pollution was found
in the case study conducted.

1991 Computing Reviews Classification System: D.2.2,
D.2.3, D.2.7., D.3.4, F.3.1, I.2.2.

Keywords and Phrases: Software maintenance, program anal-
ysis, variable usage, case study.

Note: To appear inProceedings 7th International Workshop
on Program Comprehension 1999 (IWPC’99), May 5-7, 1999
in Pittsburgh, PA, USA.

Note: Work carried out under projects SEN-1.1,Software Ren-
ovationand SEN-1.5,Domain-Specific Languages.

1. Introduction

In this paper, we will be concerned with the variables occur-
ring in a COBOL program. The two main parts of aCOBOL
program are thedata division, containing declarations for all
variables used, and theprocedure division, which contains the
statements performing the program’s functionality. Since it
is in the procedure division that the actual computations are
made, one would expect this division to belarger than the
data division. Surprisingly, we found that in a typicalCOBOL
system this is not the case: the data division often comprises

more than 50% of the lines of code. We even encountered sev-
eral programs in which 90% of the lines of code were part of
the data division.1

These figures have two implications. First of all, they sug-
gest that only a subset of all declared variables are actually
used in aCOBOL program. If 90% of the lines are variable
declarations, it is unlikely that the remaining 10% will use all
these variables. Indeed, in the systems we studied, we have
observed that less than 50% of the variables declared are used
in the procedure division.2

These figures also indicate that maintenance programmers
need help when trying to understand the data division part.
Just reading the data division will involve browsing through
a lot of irrelevant information. Thus, the minimal help is to
see which variables are in fact used, and which ones are not.
In addition to that, the maintenance programmer will want to
understand the relationships that hold between variables. In
COBOL, some of these relations can be derived from the data
division, such as whether a variable is part of a larger record,
whether it is a redefine (alias) of another variable, or whether
it is a predicate on another variable (level 88).

But not all relevant relations between variables are avail-
able in the data division. When do two different variables hold
values that represent the same business entity? Can a given
variable ever receive a value from some other given variable?
What values are permitted for this variable? Is the value of
this variable ever written to file? Is the value of this variable
passed as output to some other program? What values are
actually used for a given variable? What are the operations
permitted on a given variable?

In strongly typed languages, questions like these can be
answered by inspecting thetypesthat are used in a program.
First, a type helps to understand what set of values is permit-
ted for a variable. Second, types help to see when variables
represent the same kind of entities. Third, they help to hide
the actual representation used (array versus record, length of
array, ...), allowing a more abstract view of the variable. Last

1For three different systems, each approx. 100,000 LOC, we found aver-
ages of 53%, 43%, and 58%, respectively.

2For theMortgage system under study in this paper, on average 58% of
the variables declared in a program were never used, the percentages ranging
from 2.6% for the smallest up to 95% for the largest program.

1

but not least, types for input and output parameters of proce-
dures immediately provide a “signature” of the intended use
of the procedure.

Unfortunately, the variable declarations in aCOBOL data
division suffer from a number of problems that make them
unsuitable to fulfil the roles of types as discussed above.
In COBOL, it is not possible to separate type definitions
from variable declarations. This has three unpleasant conse-
quences. First, when two variables need the same record struc-
ture, this structure isrepeated. Second, whenever a data divi-
sion contains a repeated record structure, the lack of type def-
initions makes it difficult to determine whether that repetition
is accidental (the two variables are not related), or whether
it is intentional (the two variables should represent the same
sort of entity). Third, the absence of explicit types leads to
a lack of abstraction, since there is no way to hide the actual
representation of a variable into some type name.

In short, the problem we face withCOBOLprograms is that
types are needed to understand the myriads of different vari-
ables, but that theCOBOL language doesnot support the no-
tion of types.

In [4], we have proposed a solution to this problem. In-
stead of deriving type information from the data division, we
infer types from the usage of variables in the procedure divi-
sion. The basic idea is simple: if two variables are used in
an assignment or comparison, we want to infer that these two
variables should have the same type. In this paper, we will
take a closer look at type inferencing, proposing a new way of
implementation by means ofrelational algebra.

Moreover, we will carefully study the problem ofpollution,
which occurs when types become too large, containing vari-
ables that intuitively should belong to different types. In [4]
we argued that derivingsubtypesrather than equivalences han-
dles the problem of pollution. In our current paper we test
this hypothesis, by presenting statistical data illustrating the
presence of pollution, and the effectiveness of subtyping for
dealing with it. In particular, we look at the interplay between
subtyping and equivalence (for example, ifA4 B andB4 A,
we getA� B — how does this affect pollution?).

All experiments are done onMortgage, a real-life
COBOL/CICSsystem from the banking environment. With all
copybooks (include files) expanded (unfolded), it consists of
250,000 lines of code; unexpanded it consists of 100,000 lines
of code.

2. Type Inference

In this section, we summarise the essentials ofCOBOL type
inferencing: a more complete presentation is given in [4].
Primitive Types We distinguish three primitive types: (1)
elementary types such as numeric values or strings; (2) arrays;
and (3) records. Initially every declared variable gets a unique
primitive type. Since variables must have unique names in a

COBOL program, they can be used as labels within a type to
ensure uniqueness. We qualify variable names with program
names to obtain uniqueness at the system level. We useTA to
denote the primitive type of variableA.
Equivalence By looking at theexpressionsoccurring in
statements, anequivalence relationbetween primitive types
can be inferred. We distinguish three cases: (1) For relational
expressions such asv = u or v� u, an equivalence between
Tv andTu is inferred. (2) For arithmetic expressions such as
v+u or v�u, an equivalence betweenTu andTv is inferred. (3)
For two different array accessesa[v] anda[u] an equivalence
betweenTv andTu is inferred. When we speak of atypewe
will generally mean anequivalence class of primitive types.
Subtyping By looking at theassignment statements, asub-
type relationbetween primitive types can be inferred. From
an assignment of the formv := u we infer thatTu is asubtype
of Tv, i.e.,v can hold at least all the valuesu can hold.
Union types From aCOBOL redefine clause, a union type
relation between primitive types can be inferred. When a
given entryv in the data division redefines another entryu,
we infer thatTv andTu are part of the sameunion type.
System-Level Analysis In addition to inferring type rela-
tions within individual programs, we also infer type relations
at the system-wide level. Such relations ensure that if a vari-
able is declared in a copybook, its type is the same in all the
different programs that copybook is included in. Furthermore,
we infer that the types of the actual parameters of a program
call (listed in theUSINGclause) are subtypes of the formal pa-
rameters (listed in the linkage section), and that variables read
from or written to the same databases have equivalent types.
Literals A natural extension of our type inference algorithm
involves the analysis of literals that occur in aCOBOL pro-
gram. Whenever a literal valuel is assigned to a variablev,
we conclude that the valuel must be a permitted value for the
type of v. Likewise, whenv and l are compared,l is con-
sidered a permitted value for the type ofv. Literal analysis
indicates permitted values for a type. Moreover, it can be used
for findingenumeration types.
Pollution The intuition behind type equivalence is that if
the programmer would have used a typed language, he or
she would have chosen to give a single type to two different
COBOL variables whose types are inferred to be equivalent.
We speak oftype pollutionif an equivalence is inferred which
is in conflict with this intuition.

Typical situations in which pollution occurs include the use
of a single variable for different purposes in different pro-
gram slices; the use of a variable acting as a formal parameter,
to which a range of different variables can be assigned; and
the use of aPRINT-LINE string variable for collecting output
from various variables.

2

Type
relations

Querying

Abstraction
Data structure

extractor

type statistics
collector

Visualizer

Cobol
sources

Fact
extractor

Figure 1. Overview of the type inference tool set.

Relation dom rng description

contain Tr Tf structured typeTr containsTf

union Tv Tu typesTv andTu are part of the same
union type

subtypeOf Tv Tu typeTv is subtype ofTu
(variablev is assigned tou)

expression Tv Tu variables of typesTv andTu are used
in the same expression

literalAssign Tv l literal l is assigned to a variable of
typeTv

literalTest Tv l literal l is compared to a variable of
typeTv

arrayIndex Ta Ti variable of typeTi is used as index
in array of typeTa

arrayLitIdx Ta l literal l is used as index in array of
typeTa

Table 1. Derived Facts

3. Tool Architecture

The set of tools we use for applying type inference toCOBOL
systems is shown in Figure 1. It separates source code analy-
sis, inferencing and presentation, making it easier to adapt the
toolset to different source languages or other ways of present-
ing the types found.

In the first phase, a collection (database) offactsis derived
from theCOBOL sources. For that purpose, we use a parser
generated from theCOBOL grammar discussed in [1]. The
parser produces abstract syntax trees (ASTs) in a textual rep-
resentation called the ASFIX format. These ASTs are then
processed using a Java package which implements the visitor
design pattern. The fact extractor is a refinement of this visitor
which emits type facts at every node of interest (for example,
assignments, relational expressions, etc.).

In the second phase, the derived facts are combined and ab-
stracted to infer a number of conclusions regarding type rela-
tions. Both facts and conclusions are stored in a simple ASCII
format, as also used, for example, in Rigi [9]. One of the tools
we use for inferring type relations isgrok [8], a calculator for
relational algebra[12, 6]. Relational algebra provides oper-
ators for relational composition, for computing the transitive
closure of a relation, for computing the difference between
two relations, and so on. We use it, for example, to turn the
derived type facts into the required equivalence relation. In

Relation dom rng description

typeEquiv T1 T2 typeT1 is equivalent to typeT2

subtypeOf T1 T2 typeT1 is subtype ofT2

literalType T l typeT containsl

Table 2. Inferred Relations

arrayIndexEquiv := arrayIndex�1 � arrayIndex
subtypeEquiv := /0
repeat

subtypeEquiv := equiv(subtypeOf+ \

(subtypeOf+)�1)
typeEquiv := equiv(arrayIndexEquiv[

subtypeEquiv [expression)
subtypeOf := subtypeOf n typeEquiv
subtypeOf := subtypeOf [subtypeOf � typeEquiv

[typeEquiv � subtypeOf
until fixpoint of (typeEquiv; subtypeOf)
literalType := typeEquiv � (literalTest [literalAssign

[(arrayIndex�1 � arrayLiteralIndex))

fun equiv(R) := (R [R�1)�

Figure 2. Outline of the resolution algorithm.

addition to relational algebra, we use Unix tools likesort ,
uniq , awk, etc. to manipulate the relation files.

In the final phase, we pass information about the type re-
lations to the end-user. In this paper, we will mainly do this
based on metrics, via the use ofgnuplot . Other options
include the generation of data structures in a language sup-
porting explicit type definitions, and visualisation of type in-
formation via graphs.

3.1. Derived Facts

The different kinds of facts derived from theCOBOL sources
are listed in Table 1. Thecontain andunion relations are de-
rived from the data division, the remaining ones from the pro-
cedure division.

Observe that the relations in this table indicate the degree of
language-independence of type inferencing: it can be applied
to any language from which these facts can be derived. Other
languages like Fortran, C, or IBM 370 assembly, can be anal-
ysed by adding a parser and fact extractor for those languages.
Furthermore, since the facts for different languages can easily
be combined, this approach allows for the transparent analysis
of multi-language systems where, for example, some parts are
written in COBOL and other parts are written in assembly.

3.2. Inferred Relations

The resolution process infers relations between types from the
facts that were derived from theCOBOL system. Our resolu-
tion process is based on relational algebra and is implemented

3

Relation dom rng description

decl m Tv modulem declaresTv

copy m1 m2 modulem1 importsm2

actualParam P:n Tv nth actual parm. ofP has typeTv

formalParam P:n Tv nth formal parm. ofP has typeTv

Table 3. Derived System-Level Relations

Relation dom rng description

copyOf Tp Tc Tp is a copy ofTc

Table 4. Inferred System-Level Relations

usinggrok [8].
The three key relations inferred aretypeEquiv, subtypeOf,

and literalType, summarised in Table 2. The inferredsub-
typeOf relation is a refinement of thesubtypeOf relation di-
rectly extracted from theCOBOL sources. For example, types
that are also equivalent are removed fromsubtypeOf.

Besides the relations in Table 2, some auxiliary relations
are inferred. These include:arrayIndexEquiv for equivalence
of types through array access (if variablesi and j are used
as indexes for the same arrayA, their types should be equiva-
lent),subtypeEquiv for type equivalence through subtyping (if
A4 B andB4 A, we getA� B), andtransSubtypeOf for the
transitive closure ofsubtypeOf.

The resolution algorithm is outlined in pseudo code in Fig-
ure 2. The operators used are those of relational algebra and
can be mapped directly togrok operators. In the pseudo code
we use function abstraction and a construction that loops over
a body until a fixed point is reached. As these are not available
in grok , in the actual implementation we decided to write
out the functions explicitly and iterate a fixed number of times
over the body of the loop (the number is determined heuristi-
cally).

3.3. System-Level Types

In order to do system-level type inference, the primitive types
have to be unique for the whole system. As described in [4],
this can be done by qualifying them with program names.
Primitive types derived from copybooks that are included in
the data division should be qualified using the copybook’s
name — this ensures that variables of those types will have the
same type in all the programs that this copybook is included
in.

However, this approach does not allow us to deal with
system-level type inference without loading allCOBOL
sources in memory at once. We would need to analyse self-
contained clusters of programs and copybooks, in order to
qualify types with the correct names. Such clusters are likely
to become as large as the complete system.

To facilitate complete separation of the analysis of copy-
books and programs, we derive all information as before, and

add extra facts fromCOBOL sources concerning the use of
copybooks and declaration of types. The extra relations are
described in Table 3.

Next, we join thecopy and decl relations, and infer a
copyOf relation that indicates which types used in a program
are actually “copies” of types that were declared in a copy-
book (Table 4). This join is done on the imported module
field m2 of the copy relation with the module fieldm of the
decl relation.

Finally, thecopyOf relation betweenTp andTc is interpreted
as a substitution on the derived relations replacing all occur-
rences ofTp by Tc. This substitution propagates type depen-
dencies through copybooks.

At this point we have achieved the same database as we
would have obtained by analysing all sources at once, but now
using amodularapproach. Such a modular approach allows
us to analyse large industrial-scale systems that are too big to
be handled in memory at once.

Example 3.1 Suppose we derive the following information
from programs P and Q:

subtypeOf P.A P.B copy P Z decl Z Z.B
subtypeOf Q.B Q.C copy Q Z

Program P and Q both use variable B and import copybook Z
in which B is declared.

Joining thecopy anddecl relations yields twocopyOf facts:

copyOf P.B Z.B copyOf Q.B Z.B

After substituting these insubtypeOf, we get:

subtypeOf P.A Z.B subtypeOf Z.B Q.C

Observe that, via transitivity of thesubtypeOf relation, we can
now infer that P.A is a subtype of Q.C a relation that could not
have been found without the propagation through the copy-
book. �

We have written a dedicated C program to perform the sub-
stitution since standard Unix tools likesed orperl could not
handle the amount of substitutions involved3. Time complex-
ity of this program isO(n log n+m log n) (wheren is the
number of tuples incopyOf, andm is number of tuples in the
database), and its space requirements areO(n).

4. Assessing Derived Facts

In this section we study the nature of the facts that can be di-
rectly derived from theCOBOL sources, i.e., without applying
the resolution step. This will help us to understand how many
primitive types exist which aredirectly related to other primi-
tive types, and what effect such types have on pollution.

3ForMortgage, thecopyOf relation contains 121;915 tuples.

4

relation tuples percentage

formalParam 107 0.26%
union 129 0.32%
arrayLiteralIndex 263 0.64%
actualParam 593 1.45%
expression 644 1.57%
arrayIndex 1263 3.09%
copy 2581 6.31%
literalTest 3199 7.82%
subtypeOf 5504 13.46%
literalAssign 5507 13.47%
contain 10212 24.97%
decl 10887 26.63%
total 40889 100.00%

Table 5. Facts derived from Mortgage

The database that is derived from theMortgage sources
contains 40;889 facts. An overview of these is shown in Ta-
ble 5. All duplicates were removed, thus, if variablev is as-
signed to variableu in two different statements in a certain
program, this results in only one subtype relation betweenTv

andTu.
Observe that thesubtypeOf relation is more than 8 times

as large as theexpression relation, i.e., variables in aCOBOL
program are much more often moved around (assigned) than
tested for their value.

4.1. Direct subtypes per type

A question of interest is how many different subtypes each
primitive type has. We search for those types which have a
large number of different subtypes, i.e., types of variables that
get assigned values from many other variables.

In Figure 3 we show, for each program, the highest num-
ber of different subtypes that a single type has. In the figure,
the programs are sorted ascending by size (lines of code). The

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120

su

bt
yp

es
 p

er
 v

ar
ia

bl
e

Program sorted ascending by size (LOC)

maximum
average

Figure 3. Direct subtypes per type.

numbers at the x-axis can be seen as their program IDs. The
dashed line indicates theaveragenumber of subtypes per type.
It shows that most types have just 1 or 2 subtypes. To com-
pute the average number of subtypes per type, only those types
that have at least one subtype were taken into account (hence
this average will always be larger than 1), ignoring types that
were not used at all, or only in expressions. The overall av-
erage number of subtypes is 1:18. Finally, since the aim of
this figure is to find those types that are directly responsible
for a high number of different subtypes: therefore only the
direct subtype relation was taken into account, rather than its
transitive closure.

Most programs do not contain types with more than 5 sub-
types; one program contains a type with an exceptionally large
number of 45 different subtypes which will be explained later.

If we look at theCOBOL code underlying these data, we
can understand the high maximum of 45. This involves the
type of a variable calledP800-LINE , which is a string of
length 132. It acts as the formal parameter of a section
called Y800-PRINT-LINE . Whenever data is to be printed,
it is moved into that variable and theY800-PRINT-LINE sec-
tion is called. Type inference concludes that the types of all
the variables that are printed this way, are subtypes of type of
Y800-PRINT-LINE .

4.2. Direct supertypes per type

Another figure of interest consists of the number ofsuper
types per primitive type. This time, we particularly search
for types with a large number ofsupertypes, i.e., types of vari-
ables that are assigned to many other variables.

Figure 4 shows the number of supertypes per type. Again,
most types that have a supertype have one or two supertypes,
the average being 1:32. Most of the maxima are below 6, but
a number of programs contain types with many more super-
types, for example with 17, 18, or 19 different ones.

If we look at theCOBOL source code, we can explain the

0

5

10

15

20

0 20 40 60 80 100 120

su

pe
r

ty
pe

s
pe

r
va

ria
bl

e

Program sorted ascending by size (LOC)

maximum
average

Figure 4. Direct supertypes per type

5

role of these types. The type with 19 supertypes turns out
to be aCURSORtype, used in aCICS interactive setting. The
variable of this type navigates through the screen positions of a
terminal. It is compared with, and copied into a number of dif-
ferent variables representing screen positions of certain fields,
such as the position where to enter the name of a person. All
these positions together, each declared with numeric picture,
share one subtype: theCURSORtype. Thus, the number 19 is
not due to pollution, but rather provides meaningful informa-
tion for understanding the program, namely that all these types
share the values of their commonCURSORsubtype. Most other
maxima higher than 6 in Figure 4 are due to such aCURSOR

type.
One of the non-CURSOR cases is a type called

DESCRIPTION which has 17 different supertypes. It is
the type of an output field of a procedure for reading a value
from a particular database. contains a wide variety of data,
and depending on some of the input parameters, different
sorts of data are returned. Each of these becomes a supertype
of theDESCRIPTIONtype.

4.3. Type Equivalence

In addition to looking at the subtype relations, we can look at
the direct type equivalence relations we derive, i.e., we look
at types that occur in the same relational or arithmetic expres-
sions. The statistics derived needed for this is based on fewer
input tuples, as we know from Table 5 that there are 8 times
fewerexpression tuples thansubtypeOf tuples. The resulting
figure, however, is quite similar to Figure 4, so we omitted the
figure in the paper.

If we look at the maxima, they are again 19, 18, and lower.
As with the supertypes, one of the types responsible for this
is theCURSORtype. A variable of this type is compared with
18 other variables. Therefore, we conclude that the types of
these 18 variables must be the same as theCURSORtype. The
resulting type represents a screen position.

Another type that is equivalent to many other types is
DFHBMEOF. This is the type of a specialCICS variable which
has a constant value for a certain control character. After read-
ing the input entered from a screen, the status characters for
the strings that were read are compared with thisCICS vari-
able. The types of those status characters are thus equivalent
to the type of thatCICSvariable in our approach.

5. Assessing Inferred Relations

In this section we examine the relations that result from ap-
plying the resolution step. This will help us to understand the
merits of resolution and how it affects type pollution.

Before executing the resolution process, we prepare the de-
rived facts for system-level analysis. ThecopyOf relation that
is inferred from thecopy anddecl relations contains 121;915

relation tuples percentage

arrayLiteralIndex 107 0.05%
formalParam 107 0.05%
actualParam 191 0.09%
arrayIndexEquiv 509 0.25%
arrayIndex 537 0.26%
union 996 0.49%
literalTest 1614 0.80%
literalType 2577 1.27%
copy 2581 1.27%
literalAssign 3567 1.76%
contain 10212 5.03%
decl 10886 5.37%
subtypeOf 18362 9.05%
transSubtypeOf 21838 10.77%
expression 28368 13.98%
subtypeEquiv 42692 21.05%
typeEquiv 57704 28.45%
total 202848 100.00%

Table 6. Information inferred from Mortgage

tuples. The propagation ofcopyOf information in the derived
database takes 6 seconds. The resolution was done using a
grok script implementing the algorithm in Figure 2 which
takes 7 minutes for the case study at hand (on Sun Ultra 10,
300MHz, 576 M memory).

After resolution, the database contains 202;848 tuples. An
overview of these is shown in Table 6. For a number of rela-
tions (such asarrayIndex or literalTest), the number of tuples in
the resulting database issmallerthan before since the substi-
tution results in some tuples becoming duplicates. For others,
such assubtypeOf, the number of tuples increases, via propa-
gation of the equivalence relation.

-50

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 s

ub
ty

pe
s

ad
de

d
by

 r
es

ol
ut

io
n

Program sorted ascending by size (LOC)

percentage added
average = 12.3%

average of positive = 54.5%
average of negative = -18.4%

Figure 5. Subtypes added by resolution

6

class # of percent
size classes of total

2 373 63.4%
3 99 16.8%
4 53 9.0%
5 10 1.7%
6 8 1.4%
7 29 4.9%
8 1 0.2%

10 1 0.2%
11 5 0.9%
12 1 0.2%
13 4 0.7%
18 2 0.3%
19 2 0.3%

sum 588 100.0%

(a) program level

class # of percent
size classes of total

2 135 70.7%
3 22 11.5%
4 5 2.6%
5 4 2.1%
6 9 4.7%
7 6 3.1%
8 2 1.0%

10 1 0.5%
11 1 0.5%
12 1 0.5%
13 1 0.5%
24 1 0.5%
39 1 0.5%

118 1 0.5%
201 1 0.5%
sum 191 100.0%

(b) system level

Table 7. Size and frequency of equivalence classes

5.1. Subtype relation

One of the goals of the resolution process is to improve the
subtypeOf relation by removing tuples that are also equivalent.
On the other hand thesubtypeOf relation is also extended with
information of thetypeEquiv relation (e.g., ifA4B andB�C
thenA4 C). The percentage of subtypes that are added or
removed as a result of both modifications is shown in Figure 5.

In this figure we see that for most programs, resolution re-
duces the number of subtypes (i.e., resolution cleans up the
subtypeOf relation). The average reduction in these programs
is 18:4% with a maximum of 47:1%. There are however a cou-
ple of programs in which the number of subtypes grows. The
average growth in these programs is 54:5% and the maximum
is 393:8%. Inspection of these programs shows that the cause
of these large numbers is again theCURSORtype that was ear-
lier described in Sections 4.2 and 4.3. TheCURSORtype is the
subtype of a lot of types (say setS), and it is equivalent to a
number of types (say setE). The resolution process ensures
that all types in setE become subtypes of the types in setS.

As not all variables are used in comparisons (recall that
in COBOL it is very common to just move variables), other
types with many sub- or supertypes (such asDESCRIPTION

andP800-LINE) but which are never used in comparisons,
play no role of importance here.

5.2. Type Equivalence

The typeEquiv partitions types into equivalence classes. On
the program level, resolution does not have a big influence on
these equivalence classes. The explanation for this is that the
classes at the program level are small and tightly connected,

so all relations are already found by analysing the code (e.g.,
if 3 variables are equivalent, they will all be compared to each
other so the transitive closure does not find new tuples). An
overview of all classes that occur inMortgage and their sizes
is presented in Table 7a. The maxima are still 19 and 18 and
the average class size is 3. Furthermore, approx. 90% of the
classes have less than 5 equivalent elements.

Things get more interesting at the system level presented in
Table 7b. The maximum class size jumps to 201, followed by
118 but the total number of different classes drops to 190, one
third of the number of classes before resolution. Again, ap-
prox. 90% of the classes have less than 5 equivalent elements.

Inspection of the derived equivalence classes shows that the
class with 201 elements contains all elements that are equiva-
lent to theCURSORtype. All CURSORclasses occurring in dif-
ferent programs are taken together, as the underlyingCURSOR

variable is declared in a copybook. When we look at the code
we see that the elements in this class are typically used in a
relational expression with theCURSORtype, although in some
cases they are both a sub- and supertype of it and therefore
inferred to be equivalent.

The next biggest class has 118 elements and represents a
type holding someCICS status information. It contains all
elements equivalent to the typeDFHBMEOFdescribed in Sec-
tion 4.3, again coming from a copybook.

The class with 39 elements represents the index type for
some array type. The elements in this class were typically
found using the rule for array index equivalence. It contains
the primitive types of variables that were used to access arrays
in loops and those that were used for checking array bounds.
Here the array variable was declared in a copybook.

The last class we will discuss here is the one with 19 el-
ements. This class represents theRELATION-ID type and is
worth metioning since it contains a form of pollution that is
not solved by subtyping. The spurious type is aMORTGAGE-ID

type which is unrelated to theRELATION-ID type according
to the business logic. The reason that they end up in the same
class is that both types are used as parameter of a “function”
that does a sanity check on the number (11-check)andreturns
the corrected number when necessary. In the call both types
become subtypes of the input type of that function. After the
call, the output is moved back so the output type becomes a
subtype ofRELATION-ID andMORTGAGE-ID. Since the input
and output type for this function is the same,RELATION-ID

becomes a subtypeMORTGAGE-IDand vice versa so they are
considered to be equivalent.

We can solve such pollution by deriving an additionalcast
relation during fact extraction. Whenever a variable of a su-
pertype is assigned to a variable of a subtype, we derive that
the supertype is casted into the subtype. Furthermore, we can
use data flow analysis to derive what are the input- and what
are the output- parameters of a function. This mechanism also
allows us to deal with explicit casts as, for example, can occur
in C programs.

7

6. Related Work

Type inference forCOBOLis related to earlier work on type in-
ference for C [10], (semi)-automatic classification ofCOBOL
variables [2], and various approaches for detecting and cor-
recting year 2000 problems [7]. Applications include the use
of type inferencing to identify objects in legacy code [3]. A
more detailed overview of related work is given in [4]. Unique
in our approach is the use of subtyping for dealing with pollu-
tion. Our current paper adds a strong empirical basis for this
approach.

Recently, two new related papers have appeared. One of
these uses type theory as the basis for a year 2000 conver-
sion tool, using an approach like type inference to determine
date-related variables [5]. The other carefully analyses the
structure ofCOBOL records. It decomposes aggregates such
as records and arrays into simpler components based on the
access patterns specific to a given program [11]. Based on an
additional analysis of theCOBOL picture clauses, records are
split into “atoms”. This analysis of pictures is orthogonal to
our approach, and looks like a valuable addition.

7. Concluding Remarks

7.1. Contributions

In this paper, we carried out an empirical study into the rela-
tions between variables established byCOBOLtype inference.

We argued that such relations are necessary in aCOBOL
setting:COBOL programs contain a large number of variable
declarations (50% of a program’s lines of code consist of vari-
able declarations), but only half of these variables are actually
used. Inferred types help to understand how variables are used
and how they are related to each other.

The empirical study aimed at finding out how the prob-
lem of pollution is handled by the use of subtyping. Pollution
occurs when a counter-intuitive type equivalence is found for
two variables. Since it is impossible to check by hand the hun-
dreds of type equivalences classes found by type inferencing,
we devised a suite of numeric measurements directing us to
potential pollution spots.

We manually inspected, and explained in the paper, the re-
sults from these measurements. Of all inferred type equiva-
lence classes, only one contains a clear case of pollution: in
Section 5.2 we discuss how type casts could help to address
this problem.

To conduct our experiments, we developed a tool environ-
ment permitting all sorts of experiments. An important new
element is the use of relational algebra to do the inference
of type conclusions from derived type facts [8]. Moreover,
we devised a modular approach to infer types for variables
playing a system-wide role. Thanks to this modular approach,
system-level type analysis scales up to large systems.

7.2. Future work

Now that we have all machinery for conducting large scale
type inferencing experiments in place, and now that we un-
derstand which data to collect, we are in a position to apply
type inference to moreCOBOL systems. We intend to do this,
and collect further statistical data on other (larger) case stud-
ies.

Moreover, we plan to experiment with ways ofvisualising
type relations and to investigate additional ways of querying
the derived facts and performing the resolution step. In partic-
ular, we plan to look at the relational tool set discussed by [6].

A natural extension of our work is to conduct experiments
with metricsbased on variable relations. Can the data we col-
lected also be used to predict attributes of software, such as
maintainability? This might be a valuable addition to the more
common metrics which are mostly focused on complexity in-
duced by statements and control structures.

References

[1] M. G. J. van den Brand, A. Sellink, and C. Verhoef. Gen-
eration of components for software renovation factories
from context-free grammars. In4th Working Conf. on
Reverse Engineering; WCRE’97, pages 144–155. IEEE,
1997.

[2] X. P. Chen, W. T. Tsai, J. K. Joiner, H. Gandamaneni,
and J. Sun. Automatic variable classification for COBOL
programs. In18th Ann. int. Computer Software and Ap-
plications Conference; COMPSAC’94, pages 432–437.
IEEE, 1994.

[3] A. van Deursen and T. Kuipers. Finding objects using
cluster and concept analysis. In21st International Con-
ference on Software Engineering, ICSE’99. ACM, 1999.
To appear.

[4] A. van Deursen and L. Moonen. Type inference for
COBOL systems. In M. Blaha, A. Quilici, and C. Ver-
hoef, editors,Proceedings of the fifth Working Con-
ference on Reverse Engineering, pages 220–230. IEEE
Computer Society, 1998.

[5] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H.
Sorensen, and M. Tofte. Anno Domini: From type
theory to Year 2000 conversion tool. In26th Annual
Symposium on Principles of Programming Languages,
POPL’99. ACM, 1999.

[6] L. Feijs, R. Krikhaar, and R. van Ommering. A relational
approach to support software architecture analysis.Soft-
ware Practice and Experience, 28(4):371–400, 1998.

[7] J. Hart and A. Pizzarello. A scaleable, automated process
for year 2000 system correction. InProceedings of the

8

18th International Conference on Software Engineering
ICSE-18, pages 475–484. IEEE, 1996.

[8] R. Holt. Structural manipulations of software archi-
tecture using Tarski relational algebra. In M. Blaha,
A. Quilici, and C. Verhoef, editors,5th Working Con-
ference on Reverse Engineering, WCRE’98, pages 210–
219. IEEE Computer Society, 1998.

[9] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S.
Uhl. A reverse engineering approach to subsystem struc-
ture identification. Journal of Software Maintenance,
5(4):181–204, 1993.

[10] R. O’Callahan and D. Jackson. Lackwit: A program un-
derstanding tool based on type inference. In19th Inter-
national Conference on Software Engineering; ICSE-97.
ACM, 1997.

[11] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
26th Annual Symposium on Principles of Programming
Languages, POPL’99. ACM, 1999.

[12] A. Tarski. On the calculus of relations.Journal of Sym-
bolic Logic, 6:73–89, 1941.

9

