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ABSTRACT more than 50% of the lines of code. We even encountered sev-

: . . eral programs in which 90% of the lines of code were part of
0,
In a typicalCOBOL program, the data division consists of 50 /(fhe data divisiort

of the lines of code. A“to”.‘a“c type [nference can help to These figures have two implications. First of all, they sug-
understand the large collections of variable declarations co kst that only a subset of all declared variables are actually
tained therein, showing how variables are related based Do in aCOBOL program. If 90% of the lines are variable
their actual usage. The most problematic aspect of type Weclarations, it is unlikely that the remaining 10% will use all

ference ispollution, the phenomenon that types become tO{‘-hese variables. Indeed, in the systems we studied, we have

large, and contain variables that intuitively should not bemn(goserved that less than 50% of the variables declared are used
to the same type. The aim of the paper is to provide emp

) . ) J€ €MPIE the procedure divisioR.
ical ewdgnce for the hypothesls that t.he useso!ﬁtypmgs These figures also indicate that maintenance programmers
an effective way for dealing with pollution. The main result

heed help when trying to understand the data division part.

mc_ltudefa toto_l sethto catrry C.JUt ttype mfference exrt)erlments,%st reading the data division will involve browsing through
suite of metrics characterizing type interence oulcomes, anq., ¢ irrelevant information. Thus, the minimal help is to

the conclusion that only one instance of pollution was foun e which variables are in fact used, and which ones are not.

in the case study conducted. In addition to that, the maintenance programmer will want to
understand the relationships that hold between variables. In
COBOL, some of these relations can be derived from the data
division, such as whether a variable is part of a larger record,
Keywords and PhraseSoftware maintenance, program analwhether it is a redefine (alias) of another variable, or whether
ysis, variable usage, case study. it is a predicate on another variable (level 88).

. . . But not all relevant relations between variables are avail-
Note To appear inProceedings 7th International WorkShOpabIe in the data division. When do two different variables hold

on Program Comprehension 1999 (IWPC*9Bjay 5-7, 1999 values that represent the same business entity? Can a given

in Pittsburgh, PA, USA. variable ever receive a value from some other given variable?
Note Work carried out under projects SEN-1Software Ren- What values are permitted for this variable? Is the value of
ovationand SEN-1.5Ppomain-Specific Languages this variable ever written to file? Is the value of this variable
passed as output to some other program? What values are
) actually used for a given variable? What are the operations
1. Introduction permitted on a given variable?
In strongly typed languages, questions like these can be
In this paper, we will be concerned with the variables occufnswered by inspecting thgpesthat are used in a program.
ring in aCOBOL program. The two main parts of @OBOL  First, a type helps to understand what set of values is permit-
program are thelata division containing declarations for all teq for a variable. Second, types help to see when variables
variables used, and tipgocedure divisionwhich contains the epresent the same kind of entities. Third, they help to hide
statements performing the program’s functionality. Since {he actual representation used (array versus record, length of

is in the procedure division that the actual computations afray, ...), allowing a more abstract view of the variable. Last
made, one would expect this division to lzeger than the

data division. Surprisingly, we found that in a typicdBOL 1For three different systems, each approx. 100,000 LOC, we found aver-

.. . L - s of 53%, 43%, and 58%, respectively.
system this is not the case: the data division often compnsae[’iFor theMortgage system under study in this paper, on average 58% of

the variables declared in a program were never used, the percentages ranging
from 2.6% for the smallest up to 95% for the largest program.
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but not least, types for input and output parameters of proc@©BOL program, they can be used as labels within a type to
dures immediately provide a “signature” of the intended usnsure uniqueness. We qualify variable names with program
of the procedure. names to obtain uniqueness at the system level. Waiise

Unfortunately, the variable declarations irC®BOL data denote the primitive type of variabke
division suffer from a number of problems that make ther&quivalence By looking at the expressionsoccurring in
unsuitable to fulfil the roles of types as discussed abovetatements, aequivalence relatiobetween primitive types
In COBOL, it is not possible to separate type definitiongan be inferred. We distinguish three cases: (1) For relational
from variable declarations. This has three unpleasant consgpressions such as= u or v < u, an equivalence between
guences. First, when two variables need the same record strlicand T, is inferred. (2) For arithmetic expressions such as
ture, this structure isepeated Second, whenever a data divi-v+ u or vxu, an equivalence betwedpandT, is inferred. (3)
sion contains a repeated record structure, the lack of type debr two different array accessep/] andafu] an equivalence
initions makes it difficult to determine whether that repetitiofetweenT, and T, is inferred. When we speak oftgpewe
is accidental (the two variables are not related), or whetheill generally mean aequivalence class of primitive types
it is intentional (the two variables should represent the san$aibtyping By looking at theassignment statementssub-
sort of entity). Third, the absence of explicit types leads ttype relationbetween primitive types can be inferred. From
a lack of abstraction, since there is no way to hide the actuah assignment of the form:= u we infer thatT, is asubtype
representation of a variable into some type name. of Ty, i.e.,v can hold at least all the valuesan hold.

In short, the problem we face wittOBOL programs is that Union types From aCOBOL redefine clausea union type
types are needed to understand the myriads of different vaedation between primitive types can be inferred. When a
ables, but that theOBOL language doesot support the no- given entryv in the data division redefines another entry
tion of types. we infer thatT, andT, are part of the samenion type

In [4], we have proposed a solution to this problem. InSystem-Level Analysis In addition to inferring type rela-
stead of deriving type information from the data division, wé&ions within individual programs, we also infer type relations
infer types from the usage of variables in the procedure divitt the system-wide level. Such relations ensure that if a vari-
sion. The basic idea is simple: if two variables are used mble is declared in a copybook, its type is the same in all the
an assignment or comparison, we want to infer that these twidferent programs that copybook is included in. Furthermore,
variables should have the same type. In this paper, we wille infer that the types of the actual parameters of a program
take a closer look at type inferencing, proposing a new way oéll (listed in theUSINGclause) are subtypes of the formal pa-
implementation by means oflational algebra rameters (listed in the linkage section), and that variables read

Moreover, we will carefully study the problem pbllution,  from or written to the same databases have equivalent types.
which occurs when types become too large, containing vatiiterals A natural extension of our type inference algorithm
ables that intuitively should belong to different types. In [4]nvolves the analysis of literals that occur inC®BOL pro-
we argued that derivingubtypesather than equivalences han-gram. Whenever a literal valdeis assigned to a variable
dles the problem of pollution. In our current paper we teste conclude that the valdenust be a permitted value for the
this hypothesis, by presenting statistical data illustrating thgpe ofv. Likewise, whenv and| are compared, is con-
presence of pollution, and the effectiveness of subtyping fsidered a permitted value for the type\of Literal analysis
dealing with it. In particular, we look at the interplay betweelndicates permitted values for a type. Moreover, it can be used
subtyping and equivalence (for exampleAik B andB < A,  for findingenumeration types
we getA = B — how does this affect pollution?). Pollution The intuition behind type equivalence is that if

All experiments are done orMortgage, a real-life the programmer would have used a typed language, he or
coBoL/CICSsystem from the banking environment. With allshe would have chosen to give a single type to two different
copybooks (include files) expanded (unfolded), it consists GfOBOL variables whose types are inferred to be equivalent.
250,000 lines of code; unexpanded it consists of 100,000 lingge speak ofype pollutionif an equivalence is inferred which
of code. is in conflict with this intuition.

Typical situations in which pollution occurs include the use
of a single variable for different purposes in different pro-
2. TYIOe Inference gram slices; the use of a variable acting as a formal parameter,
to which a range of different variables can be assigned; and
the use of @RINT-LINE string variable for collecting output
from various variables.

In this section, we summarise the essential€0BOL type
inferencing: a more complete presentation is given in [4].
Primitive Types We distinguish three primitive types: (1)
elementary types such as numeric values or strings; (2) arrays;
and (3) records. Initially every declared variable gets a unique
primitive type. Since variables must have unique names in a



Data structure [ Relation  [dom|rng]| description |
extractor typeEquiv | T; | T | typeT; is equivalent to typd,
-7 subtypeOf T1 | T2 | typeTy is subtype ofT,

Cobol Fact Type type statistics literalType T | | | typeT containg
sources extractor relations collector
T~ Table 2. Inferred Relations
Camms)
1

arraylndexEquiv := arraylndex™ ~ o arraylndex
Figure 1. Overview of the type inference tool set. f:;;ﬁeEqu'v'_ 0
| Relation  [dom[rng| description | subtypeEquiv: equ(?:l?g;;eo(;a)@l)
contain T, | Ts | structured typd; containsT; typeEquiv := equiv(arrayindexEquiv U
union Ty | Tu | typesTy andTy are part of the same subtypeEquiv U expression)
union type subtypeOf := subtypeOf \ typeEquiv
subtypeOf | Ty | Tu | typeTyis subtype offy subtypeOf := subtypeOf U subtypeOf o typeEquiv
(variablev is assigned toi) U typeEquiv o subtypeOf
expression | Ty | Ty | variables of type3, andT, are used until fixpoint of  (typeEquiv, subtypeOf)
in the same expression literalType := typeEquiv o (literalTest U literalAssign
literalAssign | Ty | | | literal |l is assigned to a variable gf U (arraylndex‘l o arrayLiterallndex))
typeTy
literalTest Tv | | | literall is compared to a variable gf fun equiv(R) := (RU R 1)x
typeTy
arrayindex | Ta | T yariable of typeT; is used as inde Figure 2. Outline of the resolution algorithm.
in array of typeT,
arrayLitldx | Ta | | | literall is used as index in array df ) ]
typeTa addition to relational algebra, we use Unix tools I&ert |,
unig , awk, etc. to manipulate the relation files.
Table 1. Derived Facts In the final phase, we pass information about the type re-
. lations to the end-user. In this paper, we will mainly do this
3. Tool Architecture based on metrics, via the use griuplot . Other options

include the generation of data structures in a language sup-

The set of tools we use for applying type inferenc€@BOL  porting explicit type definitions, and visualisation of type in-
systems is shown in Figure 1. It separates source code anaytmation via graphs.
sis, inferencing and presentation, making it easier to adapt the
toolset to different source languages or other ways of presegt—l
ing the types found. o

In the first phase, a collection (databasefauttsis derived The different kinds of facts derived from tlmOBOL sources
from the COBOL sources. For that purpose, we use a parsare listed in Table 1. Theontain andunion relations are de-
generated from th€OBOL grammar discussed in [1]. Therived from the data division, the remaining ones from the pro-
parser produces abstract syntax trees (ASTS) in a textual repdure division.
resentation called the gkix format. These ASTs are then Observe that the relations in this table indicate the degree of
processed using a Java package which implements the visitatiguage-independence of type inferencing: it can be applied
design pattern. The fact extractor is a refinement of this visites any language from which these facts can be derived. Other
which emits type facts at every node of interest (for examplanguages like Fortran, C, or IBM 370 assembly, can be anal-
assignments, relational expressions, etc.). ysed by adding a parser and fact extractor for those languages.

In the second phase, the derived facts are combined and Bbrthermore, since the facts for different languages can easily
stracted to infer a number of conclusions regarding type relbe combined, this approach allows for the transparent analysis
tions. Both facts and conclusions are stored in a simple AS@f multi-language systems where, for example, some parts are
format, as also used, for example, in Rigi [9]. One of the toolgritten in COBOL and other parts are written in assembly.
we use for inferring type relationsggok [8], a calculator for
relational algebra[12, 6]. Relational algebra provides oper-g o
ators for relational composition, for computing the transitive "~
closure of a relation, for computing the difference betweethe resolution process infers relations between types from the
two relations, and so on. We use it, for example, to turn thfacts that were derived from th@OBOL system. Our resolu-
derived type facts into the required equivalence relation. bion process is based on relational algebra and is implemented

Derived Facts

Inferred Relations



Relation  [dom|rg| description |  add extra facts fronCOBOL sources concerning the use of

decl m | Ty | modulem declaresly copybooks and declaration of types. The extra relations are
copy my | mp | modulemy importsmy described in Table 3.

actualParam| Pn | Ty | nth actual parm. oP has typely Next, we join thecopy and decl relations, and infer a
formalParam| Pn | Ty | nth formal parm. o has typely copyOf relation that indicates which types used in a program

are actually “copies” of types that were declared in a copy-
book (Table 4). This join is done on the imported module
field mp of the copy relation with the module fielan of the
decl relation.

Finally, thecopyOf relation betweeil, andT is interpreted
as a substitution on the derived relations replacing all occur-
rences ofTp by Te. This substitution propagates type depen-
dencies through copybooks.

At this point we have achieved the same database as we
; , . X would have obtained by analysing all sources at once, but now
and literalType, summarised in Table 2. The inferradb- using amodularapproach. Such a modular approach allows

typeOf relation is a refinement of theubtypeOf relation di- ¢ 15 analyse large industrial-scale systems that are too big to
rectly extracted from th€eOBOL sources. For example, tyPesSya handled in memory at once

that are also equivalent are removed freuhtypeOf.
Besides the relations in Table 2, some auxiliary relations, ,mnje 3.1 Suppose we derive the following information
are inferred. These mcluderraqudenguuv for eguwalence from programs P and Q:
of types through array access (if variableand j are used
as indexes for the same arrAytheir types should be equiva- subtypeOf PA P.B  copy P Z decl Z ZB
lent), subtypeEquiv for type equivalence through subtyping (if subtypeOf Q.B Q.C copy Q Z

tA< Btgndl? <A Vgg getA ifB)’ andtransSubtypeOf for the Program P and Q both use variable B and import copybook Z
ransitive closure osubtypeOt. in which B is declared.

The resolution algorithm is outlined in pseudo code in Fig- . . : . )

ure 2. The operators used are those of relational algebra andJOInIng thecopy anddect relations yields twaopyOf facts:
can be mapped directly tiyok operators. In the pseudo code copyOf P.B Z.B copyOf Q.B Z.B

we use function abstraction and a construction that loops over o .

a body until a fixed point is reached. As these are not availagifter substituting these isubtypeOf, we get:

in grok , in the actual implementation we decided to write subtypeOf P.A Z.B  subtypeOf Z.B Q.C

out the functions explicitly and iterate a fixed number of times

over the body of the loop (the number is determined heuristPbserve that, via transitivity of treabtypeOf relation, we can
cally). now infer that P.A is a subtype of Q.C a relation that could not
have been found without the propagation through the copy-
book. O

Table 3. Derived System-Level Relations

Relation  |dom|rng| description |
copyOf | To | Tc | Tpis a copy ofTc |

Table 4. Inferred System-Level Relations

usinggrok [8].
The three key relations inferred as@eEquiv, subtypeOf,

3.3. System-Level Types

In order to do system-level type inference, the primitive types_ YV have written a dedicated C program to perform the sub-
have to be unique for the whole system. As described in [Lﬁytutmn since standard Unix tools lilsed orperl could not

this can be done by qualifying them with program name&andle the amount of substitutions involved@ime complex-
of this program isO(n log n+ m log n) (wheren is the

Primitive types derived from copybooks that are included 1% ) , i
the data division should be qualified using the copybook&mber of tuples iropyOf, andmis number of tuples in the
name — this ensures that variables of those types will have ti@t@base), and its space requirementars.

same type in all the programs that this copybook is included

in. ; ;
However, this approach does not allow us to deal witﬁ' Assessmg Derived Facts

system-level type inference without loading aHOBOL |, this section we study the nature of the facts that can be di-

sources in memory at once. We would need to analyse sglfiy derived from theOBOL sources, i.e., without applying
contained clusters of programs and copybooks, in order

‘ ) , % resolution step. This will help us to understand how many
qualify types with the correct names. Such clusters are likelyimitive types exist which ardirectly related to other primi-

to become as large as the complete system. , tive types, and what effect such types have on pollution.
To facilitate complete separation of the analysis of copy-

books and programs, we derive all information as before, and>ForMortgage, thecopyOf relation contains 12915 tuples.




relation | tuples | percentage] numbers at the x-axis can be seen as their program IDs. The

formalParam 107 0.26% dashed line indicates tlaeragenumber of subtypes per type.
union 129 0.32% It shows that most types have just 1 or 2 subtypes. To com-
arraylLiteralindex| 263 0.64% pute the average number of subtypes per type, only those types
actualParam 593 1.45% that have at least one subtype were taken into account (hence
expression 644 1.57% this average will always be larger than 1), ignoring types that
arraylndex 1263 3.09% were not used at all, or only in expressions. The overall av-
copy 2581 6.31% erage number of subtypes isl8. Finally, since the aim of
literalTest 3199 7'82?’ this figure is to find those types that are directly responsible
ﬁ?ebrgllg\z(s)ifgn 228?’ 12'3%2 for a high number of different subtypes: therefore only the
ontam 10712 5 4: 7% direc'ggubtype relation was taken into account, rather than its
Jeci 10887 56.63% transitive closure.

total 20889 | 100.00% Most programs do not contain types with more than 5 sub-

types; one program contains a type with an exceptionally large
number of 45 different subtypes which will be explained later.
Table 5. Facts derived from Mortgage If we look at theCOBOL code underlying these data, we
can understand the high maximum of 45. This involves the

The database that is derived from thiertgage sources type of a variable called®800-LINE , which is a string of

contains 40889 facts. An overview of these is shown in Talength 132. It acts as the formal parameter of a section
ble 5. All duplicates were removed, thus, if variablis as- called Y800-PRINT-LINE . Whenever data is to be printed,

signed to variablel in two different statements in a certainit is moved into that variable and th800-PRINT-LINE = sec-

program, this results in only one subtype relation betwken tion is called. Type inference concludes that the types of all

andT,. the variables that are printed this way, are subtypes of type of
Observe that theubtypeOf relation is more than 8 times Y800-PRINT-LINE .

as large as thexpression relation, i.e., variables in @OBOL

program are much more often moved around (assigned) tharp,  Direct supertypes per type

tested for their value. . . )
Another figure of interest consists of the numbersoper

. types per primitive type. This time, we particularly search
4.1. Direct subtypes per type for types with a large number stipertypesi.e., types of vari-
A question of interest is how many different subtypes eadles that are assigned to many other variables.
primitive type has. We search for those types which have a Figure 4 shows the number of supertypes per type. Again,
large number of different subtypes, i.e., types of variables th&ost types that have a supertype have one or two supertypes,
get assigned values from many other variables. the average belngi:’iZ Most of the maxima are below 6, but

In Figure 3 we show, for each program, the highest nung- number of programs contain types with many more super-
ber of different subtypes that a single type has. In the figur&/pes, for example with 17, 18, or 19 different ones.
the programs are sorted ascending by size (lines of code). Thef we look at theCOBOL source code, we can explain the

20

45 T T T T T T T T T T

maxjmum ——
average ----

maximum ——
average ----
40 B

35 q 15 F 4

30 q

25 q
10 q

A

0 80
Program sorted ascending by size (LOC)

20 q

# subtypes per variable
# super types per variable

15 q

o

10 q

Ll | WM‘HJ)HHHM‘

100 120 0 2

5 F

, um%x‘Mﬁﬁum%WﬁIH%HlH

0 20

\m‘WHMMM

40 60 80
Program sorted ascending by size (LOC)

o

100 120
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role of these types. The type with 19 supertypes turns out relation | tuples | percentage]

to be aCURSORype, used in &ICSinteractive setting. The arrayLiterallndex 107 0.05%
variable of this type navigates through the screen positions of a formalParam 107 0.05%
terminal. Itis compared with, and copied into a number of dif- actualParam 191 0.09%
ferent variables representing screen positions of certain fields, arrayIndexEquiv 509 0.25%
such as the position where to enter the name of a person. All arraylndex 537 0.26%
these positions together, each declared with numeric picture, union 996 0.49%
share one subtype: tt@JRSORype. Thus, the number 19 is literalTest 1614 0.80%
not due to pollution, but rather provides meaningful informa- literalType 2577 1.27%
tion for understanding the program, namely that all these types copy___ 2581 1.27%
. literalAssign 3567 1.76%

share the values of their commGWRSORuUbtype. Most other 4
. . . . contain 10212 5.03%
maxima higher than 6 in Figure 4 are due to SUCILIRSOR dec] 10836 5379,
type. _ SubtypeOf 18362 9.05%
One of the .norr—:URSOR cases is a type calleq transSubtypeOf | 21838 10.77%
DESCRIPTION which has 17 different supertypes. It is expression 28368 13.98%
the type of an output field of a procedure for reading a value subtypeEquiv 42692 21.05%
from a particular database. contains a wide variety of data, typeEquiv 57704 28.45%
and depending on some of the input parameters, different total 202848 100.00%

sorts of data are returned. Each of these becomes a supertype

of theDESCRIPTIONtype.
Table 6. Information inferred from  Mortgage

4.3. Type Equivalence tuples. The propagation ebpyOf information in the derived

In addition to looking at the subtype relations, we can look atatabase takes 6 seconds. The resolution was done using a
the direct type equivalence relations we derive, i.e., we loajtok script implementing the algorithm in Figure 2 which

at types that occur in the same relational or arithmetic expraskes 7 minutes for the case study at hand (on Sun Ultra 10,
sions. The statistics derived needed for this is based on fev@@0MHz, 576 M memory).

input tuples, as we know from Table 5 that there are 8 times After resolution, the database contains BB tuples. An
fewerexpression tuples tharsubtypeOf tuples. The resulting overview of these is shown in Table 6. For a number of rela-
figure, however, is quite similar to Figure 4, so we omitted thigons (such aarraylndex or literalTest), the number of tuples in
figure in the paper. the resulting database ssnallerthan before since the substi-

If we look at the maxima, they are again 19, 18, and lowetution results in some tuples becoming duplicates. For others,
As with the supertypes, one of the types responsible for thésich asubtypeOf, the number of tuples increases, via propa-
is theCURSORype. A variable of this type is compared withgation of the equivalence relation.

18 other variables. Therefore, we conclude that the types of

these 18 variables must be the same athRSORype. The 400 , , , , ,
. .y rcent dded —
resulting type represents a screen position. N fptégégg; - |
Another type that is equivalent to many other types is average of negative = -16.4%

300 | q

DFHBMEOFThis is the type of a specialiCSs variable which
has a constant value for a certain control character. After rea
ing the input entered from a screen, the status characters fpr
the strings that were read are compared with €3S vari-
able. The types of those status characters are thus equival
to the type of thaCICSvariable in our approach.
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250 | B
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5. Assessing Inferred Relations

o [T i T it i‘m }‘ LA
In this section we examine the relations that result from ap- | " ' I e B
plying the resolution step. This will help us to understand the ° 2 Program sorted ascending by size (LOC) 100 120
merits of resolution and how it affects type pollution.

Before executing the resolution process, we prepare the de-  Figure 5. Subtypes added by resolution
rived facts for system-level analysis. TtwpyOf relation that

is inferred from thecopy anddecl relations contains 12915




class| #of | percent class| #of | percent so all relations are already found by analysing the code (e.g.,
size | classes| of total size | classes| of total if 3 variables are equivalent, they will all be compared to each
2 373 | 63.4% 2 135| 70.7% other so the transitive closure does not find new tuples). An
3 99 | 16.8% 3 22| 11.5% overview of all classes that occur ortgage and their sizes
4 53| 9.0% 4 S| 2.6% is presented in Table 7a. The maxima are still 19 and 18 and
5 10| 1.7% > 4| 2.1% the average class size is 3. Furthermore, approx. 90% of the
6 8| 14% 6 9| 47% classes have less than 5 equivalent elements.
7 29 4-92/" 7 6 3'1?) Things get more interesting at the system level presented in
1% i 8'502 1?) i 3'20;2 Table 7b. The maximum clags size jumps to 201, followed by
T = 0:9% 11 i 0:5% 11.8 but the total number of different classes drops to 190, one
i3 1 05% e 1 05% third of the number of classes before resolutllon. Again, ap-
3 7 7% 13 1 05% prox. 90%.of the cIasse; have Igss than 5 equivalent elements.
18 5 0.3% > 1 0.5% Inspe_:ctlon of the derived qulvalence classes shows that_the
19 > 0.3% 39 1 0.5% class with 201 elements contains all elements tha_lt are equiva-
Sum 588 | 100.0% 118 1 0.5% lent to theCURSORype. All CURSORIasses occurring in dif-
201 1 0.5% ferent programs are taken together, as the underlysRSOR
sum 191 | 100.0% variable is declared in a copybook. When we look at the code
we see that the elements in this class are typically used in a
(a) program level (b) system level relational expression with thHeURSORype, although in some
cases they are both a sub- and supertype of it and therefore
Table 7. Size and frequency of equivalence classes inferred to be equivalent.
The next biggest class has 118 elements and represents a
5.1. Subtype relation type holding somecICS status information. It contains all

i i i elements equivalent to the typHBMEOHescribed in Sec-
One of the goals of the resolution process is to improve ﬂ?ﬁ’)n 4.3, again coming from a copybook

subtypeOf relation by removing tuplgs that are also equiva_lent. The class with 39 elements represents the index type for
On the other hand theubtypeOf relation is also extended with some array type. The elements in this class were typically

information of thetypeEquiv relation (e.g., IR BandB=C ¢, ;14 ysing the rule for array index equivalence. It contains

thenA < C). The percentage of subtypes that are added gy ,imitive types of variables that were used to access arrays

removed as a result of both modifications is shown in Figure i loops and those that were used for checking array bounds.
In this figure we see that for most programs, resolution "®ere the array variable was declared in a copybook.

duces the number of subtypes (i.e., resolution cleans up the-l-he last class we will discuss here is the one with 19 el-

;ubtypeOf relation). .The average reduction in these Programsnents. This class represents HELATION-ID type and is
is 1849 with a maximum of 41%. There are howevera cou-,,th metioning since it contains a form of pollution that is
ple of programs in which the number of subtypes grows. Tf}?ot solved by subtyping. The spurious type M@RTGAGE-ID

average growth in these programs is34 and the maximum e \which is unrelated to thRELATION-ID type according
is 3938%. Inspection of these programs shows that the Ca“t%%he business logic. The reason that they end up in the same

?f trzjese Ig;)rgg 'numbe'rs is 2gzain gngSORype that was ehar— class is that both types are used as parameter of a “function”
ler described in Sections 4.2 and 4.3. THERSORype is the that does a sanity check on the number (11-chankyeturns

subtype of a lot of types (say s}, andit is equivalentto @ g corrected number when necessary. In the call both types

number of types (say s&). The resolution process ensureg,o ., me subtypes of the input type of that function. After the

that all types in seE become subtypes of the typesinSet o, “tha output is moved back so the output type becomes a
As not all variables are used in comparisons (recall th@hbtype ORELATION-ID andMORTGAGE-IDSince the input

in COBQL it is very common to just move variables), otherand output type for this function is the SanRELATION-ID

types with many sub- or supertypes (SUCmCR'PT'QN becomes a subtyp@ORTGAGE-IDand vice versa so they are

and P800-LINE .) but which are never used in COMPparisons, hsidered to be equivalent.

play no role of importance here. We can solve such pollution by deriving an additiocet

relation during fact extraction. Whenever a variable of a su-

5.2. Type Equivalence pertype is assigned to a variable of a subtype, we derive that

the supertype is casted into the subtype. Furthermore, we can

Use data flow analysis to derive what are the input- and what

Pe the output- parameters of a function. This mechanism also
ws us to deal with explicit casts as, for example, can occur

C programs.

The typeEquiv partitions types into equivalence classes. O
the program level, resolution does not have a big influence
these equivalence classes. The explanation for this is that
classes at the program level are small and tightly connecte



6. Related Work 7.2. Future work

Type inference foCOBOLIs related to earlier work on type in- NOW that we have all machinery for conducting large scale

ference for C [10], (semi)-automatic classificationagBoL ~ YPe inferencing experiments in place, and now that we un-

variables [2], and various approaches for detecting and céferstand which data to collect, we are in a position to apply

recting year 2000 problems [7]. Applications include the usi/P€ inference to moreéoBOL systems. We intend to do this,

of type inferencing to identify objects in legacy code [3]. A2nd collect further statistical data on other (larger) case stud-

more detailed overview of related work is given in [4]. Uniqué®S- _ _ o

in our approach is the use of subtyping for dealing with pollu- Moreover, we plan to experiment with ways\asualising

tion. Our current paper adds a strong empirical basis for tHi€ relations and to investigate additional ways of querying

approach. the derived facts and performing the resolution step. In partic-
Recently, two new related papers have appeared. OneY"» We plan to look at the relational tool set discussed by [6].

these uses type theory as the basis for a year 2000 conve.rA natu.ral extension of'our work is to conduct experiments

sion tool, using an approach like type inference to determifféth metricsbased on variable relations. Can the data we col-

date-related variables [5]. The other carefully analyses tHFted also be used to predict attributes of software, such as

structure ofCOBOL records. It decomposes aggregates sudpaintainability? This might be a valuable addition to the more

as records and arrays into simpler components based on §@mon metrics which are mostly focused on complexity in-

access patterns specific to a given program [11]. Based on@#fed by statements and control structures.

additional analysis of theOBOL picture clauses, records are

split into “atoms”. This ar_laIyS|s of p|ctures.|.s orthogonal t‘References

our approach, and looks like a valuable addition.
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