
Type Inference for COBOL Systems�

Arie van Deursen

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/˜arie/

Leon Moonen

University of Amsterdam, Kruislaan 403

1098 SJ Amsterdam, The Netherlands

http://adam.wins.uva.nl/˜leon/

ABSTRACT

Types are a good starting point for various software reengi-
neering tasks. Unfortunately, programs requiring reengi-
neering most desperately are written in languages without
an adequate type system (such asCOBOL). To solve this
problem, we propose a method of automated type infer-
ence for these languages. The main ingredients are that if
variables are compared using some relational operator their
types must be the same; likewise if an expression is assigned
to a variable, the type of the expression must be a subtype of
that of the variable. We present the formal type system and
inference rules for this approach, show their effect on vari-
ous real lifeCOBOLfragments, describe the implementation
of our ideas in a prototype type inference tool forCOBOL,
and discuss a number of applications.

1991 Computing Reviews Classification System: D.2.2,
D.2.3, D.2.7., D.3.4, F.3.1, I.2.2.

Keywords and Phrases: Software maintenance, program
analysis, year 2000 problem, variable usage.

Note: To appear inProceedings 5th IEEE Working Confer-
ence on Reverse Engineering (WCRE’98), October 12-14,
1998 in Honolulu, Hawaii, USA.

Note: Work carried out under project SEN-1.1,Software
Renovation.

1. Introduction

The many different variables occurring in a typical program,
can generally be grouped intotypes. A type can play a num-
ber of roles:

� It is an indication of the set of values that is allowed
for a variable;

�This work was sponsored in part by bank ABN AMRO, software
house Roccade, and the DutchMinisterie van Economische Zaken(Depart-
ment of Commerce) via SENTER Project #ITU95017 “SOS Resolver”.

� A type groups variables that represent the same kind
of entities;

� A type helps to hide the actual representation (array
versus record, length of array, ...) used;

� Types for input and output parameters of a procedure
provide a “signature” of the expected use of that pro-
cedure.

Traditionally, types are associated with strongly-typed
languages, in which explicit variable and type declarations
help to detect programming errors at compile time instead
of run time.

In this paper we will be concerned with a rather differ-
ent use of types. In our opinion, types are a good starting
point for various software reengineering activities. We ar-
gue that the use of types as described in this paper is in
fact the underlying theory of the approach followed by a
number of existing reverse engineering tools. For exam-
ple, types can be used for migrating from a procedural to
an object-oriented language, isolating reusable components
from legacy sources, searching for potential year 2000 in-
fections, or for searching code that will be affected by the
introduction of the Euro: the single European currency.

Unfortunately, systems for which such reengineering ac-
tivities are most necessary, are generally written in lan-
guages with a rather limited type system. This makes
reengineering for such languages difficult. To solve this
problem, we propose methods toinfer a set of types from
programs written in such languages automatically. These
automatically inferred types can then be the starting point
for objectification, year 2000 remediation, etc.

The language we deal with in this paper isCOBOL. We
show how to infer a set of types automatically from (a sys-
tem of) COBOL programs. We present several varieties of
our type system, taking sub-typing, byte representations
and inter-program types into account. We describe how
we made a prototype tool that performs type inference on
COBOL code.

1



We have evaluated our approach using a case-study
where we apply the ideas described above toMortgage:
a 100,000 LOCCOBOL system from the banking area. The
examples in this paper are taken from that system.

We conclude by describing a number of important appli-
cations of our technique in the area of software reengineer-
ing.

2. Approach and Motivation

At first sight,COBOL mayappearto be a typed language.
Every variable occurring in the statements of the procedure
division, must be declared in the data division first. A typi-
cal declaration may look as follows:

01 TAB100.
05 TAB100-POS PIC X(01) OCCURS 40.
05 TAB100-FILLED PIC S9(03) VALUE 0.

Here, three variables are declared:TAB100-FILLED , which
is an integer (picture “9”) comprising three bytes initialised
with value zero;TAB100-POS, which is a single character
byte (picture “X”) occurring 40 times, i.e., an array of length
40; andTAB100 which is a record defined at level01, hav-
ing the two variables with higher level numbers, namely05,
as fields.

Unfortunately, the variable declarations in the data divi-
sion suffer from a number of problems, making them un-
suitable to fulfil the roles of types as listed in the beginning
of this paper. First of all, since it is not possible to sepa-
rate type definitions from variable declarations, when two
variables for the same record structure are needed, the full
record construction needs to be repeated. This violates the
principle that the type hides the actual representation cho-
sen.

Besides that, the absence of type definitions makes it dif-
ficult to group variables that represent the same kind of en-
tities. Although it might well be possible that such variables
have the same byte representation. Unfortunately, the con-
verse does not hold: One cannot conclude that whenever
two variables share the same byte representation, they must
represent the same kind of entity.

In addition to these important problems pertaining to
type definitions,COBOL only has limited means to accu-
rately indicate the allowed set of values for a variable (i.e.,
there are no ranges or enumeration types). Moreover, in
COBOL, sections or paragraphs that are used as procedures
are typeless, and have no explicit parameter declarations.

In our approach, we use types to group variables that rep-
resent the same kind of entities. We start with the situation
that every variable is of a unique primitive type. We then
generate equivalences between these types based on their
usage: if variables are compared using some relational op-
erator, we infer that they must belong to the same type; and

if an expression is assigned to a variable, the type of the
variable must be that of the expression. We also propose a
more refined scheme, in which a subtype relation between
the types of the expression and the variable is inferred for
assignments.

Furthermore, we use a similar approach to infer a min-
imal set of literal values that should be included in certain
types. This information can be used to replace hard wired
literal constants in a program with symbolic constants (i.e.,
replace them by variables that have the same initial value
and are not changed in the program). Type information is
important for such renovations since the constants for each
type might need to be changed independently as a result of
maintenance of the program.

Finally, from the minimal set of values of a given type
and the usage of variables of that type, we infer whether
such a type is an enumeration type: if variables of such a
type only get assigned values from this set and there are no
computations that might change that value then the type is
an enumeration type.

3. Notation

In this paper, we will consider the following primitive types:

Definition 1 The set T ofprimitive typesis defined by the
following productions:

N ::= Natural numbers
I ::= Set ofidentifiers
B ::= Set ofbyte sorts
P ::= B+ (Pictures of bytes)
T ::= elem(I ;P) (Elementary variable)

j rec(I ;T+) (Record type)
j array(I ;T;N) (Array type)

In other words, we distinguish type constructors for ele-
mentary data types, for records, and for arrays (with a given
length). All types have a name as their first component.
The precise choice of the set of byte sortsB can be cho-
sen at will: for our purposes, it consists of theCOBOL byte
markers such asX (character byte),9 (decimal digit), etc.,
as occurring inCOBOL picture clauses.

We will useTA to refer to the primitive type that can be
derived for a given variableA from the data division of a
program in whichA is used.

Below we define the language constructs that are used to
describe the type inference rules in the rest of this paper.

Definition 2 The set S ofsyntactic constructsis defined by

2



the following productions:

L ::= Set of literals
V ::= I (Identifier)

j I(E) (Array access)
E ::= L (Literal value)

j V (Variable)
j E1a-op E2 (Arithmetic operator)

C ::= E (Expression)
j E1rel-op E2 (Relational operator)
j V := E (Assignment)

S ::= C+ (Syntax)

The setL corresponds to literals such as numbers and
strings,V are variable and array accesses, andE are arith-
metic expressions. The setC consists of the set of constructs
that are needed for our purposes: arithmetic expressions,
relational expressions, and assignments. It contains only
those language constructs that affect the type inference al-
gorithm. The top or start setS is just a collection of con-
structs fromC.

Following [4], we will use so-calledjudgementsto ex-
press relations between syntactic constructs, and types. Let
Γ be atype environment, i.e., a mapping from identifiers to
types. We will distinguish the following five judgements:

� Γ ` �
Γ is a well-formed type environment.

� Γ ` E : T

ExpressionE is of typeT.

� Γ ` S: T1 � T2

An equivalence relation indicating that given construct
S, typesT1 andT2 are the same.

� Γ ` S: T1 4 T2

A partial order indicating that given constructS, type
T1 is a subtype of typeT2.

� Γ ` S: L 2 T

Given constructS, literal L is an element of typeT.

The sections to come will include a number ofinfer-
ence rulesindicating for what particular language con-
structs these judgements hold.

4. Inference Rules

In this section we describe a method to find anequivalence
relation between the primitive types within a single module
(COBOL program). Later, we will extend this method to
system level types and refine the results using subtypes.

TAB100 7! record(TAB100;

array (TAB100-POS;

elem(TAB100-POS[];X);40)
elem(TAB100-FILLED ;S9999 ));

TAB100-POS 7! array (TAB100-POS;

elem(TAB100-POS[];X);40);
TAB100-POS[] 7! elem(TAB100-POS[];X);
TAB100-FILLED 7! elem(TAB100-FILLED ;S9999 )

Figure 1. Type environment derived from COBOL
fragment from Section 2.

4.1. The Data Division

Every variable declared in one of the various sections of the
data division of aCOBOL program corresponds to a type
from the setT of primitive types in a straightforward man-
ner. For simple variables, thePIC clause is used to obtain
the sequence of byte sorts.OCCURclauses result in arrays,
and record definitions yield (nested) record types. To avoid
name clashes between fields with the same name coming
from different records, variables should be qualified using
the full nested record structure. This is a trivial translation
that can be done in a preprocessing phase on the incoming
COBOL code. As an example, Figure 1 shows the type en-
vironment resulting from theCOBOL variable declarations
shown in Section 2. Observe that everyCOBOL variable
obtains a unique type. In order to focus the presentation
on the most relevant issues, we postpone the treatment of
REDEFINEs until Section 7.

4.2. Types for Expressions

An arithmetic expression is constructed from variables,
constants, and arithmetic operators such as+;�;�; :::. We
derive the type of such an expression by distinguishing the
following cases:

1. Variable access: If e is a variable, array access, or
record field access, its type is the one obtained from
analysing the data division.

2. Arithmetic operators: Let e be an arithmetic expres-
sion of the forme1 a-op e2. We then infer several
types for this expression: every type ofe1 and e2 is
also a type ofe.

The rules formalising this are shown in Figure 2. As an
example, an expression consisting of just the variableA will
have one type,TA, the primitive type derived forA from the
data division. An expressionA + B will have two different
types: it is both of typeTA as well as of typeTB.

One might think that the type of an expression can be any
of the types of the identifiers occurring in that expression.

3



(Γ1; i 7! t;Γ2) ` �

(Γ1; i 7! t;Γ2) ` i : t
Variable Types

Γ ` e1 : t1
Γ ` e1 a-op e2 : t1

A-Op Left

Γ ` e2 : t2
Γ ` e1 a-op e2 : t2

A-Op Right

Figure 2. Rules to infer types for variable access
and arithmetic expressions.

In general, however, this is not the case: an expression can
contain an array access, for exampleA(I+1) + B(J+1) ,
but the type of variables occurring in the access (namelyI

andJ) are not part of the type of the full expression.
Observe that we take advantage of the fact that inCOBOL

all arithmetic operators take arguments that must have the
same type, namely a numeric type. IfCOBOL would con-
tain other operators, for example involving both strings and
numeric arguments, these operands should not receive the
same type. Support for such operators could easily be added
to our system by refining the inference rules for operators.

Furthermore, there are no rules for literal expressions
(constants): At this stage we are only interested in finding
out type information aboutvariables.

4.3. The Procedure Division

Now that we know how to derive types for variables and
arithmetic expressions, we can define how to infer relations
between the types of the syntactic constructs fromS. We
distinguish the following cases:

1. Arithmetic expression: If s2 S is an arithmetic expres-
sion, as we have seen in the previous section, the types
of its operands are defined to be equivalent.

2. Relational operator: If s2 S is a relational operator,
such as>;<;=; :::, the types of the operands are de-
fined to be equivalent.

3. Assignment: If s2Sis an assignment of the formv :=e
(recall that this corresponds toCOBOLstatements such
asMOVE, COMPUTE, MULTIPLY, ...), we define that the
types ofeandv are equivalent.

4. Array access: If S contains two constructs that both
have array accesses to the same variable, sayv(e1) and
v(e2), then the types of the index expressions are de-
fined to be equivalent. Note that this includes any pair
of accesses to the same arrayv in a program.

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` e1 a-op e2 : t1 � t2

A-Exp

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` e1 rel-op e2 : t1 � t2

Rel-Op

Γ ` v : t1 Γ ` e : t2
Γ ` v := e : t1 � t2

Assignment

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` S[v(e1)][v(e2)] : t1 � t2

Array Index

Figure 3. Rules to infer equivalences between
types, given arithmetic and relational expressions,
assignments, and arrays.

The rules formalising these cases are shown in Figure 3.
Note that the Array Index rule uses acontextvariable of the
form S[:::], which represents the source treeSwith a subtree
left open. We refer to [6] for more details.

As an example, let us infer the type relations for the ex-
pressionA + B < D. The subexpressionA + B leads, via
rule A-Exp, to an equivalence betweenTA andTB. As was
shown in the previous section, this subexpression has both
typeTA and typeTB. These two types are used when infer-
ring the relations between the types of the complete expres-
sion: Following rule Rel-Op, any type ofA + B is equiva-
lent to the type ofD. Hence we infer two more equivalences,
namely betweenTA andTD as well as betweenTB andTD.
Thus, the expressionA + B < D results in three equava-
lences:TA � TB, TA � TD, andTB � TD.

4.4. Example

For practical purposes, the most important result of the
type inference procedure are the equivalence classes for
types. As an example, consider Figure 4, which shows
a COBOL fragment manipulating strings. At first sight,
the exact relationship between the seven declared variables
will be unclear. Applying our type equivalence procedure
to this fragment, will infer thatN100, TAB100-MAX, and
TAB100-FILLED all belong to the same type, due to the
statements

MOVE TAB100-MAX TO N100.

and
MOVE N100 TO TAB100-FILLED

The equivalence class of these three types corresponds to
the index type of theTAB100-POS array.

The information that these three variables belong to the
same type, can be graphically displayed in an editor (for ex-
ample by giving them the same colour) which would help

4



01 N000.
05 N100 PIC S9(03) COMP-3.
...

01 TAB000.
05 TAB100-NAME-PART

10 TAB100-POS PIC X(01) OCCURS 40.
05 TAB100-MAX PIC S9(03) COMP-3 VALUE 40.
05 TAB100-FILLED PIC S9(03) COMP-3 VALUE ZERO.

...
R300-COMPOSE-NAME SECTION.

MOVE TAB100-MAX TO N100.
MOVE ZERO TO TAB100-FILLED.

PERFORM UNTIL N100 EQUAL ZERO
IF TAB100-POS (N100) EQUAL SPACE

SUBTRACT 1 FROM N100
ELSE

MOVE N100 TO TAB100-FILLED
MOVE ZERO TO N100

END-IF
END-PERFORM.

Figure 4. COBOL fragment for manipulating
strings.

the programmer to understand relationships between vari-
ables when browsing the program. Moreover, this informa-
tion can be used when migrating aCOBOL application to
a typed language. The typical Pascal type for this equiv-
alence class would be a range from 1 to 40 used as array
index type.

Other applications of type information in reverse engi-
neering are described in Section 11.

5. System-Level Types

The previous section describes a way of finding sets of
equivalent primitive types within a single module (COBOL
program). Given the type relations per program, we can
infer further type equivalences based on inter-program rela-
tions in the following manner:

� Make all identifiers unique per program, by qualifying
them with the program name.

Variables declared in copybooks that are included in
the data division should be qualified using the copy-
book’s name — in this way variables declared in copy-
books included in multiple programs will have the
same type.

� In a program call, the actual parameters (theCOBOL
USING clause) are assigned to the formal parameters
(the COBOL linkage section), resulting in an inferred
equivalence between their types.

� Read and write operations of different variables to the

LINKAGE SECTION.
01 L001-FUNCTION PIC S9(05) COMP-3.
01 L001-RAR001-FIXED PIC X(274).
01 L001-FORMATTED-NAME PIC X(46).
01 L001-ENTITY.

05 L001-ENTITY-NR PIC S9(11) COMP-3.
05 L001-ENTITY-TYPE PIC X(01).

01 L001-STATUS PIC S9(05) COMP-3.

Figure 5. Linkage section of callee (formal param-
eters of program RA36).

01 L000.
05 L100-RA36.

10 L100-FUNCTION PIC S9(05) COMP-3.
10 L100-RAR001-FIXED PIC X(274).
10 L100-FORMATTED-NAME PIC X(046).
10 L100-ENTITY.

15 L100-ENTITY-NR PIC S9(11) COMP-3.
15 L100-ENTITY-TYPE PIC X(01).

10 L100-STATUS PIC S9(05) COMP-3.
...
CALL ’RA36’ USING

L100-FUNCTION L100-RAR001-FIXED
L100-FORMATTED-NAME L100-ENTITY L100-STATUS.

Figure 6. Call to program RA36, together with ac-
tual parameters.

same database result in an inferred equivalence be-
tween the variable’s types.

A fairly typical call is shown in Figures 5 and 6. Re-
garding type equivalence, a first observation is that in the
call statements,RAR001-FIXED is an array of 274 bytes. In
other statements (not shown), it is assigned to variables de-
clared as a record also consist of 274 bytes. This is typical
COBOL programming style, and done to keep the interface
of the call statement simple. Our type inference approach
will find equivalences between these byte arrays and full
records. This allows us to retrieve the complete (complex)
interface that programs actually use for their inter-program
communication.

A second observation is that theL100-ENTITY param-
eter is in fact a record. The parameter passing is treated
as an assignment fromL100-ENTITY to L001-ENTITY .
This, in turn is used to infer a type equivalence between
these two records. When looking at the example, however,
we immediately see that the fields of these records, namely
ENTITY-NR andENITY-TYPE , should also be of the same
type. This, however, is not inferred by the rules given so far.

Clearly, this is a situation which can occur not only at
the inter-program level, but also within programs. What
we need is a rule which says that if two structure types are
inferred to be equivalent, and if these types have the same
structure (without looking at the names), we can infer an
additional equivalence between the sub-level types.

5



( j = 1:::n) (8k:1:::n : rep( fk) = rep( f 0k))

Γ ` S: rec(i; f1; :::; fn)� rec(i0; f 01; :::; f 0n)

Γ ` S: f j � f 0j
Fields

(rep(t) = rep(t 0))

Γ ` S: array(i; t;n)� array(i0; t 0;n)

Γ ` S: t � t 0
Arrays

Figure 7. Rules for substructure completion.

To formalise this, we first need the notion ofrepresen-
tation (i; p; t;n are variables ranging overI ;P;T;N, respec-
tively):

Definition 3 We define rep: T ! P, which gives the byte
representation of a type inductively by

rep(elem(i; p)) = p
rep(rec(i; t1:::tn)) = rep(t1):::rep(tn)
rep(array(i; t;n)) = rep(t)n

The rules in Figure 7 then deal with inferring equivalence
for subconstructs. The Fields rule states that if we know that
two records are inferred to be equivalent, and if we know
that they have exactly the same number of fields, and every
two fields have the same representation, then we can infer
that the fields must be equivalent as well.

The Arrays rule states that if we know that two arrays are
inferred to be equivalent, and if we know that their elements
have the same representation, then we can infer that these
elements must be equivalent as well.

6. Assessment of Type Equivalence

The rules provided so far describe how an equivalence rela-
tion between primitive types can be derived from aCOBOL
program. These rules are intuitive, and in general they pro-
vide meaningful equivalences. There are, however, a num-
ber of problematic situations for which inferring type equiv-
alences is not satisfactory.

First of all, it may be the case that one variable is be-
ing used for different purposes in different slices of the pro-
gram. For example, a variableTMPmay be assigned the
8-digit variablePHONE-NRin one slice, and an 8-digitDATE

in another. The rules provided so far will infer equivalences
for both assignments. By transitivity of equivalence, we
then get thatPHONE-NRandDATEare of the same type.

A similar situation can occur in a procedure call. In
COBOL, this can happen in a programCALL, where the
variables in theUSINGclause are the actual parameters, and

Γ ` e : t1 Γ ` S: t14 t2
Γ ` e : t2

Subsumption

Figure 8. Rule for reasoning with the has-type re-
lation in combination with the subtype relation.

those in theLINKAGE SECTIONthe formal ones. Alter-
natively, aPERFORMstatement can be used, in which case
global variables can be used as formal parameters (for an
example, see the next section). With the rules given so far,
all actual and formal parameters of a procedure will obtain
the same type. This may lead to undesirable situations, if
the procedure, for example, deals with strings in general,
and is given actual parameters of different sorts such as
STREETor CITY .

Another situation that does occur in practice is that a
single variable, for exampleZEROES, is assigned to many
different variables during the initialisation phase. Alter-
natively, one variable, for examplePRINT-LINE , can re-
ceive values from many different variables occurring in a se-
quence of assignments involving output operations. Again,
this will give all these variables the same type.

In all these situations, the inference rules lead to too
many equivalences, to which we will refer astype pollu-
tion. In the next section, we discuss howsubtypingcan be
used to address this problem.

7. Subtypes

A type is an indication for a set of permitted values. If the
set of permitted values for typeT1 is a subset of the values
of typeT2, typeT1 is said to be asubtypeof T2, writtenT14

T2. Subtyping makes a type system more flexible, since an
element of a type can be considered also as an element of
any of its supertypes, thus allowing an element to be used
flexibly in many different contexts [4, Section 6].

The rule for reasoning about type assertions in the pres-
ence of subtyping is shown in Figure 8. In addition to that,
we need rules to explicitly infer a subtype relationship be-
tween two types. Assignments are the natural place for this:
If v is assigned an expressione, the type ofv should at least
contain the values ofe, i.e., the type ofe is a subtype of
the type ofv. The rule formalising this is shown in Fig-
ure 9. With subtyping this rule should be used instead of
the “Assign” rule from Figure 3, which infers a straight type
equivalence.

Inferring subtypes has some important practical bene-
fits. Consider, for example, the fragment of Figure 10,
which invokes the procedureR300-COMPOSE-NAMEtwo
times. SinceCOBOL procedures cannot have parameters,
the variableTAB100-NAME-PARTis used to simulate an in-

6



Γ ` v : t1 Γ ` e : t2
Γ ` v := e : t24 t1

Sub-Assignment

Figure 9. Subtype inference rule for assignments.

01 RAR001-RECORD
03 RAR001-VAST

05 RAR001-NAME PIC X(27).
05 RAR001-INITIALS PIC X(05).

...
R210-INITIALS SECTION.

MOVE RAR001-INITIALS TO TAB100-NAME-PART
PERFORM R300-COMPOSE-NAME
EXIT.

R230-NAME SECTION.
MOVE RAR001-NAME TO TAB100-NAME-PART
PERFORM R300-COMPOSE-NAME
EXIT.

Figure 10. Two calls to a procedure (section)
called R300-COMPOSE-NAME(see Figure 4). Variable
TAB100-NAME-PART(in fact a parameter of that sec-
tion) obtains a supertype, receiving values from
both RAR001-NAMEand RAR001-INITIALS .

put parameter. In the firstPERFORMstatement, it is given
the value ofRAR001-INITIALS , in the second the value of
RAR001-NAME.

Looking at the names and declarations, one can clearly
see that the type ofRAR001-NAME, a string of length
27 representing a person’s last name, and the type of
RAR001-INITIALS , a string of length 5 representing a per-
son’s initials, should be different. However, when infer-
ring type equivalences for assignments, they would become
equal, by transitivity via variableTAB100-NAME-PART.
With subtyping, we do not infer such an equivalence, but in-
fer that they should both have a common supertype, namely
the type ofTAB100-NAME-PART(which has length 40). As
described above, similar situations can occur with variables
that are used for collecting lines to be printed, temporary
variables, etc.

Using subtyping,REDEFINEs can be handled by a sim-
ple extension of our type language. InCOBOL, REDEFINE

clauses are used to define data structures that are known as
variant records in Pascal (or unions in C); these can be dealt
with by adding aunion typeconstructor to the set of prim-
itive typesT. During analysis of the data division, the type
generated for a number of redefined variables is the union
type constructed from the types of the individual variables.
Furthermore, a rule is added which infers a subtype rela-
tion between the components of a union type and the com-
plete union type. The remaining type inference rules stay
the same. For more information on union types, we refer

Γ ` e : t
Γ ` e rel-op l : l 2 t

Right literal

Γ ` e : t
Γ ` l rel-op e: l 2 t

Left literal

Γ ` v : t
Γ ` v := l : l 2 t

Literal assignment

Γ ` S: l 2 t1 Γ ` S: t1 � t2
Γ ` S: l 2 t2

Equivalent types

Γ ` S: l 2 t1 Γ ` S: t14 t2
Γ ` S: l 2 t2

Subtypes

Figure 11. Main rules for inferring minimal literal
containment in types.

to [4].

8. Literal Analysis

A natural extension of our type inference algorithm involves
the analysis of literals that occur in aCOBOL program. The
basic idea is that whenever a variablev is assigned a literal
valuel , or compared withl , then the type ofv should at least
contain the literall . Moreover, whenever we infer that two
types must be equivalent, elements contained in one should
be contained in the other. Figure 11 formalises these ideas.

An example use of this literal analysis is in the code be-
low:

EVALUATE RAR001-NATURE
WHEN 001 GO TO R180-100
WHEN 002 GO TO R180-100
WHEN 003 GO TO R180-100
WHEN 013 GO TO R180-100
WHEN OTHER GO TO R180-999

END-EVALUATE.

Here NATURE, is a number indicating the sort of entity a
large record describes. Depending on this sort, different ac-
tions are taken. In our case-study of theMortgage system,
our technique was able to find all constants that are used for
all variables of typeNATURE.

Consider the following piece of code:

IF RAR001-NATURE EQUAL 8
IF RAR008-NUMBER EQUAL 1234 AND

RAR008-ZIPCODE EQUAL ’5678AB’
...

Here, a selection is made based on a specific address that
is included in the code1. Our analysis will help to identify

1The actual address has been changed to protect the innocent.

7



such “special values” for a particular type, which provides
insight in the nature and actual usage of that type.

The literal type information can also be used to improve
the replacement of hard wired literal constants in a program
with symbolic constants. The algorithm is simple: replace
the constants by fresh variables that are initialised to the
given literal value and are not changed in the program. For
example, the tool set of Sneed [19] has an option calledre-
assignfor such constant replacements. His approach is to
introduce only one symbolic constant which is substituted
for all occurrences of the literal constant (e.g. all occur-
rences of the literal ’18’ are replaced byCONST-18 and
a new data item ‘01 CONST-18 PIC 99 VALUE 18. is
added to the data division).

This approach has the disadvantage that the value of such
constants can never be changed during the remaining life
time of the reverse engineered program because the literal
values that were replaced could have been from different
types. For example: consider a program with two literal
values ’18’, one is used to check the number of passengers
on a boat, the other is used to check their age. Either of
these values might need to be modified during maintenance
and by replacing them both by the same symbolic constant
CONST-18such changes can not be made.

The types we infer for literals allow a much more refined
renovation: they can be used to replace all occurrences of
a literal constantof a given typewith a symbolic constant
for that type. As a result, the constants can be modified
independently of each other.

Note that generating names for these constants is no
problem, they can either be derived from the name of the
type or a fresh prefix can be generated for each new type,
similar to theCONST-18example above.

The results of the literal type inference described above
provide an indication of the minimal set of values that
should be included in a given type equivalence class. From
this set of values of a given type and the usage of variables
of that type, we infer whether such a type is anenumeration
type, i.e., if variables of such a type only get assigned val-
ues from this set and there are no computations that might
change that value then the type is an enumeration type.

9. Implementation

We have implemented our ideas in a tool performing type
inference onCOBOL code. The tool readsCOBOL source
code and its outputs are the types, typed literal elements,
and enumeration types that occur in that code. The architec-
ture of the tool is shown in Figure 12. The boxes represent
data, the ellipses represent processes and the arrows depict
the flow of data through the system. The solid objects in the
figure describe the basic type inference tool. The dashed
and dotted objects refer to the extension of our system with

literal type detection (dashed) and enumeration type detec-
tion (dotted) described in Section 8.

We start with the stepextract primitive typeswhich finds
a setP of primitive types given the data division of the
source code. This set is stored in a type environment for
the variables of the data division.

We then perform thederive type relationsstep, which
combines the primitive types and the usage of variables in
the procedure division. The result is a set of relations, which
can either be equivalences (T1 � T2) or partial orderings
(T14 T2) for subtyping. For example, theCOBOLstatement
MOVE A TO Bresults in the relationTA4 TB.

The type resolutionstep infers the types by comput-
ing P=�: the partition of the set of primitive types that is in-
duced by the derived equivalence relation. Thus the inferred
types are the equivalence classes of primitive types modulo
�. The derived subtyping order4 on primitive types can be
used to compute a subtyping order on the inferred types: if
T14 T2 then[T1]� 4 [T2]�.

Obviously, it is not possible to fully automatically find a
meaningful name (or representative) from a set of primitive
types. However, we found that it is possible to derive a sug-
gestion for the type name by lexical analysis of the names
of the variables that are of a given derived type. Our case
study shows that in almost all cases these variables have a
common substring. We suggest to use this string as base for
the type-name.

Platform We have implemented the architecture using
the ASF+SDF Meta-Environment [12, 6, 1]. Furthermore,
some pre- and post-processing was done using standard
Unix tools likeperl .

The ASF+SDF Meta-Environment is an interactive de-
velopment environment for the algebraic specification of
formal (programming) languages. It takes a syntax defini-
tion of a language and an algebraic specification that de-
scribes operations on programs written in that language.
From these two, the system generates a programming envi-
ronment that contains scanners, parsers and syntax-directed
editors for the language, and tools that perform the specified
operations on programs written in that language [6].

To get an environment for analysingCOBOL, we have in-
stantiated the ASF+SDF Meta-Environment with aCOBOL
grammar [3] and generatednative patternsand traversal
functionsfrom this grammar [2, 18]. This gives us a tool
that provides a default pass over the full abstract syntax tree
of COBOL programs. This default pass can be specialised
for particular constructs which allows us to focus only on
the COBOL constructs that are important for our problem.
In a single traversal of the source code we extract the primi-
tive types, and derive the relations between types. Since the
ASF+SDF Meta-Environment uses algebraic specifications,
we were able to use the type-inference rules presented in the

8



COBOL
code

extract
primitive

types

primitive
types

derive
type

relations

type
relations

type
resolution

types

derive
typed literal
elements

typed literal
elements

derive
enumeration

types

enumeration
types

Figure 12. Tool architecture.

Figures 2, 3, 7, 8, 9, and 11 almost literally.

10. Case Study

In order to assess the effect of type inference on real life
systems, we studied an existing legacy system calledMort-
gage2, aCOBOL/CICSapplication of 100,000 lines of code.
It consists of an on-line (interactive) part, as well as a batch
part, and it is in fact a subsystem of a larger (1 MLOC) sys-
tem.

We used the implementation of type inference described
in the previous section to infer the equivalence classes as
well as the subtype relations between them. To enable us
to assess the resulting types, we visualised the type rela-
tions as directed graphs in which variables are nodes, and
arrows and lines represent subtype and equivalence rela-
tions respectively. Inspection of these graphs revealed the
following issues.

First, assignments are the predominant factor responsi-
ble for creating type relations. In other words,COBOL pro-
grams contain moreMOVEstatements then (conditional) ex-
pressions.

Second, the sets of related (via subtyping or equivalence)
variables are fairly small. For example, many variables are
only once assigned to another variable. We encountered
only very few cases in which there were more than 25 dif-
ferent variables involved. This is due to the fact that the
types inferred reflect the actualuseof variables. This gives
an interesting comparison with languages that are strongly
typed. In such languages, one would declare many different
variables of type “int”, which may be used for many differ-
ent purposes. Typeinferencingfinds different types for all
these purposes, based on their actual use (see also [17]).

A question of interest is to what extent type pollution
(inferring too many equivalences) as discussed in Section 6
is present inMortgage, and whether the proposed solution,
subtyping, is adequate. For most of the variables, pollution
is not an issue, i.e., subtyping can be safely replaced by type
equivalence. However, all forms of pollution as discussed

2This system was also used as case study in [21, 7].

in Section 6 do occur inMortgage. Typical cases include
the use of a singleMOVEstatement to initialise many differ-
ent variables, the use of alpha-numeric string variables to
represent various types of strings, and the use of sections
that use global variables to simulate formal parameters per-
mitting values of different types (different sorts of keys, for
example). In all these cases, subtyping provides the proper
solution.

Many constants inMortgage deal with enumeration
types. Not all enumeration types inMortgage contain a
consecutive series of numbers: in some cases during main-
tenance certain numbers may have been removed; in other
cases this indicates that a particular program deals with spe-
cific enumerated cases only.

Another group of constants occurring inMortgage deals
with program names, and are used in statements that invoke
other modules, but in which the name of the module is con-
tained in a variable. Our constant analysis helps to identify
the possible values of such variables, which is necessary,
for example, if one wants to derive the call graph of such
programs.

In addition to the qualitative statements listed above, it
would be useful to have some quantitative data on types as
well, and to collect these for many different systems. We
are in the process of collecting data such as the average and
maximum of the size of equivalence sets, the number of
types related via subtyping, and the number of supertypes
per type; the number of equivalence relations divided by the
number of subtype relations; and the percentage of declared
variables that is never used (which may be up to 10%).

11. Concluding Remarks

Applications Type inference forCOBOL systems has
many applications. We have presented one, literal analy-
sis, in considerable detail in Section 8. Here we discuss a
selection of other applications.

One of the most direct applications of type inferencing
is in tool support for year 2000 and Euro conversions. Type
inferencing will find a number of types, and matching on

9



names or record structures in these types will classify cer-
tain types as “year”, “month”, “two-digit date”, “currency”,
etc. Indeed several of the published year 2000 solutions
[10, 11] search for date-infections by propagating date-
seeds via an equivalence relation between variables that is
very similar to inferred type equivalence. Moreover, type
inferencing can be used to realize thestatic date analyser
discussed in [8].

An application using all types rather than just the date-
related ones is migratingCOBOL systems to a typed lan-
guage, such as Pascal or C.

One step further is migratingCOBOL to an object ori-
ented language. A typical route is to usesubsystem classi-
fication techniques[13] for that purpose, which aim at de-
composing a large system into, potentially reusable, com-
ponents or classes. This is generally by applying a numer-
ical clustering algorithm to group syntactic units based on
various interconnection relations. One way is to group pro-
cedures based on the types they use. As Lakhotia [13] re-
marks, however, this technique cannot be used if the source
language does not support types. Type inferencing makes
these techniques available for theCOBOL domain as well.

A rather different potential application of type inferenc-
ing is during software maintenance: if types are inferred
both before and after the modifications, a presentation of
the difference between the inferred type sets to the program-
mer may help to detect inconsistencies and potential errors:
for example, if the new typing scheme unifies two old types
that are perceived as different, the modification made may
contain an error.

Related Work A principal source of inspiration to us was
Lackwit, a tool for understanding C programs by means of
type inference [17]. New in our work is not only the signif-
icantly different source language: Also new is the inference
of subtyping for assignments, and the use of type inference
to classify literals.

The approach of Kawabeet al. [11] uses an equivalence
relation between variables to deal with the year 2000 prob-
lem, which is similar to our inferred type equivalence. They
pay a lot of attention tonoise reduction, but have no solu-
tion similar to our subtyping approach. They formulate their
work in terms ofCOBOL, and do not provide a formal type
system. They discuss year 2000 as an application.

Chenet al.[5] describe a COBOLvariable classification
mechanism. They distinguish a fixed set of categories, such
as input/output, constant, local variable etc. They provide
a set of rules to infer these automatically, essentially using
data flow analysis. Their technique is orthogonal to ours:
types we infer can be used in local or global variables, for
database output or not, etc.

Newcomb and Kotik [16] describe a method for migrat-
ing COBOL to object orientation. Their approach takes all

level 01 records as starting point for classes. Records that
are structurally equivalent, i.e., matching in record length,
field offset, field length, and field picture, but possibly with
different names, are considered “aliases”. According to
Newcomb and Kotik, “for complex records consisting of
5-10 or more fields, the likelihood of false positives is rela-
tively small, but for smaller records the probability of false
positives is fairly large.” [16, p. 240]. Our way of type in-
ferencing provides a complementary way of grouping such
01 level records together, and will help to reduce this risk of
false positives for small records.

Wegman and Zadeck [20] describe a method to detect
whether the value of a variable occurring at a particular
point in the program is constant and, if so, what that value
is. Merlo et al. [14] describe an extension of this method
that allows detection of all constants that can be the value
of a particular variable occurrence. This differs from our
approach which finds all constants that can be assigned to
anyvariable of a given type. Furthermore, the methods de-
scribed in both papers take the flow of control into account
where as our approach is flow insensitive (control flow is
completely ignored). Consequently, their results are more
precise (e.g., we report constants that are used in dead code)
but their approach is also more expensive.

Gravley and Lakhotia [9] identify enumeration types that
are modelled using symbolic constants. Their approach is
orthogonal to ours since they group constants which arede-
finedin the same context whereas we group constants based
on theirusagein the source code.

Future Work We are currently in the process of extend-
ing our work in the following ways:

� Inference of input and output parameters forCOBOL
sections and paragraphs, by means of data flow anal-
ysis [15]. This information can then be used to refine
the inferred subtype relations.

� Extension of the empirical results, in order to further
demonstrate the usefulness of type inferencing, and to
assess the validity of the choices made. In particular,
we want to apply our technique to otherCOBOL sys-
tems and collect quantitative data on the inferred types.

� We are working on applying type inferencing to com-
ponent extraction, following [13, 7].

� Extension to new languages, most notably Fortran and
IBM 370 assembler.

� Visualisation of the inferred equivalence and subtype
relations, the typed literal and enumerations types on
the level of COBOL programs as well as visualisa-
tion of (the usage of) system-level types in complete
COBOL systems.

10



Contributions In this paper we have proposed a formal
system for inferring types fromCOBOL programs, which
we explained by means of a number of real-lifeCOBOL
fragments. We formulated rules for inferring type equiva-
lence classes, and we discussed how subtype relations can
be inferred to refine the analysis and deal with, for example,
variables representing lines to be printed or variables sim-
ulating input parameters. We discussed a number of appli-
cations, most notably the use of type inference to introduce
variables for literals occurring in statements. We have im-
plemented the type inference rules in the ASF+SDF Meta-
Environment [12, 6] and successfully applied this tool to a
real life, 100,000 lines of codeCOBOL system.

Acknowledgements We would like to thank Paul Klint
(CWI) and Joost Visser (University of Amsterdam) for
reading earlier drafts of this paper, and the anonymous
WCRE’98 referees who were able to make useful com-
ments and suggestions in spite of the font problem with the
version they reviewed.

References

[1] M. G. J. van den Brand, A. van Deursen, P. Klint,
S. Klusener, and E. van der Meulen. Industrial appli-
cations of ASF+SDF. In M. Wirsing and M. Nivat,
editors, Algebraic Methodology and Software Tech-
nology (AMAST ’96), volume 1101 ofLecture Notes
in Computer Science, pages 9–18. Springer-Verlag,
1996.

[2] M. G. J. van den Brand, A. Sellink, and C. Verhoef.
Generation of components for software renovation
factories from context-free grammars. InFourth Work-
ing Conference on Reverse Engineering; WCRE’97,
pages 144–155. IEEE Computer Society, 1997.

[3] M. G. J. van den Brand, A. Sellink, and C. Ver-
hoef. Obtaining a COBOL grammar from legacy
code for reengineering purposes. In A. Sellink, edi-
tor, Theory and Practice of Algebraic Specifications;
ASF+SDF’97, Electronic Workshops in Computing,
Amsterdam, September 1997. Springer-Verlag.

[4] L. Cardelli. Type systems. InHandbook of Computer
Science and Engineering, chapter 103. CRC Press,
1997.

[5] X. P. Chen, W. T. Tsai, J. K. Joiner, H. Gandama-
neni, and J. Sun. Automatic variable classification for
COBOL programs. In18th Ann. int. Computer Soft-
ware and Applications Conference; COMPSAC’94,
pages 432–437, Los Alamitos, CA, 1994. IEEE Com-
puter Society.

[6] A. van Deursen, J. Heering, and P. Klint, editors.Lan-
guage Prototyping: An Algebraic Specification Ap-
proach, volume 5 ofAMAST Series in Computing.
World Scientific Publishing Co., 1996.

[7] A. van Deursen and T. Kuipers. Rapid system un-
derstanding: Two COBOL case studies. InSixth In-
ternational Workshop on Program Comprehension;
IWPC’98, pages 90–98. IEEE Computer Society,
1998.

[8] A. van Deursen, S. Woods, and A. Quilici. Program
plan recognition for year 2000 tools. InProceed-
ings 4th Working Conference on Reverse Engineering;
WCRE’97, pages 124–133. IEEE Computer Society,
1997.

[9] J. M. Gravley and A. Lakhotia. Identifying enu-
meration types modeled with symbolic constants. In
Third Working Conference on Reverse Engineering;
WCRE’96, pages 227–236. IEEE Computer Society
Press, 1996.

[10] J. Hart and A. Pizzarello. A scaleable, automated pro-
cess for year 2000 system correction. InProceedings
of the 18th International Conference on Software En-
gineering ICSE-18, pages 475–484. IEEE, 1996.

[11] K. Kawabe, A. Matsuo, S. Uehara, and A. Ogawa.
Variable classification technique for software mainte-
nance and application to the year 2000 problem. In
P. Nesi and F. Lehner, editors,Conference on Software
Maintenance and Reengineering, pages 44–50. IEEE
Computer Society, 1998.

[12] P. Klint. A meta-environment for generating program-
ming environments.ACM Transactions on Software
Engineering and Methodology, 2:176–201, 1993.

[13] A. Lakhotia. A unified framework for expressing soft-
ware subsystem classification techniques.Journal of
Systems and Software, pages 211–231, March 1997.

[14] E. Merlo, J. F. Girard, L. Hendren, and R. De Mori.
Multi-valued constant propagation analysis for user
interface reengineering.International Journal of Soft-
ware Engineering and Knowledge Engineering, 5(1),
March 1995.

[15] L. Moonen. A generic architecture for data flow anal-
ysis to support reverse engineering. In A. Sellink, ed-
itor, Theory and Practice of Algebraic Specifications;
ASF+SDF’97, Electronic Workshops in Computing,
Amsterdam, September 1997. Springer-Verlag.

11



[16] P. Newcomb and G. Kottik. Reengineering proce-
dural into object-oriented systems. InSecond Work-
ing Conference on Reverse Engineering; WCRE’95,
pages 237–249. IEEE Computer Society, 1995.

[17] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In19th
International Conference on Software Engeneering;
ICSE-97. ACM/IEEE, 1997.

[18] M. P. A. Sellink and C. Verhoef. Native patterns.
In M. Blaha, A. Quilici, and C. Verhoef, editors,
Fifth Working Conference on Reverse Engineering;
WCRE’98. IEEE Computer Society, 1998.

[19] H. Sneed. Architecture and functions of a commercial
reengineering workbench. In P. Nesi and F. Lehner,
editors, Conference on Software Maintenance and
Reengineering, pages 2–10. IEEE Computer Society,
1998.

[20] M. Wegman and K. Zadeck. Constant propagation
with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2):18–210,
1991.

[21] T. Wiggerts, H. Bosma, and E. Fielt. Scenarios for
the identification of objects in legacy systems. In4th
Working Conference on Reverse Engineering, pages
24–32. IEEE Computer Society, 1997.

12


