
Experiences from testing a radiotherapy support
system with QuickCheck

Aiko Fallas Yamashita1, Andreas Bergqvist2, and Thomas Arts2

1 Simula Research Laboratory, Box 134, 1325 Lysaker, Norway
aiko@simula.no
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Abstract. We present a case study on the use of lightweight formal
methods for testing a real-time organ position tracking system used in
radiotherapy. Several properties of the system were modeled and verified
through automated test cases generated by QuickCheck. QuickCheck
was found useful in reducing the complexity inherent to testing medical
devices by detecting faults at system level, supporting regression test-
ing, and assisting in the exploration of atypical errors that could later
be analyzed and fixed in the system. We suggest that a combination of
lightweight formal methods and random test generation, supported by
automated simplification of test cases may represent a feasible option
in the medical domain; particularly for those projects with high-pace
development, a need for proof-based techniques/tools for certification
processes, and when the non-deterministic nature of real-time devices
demands the exploration/identification of heterogeneous fault sources.
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1 Introduction

With the increased use of software in medical devices, high demands on software
verification and analysis in the medical domain are inevitable. In many cases
formal methods are used to model medical devices [1], medical protocols [2], or
even entire systems [3]. Proofs are becoming an important aspect in medical
device certifications as organizations like the Food and Drugs Administration
(FDA) [4] and its European counterpart, Medical Device Directive (MDD) [5]
are moving from process-centered towards proof-based certification [6].

Nevertheless, full formalization of systems implies potentially high costs [7]
and, in some industrial contexts, it may constitute an unrealistic task. Yet after
the correctness of a model has been formally proven, its implementation still
needs to be tested. A combination comprising of lightweight formal methods
and testing has been proposed as a means for connecting the actual implemen-
tation and the formal properties of the system in a feasible and more direct way,
avoiding errors in implementation details [8]. Studies addressing the usage of
lightweight formal methods within different industrial contexts can be found in



current literature [9, 10, 11, 12]. To the best of the authors’ knowledge, few stud-
ies have addressed the usage of lightweight formal methods within the medical
domain.

In this article we present a case study on the use of lightweight formal meth-
ods for testing an implementation of a medical device. The device (constructed
by Micropos Medical [13]) is a real-time organ position tracking system used in
radiotherapy, i.e., a tumor is positioned in real-time in order to be able to accu-
rately deliver a dose of radiation. The SUT (System Under Test) was tested with
QuickCheck [14]. QuickCheck is a testing tool that randomly generates test cases
from a given model and supports automated simplification of failed test cases.
The study aims to explore the potential contributions as well as the challenges
of this specific set of techniques (i.e. lightweight formal methods and random
testing supported by automated test case simplification) in testing a safety criti-
cal medical device, in order to assess the viability of lightweight methods within
the medical domain.

The paper is subsequently organized as follows: Sect. 2 introduces briefly the
context for medical device verification, proposing the necessity of integrating test
tools and formal methods in the medical industry. Sect. 3 details related work
to the approach used in the case study. Sect. 4 provides the motivations for
our approach, and a description of the case study; indicating the testing setup,
and the properties tested in the SUT. Sect. 5 describes the results and analysis
derived from this study. Finally, Sect. 6 specifies the conclusions reached based
on this study.

2 Verifying medical devices

Two primary approaches to the process of medical devices delivery are utilized:
process centered verification and artifact-centered verification [15]. Process cen-
tered verification is often described by standards that suggest a series of practices
for the medical practitioners to base the development of the safety-critical soft-
ware products on [16, 17]. However, there is a discernible need for more artifact-
centered approaches as medical devices turn more and more sophisticated, com-
plex and wide-ranging; and general guidelines are proving to be insufficient for
delivering a safe product [18, 15].

The application of formal methods in medical devices supports this line of
action and could add significant confidence in the system by revealing errors
in both the system’s model and its implementation [19]. There are many suc-
cess stories regarding the use of formal methods in the medical domain, which
range from medical protocols [2, 20] to medical equipment controllers [21, 3] and
medical devices [1]. Studies elucidate the need of well-established processes that
include formal methods and ensure safe systems [22]. Despite the numerous ad-
vantages of formal methods, the actual implementation still needs to be tested
given the differences that could exist between the model and the implementa-
tion. Furthermore, a testing process is a “must” in current certification processes
regulated by medical authorities [23, 24, 25]. The development of testing frame-



works/tools and techniques, which adequately support formal methods in the
pursuit of safe systems, is still an unsolved issue. One of the biggest challenges
as pointed out by [6] will be the incorporation of modeling techniques and prac-
tical formal methods in the design of future software-based medical systems. As
the need for practical cases supporting the usage of formal methods in medical
systems increases, learning from other domains’ experiences in the use of tech-
nologies and referring to the approaches applied to practical situations becomes
valuable and pertinent. For this study, we have looked into a novel successful
approach in telecommunications for software verification, which combines formal
methods and testing [26].

3 Related work

Our approach is based on a tool called QuickCheck, which is a property-based
testing tool that automatically generates tests from a lightweight specification
and has the ability to simplify failing test cases (or counter examples) auto-
matically. Properties are modeled and used as input in QuickCheck in order to
generate random test cases. Although we use the term property-based, it is clear
that QuickCheck can be seen as a model-based testing tool, since it relies on
a formal abstraction of a system property in order to generate the test cases.
Another definition that may be applicable is specification-based testing, as we
specify several aspects of the system in the form of properties. In the subse-
quent text, we describe related work in the area of testing (such as model-based
testing, specification-based testing, boundary-based testing, on-the-fly testing)
as well as other associated approaches in the field of formal methods (e.g. model
checking).

Model-based testing (MBT) [27] is an approach that bases common test-
ing tasks such as test case generation and test result evaluation on a model
of the system. Examples of MBT can be found in [28, 29, 30]. Specification-
based testing on the other hand, tries to demonstrate that an implementation
conforms to a certain specification of a system. Some examples of SBT are
[31, 32, 33, 34, 35, 36, 37, 38]. Both approaches can be considered orthogo-
nal and most of the time well complemented with formal methods. An attempt
to establish a taxonomy for MTB can be found in [39]. Boundary-driven testing
as well as coverage-oriented testing are approaches that can be found together
with MBT and Formal Methods. Boundary-driven testing selects values that are
directly on, above, and beneath the edges of the legal input and output values.
In contrast to random testing, boundary testing may require some expertise in
order to select effective boundary cases [40]. Examples of boundary-driven ap-
proaches can be found in [41, 42]. A study addressing a combination of MBT
and the coverage-oriented approach can be found in [43].

Some may classify QuickCheck’s approach under the rubric on-the-fly test
generation, since it generates random test cases and verifies properties on the fly.
On-the-fly test generation has been used before in the verification of real-time
communication protocols [44]. This approach is considered suitable for real-time



systems, specially when the test case generation can react to the actual out-
puts of the SUT while running under the operation environment (Further on
we will explain how QuickCheck does this through the simplification of failed
test cases). Since real-time systems are characterized as being non-deterministic,
offline testing (the opposite approach to on-the-fly testing) is limited in its capac-
ity to react to changes in the environment and identify faults that are linked to
such changes. Concerning formal methods, a study addressing the usage of Model
Checking for verifying concurrent systems can be found in [45]. Test derivation
from Model-Checking is also described in [46].

4 Case study

This section provides the details of the study. We start by describing the med-
ical SUT. Secondly, we present a description of QuickCheck and motivate our
approach for testing. Subsequently, we present the properties tested along with
a description of the testing set-up.

4.1 Position tracking device

The SUT is called 4DRT (Four Dimension Radio Therapy) and is a real-time
organ position tracking system intended for supporting radiotherapy. It is able
to locate the position of an organ in four dimensions, three-dimensional space
and time. This enables one to monitor the position of tumors in prostate can-
cer patients and thereby helps to improve the accuracy of the radiation during
radiotherapy treatments.

The SUT is based on radio frequency transmission. The measurement of the
position is done through an implantable device in the organ (or nearby), which
acts as a transmitter. The transmitter emits a radio frequency, which is cap-
tured by multiple receivers, typically arranged in a plate on the treatment table
under the patient (See Fig. 1). The software uses the signal captured by the
receivers as input to calculate the position of the organ. A set of floating-point
values (representing the measured signals) is continuously sent to the software.
The software maps the floating-point values received from the Receivers to a
specific coordinate position in the real world. This coordinate position is given
in a coordinate system specific to the SUT, which has a predetermined range for
each axis (X, Y, Z) and two angles (Vy, Vz), i.e., rotation over y and z-axes. The
“mapping process” or the algorithm for calculating the position uses a mathe-
matical model not discussed here. The non-functional requirement described in
Table 1 explicates the accuracy required, and it is expressed in terms of confi-
dence intervals; i.e., positions calculated by the SUT should be within a radial
distance (in Euclidean space) of 2±1mm from the actual position to ensure that
the tumor receives radiation and not the healthy tissue around it.

The software of the SUT is the result of migrating a prototype from LabView
[47] to a commercial platform language i.e., Microsoft .NET C#. Pseudo-code
describing the underlying algorithm for position estimation and the LabView



Fig. 1. View of the 4DRT system in a treatment environment. Elements such as the
Linear Accelerator, the implantable device, and the patient plate are depicted.

Table 1. Description of the functional requirement (and its corresponding non-func-
tional requirement) tested in the SUT

Functional requirement: The software component should calculate the 5D
positioning of the transmitter (X, Y, Z, Vy, and
Vz, where Vy is rotation around Y axis and Vz is
rotation around Z axis)

Non-functional requirement: The system should achieve 3D difference or radial
accuracy of 2 ±1 mm

code were used for performing the migration. Even if the equivalence of the al-
gorithm implementation (between LabView and C#) can be reviewed through
code inspection, it is still a challenge to ensure correct behavior during its exe-
cution. Micropos Medical was mainly interested in a solution that may enable
testing in real life conditions and identify problems at system level. Due to signal
fluctuations that are dependent on the environment, on-site calibration is also
required. Micropos needs a cost-effective solution for performing system level
testing on a regular basis during development and after deployment. Support is
also needed for proving the correctness of the device for certification purposes.

4.2 QuickCheck and the proposed approach

What is QuickCheck? QuickCheck is a tool that combines random test gener-
ation, with a flexible language for specifying generators and the use of properties
to adjudge success [8]. The properties can be written in a restricted logic, and
then QuickCheck can be invoked to test the property in a large number of cases.
Properties can check conditions using Erlang code [48], quantify over sets, and
express preconditions. For example, the property

?FORALL(N,int(),
?FORALL(L,list(int()),

?IMPLIES(ordered(L),
ordered(insert(N,L))))).

specifies that the result of inserting an integer into an ordered list is itself
an ordered list (provided insert and ordered are defined in Erlang appropri-



ately). Here, FORALL and IMPLIES are examples of logic operators provided
by the QuickCheck library. QuickCheck generates test cases according to the
stated types and preconditions, and checks that conditions are true in each one.
QuickCheck allows focusing on the properties that a code should satisfy, rather
than on the selection of individual test cases. As mentioned before, QuickCheck
also performs the automated simplification of failing test cases. Details concern-
ing this last feature can be found in [26].

Property-based testing. This case study strives to perform testing of 4DRT.
Although how can QuickCheck support this process? From a Risk-Based Anal-
ysis outset, verifying the accurate position calculation is key in assuring a safe
treatment delivery. A QuickCheck property was formulated and corroborated
through execution (See Fig. 2). The property should hold if the radial distance
(See Formula 1) between the position estimated by the software and the actual
position is less or equal to 2mm. The advantage of QuickCheck over other tools
in this context is that the input to QuickCheck (the property modeled) is very
close to the mathematical specification that one would expect. Hence, it is easy
to inspect that the right aspect of the SUT has been tested) (cf. Fig 2).

√
((Xp −Xc)2 + (Yp − Yc)2 + (Zp − Zc)2) (1)

Random testing. In terms of coverage in the underlying test domain, it
is clear that due to the nature of the software we are testing, the process of
requesting only one single position calculation will cover the critical path of the
modules. Thus, if the transmitter is located in {0,0,0,0,0} and then we request
the position, we would have full coverage without revealing any failure in the
SUT. Therefore, we need to test many data points. QuickCheck could provide
random testing based on a formal specification for this purpose. From a Black
Box testing view, this specific SUT has a relatively simple functional testing
specification. The problem lies in the amount of variation of the parameters,
which makes the testing space very big (if we consider that the testing space is
in mm and we have five independent parameters in the space, given reasonable
finite floating point accuracy, the number of total testable points will ascend
to billions). QuickCheck provides random testing which constitutes a feasible
option for reasonably covering the testing space.

System level testing. Given the simplicity of the property (the accuracy)
that we want to test and the dependency of the whole SUT to correctly pass a
large number of tests; we estimate that we can catch all failures that otherwise
would be caught by unit testing. Thus, it seems that starting with system level
testing and leaving out unit testing is cheaper in this case than designing ded-
icated tests for each unit. Because of the simplicity of the underlying formula
for correctness (Formula 1), the ease with which this formula can be expressed
in QuickCheck, and the kind of errors we can expect (typical for floating point
handling), we decided to use system level testing as the only way of testing.



4.3 Testing environment and tested properties

The testing set-up. The lab setting used during testing consisted of a trans-
mitter, a receiver, software and an additional mechanical device called Auto
Setup3 to which the transmitter is attached. QuickCheck generated coordinates
within a range supported by the SUT. The coordinates were then used to con-
trol the Auto Setup, which, in turn, moved the transmitter to a corresponding
position. The software of the SUT calculated the position of the transmitter and
“sent” the X, Y, Z, Vy, Vz coordinates back to QuickCheck. QuickCheck then
determined the radial distance between the initially generated position and the
position calculated by the SUT. A test fails if this distance is more than 2mm.
The property is depicted in Fig. 2. QuickCheck communicated via TCP/IP with
a sort of request broker that we implemented in C#. This broker receives com-
mands from QuickCheck and requests the Auto Setup to move the transmitter
to a specified coordinate and then calls the software component of the SUT to
request the position estimation. Details of the testing set-up are provided in [49].

prop_within_margin(Margin) ->

?FORALL(Coordinate, antenna_coordinate(),

begin

move_antenna_to(Coordinate),

Position = read_position(),

radial_distance(Position, Coordinate) =< Margin

end).

radial_distance({XP,YP,ZP},{XC,YC,ZC}) ->

math:sqrt(

math:pow(XP-XC,2)+math:pow(YP-YC,2)+math:pow(ZP-ZC,2)).

Fig. 2. Accuracy Property tested in QuickCheck

Accuracy Property. In Fig. 2 antenna_coordinate() is a function that
generates a random triplet of x, y and z coordinates and a fourth value, which
is the angle of the transmitter relative to the specific surface. The generated
value is bound to the variable Coordinate. First the transmitter is moved to a
certain position. The function called move_antenna_to(Coordinate) returns a
value when the transmitter has reached the desired point. After that the most
recently estimated position is fetched from the SUT, it is then compared to
the actual coordinates. Whenever a test fails, i.e., any of the actions fails or

3 A simplified version of a Coordinate Measurement Machine (CMM)[52], referred to
here as Auto Setup is used. A CMM consists of a workspace where parts (a sensor
and a mechanical assembly for moving the sensor around the workspace) are fixtured.
In our case, the sensor consists of the transmitter and the mechanical assembly sit-
uates the transmitter at specific coordinates indicated through an external software
interface.



the result of the last inequality is false, then QuickCheck will automatically
search for simplified failing test cases. An example of a generated simplifica-
tion of failing test case constituted one of the border cases i.e., {0,0,0,0,0}.
QuickCheck randomly generated each test from a QuickCheck property similar
to the one presented in Fig. 2. Typically, integer values specifying millimeters
were used to move the transmitter to a given position (the Auto setup can be
moved in steps of 1mm). QuickCheck could for instance generate a test from
the property in which the transmitter is steered to position: X=58, Y=127,
Z=94, Vy=0, Vz=0. The estimated position: X=58.15106462, Y=126.9147189,
Z=94.82734652, Vy=-2.582979671, Vz=-3.070729491 is then registered. The dis-
tance to the real value is computed: 0.84533759 and since it is less than 2mm,
the test passes successfully4.

QuickCheck uses a uniform distribution in its random generation of coor-
dinates. For the purpose of testing the software, we are satisfied by that. The
non-functional requirement in Table 1 does indicate, however, to use a normally
distributed set of sample points and to generate a normally distributed sample
from them. Since patient data is unavailable at this point, we decided to be
stricter than that and use a uniform distribution, requiring an accuracy of 2mm,
without leaving space for points in one standard deviation. We analyzed the few
failing tests (i.e., those with a distance larger than 2mm) to see by how much
they deviated.

prop_symmetric(Margin)->

?FORALL(Coordinate,antenna_coordinate (),

begin

Extrapolated = extrapolate(Coordinate),

move_antenna_to(Coordinate),

Pos1 = read_position(),

move_antenna_to(Extrapolated),

Pos2 = read_position(),

Distance1 = radial_distance(Coordinate, Pos1),

Distance2 = radial_distance(Extrapolated, Pos2),

abs(Distance1 -- Distance2) =< 1

end).

extrapolate(Coordinate)->

X = upper_x - abs(lists:nth(1,Coordinate)-lower_x),

Y = upper_y - abs(lists:nth(2,Coordinate)- lower_y),

Z = upper_z - abs(lists:nth(3,Coordinate)- lower_z),

[X, Y, Z].

Fig. 3. Symmetry property tested in QuickCheck

4 It is important to point out that the Vy and Vz are only considered for performing
the position calculation and not for computing the radial distance. Hence the radial
distance shown in the example only contemplates X, Y and Z.



Symmetry Property . The SUT works under the assumption that the un-
derlying mathematical model used by the position calculation algorithm is sym-
metric. This means that given a coordinate, a similar accuracy on the corre-
sponding extrapolated coordinate is attained with SUT (i.e. if the transmitter
position is {36,41,73}, the SUT will give similar results in accuracy as if the
transmitter was located in the extrapolated value {134,139,171}). A sample code
is presented in property prop_symmetric()which is depicted in Fig. 3. In this
code we verify that the accuracy distance between a given coordinate value and
its corresponding extrapolated coordinate is less than 1mm. We used 1mm as
the delimitation value for practical reasons. The value was experimentally de-
termined by a test simplification that helped us to determine that the major
difference between results of extrapolated coordinates in the SUT didn’t exceed
1mm.

5 Results and Analysis

In this section, results from the testing process, perceived benefits from our
approach, and possible areas for improvement are presented and discussed.

5.1 Test results

Within the given coverage range, the SUT provided even better accuracy than
that specified by the non-functional requirement. One large sample of generated
tests had a mean of 1.528505mm for the radial distance, with a standard de-
viation of ±0.477921, where 87% of test cases passed and 13% failed; from the
failed test cases, 2% had between 2.4mm and 3.4mm for radial distance and 11%
between 2mm and 2.4mm. Others were even more accurate. Others were even
more accurate and only 2% of the test cases failed, displaying a radial distance
of 2.02mm to 2.04mm. The set of test cases proved that the SUT had better
accuracy than the requirement, and we felt very satisfied considering the results
above.

Most of the failures were detected in the first test cases QuickCheck produced
from the main property described in Sect. 4.3. In all cases, it was possible to
trace the failures back to the code. So, adequate corrections could be performed.
Typical issues involved floating point operations, type conversion, and the use
of erroneous types in the drivers’ interfaces. For instance, we found out that the
hardware driver for the Auto Setup did not accept decimal points as parameters
in one of the interfaces. This problem was identified when using QuickCheck for
sending the coordinates to the Auto Setup and it was observed that the latter
did not move the transmitter as expected. We could trace this problem back
to a division operation in the Auto Setup interface, which was performed prior
to sending the coordinates to the actual Auto Setup controller. This division
produced decimal values occasionally instead of just integers. Consequently, the
Auto Setup only moved when the resulting division was a whole number.



Another problem came about because of the use of incorrect casting oper-
ations (i.e. truncating decimals instead of rounding), which was detected while
observing a set of failed test cases showing a very similar radial distance. We
found that conversion in LabView is implicitly managed, in contrast to C#,
which requires a specific conversion method.

In addition, errors due to misinterpretations of the pseudo-code (i.e. dec-
laration of global variables and static values interpreted as local and dynamic
variables) could be detected by observing failed test cases that showed a very
big radial distance. A similar error was found in the same test cases, where an
incorrect constant value for one of the algorithms was used (due to the mistakes
during the migration process where an outdated version of LabView code was
used for a specific module).

The aforementioned issues are typical when performing migration from two
different platforms (in this case from LabView to C#), where some assumptions
(such as typing and management of decimal values) in the old platform are not
longer valid in the new platform. They are also related to a typical situation
in the medical domain when specifications regarding interfaces for hardware
drivers as well as software COTS (components off the shelf) are not so clear
[50]. QuickCheck facilitates code refinement and simplifies the task of detecting
those errors (mostly within a couple of property executions).

Note that we found all these errors by specifying just one property and gen-
erating random test cases from it. Therewith, the work of creating test cases is
dramatically simplified in contrast to more traditional testing approaches. Also
note that most of these errors are implementation errors and no matter how well
the model is formally verified, such errors can appear.

It was moreover possible to determine which of the underlying mathemati-
cal models (See Section 4.1) for calculating the position support a given radial
accuracy. Whenever a new model is introduced, it is possible to test it with
QuickCheck and its adequacy being visible almost immediately. For instance,
one day we had introduced a model, which was stated to provide better accu-
racy than the previous one; we ran QuickCheck on it and found a coordinate
with an unacceptable accuracy. Hence, the model was further improved before
being introduced again.

Issues in the communication protocol between QuickCheck and the C# re-
quest broker were also detected with QuickCheck. Incidentally, a problem due to
the overwriting of instructions from the C# request broker into the Auto Setup
driver was detected while executing the testing (this overwriting issue resulted
in a series of incomplete test executions). We found that the Auto Setup driver
demands a lapse of 40ms in order to process one instruction and read the next
one. Although the communication with QuickCheck and C# is not part of the
SUT, this last example gives us an insight of how QuickCheck could support inte-
gration testing as well, where the communication between software components
needs to be verified.



5.2 Perceived contributions from the approach

Improved coverage in regression testing. We perceived that it was possible
to introduce changes in other parts of the SUT (e.g. hardware, since this prod-
uct is evolving constantly; making devices smaller and faster) and afterwards
use QuickCheck to perform high-level testing. This enabled us to detect any
incongruence or errors that might result as a consequence from those changes.
The same situation applies to code enhancements performed in order to improve
performance. Some data processing in LabView could be implemented in C# in
a more efficient way. We run QuickCheck to make sure that these enhancements
in the code give the same results as the original algorithms written in LabView.
Furthermore, the coverage of the side effects resulting from changes introduced in
the software (or hardware) is more comprehensive with QuickCheck since it gen-
erates new random test cases each time. In that sense, QuickCheck constitutes
a good asset for a product that is constantly evolving (a scenario very typical
in medical device development [51]) in contrast to regression testing which will
run the same tests-suites every time.

Improving the system quality. An example of how QuickCheck helped in
improving the quality of the software occurred when we utilized various mathe-
matical models to see which ones gave better results (as explained previously in
Sect. 5.1). Furthermore, having a formal specification of the SUT that can actu-
ally be run and corroborated constitutes a significant advantage for certification
processes (as pointed out by [6] and mentioned in Sect. 2).

Cost effectiveness. Faults related to testing the mathematical model (ac-
curacy checking) were detected after on average 12.85 test cases, and abnormal
cases were detected after approximately 78 tests. It is very unlikely that one
would manually write test cases with the same results, but it shows that several
cases would have to be written for a good test suite, whereas here we only write
one property once.

Each time a test case is run, the transmitter must be positioned before per-
forming the measurement, and this is a rather expensive task if an automated
tool does not support it. In our case, it took in around 5-7 seconds per each test
case; depending on to which position the Auto Setup was moved. QuickCheck
requires relatively less amount of effort, and supports repetitiveness and gener-
ation of new values every time. Accordingly, it was very useful for the type of
testing performed.

Support for exploring heterogeneous fault sources. Another benefit
of QuickCheck is that it generates simplified counter-examples (or failed test
cases), which helps to analyze the nature of the error, sometimes leading to
the detection of problems at software level and system level. This was found to
be particularly useful when new technologies were involved (as in this context)
and the main goal is to explore as much as possible the behavior of the SUT
and uncover unexpected effects of the environment over the results as well as
exploring heterogeneous fault sources.

Support for detection of atypical faults. Sometimes you want to run
the property for a longer period and use extreme values (including boundary



cases) on the test parameters in order to find atypical results. By extending the
margin tolerance (increasing the radial accuracy limit), we could detect atypical
cases related to the transmitter angles (angles very close to the negative or
positive borders brought about significant radial distances). For instance, when
we modified the accuracy property and set the accuracy tolerance up to 6mm; an
apparently normal position (in the sense that it was within the coverage-range
of the SUT) resulted in a radial distance of almost 6mm. Following some more
tests, we found out that one version of the underlying mathematical model used
in the SUT was sensitive to strongly angled positions (in terms of Vy and Vz).
This finding lead to adjustments in the mathematical model in order to improve
its robustness against angling. It must be mentioned that the parameters used
for performing this type of testing exceeded the limits of what could be called a
normal scenario (e.g. test parameters derived from real patient data).

5.3 Areas for improvement

We have identified a number of limitations in our case study. This study does
not cover the necessity of having a given distribution (in this case a normal
distribution) and usage of sample data from patients.

When a test fails, we want to obtain the coordinates that give the highest
possible measurement fault, in other words, for which the distance to the position
is greatest. This is not possible to perform automatically with the current version
of QuickCheck. QuickCheck provides simplification of input data but cannot yet
connect it to the results of the actual test.

It is worth mentioning that one of the limitations of working in a lab is the
presence of sporadic radio transmission noise due to research activities taking
place at nearby companies. This also enforces a sufficient number of tests in
order to assure the robustness of the SUT in less than ideal situations. We can
store the test case sequences in QuickCheck and redo the property execution
in order to see any behavior that can be influenced by the environment and
signal fluctuations. This would be particularly good if we want to improve the
robustness of the system to external noise factors, which is very common in an
environment like a hospital.

Throughout this study, we have observed a potential for QuickCheck to sup-
port statistical functionalities (e.g. to test confidence intervals). Some planned
features for future releases include control or specification of the number of test
cases, and generation of test cases by sampling from a defined set of data (i.e.
real patient data). Also, improving the logging capabilities for QuickCheck could
notably expand the potential of using QuickCheck for test results analysis. Log-
ging not only failed test cases but also the asserted test cases would potentially
upgrade the tool.

6 Conclusion

We have described a case study on testing a medical device by using a for-
mal model as a basis for the automatic generation of test cases with the tool



QuickCheck. We found a number of errors in the code we developed and were
able to spot inaccuracies in prototype models. Early detection and correction of
these errors has lead to a high quality product being developed by the medical
company at which the case study was performed.

This case study assembles adequate conditions for using formal models. The
model is simple, clear and based on a mathematical formula. Verifying medical
devices may not always be like this case, and there may be a need for more com-
plex modeling for system behavior. Nevertheless we believe that is it worthwhile
to try the technology on more medical equipment. We intend to continue this
work involving more complex properties than the ones presented here.

The most remarkable aspects of this study focus on several positive results:
First, property-based testing proved to be feasible and cost-effective within
this domain in contrast to the normal tendency of using test suites. This is
of great value particularly for those projects with high-pace development, typ-
ically involving continuous modifications in the code in order to improve per-
formance and constant incorporation of new features. QuickCheck’s approach
on lightweight formal specification has great potential to be used in proof-based
certifications for medical devices as recognized by several medical practitioners
involved with the project. Automated simplification of test cases supported the
exploration of atypical cases, and was found useful for testing real-time systems
(which are commonly present in the medical domain). Finally, the capacity of
QuickCheck for performing high level testing can be regarded as a potential tool
that could facilitate the process of integration and system testing within the
highly complex domain of medical systems.
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