
How to Impact Software
Engineering Practice
Through Empirical

Research

EASE 2009

Magne Jørgensen

Simula Research Laboratory

• Empirical software engineering is a field

of research that emphasizes the use of

empirical studies of all kinds to

accumulate knowledge. (wikipedia)

• Basic assumption:

– The use of empirical studies is an efficient

way to evaluate knowledge or technology,

to add knowledge and to guide technology

innovations in software engineering.

• No assumption of ESE as “the only way”

or “the perfect way”, only that it

sometimes is worthwhile compared to its

alternatives, such as guru-based, marked

leader-based, fashion-based choice of

practices, ...)

Empirical Software Engineering (ESE)

Why Do We Need Empirical Studies?
“I see it when I believe it”

• Research Question: Do children get more hyperactive when given sugar?

• Common belief: Yes.

• Answer: Probably, no. At least 12 double blind, randomized controlled trials

find no effect (see Vreeman & Carrol, Festive medical myths, British Medical

Journal, 337:1288-1289, 2008) .

• Why most believe it: “When parents think their children have been given a

drink containing sugar (even if it is really sugar-free), they rate their

children’s behaviour as more hyperactive. The differences in the children’s

behaviour were all in the parents’ minds.”

http://images.google.no/imgres?imgurl=http://www.vg.no/uploaded/image/bilderigg/2006/08/14/1155542636989_30.jpg&imgrefurl=http://www.vg.no/helse/artikkel.php%3Fartid%3D126508&usg=__U7ucfs7D0AcNC9l2urbIn2bMegw=&h=280&w=430&sz=44&hl=no&start=5&tbnid=LILd_-BWxQvVIM:&tbnh=82&tbnw=126&prev=/images%3Fq%3Dhyperaktive%2Bbarn%26gbv%3D2%26hl%3Dno

Study on “I see it when I believe it” in SE
(Are Agile Methods Better?)

• Participants: 50 developers from a Polish company.

• Strong belief in agile: Before the study I collected their believes about
agile methods.

– 84% believed agile methods led to higher productivity (only 6% believed same
or lower productivity), and 66% believed it led to more user satisfaction (only
8% same or lower).

• Design of study:

– Generation of 10 project data sets (see example next page) with the triples:
Development method (agile or traditional), Productivity (FP per work-day), and,
User satisfaction (dissatisfied, satisfied, very satisfied).

– All values were RANDOMLY generated.

– A control gave that there were no (statistically) significant differences in the
average values. The average values were slightly in favor of the traditional
(non-agile) methods.

– Each developer was randomly allocated to one of the data sets and asked
to interpret it – based on the measured data alone.

Study on “I see it when I believe it” in SE
(Are Agile Methods Better?)

• Instruction:

– “Assume that this [the data set] is the only you
know about the use of agile and traditional
development methods in this company and that
you are asked to interpret the data. The
organization would like to know what the data
shows related to whether they have benefited
from use of agile methods or not.”

• Results:

– The interpretations of the data set related to
productivity and user satisfaction as isolated
variables were reasonable unbiased.

– The interesting finding was related to the more
complex interpretation of the combined (total)
effect on productivity and user satisfaction.

Very satisfiedSatisfiedDissatisfied

9

8

7

6

5

4

3

2

1

0

Very satisfiedSatisfiedDissatisfied

Agile

User Satisfaction

P
ro

d
u

c
ti

v
it

y
 (

F
u

n
c
t
io

n
 P

o
in

ts
/

W
o

r
k
-
d

a
y

)

Traditional

Individual Value Plot of Productivity

Panel variable: Development Method

Study on “I see it when I believe it” in SE
(Are Agile Methods Better?)

• Question: How much do you agree in: “Use of agile methods has caused a better

performance when looking at the combination of productivity and user satisfaction.”

• Result: Strong bias in favor of agile methods (see figure).

– The agreement in the claim depended on their

previous belief in agile methods.

– Previous belief: Agile methods are better (wrt productivity and user satisfaction)

 20 of 32 agreed

– Previous belief: Agile methods are not better

(on at least one aspect)  1 of 7 agreed

– Previous belief: Neutral  neutral answers

• The real-life bias is probably much stronger:

– Lack of objective measurement. More bias

in favor of the preferred method.

– More variables of importance, i.e., more

complex interpretation and more space

for wishful interpretation.

Disagree stronglyDisagreeDon't knowAgreeAgree strongly

20

15

10

5

0

OverallBetter

Fr
e

q
u

e
n

c
y

Histogram of OverallBetter

We Need ESE to Challenge “Obvious” Relationships:
More Risk Analysis Make You More Realistic

• Participants: 50 developers from a Polish company (the same as in the
previous study) randomly divided into two groups.

• Group LESS: Identify the most important risk, then estimate the effort.

• Group MORE: Think back on problems you have had in similar projects,
identify the most important risk factors of the current project, analyze each
risk factor with respect to probability and severity, then estimate effort.

• Actual effort: median of ca. 700 work-hours

• Those in Group MORE had:

– Lower median effort estimates
(200 vs 316 work-hours)

– Higher mean confidence in low
(<25%) estimation error (80% vs
70%).

• Results replicated in three other exp.

MORELESS

1200

1000

800

600

400

200

0

E
ff

o
rt

 e
s
ti

m
a

te
 (

w
o

rk
-h

o
u

rs
)

We Need ESE to ...

• Replace biased believes and opinions with evidence

• Replace non-representative experience with evidence representing a well-

defined population

• Replace our tendency of seeing patterns where there are none (I see what I

believe) with knowledge based on proper analysis methods

• Challenge existing practices

• Generate knowledge that cannot be derived from experience alone

... and many, many more good reasons.

The main problem of impact is, however, hardly to convince software

practitioners about the above benefits of ESE.

Ok, ESE is needed, but

• Are we able to convince the software

industry to use the results of ESE?

• What has been the role of ESE so far?

– The IMPACT project (SE researchers)

(www.sigsoft.org/impact/) claims: “Software

engineering research has significantly

affected software engineering practice.”

– It says, however, not much about the role of

empirical studies.

• Although there are success stories of ESE,

the software industry are, as far as I can see,

currently not strongly impacted by it.

– Why is this so?

– What can we do to get more impact?

The Ivory Tower of ESE

as Perceived by Software

Professionals?

http://www.sigsoft.org/impact/

Is ESE Valid and Useful,
but not Sufficiently Convincing?

An Empirical Study at JavaZone 2006 (and 2007)

Context: Assume that a test course provider claims: ”The course will lead to

substantial increase in test efficiency and quality for most participants.”

How likely do you think this claim is true, given [reduced explanation]:

A: No other information

B: Supporting claims from reference clients

C: Supporting study conducted by the course provider

D: Convincing explanation (but no empirical evidence)

E: Supporting experience from a colleague (It helped him)

F: Supporting scientific study completed at a renowned university

G: Own experience (It helped me)

Is ESE Valid and Useful,
but not Sufficiently Convincing?

An Empirical Study at JavaZone 2006

A: No other information

B: Support from reference clients

C: Supporting study conducted by the

course provider

D: Convincing explanation (but no

empirical evidence)

E: Supporting experience from a colleague

(It helped him)

F: Supporting scientific study completed at

a renowned university

G: Own experience (It helped me) GFEDCBA

100

80

60

40

20

0
P

ro
b

a
b

ili
ty

Boxplot JavaZone 2006

Is ESE Valid and Useful,
but not Sufficiently Convincing?

An Empirical Study at JavaZone 2006

• The results are probably “best case” results for ESE, i.e., the opinions are

related to the processes, not their outcome.

• When the outcome of our own subjective judgment diverges from the

outcome of analyses (scientific studies), we tend to trust the outcome of the

subjective judgment more than that of the analyses; even when one tend to

trust analytical processes more than those involved in subjective judgment

(Hammond et al 1987).

An Example of Something that Has Had Impact:
The Agile Manifesto

“We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.”

(agilemanifesto.org)

How Did Agile Methods Become a Leading
Development Method?

It is easy to document several, from an academic point of view, limitations of

elements of Agile methods:

• It is based on vague descriptions and poorly defined processes.

– What is for example the meaning of the Manifesto’s “individuals and interactions

over processes and tools”?

• It contains nothing fundamentally new and most of its elements are common

sense (and included in several existing methods).

– Iterative and incremental development principles have been around since the

1950s. People describing iterative and incremental methods before 1990 include:

Tom Gilb, Barry Boehm and Vic Basili.

• It attacks a straw man (naïve waterfall) that hardly exists and nobody would

defend.

– Who would claim that comprehensive documentation is more important than

working software?

How Did Agile Become a Leading
Development Method? (The Fashion Theory)

• Rhetoric and Myth in Management Fashion (Alfred Kieser, Organization

1997; 4; p 49-74) points out that the following factors are essential for

success with a new method:

• Present one key principle that, according to the gurus, has been neglected

in previous methods, e.g., the lack of frequent feedback in the naïve

waterfall model.

• Describe how the old methods are bound to fail if not following the new

method, e.g., how the old methods leads to systems that does not have the

functionality that the clients need.

• Link the new method with highly treasured values, such as communication,

individuals, flexibility and user value.

How Did Agile Become a Leading
Development Method? (The Fashion Theory)

• Present stories about great successes when using the method. Go to

practitioners’ conferences and present these success stories.

• Avoid by all means the impression that the method has been created at a

university or is based on academic research. Emphasize that the method is

based on experienced professionals knowledge.

• Present the pioneers as exceptional professionals with long experience.

Give them guru status.

How Could Agile Become a Leading
Development Method?

• Base the messages on a mixture of simplicity and ambiguity. Use this to

demonstrate the superiority of the new principles, e.g., “collaboration is

better than contract negotiation”, and to demonstrate that the principles are

strongly linked to common sense.

• Point out that the method may be hard to implement. Failures are thus

explainable by poor implementation.

• Provide easy readable books with no academic jargon and direct speech.

How Could Agile Become a Leading
Development Method?

• Time the introduction of the new method well.

– Every new generation of software professionals need their “own” methods to

separate themselves from the others and be the most knowledgeable.

– The timing of and need for new development methods follows many of the same

principles as those for cloth fashion.

– This means that the success of a method (many followers) is also its path to

destruction when it follows fashion-principles.

• Now and then, couple principles to science.

– Low quality studies and strongly biased interpretations are no problem, since

nobody will check the sources.

ELASTIC Development

• Together with some of the most experienced developers in the

world we at Simula have developed a new best-practice

method: ELASTIC.

• More and more experienced developers found that they

SOMETIMES needed more design, more planning and more

documentation. They could not anymore stand and look at

failed projects due to religious beliefs in ONE method. We need

to be flexible. We need to be more elastic!

• Manifesto of ELASTIC:

– Software projects vary, so should their development

methods

ELASTIC Development

• Key principle: ELASTIC has a phase where the developers

together with their clients (based on project characteristics such

as expected requirement stability, client maturity and technical

complexity) agree on process elements. This tailoring method

is unique and not part of any other development method.

• There is nothing fundamentally wrong with the traditional

methods, such as agile, scrum, RUP and waterfall.

• They lack however:

– The flexibility to deal with today’s variation in clients and

types of projects

– Support on how to tailor a development method.

ELASTIC development

• The main values of ELASTIC are Communicate, Analyze,

Reflect and Educate in close collaboration with the client (the

CARE values).

• ELASTIC has so far been a great success!

• “We have so many times been disappointed by the lack of

professionalism and low ability of adapting the development

method to our needs and maturity levels. Most software

developers seem to be more concerned about their own

religious belief in a method than creating value for the client.

ELASTIC development takes us – the client – seriously. We will

never again choose a software provider that does not follow

ELASTIC development.” Stein Mathisen, CEO Norwegian

Hydropower.

ELASTIC development

• The client went from 50% to 0% failed projects and 200% in

profitability by selecting a software providers following the

ELASTIC method.

• Other studies also show great benefit from use of the ELASTIC

method. The Johnson Group have summarized a study on

more than 200 projects and found that ELASTIC gives the

highest ROI (return on investment).

ELASTIC development

ROI = (Benefit - Cost)/Cost

0

1

2

3

4

5

6

Elastic XP Scrum RUP

ROI

Can We Expect ESE to Have Strong Impact in
Software Engineering?

• Probably not, unless the SE “culture” get more evidence-based!

• SE researchers don’t like and are not good at playing all the impact games

(the rethoric) necessary to gain impact?

– We have however our own games and rethoric, to please reviewers, research

council, ;-)

• There may, however, be ways where we can impact software practice more

than we currently do without ethical and research professionalism problems.

Warning:

• Now comes (as usual) the weakest part of the presentation, i.e., the part

dealing with what I promised in the title (How to)

• Expect no brilliant ideas or recommendations based on strong evidence.

Suggested Ways to Impact Software Practice
through ESE

• Improve the acceptance of Evidence-based SE (EBSE)

– Teach software professionals EBSE (Training in formulating decidable questions,
collection of valid evidence (including experience-based evidence), evaluation of
strength of evidence and synthesis of evidence.)

– Promote evidence-based principles at conferences

– Train software professionals in completion of empirical studies (This is perhaps
where ESE-elements has had most impact on practice, e.g. processes of
measurement-based software improvement.)

– Write SE books that are evidence-based

– Demonstrate why we need ESE

• Like medicine, we should try to get to a stage where
the professionals only accept evidence-based
principles and methods.

– It’s a looooong way to go, and there may be inherent
problems that stop us from reaching the stage where
medicine currently is.

Suggested Ways to Impact Software
Practice through ESE

• Select research topics where impact is
more likely (relevance)

– Increase the emphasis on relevance.
Robert Glass in IEEE Software
March/April, 2009 recommends that all
studies should go through an
“applicability check”.

– Do not conduct research where there are
no opportunity to impact. Timing may be
important.

• Include more research with high
potential of impact. (Think bigger!)

• Emphasis money saving potential. A
rough guideline by innovation advisors
is that an idea should be able to save at
least 10 times its implementation cost to
be convincing for investors.

There is in my opinion far too

much ESE research of low

industry relevance! It’s

sometimes like doing research

on typewriter improvement.

Suggested Ways to Impact Software Practice
through ESE

• Improve the ESE methods

– Higher quality studies.

• I think I have reviewed more than 50 studies that show that their own
estimation model is better than the other models. Most of these empirical
evaluations have in my opinion been poorly designed.

– More convincing studies.

• Inclusion of real-life success stories, less use of students and small scale
systems.

• Forthcoming study (IEEE TSE, Jørgensen & Grimstad) compares estimation
biases in laboratory settings and real-life settings. The main finding is that
the biases are typically much larger in laboratory settings. We need real-life
settings to evaluate effect sizes!

– etc. (many papers on this)

Suggested Ways to Impact Software Practice
through ESE

• Conduct ESE research in collaboration with the software industry.

– Let them tell convincing success stories. Nothing beats success stories that can

be linked to your ESE-results

– Mean values and statistical significance may convince scientists, seldom

software professionals.

– Make win-win situations out

of research results (see picture)

Suggested Ways to Impact Software Practice
through ESE

• Better packaging/wrapping of ESE

results

– Tools

– Processes/methods

– Standards/certificates

– Courses

• The type of package obviously

depends on the content.

– A innovative tool where the ESE

contribution is the evaluation of it

may be easier to package than

ESE-based relationships. Even

then, however, the packaging of

the ESE results are of importance.

Suggested Ways to Impact Software Practice
through ESE

• Better transfer of ESE results

– Publish in practitioners’ magazines

– Write books without academic jargon

– Be were practitioners meet

– Package the ESE results as “experience” and

“success stories”

– Educate journalists to write about ESE (accept

that good SE researchers are not necessarily

good communicators)

– Talk the “impact language” of successful gurus?

• Software practitioners are typically not even

aware of our studies. If they find them, the

studies are in a language they do not

understand. This slows (or even inhibit) the

impact.

Suggested Ways to Impact Software
Practice through ESE

• Better timing of ESE studies.

– We are typically lagging behind.

– When a method already is established, it is difficult to
have an impact.

– Being able to impact sometimes means that the ESE-
based knowledge has to be there (and be known) when
(or before) new technology emerges.

– Agile will probably be replaced (as the leading method)
with a new methods in 3-4 years. How will (and can)
ESE impact the new method to be more evidence-
based – and more efficient?

• Providing input to the method gurus?

• Examining emerging methods based on empirical
knowledge?

• Example: If we had collaborated with the Planning
Poker guru (Mike Cohn) when he invented it, we
could share with him relevant results on the Delphi-
method and on group dynamics.

Suggested Ways to Impact Software
Practice through ESE

• Focus on creation of evidence-based principles. Avoid “Is Method A better

than Method B”-studies, where the methods consist of many (ill-defined)

elements.

– This “reductionism” may sound like a paradox, since the software industry wants

exactly that kind of studies.

– However, such studies do in my experience seldom produce results that are

convincing (study the effect of own methods), seldom produce insight in cause-

effects, seldom have the timing to enable impact (studies of already established

practices).

– We are different from medicine, where such studies are more meaningful.

Principles has Impacted Forecasting Practice

Examples of an evidence-based principle:

7.1 Keep forecasting methods simple.

Description: Complex methods may include errors that propagate
through the system or mistakes that are difficult to detect. Select
simple methods initially (Principle 6.6). Then use Occam’s Razor;
that is, use simple procedures unless you can clearly demonstrate
that you must add complexity.

Purpose: To improve the accuracy and use of forecasts.

Conditions: Simple methods are important when many people
participate in the forecasting process and when the users want to
know how the forecasts are made. They are also important when
uncertainty is high and few data are available.

Strength of evidence: Strong empirical evidence. Many analysts find
this principle to be counterintuitive.

Source of evidence: This principle is based on evidence reviewed by
Allen and Fildes (2001), Armstrong (1985), Duncan, Gorr and
Szczypula (2001), and Wittink and Bergestuen (2001).

There have been

1,069,597 visits to this

website

www.forecasting.com

since February 14, 1998.

http://www.forecasting.com/

What I Wanted To Tell You

• Empirical software engineering is clearly needed, but does hardly play a major role in

current software practice.

• The receipts of more impact on SE practice are (in principle) simple. The main

problem is currently that ESE researchers are not good at playing the impact games.

• If we don’t want to play the impact games, we should aim at more acceptance for

evidence-based principles, i.e., we should try to change the rules of the game.

Demonstrations of the limitations of the principles currently in use is one element of

this.

• Regardless of main strategy, we can (and should) influence software engineering

practice through empirical research much more than we currently do.

It’s up to us!

Industry impact seldom happens

by publishing in academic journals.

