
Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

1

An Object-Oriented High-Level Design-Based Class Cohesion Metric

Jehad Al Dallal
Department of Information Science

Kuwait University
P.O. Box 5969, Safat 13060, Kuwait

jehad@cfw.kuniv.edu

Lionel C. Briand
Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

Department of Informatics, University of Oslo, Norway
briand@simula.no

Abstract
Class cohesion is an important object-oriented software quality attribute. Assessing
class cohesion during the object-oriented design phase is one important way to obtain
more comprehensible and maintainable software. In practice, assessing and
controlling cohesion in large systems implies measuring it automatically. One issue
with the few existing cohesion metrics targeted at the high-level design phase is that
they are not based on realistic assumptions and do not fulfill expected mathematical
properties. In this paper, we address this problem by introducing the notion of
similarity between pairs of methods and pairs of attribute types in a class, and we use
it as a basis to introduce a novel high-level design class cohesion metric. The metric
considers method-method, attribute-attribute, and attribute-method direct and
transitive interactions. We validate this Similarity-based Class Cohesion (SCC) metric
theoretically and empirically. The former includes a careful study of the mathematical
properties of the metric whereas the latter investigates, using four open source
software systems and ten cohesion metrics, whether SCC is based on realistic
assumptions and whether it better explains the presence of faults, from a statistical
standpoint, than other comparable cohesion metrics, considered individually or in
combination. Results confirm that SCC is based on clearly justified theoretical
principles, relies on realistic assumptions, and is strongly related to fault occurrences
in classes.

Keywords: object-oriented software quality, object-oriented design, class cohesion,
fault prediction.

1. Introduction
Software engineering aims at developing techniques and tools to promote quality
software that is stable and easy to maintain. In order to assess and improve software
quality during the development process, developers and managers use, among other
means, ways to automatically measure the software design. To this aim, many metrics
have been proposed to estimate different attributes such as cohesion, coupling, and
complexity (Fenton and Pfleeger 1998).

The cohesion of a module is one important property of software design and refers to
the relatedness of software module constituents. A highly cohesive module has one
basic function and cannot be split into separate modules (Bieman and Ott 1994).
Highly cohesive modules are believed to be more understandable, modifiable, and
maintainable than less cohesive modules (Briand et al. 2001a, Chen et al. 2002).

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

2

Over the last decade, object-oriented programming languages, such as C++ and Java,
have gained popularity in the software industry. In the object-oriented paradigm,
classes serve as the basic units of design. The constituents or members of a class are
its attributes and methods. Therefore, class cohesion refers to the relatedness of the
class members. Three possible types of related interactions are defined including
method-method, method-attribute, and attribute-attribute interactions. The method-
method interaction between a pair of methods is defined when both methods access a
common attribute, or when one method invokes the other one. The method-attribute
interaction between a method and an attribute is defined when the method accesses
the attribute. Finally, the attribute-attribute interaction between a pair of attributes is
defined when both attributes are accessed by a common method.

Several class cohesion metrics have been proposed in the literature. These metrics can
be applicable based on high-level design (HLD) or low-level design (LLD)
information. HLD class cohesion metrics rely on information related to class and
method interfaces (Briand et al. 1999, Bansiya et al. 1999, Counsell et al. 2006). The
more numerous LLD class cohesion metrics, such as those proposed by Chidamber
and Kemerer (1991), Chidamber and Kemerer (1994), Hitz and Montazeri (1995),
Bieman and Kang (1995), Chen et al. (2002), Badri (2004), Wang (2005), and
Fernandez and Pena (2006), require analyzing the algorithms used in the class
methods (or the code itself if available) or access to highly precise method
postconditions. The LLD cohesion metrics use finer-grained information than that
used by HLD cohesion metrics. That is, based on the LLD, all method-method,
method-attribute, and attribute-attribute interactions can be precisely defined. On the
other hand, one advantage of HLD class cohesion metrics is that they identify
potential cohesion issues early, during the HLD phase. Detecting class cohesion
issues, and correcting the corresponding class artifacts later (during the LLD or
implementation phase), is much more costly than performing the same tasks early
(during the HLD phase). Improving class cohesion during the HLD phase saves
development time, reduces development costs, and increases overall software quality.
The HLD class cohesion metrics proposed to date have several drawbacks. First, some
of them are based on assumptions that are yet to be empirically validated and are
probably unrealistic. For instance, in some of the seminal work on the topic (Bansiya
et al. 1999, Counsell et al. 2002, Counsell et al. 2006), the assumption is that the types
of the method parameters match the types of the attributes accessed by the method.
However, this assumption has little empirical support beyond the study of Counsell et
al. (2006) based on 21 C++ classes. Second, some key features of object-oriented
programming languages, such as inheritance, are not considered in HLD class
cohesion metrics proposed to date. Third, certain proposed metrics, such as Cohesion
Among Methods in a Class (CAMC) (Bansiya et al. 1999) and Normalized Hamming
Distance (NHD) (Counsell et al. 2002, Counsell et al. 2006), have not been validated
in terms of their mathematical properties and in fact violate key properties. Fourth,
some metrics ignore transitive interactions and method-invocation interactions.
Finally, research in the area of HLD class cohesion measurement needs more, larger
scale empirical studies that examine the correlation among the proposed metrics and
that explore the relationships between HLD cohesion and software quality.

In this paper, we review and discuss some recently proposed design class cohesion
metrics, with an emphasis on HLD metrics. We introduce a new model to predict the

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

3

relationship between parameter types and attribute types. To do so, we define the
notion of similarity between a pair of methods and a pair of attribute types and use
this as a basis to measure class cohesion. We thus introduce a novel HLD class
cohesion metric that we refer to as Similarity-based Class Cohesion (SCC). This
metric accounts for method-method, method-attribute, attribute-attribute, and method
invocation direct and transitive interactions identified using the class and
communication diagrams defined by the Unified Modeling Language (UML), which
are commonly used for describing object-oriented designs. Our expectations, in terms
of data available in HLD UML diagrams, are consistent with main stream object-
oriented, UML-based methodologies (e.g., Gomaa 2000, Larman 2001, and Bruegge
and Dutoit 2009).

The method implementations and, consequently, the information about the method-
attribute interactions are not available during the HLD phase. Our metric is based on
the assumption that the matching between the method parameter types and the
attribute types capture most of the method-attribute interactions. We investigated our
assumption versus the assumptions proposed in some of the seminal proposals on the
topic, on which our work is based (Bansiya et al. 1999, Counsell et al. 2002, Counsell
et al. 2006). The results show that our assumption captures the method-attribute
interactions more precisely than the other assumptions.

The validity of a metric has to be studied both theoretically and empirically
(Kitchenham et al. 1995). The theoretical validation tests whether the proposed metric
complies with the necessary properties of the measured attribute. The empirical
validation tests whether measured and predicted values are consistent with each other.
Consistent with this general validation approach, SCC is then validated from both
theoretical and empirical standpoints. Our theoretical validation involves analyzing
the compliance of SCC with the properties proposed by Briand et al. (1998). The
empirical validation involves ten cohesion metrics, including the most common
cohesion metrics in the literature and SCC, to classes selected from four open source
Java systems. We explore the correlations between the ten considered metrics, thus
determining whether SCC captures new information, and study the fault-prediction
power of the metrics considered individually and in various combinations. The results
show that SCC defines a cohesion dimension of its own, is based on assumptions that
are more realistic than other similar metrics, and has relatively high fault-prediction
power compared to other proposed metrics. Though building fault-prediction models
is not an objective of this paper, as further discussed below, this is used as a way to
gather empirical evidence that SCC better relates to class quality than other,
comparable metrics.

This paper is organized as follows. Section 2 reviews related work. Section 3 defines
the model used by our proposed metric. In Section 4, we define the SCC metric, and
in Section 5, we validate it theoretically. Section 6 illustrates several empirical case
studies and reports and discusses their results. Finally, Section 7 concludes and
discusses future work.

2. Related Work
In this section, we summarize a widely used set of mathematical properties that all
class cohesion metrics should satisfy. In addition, we review and discuss several
existing design class cohesion metrics for object-oriented systems and other related

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

4

works in the area of measuring software cohesion. Finally, we provide an overview of
two related UML diagrams to demonstrate that the information we rely on is available
in high-level designs with UML.

2.1. A class cohesion metric’s necessary properties
Briand et al. (1998) define four mathematical properties that provide a supportive
underlying theory for class cohesion metrics. The first property, called nonnegativity
and normalization, is that the cohesion measure belongs to a specific interval [0,
Max]. Normalization allows for easy comparison between the cohesion of different
classes. The second property, called null value and maximum value, holds that the
cohesion of a class equals 0 if the class has no cohesive interactions (i.e., interactions
among attributes and methods of a class) and the cohesion is equal to Max if all
possible interactions within the class are present. The third property, called
monotonicity, holds that adding cohesive interactions to the module cannot decrease
its cohesion. The fourth property, called cohesive modules, holds that merging two
unrelated modules into one module does not increase the module's cohesion.
Therefore, given two classes, c1 and c2, the cohesion of the merged class c' must
satisfy the following condition: cohesion(c')≤max {cohesion(c1), cohesion(c2)}. If a
metric does not satisfy any of these properties, it is considered ill-defined (Briand et
al. 1998). Despite its widespread use and acceptance, many research studies do not
report such theoretical validation for cohesion metrics or any equivalent alternative
(Al Dallal 2009a).

2.2. Design class cohesion metrics
Several metrics have been proposed in the literature to measure class cohesion during
the system HLD and LLD phases. These metrics use different underlying models and
different formulas. We start by discussing in detail two of the most important
proposals regarding HLD cohesion metrics and then briefly discuss LLD metrics and
other less directly relevant work.

A. Cohesion among methods in a class
Bansiya et al. (1999) propose a design class cohesion metric called Cohesion Among
Methods in a Class (CAMC). The CAMC metric uses a parameter-occurrence matrix
that has a row for each method and a column for each data type that appears at least
once as the type of a parameter in at least one method in the class. The value in row i
and column j in the matrix is 1 when the ith method has a parameter of the jth data
type and is 0 otherwise. In the matrix, the class type is always included in the
parameter type list, and every method interacts with this data type because every
method implicitly has an identity parameter. This means that one of the columns is
filled entirely with 1s. The CAMC metric is defined as the ratio of the total number of
1s in the matrix to the total size of the matrix. As per our knowledge, the CAMC
metric was the first proposed HLD class cohesion metric and is based on information
available in UML class diagrams (Genero et al. 2005). However, several related
issues are left open for further research including the consideration of class
inheritance and transitive interactions. In addition, the CAMC metric is based on
assumptions for which there is little empirical evidence: the types of the method
parameters are expected to match the types of the attributes accessed by the method.
Among the different types of cohesive interactions, defined in Section 1, the CAMC
metric considers only attribute-method interactions. Finally, the metric does not
satisfy the normalization property because each parameter type is used by at least one

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

5

method and one of the parameter types is used by all methods. Therefore, the
minimum number of 1s in the matrix is k + l −1, where k is the number of rows and l
is the number of columns. In this case, CAMCmin = (k + l −1)/kl. Consequently, the
normalized CAMC (NCAMC) equals (k.l.CAMC-k-l+1)/(k.l-k-l+1). Counsell et al.
(2006) suggest omitting the type of class from the parameter-occurrence matrix and
calculating CAMC from the modified matrix. We refer to this metric as CAMCc. In
this case, the minimum number of 1s in the matrix is l, so CAMCc min = l/kl = 1/k.
Consequently, the normalized CAMCc equals (k.CAMCc-1)/(k-1). Given a parameter-

occurrence matrix without the class type and a= , where cij is the value at row

i and column j in the matrix, CAMC can be calculated as follows (Counsell et al.
2006):

 (1)

B. Normalized hamming distance (NHD) metric
Counsell et al. (2006) propose and discuss the interpretation and utility of a design
class cohesion metric called the Normalized Hamming Distance (NHD). This metric
uses the same parameter-occurrence matrix as the CAMC metric (the type of class is
not considered). This approach calculates the average parameter agreement between
each pair of methods. The parameter agreement between a pair of methods is defined
as the number of entries in which the corresponding rows in the parameter-occurrence
matrix match. Formally, the metric is defined as follows:

 (2)

where aij is the number of entries in rows i and j for which both are 1, and xj is the
number of 1s in the jth column of the parameter occurrence matrix. The metric has
several limitations. The first is that it is counter-intuitive to consider the absence of a
parameter type in a pair of methods to be a cohesive relation: a pair of methods would
be considered fully cohesive if they did not have any parameters. This limitation can
be overcome by ignoring this case when accounting for cohesion. The second
limitation is that the metric satisfies the normalization property only when the class
has two methods. The third and fourth limitations are that it does not satisfy the
monotonicity and cohesive module properties unless the Hamming Distance
definition is modified which implies introducing a completely different metric. In
other words, NHD does not satisfy most of the necessary properties proposed by
Briand et al. (1998) for class cohesion metrics. Finally, NHD does not consider class
inheritance, transitive interactions, and the types of cohesive interactions defined in
Section 1, other than method-method interactions. Scaled NHD (SNHD) is a metric
that represents the closeness of the NHD metric to the maximum value of NHD
compared to the minimum value (Counsell et al. 2006), and therefore, it can be used
as a basis for normalizing NHD. The SNHD value ranges within the interval [-1,1],
where the closer the value is to zero, the less cohesive is the class. CAMC, NHD, and
SNHD were originally proposed to measure the cohesion of classes. However, since
these metrics require information also available in interfaces, they could potentially
be applied to interfaces too.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

6

2.3. Overview of other relevant work
Yourdon et al. (1979) proposed seven levels of cohesion. These levels include
coincidental, logical, temporal, procedural, communicational, sequential, and
functional. The cohesion levels are listed in ascending order of their desirability.
Since then, several cohesion metrics have been proposed for procedural and object-
oriented programming languages. Different models are used to measure the cohesion
of procedural programs, such as the control flow graph (Emerson 1984), the variable
dependence graph (Lakhotia 1993), and program data slices (Ott and Thuss 1993,
Bieman and Ott 1994, Meyers and Binkley 2007, Al Dallala 2007, Al Dallal 2009).
Cohesion has also been measured indirectly by examining the quality of the structured
designs (Troy and Zweben 1984, Bieman and Kang 1998).

Several LLD class cohesion metrics have been proposed in the literature. These
metrics are based on the use or sharing of class instance variables. The Lack of
Cohesion of Methods (LCOM1) metric (Chidamber and Kemerer 1991) counts the
number of pairs of methods that do not share instance variables. Chidamber and
Kemerer (1994) proposed another version of the LCOM metric, referred to here as
LCOM2, which calculates the difference between the number of method pairs that do
and do not share instance variables. Li and Henry (1993) use an undirected graph that
represents each method as a node and the sharing of at least one instance variable as
an edge. Class cohesion, LCOM3, is measured in terms of the number of connected
components in the graph. This class cohesion was extended by Hitz and Montazeri
(1995), who added an edge between a pair of methods if one invokes the other.
Bieman and Kang (1995) proposed two class cohesion metrics, Tight Class Cohesion
(TCC), which measures the relative number of directly connected pairs of methods,
and Loose Class Cohesion (LCC), which measures the relative number of directly or
transitively connected pairs of methods. These two metrics consider two methods to
be connected if they share at least one instance variable or one of the methods invokes
the other. The cohesion metric Degree of Cohesion (DCD) is similar to TCC, and the
metric DCI is similar to LCC (Badri 2004), but they also consider two methods
connected when they invoke the same method. Briand et al. (1998) proposed a
cohesion metric, called Coh, that computes the cohesion as the ratio of the number of
distinct attributes accessed in the methods of a class. Wang et al. (2005) introduced a
Dependence Matrix-based Cohesion (DMC) class cohesion metric based on a
dependency matrix that represents the degree of dependence among the instance
variables and methods in a class. Fernandez and Pena (2006) propose class cohesion
metrics that consider the cardinality of intersection between each pair of methods.
Henderson-Sellers (1996) and Briand et al. (1998) propose class cohesion metrics
similar to CAMC but for the method/instance variable matrix. Chen et al. (2002) use
dependence analysis to explore attribute-attribute, attribute-method, and method-
method interactions. They measure cohesion as the relative number of interactions. Al
Dallalb (2007) proposes a distance-based HLD cohesion metric and discusses its
sensitivity to changes in the class cohesive interactions. The metric is based on
information available in the UML class diagram. This paper is extended here by (1)
proposing the similarity-based metric, which measures the cohesion more directly
than the distance-based metric, (2) accounting for class inheritance, (3) accounting for
transitive class interactions, (4) empirically validating the underlying assumptions,
and (5) validating the metric theoretically and empirically.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

7

2.4. UML class and communications diagrams
UML is a standard language used for modeling object-oriented design. UML 2.0
(Pilone and Pitman 2005) consists of 13 types of diagrams. In this paper, we are
interested in class and communication diagrams, as they are typically part of high
level designs (Gomaa 2000, Larman 2001, and Bruegge and Dutoit 2009). The class
diagram describes the system's classes and the static relationships between them. The
description of a class includes the names and types of the attributes and the names,
return types, and parameter types of the methods. Figure 1(a) shows a sample class
diagram for the AccountDialog class.

Figure 1: UML class and communication diagrams for AccountDialog

The communication diagram describes the message (e.g., method call) flow between
system's objects. Each object is represented by a box that includes the class name and
the object name (optional). Messages between the objects are associated with links.
Many messages can flow along a link. Each message is assigned to a small arrow
indicating its direction and a sequence number. Invoking a method from another
method belonging to the same class is modeled in the communication diagram by
initiating both messages from the same object and prepending the sequence number of
the invoked message with the sequence number of the invoking message. For
example, the partial communication diagram shown in Figure 1(b) indicates that the
showInfo method invokes the showExtraInfo method, which in turn invokes the
showAddress method.

Genero et al. (2005) provide a survey for object-oriented quality metrics based on
UML diagrams. They show that the information required to build the parameter-
occurrence matrix, used in the CAMC and NHD metrics, is available in the UML
class diagram.

In summary, several class cohesion metrics are introduced in the literature. Few of
these metrics are based on information available during HLD phase. The HLD
cohesion metrics introduced to date do not consider transitive interactions and
inheritance and they are based on models built on assumptions that are yet to be
empirically validated. In addition, they are not validated theoretically against
necessary class cohesion properties, and empirically against external quality attributes
such as fault occurrences. In this paper, to address the above issues, we introduce
Similarity-based Class Cohesion (SCC), a HLD class cohesion metric based on

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

8

assumptions that we empirically investigate and that are shown to be realistic in
several systems. The SCC metric can easily account for class inheritance and direct
and transitive interactions. In addition, the SCC metric complies with widely accepted
class cohesion properties and has relatively high fault-prediction power when
compared to other proposed HLD and LLD cohesion metrics, thus providing indirect,
empirical evidence that it might be a more meaningful measure of class cohesion.

3. Model Definition
The similarity-based class cohesion metric introduced in this paper considers
attribute-attribute, method-method, and attribute-method direct and transitive
interactions. We introduce four types of matrices: (1) the Direct Method Invocation
(DMI) matrix to model direct method-invocation interactions, (2) the Method
Invocation (MI) matrix to model direct and transitive method-invocation interactions,
(3) the Direct Attribute Type (DAT) matrix to model direct method-method, attribute-
attribute, and attribute-method interactions, and (4) the Attribute Type (AT) matrix to
model direct and transitive interactions modeled in the DAT matrix. The information
source in UML diagrams relied upon for building these matrices will be identified.

3.1. Direct method invocation (DMI) matrix
Direct method invocation interactions are explicitly defined in the UML
communication diagram. These interactions are obtained and reported in a matrix
called the DMI matrix. This matrix is a square binary k × k matrix, where k is the
number of methods in the class of interest. To construct the matrix, the names of the
class methods are obtained from the UML class diagram reviewed in Section 2.4. The
rows and columns of the DMI matrix are indexed by the methods, and for 1 ≤ i ≤ k, 1
≤ j ≤k,

A binary value of 1 in the DMI matrix indicates a cohesive direct method invocation
interaction.

Given the class diagram and communication diagrams shown in Figure 1 for the
AccountDialog class, the DMI matrix shown in Figure 2 is constructed. The matrix
shows that the showInfo method invokes directly the showExtraInfo method and the
showExtraInfo method invokes directly the showAddress method. Note that there are
other possible mechanisms for method invocations beyond simple method calls, such
as the receipt of a signal in an active class (e.g., implemented in a run() method in
Java). The later occurs in concurrent software with asynchronous communication
between objects.

Figure 2: The DMI matrix for the AccountDialog class

 showInfo showAddress showExtraInfo readName
showInfo 0 0 1 0
showAddress 0 0 0 0
showExtraInfo 0 1 0 0
readName 0 0 0 0

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

9

To account for class inheritance, all directly and transitively accessible inherited
methods have to be included in the DMI matrix. The inherited methods can be
extracted from the UML class diagram.

3.2. Method invocation (MI) matrix
The MI matrix is a square binary k × k matrix, where k is the number of methods in
the class of interest. The matrix models the direct and transitive method invocation
interactions and is derived from the DMI matrix. The rows and columns of the MI
matrix are indexed by the methods, and for 1 ≤ i ≤ k, 1 ≤ j ≤ k,

A binary value of 1 in the MI matrix indicates a cohesive direct or transitive method
invocation interaction. Figure 3 shows the MI matrix for the AccountDialog class.
The matrix shows that the showInfo method invokes directly or transitively the
showAddress and the showExtraInfo methods and the showExtraInfo method invokes
directly or transitively the showAddress method.

Figure 3: The MI matrix for the AccountDialog class

3.3. Direct attribute type (DAT) matrix
Bansiya et al. (1999) and Counsell et al. (2006) used the parameter-occurrence matrix
for parameter types as the basis for their metrics. This matrix is based on the
assumption that the set of attribute types accessed by a method is the intersection of
this method’s parameter types and the set of parameter types of all methods in the
class. This assumption leads to two problems. The first problem is that some methods
can have parameters of types that do not match the types of the attributes. In this case,
methods that share these types are considered cohesive despite the fact that they do
not share any attributes. The second problem is that, the parameter-occurrence matrix
does not indicate whether all attributes are actually used within the methods.
Therefore, in some cases, the class is considered fully cohesive despite the fact that
some of its attributes are never used by the methods. Figure 4(a) depicts these two
problems by showing an extreme case in which all methods share all parameter types
that do not match any of the attribute types and none of the attribute types match the
method parameter types. In this example, we assume having a loosely cohesive class
classA including two attributes and two methods, such that none of the attributes is
used in the methods and the two methods are unrelated. Figure 4(a) shows the
corresponding class diagram. The two methods share the same parameter types: int
and String. None of these types match any of the types of the attributes (boolean and
double). In addition, the types of the two attributes are boolean and double, and none
of these types match any of the parameter types. Figure 4(b) shows the corresponding
parameter-occurrence matrix. The matrix wrongly predicts the class to be fully
cohesive because it shows that each of the two methods uses each of the parameter
types, whereas none of the attributes is used in the methods.

 showInfo showAddress showExtraInfo readName
showInfo 0 1 1 0
showAddress 0 0 0 0
showExtraInfo 0 1 0 0
readName 0 0 0 0

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

10

Figure 4: A sample class diagram and its corresponding parameter-occurrence and

DAT matrices

Since the aim is to predict the sharing of attributes between the methods, we address
the above two problems by introducing the DAT matrix. This matrix depicts the use
of the types of the attributes themselves instead of depicting the use of the types of the
method parameters. The matrix is a binary k × l matrix, where k is the number of
methods and l is the number of distinct attribute types in the class of interest. The
matrix is based on the assumption that the set of attribute types accessed by a method
is the intersection of the set of this method’s parameter types and the set of its class
attribute types. To construct the matrix, the names and return types of the methods
and the types of parameters and attributes are extracted from the UML class diagram
reviewed in Section 2.4. The DAT matrix has rows indexed by the methods and
columns indexed by the distinct attribute types, and for 1 ≤ i ≤ k, 1 ≤ j ≤ l,

The DAT matrix solves the above two problems as follows. First, the DAT matrix
ignores the parameter types that do not match any of the attribute types. This
eliminates the possibility of wrongly predicting the method accessibility of non-
existing attributes. Second, the DAT matrix shows all the attribute types including the
non-accessed ones. This eliminates the possibility of wrongly predicting that a class
whose attributes are not accessed by the methods to be highly cohesive. As opposed
to the parameter-occurrence matrix, the DAT matrix given in Figure 4(c) depicts the
fact that the class has no attribute-method interactions (i.e., none of the attributes is
accessed by any of the methods).

Based on a number of assumptions to be verified, the matrix is built using heuristics
in order to provide information about likely interactions that are not directly visible at
the HLD stage. Such heuristics will be verified in the case study section (Section 6.2).
The matrix explicitly models direct attribute-method interactions. It is assumed that a
method has a cohesive interaction with an attribute if the attribute type matches the
type of at least one parameter or return value of the method. In addition, the matrix
implicitly models method-method and attribute-attribute interactions. A method has a
cohesive interaction with another method if their parameters or return values share the
same attribute type. An attribute has a cohesive interaction with another attribute if
their types are shared by a method. This indicates that the method defines an

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

11

interaction between the two attributes. A binary value of 1 in the DAT matrix
indicates a cohesive attribute-method interaction. A cohesive method-method
interaction is represented in the DAT by two rows that share binary values of 1 in a
column. Similarly, a cohesive attribute-attribute interaction is represented in the DAT
by two columns sharing binary values of 1 in a row. This matrix considers the return
type of the method since it is possible that some methods access attributes not passed
as parameters and return results that match the types of the accessed attributes.
Consequently, the return type gives an indication of the accessed attributes within
methods, and therefore, it should also be considered in the class cohesion metric.

Figure 5 shows the DAT matrix of the AccountDialog class. The matrix shows that
three of the attribute types are used by the showInfo method, one of the attribute types
is used by the showAddress method, and one of the attributes is used by the readName
method (as a return type). In addition, the matrix shows that the showInfo and
readName methods share an attribute type, and the String attribute type is shared
between two methods. The DAT matrix does not include the parameter type Card
because it does not match any of the attribute types.

Figure 5: The DAT matrix for the AccountDialog class

To consider class inheritance, all inherited methods included in the DMI matrix have
to be considered in the DAT matrix as well. In addition, the distinct types of all
directly and transitively accessible attributes have to be considered in the DAT
matrix. These attribute types can be extracted from the UML class diagram.

3.4. Attribute type (AT) matrix
The AT matrix is similar to the DAT matrix in the sense that it has the same rows and
columns, but it differs in that it models both direct and transitive interactions. A value
of 1 in the matrix indicates that the attribute type matches the parameter type of the
method or the methods directly or transitively invoked by the method. The AT can be
generated from both DAT and MI matrices by applying the algorithm given in Figure
6. The algorithm modifies the DAT matrix by replacing the row of the caller by the
result of applying the logic OR for each corresponding cell in the rows representing
the call originator and call recipient. Figure 7 shows the AT matrix constructed using
the algorithm in Figure 6. The matrix is similar to the DAT matrix except that the
showInfo and showExtraInfo methods use the Address attribute type transitively.

 String int Date Address
showInfo 1 1 1 0
showAddress 0 0 0 1
showExtraInfo 0 0 0 0
readName 1 0 0 0

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

12

Figure 6: Constructing the AT matrix algorithm

Figure 7: The AT matrix for the AccountDialog class

4. The Similarity-based Class Cohesion (SCC) Metric Definition
The SCC metric uses the AT matrix to measure the method-method interactions
caused by sharing attribute types, the attribute-attribute interactions caused by the
expected use of attribute within the methods, and the attribute-method interactions. In
addition, the SCC metric uses the MI matrix to measure the method-method
interactions caused by method invocations. The cohesions caused by the four types of
interactions are referred to as Method-Method through Attributes Cohesion (MMAC),
Attribute-Attribute Cohesion (AAC), Attribute-Method Cohesion (AMC), and
Method-Method Invocation Cohesion (MMIC), respectively. The SCC metric uses the
AT and MI matrices, and it therefore considers both direct and transitive interactions.

4.1. MMAC and AAC metrics
The similarity between two items is the collection of their shared properties. In the
context of the AT matrix, introduced in Section 3, the similarity between two rows
and two columns quantifies the cohesion between a pair of methods and a pair of
attributes, respectively. The similarity between a pair of rows or columns is defined as
the number of entries in a row or column that have the same binary values as the
corresponding elements in the other row or column. The normalized similarity,
denoted as ns(i,j), between a pair of rows or columns i and j is defined as the ratio of
similarity between the two rows or columns to the number of entities Y in the row or
column of the matrix, and it is defined formally as follows:

 , (3)

where ∧ is the logical and relation.

Cohesion refers to the degree of similarity between module components. The MMAC
is the average cohesion of all pairs of methods and the AAC is the average cohesion
of all pairs of attributes. Formally, using the AT matrix, the MMAC of a class C,

Algorithm: Constructing AT matrix
Input: DAT and MI matrices
Output: AT matrix
Steps:
for i=1 to no. of rows in DAT matrix
 for j=1 to no. of columns in DAT matrix
 AT[i,j]=DAT[i,j]
for i=1 to no. of rows in IMI matrix
 for j=1 to no. of columns in MI matrix
 if (i≠j AND MI[i,j]=1) then
 for k=1 to no. of columns in DAT matrix
 AT[i,k]=DAT[i,k] OR DAT[j,k]

 String int Date Address
showInfo 1 1 1 1
showAddress 0 0 0 1
showExtraInfo 0 0 0 1
readName 1 0 0 0

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

13

consisting of k methods and l distinct attribute types, is defined formally as follows:

 (4)

By substituting Formula 3 into Formula 4, the MMAC of class C is calculated in the
case of a class with multiple methods as follows:

 (5)

The following metric is an alternative form of the MMAC metric, which obtains the
same value, facilitates the analysis of the metric, and speeds up its computation:
Proposition 4.1. For any class C,

 (6)

where xi is the number of 1s in the ith column of the AT matrix.

Proof: By definition, when k=1 or k=0 and l=0, Equations 5 and 6 are equal.
Otherwise, for the ith column, there are xi(xi-1)/2 similarities between the methods,
and therefore,

 ,

 which equals the above formula. ■

Similarly, the AAC of a class C is defined formally as follows:

 (7)

where yi is the number of 1s in the ith row of the AT matrix.

For example, using Formula 6, the MMAC for the AccountDialog class is calculated
as follows:

Using Formula 7, the AAC for the AccountDialog class is calculated as follows:

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

14

The MMAC and AAC metrics are adaptations for the similarity definition introduced
in (Al Dallalb 2009) to measure the cohesion within a method in a class or a function
in a procedural program.

4.2. AMC metric
The notion of similarity is applicable only when both elements considered are of the
same entity. Therefore, the notion of similarity is applicable for method-method and
attribute-attribute pairs, but it is not applicable for attribute-method pairs because
attributes and methods are of two different types. In this case, the cohesion is the
average number of attribute-method interactions represented in the AT matrix. In
other words, the AMC is the ratio of the number of 1s in the AT matrix to the total
size of the matrix. The AMC of a class C is defined formally as follows:

 (8)

Using Formula 8, AMC(AccountDialog)=7/16=0.438.

4.3. MMIC metric
The AT matrix does not represent the cohesion between a pair of methods if one of
the methods invokes the other when the invoked method does not have parameters of
types that match the attributes. In this case, the number of 1s in the row of the invoked
method in the AT matrix is zero. When the logical operator OR is applied to update
the row of the caller using the algorithm given in Figure 6, the row of the caller is not
changed. In addition, the AT matrix does not represent the invoking relationship when
the set of types of parameters used by the call recipient is a subset of the types of
parameters used by the caller. In this case, when the algorithm in Figure 6 is applied,
the row of the caller is not changed. In order to consider the invocation relationship
and assign it a weight when measuring the class cohesion, the MI matrix is involved.
The notion of similarity is not represented in the MI matrix because the matrix
explicitly represents method-method invocation interactions. In this case, the cohesion
is the average number of method-method invocation interactions. This is represented
by the ratio of the number of 1s in the MI matrix to the total size of the matrix.
However, recursive method invocations should be excluded because we are interested
in measuring the cohesion between pairs of different methods. As a result, the
method-method invocation cohesion (MMIC) of a class C is formally defined as
follows:

 (9)

Using Formula 9, MMIC(AccountDialog)=3/(4*3)=0.25.

4.4. SCC metric
The SCC metric is defined as the weighted summation of the MMAC, AAC, AMC,
and MMIC metrics. The SCC of a class C is defined for k > 1 and l > 1 as follows:

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

15

, (10)

where MP is the number of method pairs, AP is the number of distinct attribute-types
pairs, and MOP is the number of method ordered pairs. By substituting MP, AP, and
MOP by their equivalencies in Formula 10 and considering all cases of k and l except
when both are equal to 0, the SCC is formally defined as follows:

(11)

Table 1 shows all of the possible scenarios for the values of the number of methods
and attributes in a class and the intuition for their class cohesion. Comparing the
results of applying the SCC metric for the cases given in Table 1 with the intuitive
results shows that the SCC metric is consistent with intuition.

Table 1: The intuitive results for the class cohesion in different scenarios

Using Formula 11, the SCC for the AccountDialog class is calculated as follows:

In summary, SCC is based on information available during HLD phase in UML
diagrams. The metric can easily account for class inheritance and direct and transitive
interactions and it is based on more realistic assumptions than existing HLD cohesion
metrics. The notions of method invocation and transitive interaction are not applicable
for interfaces. To measure the interface cohesion using SCC, the MMIC metric must
be left out and MMAC, AAC, and AMC have to be applied on the DAT matrix
instead of AT. In this case, SCC is the weighted summation of the three applicable
matrices: MMAC, AAC, and AMC. The following sections show that the SCC metric
complies with the class cohesion necessary properties and has relatively high fault-
prediction power compared to other proposed HLD and LLD cohesion metrics.

k l Intuition
0 0 The class has no methods and no attributes, and therefore, the cohesion is not

defined.
0 >0 The class has no methods, and therefore, its attributes are not related and the

cohesion is the minimum.
1 0 The class has one method, and therefore, it performs one cohesive task and its

cohesion is the maximum.
1 >0 The class has one method and one or more attributes, and therefore, the

cohesion depends on the attribute-attribute and attribute-method interactions.
>1 0 The class has several methods and no attributes, and therefore, the cohesion

depends only on the method-method invocation interactions.
>1 1 The class has several methods and one attribute, and therefore, the cohesion

depends on the method-method invocation, method-method use of the attribute,
and attribute-method interactions.

>1 >1 The class has several methods and attributes, and therefore, the cohesion
depends on the method-method invocation, method-method use of attributes,
attribute-attribute, and attribute-method interactions.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

16

5. Theoretical Validation
We validate SCC using the necessary properties for a class cohesion metric proposed
by Briand et al. (1998) and discussed in Section 2.1.

Property SCC.1: The SCC metric satisfies the non-negativity and normalization
property
Proof: The minimum value for the SCC metric for a class is 0 when the class has (1)
no methods and one attribute; (2) one method whose parameter types do not match
any of the attribute types; or (3) several methods whose parameter types do not match
any of the attribute types and none of the methods invokes the other. The maximum
value for the SCC metric for a class is 1 when the class has (1) one method and no
attributes; (2) one method, one or more attributes, and each type of the attributes
matches a method parameter type; (3) several methods, no attributes, and every
method invokes another method directly or transitively; or (4) several methods,
several attributes, each type of the attributes matches a parameter type for each
method directly or transitively, and each method directly or transitively invokes every
other method. As a result, the SCC metric ranges over the interval [0, 1], and it
therefore satisfies the non-negativity and normalization property.■

Property SCC.2: The SCC metric satisfies the null and maximum values
property.
Proof: Given a class with the set of methods and attributes, if for every method, none
of the parameter types match the attribute types and the method does not directly or
transitively invoke another method (that is, the class has no cohesive interactions), the
value of the SCC metric will be 0. On the other hand, if each type of attribute matches
a parameter type for each method directly or transitively, and every method directly
or transitively invokes every other method (that is, the class features all possible
interactions), the value of SCC metric will be 1 (that is, the maximum possible value).
Hence, the SCC metric satisfies the null- and maximum-values property.■

Property SCC.3: The SCC metric satisfies the monotonicity property.
Proof: Adding a cohesive interaction to the AT matrix is represented by changing an
entry value from 0 to 1. Changing an entry from 0 to 1 increases the number of 1s in a
column and a row. This increases the numerator value in Formula 8 (AMC metric).
The value of the numerator in Formula 6 (MMAC metric) increases if the column in
which the entry is changed features at least one other entry with value 1; otherwise, it
remains the same. The value of the numerator in Formula 7 (AAC metric) increases if
the row in which the entry is changed has at least one other entry with value 1;
otherwise, it remains the same. Increasing the numerator in Formula 6 increases the
value of the AMC metric because the denominator does not change unless the size of
the matrix changes. The same applies to the MMAC and AAC metrics. Changing an
entry in the AT matrix does not affect the MI matrix. As a result, adding a cohesive
interaction represented in the AT matrix always increases the SCC value.

Adding a cohesive interaction to the MI matrix is represented by changing the value
of a non-diagonal entry from 0 to 1. This increases the numerator value in Formula 9
(MMIC metric), but it does not affect the denominator. In some cases, adding a
cohesive interaction to the MI matrix causes a change in the values of certain entries
in the AT matrix from 0 to 1, which, as discussed earlier, increases the value of the
SCC metric. Therefore, adding a cohesive interaction represented in the MI matrix

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

17

always increases the SCC metric value. As a result, adding a cohesive interaction
represented in the AT or MI matrix always increases the SCC metric value, which
means that the SCC metric satisfies the monotonicity property.

Property MMAC.1 and Property AAC.1: The MMAC and AAC metrics satisfy
the cohesive module property.
Proof: Merging two unrelated classes c1 and c2 implies that none of the methods in
each of the two split classes are shared and none of them share common attribute
types. Therefore, the number of rows and columns in the AT of the merged class
equals the sum of the number of rows and columns in the AT matrices of the split
classes. The number of 1s in each row or column in the AT matrix of the merged class
equals the number of 1s in the corresponding row or column in the AT matrices of the
split classes. Therefore, for the AT k × l matrix representing class c1, the AT m × n
matrix representing class c2, and the AT (k + m) × (l + n) matrix representing the
merged class c3:

Suppose that MMAC(c1)≥MMAC(c2), then

So, Max{MMAC(c1),MMAC(c2)}>MMAC(c3).
Similarly, the AAC of the split classes is greater than the AAC of the merged class.
This means that both the MMAC and AAC metrics satisfy the cohesive-modules
property. ■

Property AMC.1: The AMC metric satisfies the cohesive modules property
Proof: Merging the two unrelated classes c1 and c2 implies that none of the methods
in each of the two split classes are shared and none of them share common attribute
types. In terms of the AT matrix, this means that the total number of 1s in the AT
matrix of the merged class equals the sum of the number of 1s in the AT matrices of
both of the split classes, which means formally:

Suppose that AMC(c1) ≥ AMC(c2), then

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

18

So, Max{AMC(c1),AMC(c2)} > AMC(c3), which means that the AMC metric
satisfies the cohesive module property. ■

Property MMIC.1: The MMIC metric satisfies the cohesive module property
Proof: Merging two unrelated classes c1 and c2 implies that none of the methods in
each of the two split classes are shared and none of the methods in class c1 invoke
methods in class c2 or vice versa. In terms of the MI matrix, this means that the total
number of 1s in the MI matrix of the merged class equals the sum of the number of 1s
in both of the split classes, which formally means:

Suppose that MMIC(c1) ≥ MMIC(c2), then

So, Max{MMIC(c1),MMIC(c2)} > MMIC(c3), which means that the MMIC metric
satisfies the cohesive modules property. ■

Property SCC.4: The SCC metric satisfies the cohesive modules property.
Proof: The SCC metric is the weighted sum of the MMAC, AAC, AMC, and MMIC
metrics. Since the cohesion for the split classes is greater than the cohesion of the
merged class for each of the four metrics, it is also greater for the SCC metric.
Therefore, the SCC metric satisfies the cohesive module property.■

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

19

Showing that a cohesion metric has the expected mathematical properties increases
the chances for the metric to be a meaningful quality indicator. However, it does not
necessarily guarantee it. The following section reports on large-scale empirical
investigations that demonstrate the validity of the assumptions underlying SCC and its
superior fault prediction capability when compared to other HLD and LLD cohesion
metrics.

6. Empirical Validation
We present three analyses. The first explores the correlations among ten cohesion
metrics, including SCC and well known other metrics, and applies principal
component analysis (Dunteman 1989) to explore the orthogonal dimensions within
this set of cohesion metrics. The goal is to confirm that SCC is indeed contributing
new information. The second and third analyses explore the extent to which the ten
class cohesion metrics can explain the presence of faults in classes. Metrics are first
considered individually, and then as combinations of predictors. If SCC has indeed
better properties and relies on more realistic assumptions, then we would expect it to
be a better quality indicator and, for example, more accurately predict faults. This is a
common widely used and accepted assumption in many studies (e.g., Briand et al.
1998, Briand et al, 2001, Gyimothy et al. 2005, Aggarwal et al, 2007, and Marcus et
al. 2008). Note that the goal here is not to build prediction models as many other
factors besides cohesion would have to be accounted for. The goal is rather to
determine if there is empirical evidence, whether direct or indirect, that SCC is indeed
a well-defined measure, complementary or better than existing, comparable cohesion
metrics. The fact that SCC explains more of the variation in fault occurrences is one
piece of empirical evidence suggesting that this metric indeed capture cohesion better.

6.1. Software systems and metrics
We chose four Java open source software systems from different domains: Art of
Illusion v.2.5 (Illusion 2009), GanttProject v.2.0.5 (GanttProject 2009), JabRef v.2.3
beta 2 (JabRef 2009), and Openbravo v.0.0.24 (Openbravo 2009). Art of Illusion
consists of 488 classes and about 88 K lines of code (LOC), and it is a 3D modeling,
rendering, and animation studio system. GanttProject consists of 496 classes and
about 39 KLOC, and it is a project scheduling application featuring resource
management, calendaring, and importing or exporting (MS Project, HTML, PDF,
spreadsheets). JabRef consists of 599 classes and about 48 KLOC, and it is a
graphical application for managing bibliographical databases. Openbravo consists of
452 classes and about 36 KLOC, and it is a point-of-sale application designed for
touch screens. We chose these four open source systems randomly from
http://sourceforge.net. The restrictions placed on the choice of these systems were that
they (1) are implemented using Java, (2) are relatively large in terms of number of
classes, (3) are from different domains, and (4) have available source code and fault
repositories.

We selected three HLD and six LLD cohesion metrics to compare with SCC. The
three HLD metrics, CAMC, NHD, and SNHD, had not been previously studied
empirically. Though these metrics were originally applied to C++ classes, their
concepts are general, and therefore, there is no reason not to apply them to Java

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

20

classes1. These metrics were selected because they measure cohesion at the same
design level as SCC, and therefore, they were used to compare the SCC to existing
HLD metrics in terms of fault prediction power. The six LLD metrics, LCOM1,
LCOM2, LCOM3, Coh, TCC, and LCC, were selected because they had been
extensively studied and compared to each other (Briand et al. 1999, Briand et al.
2000, Briand et al. 2001b, Marcus et al. 2008), and therefore, our results can be
compared to those obtained in previous empirical studies. In addition, these metrics
were selected to compare the fault prediction power of the HLD and LLD metrics.
We applied the considered metrics to 1337 non-trivial, selected classes among 2035
classes from the four open source systems. We excluded all classes for which at least
one of the metrics was undefined. For example, classes consisting of single methods
were excluded because their CAMC, NHD, SNHD, TCC, and LCC values are
undefined. In addition, classes not consisting of any attributes were excluded because
their NHD, SNHD, TCC, and LCC values are undefined. Classes in which all
methods do not have parameters are excluded because their NHD values are
undefined. An advantage of the SCC metric is that it is defined in all cases, as
discussed in Section 4.4. Therefore, none of the classes were excluded because of an
undefined SCC value. Excluding the classes that have undefined cohesion values
using some of the considered metrics allows us to perform the same analysis for all
metrics on the same set of classes and therefore compare their results in an unbiased
manner. Interfaces were also excluded because LLD metrics are undefined in this
case. We developed our own Java tool to automate the cohesion measurement process
for Java classes using the ten considered metrics including SCC. Though we focus on
design metrics in this paper, that is metrics that can be measured on design models
such as UML diagrams, in our experiment we collected the cohesion data through
source code analysis as no UML design diagrams were available for the four open
source systems considered. Note, however, that only design information available
during HLD and LLD was extracted, as discussed in Section 2.4. Our analysis tool
analyzed the Java source code, extracted the required information to build the
matrices, and calculated the cohesion values using the ten considered metrics. Table 2
shows descriptive statistics for each cohesion measure including the minimum, 25%
quartile, mean, median, 75% quartile, maximum value, and standard deviation. As
indicated in (Briand et al. 2001b), LCOM-based metrics feature extreme outliers due
to accessor methods that typically reference single attributes. The 25% quartile, mean,
median, and 75% quartile for SCC indicate that the considered classes have relatively
few method invocations and low degrees of similarity among methods and attributes.

1 The key differences between C++ and java, such as multiple inheritance and the
way the destructor is invoked, do not play a role in building the parameter-occurrence
matrix.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

21

Table 2: Descriptive statistics for the cohesion measures

6.2. Investigating assumptions
The method-attribute interactions are not precisely known during the HLD phase
because of the absence of method implementations or precise postconditions. As a
result, all HLD metrics must rely on assumptions, which realism needs to be
investigated. In this paper, the SCC metric assumes that the set of attribute types
accessed by a method is the intersection of the set of this method’s parameter types
and the set of class attribute types. This assumption is captured by the DAT matrix
that shows the matching between the attribute types and the method parameter types,
as illustrated in Section 3.3. On the other hand, the parameter-occurrence matrix
(Counsell et al. 2006) is based on the assumption that the set of attribute types
accessed by a method is the intersection of this method’s parameter types and the set
of parameter types of all methods in the class. The matrix shows, for each method, the
matching between the types of the method parameters and the types of parameters for
all methods in the class. We empirically studied the correctness of our assumption and
that of Counsell using all the considered classes in our study. For each class, we
calculated the percentage of cells in the DAT and parameter-occurrence matrices
matching the results of source code analysis, which is able to precisely identify the
access of each attribute in each method. For each of the four considered systems, we
calculated the average of the matching percentages of all considered classes in the
system and reported the results in Table 3. In addition, for all classes considered in
this empirical study, we investigated the occurrences of the two problems, stated in
Section 3.3, in using the parameter-occurrence matrix. For the first problem, we
counted for each class the number of parameter types, in the occurrence-matrix, that
do not match the types of the attributes. We calculated the percentage represented by
this number among all parameter types included in the parameter-occurrence matrix.
In the fourth column of Table 3, we reported the average of the percentages of the
parameter types that do not match attribute types in all considered classes in each
system. Similarly, for the second problem, we counted the number of attribute types
not included in the parameter-occurrence matrix. We calculated the percentage
represented by this number among all distinct attribute types in the class. Finally, in
the last column of Table 3, we reported the average of the percentages of the attribute
types not included in the parameter-occurrence matrix in all considered classes in
each system. The last row in Table 3 shows the corresponding percentages over all
considered classes in the considered systems.

Metric Min 25% Mean Med 75% Max Std Dev
SCC 0.00 0.04 0.18 0.08 0.18 1.00 0.26
CAMC 0.03 0.14 0.27 0.23 0.33 1.00 0.17
NHD 0.00 0.42 0.56 0.61 0.75 1.00 0.26
SNHD -1.00 -0.36 -0.13 0.00 0.00 1.00 0.46
LCOM1 0.00 2.00 58.37 9.00 36.00 3401 201.89
LCOM2 0.00 0.00 39.22 2.00 22.00 2886 160.30
LCOM3 0.00 1.00 1.20 1.00 1.00 8.00 0.76
Coh 0.00 0.22 0.44 0.38 0.62 1.00 0.29
TCC 0.00 0.24 0.52 0.50 0.80 1.00 0.34
LCC 0.00 0.25 0.52 0.50 0.80 1.00 0.33

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

22

The results show that the average matching percentage of the DAT matrix (65.49%) is
much better than the average matching percentage of the parameter-occurrence matrix
(20.87%). In other words, this means that, on average, 65.49% of the attributes
accessed by the methods were detected using our assumption, whereas, on average,
20.87% of the attributes accessed by the methods were detected using the assumption
of Counsell. This suggests that our metric takes more interactions into account than
other existing HLD metrics because it is based on the DAT matrix which appears to
predict method-attribute interactions better than the parameter-occurrence matrix. The
results also show that the average percentage of parameter types that do not match
attribute types (57.51%) and the average percentage of the attribute types that are not
included in the parameter-occurrence matrix (45.61%) are relatively high. In other
words, this means that, on average, 57.51% of the types included in the parameter-
occurrence matrix are unnecessary in representing the use of attributes in the methods
of a class. Furthermore, on average, 45.61% of the attribute types are not represented
in the parameter-occurrence matrix. This indicates that most often the parameter-
occurrence matrix is unrealistic in representing the use of attributes in the methods of
a class. In most cases, either the types of the attributes are not represented in the
parameter-occurrence matrix or the types of the parameters do not match any of the
types of the attributes. As a result, we cannot rely on the parameter-occurrence matrix
as an indicator for the accessibility of the attributes by the methods. Although we
showed how to include inherited methods and attributes when measuring SCC, the
following analyses do not consider inheritance. Empirically studying the effect of
including or excluding inherited attributes and methods is left open for further
research.

Table 3: The matching percentages of the DAT and parameter-occurrence matrices

6.3. Correlation and principal component analyses
Principal Component Analysis (PCA) (Dunteman 1989) is a technique used here to
identify and understand the underlying orthogonal dimensions that explain the
relations between the cohesion metrics (Marcus et al. 2008). In addition, it is useful to
demonstrate that the proposed metric captures new measurement dimensions. For
each pair of considered cohesion metrics, we used Mahalanobis Distance (Barnett and
Lewis 1994) to detect outliers and we found that removing the outliers does not make
significant differences in the final PCA results. We calculated the nonparametric
Spearman correlation coefficient (Siegel and Castellan 1988) among the considered
cohesion metrics. Table 42 shows the resulting correlations among the considered

2 Note that we use the absolute value of SNHD, where values close to 0 indicate high
cohesion and values close to 1 indicate low cohesion.

Systems
Matching

percentage of
DAT matrix

Matching
percentage of

parameter-
occurrence

matrix

Percentage of
parameter types

not matching
attribute types

Percentage of
attribute types not

included in
parameter-

occurrence matrix
Art of Illusion 65.12 20.08 59.93 42.04
GanttProject 68.31 23.29 56.02 43.03
JabRef 65.39 22.74 51.77 44.16
Openbravo 63.10 16.97 63.25 54.70
Overall classes 65.49 20.87 57.51 45.61

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

23

metrics accounting for all four systems. They are all statistically significant (p-value <
0.0001). Most cohesion metrics are weakly or moderately intercorrelated, though
much stronger correlations are observed for TCC and LCC (0.99), LCOM1 and
LCOM2 (0.8), and CAMC, NHD, and LCOM1, respectively. In addition to cohesion
metrics, we also include a size metric simply counting lines of source code (LOC).
This is to help the interpretation of our subsequent results by accounting for
relationships between size and certain cohesion metrics. All cohesion metrics show
some significant degree of correlation with LOC, but some much more so than others.
For example, LCOM1 and NHD show the strongest correlations (0.73, 0.70) whereas
SCC shows a weak correlation of -0.40. SCC is also at best moderately correlated
with other cohesion metrics, the maximum being CACM with a Spearman correlation
of 0.51. This is to be expected as CACM is the metric that is most similar to SCC.

Table 4: Spearman rank correlations among the cohesion metrics

To obtain the principal components (PCs), we used the varimax rotation technique
(Jolliffe 1986, Snedecor and Cochran 1989) in which the eigenvectors and
eigenvalues (loadings) are calculated and used to form the PC loading matrix. Table 5
shows the PCA results: the loading matrix shows six PCs that capture 94.56% of the
data set variance. In addition, it shows the eigenvalues (i.e., measures of the variances
of the PCs), their percentages, and the cumulative percentage. High coefficients
(loadings) for each PC indicate which are the influential metrics contributing to the
captured dimension. Coefficients above 0.5 are highlighted in boldface in Table 5.
Based on an analysis of these coefficients, the resulting PCs can then be interpreted as
follows:
PC1: CAMC, NHD, LCOM1, LCOM2, Coh, TCC, and LCC. These metrics consider
the share or use of attributes or their representatives (i.e., parameter types in CAMC
and NHD) in the methods of a class as the basis for measuring cohesion. In addition,
these metrics have zero lower bounds.
PC2: LCOM1 and LCOM2. These metrics are not normalized and they consider the
share of attributes in the methods of a class as the basis for measuring cohesion.
PC3: SCC and CAMC. These are HLD metrics considering the parameter types of the
methods of the classes.
PC4: SNHD. This metric only indirectly captures cohesion. Originally, SNHD was
introduced to represent the closeness of the NHD metric to the maximum value of
NHD compared to the minimum value.
PC5: LCOM3. This metric is based on counting the number of connected components
in the class representative graph instead of counting the number of shared or used
attributes.

Metric CAMC NHD |SNHD| LCOM1 LCOM2 LCOM3 Coh TCC LCC LOC
SCC 0.51 -0.44 -0.16 -0.45 -0.33 -0.11 0.41 0.32 0.32 -0.40
CAMC 1.00 -0.88 -0.31 -0.79 -0.54 -0.30 0.52 0.32 0.32 -0.65
NHD 1.00 0.43 0.84 0.59 0.30 -0.58 -0.35 -0.35 0.70
|SNHD| 1.00 0.56 0.40 0.18 -0.38 -0.20 -0.20 0.53
LCOM1 1.00 0.80 0.34 -0.75 -0.57 -0.57 0.73
LCOM2 1.00 0.34 -0.77 -0.74 -0.74 0.49
LCOM3 1.00 -0.19 -0.13 -0.13 0.28
Coh 1.00 0.74 0.74 -0.56
TCC 1.00 0.99 -0.22
LCC 1.00 -0.22

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

24

PC6: SCC. This is our new HLD metric that considers method-method, method-
attribute, and attribute-attribute relationships. In addition, it considers method
invocations and transitive use of attributes, and is more refined than the others in
terms of measuring the degree of similarity among the attributes or the methods.

The PCA results show that SCC metric captures a measurement dimension of its own
as it is the only significant factor in PC6, though it also contributes to PC3. This
supports the fact that SCC captures cohesion aspects that are not addressed by any of
the cohesion metrics considered in this analysis, thus confirming the results of
correlation analysis.

Table 5: Loading matrix

6.4. Predicting faults in classes
To study the relationship between the values of collected metrics and the extent to
which a class is fault-prone, we applied logistic regression (Hosmer and Lemeshow
2000), a standard and mature statistical method based on maximum likelihood
estimation. This method is widely applied to predict fault-prone classes (i.e., Briand et
al. 1998, Briand et al, 2001, Gyimothy et al. 2005, and Marcus et al. 2008) and though
other analysis methods, such as the methods discussed by Briand and Wuest (2002)
and Arisholm et al. (2009), could have been used, this is out of the scope of this
paper. In logistic regression, explanatory or independent variables are used to explain
and predict dependent variables. A dependent variable can only take discrete values
and is binary in the context where we predict fault-prone classes. The logistic
regression model is univariate if it features only one explanatory variable and
multivariate when including several explanatory variables. In this case study, the
dependent variable indicates the presence of one or more faults in a class, and the
explanatory variables are the cohesion metrics. Univariate regression is applied to
study the fault prediction of each metric separately, whereas multivariate regression is
applied to study the fault prediction of different combinations of metrics to determine
whether SCC improves the fit of these combinations.

We collected fault data for the classes in the considered software systems from
publicly available fault repositories. The fault repositories include reports about the
detected and fixed faults and specify which classes are involved in these faults. We

 PC1 PC2 PC3 PC4 PC5 PC6
Eigenvalue 4.16 1.83 1.26 0.87 0.72 0.62
Percent 41.59 18.26 12.64 8.68 7.18 6.21
Cum. Per. 41.59 59.85 72.49 81.17 88.35 94.56
SCC -0.48 -0.11 -0.51 -0.43 0.08 0.54
CAMC -0.68 0.01 -0.53 -0.14 0.07 -0.31
NHD 0.75 0.06 0.38 -0.09 -0.02 0.37
|SNHD| 0.44 -0.05 0.28 -0.79 0.10 -0.29
LCOM1 0.58 -0.74 -0.20 0.01 -0.25 -0.03
LCOM2 0.57 -0.74 -0.26 0.03 -0.21 -0.05
LCOM3 0.45 -0.42 -0.05 0.17 0.76 -0.01
Coh -0.84 -0.32 0.08 0.02 0.06 <0.01
TCC -0.76 -0.46 0.43 -0.03 -0.02 0.04
LCC -0.76 -0.47 0.43 -0.02 -0.02 0.04

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

25

manually traced the reports and counted the number of faults detected in each class.
We classified each class as being fault-free or as having at least one fault. Ideally,
class cohesion should be measured before each fault occurrence and correction, and
used to predict this particular fault occurrence. However, not only this would mean
measuring cohesion for dozens of versions (between each fault correction) for each
system, but we would not be able to study the statistical relationships of a set of faults
with a set of consistent cohesion measurements for many classes. Our cohesion
measurement is based on the latest version of the source code, after fault corrections,
and is therefore an approximation. This is however quite common in similar research
endeavors (e.g., Briand et al. 1998, Briand et al, 2001, Gyimothy et al. 2005, and
Marcus et al. 2008) and is necessary to enable statistical analysis.

Univariate regression results are reported in Table 6. Estimated regression coefficients
are reported, as well as their 95% confidence intervals. The larger the absolute value
of the coefficient is, the stronger the impact (positive or negative, according to the
sign of the coefficient) of the metric on the probability of a fault being detected in a
class. The considered metrics have significantly different standard deviations as
shown in Table 2. Therefore, to help compare the coefficients, we standardized the
explanatory variables by subtracting the mean and dividing by the standard deviation
and, as a result, they all have an equal variance of 1 and the coefficients reported in
Table 6 are also standardized. These coefficients represent the variation in standard
deviations in the dependent variable when there is a change of one standard deviation
in their corresponding independent variable. The p-value is the probability of the
coefficient being different from zero by chance, and is also an indicator of the
accuracy of the coefficient estimate: The larger the p-value, the larger the confidence
interval for the coefficient. A common practice is to use odd ratios (Hosmer and
Lemeshow 2000) to help interpret coefficients as those are not linearly related to the
probability of fault occurrences. In our context, an odd ratio captures how less (more)
likely it is for a fault to occur when the corresponding (lack of) cohesion metric
augments by one standard deviation. We report odd ratios and their 95% confidence
interval in Table 6. As an example, for SCC, the probability of fault occurrence when
there is an increase of one standard deviation in SCC is estimated to decrease by 49%.
Those can be easily compared across cohesion metrics. We use a typical significance
threshold (α=0.05) to determine whether a metric is a statistically significant fault
predictor. To avoid the typical problem of inflation of type-I error rates in the context
of multiple tests, we used a corrected significance threshold using the Bonferroni
adjustment procedure: α/10=0.005 (Abdi 2007).

To evaluate the prediction accuracy of logistic regression models, we used the
traditional precision and recall evaluation criteria (Olson and Delen 2008). Precision
is defined as the number of classes correctly classified as faulty, divided by the total
number of classes classified as faulty. It measures the percentage of the faulty classes
correctly classified as faulty. Recall is defined as the number of classes correctly
classified as faulty, divided by the actual number of faulty classes. It measures the
percentage of the faulty classes correctly or incorrectly classified as faulty. Such
criteria however require the selection of a probability threshold to predict classes as
faulty or not. Following the recommendation in Briand et al. (2000), a class is
classified as faulty if its predicted probability of containing a fault is higher than a
threshold selected such that the percentage of classes that are classified as faulty is
roughly the same as the percentage of classes that actually are faulty.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

26

To evaluate the performance of a prediction model regardless of any particular
threshold, we used the receiver operating characteristic (ROC) curve (Hanley and
McNeil 1982). In the context of fault-prediction problems, the ROC curve is a
graphical plot of the ratio of classes correctly classified as faulty versus the ratio of
classes incorrectly classified as faulty at different thresholds. The area under the ROC
curve depicts the ability of the model to correctly rank classes as faulty or non-faulty.
The ROC area of 100% represents a perfect model that classifies all classes correctly.
The larger the ROC area, the better the model is in classifying classes. The ROC
curve is often considered a better evaluation criterion than standard precision and
recall as selecting a threshold is always somewhat subjective.

To obtain a more realistic assessment of the predictive ability of the metrics, we used
cross-validation, a procedure in which the data set is partitioned into k subsamples.
The regression model is then built and evaluated k times. Each time, a different
subsample is used to evaluate the precision, recall, and ROC area of the model, and
the remaining subsamples are used as training data to build the regression model.

Table 6: Univariate logistic regression results

The results in Table 6 lead to the following conclusions:

1. Except for LCOM3, all considered cohesion metrics are statistically
significant at α=0.005 (i.e., their coefficients are significantly different from
0).

2. SCC is the best metric among the ten considered HLD and LLD metrics, in
terms of precision, recall, and ROC area.

3. SCC has a significantly better precision than the other HLD and LLD
metrics, especially when compared to SNHD and all LLD metrics but Coh.

4. SCC has slightly better recall than the other HLD and LLD metrics.
5. SCC has higher ROC areas than the other HLD and LLD metrics, especially

when compared to SNHD and LCOM3.

Design
phase Metric Std.

Coeff.
Odd
ratio

Std.
Error

95%
Confidence

Interval
Coeff.

95%
Confidence

interval
odd ratio

p-value Precision Recall ROC
area

SCC -0.68 0.51 0.07 [-0.81,-0.55] [0.44,0.58] < 0.0001 69.6 68.8 69.0

CAMC -0.47 0.62 0.06 [-0.59,-0.35] [0.56,0.70] < 0.0001 61.9 64.8 63.1

NHD 0.32 1.38 0.06 [0.21,0.43] [1.23,1.54] < 0.0001 60.0 64.0 59.4
HLD

|SNHD| 0.18 1.20 0.07 [0.04,0.32] [1.04,1.38] 0.002 41.3 64.2 53.1

LCOM1 1.06 2.89 0.20 [0.66,1.46] [1.94,4.30] < 0.0001 41.3 64.2 62.3

LCOM2 1.22 3.39 0.25 [0.74,1.70] [2.10,5.47] < 0.0001 41.3 64.2 62.7

LCOM3 0.13 1.14 0.06 [0.004,0.26] [1.00,1.29] 0.049 41.3 64.2 50.3

Coh -0.53 0.59 0.06 [-0.65,-0.42] [0.52,0.66] <0.0001 63.2 65.8 65.2

TCC -0.40 0.67 0.06 [-0.52,-0.28] [0.60,0.75] < 0.0001 41.3 64.2 60.7

LLD

LCC -0.39 0.68 0.06 [-0.51,-0.27] [0.60,0.76] < 0.0001 41.3 64.2 60.4

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

27

6. Among the considered HLD metrics, SNHD is the worst metric in terms of
precision and ROC area and NHD is the worst metric in terms of recall. In
addition, among the considered LLD metrics, LCOM3 is the worst metric in
terms of precision, recall, and ROC area.

7. As expected, the estimated regression coefficients for the inverse cohesion
measures LCOM1, LCOM2, LCOM3, NHD, and SNHD are positive,
whereas those for the straight cohesion measures SCC, Coh, TCC, LCC, and
CAMC are negative. In each case, this indicates an increase in the predicted
probability of fault detection as the cohesion of the class decreases.

8. SCC has the largest standardized coefficient among all considered HLD
cohesion metrics. This is confirmed by a smaller odd ratio (0.51), thus
suggesting that an increase in SCC has a stronger impact on reducing fault
occurrence probability. Once again, as expected, CACM has the next
smaller odd ratio (0.62) while those of the other HLD metrics are much
higher. But even for CACM the 95% odd ratio confidence intervals are
barely overlapping. To compare the odd ratios of inverse cohesion
metrics—which have coefficients above one—with SCC, one must divide
one by these odd ratios to obtain a comparable value (i.e., the odd ratio
when there is a decrease of one standard deviation in lack of cohesion). For
example, with LCOM2 which has the largest effect among inverse metrics,
this odd ratio is 1/1.22 = 0.82.

9. SCC is one of the metrics with the smallest p-value (which can show
statistical significance of the regression coefficient) among all considered
HLD and LLD cohesion metrics.

All cohesion measures showed statistically significant correlations with size (Table 4)
and this might (partially) explain the significant correlations between cohesion
metrics and class fault-proneness. However, though due to size constraints we do not
show details here, when individually combined with LOC in a bivariate logistic
regression model, both cohesion metrics and LOC still remain significant, except for
LCOM3 and SNHD. This suggests that all cohesion metrics but two have a significant
impact on class fault-proneness beyond any size effect.

Let us now turn our attention to multivariate analysis and the role of SCC in building
class fault-proneness prediction models based on cohesion metrics. To study whether
an optimal yet minimal multivariate model would contain SCC, we used a backward
selection process where all HLD metrics are first included in the model, and then
removed one by one as long as one metric has a p-value above 0.05, starting with
measures showing higher p-values. The results given in Table 7 show that both SCC
and CAMC remain in the prediction model as significant covariates. This somehow
shows that they are complementary in predicting faults. Note that the resulting model
is the first model represented in Table 8. Interpreting regression coefficients in
multivariate models with interacting covariates is always a difficult exercise.

Table 7: The model based on HLD metrics

Metric Std. Coeff. Std. Error p-value
SCC -0.58 0.28 <0.001
CAMC -0.26 0.41 0.0009

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

28

Another way to look at the impact of SCC in multivariate models is to assess whether
models containing SCC perform better than their counterparts. Here regression
analysis was applied only to combinations of the four HLD metrics considered in this
paper: SCC, CAMC, NHD, and the absolute value of SNHD. We chose these four
metrics because our goal is to compare SCC with other HLD measures. By combining
them into multivariate models we want to determine whether SCC improves the fit of
these models and is therefore complementary or a more optimal option than other
metrics to explain class fault-proneness. Table 8 reports the results of several
multivariate logistic regression models. The first column of Table 8 shows the model
identifier, and the second column shows the identifiers of the metrics that are
combined in the model. The rest of the columns show the resulting evaluations for
each of the possible combinations.

Table 8: Multivariate logistic regression results

The results of the multivariate logistic regression show that the best models are those
that combine SCC with other metrics (i.e., models A, B, C, G, H, I, and K shown in
Table 8). Furthermore, the precision, recall, and ROC area results for these models are
almost the same regardless of how the other metrics are combined with SCC. These
results are also close to those obtained when SCC is used on its own (see Table 6).
Further, significant differences are observed when SCC is removed from a model
(e.g., comparing 1+2+3 and 2+3). SCC therefore seems to be the main driver, among
cohesion measures, of the presence of faults in classes, though SCC is partly
correlated to other metrics.,

As a result, the empirical results above show that the SCC metric predicts faulty
classes more accurately than the other nine selected cohesion metrics considered
individually or in combination. This is particularly true when compared to the other
three HLD cohesion metrics.

Model Metrics Precision Recall ROC area
A 1+2 68.4 68.6 68.5
B 1+3 69.1 68.8 68.0
C 1+4 69.6 69.0 68.1
D 2+3 60.2 63.9 63.0
E 2+4 62.0 65.0 62.8
F 3+4 60.0 64.0 58.8
G 1+2+3 68.3 68.5 68.6
H 1+2+4 68.9 68.9 68.2
I 1+3+4 69.3 69.0 67.5
J 2+3+4 60.2 63.9 62.7
K 1+2+3+4 68.1 68.4 68.2

1:SCC, 2:CAMC, 3:NHD, 4:|SNHD|

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

29

6.5. Threats to validity

A. Construct validity
The SCC metric makes an important assumption: an attribute is likely to be accessed
within a method if that method has a parameter of a type that matches an attribute
type. One of the key limitations of using attribute and parameter types is that two or
more attributes may have the same type. In this case, the metric coalesces such
attributes into a single attribute. An implication of this approach is that it is difficult to
tell which attribute is expected to be accessed by a method when the method has a
type that matches a type that is associated with several attributes. Another implication
is that two methods can unintentionally be considered cohesive because their
parameters share the type of several attributes while in fact one of the methods
accesses a certain attribute and the other accesses a different attribute. Another
limitation of our metric is the assumption that two attributes are related if their types
match the parameter types of a method, whereas the two attributes might be unrelated
within the method. Though potential problems regarding this assumption must be
carefully considered, our empirical results show that our basic assumption is met most
of the time as reported in Section 6.2.

B. External validity
Several factors may restrict the generality and limit the interpretation of our results.
The first factor is that all four of the considered systems are implemented in Java. The
second is that all the considered systems are open-source systems that may not be
representative of all industrial domains, though this is common practice in the
research community. Though differences in design quality and reliability between
open source systems and industrial systems have been investigated (e.g., Samoladas et
al. 2003, Samoladas et al. 2008, Spinellis et al. 2009), there is yet no clear, general
result we can rely on. The third factor is that, though they are not artificial examples,
the selected systems may not be representative in terms of the number and sizes of
classes. To generalize the results, different systems written in different programming
languages, selected from different domains, and including real-life, large-scale
software should be taken into account in similar large-scale evaluations.

C. Internal validity
Though the presence of faults is one important aspect of quality, it is obviously not
driven exclusively by class cohesion. Many other factors play an important role in
driving the occurrence of faults (Arisholm et al. 2009). However, our goal here is not
to predict faults in classes, but to investigate whether there is empirical evidence that
SCC is strongly related to observable aspects of quality, therefore suggesting that it is
a well-defined cohesion measure, that is complementary or even a better option than
existing HLD cohesion metrics. So, though the effect of cohesion on the presence of
faults may be partly due to the correlation of cohesion with other unknown factors, it
does not affect our objectives. Our cohesion measurement is an approximation
because, as a practical necessity to enable statistical analysis, it is based on the latest
version of the source code, that is the version after the faults are corrected. This likely
affects the strength of the observed relationships between cohesion and fault
occurrences. However, this is a quite common practice in similar research endeavors
as mentioned earlier in Section 6.4.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

30

7. Conclusions and Future Work
This paper introduces a new cohesion metric (SCC) that addresses a number of
problems arising from existing metrics. It is defined to be usable during the High-
Level Design (HLD) of object-oriented software, which allows early designs to be
assessed in terms of cohesion, in a way that is firmly grounded in theory and strongly
supported by empirical evidence. SCC is based on more realistic, empirically verified
assumptions than other comparable metrics. From a theoretical standpoint, it also
accounts for all types of interactions between class members: method-method
interactions caused by the sharing of attribute types; attribute-attribute interactions
caused by the expected use of attributes within the methods; attribute-method
interactions; and method-method invocation interactions. Both direct and transitive
interactions are considered. The metric uses two types of matrices that can be
constructed using class and communication diagrams, commonly used in high level
design with the Unified Modeling Language (UML). The metric satisfies
mathematical properties that are expected for cohesion measures and have been
widely used in the literature. A large scale empirical study based on four open source
systems is also reported showing how SCC and ten other well-known cohesion
metrics relate to each other and the occurrence of faults. Results show that SCC
captures a cohesion measurement dimension of its own and was the metric that most
strongly related to fault occurrences in statistical terms. As with any design metric,
SCC has several limitations as it targets HLD and is therefore based on assumptions
that are necessary as source code information is not available. However, the aim of
HLD metrics is not to measure class cohesion with maximum precision, but rather to
approximate it to enable early assessments and decision-making. Empirical results
show that our assumptions are met most of the time and that our approximation is
good enough for the metric to exhibit a strong relationship with fault occurrences.

SCC can be improved in several ways, such as effectively solving the problem of
having several attributes of the same type. Our metric does not distinguish between
attributes and methods of different accessibility levels (i.e., public, private, and
protected). Studying the effect of considering or ignoring private and protected
attributes and methods on the computation of SCC and its fault prediction power are
left open for future research. Assessing empirically the impact of inheritance on SCC
and its fault prediction power is also relevant but requires complex automation. In
addition, in the future, we plan to introduce a similar LLD class cohesion metric and
to study it empirically.

Acknowledgments
The authors would like to acknowledge the support of this work by Kuwait University
Research Grant WI03/07. In addition, the authors would like to thank Professor Steve
Counsell for his insightful comments that helped improve the paper, Walid Bahsow
for developing the class cohesion measuring tool and Manal Al-Khousi, Saqiba
Sulman, Sharefa Al-Kandari, Methayell Al-Mitrik, Maryam Al-Hasawi, and Amina
Bin Ali for collecting the cohesion results.

References
H. Abdi, Bonferroni and Sidak corrections for multiple comparisons, Neil Salkind
(ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks, CA: Sage, 2007,
pp. 1-9.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

31

K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, Investigating effect of design
metrics on fault proneness in object-oriented systems, Journal of Object Technology,
6(10), 2007, pp. 127-141.
J. Al Dallala, Efficient program slicing algorithms for measuring functional cohesion
and parallelism, International Journal of Information Technology, Vol. 4, No. 2,
2007, pp. 93-100.
J. Al Dallalb, A design-based cohesion metric for object-oriented classes, Proceedings
of the International Conference on Computer and Information Science and
Engineering (CISE 2007), Venice, Italy, November 2007.
J. Al Dallala, Theoretical validation of object-oriented lack-of-cohesion metrics,
proceedings of the 8th WSEAS International Conference on Software Engineering,
Parallel and Distributed Systems (SEPADS 2009), Cambridge, UK, February 2009.
J. Al Dallalb, Software similarity-based functional cohesion metric, IET Software,
2009, Vol. 3, No. 1, pp. 46-57.
E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models, accepted for
publication on the Journal of Systems and Software, 2009.
L. Badri and M. Badri, A Proposal of a new class cohesion criterion: an empirical
study, Journal of Object Technology, Vol. 3, No. 4, 2004, pp. 145-159.
J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A class cohesion metric for object-
oriented designs, Journal of Object-Oriented Program, Vol. 11, No. 8, pp. 47-52.
1999.
V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley and Sons, 3rd e,
1994, pp. 584.
J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented system,
Proceedings of the 1995 Symposium on Software reusability, Seattle, Washington,
United States, pp. 259-262, 1995.
J. Bieman and B. Kang, Measuring design-level cohesion, IEEE Transactions on
Software Engineering, Vol. 24, No. 2, 1998, pp. 111-124.
J. Bieman and L. Ott, Measuring functional cohesion, IEEE Transactions on Software
Engineering, Vol. 20, No. 8, 1994, pp. 644-657.
L. Briand, C. Bunse, and J. Daly, A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs, IEEE Transactions on
Software Engineering, vol. 27 (6), 2001a, pp. 513-530.
L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion measurement
in object-oriented systems, Empirical Software Engineering - An International
Journal, Vol. 3, No. 1, 1998, pp. 65-117.
L. C. Briand , S. Morasca , and V. R. Basili, Defining and validating measures for
object-based high-level design, IEEE Transactions on Software Engineering, Vol. 25,
No. 5, 1999, pp. 722-743.
L. C. Briand and J. Wust, Empirical studies of quality models in object-oriented
systems, Advances in Computers, Academic Press, 2002, pp. 97-166.
L. C. Briand, J. Wust, J. Daly, and V. Porter, Exploring the relationship between
design measures and software quality in object-oriented systems, Journal of System
and Software, 51(3), 2000, pp. 245-273.
L. C. Briand, J. Wüst, and H. Lounis, Replicated Case Studies for Investigating
Quality Factors in Object-Oriented Designs, Empirical Software Engineering, 6(1),
2001b, pp. 11-58.
B. Bruegge and A. Dutoit, Object Oriented Software Engineering, Prentice Hall, 3rd
revised edition, 2009.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

32

Z. Chen, Y. Zhou, and B. Xu, A novel approach to measuring class cohesion based on
dependence analysis, Proceedings of the International Conference on Software
Maintenance, 2002, pp. 377-384.
S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-Oriented
Design, Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), Special Issue of SIGPLAN Notices, Vol. 26, No. 10, 1991, pp. 197-211.
S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented Design, IEEE
Transactions on Software Engineering, Vol. 20, No. 6, 1994, pp. 476-493.
S. Counsell , E. Mendes, and S. Swift, Comprehension of object-oriented software
cohesion: the empirical quagmire, Proceedings of the 10th International Workshop on
Program Comprehension (IWPC 2002), 2002, pp. 33-42.
S. Counsell , S. Swift , and J. Crampton, The interpretation and utility of three
cohesion metrics for object-oriented design, ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 15, No. 2, 2006, pp.123-149.
G. Dunteman, Principal components analysis, Saga University Paper No. 7-69, Saga
Publications, US, pp. 96.
T. Emerson, A discriminant metrics for module cohesion, In Proceedings of the 7th
International Conference on Software Engineering, 1984, pp. 294-303.
N. Fenton and S. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
Course Technology, 2nd edition, 1998.
L. Fernández, and R. Peña, A sensitive metric of class cohesion, International Journal
of Information Theories and Applications, Vol. 13, No. 1, 2006, pp. 82-91.
GanttProject, http://sourceforge.net/projects/ganttproject/, February 2009
M. Genero, M. Piattini, and C. Caleron, A survey of metrics for UML class diagrams,
Journal of Object Technology, 4(9), 2005, pp. 59-92.
H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with
UML (Addison-Wesley Object Technology Series), Addison-Wesley Professional,
2000.
T. Gyimothy, R. Ferenc, and I. Siket, Empirical validation of object-oriented metrics
on open source software for fault prediction, IEEE Transactions on Software
Engineering, 3(10), 2005, pp. 897-910.
J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver
operating characteristic (ROC) curve, Radiology, 143(1), 1982, pp. 29-36.
B. Henderson-sellers, Object-Oriented Metrics Measures of Complexity, Prentice-
Hall, 1996.
M. Hitz and B. Montazeri, Measuring coupling and cohesion in object oriented
systems, Proceedings of the International Symposium on Applied Corporate
Computing, 1995, pp. 25-27.
D. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley Interscience, 2000,
2nd edition.
Illusion, http://sourceforge.net/projects/aoi/, February 2009.
JabRef, http://sourceforge.net/projects/jabref/, February 2009
I. T. Jolliffe, Pincipal component analysis, Springer, 1986.
B. Kitchenham, S. L. Pfleeger, and N. Fenton, Towards a framework for software
measurement validation, IEEE Transactions on Software Engineering, 21(12), 1995,
pp. 929-944.
A. Lakhotia, Rule-based approach to computing module cohesion, Proceedings of the
15th international conference on Software Engineering, Baltimore, US, 1993, pp. 35-
44.

Simula Research Laboratory, Simula Technical Report (2009-1), Version 2

33

C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, Prentice Hall PTR, 2nd Edition, 2001.
W. Li and S.M. Henry, Maintenance metrics for the object oriented paradigm. In
Proceedings of 1st International Software Metrics Symposium, Baltimore, MD, 1993,
pp. 52-60.
A. Marcus, D. Poshyvanyk, and R. Ferenc, Using the conceptual cohesion of classes
for fault prediction in object-oriented systems, IEEE Transactions on Software
Engineering, 34(2), 2008, pp. 287-300.
T. Meyers and D. Binkley, An empirical study of slice-based cohesion and coupling
metrics, ACM Transactions on Software Engineering Methodology, 17(1), 2007, pp.
2-27.
Openbravo, http://sourceforge.net/projects/openbravopos, February 2009.
D. Olson and D. Delen, Advanced Data Mining Techniques, Springer, 1st edition,
2008.
L. Ott and J. Thuss, Slice based metrics for estimating cohesion, Proceedings of the
First International Software Metrics Symposium, Baltimore, 1993, pp. 71-81.
D. Pilone and N. Pitman, UML 2.0 in a Nutshell, O'Reilly Media, Inc., 2nd edition,
2005, pp. 234.
I. Samoladas, S. Bibi, I. Stamelos, and G.L. Bleris. Exploring the quality of free/open
source software: a case study on an ERP/CRM system, 9th Panhellenic Conference in
Informatics, Thessaloniki, Greece, 2003.
I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, The SQO-OSS quality
model: measurement based open source software evaluation, Open Source
Development, Communities and Quality, 275, 2008, pp. 237-248.
S. Siegel and J. Castellan, Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, 2nd edition, 1988.
G. Snedecor and W. Cochran, Statistical Methods, Blackwell Publishing Limited,
1989, 8th edition.
D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samoladas, and
I. Stamelos, Evaluating the quality of open source software, Electronic Notes in
Theoretical Computer Science, 233, 2009, pp. 5-28, 2009.
D. Troy and S. Zweben, Measuring the quality of structured designs, Journal of
Systems and Software, 2, 1981, pp. 113-120.
J. Wang, Y. Zhou, L. Wen, Y. Chen, H. Lu, and B. Xu, DMC: a more precise
cohesion measure for classes. Information and Software Technology, Vol. 47, No. 3,
2005, pp. 167-180.
E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, Englewood Cliffs,
1979.

