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Abstract 
Class cohesion is an important object-oriented software quality attribute. Assessing 
class cohesion during the object-oriented design phase is one important way to obtain 
more comprehensible and maintainable software. In practice, assessing and 
controlling cohesion in large systems implies measuring it automatically. One issue 
with the few existing cohesion metrics targeted at the high-level design phase is that 
they are not based on realistic assumptions and do not fulfill expected mathematical 
properties. In this paper, we address this problem by introducing the notion of 
similarity between pairs of methods and pairs of attribute types in a class, and we use 
it as a basis to introduce a novel high-level design class cohesion metric. The metric 
considers method-method, attribute-attribute, and attribute-method direct and 
transitive interactions. We validate this Similarity-based Class Cohesion (SCC) metric 
theoretically and empirically. The former includes a careful study of the mathematical 
properties of the metric whereas the latter investigates, using four open source 
software systems and ten cohesion metrics, whether SCC is based on realistic 
assumptions and whether it better explains the presence of faults, from a statistical 
standpoint, than other comparable cohesion metrics, considered individually or in 
combination. Results confirm that SCC is based on clearly justified theoretical 
principles, relies on realistic assumptions, and is strongly related to fault occurrences 
in classes. 
 
Keywords: object-oriented software quality, object-oriented design, class cohesion, 
fault prediction.  
 
1. Introduction 
Software engineering aims at developing techniques and tools to promote quality 
software that is stable and easy to maintain. In order to assess and improve software 
quality during the development process, developers and managers use, among other 
means, ways to automatically measure the software design. To this aim, many metrics 
have been proposed to estimate different attributes such as cohesion, coupling, and 
complexity (Fenton and Pfleeger 1998). 
 
The cohesion of a module is one important property of software design and refers to 
the relatedness of software module constituents. A highly cohesive module has one 
basic function and cannot be split into separate modules (Bieman and Ott 1994). 
Highly cohesive modules are believed to be more understandable, modifiable, and 
maintainable than less cohesive modules (Briand et al. 2001a, Chen et al. 2002). 
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Over the last decade, object-oriented programming languages, such as C++ and Java, 
have gained popularity in the software industry. In the object-oriented paradigm, 
classes serve as the basic units of design. The constituents or members of a class are 
its attributes and methods. Therefore, class cohesion refers to the relatedness of the 
class members. Three possible types of related interactions are defined including 
method-method, method-attribute, and attribute-attribute interactions. The method-
method interaction between a pair of methods is defined when both methods access a 
common attribute, or when one method invokes the other one. The method-attribute 
interaction between a method and an attribute is defined when the method accesses 
the attribute. Finally, the attribute-attribute interaction between a pair of attributes is 
defined when both attributes are accessed by a common method. 
 
Several class cohesion metrics have been proposed in the literature. These metrics can 
be applicable based on high-level design (HLD) or low-level design (LLD) 
information. HLD class cohesion metrics rely on information related to class and 
method interfaces (Briand et al. 1999, Bansiya et al. 1999, Counsell et al. 2006). The 
more numerous LLD class cohesion metrics, such as those proposed by Chidamber 
and Kemerer (1991), Chidamber and Kemerer (1994), Hitz and Montazeri (1995), 
Bieman and Kang (1995), Chen et al. (2002), Badri (2004), Wang (2005), and 
Fernandez and Pena (2006), require analyzing the algorithms used in the class 
methods (or the code itself if available) or access to highly precise method 
postconditions. The LLD cohesion metrics use finer-grained information than that 
used by HLD cohesion metrics. That is, based on the LLD, all method-method, 
method-attribute, and attribute-attribute interactions can be precisely defined. On the 
other hand, one advantage of HLD class cohesion metrics is that they identify 
potential cohesion issues early, during the HLD phase. Detecting class cohesion 
issues, and correcting the corresponding class artifacts later (during the LLD or 
implementation phase), is much more costly than performing the same tasks early 
(during the HLD phase). Improving class cohesion during the HLD phase saves 
development time, reduces development costs, and increases overall software quality. 
The HLD class cohesion metrics proposed to date have several drawbacks. First, some 
of them are based on assumptions that are yet to be empirically validated and are 
probably unrealistic. For instance, in some of the seminal work on the topic (Bansiya 
et al. 1999, Counsell et al. 2002, Counsell et al. 2006), the assumption is that the types 
of the method parameters match the types of the attributes accessed by the method. 
However, this assumption has little empirical support beyond the study of Counsell et 
al. (2006) based on 21 C++ classes. Second, some key features of object-oriented 
programming languages, such as inheritance, are not considered in HLD class 
cohesion metrics proposed to date. Third, certain proposed metrics, such as Cohesion 
Among Methods in a Class (CAMC) (Bansiya et al. 1999) and Normalized Hamming 
Distance (NHD) (Counsell et al. 2002, Counsell et al. 2006), have not been validated 
in terms of their mathematical properties and in fact violate key properties. Fourth, 
some metrics ignore transitive interactions and method-invocation interactions. 
Finally, research in the area of HLD class cohesion measurement needs more, larger 
scale empirical studies that examine the correlation among the proposed metrics and 
that explore the relationships between HLD cohesion and software quality. 
 
In this paper, we review and discuss some recently proposed design class cohesion 
metrics, with an emphasis on HLD metrics. We introduce a new model to predict the 
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relationship between parameter types and attribute types. To do so, we define the 
notion of similarity between a pair of methods and a pair of attribute types and use 
this as a basis to measure class cohesion. We thus introduce a novel HLD class 
cohesion metric that we refer to as Similarity-based Class Cohesion (SCC). This 
metric accounts for method-method, method-attribute, attribute-attribute, and method 
invocation direct and transitive interactions identified using the class and 
communication diagrams defined by the Unified Modeling Language (UML), which 
are commonly used for describing object-oriented designs. Our expectations, in terms 
of data available in HLD UML diagrams, are consistent with main stream object-
oriented, UML-based methodologies (e.g., Gomaa 2000, Larman 2001, and Bruegge 
and Dutoit 2009). 
 
The method implementations and, consequently, the information about the method-
attribute interactions are not available during the HLD phase. Our metric is based on 
the assumption that the matching between the method parameter types and the 
attribute types capture most of the method-attribute interactions. We investigated our 
assumption versus the assumptions proposed in some of the seminal proposals on the 
topic, on which our work is based (Bansiya et al. 1999, Counsell et al. 2002, Counsell 
et al. 2006). The results show that our assumption captures the method-attribute 
interactions more precisely than the other assumptions.  
 
The validity of a metric has to be studied both theoretically and empirically 
(Kitchenham et al. 1995). The theoretical validation tests whether the proposed metric 
complies with the necessary properties of the measured attribute. The empirical 
validation tests whether measured and predicted values are consistent with each other.   
Consistent with this general validation approach, SCC is then validated from both 
theoretical and empirical standpoints. Our theoretical validation involves analyzing 
the compliance of SCC with the properties proposed by Briand et al. (1998). The 
empirical validation involves ten cohesion metrics, including the most common 
cohesion metrics in the literature and SCC, to classes selected from four open source 
Java systems. We explore the correlations between the ten considered metrics, thus 
determining whether SCC captures new information, and study the fault-prediction 
power of the metrics considered individually and in various combinations. The results 
show that SCC defines a cohesion dimension of its own, is based on assumptions that 
are more realistic than other similar metrics, and has relatively high fault-prediction 
power compared to other proposed metrics. Though building fault-prediction models 
is not an objective of this paper, as further discussed below, this is used as a way to 
gather empirical evidence that SCC better relates to class quality than other, 
comparable metrics.  
 
This paper is organized as follows. Section 2 reviews related work. Section 3 defines 
the model used by our proposed metric. In Section 4, we define the SCC metric, and 
in Section 5, we validate it theoretically. Section 6 illustrates several empirical case 
studies and reports and discusses their results. Finally, Section 7 concludes and 
discusses future work.  
 
2. Related Work 
In this section, we summarize a widely used set of mathematical properties that all 
class cohesion metrics should satisfy. In addition, we review and discuss several 
existing design class cohesion metrics for object-oriented systems and other related 
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works in the area of measuring software cohesion. Finally, we provide an overview of 
two related UML diagrams to demonstrate that the information we rely on is available 
in high-level designs with UML.  
 
2.1. A class cohesion metric’s necessary properties 
Briand et al. (1998) define four mathematical properties that provide a supportive 
underlying theory for class cohesion metrics. The first property, called nonnegativity 
and normalization, is that the cohesion measure belongs to a specific interval [0, 
Max]. Normalization allows for easy comparison between the cohesion of different 
classes. The second property, called null value and maximum value, holds that the 
cohesion of a class equals 0 if the class has no cohesive interactions (i.e., interactions 
among attributes and methods of a class) and the cohesion is equal to Max if all 
possible interactions within the class are present. The third property, called 
monotonicity, holds that adding cohesive interactions to the module cannot decrease 
its cohesion. The fourth property, called cohesive modules, holds that merging two 
unrelated modules into one module does not increase the module's cohesion. 
Therefore, given two classes, c1 and c2, the cohesion of the merged class c' must 
satisfy the following condition: cohesion(c')≤max {cohesion(c1), cohesion(c2)}. If a 
metric does not satisfy any of these properties, it is considered ill-defined (Briand et 
al. 1998). Despite its widespread use and acceptance, many research studies do not 
report such theoretical validation for cohesion metrics or any equivalent alternative 
(Al Dallal 2009a).  
 
2.2. Design class cohesion metrics 
Several metrics have been proposed in the literature to measure class cohesion during 
the system HLD and LLD phases. These metrics use different underlying models and 
different formulas. We start by discussing in detail two of the most important 
proposals regarding HLD cohesion metrics and then briefly discuss LLD metrics and 
other less directly relevant work.  
 
A. Cohesion among methods in a class 
Bansiya et al. (1999) propose a design class cohesion metric called Cohesion Among 
Methods in a Class (CAMC). The CAMC metric uses a parameter-occurrence matrix 
that has a row for each method and a column for each data type that appears at least 
once as the type of a parameter in at least one method in the class. The value in row i 
and column j in the matrix is 1 when the ith method has a parameter of the jth data 
type and is 0 otherwise. In the matrix, the class type is always included in the 
parameter type list, and every method interacts with this data type because every 
method implicitly has an identity parameter. This means that one of the columns is 
filled entirely with 1s. The CAMC metric is defined as the ratio of the total number of 
1s in the matrix to the total size of the matrix. As per our knowledge, the CAMC 
metric was the first proposed HLD class cohesion metric and is based on information 
available in UML class diagrams (Genero et al. 2005). However, several related 
issues are left open for further research including the consideration of class 
inheritance and transitive interactions. In addition, the CAMC metric is based on 
assumptions for which there is little empirical evidence: the types of the method 
parameters are expected to match the types of the attributes accessed by the method. 
Among the different types of cohesive interactions, defined in Section 1, the CAMC 
metric considers only attribute-method interactions. Finally, the metric does not 
satisfy the normalization property because each parameter type is used by at least one 
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method and one of the parameter types is used by all methods. Therefore, the 
minimum number of 1s in the matrix is k + l −1, where k is the number of rows and l 
is the number of columns. In this case, CAMCmin = (k + l −1)/kl. Consequently, the 
normalized CAMC (NCAMC) equals (k.l.CAMC-k-l+1)/(k.l-k-l+1). Counsell et al. 
(2006) suggest omitting the type of class from the parameter-occurrence matrix and 
calculating CAMC from the modified matrix. We refer to this metric as CAMCc. In 
this case, the minimum number of 1s in the matrix is l, so CAMCc min = l/kl = 1/k. 
Consequently, the normalized CAMCc equals (k.CAMCc-1)/(k-1). Given a parameter-

occurrence matrix without the class type and a= , where cij is the value at row 

i and column j in the matrix, CAMC can be calculated as follows (Counsell et al. 
2006): 

         (1)  

  
B. Normalized hamming distance (NHD) metric 
Counsell et al. (2006) propose and discuss the interpretation and utility of a design 
class cohesion metric called the Normalized Hamming Distance (NHD). This metric 
uses the same parameter-occurrence matrix as the CAMC metric (the type of class is 
not considered). This approach calculates the average parameter agreement between 
each pair of methods. The parameter agreement between a pair of methods is defined 
as the number of entries in which the corresponding rows in the parameter-occurrence 
matrix match. Formally, the metric is defined as follows: 

     (2) 

where aij is the number of entries in rows i and j for which both are 1, and xj is the 
number of 1s in the jth column of the parameter occurrence matrix. The metric has 
several limitations. The first is that it is counter-intuitive to consider the absence of a 
parameter type in a pair of methods to be a cohesive relation: a pair of methods would 
be considered fully cohesive if they did not have any parameters. This limitation can 
be overcome by ignoring this case when accounting for cohesion. The second 
limitation is that the metric satisfies the normalization property only when the class 
has two methods. The third and fourth limitations are that it does not satisfy the 
monotonicity and cohesive module properties unless the Hamming Distance 
definition is modified which implies introducing a completely different metric. In 
other words, NHD does not satisfy most of the necessary properties proposed by 
Briand et al. (1998) for class cohesion metrics. Finally, NHD does not consider class 
inheritance, transitive interactions, and the types of cohesive interactions defined in 
Section 1, other than method-method interactions. Scaled NHD (SNHD) is a metric 
that represents the closeness of the NHD metric to the maximum value of NHD 
compared to the minimum value (Counsell et al. 2006), and therefore, it can be used 
as a basis for normalizing NHD. The SNHD value ranges within the interval [-1,1], 
where the closer the value is to zero, the less cohesive is the class. CAMC, NHD, and 
SNHD were originally proposed to measure the cohesion of classes. However, since 
these metrics require information also available in interfaces, they could potentially 
be applied to interfaces too.  
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2.3. Overview of other relevant work 
Yourdon et al. (1979) proposed seven levels of cohesion. These levels include 
coincidental, logical, temporal, procedural, communicational, sequential, and 
functional. The cohesion levels are listed in ascending order of their desirability. 
Since then, several cohesion metrics have been proposed for procedural and object-
oriented programming languages. Different models are used to measure the cohesion 
of procedural programs, such as the control flow graph (Emerson 1984), the variable 
dependence graph (Lakhotia 1993), and program data slices (Ott and Thuss 1993, 
Bieman and Ott 1994, Meyers and Binkley 2007, Al Dallala 2007, Al Dallal 2009). 
Cohesion has also been measured indirectly by examining the quality of the structured 
designs (Troy and Zweben 1984, Bieman and Kang 1998). 

Several LLD class cohesion metrics have been proposed in the literature. These 
metrics are based on the use or sharing of class instance variables. The Lack of 
Cohesion of Methods (LCOM1) metric (Chidamber and Kemerer 1991) counts the 
number of pairs of methods that do not share instance variables. Chidamber and 
Kemerer (1994) proposed another version of the LCOM metric, referred to here as 
LCOM2, which calculates the difference between the number of method pairs that do 
and do not share instance variables. Li and Henry (1993) use an undirected graph that 
represents each method as a node and the sharing of at least one instance variable as 
an edge. Class cohesion, LCOM3, is measured in terms of the number of connected 
components in the graph. This class cohesion was extended by Hitz and Montazeri 
(1995), who added an edge between a pair of methods if one invokes the other. 
Bieman and Kang (1995) proposed two class cohesion metrics, Tight Class Cohesion 
(TCC), which measures the relative number of directly connected pairs of methods, 
and Loose Class Cohesion (LCC), which measures the relative number of directly or 
transitively connected pairs of methods. These two metrics consider two methods to 
be connected if they share at least one instance variable or one of the methods invokes 
the other. The cohesion metric Degree of Cohesion (DCD) is similar to TCC, and the 
metric DCI is similar to LCC (Badri 2004), but they also consider two methods 
connected when they invoke the same method. Briand et al. (1998) proposed a 
cohesion metric, called Coh, that computes the cohesion as the ratio of the number of 
distinct attributes accessed in the methods of a class. Wang et al. (2005) introduced a 
Dependence Matrix-based Cohesion (DMC) class cohesion metric based on a 
dependency matrix that represents the degree of dependence among the instance 
variables and methods in a class. Fernandez and Pena (2006) propose class cohesion 
metrics that consider the cardinality of intersection between each pair of methods. 
Henderson-Sellers (1996) and Briand et al. (1998) propose class cohesion metrics 
similar to CAMC but for the method/instance variable matrix. Chen et al. (2002) use 
dependence analysis to explore attribute-attribute, attribute-method, and method-
method interactions. They measure cohesion as the relative number of interactions. Al 
Dallalb (2007) proposes a distance-based HLD cohesion metric and discusses its 
sensitivity to changes in the class cohesive interactions. The metric is based on 
information available in the UML class diagram. This paper is extended here by (1) 
proposing the similarity-based metric, which measures the cohesion more directly 
than the distance-based metric, (2) accounting for class inheritance, (3) accounting for 
transitive class interactions, (4) empirically validating the underlying assumptions, 
and (5) validating the metric theoretically and empirically.    
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2.4. UML class and communications diagrams 
UML is a standard language used for modeling object-oriented design. UML 2.0 
(Pilone and Pitman 2005) consists of 13 types of diagrams. In this paper, we are 
interested in class and communication diagrams, as they are typically part of high 
level designs (Gomaa 2000, Larman 2001, and Bruegge and Dutoit 2009). The class 
diagram describes the system's classes and the static relationships between them. The 
description of a class includes the names and types of the attributes and the names, 
return types, and parameter types of the methods. Figure 1(a) shows a sample class 
diagram for the AccountDialog class. 
   

 
Figure 1: UML class and communication diagrams for AccountDialog 

        
The communication diagram describes the message (e.g., method call) flow between 
system's objects. Each object is represented by a box that includes the class name and 
the object name (optional). Messages between the objects are associated with links. 
Many messages can flow along a link. Each message is assigned to a small arrow 
indicating its direction and a sequence number. Invoking a method from another 
method belonging to the same class is modeled in the communication diagram by 
initiating both messages from the same object and prepending the sequence number of 
the invoked message with the sequence number of the invoking message. For 
example, the partial communication diagram shown in Figure 1(b) indicates that the 
showInfo method invokes the showExtraInfo method, which in turn invokes the 
showAddress method. 

 
Genero et al. (2005) provide a survey for object-oriented quality metrics based on 
UML diagrams. They show that the information required to build the parameter-
occurrence matrix, used in the CAMC and NHD metrics, is available in the UML 
class diagram. 

 
In summary, several class cohesion metrics are introduced in the literature. Few of 
these metrics are based on information available during HLD phase. The HLD 
cohesion metrics introduced to date do not consider transitive interactions and 
inheritance and they are based on models built on assumptions that are yet to be 
empirically validated. In addition, they are not validated theoretically against 
necessary class cohesion properties, and empirically against external quality attributes 
such as fault occurrences. In this paper, to address the above issues, we introduce 
Similarity-based Class Cohesion (SCC), a HLD class cohesion metric based on 
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assumptions that we empirically investigate and that are shown to be realistic in 
several systems. The SCC metric can easily account for class inheritance and direct 
and transitive interactions. In addition, the SCC metric complies with widely accepted 
class cohesion properties and has relatively high fault-prediction power when 
compared to other proposed HLD and LLD cohesion metrics, thus providing indirect, 
empirical evidence that it might be a more meaningful measure of class cohesion.              
 
3. Model Definition 
The similarity-based class cohesion metric introduced in this paper considers 
attribute-attribute, method-method, and attribute-method direct and transitive 
interactions. We introduce four types of matrices: (1) the Direct Method Invocation 
(DMI) matrix to model direct method-invocation interactions, (2) the Method 
Invocation (MI) matrix to model direct and transitive method-invocation interactions, 
(3) the Direct Attribute Type (DAT) matrix to model direct method-method, attribute-
attribute, and attribute-method interactions, and (4) the Attribute Type (AT) matrix to 
model direct and transitive interactions modeled in the DAT matrix. The information 
source in UML diagrams relied upon for building these matrices will be identified.  
 
3.1. Direct method invocation (DMI) matrix 
Direct method invocation interactions are explicitly defined in the UML 
communication diagram. These interactions are obtained and reported in a matrix 
called the DMI matrix. This matrix is a square binary k × k matrix, where k is the 
number of methods in the class of interest. To construct the matrix, the names of the 
class methods are obtained from the UML class diagram reviewed in Section 2.4. The 
rows and columns of the DMI matrix are indexed by the methods, and for 1 ≤ i ≤ k, 1 
≤ j ≤k, 

  

A binary value of 1 in the DMI matrix indicates a cohesive direct method invocation 
interaction. 
 
Given the class diagram and communication diagrams shown in Figure 1 for the 
AccountDialog class, the DMI matrix shown in Figure 2 is constructed. The matrix 
shows that the showInfo method invokes directly the showExtraInfo method and the 
showExtraInfo method invokes directly the showAddress method. Note that there are 
other possible mechanisms for method invocations beyond simple method calls, such 
as the receipt of a signal in an active class (e.g., implemented in a run() method in 
Java). The later occurs in concurrent software with asynchronous communication 
between objects. 

 
 
 
 
 
 

Figure 2: The DMI matrix for the AccountDialog class 
 

 showInfo showAddress showExtraInfo readName 
showInfo 0 0 1 0 
showAddress 0 0 0 0 
showExtraInfo 0 1 0 0 
readName 0 0 0 0 
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To account for class inheritance, all directly and transitively accessible inherited 
methods have to be included in the DMI matrix. The inherited methods can be 
extracted from the UML class diagram.   
 
3.2. Method invocation (MI) matrix 
The MI matrix is a square binary k × k matrix, where k is the number of methods in 
the class of interest. The matrix models the direct and transitive method invocation 
interactions and is derived from the DMI matrix. The rows and columns of the MI 
matrix are indexed by the methods, and for 1 ≤ i ≤ k, 1 ≤ j ≤ k, 

  

A binary value of 1 in the MI matrix indicates a cohesive direct or transitive method 
invocation interaction. Figure 3 shows the MI matrix for the AccountDialog class. 
The matrix shows that the showInfo method invokes directly or transitively the 
showAddress and the showExtraInfo methods and the showExtraInfo method invokes 
directly or transitively the showAddress method.  
 
 
 
 
 
 

Figure 3: The MI matrix for the AccountDialog class 
 
3.3. Direct attribute type (DAT) matrix  
Bansiya et al. (1999) and Counsell et al. (2006) used the parameter-occurrence matrix 
for parameter types as the basis for their metrics. This matrix is based on the 
assumption that the set of attribute types accessed by a method is the intersection of 
this method’s parameter types and the set of parameter types of all methods in the 
class. This assumption leads to two problems. The first problem is that some methods 
can have parameters of types that do not match the types of the attributes. In this case, 
methods that share these types are considered cohesive despite the fact that they do 
not share any attributes. The second problem is that, the parameter-occurrence matrix 
does not indicate whether all attributes are actually used within the methods. 
Therefore, in some cases, the class is considered fully cohesive despite the fact that 
some of its attributes are never used by the methods. Figure 4(a) depicts these two 
problems by showing an extreme case in which all methods share all parameter types 
that do not match any of the attribute types and none of the attribute types match the 
method parameter types. In this example, we assume having a loosely cohesive class 
classA including two attributes and two methods, such that none of the attributes is 
used in the methods and the two methods are unrelated. Figure 4(a) shows the 
corresponding class diagram. The two methods share the same parameter types: int 
and String. None of these types match any of the types of the attributes (boolean and 
double). In addition, the types of the two attributes are boolean and double, and none 
of these types match any of the parameter types. Figure 4(b) shows the corresponding 
parameter-occurrence matrix. The matrix wrongly predicts the class to be fully 
cohesive because it shows that each of the two methods uses each of the parameter 
types, whereas none of the attributes is used in the methods. 
 
 

 showInfo showAddress showExtraInfo readName 
showInfo 0 1 1 0 
showAddress 0 0 0 0 
showExtraInfo 0 1 0 0 
readName 0 0 0 0 
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Figure 4: A sample class diagram and its corresponding parameter-occurrence and 

DAT matrices 
 
Since the aim is to predict the sharing of attributes between the methods, we address 
the above two problems by introducing the DAT matrix. This matrix depicts the use 
of the types of the attributes themselves instead of depicting the use of the types of the 
method parameters. The matrix is a binary k × l matrix, where k is the number of 
methods and l is the number of distinct attribute types in the class of interest. The 
matrix is based on the assumption that the set of attribute types accessed by a method 
is the intersection of the set of this method’s parameter types and the set of its class 
attribute types. To construct the matrix, the names and return types of the methods 
and the types of parameters and attributes are extracted from the UML class diagram 
reviewed in Section 2.4. The DAT matrix has rows indexed by the methods and 
columns indexed by the distinct attribute types, and for 1 ≤ i ≤ k, 1 ≤ j ≤ l, 

  

 
The DAT matrix solves the above two problems as follows. First, the DAT matrix 
ignores the parameter types that do not match any of the attribute types. This 
eliminates the possibility of wrongly predicting the method accessibility of non-
existing attributes. Second, the DAT matrix shows all the attribute types including the 
non-accessed ones. This eliminates the possibility of wrongly predicting that a class 
whose attributes are not accessed by the methods to be highly cohesive. As opposed 
to the parameter-occurrence matrix, the DAT matrix given in Figure 4(c) depicts the 
fact that the class has no attribute-method interactions (i.e., none of the attributes is 
accessed by any of the methods).  
 
Based on a number of assumptions to be verified, the matrix is built using heuristics 
in order to provide information about likely interactions that are not directly visible at 
the HLD stage. Such heuristics will be verified in the case study section (Section 6.2). 
The matrix explicitly models direct attribute-method interactions. It is assumed that a 
method has a cohesive interaction with an attribute if the attribute type matches the 
type of at least one parameter or return value of the method. In addition, the matrix 
implicitly models method-method and attribute-attribute interactions. A method has a 
cohesive interaction with another method if their parameters or return values share the 
same attribute type. An attribute has a cohesive interaction with another attribute if 
their types are shared by a method. This indicates that the method defines an 
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interaction between the two attributes. A binary value of 1 in the DAT matrix 
indicates a cohesive attribute-method interaction. A cohesive method-method 
interaction is represented in the DAT by two rows that share binary values of 1 in a 
column. Similarly, a cohesive attribute-attribute interaction is represented in the DAT 
by two columns sharing binary values of 1 in a row. This matrix considers the return 
type of the method since it is possible that some methods access attributes not passed 
as parameters and return results that match the types of the accessed attributes. 
Consequently, the return type gives an indication of the accessed attributes within 
methods, and therefore, it should also be considered in the class cohesion metric. 
 
Figure 5 shows the DAT matrix of the AccountDialog class. The matrix shows that 
three of the attribute types are used by the showInfo method, one of the attribute types 
is used by the showAddress method, and one of the attributes is used by the readName 
method (as a return type). In addition, the matrix shows that the showInfo and 
readName methods share an attribute type, and the String attribute type is shared 
between two methods. The DAT matrix does not include the parameter type Card 
because it does not match any of the attribute types. 
 
 
 
 
 
 

Figure 5: The DAT matrix for the AccountDialog class 
 
To consider class inheritance, all inherited methods included in the DMI matrix have 
to be considered in the DAT matrix as well. In addition, the distinct types of all 
directly and transitively accessible attributes have to be considered in the DAT 
matrix. These attribute types can be extracted from the UML class diagram.    
 
3.4. Attribute type (AT) matrix 
The AT matrix is similar to the DAT matrix in the sense that it has the same rows and 
columns, but it differs in that it models both direct and transitive interactions. A value 
of 1 in the matrix indicates that the attribute type matches the parameter type of the 
method or the methods directly or transitively invoked by the method. The AT can be 
generated from both DAT and MI matrices by applying the algorithm given in Figure 
6. The algorithm modifies the DAT matrix by replacing the row of the caller by the 
result of applying the logic OR for each corresponding cell in the rows representing 
the call originator and call recipient. Figure 7 shows the AT matrix constructed using 
the algorithm in Figure 6. The matrix is similar to the DAT matrix except that the 
showInfo and showExtraInfo methods use the Address attribute type transitively. 
 
 
 
 
 
 
 
 
 

 String int Date Address 
showInfo 1 1 1 0 
showAddress 0 0 0 1 
showExtraInfo 0 0 0 0 
readName 1 0 0 0 
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Figure 6: Constructing the AT matrix algorithm 

 
 
 
 
 
 

Figure 7: The AT matrix for the AccountDialog class 
 
4. The Similarity-based Class Cohesion (SCC) Metric Definition  
The SCC metric uses the AT matrix to measure the method-method interactions 
caused by sharing attribute types, the attribute-attribute interactions caused by the 
expected use of attribute within the methods, and the attribute-method interactions. In 
addition, the SCC metric uses the MI matrix to measure the method-method 
interactions caused by method invocations. The cohesions caused by the four types of 
interactions are referred to as Method-Method through Attributes Cohesion (MMAC), 
Attribute-Attribute Cohesion (AAC), Attribute-Method Cohesion (AMC), and 
Method-Method Invocation Cohesion (MMIC), respectively. The SCC metric uses the 
AT and MI matrices, and it therefore considers both direct and transitive interactions. 
 
4.1. MMAC and AAC metrics 
The similarity between two items is the collection of their shared properties. In the 
context of the AT matrix, introduced in Section 3, the similarity between two rows 
and two columns quantifies the cohesion between a pair of methods and a pair of 
attributes, respectively. The similarity between a pair of rows or columns is defined as 
the number of entries in a row or column that have the same binary values as the 
corresponding elements in the other row or column. The normalized similarity, 
denoted as ns(i,j), between a pair of rows or columns i and j is defined as the ratio of 
similarity between the two rows or columns to the number of entities Y in the row or 
column of the matrix, and it is defined formally as follows: 

  ,        (3) 

where ∧ is the logical and relation. 
 
Cohesion refers to the degree of similarity between module components. The MMAC 
is the average cohesion of all pairs of methods and the AAC is the average cohesion 
of all pairs of attributes. Formally, using the AT matrix, the MMAC of a class C, 

Algorithm: Constructing AT matrix 
Input: DAT and MI matrices 
Output: AT matrix 
Steps: 
for i=1 to no. of rows in DAT matrix 
 for j=1 to no. of columns in DAT matrix 
  AT[i,j]=DAT[i,j] 
for i=1 to no. of rows in IMI matrix 
 for j=1 to no. of columns in MI matrix 
  if (i≠j AND MI[i,j]=1) then 
   for k=1 to no. of columns in DAT matrix 
    AT[i,k]=DAT[i,k] OR DAT[j,k]  

 String int Date Address 
showInfo 1 1 1 1 
showAddress 0 0 0 1 
showExtraInfo 0 0 0 1 
readName 1 0 0 0 
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consisting of k methods and l distinct attribute types, is defined formally as follows: 
  

    (4) 

 
By substituting Formula 3 into Formula 4, the MMAC of class C is calculated in the 
case of a class with multiple methods as follows: 

          (5) 

The following metric is an alternative form of the MMAC metric, which obtains the 
same value, facilitates the analysis of the metric, and speeds up its computation: 
Proposition 4.1. For any class C, 

         (6) 

where xi is the number of 1s in the ith column of the AT matrix.  
 
Proof: By definition, when k=1 or k=0 and l=0, Equations 5 and 6 are equal. 
Otherwise, for the ith column, there are xi(xi-1)/2 similarities between the methods, 
and therefore, 

 , 

 which equals the above formula. ■ 
 
Similarly, the AAC of a class C is defined formally as follows:    
     

    (7) 

where yi is the number of 1s in the ith row of the AT matrix.  
 
For example, using Formula 6, the MMAC for the AccountDialog class is calculated 
as follows: 

 

Using Formula 7, the AAC for the AccountDialog class is calculated as follows: 
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The MMAC and AAC metrics are adaptations for the similarity definition introduced 
in (Al Dallalb 2009) to measure the cohesion within a method in a class or a function 
in a procedural program. 
 
4.2. AMC metric 
The notion of similarity is applicable only when both elements considered are of the 
same entity. Therefore, the notion of similarity is applicable for method-method and 
attribute-attribute pairs, but it is not applicable for attribute-method pairs because 
attributes and methods are of two different types. In this case, the cohesion is the 
average number of attribute-method interactions represented in the AT matrix. In 
other words, the AMC is the ratio of the number of 1s in the AT matrix to the total 
size of the matrix. The AMC of a class C is defined formally as follows: 

      (8) 

Using Formula 8, AMC(AccountDialog)=7/16=0.438. 
 
4.3. MMIC metric 
The AT matrix does not represent the cohesion between a pair of methods if one of 
the methods invokes the other when the invoked method does not have parameters of 
types that match the attributes. In this case, the number of 1s in the row of the invoked 
method in the AT matrix is zero. When the logical operator OR is applied to update 
the row of the caller using the algorithm given in Figure 6, the row of the caller is not 
changed. In addition, the AT matrix does not represent the invoking relationship when 
the set of types of parameters used by the call recipient is a subset of the types of 
parameters used by the caller. In this case, when the algorithm in Figure 6 is applied, 
the row of the caller is not changed. In order to consider the invocation relationship 
and assign it a weight when measuring the class cohesion, the MI matrix is involved. 
The notion of similarity is not represented in the MI matrix because the matrix 
explicitly represents method-method invocation interactions. In this case, the cohesion 
is the average number of method-method invocation interactions. This is represented 
by the ratio of the number of 1s in the MI matrix to the total size of the matrix. 
However, recursive method invocations should be excluded because we are interested 
in measuring the cohesion between pairs of different methods. As a result, the 
method-method invocation cohesion (MMIC) of a class C is formally defined as 
follows: 

     (9) 

Using Formula 9, MMIC(AccountDialog)=3/(4*3)=0.25. 
 
4.4. SCC metric 
The SCC metric is defined as the weighted summation of the MMAC, AAC, AMC, 
and MMIC metrics. The SCC of a class C is defined for k > 1 and l > 1 as follows:  
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, (10) 

where MP is the number of method pairs, AP is the number of distinct attribute-types 
pairs, and MOP is the number of method ordered pairs. By substituting MP, AP, and 
MOP by their equivalencies in Formula 10 and considering all cases of k and l except 
when both are equal to 0, the SCC is formally defined as follows: 

(11) 

 
Table 1 shows all of the possible scenarios for the values of the number of methods 
and attributes in a class and the intuition for their class cohesion. Comparing the 
results of applying the SCC metric for the cases given in Table 1 with the intuitive 
results shows that the SCC metric is consistent with intuition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The intuitive results for the class cohesion in different scenarios 
 
Using Formula 11, the SCC for the AccountDialog class is calculated as follows: 

 

 
In summary, SCC is based on information available during HLD phase in UML 
diagrams. The metric can easily account for class inheritance and direct and transitive 
interactions and it is based on more realistic assumptions than existing HLD cohesion 
metrics. The notions of method invocation and transitive interaction are not applicable 
for interfaces. To measure the interface cohesion using SCC, the MMIC metric must 
be left out and MMAC, AAC, and AMC have to be applied on the DAT matrix 
instead of AT. In this case, SCC is the weighted summation of the three applicable 
matrices: MMAC, AAC, and AMC. The following sections show that the SCC metric 
complies with the class cohesion necessary properties and has relatively high fault-
prediction power compared to other proposed HLD and LLD cohesion metrics. 
 

k l Intuition 
0 0 The class has no methods and no attributes, and therefore, the cohesion is not 

defined. 
0 >0 The class has no methods, and therefore, its attributes are not related and the 

cohesion is the minimum. 
1 0 The class has one method, and therefore, it performs one cohesive task and its 

cohesion is the maximum. 
1 >0 The class has one method and one or more attributes, and therefore, the 

cohesion depends on the attribute-attribute and attribute-method interactions. 
>1 0 The class has several methods and no attributes, and therefore, the cohesion 

depends only on the method-method invocation interactions. 
>1 1 The class has several methods and one attribute, and therefore, the cohesion 

depends on the method-method invocation, method-method use of the attribute, 
and attribute-method interactions. 

>1 >1 The class has several methods and attributes, and therefore, the cohesion 
depends on the method-method invocation, method-method use of attributes, 
attribute-attribute, and attribute-method interactions. 
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5. Theoretical Validation 
We validate SCC using the necessary properties for a class cohesion metric proposed 
by Briand et al. (1998) and discussed in Section 2.1. 
 
Property SCC.1: The SCC metric satisfies the non-negativity and normalization 
property 
Proof: The minimum value for the SCC metric for a class is 0 when the class has (1) 
no methods and one attribute; (2) one method whose parameter types do not match 
any of the attribute types; or (3) several methods whose parameter types do not match 
any of the attribute types and none of the methods invokes the other. The maximum 
value for the SCC metric for a class is 1 when the class has (1) one method and no 
attributes; (2) one method, one or more attributes, and each type of the attributes 
matches a method parameter type; (3) several methods, no attributes, and every 
method invokes another method directly or transitively; or (4) several methods, 
several attributes, each type of the attributes matches a parameter type for each 
method directly or transitively, and each method directly or transitively invokes every 
other method. As a result, the SCC metric ranges over the interval [0, 1], and it 
therefore satisfies the non-negativity and normalization property.■ 
 
Property SCC.2: The SCC metric satisfies the null and maximum values 
property. 
Proof: Given a class with the set of methods and attributes, if for every method, none 
of the parameter types match the attribute types and the method does not directly or 
transitively invoke another method (that is, the class has no cohesive interactions), the 
value of the SCC metric will be 0. On the other hand, if each type of attribute matches 
a parameter type for each method directly or transitively, and every method directly 
or transitively invokes every other method (that is, the class features all possible 
interactions), the value of SCC metric will be 1 (that is, the maximum possible value). 
Hence, the SCC metric satisfies the null- and maximum-values property.■ 
 
Property SCC.3: The SCC metric satisfies the monotonicity property. 
Proof: Adding a cohesive interaction to the AT matrix is represented by changing an 
entry value from 0 to 1. Changing an entry from 0 to 1 increases the number of 1s in a 
column and a row. This increases the numerator value in Formula 8 (AMC metric). 
The value of the numerator in Formula 6 (MMAC metric) increases if the column in 
which the entry is changed features at least one other entry with value 1; otherwise, it 
remains the same. The value of the numerator in Formula 7 (AAC metric) increases if 
the row in which the entry is changed has at least one other entry with value 1; 
otherwise, it remains the same. Increasing the numerator in Formula 6 increases the 
value of the AMC metric because the denominator does not change unless the size of 
the matrix changes. The same applies to the MMAC and AAC metrics. Changing an 
entry in the AT matrix does not affect the MI matrix. As a result, adding a cohesive 
interaction represented in the AT matrix always increases the SCC value.  
 
Adding a cohesive interaction to the MI matrix is represented by changing the value 
of a non-diagonal entry from 0 to 1. This increases the numerator value in Formula 9 
(MMIC metric), but it does not affect the denominator. In some cases, adding a 
cohesive interaction to the MI matrix causes a change in the values of certain entries 
in the AT matrix from 0 to 1, which, as discussed earlier, increases the value of the 
SCC metric. Therefore, adding a cohesive interaction represented in the MI matrix 
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always increases the SCC metric value. As a result, adding a cohesive interaction 
represented in the AT or MI matrix always increases the SCC metric value, which 
means that the SCC metric satisfies the monotonicity property.  
 
Property MMAC.1 and Property AAC.1: The MMAC and AAC metrics satisfy 
the cohesive module property. 
Proof: Merging two unrelated classes c1 and c2 implies that none of the methods in 
each of the two split classes are shared and none of them share common attribute 
types. Therefore, the number of rows and columns in the AT of the merged class 
equals the sum of the number of rows and columns in the AT matrices of the split 
classes. The number of 1s in each row or column in the AT matrix of the merged class 
equals the number of 1s in the corresponding row or column in the AT matrices of the 
split classes. Therefore, for the AT k × l matrix representing class c1, the AT m × n 
matrix representing class c2, and the AT (k + m) × (l + n) matrix representing the 
merged class c3: 

  

Suppose that MMAC(c1)≥MMAC(c2), then 

So, Max{MMAC(c1),MMAC(c2)}>MMAC(c3). 
Similarly, the AAC of the split classes is greater than the AAC of the merged class. 
This means that both the MMAC and AAC metrics satisfy the cohesive-modules 
property. ■ 
 
Property AMC.1: The AMC metric satisfies the cohesive modules property 
Proof: Merging the two unrelated classes c1 and c2 implies that none of the methods 
in each of the two split classes are shared and none of them share common attribute 
types. In terms of the AT matrix, this means that the total number of 1s in the AT 
matrix of the merged class equals the sum of the number of 1s in the AT matrices of 
both of the split classes, which means formally: 

 

Suppose that AMC(c1) ≥ AMC(c2), then 
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So, Max{AMC(c1),AMC(c2)} > AMC(c3), which means that the AMC metric 
satisfies the cohesive module property. ■ 
 
Property MMIC.1: The MMIC metric satisfies the cohesive module property 
Proof: Merging two unrelated classes c1 and c2 implies that none of the methods in 
each of the two split classes are shared and none of the methods in class c1 invoke 
methods in class c2 or vice versa. In terms of the MI matrix, this means that the total 
number of 1s in the MI matrix of the merged class equals the sum of the number of 1s 
in both of the split classes, which formally means: 

  

Suppose that MMIC(c1) ≥ MMIC(c2), then 

 

So, Max{MMIC(c1),MMIC(c2)} > MMIC(c3), which means that the MMIC metric 
satisfies the cohesive modules property. ■ 
 
Property SCC.4: The SCC metric satisfies the cohesive modules property. 
Proof: The SCC metric is the weighted sum of the MMAC, AAC, AMC, and MMIC 
metrics. Since the cohesion for the split classes is greater than the cohesion of the 
merged class for each of the four metrics, it is also greater for the SCC metric. 
Therefore, the SCC metric satisfies the cohesive module property.■ 
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Showing that a cohesion metric has the expected mathematical properties increases 
the chances for the metric to be a meaningful quality indicator. However, it does not 
necessarily guarantee it. The following section reports on large-scale empirical 
investigations that demonstrate the validity of the assumptions underlying SCC and its 
superior fault prediction capability when compared to other HLD and LLD cohesion 
metrics.  
 
6. Empirical Validation  
We present three analyses. The first explores the correlations among ten cohesion 
metrics, including SCC and well known other metrics, and applies principal 
component analysis (Dunteman 1989) to explore the orthogonal dimensions within 
this set of cohesion metrics. The goal is to confirm that SCC is indeed contributing 
new information. The second and third analyses explore the extent to which the ten 
class cohesion metrics can explain the presence of faults in classes. Metrics are first 
considered individually, and then as combinations of predictors. If SCC has indeed 
better properties and relies on more realistic assumptions, then we would expect it to 
be a better quality indicator and, for example, more accurately predict faults. This is a 
common widely used and accepted assumption in many studies (e.g., Briand et al. 
1998, Briand et al, 2001, Gyimothy et al. 2005, Aggarwal et al, 2007, and Marcus et 
al. 2008). Note that the goal here is not to build prediction models as many other 
factors besides cohesion would have to be accounted for. The goal is rather to 
determine if there is empirical evidence, whether direct or indirect, that SCC is indeed 
a well-defined measure, complementary or better than existing, comparable cohesion 
metrics. The fact that SCC explains more of the variation in fault occurrences is one 
piece of empirical evidence suggesting that this metric indeed capture cohesion better.  
 
6.1. Software systems and metrics 
We chose four Java open source software systems from different domains: Art of 
Illusion v.2.5 (Illusion 2009), GanttProject v.2.0.5 (GanttProject 2009), JabRef v.2.3 
beta 2 (JabRef 2009), and Openbravo v.0.0.24 (Openbravo 2009). Art of Illusion 
consists of 488 classes and about 88 K lines of code (LOC), and it is a 3D modeling, 
rendering, and animation studio system. GanttProject consists of 496 classes and 
about 39 KLOC, and it is a project scheduling application featuring resource 
management, calendaring, and importing or exporting (MS Project, HTML, PDF, 
spreadsheets). JabRef consists of 599 classes and about 48 KLOC, and it is a 
graphical application for managing bibliographical databases. Openbravo consists of 
452 classes and about 36 KLOC, and it is a point-of-sale application designed for 
touch screens. We chose these four open source systems randomly from 
http://sourceforge.net. The restrictions placed on the choice of these systems were that 
they (1) are implemented using Java, (2) are relatively large in terms of number of 
classes, (3) are from different domains, and (4) have available source code and fault 
repositories. 
 
We selected three HLD and six LLD cohesion metrics to compare with SCC. The 
three HLD metrics, CAMC, NHD, and SNHD, had not been previously studied 
empirically. Though these metrics were originally applied to C++ classes, their 
concepts are general, and therefore, there is no reason not to apply them to Java 



Simula Research Laboratory, Simula Technical Report (2009-1), Version 2 

20 

classes1. These metrics were selected because they measure cohesion at the same 
design level as SCC, and therefore, they were used to compare the SCC to existing 
HLD metrics in terms of fault prediction power. The six LLD metrics, LCOM1, 
LCOM2, LCOM3, Coh, TCC, and LCC, were selected because they had been 
extensively studied and compared to each other (Briand et al. 1999, Briand et al. 
2000, Briand et al. 2001b, Marcus et al. 2008), and therefore, our results can be 
compared to those obtained in previous empirical studies. In addition, these metrics 
were selected to compare the fault prediction power of the HLD and LLD metrics.  
We applied the considered metrics to 1337 non-trivial, selected classes among 2035 
classes from the four open source systems. We excluded all classes for which at least 
one of the metrics was undefined. For example, classes consisting of single methods 
were excluded because their CAMC, NHD, SNHD, TCC, and LCC values are 
undefined. In addition, classes not consisting of any attributes were excluded because 
their NHD, SNHD, TCC, and LCC values are undefined. Classes in which all 
methods do not have parameters are excluded because their NHD values are 
undefined. An advantage of the SCC metric is that it is defined in all cases, as 
discussed in Section 4.4. Therefore, none of the classes were excluded because of an 
undefined SCC value. Excluding the classes that have undefined cohesion values 
using some of the considered metrics allows us to perform the same analysis for all 
metrics on the same set of classes and therefore compare their results in an unbiased 
manner. Interfaces were also excluded because LLD metrics are undefined in this 
case. We developed our own Java tool to automate the cohesion measurement process 
for Java classes using the ten considered metrics including SCC. Though we focus on 
design metrics in this paper, that is metrics that can be measured on design models 
such as UML diagrams, in our experiment we collected the cohesion data through 
source code analysis as no UML design diagrams were available for the four open 
source systems considered. Note, however, that only design information available 
during HLD and LLD was extracted, as discussed in Section 2.4.  Our analysis tool 
analyzed the Java source code, extracted the required information to build the 
matrices, and calculated the cohesion values using the ten considered metrics. Table 2 
shows descriptive statistics for each cohesion measure including the minimum, 25% 
quartile, mean, median, 75% quartile, maximum value, and standard deviation. As 
indicated in (Briand et al. 2001b), LCOM-based metrics feature extreme outliers due 
to accessor methods that typically reference single attributes. The 25% quartile, mean, 
median, and 75% quartile for SCC indicate that the considered classes have relatively 
few method invocations and low degrees of similarity among methods and attributes. 
 
 
 
 
 
 
 
 
 
 

                                                
1  The key differences between C++ and java, such as multiple inheritance and the 
way the destructor is invoked, do not play a role in building the parameter-occurrence 
matrix. 
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Table 2: Descriptive statistics for the cohesion measures 
 
6.2. Investigating assumptions 
The method-attribute interactions are not precisely known during the HLD phase 
because of the absence of method implementations or precise postconditions. As a 
result, all HLD metrics must rely on assumptions, which realism needs to be 
investigated. In this paper, the SCC metric assumes that the set of attribute types 
accessed by a method is the intersection of the set of this method’s parameter types 
and the set of class attribute types. This assumption is captured by the DAT matrix 
that shows the matching between the attribute types and the method parameter types, 
as illustrated in Section 3.3. On the other hand, the parameter-occurrence matrix 
(Counsell et al. 2006) is based on the assumption that the set of attribute types 
accessed by a method is the intersection of this method’s parameter types and the set 
of parameter types of all methods in the class. The matrix shows, for each method, the 
matching between the types of the method parameters and the types of parameters for 
all methods in the class. We empirically studied the correctness of our assumption and 
that of Counsell using all the considered classes in our study. For each class, we 
calculated the percentage of cells in the DAT and parameter-occurrence matrices 
matching the results of source code analysis, which is able to precisely identify the 
access of each attribute in each method. For each of the four considered systems, we 
calculated the average of the matching percentages of all considered classes in the 
system and reported the results in Table 3. In addition, for all classes considered in 
this empirical study, we investigated the occurrences of the two problems, stated in 
Section 3.3, in using the parameter-occurrence matrix. For the first problem, we 
counted for each class the number of parameter types, in the occurrence-matrix, that 
do not match the types of the attributes. We calculated the percentage represented by 
this number among all parameter types included in the parameter-occurrence matrix. 
In the fourth column of Table 3, we reported the average of the percentages of the 
parameter types that do not match attribute types in all considered classes in each 
system. Similarly, for the second problem, we counted the number of attribute types 
not included in the parameter-occurrence matrix. We calculated the percentage 
represented by this number among all distinct attribute types in the class. Finally, in 
the last column of Table 3, we reported the average of the percentages of the attribute 
types not included in the parameter-occurrence matrix in all considered classes in 
each system. The last row in Table 3 shows the corresponding percentages over all 
considered classes in the considered systems.  
 

Metric Min 25% Mean Med 75% Max Std Dev 
SCC 0.00 0.04 0.18 0.08 0.18 1.00 0.26 
CAMC 0.03 0.14 0.27 0.23 0.33 1.00 0.17 
NHD 0.00 0.42 0.56 0.61 0.75 1.00 0.26 
SNHD -1.00 -0.36 -0.13 0.00 0.00 1.00 0.46 
LCOM1 0.00 2.00 58.37 9.00 36.00 3401 201.89 
LCOM2 0.00 0.00 39.22 2.00 22.00 2886 160.30 
LCOM3 0.00 1.00 1.20 1.00 1.00 8.00 0.76 
Coh 0.00 0.22 0.44 0.38 0.62 1.00 0.29 
TCC 0.00 0.24 0.52 0.50 0.80 1.00 0.34 
LCC 0.00 0.25 0.52 0.50 0.80 1.00 0.33 
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The results show that the average matching percentage of the DAT matrix (65.49%) is 
much better than the average matching percentage of the parameter-occurrence matrix 
(20.87%). In other words, this means that, on average, 65.49% of the attributes 
accessed by the methods were detected using our assumption, whereas, on average, 
20.87% of the attributes accessed by the methods were detected using the assumption 
of Counsell. This suggests that our metric takes more interactions into account than 
other existing HLD metrics because it is based on the DAT matrix which appears to 
predict method-attribute interactions better than the parameter-occurrence matrix. The 
results also show that the average percentage of parameter types that do not match 
attribute types (57.51%) and the average percentage of the attribute types that are not 
included in the parameter-occurrence matrix (45.61%) are relatively high. In other 
words, this means that, on average, 57.51% of the types included in the parameter-
occurrence matrix are unnecessary in representing the use of attributes in the methods 
of a class. Furthermore, on average, 45.61% of the attribute types are not represented 
in the parameter-occurrence matrix. This indicates that most often the parameter-
occurrence matrix is unrealistic in representing the use of attributes in the methods of 
a class. In most cases, either the types of the attributes are not represented in the 
parameter-occurrence matrix or the types of the parameters do not match any of the 
types of the attributes. As a result, we cannot rely on the parameter-occurrence matrix 
as an indicator for the accessibility of the attributes by the methods. Although we 
showed how to include inherited methods and attributes when measuring SCC, the 
following analyses do not consider inheritance. Empirically studying the effect of 
including or excluding inherited attributes and methods is left open for further 
research.  
 

 
 
 
 
 
 
 
 

 
 

Table 3: The matching percentages of the DAT and parameter-occurrence matrices 
  
6.3. Correlation and principal component analyses 
Principal Component Analysis (PCA) (Dunteman 1989) is a technique used here to 
identify and understand the underlying orthogonal dimensions that explain the 
relations between the cohesion metrics (Marcus et al. 2008). In addition, it is useful to 
demonstrate that the proposed metric captures new measurement dimensions. For 
each pair of considered cohesion metrics, we used Mahalanobis Distance (Barnett and 
Lewis 1994) to detect outliers and we found that removing the outliers does not make 
significant differences in the final PCA results. We calculated the nonparametric 
Spearman correlation coefficient (Siegel and Castellan 1988) among the considered 
cohesion metrics. Table 42 shows the resulting correlations among the considered 

                                                
2 Note that we use the absolute value of SNHD, where values close to 0 indicate high 
cohesion and values close to 1 indicate low cohesion. 

Systems 
Matching 

percentage of 
DAT matrix 

Matching 
percentage of 

parameter-
occurrence 

matrix 

Percentage of 
parameter types 

not matching 
attribute types 

Percentage of 
attribute types not 

included in 
parameter-

occurrence matrix 
Art of Illusion 65.12 20.08 59.93 42.04 
GanttProject 68.31 23.29 56.02 43.03 
JabRef 65.39 22.74 51.77 44.16 
Openbravo 63.10 16.97 63.25 54.70 
Overall classes 65.49 20.87 57.51 45.61 
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metrics accounting for all four systems. They are all statistically significant (p-value < 
0.0001). Most cohesion metrics are weakly or moderately intercorrelated, though 
much stronger correlations are observed for TCC and LCC (0.99), LCOM1 and 
LCOM2 (0.8), and CAMC, NHD, and LCOM1, respectively. In addition to cohesion 
metrics, we also include a size metric simply counting lines of source code (LOC). 
This is to help the interpretation of our subsequent results by accounting for 
relationships between size and certain cohesion metrics. All cohesion metrics show 
some significant degree of correlation with LOC, but some much more so than others. 
For example, LCOM1 and NHD show the strongest correlations (0.73, 0.70) whereas 
SCC shows a weak correlation of -0.40. SCC is also at best moderately correlated 
with other cohesion metrics, the maximum being CACM with a Spearman correlation 
of 0.51. This is to be expected as CACM is the metric that is most similar to SCC.  
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Spearman rank correlations among the cohesion metrics 
 
To obtain the principal components (PCs), we used the varimax rotation technique 
(Jolliffe 1986, Snedecor and Cochran 1989) in which the eigenvectors and 
eigenvalues (loadings) are calculated and used to form the PC loading matrix. Table 5 
shows the PCA results: the loading matrix shows six PCs that capture 94.56% of the 
data set variance. In addition, it shows the eigenvalues (i.e., measures of the variances 
of the PCs), their percentages, and the cumulative percentage. High coefficients 
(loadings) for each PC indicate which are the influential metrics contributing to the 
captured dimension. Coefficients above 0.5 are highlighted in boldface in Table 5. 
Based on an analysis of these coefficients, the resulting PCs can then be interpreted as 
follows: 
PC1: CAMC, NHD, LCOM1, LCOM2, Coh, TCC, and LCC. These metrics consider 
the share or use of attributes or their representatives (i.e., parameter types in CAMC 
and NHD) in the methods of a class as the basis for measuring cohesion. In addition, 
these metrics have zero lower bounds. 
PC2: LCOM1 and LCOM2. These metrics are not normalized and they consider the 
share of attributes in the methods of a class as the basis for measuring cohesion. 
PC3: SCC and CAMC. These are HLD metrics considering the parameter types of the 
methods of the classes.  
PC4: SNHD. This metric only indirectly captures cohesion. Originally, SNHD was 
introduced to represent the closeness of the NHD metric to the maximum value of 
NHD compared to the minimum value.  
PC5: LCOM3. This metric is based on counting the number of connected components 
in the class representative graph instead of counting the number of shared or used 
attributes. 

Metric CAMC NHD |SNHD| LCOM1 LCOM2 LCOM3 Coh TCC LCC LOC 
SCC 0.51 -0.44 -0.16 -0.45 -0.33 -0.11 0.41 0.32 0.32 -0.40 
CAMC 1.00 -0.88 -0.31 -0.79 -0.54 -0.30 0.52 0.32 0.32 -0.65 
NHD  1.00 0.43 0.84 0.59 0.30 -0.58 -0.35 -0.35 0.70 
|SNHD|   1.00 0.56 0.40 0.18 -0.38 -0.20 -0.20 0.53 
LCOM1    1.00 0.80 0.34 -0.75 -0.57 -0.57 0.73 
LCOM2     1.00 0.34 -0.77 -0.74 -0.74 0.49 
LCOM3      1.00 -0.19 -0.13 -0.13 0.28 
Coh       1.00 0.74 0.74 -0.56 
TCC        1.00 0.99 -0.22 
LCC         1.00 -0.22 

 



Simula Research Laboratory, Simula Technical Report (2009-1), Version 2 

24 

PC6: SCC. This is our new HLD metric that considers method-method, method-
attribute, and attribute-attribute relationships. In addition, it considers method 
invocations and transitive use of attributes, and is more refined than the others in 
terms of measuring the degree of similarity among the attributes or the methods. 
 
The PCA results show that SCC metric captures a measurement dimension of its own 
as it is the only significant factor in PC6, though it also contributes to PC3. This 
supports the fact that SCC captures cohesion aspects that are not addressed by any of 
the cohesion metrics considered in this analysis, thus confirming the results of 
correlation analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Loading matrix 
 
6.4. Predicting faults in classes 
To study the relationship between the values of collected metrics and the extent to 
which a class is fault-prone, we applied logistic regression (Hosmer and Lemeshow 
2000), a standard and mature statistical method based on maximum likelihood 
estimation. This method is widely applied to predict fault-prone classes (i.e., Briand et 
al. 1998, Briand et al, 2001, Gyimothy et al. 2005, and Marcus et al. 2008) and though 
other analysis methods, such as the methods discussed by Briand and Wuest (2002) 
and Arisholm et al. (2009), could have been used, this is out of the scope of this 
paper. In logistic regression, explanatory or independent variables are used to explain 
and predict dependent variables. A dependent variable can only take discrete values 
and is binary in the context where we predict fault-prone classes. The logistic 
regression model is univariate if it features only one explanatory variable and 
multivariate when including several explanatory variables. In this case study, the 
dependent variable indicates the presence of one or more faults in a class, and the 
explanatory variables are the cohesion metrics. Univariate regression is applied to 
study the fault prediction of each metric separately, whereas multivariate regression is 
applied to study the fault prediction of different combinations of metrics to determine 
whether SCC improves the fit of these combinations. 
 
We collected fault data for the classes in the considered software systems from 
publicly available fault repositories. The fault repositories include reports about the 
detected and fixed faults and specify which classes are involved in these faults. We 

  PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 4.16 1.83 1.26 0.87 0.72 0.62 
Percent 41.59 18.26 12.64 8.68 7.18 6.21 
Cum. Per. 41.59 59.85 72.49 81.17 88.35 94.56 
SCC -0.48 -0.11 -0.51 -0.43 0.08 0.54 
CAMC -0.68 0.01 -0.53 -0.14 0.07 -0.31 
NHD 0.75 0.06 0.38 -0.09 -0.02 0.37 
|SNHD| 0.44 -0.05 0.28 -0.79 0.10 -0.29 
LCOM1 0.58 -0.74 -0.20 0.01 -0.25 -0.03 
LCOM2 0.57 -0.74 -0.26 0.03 -0.21 -0.05 
LCOM3 0.45 -0.42 -0.05 0.17 0.76 -0.01 
Coh -0.84 -0.32 0.08 0.02 0.06 <0.01 
TCC -0.76 -0.46 0.43 -0.03 -0.02 0.04 
LCC -0.76 -0.47 0.43 -0.02 -0.02 0.04 
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manually traced the reports and counted the number of faults detected in each class. 
We classified each class as being fault-free or as having at least one fault. Ideally, 
class cohesion should be measured before each fault occurrence and correction, and 
used to predict this particular fault occurrence. However, not only this would mean 
measuring cohesion for dozens of versions (between each fault correction) for each 
system, but we would not be able to study the statistical relationships of a set of faults 
with a set of consistent cohesion measurements for many classes. Our cohesion 
measurement is based on the latest version of the source code, after fault corrections, 
and is therefore an approximation. This is however quite common in similar research 
endeavors (e.g., Briand et al. 1998, Briand et al, 2001, Gyimothy et al. 2005, and 
Marcus et al. 2008) and is necessary to enable statistical analysis.    
 
Univariate regression results are reported in Table 6. Estimated regression coefficients 
are reported, as well as their 95% confidence intervals. The larger the absolute value 
of the coefficient is, the stronger the impact (positive or negative, according to the 
sign of the coefficient) of the metric on the probability of a fault being detected in a 
class. The considered metrics have significantly different standard deviations as 
shown in Table 2. Therefore, to help compare the coefficients, we standardized the 
explanatory variables by subtracting the mean and dividing by the standard deviation 
and, as a result, they all have an equal variance of 1 and the coefficients reported in 
Table 6 are also standardized. These coefficients represent the variation in standard 
deviations in the dependent variable when there is a change of one standard deviation 
in their corresponding independent variable. The p-value is the probability of the 
coefficient being different from zero by chance, and is also an indicator of the 
accuracy of the coefficient estimate: The larger the p-value, the larger the confidence 
interval for the coefficient. A common practice is to use odd ratios (Hosmer and 
Lemeshow 2000) to help interpret coefficients as those are not linearly related to the 
probability of fault occurrences. In our context, an odd ratio captures how less (more) 
likely it is for a fault to occur when the corresponding (lack of) cohesion metric 
augments by one standard deviation. We report odd ratios and their 95% confidence 
interval in Table 6. As an example, for SCC, the probability of fault occurrence when 
there is an increase of one standard deviation in SCC is estimated to decrease by 49%. 
Those can be easily compared across cohesion metrics. We use a typical significance 
threshold (α=0.05) to determine whether a metric is a statistically significant fault 
predictor. To avoid the typical problem of inflation of type-I error rates in the context 
of multiple tests, we used a corrected significance threshold using the Bonferroni 
adjustment procedure: α/10=0.005 (Abdi 2007).  
 
To evaluate the prediction accuracy of logistic regression models, we used the 
traditional precision and recall evaluation criteria (Olson and Delen 2008). Precision 
is defined as the number of classes correctly classified as faulty, divided by the total 
number of classes classified as faulty. It measures the percentage of the faulty classes 
correctly classified as faulty. Recall is defined as the number of classes correctly 
classified as faulty, divided by the actual number of faulty classes. It measures the 
percentage of the faulty classes correctly or incorrectly classified as faulty. Such 
criteria however require the selection of a probability threshold to predict classes as 
faulty or not. Following the recommendation in Briand et al. (2000), a class is 
classified as faulty if its predicted probability of containing a fault is higher than a 
threshold selected such that the percentage of classes that are classified as faulty is 
roughly the same as the percentage of classes that actually are faulty.  
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To evaluate the performance of a prediction model regardless of any particular 
threshold, we used the receiver operating characteristic (ROC) curve (Hanley and 
McNeil 1982). In the context of fault-prediction problems, the ROC curve is a 
graphical plot of the ratio of classes correctly classified as faulty versus the ratio of 
classes incorrectly classified as faulty at different thresholds. The area under the ROC 
curve depicts the ability of the model to correctly rank classes as faulty or non-faulty. 
The ROC area of 100% represents a perfect model that classifies all classes correctly. 
The larger the ROC area, the better the model is in classifying classes. The ROC 
curve is often considered a better evaluation criterion than standard precision and 
recall as selecting a threshold is always somewhat subjective. 
 
To obtain a more realistic assessment of the predictive ability of the metrics, we used 
cross-validation, a procedure in which the data set is partitioned into k subsamples. 
The regression model is then built and evaluated k times. Each time, a different 
subsample is used to evaluate the precision, recall, and ROC area of the model, and 
the remaining subsamples are used as training data to build the regression model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Univariate logistic regression results 
 
The results in Table 6 lead to the following conclusions: 
 

1. Except for LCOM3, all considered cohesion metrics are statistically 
significant at α=0.005 (i.e., their coefficients are significantly different from 
0).  

2. SCC is the best metric among the ten considered HLD and LLD metrics, in 
terms of precision, recall, and ROC area. 

3. SCC has a significantly better precision than the other HLD and LLD 
metrics, especially when compared to SNHD and all LLD metrics but Coh. 

4. SCC has slightly better recall than the other HLD and LLD metrics. 
5. SCC has higher ROC areas than the other HLD and LLD metrics, especially 

when compared to SNHD and LCOM3.   

Design 
phase Metric Std. 

Coeff. 
Odd 
ratio 

Std. 
Error 

95% 
Confidence 

Interval 
Coeff.  

95% 
Confidence 

interval 
odd ratio 

p-value Precision Recall ROC 
area 

SCC -0.68 0.51 0.07 [-0.81,-0.55] [0.44,0.58] < 0.0001 69.6 68.8 69.0 

CAMC -0.47 0.62 0.06 [-0.59,-0.35] [0.56,0.70] < 0.0001 61.9 64.8 63.1 

NHD 0.32 1.38 0.06 [0.21,0.43] [1.23,1.54] < 0.0001 60.0 64.0 59.4 
HLD 

|SNHD| 0.18 1.20 0.07 [0.04,0.32] [1.04,1.38] 0.002 41.3 64.2 53.1 

LCOM1 1.06 2.89 0.20 [0.66,1.46] [1.94,4.30] < 0.0001 41.3 64.2 62.3 

LCOM2 1.22 3.39 0.25 [0.74,1.70] [2.10,5.47] < 0.0001 41.3 64.2 62.7 

LCOM3 0.13 1.14 0.06 [0.004,0.26] [1.00,1.29] 0.049 41.3 64.2 50.3 

Coh -0.53 0.59 0.06 [-0.65,-0.42] [0.52,0.66] <0.0001 63.2 65.8 65.2 

TCC -0.40 0.67 0.06 [-0.52,-0.28] [0.60,0.75] < 0.0001 41.3 64.2 60.7 

LLD 

LCC -0.39 0.68 0.06 [-0.51,-0.27] [0.60,0.76] < 0.0001 41.3 64.2 60.4 
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6. Among the considered HLD metrics, SNHD is the worst metric in terms of 
precision and ROC area and NHD is the worst metric in terms of recall. In 
addition, among the considered LLD metrics, LCOM3 is the worst metric in 
terms of precision, recall, and ROC area. 

7. As expected, the estimated regression coefficients for the inverse cohesion 
measures LCOM1, LCOM2, LCOM3, NHD, and SNHD are positive, 
whereas those for the straight cohesion measures SCC, Coh, TCC, LCC, and 
CAMC are negative. In each case, this indicates an increase in the predicted 
probability of fault detection as the cohesion of the class decreases. 

8. SCC has the largest standardized coefficient among all considered HLD 
cohesion metrics. This is confirmed by a smaller odd ratio (0.51), thus 
suggesting that an increase in SCC has a stronger impact on reducing fault 
occurrence probability. Once again, as expected, CACM has the next 
smaller odd ratio (0.62) while those of the other HLD metrics are much 
higher. But even for CACM the 95% odd ratio confidence intervals are 
barely overlapping. To compare the odd ratios of inverse cohesion 
metrics—which have coefficients above one—with SCC, one must divide 
one by these odd ratios to obtain a comparable value (i.e., the odd ratio 
when there is a decrease of one standard deviation in lack of cohesion). For 
example, with LCOM2 which has the largest effect among inverse metrics, 
this odd ratio is 1/1.22 = 0.82.  

9. SCC is one of the metrics with the smallest p-value (which can show 
statistical significance of the regression coefficient) among all considered 
HLD and LLD cohesion metrics. 

 
All cohesion measures showed statistically significant correlations with size (Table 4) 
and this might (partially) explain the significant correlations between cohesion 
metrics and class fault-proneness. However, though due to size constraints we do not 
show details here, when individually combined with LOC in a bivariate logistic 
regression model, both cohesion metrics and LOC still remain significant, except for 
LCOM3 and SNHD. This suggests that all cohesion metrics but two have a significant 
impact on class fault-proneness beyond any size effect.  
 
Let us now turn our attention to multivariate analysis and the role of SCC in building 
class fault-proneness prediction models based on cohesion metrics. To study whether 
an optimal yet minimal multivariate model would contain SCC, we used a backward 
selection process where all HLD metrics are first included in the model, and then 
removed one by one as long as one metric has a p-value above 0.05, starting with 
measures showing higher p-values. The results given in Table 7 show that both SCC 
and CAMC remain in the prediction model as significant covariates. This somehow 
shows that they are complementary in predicting faults. Note that the resulting model 
is the first model represented in Table 8. Interpreting regression coefficients in 
multivariate models with interacting covariates is always a difficult exercise.   
 
 
 
 
 

Table 7: The model based on HLD metrics 
 

Metric Std. Coeff. Std. Error p-value 
SCC -0.58 0.28 <0.001 
CAMC -0.26 0.41 0.0009 
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Another way to look at the impact of SCC in multivariate models is to assess whether 
models containing SCC perform better than their counterparts. Here regression 
analysis was applied only to combinations of the four HLD metrics considered in this 
paper: SCC, CAMC, NHD, and the absolute value of SNHD. We chose these four 
metrics because our goal is to compare SCC with other HLD measures. By combining 
them into multivariate models we want to determine whether SCC improves the fit of 
these models and is therefore complementary or a more optimal option than other 
metrics to explain class fault-proneness. Table 8 reports the results of several 
multivariate logistic regression models. The first column of Table 8 shows the model 
identifier, and the second column shows the identifiers of the metrics that are 
combined in the model. The rest of the columns show the resulting evaluations for 
each of the possible combinations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8: Multivariate logistic regression results 
 
The results of the multivariate logistic regression show that the best models are those 
that combine SCC with other metrics (i.e., models A, B, C, G, H, I, and K shown in 
Table 8). Furthermore, the precision, recall, and ROC area results for these models are 
almost the same regardless of how the other metrics are combined with SCC. These 
results are also close to those obtained when SCC is used on its own (see Table 6). 
Further, significant differences are observed when SCC is removed from a model 
(e.g., comparing 1+2+3 and 2+3). SCC therefore seems to be the main driver, among 
cohesion measures, of the presence of faults in classes, though SCC is partly 
correlated to other metrics., 
 
As a result, the empirical results above show that the SCC metric predicts faulty 
classes more accurately than the other nine selected cohesion metrics considered 
individually or in combination. This is particularly true when compared to the other 
three HLD cohesion metrics.  
 
 
 
 

Model Metrics Precision Recall ROC area 
A 1+2 68.4 68.6 68.5 
B 1+3 69.1 68.8 68.0 
C 1+4 69.6 69.0 68.1 
D 2+3 60.2 63.9 63.0 
E 2+4 62.0 65.0 62.8 
F 3+4 60.0 64.0 58.8 
G 1+2+3 68.3 68.5 68.6 
H 1+2+4 68.9 68.9 68.2 
I 1+3+4 69.3 69.0 67.5 
J 2+3+4 60.2 63.9 62.7 
K 1+2+3+4 68.1 68.4 68.2 

1:SCC, 2:CAMC, 3:NHD, 4:|SNHD| 
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6.5. Threats to validity 
 
A. Construct validity 
The SCC metric makes an important assumption: an attribute is likely to be accessed 
within a method if that method has a parameter of a type that matches an attribute 
type. One of the key limitations of using attribute and parameter types is that two or 
more attributes may have the same type. In this case, the metric coalesces such 
attributes into a single attribute. An implication of this approach is that it is difficult to 
tell which attribute is expected to be accessed by a method when the method has a 
type that matches a type that is associated with several attributes. Another implication 
is that two methods can unintentionally be considered cohesive because their 
parameters share the type of several attributes while in fact one of the methods 
accesses a certain attribute and the other accesses a different attribute. Another 
limitation of our metric is the assumption that two attributes are related if their types 
match the parameter types of a method, whereas the two attributes might be unrelated 
within the method. Though potential problems regarding this assumption must be 
carefully considered, our empirical results show that our basic assumption is met most 
of the time as reported in Section 6.2. 
 
B. External validity 
Several factors may restrict the generality and limit the interpretation of our results. 
The first factor is that all four of the considered systems are implemented in Java. The 
second is that all the considered systems are open-source systems that may not be 
representative of all industrial domains, though this is common practice in the 
research community. Though differences in design quality and reliability between 
open source systems and industrial systems have been investigated (e.g., Samoladas et 
al. 2003, Samoladas et al. 2008, Spinellis et al. 2009), there is yet no clear, general 
result we can rely on. The third factor is that, though they are not artificial examples, 
the selected systems may not be representative in terms of the number and sizes of 
classes. To generalize the results, different systems written in different programming 
languages, selected from different domains, and including real-life, large-scale 
software should be taken into account in similar large-scale evaluations.   
 
C. Internal validity 
Though the presence of faults is one important aspect of quality, it is obviously not 
driven exclusively by class cohesion. Many other factors play an important role in 
driving the occurrence of faults (Arisholm et al. 2009). However, our goal here is not 
to predict faults in classes, but to investigate whether there is empirical evidence that 
SCC is strongly related to observable aspects of quality, therefore suggesting that it is 
a well-defined cohesion measure, that is complementary or even a better option than 
existing HLD cohesion metrics. So, though the effect of cohesion on the presence of 
faults may be partly due to the correlation of cohesion with other unknown factors, it 
does not affect our objectives. Our cohesion measurement is an approximation 
because, as a practical necessity to enable statistical analysis, it is based on the latest 
version of the source code, that is the version after the faults are corrected. This likely 
affects the strength of the observed relationships between cohesion and fault 
occurrences. However, this is a quite common practice in similar research endeavors 
as mentioned earlier in Section 6.4.     
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7. Conclusions and Future Work 
This paper introduces a new cohesion metric (SCC) that addresses a number of 
problems arising from existing metrics. It is defined to be usable during the High-
Level Design (HLD) of object-oriented software, which allows early designs to be 
assessed in terms of cohesion, in a way that is firmly grounded in theory and strongly 
supported by empirical evidence. SCC is based on more realistic, empirically verified 
assumptions than other comparable metrics. From a theoretical standpoint, it also 
accounts for all types of interactions between class members: method-method 
interactions caused by the sharing of attribute types; attribute-attribute interactions 
caused by the expected use of attributes within the methods; attribute-method 
interactions; and method-method invocation interactions. Both direct and transitive 
interactions are considered. The metric uses two types of matrices that can be 
constructed using class and communication diagrams, commonly used in high level 
design with the Unified Modeling Language (UML). The metric satisfies 
mathematical properties that are expected for cohesion measures and have been 
widely used in the literature. A large scale empirical study based on four open source 
systems is also reported showing how SCC and ten other well-known cohesion 
metrics relate to each other and the occurrence of faults. Results show that SCC 
captures a cohesion measurement dimension of its own and was the metric that most 
strongly related to fault occurrences in statistical terms. As with any design metric, 
SCC has several limitations as it targets HLD and is therefore based on assumptions 
that are necessary as source code information is not available. However, the aim of 
HLD metrics is not to measure class cohesion with maximum precision, but rather to 
approximate it to enable early assessments and decision-making. Empirical results 
show that our assumptions are met most of the time and that our approximation is 
good enough for the metric to exhibit a strong relationship with fault occurrences.   
 
SCC can be improved in several ways, such as effectively solving the problem of 
having several attributes of the same type. Our metric does not distinguish between 
attributes and methods of different accessibility levels (i.e., public, private, and 
protected). Studying the effect of considering or ignoring private and protected 
attributes and methods on the computation of SCC and its fault prediction power are 
left open for future research. Assessing empirically the impact of inheritance on SCC 
and its fault prediction power is also relevant but requires complex automation. In 
addition, in the future, we plan to introduce a similar LLD class cohesion metric and 
to study it empirically. 
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