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ABSTRACT 

An Image Segmentation Algorithm is an algorithm that delineates (an) object(s) of 

interest in an image. The output of the image segmentation algorithm is referred to as a 

segmentation. Developing image segmentation algorithms is a manual, iterative process 

involving repetitive verification and validation tasks. This process is time-consuming and 

depends on the availability of medical experts, who are a scarce resource. We propose a 

procedure that uses machine learning to construct an oracle, which can then be used to 

automatically verify the correctness of image segmentations, thus saving substantial 

resources. During the initial learning phase, segmentations from the first few (optimally 

two) revisions of the segmentation algorithm are manually verified by experts. The 

similarity of successive segmentations of the same images is also measured. This 

information is then fed to a machine learning algorithm to construct a classifier that 

distinguishes between consistent and inconsistent segmentation pairs based on the values 

of the similarity measures associated with each segmentation pair. Once the accuracy of 

the classifier is deemed satisfactory for the purposes of the application, the classifier is 

then used to determine whether the segmentation, systems’ output by subsequent versions 

of the algorithm under test, are (in)consistent with already verified segmentations from 

previous versions. This information is then used to automatically make conclusions about 

the (in)correctness of the segmentations. To demonstrate the performance of the 
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approach, the proposed solution was successfully applied to 3D segmentations of the 

cardiac left ventricle obtained from CT scans. 

Keywords: Verification and Validation, Test Oracle, Software Quality, Segmentation, 

Machine Learning 

1 INTRODUCTION 

Image Segmentation is the act of extracting content of interest from an image [12]. The 

extracted content is represented by labeling each pixel in the image. Image segmentation 

algorithms have been devised to automatically segment an image without the need of an 

expert manually delineating the objects of interest in the image. The usual method of 

verifying and validating a medical image segmentation algorithm begins by applying a 

first version of the segmentation algorithm (activity B in Figure 1) to a set of images (the 

images constitute the test suite, each image representing a test case).  The results obtained 

from the segmentation algorithm are then manually evaluated by medical experts 

(activity C). If an agreed1 number of segmentations are correct the algorithm is deemed 

correct otherwise the algorithm is modified.  When modification is required, the revised 

algorithm is re-applied to the image set and the same evaluation procedure is repeated 

until a correct version of the segmentation algorithm is reached (Figure 1). Practice 

shows that the number of iterations can be large, sometimes in the dozens, thus making 

the evaluation process very time consuming. Indeed, medical experts are required for the 

evaluation of each iteration and this often results in long waiting times. Manually 

evaluating such large numbers of subjects is also prone to human errors and inter-expert 

variability. 

We treat this problem as an instance of the oracle problem, which is the problem of 

finding a procedure to assess the correctness of test results (in our case image 

segmentations) [5]. Our proposed solution leads to the partial automation of segmentation 

oracles, thus making verification and validation more time-efficient and less reliant on 

medical experts. We use machine learning to build a classifier that determines the 

consistency of segmentation pairs (segmentations obtained from different versions of the 

                                                             
1 Agreed between the segmentation algorithm designer and medical experts. 
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segmentation algorithm but extracted from the same patient image) and then use this 

information to predict the correctness of segmentations.  

To teach the machine learning algorithm to distinguish between consistent and 

inconsistent segmentation pairs, the (dis)similarity between different segmentation pairs 

are quantified using several measures and their consistency is determined from expert 

evaluations of the first few revisions of the segmentation algorithm. Ideally, as in our 

case study, two revisions are needed to find an accurate classifier. Though our case study 

focuses on a specific segmentation application, the approach is re-usable in other 

(medical) image segmentation verification and validation contexts.  

The rest of this paper is organized as follows: Section 2 gives the reader some 

background about the adopted image segmentation comparison measures and a brief 

description of the machine learning concepts used in this research work. We detail our 

test oracle approach in Section 3, listing the results from the cardiac left ventricle 

segmentation verification and validation study in Section 4 where we describe several 

classifiers and compare their performance. A discussion on related work is given in 

Section 4.5 and conclusions are drawn in Section 6.  

 

Figure 1 Manual Image Segmentation Algorithm Evaluation Process 
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2 BACKGROUND 

In this section some background is given on two main subjects covered in this paper: 1) 

the image segmentation similarity measures that are required for training the machine 

learning algorithms and 2) the machine learning algorithms themselves and their 

evaluation techniques. 

2.1 Similarity Measures 

As explained in the previous section, we rely on several measures to quantify the 

similarity between segmentations with respect to different criteria.  Apart from a few 

measures that we have defined ourselves, the rest of the measures are obtained from the 

image processing literature and adapted to our needs. We divide the measures into three 

types: volume difference, overlap, and geometrical measures. An overview of the 

different categories is given here. For a detailed description of the measures please refer 

to Appendix A. Table 1 summarizes the measure names, types (VD = Volume 

Difference, O = Overlap, G = Geometrical), and the acronym descriptions. 

Volume difference measures calculate either in absolute or relative terms the 

difference in the number of voxels labeled in the two segmentations multiplied by the 

volume associated with each voxel in the image. These measures are relevant because a 

common purpose for medical image segmentation is the measurement of volume   In the 

application of our case study, the most important output of the segmentation system was 

the left ventricle volume in the service of computing the ejection fraction. 

Overlap measures calculate some kind of overlap between the two segmentations. The 

intersecting and non-intersecting regions of the two segmentations are identified and 

different fractions are defined, each measure placing more emphasis on the extent of 

agreement of some regions of interest. The original references for these measures are in 

[13, 14]. 
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Table 1 Similarity Measures 

Measure Type Description 

AVD VD Absolute value of Volume Difference 

ANVD VD Absolute value of Normalized Volume Difference 

DSC O Dice Similarity Coefficient 

TC O Tanimoto Coefficient 

TPVF O True Positive Volume Fraction 

FPVF O False Positive Volume Fraction 

ADBD G Average Distance to Boundary Difference 

HD G Hausdorff Distance 

BD G Baddeley Distance 

PMME G Peli Malah Mean Error 

PMMSE G Peli Malah Squared Error 

PFOM G Pratt’s Figure Of Merit 

SODI G Odet’s ODIn 

SUDI G Odet’s UDIn 

ODI G Odet’s ODI 

UDI G Odet’s UDI 

PAD G Principal Axis Difference 

RMMSD G Root Mean Square Surface Distance 
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Geometrical measures compare the segmentations in terms of their shape differences 

capturing variations such as the distance between the boundary voxels of the two 

segmentations. These measures may help in finding such cases where for example a 

segmentation has a high percentage of overlap with the correct segmentation but 

incorrectly labels some voxels that make the segmentation incorrect in the view of a 

medical expert. The original references for these measures can be found in [15-17, 19-

22]. 

2.2 Machine Learning 

Machine learning algorithms can be categorized into different types. However, in this 

research work we are only interested in classification algorithms since we want to learn 

about the relationships between segmentation (dis)similarities and expert evaluations. 

The input of these algorithms is a set of instances that are each characterized by the 

values of a number of attributes and associated with a class (referred to as training 

instances). The algorithm constructs a classifier that shows some form of relationship 

between the attributes (for example in the form of rules) that leads to a class. The 

classifier can now predict the class of unknown instances for which we do not know their 

class [23]. Better classifiers are constructed when more training instances with 

proportional number of instances from different classes are available. In our case, an 

instance is a pair of two segmentations for the same patient but generated by different 

segmentation algorithm versions, attributes are (di)similarity measures, and classes 

describe whether expert evaluations for the two segmentations are consistent. 

We have used the WEKA-implemented machine learning algorithms J48, JRIP and 

PART in our case study [23].  The use of decision branches and rules in these machine 

learning algorithms allows technical and medical experts to easily interpret the classifiers 

and gain more confidence in the decisions made by the classifier and the overall 

approach. Although more complicated machine learning algorithms exist, this is left to 

future work. Our main focus in this paper is to demonstrate our automated segmentation 

evaluation approach and, as seen in Section 4, the adopted classifiers perform very well 

in terms of classification accuracy  
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J48 implements the very well-established C4.5 algorithm that is a standard algorithm 

to create decision trees. C4.5 uses a divide and conquer approach, choosing different 

attributes in order of least entropy2 to divide the instances into different branches, 

growing the tree recursively and stopping the growth of a branch when the class of the 

instances in that branch can be determined or in other words a leaf node has been 

reached. PART uses partial decision trees to construct rules from the branches that lead to 

a leaf node covering the most instances. It attempts to avoid building a full decision tree 

for each rule by growing the resultant attribute split subsets with the lower entropies first, 

which leads to small sub-trees and more generic rules [23]. JRIP implements the RIPPER 

(Repeated Incremental Pruning to Produce Error Reduction) algorithm [24] that is a rule-

induction technique. For each class, JRIP starts by finding a rule that covers most of the 

training instances and has the best success rate (least number of misclassified instances). 

This procedure is repeated recursively until all instances are covered for that class and 

then repeated for the other classes. A procedure known as incremental reduced-error 

pruning refines each rule immediately after construction and a number of global 

optimization stages are applied after the construction of all the rules for further 

refinement [24]. In reduced-error pruning the training set is split into a growing set to 

construct the rules and a pruning set for pruning which means fewer instances are used 

for training. We select C4.5 pruning for J48 and PART. Please refer to [23] for further 

discussion on pruning techniques.  

Filters and wrappers attempt at taking out attributes that do not add any significant 

improvement in building a better classifier. The Correlation-based Feature Selection 

(CFS) filter chooses a subset of attributes from the original attribute set that have a high 

correlation with the class and a low correlation with each other. Wrappers select 

attributes by first training a classifier from different subsets of the original attribute set 

and choosing the subset of attributes that trains the best performing classifier. Both filters 

and wrappers require searching the attribute space. We have chosen an exhaustive search 

method for CFS where all the possible attribute sets are considered while choosing a 

                                                             
2 Entropy is a term acquired from information theory that in simple terms conveys the extent of non-uniformity in a group of 
instances: a group of instances that show equal proportions across classes have an entropy of 1 (entropy ranges from 0 to 1), depicting 
a uniform distribution. 
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greedy method for the J48 wrapper as an exhaustive search proves to be very time-

extensive in this case because of the requirement to build a classifier for each attribute 

set. In a greedy search method such as forward hill climbing, we start from an empty 

subset adding attributes to the set until the addition of no attribute will result in a 

performance improvement at which point the current subset is the selected subset of 

attributes. The main motivation for choosing a wrapper and CFS filter were the 

benchmarking results of different attribute selection methods reported in [25]. 

A standard technique to test classifier performance is stratified 10-fold cross-

validation. This technique splits the training set into 10 folds, each time training the 

classifier with 9 folds and testing it with the remaining fold. A procedure known as 

stratification randomizes the instances in each fold such that each one contains a similar 

proportion of the different classes. In order to prevent bias the procedure is repeated 10 

times in our experiments. 

Metrics such as accuracy and the area under the Receiver Operating Characteristic 

(ROC) curve [23] are used as indicators of performance in cross-validation. Accuracy 

refers to the success rate of the classifier (percentage of correct predictions). The ROC 

curve is a plot of the true positive rate (instances that are correctly classified as positive, 

in our case consistent) versus the false positive rate. The larger the area under this curve 

the better the classifier performs, reaching perfect performance when the area is 1. 

3 SEMI-AUTOMATED VERIFICATION AND 
VALIDATION APPROACH 

Figure 2 shows an activity diagram depicting the flow of activities in our approach. 

Two series of activities take place concurrently in this process, as illustrated by two 

swimlanes: Segmentation evaluations and Learning classifier. The segmentations are 

evaluated manually in the segmentation evaluations swimlane (Section 3.1) until an 

accurate classifier is constructed in the learning classifier swimlane (Section 3.2) thus 

allowing the automated evaluation of segmentations. We propose a component diagram 

of the automated oracle in Appendix B. 
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Figure 2 Segmentation evaluation process 

3.1 Segmentation Evaluations Swimlane 

This swimlane has four activities: activities A to D; and is similar to the activity 

diagram of Figure 1. The first time the Devise/Update segmentation algorithm activity 

(Activity A) is performed, an initial version of the image segmentation algorithm is 

devised. Each time this activity is repeated, i.e., when the segmentations produced by the 

image segmentation algorithm are deemed inadequate, the image segmentation algorithm 

is revised. Further revisions of the image segmentation algorithm are made in subsequent 

iterations until a satisfactory set of segmentations are produced. 

During the Segment images activity (Activity B), the segmentation algorithm produced 

in activity A is used to segment a set of sample images (Test suite) used as benchmark. 

This results in a set of segmentations, each segmentation corresponding to one sample 
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image. We refer to the segmentations obtained from revision i of the segmentation 

algorithm (i.e., during the ith iteration of this swimlane) as segmentation set seti.  

The segmented images are verified either manually or automatically in the next two 

activities (C and D), depending on whether an accurate classifier has been learnt. If this is 

not the case (Section 3.2), the segmentations have to be manually evaluated (Activity 

C—Manual evaluation). When an accurate classifier is available (Section 3.2), the 

evaluation is done automatically: activity Automated evaluation (Activity D). In activity 

D, the classifier predicts, based on the similarity measurements (Activity E) between the 

segmentations produced by the current revision (i) of the segmentation algorithm and the 

segmentations produced by previous revisions (j<i) of the segmentation algorithm, 

whether or not a segmentation pair is consistent. Table 2 shows how the correctness of 

segmentation n produced by revision i of the segmentation algorithm (Sn,i) can be 

obtained  from the consistency classifications of the learnt classifier. If the classifier 

predicts segmentation Sn,i to be consistent (with respect to a number of similarity 

measures) with a correct segmentation Sn,j (j<i) then segmentation Sn,i is predicted to be 

correct. If segmentation Sn,i is predicted to be inconsistent with a correct segmentation or 

consistent with an incorrect segmentation then it is predicted to be incorrect. In the case 

where segmentation Sn,i is inconsistent with an incorrect segmentation, no conclusion can 

be drawn and the correctness of segmentation Sn,i has to be manually evaluated by an  

expert. 

Table 2 Mapping between classifier results and the evaluation of the test image 

segmentation 

Evaluation of Sn,j (j < i) Predicted consistency of  

segmentation pair (Sn,j – Sn,i) 

Evaluation of Sn,i 

Correct  Consistent  Correct 

Correct Inconsistent Incorrect 

Incorrect Consistent Incorrect 

Incorrect Inconsistent  Requires manual evaluation 

After either activities C or D, if an agreed1 percentage of image segmentations are 

evaluated to be incorrect, we go back to activity A where the image segmentation 
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algorithm is revised. Otherwise, the testing process ends and the current revision of the 

image segmentation algorithm is deemed to be correct. 

3.2 Learning Classifier Swimlane 

This swimlane has three activities: activities E to G. In activity E (Generating the 

learning set), pairs of segmentations obtained from multiple revisions of the image 

segmentation algorithm (current revision i, and revision j, j<i) are compared using a set of 

similarity measures (Section 2.1). At least the first two sets of segmentations generated 

by the first two revisions of the segmentation algorithm are required to get the first set of 

similarity measurements (i.e., the first set of evaluated segmentation pairs from versions 

1 and 2 of the segmentation algorithm). In other words, at least two iterations of the 

Segmentation evaluations swimlane (with manual evaluation in Activity C) are 

necessary.  

Pairing segmentations of the same images/patients across two segmentation sets seti 

and setj results in three distinct subsets of paired segmentations. The first set is composed 

of the pairs of segmented images that were both deemed correct by an expert, denoted by 

setyy (i.e., ‘y’ for “yes” for the two versions). The second set is composed of the pairs of 

segmented images where either the first or second segmented image was deemed 

incorrect, denoted by setyn (one is correct: ‘y’, and one is incorrect: ‘n’). The third set is 

the set of all the pairs of segmented images that were both considered incorrect, denoted 

by setnn. 

The machine learning algorithm (Activity F) does not use setnn as the information 

obtained from comparing two incorrectly segmented images would not help the learning 

algorithm construct a classifier to recognize diagnostically equivalent segmentations. 

Diagnostically equivalent segmentations refers to two segmentations that both lead to the 

same diagnostic by the medical expert. Two segmentations may be incorrect for two 

completely different reasons and thus we cannot categorize them as consistent with each 

other. Table 3 explains how we categorize a pair of segmentations to be (in)consistent 

where Sn,i and Sn,j are two segmentations obtained from image n using versions i and j of 

the segmentation algorithm, respectively. 
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The application of the comparison measures to image pairs in setyy and setyn 

generates a set of tuples in the form of (smi1, …, smik, Consistency), where smij denotes 

similarity measures j on image pair I and “Consistency” cam take two values: yy 

(consistent) or yn (inconsistent). Index k is the number of similarity measures. This set of 

tuples is the training set that is fed into the machine learning algorithm: activity F (Learn 

Classifier). The machine learning algorithm learns which combination of measures and 

which ranges if their values depict consistent or inconsistent segmentation pairs. 

Table 3 Consistency of two segmentations 

Manual evaluation of Sn,i Manual evaluation of Sn,j Class 

Correct Correct Consistent  

Correct Incorrect Inconsistent 

Incorrect Correct Inconsistent  

Incorrect Incorrect Unusable (not a class) 

The learnt classifier (activity F) is validated using techniques such as 10-fold cross-

validation (Section 2.2) in activity G (Evaluate classifier). A classifier is deemed valid if 

the average error estimate is considered to be sufficiently low to be used in practice. This 

means that the classifier correctly predicted a reasonable proportion of segmentations 

under test to be consistent or inconsistent with a reference segmentation of the same 

image, or in other words predicted if the segmentation under test is correct or not. Once 

the classifier is learnt, the evaluation in the Segmentation evaluation swimlane can be 

done automatically (Activity D). Even in the case where we do not succeed in learning a 

classifier with very high average accuracy, we can expect that there will always be some 

parts of the classifier predictions with very low error rate that can be trusted with high 

confidence. For example, particular branches in decision trees or rules in rule induction 

techniques may exhibit much higher accuracy than other branches or rules. If the 

classifier can provide accurate predictions for a practically significant number of cases, 

then the classifier is a good candidate for partially automating the segmentation 

evaluations. 
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4 CASE STUDY 

This section describes the application of our approach to the verification and 

validation of a left ventricle segmentation algorithm (some examples of correct and 

incorrect cardiac left ventricle segmentations are given in Appendix C). The details of our 

experiments are described in Section 0 (Appendix D describes the tools we used for the 

purposes of this case study). We then explain the attribute sets that we have used to train 

the classifiers (Section 4.2), show the best performing classifiers and give some intuition 

on how to interpret them (Section 4.3) and compare the performance of the classifiers 

with respect to the type of attribute set, machine learning algorithm and the filtering 

method used in Section 4.4. Section 4.5 compares the run-time of the different measures 

with a small summary of the case study results in Section 4.6. 

4.1 Experiment Setup 

In this case study we intend to reach the following objectives:  

1) Analyze the performance of our verification and validation approach to a cardiac 

left ventricle segmentation algorithm devised by Siemens Corporate Research. In 

other words, can this approach lead to practical benefits? 

2) Investigate which similarity measures have the highest impact in determining the 

consistency of two segmentations and understand the tradeoff between using more 

expensive measures (in terms of run-time and complexity) and achieving better 

classifier performance. 

3) Analyze and compare the performance of several classification algorithms 

combined with attribute filtering techniques to determine whether they are 

appropriate for our application and produce plausible results. 

The segmentation algorithm we used in this case study identifies the left ventricle of 

the heart3 from a Computed Tomography (CT) Scan. CT-Scan images of the heart of 50 

patients have been taken at different times during the cardiac cycle, resulting in 181 CT-

Scans. Each CT-Scan is a set of 2D images (that set creates a 3D image). Due to the 

                                                             
3 The volume of the left ventricle can then be computed at different times during the cardiac cycle for diagnosis purposes. 
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variety in acquisition protocol and equipment across clinical centers, each CT-Scan has 

between 53 and 460 2D images, and each 2D image depicts either a 256 by 256 or 512 by 

512 pixel slice of the heart. Each CT-Scan, representing a patient’s heart at a given 

instant, constitutes a test case in the test suite.  The segmentations were obtained using a 

form of the general segmentation algorithm presented in [26] that was customized for 

cardiac segmentation. 

Two successive versions of the segmentation algorithm were considered. The 181 CT-

Scans were segmented and segmentations were evaluated by a medical expert (activities 

A, B, and C in Figure 2 were executed twice). 

Pairs of segmentations from the two segmentation versions for the same CT-Scan were 

compared using the 18 similarity measures of Table 1 (activity E in Figure 2). 181 tuples 

(recall Section 3.2) were thus generated combining similarity measures and the 

consistency class of each pair: 104 tuples were Consistent and 74 tuples were 

Inconsistent. 

As explained in Section 2.2, we considered classification (machine learning) 

algorithms and selected C4.5, JRIP, and PART (activity F in Figure 2). (Though activity 

F in the process of Figure 2 does not require the use of several classification algorithms, 

in a research process like ours, we are interested in evaluating several of them.) The 

performance of those algorithms is evaluated using the 10 stratified 10-fold cross 

validations by measuring their classification accuracy and the area under the ROC curve 

(activity G in Figure 2).  

4.2 Attribute Sets 

Recall from Section 2.1 that we consider three types of measures: volume difference, 

overlap, and geometrical measures. The latter category tends to be much more expensive 

to compute than the former two. We are interested in studying the changes in 

performance of the learning process when using only the least expensive type of measure, 

the two least expensive types, or when using all measures. Applying (or not) two attribute 
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filtering mechanisms to these three, we end up considering nine different 

attribute/measure sets (Table 4) to train the machine learning algorithms. 

Table 4 Attribute Sets 

 We want to see how well the different types of similarity measures would do 

standalone and what would be the effect of combining these measures. The overlap and 

volume difference measures have been combined together. These measures do not 

consider the shape differences between the two segmentations, thus being less complex in 

terms of computation, and also take noticeably less run-time (more than two orders of 

magnitude faster in most cases) compared to the geometrical measures. We will refer to 

these measures as simple measures. 

In order to investigate how the classifier performance would change when built using a 

filtered set of attributes we have applied the Correlation-based Feature Selection (CFS) 

 Attribute Set Selection Criteria Label 

1 TC-DSC-TPVF-FPVF-AVD-ANVD Overlap and volume difference measures OV 

2 TC-DSC-AVD-ANVD Overlap and volume difference measures chosen by the 

CFS filter using exhaustive search 

OVC 

3 TC-FPVF Overlap and volume difference measures chosen by the 

J48 decision tree wrapper using forward selection 

greedy search 

OVW 

4 BD-HD-PFOM-RMSSD-ADBD-SODI-ODI-SUDI-

UDI-PAD-PMME-PMMSE 

Geometrical measures G 

5 HD-BD-PFOM-RMSSD-ODI-UDI-PAD Geometrical measures chosen by the CFS filter using 

exhaustive search 

GC 

6 PFOM-SODI-SUDI Geometrical measures chosen by the J48 decision tree 

wrapper using forward selection greedy search 

GW 

7 TC-DSC-TPVF-FPVF-AVD-ANVD-BD-HD-

PFOM-RMSSD-ADBD-SODI-ODI-SUDI-UDI-

PAD-PMME-PMMSE 

All measures A 

8 TC-DSC-AVD-ANVD-HD-RMSSD-ODI-UDI All measures chosen by the CFS filter using exhaustive 

search 

AC 

9 TC-FPVF-SODI All measures chosen by the J48 decision tree wrapper 

using forward selection greedy search 

AW 
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filter and a J48 based wrapper to the three main categories of attribute sets creating six 

more attribute sets. 

4.3 Classifiers 

Before we delve into the classifiers, let us summarize the configuration parameters of 

the machine learning algorithms (Table 5). The parameters for J48 and PART are similar 

as PART uses partial decision trees in its construction process. The number of instances 

per leaf node parameter restricts the minimum number of instances that could reach a leaf 

node to four. Higher values for this parameter take away the freedom of C4.5 to form leaf 

nodes but very low values also may cause over-fitting to the data. Values are chosen after 

finding that it is either significantly better or equivalent (using a t-test using accuracy as 

the comparison criterion) when the parameter is swept from 2 to 10. Other parameters are 

also empirically optimized following a similar procedure. C4.5 pruning also proves to be 

either significantly better or equivalent to reduced error pruning, which is the motivation 

behind its selection for J48\PART.  

Figure 3 shows the best performing decision tree trained with the wrapper selected 

attributes (attribute set AW in Table 4) and produced by J48. Based on performing 10 

times a 10 fold cross validation, this classifier accuracy is 94.92% and its ROC area is 

0.95. The numbers shown in the parentheses in Figure 3 respectively (from left to right) 

represent the number of training instances that reach each leaf node and the number of 

these instances that are incorrectly classified by that leaf node. 

Table 5 Classifier configuration parameters 

Parameter Value Algorithm 

Number of instances per leaf node 4 J48\PART 

Pruning method C4.5 J48\PART 

Number of folds for pruning 3 JRIP 

Number of global optimizations 4 JRIP 
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Reading the decision tree shows that if the overlap (using measure TC) between the 

two segmentations is less than approximately 75% then the segmentations are categorized 

as inconsistent (as confirmed by 59 of the 74 inconsistent pairs in the training set with 

only 1 misclassified instance), otherwise a distance of less than 0.13 determined by the 

geometrical measure SODI will lead to a consistent pair (confirmed by 98 of the 104 

consistent pairs, with only 3 misclassifications). The overlap measure FPVP helps 

classify the remaining pairs of segmentations, when the TC overlap is greater than 75% 

and the SODI distance is greater than 0.13. If the FPVP overlap between the two 

segmentations is less than 0.28% then we have a consistent pair again, otherwise 

segmentations are inconsistent. The branch predictions can be considered quite accurate 

with a minimum error rate of 3% (TC-SODI-consistent branch) and a maximum error 

rate of 22% (TC-SODI-FPVF-consistent branch), which only applies to a small number 

of the training instances (2 errors out of only 9 instances).  In practice, the maximum 

error rate justifiable should be determined for each application, a threshold above which 

the manual verification of a segmentation if required. 

 

Figure 3 Best decision tree classifier 



Carleton University, TR SCE-09-06  

18 

Trained with the same attribute set (set AW), PART constructs four rules: 

Rule 1: If ((TC>0.7525) & (SODI<=0.129552) then class = consistent (98/3) 

Rule 2: Else if (TC<=0.76311) then class = inconsistent (59/1) 

Rule 3: Else if (FPVF>0.002778) then class = inconsistent (15/1) 

Rule 4: Else class = consistent (9/2) 

Interpreting each of the branches in the decision tree of Figure 3 as a rule, we see that 

the PART rules are essentially the same as the J48 classifier in Figure 3 with a small 

difference in the threshold used for TC for identifying inconsistent pairs (0.76311 in the 

second rule versus 0.7525 in the decision tree). This stems from the fact that PART 

constructs a different decision tree to generate the second rule, which means that it may 

not necessarily come up with the same threshold as the first rule when trying to cover the 

remaining instances that are not covered by rule 1. 

On the same attribute set (set AW), JRIP generates three rules: 

Rule 1: If (TC<=0.737932) then class=inconsistent (58/1) 

Rule 2: Else if ((SODI>=0.131275) & (FPVF>=0.002838) then class =   

                   inconsistent (16/1) 

Rule 3: Else class = consistent (107/5) 

JRIP covers all the instances that belong to one class before proceeding to the next 

class, whereas PART uses partial decision trees for rule induction and depending on the 

chosen leaf at each stage, instances belonging to a different class may be covered. Again, 

the rules produced by JRIP are very similar to the ones produced by J48 and PART, with 

small differences in thresholds used for TC, SODI and FPVP. 

We see from all three classifiers that TC is the best discriminator for negative 

instances (inconsistent pairs) while the combination of TC and SODI is the best 
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discriminator of positive instances (consistent pairs). A discussion on the classifiers 

produced by the other attribute sets using the three machine learning algorithms (J48, 

PART and JRIP) is given in [1]. 

4.4 Classifier Performance Comparisons 

In this section we investigate the performance of the classifiers with respect to the 

attribute set (Section 4.4.1), the machine learning algorithm (Section 4.4.2) and the 

application of filters\wrappers (Section 4.4.3).We refer to Figure 4 and Figure 5 

throughout the discussion. Each point in these figures is the average across the cross 

validation results and thus the t-test results described in this section are ran over a sample 

size of 100 (using the accuracy metric). 

4.4.1 Effect of attribute set type. 

In this section, we compare the performance of the classifiers trained with the 

geometrical measures compared to simple measures (overlap and volume difference) and 

then investigate how using all the measures will affect the classifier performance using 

the accuracy and ROC area metrics.  

As Figure 4 and Figure 5 show, the geometrical measures (set G) do not show any 

noticeable performance improvement compared to just using the simple measures (set 

OV). This is also confirmed with a t-test  where no significant performance difference is 

found between the classifiers trained by geometrical measures as opposed to simple 

measures. This indicates that using solely geometrical measures may not be required for 

this case study considering that they result in no performance improvement and also are 

more complex to implement and test. Indeed we found that, unless an attempt to develop 

more efficient implementations is undertaken, geometrical measures will take much more 

time to execute than the simple measures (several orders of magnitude slower). 



Carleton University, TR SCE-09-06  

20 

However, combining the geometrical and simple measures (set A) seems to be very 

promising. We see (Table 6) significant accuracy improvements for all three classifiers 

compared to just using either of the simple (from 4.82% to 6.47%) or geometrical 

measures (from 4.91% to 7.35%). A similar trend is visible for the ROC areas (Figure 5). 

This shows that the classifiers achieve very high discriminating power when taking 

advantage of both the simple and geometrical measures. 

 

 

 

Table 6 Comparison of classifier accuracies with respect to the attribute set category 

 Sets   

 OV G A Δ (A-OV) Δ (A-G) 

J48 86.46 85.58 92.93 6.47 7.35 

PART 85.46 84.98 91.83 6.37 6.85 

JRIP 87.23 87.14 92.05 4.82 4.91 

4.4.2 Effect of different machine learning algorithms.  

In this section we investigate whether machine learning algorithms yield significant 

performance differences. Table 7 shows that there is not a noticeable difference in the 

accuracy of the classifiers trained with the three machine learning algorithms. JRIP trains 

 

Figure 5 Accuracy of classifiers 

 

Figure 5 Area under ROC curve of classifiers 
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a better classifier when only having geometrical measures available performing 2.16% 

better than PART and 1.56% better than J48. When using all the measures, regardless of 

applying the wrapper, J48 generally performs slightly better, a result also confirmed with 

the ROC area. We have not considered the results for the classifiers that are trained with 

the CFS filtered attribute sets as these classifiers do not achieve any significant accuracy 

improvement over just using the original attribute sets (Section 4.4.3). From Table 7, one 

can conclude that using any of the three machine learning algorithms would be equivalent 

except for the fact that one may consider interpreting decision trees easier than rules.  

Table 7 Comparison of classifier accuracies with respect to the machine learning 

algorithm 

 J48 PART JRIP Δ(J48-PART) Δ(J48-JRIP) Δ(PART-JRIP) 

OV 86.46 85.46 87.23 1 Not Sig. -1.77 

OVW 89.78 89.50 90.00 Not Sig. Not Sig. Not Sig. 

G 85.58 84.98 87.14 Not Sig. -1.56 -2.16 

GW 90.24 91.13 90.46 -0.89 Not Sig. Not Sig. 

A 92.93 91.83 92.05 1.1 Not Sig. Not Sig. 

AW 94.92 94.32 94.21 0.6 0.71 Not Sig. 

4.4.3 Effect of wrappers and filters.  

The effect of filtering and using wrappers is investigated in this section. Table 8, Table 

9, and Table 10 show respectively the classifier accuracies achieved when trained by the 

simple, geometrical and all measures sets before and after applying the CFS filter and J48 

wrapper. We see that using the training instances with only the attributes selected by the 

wrapper always achieve a significant improvement in the accuracy of the trained 

classifier compared to using all the attributes: the maximum accuracy improvement is 

7.66% for the J48 classifier when using the geometrical measures. Similar trends were 

observed with the ROC area. On the contrary the CFS filter in some cases significantly 

degrades the classifier’s accuracy. Using a PART wrapper or a JRIP wrapper also 

improves classifier accuracy, but the improvement is not significantly better than the J48 

wrapper using any combination of classifier\attribute set, thus we do not report the results 

here due to space constraints. 
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Table 8 Comparison of classifier accuracies with respect to the use of filters and 

wrappers (using only simple measures) 

 OV OVC OVW Δ(OVC-OV) Δ(OVW-OV) 

J48 86.46 85.59 89.78 -0.87 4.19 

PART 85.46 85.30 89.50 Not Sig.  4.04 

JRIP 87.23 86.63 90.00 Not Sig. 2.77 

Table 9 Comparison of classifier accuracies with respect to the use of filters and 

wrappers (using only geometrical measures) 

 G GC GW Δ(GC-G) Δ(GW-G) 

J48 85.58 86.31 93.24 Not Sig.  7.66 

PART 84.98 86.31 90.13 1.33 5.15 

JRIP 87.14 86.03 90.46 Not Sig. 3.32 

Table 10 Comparison of classifier accuracies with respect to the use of filters and 

wrappers (using all measures) 

 A AC AW Δ(AC-A) Δ(AW-A) 

J48 92.93 91.71 94.92 -1.22 1.99 

PART 91.83 89.84 94.32 -1.99 2.49 

JRIP 92.05 91.17 94.21 Not Sig. 2.16 

4.5 Timing Considerations 

As mentioned in Appendix D, the comparison measures were implemented in the 

MATLAB environment. The matrix-oriented environment of MATLAB makes the 

implementations very concise but MATLAB suffers from being very slow in 3D image 

processing operations. The graphs in Figure 6 show the calculation time of the various 
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comparison measures for each of the 181 segmentation pair comparisons. The time varies 

based on the size of the segmentation files that have to be compared. Some graphs 

represent the aggregate time consumption of a few measures.  Graph 1 shows the total 

time of calculating TPVF, FPVF, TC and DSC. Although graphs 1, 4, 5 and 6 show the 

aggregate calculation time of the measures but as these measures use mostly common 

operations in their implementations, the time involved in calculating any one of them is 

comparable with the aggregate time.  

Table 11 shows the average calculation times of the measures. As shown, the Average 

Distance to Boundary Difference is the fastest measure, followed by the overlap 

measures (note that we are showing the total time of all the four overlap measures) and 

the principal axis. The volume difference measures are also very fast to compute. They 

have not been involved here as those numbers were readily available in this case study 

and did not require any implementation. The most time-intensive measures are the 

Hausdorff and Baddeley distances followed by the other geometrical measures. We see a 

significant gap in calculation times of the majority of the geometrical measures 

(excluding ADBD and PAD) and the overlap\volume difference measures. This is due to 

the fact that the overlap measures do not require any 3D processing while the geometrical 

measures all require 3D processing which MATLAB proves to be very slow at. Also the 

fact that MATLAB uses an interpreter-based language makes it slower than a compiler 

based language. Its garbage collection mechanisms do not prove to be very effective too 

as in our experiments large portions of RAM (up to 8 GBs) were allocated at some points 

of time. It is important to note that these time considerations will be less notable if using 

an efficient C implementation of the measures, as the original image segmentation 

algorithm is implemented in the C language and is significantly faster than the 

geometrical measure calculations (the segmentation algorithm takes up to a few 10s of 

seconds to output the segmentation of the 3D volume). Considering the relatively small 

size of the training set, the classifier construction and classification times were 

insignificant. 
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Figure 6 Time consumption of comparison measures (x-axis = segmentation pair number, 

y-axis = time consumption in seconds) 

  Table 11 Average comparison measure calculation times 

Comparison Measures Average Calculation Time (secs) 

ADBD 0.80 

overlap (TPVF, FPVF, TC, DSC) 3.39 
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PAD 15.62 

PFOM, PMME, PMMSE, RMSSD 1435.57 

ODI-SODI-UDI-SUDI 1465.50 

HD-BD 1853.61 

4.6 Conclusions 

We see that taking advantage of both the simple and geometrical measures results in 

significantly better performing classifiers compared to using only simple or geometrical 

measures. The use of wrappers improves the results even further. Measures such as the 

Tanimoto coefficient (overlap) and SODI (geometrical) prove to be very strong measures 

for distinguishing consistent pairs of segmentations from inconsistent ones as they are 

used in the majority of the best performing classifiers.  Although all the classifiers 

perform reasonably well but the J48 classifier is the best performing classifier achieving 

an approximately 95% accuracy, 0.9 kappa statistic and 0.95 area under the ROC curve. 

5 RELATED WORK 

There is a large body of work in the image processing field on studying and improving 

image segmentation algorithms but this is not the focus of our work. Rather we try to find 

a solution to the oracle problem in the (medical) image segmentation verification and 

validation domain. Defining an oracle is not a trivial task and may not be feasible at all 

times.  

In [2, 3] different solutions to the oracle problem are proposed: design redundancy, 

data redundancy, consistency checks, and the use of simplified data. Design redundancy 

attempts to check if the output of the software under test corresponds to one (or many) 

extra implementation of the specification of the software under test. It may be that the 

output of all the software versions is incorrect which is less likely if it is assumed that the 

software versions are independent. The independence assumption has been empirically 

debated in [9], showing that it may not at all times and care should be taken on the 
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reliability of multi-version programming. Design redundancy is similar to multi-version 

programming in regression testing [4]. Our approach is similar to design redundancy 

since we use different implementations of the segmentation algorithm. However, there is 

no design redundancy. In data redundancy, similar to N-copy programming in the fault 

tolerance domain [7], the input is re-expressed in different forms and the output of the 

original input is checked for agreement with the re-expressed inputs. Consistency 

checking simplifies the oracle to just verifying whether certain plausible conditions are 

met by the software under test, and testing with simplified inputs ignores testing with the 

more complex inputs and only considers simpler inputs for which an oracle can be 

devised.  

None of these approaches offer any quantification of the reliability of the oracle. 

Design redundancy has the highest overhead though this cost is argued to be very low in 

[11] as the implementation of the software is only a fraction of the overall cost of a 

software project.  

In the case where formal specifications exist for the software under test, researchers 

have proposed methods to derive oracles from the formal specifications. This has been 

investigated for real-time systems in [8], where the test class consists of some test 

executions or sequences of stimuli. Test oracles in the form of assertions are obtained 

using symbolic interpretation of the specifications for each control point. A discussion on 

oracles that are composed of assertions based on properties specified either in first order 

logic or computation tree logic is given in [6]. Assertions under the form of pre and post-

conditions can also be used as test oracles [10]. 

The use of machine learning in [18] for evaluating the best of two segmentations, 

produced by two different segmentation algorithms (or two different settings of one 

segmentation algorithm), presents similarities to our approach. However, they do not use 

any similarity measures to compare the two segmentations as we do for finding 

(in)consistent segmentation pairs. Instead, to measure the goodness (e.g., color 

uniformity) of each segmentation, they measure it separately. Each segmentation 

measurement leads to one decision tree, and the comparison of segmentations is obtained 



Carleton University, TR SCE-09-06  

29 

by combining the two decision trees using meta-learning. The construction of the 

decision trees and the accuracy of the modeling is not clearly discussed in [18]. It is also 

noteworthy that their measures require the processing of image properties such as color 

and texture while our measures only rely on the data from the segmentation labeling.  

6 CONCLUSIONS 

In this paper we have proposed an approach to replace the oracle constituted by 

(medical) experts by an automated oracle. It is relying on machine learning to construct a 

classifier from similarity measures that can predict the consistency between two 

segmentations. This is then used to predict the correctness of new segmentations as 

algorithms evolve. This approach is generic in the sense that it can be applied to any 

image segmentation software that goes through such an iterative 

development\verification procedure. The machine learning algorithms are plug and play 

components that can be replaced with other algorithms if they result in better 

performance. The approach saves time and effort required by (medical) experts, thus 

leading to faster development time to delivery and hopefully increased testing.  

We investigated the performance of our approach on the evaluation of cardiac left 

ventricle segmentation algorithms. Although there is room for improvement, the results 

are very promising and fairly simple classifiers show very good classification accuracies, 

thus suggesting that the correctness of most segmentations can be determined 

automatically. For example, using C4.5 and an attribute set of all the measures that have 

been filtered by a wrapper, we achieve an average accuracy of approximately 95% and an 

average area of 0.95 under the ROC curve when only using the training data obtained 

from the first two revisions of the segmentation algorithm. Using machine learning also 

helps to understand which similarity measures are relevant in determining what 

differences between segmentations are important from a medical standpoint. Results also 

show that the choice of a particular learning algorithm is not a significant decision, 

among the ones we considered here generating logical rules. Using a wrapper to pre-

select similarity measures is however effective. For maximum accuracy, all types of 

similarity measures should be combined in the constructed classifiers.   



Carleton University, TR SCE-09-06  

30 

Future work will be directed towards testing the performance of the approach on various 

other segmentation applications. Most of the measures defined in this report can be re-

used in other segmentation contexts as the measures are not dependant on the left 

ventricle segmentation problem. Even though the results in this study are promising, 

more experiments need to be conducted in order to investigate how many segmentation 

algorithm iterations are required for the machine learning algorithm to be able to 

converge towards an accurate classifier in other applications. Also trying out this solution 

during the life cycle of a real-world software project will lead to a better quantitative 

understanding on the extent of improvement in the quality of the software and the time 

required for completing the project. 
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Appendix A Similarity Measure Descriptions 

In this appendix we give a more detailed description on the similarity measures 

explaining each category separately: volume difference measures, overlap measures and 

geometrical measures. For further discussion on each measure please refer to the original 

references cited in the text. Throughout the discussion, SUT (Segmentation Under Test) 

is the segmentation that has an unknown evaluation (i.e. correct\incorrect) and RS 

(Reference Segmentation) is the segmentation with a known evaluation. Set theory is the 

adopted notation for defining the equations. 

Volume Difference Measures 

As their name implies, volume difference measures calculate either in absolute 

(Equation 1) or nominal (Equation 2) terms the difference in the number of pixels labeled 

in the two segmentations multiplied by the volume associated with each pixel in the 

image. 

      (1) 
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      (2) 

Overlap Measures 

Overlap measures calculate some kind of overlap between the two segmentations. 

Dice’s Similarity Coefficient (DSC) [14] defined in Equation 3 divides the number of 

common pixels between SUT and RS by the average number of pixels in the two 

segmentations and the Tanimoto Coefficient (TC) [14] defined in Equation 4 divides it by 

the number of pixels in the union of the two segmentations (Figure 7). In Figure 7, SUT 

and RS refer to the labeled region of the segmentations. 

      (3) 

      (4)
 

 

Figure 7 Mutually exclusive overlapping regions between the Segmentation Under 

Test (SUT) and the Reference Segmentation (RS) 

We define two more overlap measures taken from statistical decision theory as follows 

[13]: 

      (5) 

      (6) 
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In these measures pixels that are (not) labeled in RS are referred to as positive 

(negative), thus for example a truly positive pixel labeled by SUT is a pixel that is 

common with RS. TPVF stands for Truly Positive Volume Fraction and divides the 

number of pixels in SUT that are common with RS i.e. the Truly Positive 

( ) region by the number of pixels in RS. FPVF or the Falsely Positive 

Volume Fraction divides the number of pixels that are labeled in SUT but not a part of 

RS (the False Positive ( ) region) by the number of pixels that are not part 

of RS. U in Equation 6 refers to all the labeled and non-labeled pixels in the segmentation 

i.e. where TN is the Truly Negative region or the region that is 

not labeled in neither SUT nor RS (TN = U – SUT – RS) and FN is the Falsely Negative 

region that contains pixels that according to RS should be labeled but have not been 

labeled by SUT i.e. FN = RS – SUT. 

Geometrical Measures  

Geometrical measures take into account the shape of the segmentations under 

comparison, capturing differences such as the size and position of the segmentation 

boundaries. To do so the distance between different sets of pixels in the two 

segmentations needs to be measured. This is done by constructing the distance map of 

each segmentation which assigns each pixel of the segmentation its distance to the 

segmentation boundary. We formally define the distance between two pixels using the 

distance function d:S×SR (S is a set of pixels) that satisfies the following condition 

[15]: 

    (7) 

For example the Euclidean distance (Equation 8) satisfies the above condition (7). We 

have used the Euclidean distance in the implementation of the similarity measures.  

      (8) 

Average Distance to Boundary Difference (ADBD) 
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In the Average Distance to Boundary Difference (ADBD), we calculate the average 

distance to the boundary for each of the reference and test segmentations (with the help 

of the distance map of the segmentations) and take their difference (Equation 9).
 

      (9) 

Hausdorff and Baddeley’s Distance (HD & BD) 

Hausdorff’s Distance (HD) [15] finds the maximum distance between the reference 

and test segmentations while Baddeley’s Distance (BD) [19] takes the average of the 

difference in the distances to the reference and test segmentations over all the pixels in 

the image (U) taking away the noise-sensitivity inherent in HD [16].  

    (10) 

     (11) 

In HD, each pixel in each set (in our case study, each set of pixels here represents the 

labeled region in a segmentation) is scanned to find the minimum distance between that 

pixel and the boundary of the other set; for each set, the pixel that is farthest to the 

boundary of the other set is chosen, and the distance between the two sets is the larger 

distance of the two chosen pixels in each set. In Figure 8,  is the length 

of the arrow pointing from pixel p,  is the length of the arrow pointing 

from pixel q and the maximum of these two lengths is the Hausdorff distance between 

sets A and B (i.e., the length of the arrow pointing from pixel p). 



Carleton University, TR SCE-09-06  

36 

 

Figure 8 The Hausdorff distance is the distance from pixel p to the nearest common 

pixel between sets A and B 

The parameter z in BD determines the relative importance of large localization errors 

i.e. a higher z penalizes large localization errors more than small localization errors. A 

localization error is the error initiated from distance between the boundary pixels of SUT 

and the RS. If z reaches infinity, BD tends towards HD [19].
 

Odet’s Measures (ODI, UDI, SODI, SUDI) 

Odet defines a few measures that aim more specifically at finding over-segmentation 

(the test segmentation has labeled pixels that are not labeled in the reference 

segmentation i.e. the over-segmented pixels (OS in Equation 12)) and under-

segmentation (the test segmentation has not labeled pixels that are labeled in the 

reference segmentation i.e. the under-segmented pixels (US in Equation 13)). ODI and 

UDI respectively determine the extent of over-segmentation and under-segmentation by 

calculating the average distance between the over-segmentation (under-segmentation) 

boundary to the reference (test) segmentation boundary. Bd stands for boundary [20].    

      (12) 

      (13) 
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SODI and SUDI are scalable versions of ODI and UDI introducing dTH and n. dTH is 

a normalization threshold that is set to the maximum perceived distance of the over-

segmented and under-segmented pixels to the corresponding boundaries and n is a scaling 

factor similar to z in BD de-emphasizing smaller localization errors (when n>1) and 

putting a lot of emphasis on smaller localization errors (when 0<n<1) [20]. 

      (14) 

      (15) 

Pratt’s Figure Of Merit (PFOM) 

Pratt’s Figure Of Merit (PFOM) [21], defined in Equation 16, is another widely used 

measure that has been empirically proven. PFOM only attains values greater than zero 

and less than or equal to one leading to higher similarity between the segmentations when 

its values reaches 1 where the two segmentations are considered identical with respect to 

PFOM. 

  (16) 

This measure is sensitive to over-segmentation and localization problems, but it does 

not take into account under-segmentation or shape errors. The insensitivity of PFOM to 

the pattern of pixel errors is seen in Figure 9 (taken from [23]]). If A is the true 

segmentation, B and C will result in the same value for PFOM as they both have two 

corners of over-segmented pixels (the top and right corners). PFOM has not been 

theoretically proven, but is widely used as an empirical measure [16]. 
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Figure 9 PFOM determines B and C as equally similar to A [23]

 Peli and Malah’s Measures (PMME and PMMSE) 

Peli and Malah define PMME (Peli and Malah Mean Error) and PMMSE (Peli and 

Malah Squared Error) [22] that simply calculate  the mean error (Equation 17) and mean 

squared error (Equation 18) of the distance between the boundary pixels of the 

segmentation under test and the boundary pixels of the reference segmentation. Unlike 

PFOM, these two measures are not normalized ranging between zero and infinity, larger 

values indicating more deviation between the segmentation under test and the true 

segmentation. If two segmentations are identical then the value of PMME and PMMSE 

will be zero. 

      (17) 

      (18) 

Root Mean Square Surface Distance (RMMSD) 

RMMSD (Root Mean Square Surface Distance) [17] defined in Equation 19 takes the 

root mean square type average of the distances between the boundary (surface) pixels of 
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the segmentation under test and the reference segmentation over all the boundary pixels 

of both segmentations.  

   (19) 

Principal Axis Difference  

The principal axes of an object (in our case the labeled region of the segmentation) are 

in the direction of the eigenvectors of the covariance matrix representing that object. The 

covariance matrix (Equation 20) represents the covariance of the coordinates (Equation 

21), in this case 3D Cartesian coordinates. The covariance matrix is a symmetrical matrix 

because . 

        (20) 

         (21)

 

If we consider C as a transformation (a matrix that in the general case rotates and 

shifts the vectors that are applied to it), the eigenvectors are the vectors that do not rotate 

when the transformation is applied to them (22). 

          (22) 

In Equation 22, Vi (i>=1) are the eigenvectors of the covariance matrix and λi (i>=1) are 

the associated eigenvalues of the eigenvectors. In the coordinate system represented by 

the eigenvectors (principal axes), the covariance matrix, shown by C' in this coordinate 

system will have the form of a diagonal matrix (Equation 23) (a matrix that only has 

nonzero elements on the diagonal) where the eigenvalues of the covariance matrix are on 

the diagonal of the matrix.  
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         (23)

 

As you see in the coordinate system represented by the principal axes, the covariances of 

the coordinates are zero with respect to each other, which means that the object is 

geometrically symmetrical around the principal axes (Figure 10).  

 

 Figure 10 Object is geometrically symmetrical around the principal axes (x'1, x'2, 

x'3) 

A closer look at C' shows that the eigenvalues are in fact the variances of the coordinates 

of the object points (segmentation pixels) in the principal coordinate system. We define 

the Principal Axis Difference comparison measure as follows: 

  

PAD is calculating the difference of the largest variance of the pixels along the 

principal axes of the true segmentation and the segmentation under test. PAD solely 

concentrates on the shape of the segmentations and thus if the shape of the segmentation 

under test is the same as the true segmentation PAD would depict no difference between 

the segmentations, this is while the labeling in the segmentation under test may be 

located at a different location in the image from the expected location, making it an 

incorrect segmentation. 
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Appendix B Tool Support Architecture 

The structural components in the design of the automated oracle are shown in Figure 11. 

The outputs (in our case the segmentations) from version Vi ( where n is the total 

number of versions of the Software Under Test (SUT) until its depicted as valid) of the 

software under test (in our case the software under test is the segmentation algorithm) are 

fed into the oracle and the oracle determines the correctness of the outputs. 

 

Figure 11 Structural components of the automated oracle 

To do so, the OutputComparator class is used to retrieve the outputs from the current 

version of the SUT via the OutputRetriever interface. Each output Oji 

( ) produced from 

input Ij (the input in our case is the 3D volume CT-scan of the subject) is first compared 

to the outputs that have been produced from the same input Ij using previous versions of 

the software under test (version < Vi). The previously evaluated outputs have been 

retrieved via the EvaluatedOutputRetriever interface which may be provided by an 

external database used for storing the previously evaluated outputs. The output that is 
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being tested will be referred to as the Output Under Test (OUT). Table B.1 shows the 

contents stored in the external database more vividly. 

 

 

 

 

Table 12 Table of all outputs produced by the previous versions of the SUT (version 

< Vi) and their corresponding evaluations 

Input SUT V1 SUT V2 … SUT V(i-1) 

I1 O11\Correct O12\Correct  O1(i-1)\Correct 

I2 O21\Incorrect  O22\Incorrect  O2(i-1)\Incorrect 

I3 O31\Correct O32\Incorrect  O3(i-1)\Correct 

I4 O41\Incorrect O42\Incorrect  O4(i-1)\Correct 

… … … … … 

The OutputComparator uses the similarity measures defined in Appendix A to compare 

Oji (OUT) with the outputs: Oj(i-1), Oj(i-2), …, Oj2, Oj1 and for each comparison (for 

example if the current version of the SUT is V10, one comparison could be between O2,10 

(OUT) and the output produced by the 8th version of the SUT i.e. O2,8; the input 

associated with both outputs is I2) will produce a tuple of the comparison measure 

calculations (m1, m2, …, mz)  where  z  is the number of defined comparison measures.  

The ValidatedClassifier (a classifier that has been validated by Activity G) retrieves these 

tuples which serve as the non-classified instances and classifies them producing tuples in 

the form (m1, m2, …, mz, consistent\in-consistent) which now contains the classification. 

The Consistency to Correctness Mapper class uses the information provided in Table B.1 

and the logic explained in Table 2 to map the consistency classifications to correctness 

classifications. Table B.2 shows an example on how this is done. 
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Table 13 An example showing how the Consistency to Correctness Mapper module 

obtains the correctness of the OUT 

Output that OUT 
has been compared 
to 

Correctness 
Classification of Previous 
Outputs 

Consistency 
Classification 

Correctness 
Classification of 
OUT 

O9.6 Correct Consistent Correct 

O9.5 Incorrect Inconsistent Unknown 

O9.4 Correct Inconsistent Incorrect 

O9.3 Correct Consistent Correct 

O9.2 Incorrect Consistent  Incorrect 

O9,1 Correct Consistent  Correct 

In this example, OUT is the output produced from the 7th version (V7) of the 

segmentation algorithm from input 9 (I9) i.e. output O9,7. The Consistency to Correctness 

Mapper uses a policy to make the final decision as to whether OUT is correct or not. This 

policy could be taking a majority vote (in this example, OUT has been determined to be 

correct in 3 instances, while it has been deemed incorrect in 2 instances, so OUT is 

evaluated to be correct) or just taking the evaluation made using the comparison with the 

last version of the SUT. The assumption here is that the last version of the SUT is the 

superior version of all the previous versions. We cannot automatically evaluate the 

correctness if all the outputs from the previous versions of the SUT are evaluated to be 

incorrect and the classifier has classified OUT to be inconsistent with all of them (the 

unknown case in Table 4.1) or in the case where there is an equal number of corrects and 

in-corrects (this is only an issue when using the majority vote policy). The evaluated 

outputs (outputs classified as correct\in-correct by the ValidatedClassifier) are retrieved 
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by the SUTEvaluator class that uses some defined criteria to determine whether we have 

enough correct outputs produced by the current version of the software under test to 

evaluate this version as a valid version and thus the final version of the software under 

test. The SUTEvaluator class has to provide an interface for the test monitor (the module 

that runs the test cases) to retrieve the oracle's evaluation on the current SUT. This is 

provided through the SUTEvaluatorInterface. 

 

Appendix C Cardiac Left Ventricle Segmentation Examples 

We show here some figures showing the left heart ventricle segmentations. Each 

figure is a slice of the CT-Scan of a different patient’s heart where the left ventricle is 

segmented by labeling the representative pixels with green using some version of the 

segmentation algorithm. Figure 12 shows a correct segmentation while Figures 13, 14 

and 15 show incorrect segmentations. Figure 13 shows a typical over-segmentation 

scenario (the most common problem in this case study) where the left atrium is also 

labeled. In Figure 14 the segmentation algorithm has missed the left ventricle and labeled 

the right ventricle instead. Under-segmentation is seen in Figure 15 where the left heart 

ventricle is not completely labeled. These are some examples of incorrect segmentations 

in this case study. More detailed discussion on the manual evaluation of each 

segmentation is out of the context of this research work and requires background in the 

heart anatomy. Also note that these figures only outline the segmented region in one slice 

of the heart. In order to evaluate the correctness of a segmentation, all the CT-Scan slices 

of the heart have to be looked at by an expert where an overall assessment is then given 

as to whether the segmentation is correct or not. Minor discrepancies in a few slices may 

be ignored by the expert. As explained earlier the tolerance level for accepting a 

segmentation as correct may be different for each expert. 
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Figure 12 Correct Left Heart Ventricle Segmentation 

 

Figure 13 Incorrect Segmentation (over-segmentation to the left atrium) 
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Figure 14 Incorrect Segmentation (Segmenting an incorrect region i.e. the right 

ventricle) 

 

Figure 15 Incorrect Segmentation (under-segmentation) 

Appendix D Experimentation Tools 

Three main tools have been used in this case study: 
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1) Left Heart Ventricle Segmentation tool (s): This tool was created by Siemens 

Corporate Research experts. Each version of this tool implements a version of the image 

segmentation algorithm. To obtain the segmentations for each version of the image 

segmentation algorithm the tool had to be run for all of the test cases. 

2) MATLAB: We used MATLAB to implement all the comparison measures feeding the 

segmentations obtained from the left heart ventricle segmentation tool to the comparison 

measures. In order to calculate the distance maps of the segmentations that are required 

for the implementation of the geometrical measures, we have used the MATLAB library 

function bwdist with the Euclidean metric option. This function uses the implementation 

in [27] to implement the distance transform. To find the boundary of the segmentations, 

we simply use the gradient function as the gradient at any pixel of a non-boundary pixel 

is zero (all neighbor pixels are labeled as 1) while it is nonzero in some direction for 

boundary pixels (a zero-labeled neighbor pixel exists in some direction). 

3) WEKA: The Waikato Environment for Knowledge Analysis tool was used for 

obtaining the entire machine learning results. The raw training data was obtained from 

the output of the MATLAB implemented comparison measures. This is a Java-based tool 

and is widely used in the research community. It contains the implementation of most of 

the various data mining techniques and provides an easy to use environment for 

experimentation. 
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