
Carleton University, TR SCE-09-06

1

Automating Image Segmentation Verification and Validation

by Learning Test Oracles

Kambiz Frounchi, Lionel C. Briand*, Leo Grady**, Yvan Labiche, and
Rajesh. Subramanyan**

Carleton University, Software Quality Engineering Laboratory, 1125 Colonel By Drive,
Ottawa, ON K1S 5B6, Canada, {kambiz, labiche}@sce.carleton.ca
*Simula Research Laboratory and University of Oslo, P.O. Box 134, Lysaker, Norway,
briand@simula.no
**Siemens Corporate Research, 755 College Road, Princeton, NJ 08540, U.S.A,
{leo.grady, rajesh.subramanyan}@siemens.com

ABSTRACT

An Image Segmentation Algorithm is an algorithm that delineates (an) object(s) of

interest in an image. The output of the image segmentation algorithm is referred to as a

segmentation. Developing image segmentation algorithms is a manual, iterative process

involving repetitive verification and validation tasks. This process is time-consuming and

depends on the availability of medical experts, who are a scarce resource. We propose a

procedure that uses machine learning to construct an oracle, which can then be used to

automatically verify the correctness of image segmentations, thus saving substantial

resources. During the initial learning phase, segmentations from the first few (optimally

two) revisions of the segmentation algorithm are manually verified by experts. The

similarity of successive segmentations of the same images is also measured. This

information is then fed to a machine learning algorithm to construct a classifier that

distinguishes between consistent and inconsistent segmentation pairs based on the values

of the similarity measures associated with each segmentation pair. Once the accuracy of

the classifier is deemed satisfactory for the purposes of the application, the classifier is

then used to determine whether the segmentation, systems’ output by subsequent versions

of the algorithm under test, are (in)consistent with already verified segmentations from

previous versions. This information is then used to automatically make conclusions about

the (in)correctness of the segmentations. To demonstrate the performance of the

Carleton University, TR SCE-09-06

2

approach, the proposed solution was successfully applied to 3D segmentations of the

cardiac left ventricle obtained from CT scans.

Keywords: Verification and Validation, Test Oracle, Software Quality, Segmentation,

Machine Learning

1 INTRODUCTION

Image Segmentation is the act of extracting content of interest from an image [12]. The

extracted content is represented by labeling each pixel in the image. Image segmentation

algorithms have been devised to automatically segment an image without the need of an

expert manually delineating the objects of interest in the image. The usual method of

verifying and validating a medical image segmentation algorithm begins by applying a

first version of the segmentation algorithm (activity B in Figure 1) to a set of images (the

images constitute the test suite, each image representing a test case). The results obtained

from the segmentation algorithm are then manually evaluated by medical experts

(activity C). If an agreed1 number of segmentations are correct the algorithm is deemed

correct otherwise the algorithm is modified. When modification is required, the revised

algorithm is re-applied to the image set and the same evaluation procedure is repeated

until a correct version of the segmentation algorithm is reached (Figure 1). Practice

shows that the number of iterations can be large, sometimes in the dozens, thus making

the evaluation process very time consuming. Indeed, medical experts are required for the

evaluation of each iteration and this often results in long waiting times. Manually

evaluating such large numbers of subjects is also prone to human errors and inter-expert

variability.

We treat this problem as an instance of the oracle problem, which is the problem of

finding a procedure to assess the correctness of test results (in our case image

segmentations) [5]. Our proposed solution leads to the partial automation of segmentation

oracles, thus making verification and validation more time-efficient and less reliant on

medical experts. We use machine learning to build a classifier that determines the

consistency of segmentation pairs (segmentations obtained from different versions of the

1 Agreed between the segmentation algorithm designer and medical experts.

Carleton University, TR SCE-09-06

3

segmentation algorithm but extracted from the same patient image) and then use this

information to predict the correctness of segmentations.

To teach the machine learning algorithm to distinguish between consistent and

inconsistent segmentation pairs, the (dis)similarity between different segmentation pairs

are quantified using several measures and their consistency is determined from expert

evaluations of the first few revisions of the segmentation algorithm. Ideally, as in our

case study, two revisions are needed to find an accurate classifier. Though our case study

focuses on a specific segmentation application, the approach is re-usable in other

(medical) image segmentation verification and validation contexts.

The rest of this paper is organized as follows: Section 2 gives the reader some

background about the adopted image segmentation comparison measures and a brief

description of the machine learning concepts used in this research work. We detail our

test oracle approach in Section 3, listing the results from the cardiac left ventricle

segmentation verification and validation study in Section 4 where we describe several

classifiers and compare their performance. A discussion on related work is given in

Section 4.5 and conclusions are drawn in Section 6.

Figure 1 Manual Image Segmentation Algorithm Evaluation Process

Carleton University, TR SCE-09-06

4

2 BACKGROUND

In this section some background is given on two main subjects covered in this paper: 1)

the image segmentation similarity measures that are required for training the machine

learning algorithms and 2) the machine learning algorithms themselves and their

evaluation techniques.

2.1 Similarity Measures

As explained in the previous section, we rely on several measures to quantify the

similarity between segmentations with respect to different criteria. Apart from a few

measures that we have defined ourselves, the rest of the measures are obtained from the

image processing literature and adapted to our needs. We divide the measures into three

types: volume difference, overlap, and geometrical measures. An overview of the

different categories is given here. For a detailed description of the measures please refer

to Appendix A. Table 1 summarizes the measure names, types (VD = Volume

Difference, O = Overlap, G = Geometrical), and the acronym descriptions.

Volume difference measures calculate either in absolute or relative terms the

difference in the number of voxels labeled in the two segmentations multiplied by the

volume associated with each voxel in the image. These measures are relevant because a

common purpose for medical image segmentation is the measurement of volume In the

application of our case study, the most important output of the segmentation system was

the left ventricle volume in the service of computing the ejection fraction.

Overlap measures calculate some kind of overlap between the two segmentations. The

intersecting and non-intersecting regions of the two segmentations are identified and

different fractions are defined, each measure placing more emphasis on the extent of

agreement of some regions of interest. The original references for these measures are in

[13, 14].

Carleton University, TR SCE-09-06

5

Table 1 Similarity Measures

Measure Type Description

AVD VD Absolute value of Volume Difference

ANVD VD Absolute value of Normalized Volume Difference

DSC O Dice Similarity Coefficient

TC O Tanimoto Coefficient

TPVF O True Positive Volume Fraction

FPVF O False Positive Volume Fraction

ADBD G Average Distance to Boundary Difference

HD G Hausdorff Distance

BD G Baddeley Distance

PMME G Peli Malah Mean Error

PMMSE G Peli Malah Squared Error

PFOM G Pratt’s Figure Of Merit

SODI G Odet’s ODIn

SUDI G Odet’s UDIn

ODI G Odet’s ODI

UDI G Odet’s UDI

PAD G Principal Axis Difference

RMMSD G Root Mean Square Surface Distance

Carleton University, TR SCE-09-06

6

Geometrical measures compare the segmentations in terms of their shape differences

capturing variations such as the distance between the boundary voxels of the two

segmentations. These measures may help in finding such cases where for example a

segmentation has a high percentage of overlap with the correct segmentation but

incorrectly labels some voxels that make the segmentation incorrect in the view of a

medical expert. The original references for these measures can be found in [15-17, 19-

22].

2.2 Machine Learning

Machine learning algorithms can be categorized into different types. However, in this

research work we are only interested in classification algorithms since we want to learn

about the relationships between segmentation (dis)similarities and expert evaluations.

The input of these algorithms is a set of instances that are each characterized by the

values of a number of attributes and associated with a class (referred to as training

instances). The algorithm constructs a classifier that shows some form of relationship

between the attributes (for example in the form of rules) that leads to a class. The

classifier can now predict the class of unknown instances for which we do not know their

class [23]. Better classifiers are constructed when more training instances with

proportional number of instances from different classes are available. In our case, an

instance is a pair of two segmentations for the same patient but generated by different

segmentation algorithm versions, attributes are (di)similarity measures, and classes

describe whether expert evaluations for the two segmentations are consistent.

We have used the WEKA-implemented machine learning algorithms J48, JRIP and

PART in our case study [23]. The use of decision branches and rules in these machine

learning algorithms allows technical and medical experts to easily interpret the classifiers

and gain more confidence in the decisions made by the classifier and the overall

approach. Although more complicated machine learning algorithms exist, this is left to

future work. Our main focus in this paper is to demonstrate our automated segmentation

evaluation approach and, as seen in Section 4, the adopted classifiers perform very well

in terms of classification accuracy

Carleton University, TR SCE-09-06

7

J48 implements the very well-established C4.5 algorithm that is a standard algorithm

to create decision trees. C4.5 uses a divide and conquer approach, choosing different

attributes in order of least entropy2 to divide the instances into different branches,

growing the tree recursively and stopping the growth of a branch when the class of the

instances in that branch can be determined or in other words a leaf node has been

reached. PART uses partial decision trees to construct rules from the branches that lead to

a leaf node covering the most instances. It attempts to avoid building a full decision tree

for each rule by growing the resultant attribute split subsets with the lower entropies first,

which leads to small sub-trees and more generic rules [23]. JRIP implements the RIPPER

(Repeated Incremental Pruning to Produce Error Reduction) algorithm [24] that is a rule-

induction technique. For each class, JRIP starts by finding a rule that covers most of the

training instances and has the best success rate (least number of misclassified instances).

This procedure is repeated recursively until all instances are covered for that class and

then repeated for the other classes. A procedure known as incremental reduced-error

pruning refines each rule immediately after construction and a number of global

optimization stages are applied after the construction of all the rules for further

refinement [24]. In reduced-error pruning the training set is split into a growing set to

construct the rules and a pruning set for pruning which means fewer instances are used

for training. We select C4.5 pruning for J48 and PART. Please refer to [23] for further

discussion on pruning techniques.

Filters and wrappers attempt at taking out attributes that do not add any significant

improvement in building a better classifier. The Correlation-based Feature Selection

(CFS) filter chooses a subset of attributes from the original attribute set that have a high

correlation with the class and a low correlation with each other. Wrappers select

attributes by first training a classifier from different subsets of the original attribute set

and choosing the subset of attributes that trains the best performing classifier. Both filters

and wrappers require searching the attribute space. We have chosen an exhaustive search

method for CFS where all the possible attribute sets are considered while choosing a

2 Entropy is a term acquired from information theory that in simple terms conveys the extent of non-uniformity in a group of
instances: a group of instances that show equal proportions across classes have an entropy of 1 (entropy ranges from 0 to 1), depicting
a uniform distribution.

Carleton University, TR SCE-09-06

8

greedy method for the J48 wrapper as an exhaustive search proves to be very time-

extensive in this case because of the requirement to build a classifier for each attribute

set. In a greedy search method such as forward hill climbing, we start from an empty

subset adding attributes to the set until the addition of no attribute will result in a

performance improvement at which point the current subset is the selected subset of

attributes. The main motivation for choosing a wrapper and CFS filter were the

benchmarking results of different attribute selection methods reported in [25].

A standard technique to test classifier performance is stratified 10-fold cross-

validation. This technique splits the training set into 10 folds, each time training the

classifier with 9 folds and testing it with the remaining fold. A procedure known as

stratification randomizes the instances in each fold such that each one contains a similar

proportion of the different classes. In order to prevent bias the procedure is repeated 10

times in our experiments.

Metrics such as accuracy and the area under the Receiver Operating Characteristic

(ROC) curve [23] are used as indicators of performance in cross-validation. Accuracy

refers to the success rate of the classifier (percentage of correct predictions). The ROC

curve is a plot of the true positive rate (instances that are correctly classified as positive,

in our case consistent) versus the false positive rate. The larger the area under this curve

the better the classifier performs, reaching perfect performance when the area is 1.

3 SEMI-AUTOMATED VERIFICATION AND
VALIDATION APPROACH

Figure 2 shows an activity diagram depicting the flow of activities in our approach.

Two series of activities take place concurrently in this process, as illustrated by two

swimlanes: Segmentation evaluations and Learning classifier. The segmentations are

evaluated manually in the segmentation evaluations swimlane (Section 3.1) until an

accurate classifier is constructed in the learning classifier swimlane (Section 3.2) thus

allowing the automated evaluation of segmentations. We propose a component diagram

of the automated oracle in Appendix B.

Carleton University, TR SCE-09-06

9

Figure 2 Segmentation evaluation process

3.1 Segmentation Evaluations Swimlane

This swimlane has four activities: activities A to D; and is similar to the activity

diagram of Figure 1. The first time the Devise/Update segmentation algorithm activity

(Activity A) is performed, an initial version of the image segmentation algorithm is

devised. Each time this activity is repeated, i.e., when the segmentations produced by the

image segmentation algorithm are deemed inadequate, the image segmentation algorithm

is revised. Further revisions of the image segmentation algorithm are made in subsequent

iterations until a satisfactory set of segmentations are produced.

During the Segment images activity (Activity B), the segmentation algorithm produced

in activity A is used to segment a set of sample images (Test suite) used as benchmark.

This results in a set of segmentations, each segmentation corresponding to one sample

Carleton University, TR SCE-09-06

10

image. We refer to the segmentations obtained from revision i of the segmentation

algorithm (i.e., during the ith iteration of this swimlane) as segmentation set seti.

The segmented images are verified either manually or automatically in the next two

activities (C and D), depending on whether an accurate classifier has been learnt. If this is

not the case (Section 3.2), the segmentations have to be manually evaluated (Activity

C—Manual evaluation). When an accurate classifier is available (Section 3.2), the

evaluation is done automatically: activity Automated evaluation (Activity D). In activity

D, the classifier predicts, based on the similarity measurements (Activity E) between the

segmentations produced by the current revision (i) of the segmentation algorithm and the

segmentations produced by previous revisions (j<i) of the segmentation algorithm,

whether or not a segmentation pair is consistent. Table 2 shows how the correctness of

segmentation n produced by revision i of the segmentation algorithm (Sn,i) can be

obtained from the consistency classifications of the learnt classifier. If the classifier

predicts segmentation Sn,i to be consistent (with respect to a number of similarity

measures) with a correct segmentation Sn,j (j<i) then segmentation Sn,i is predicted to be

correct. If segmentation Sn,i is predicted to be inconsistent with a correct segmentation or

consistent with an incorrect segmentation then it is predicted to be incorrect. In the case

where segmentation Sn,i is inconsistent with an incorrect segmentation, no conclusion can

be drawn and the correctness of segmentation Sn,i has to be manually evaluated by an

expert.

Table 2 Mapping between classifier results and the evaluation of the test image

segmentation

Evaluation of Sn,j (j < i) Predicted consistency of

segmentation pair (Sn,j – Sn,i)

Evaluation of Sn,i

Correct Consistent Correct

Correct Inconsistent Incorrect

Incorrect Consistent Incorrect

Incorrect Inconsistent Requires manual evaluation

After either activities C or D, if an agreed1 percentage of image segmentations are

evaluated to be incorrect, we go back to activity A where the image segmentation

Carleton University, TR SCE-09-06

11

algorithm is revised. Otherwise, the testing process ends and the current revision of the

image segmentation algorithm is deemed to be correct.

3.2 Learning Classifier Swimlane

This swimlane has three activities: activities E to G. In activity E (Generating the

learning set), pairs of segmentations obtained from multiple revisions of the image

segmentation algorithm (current revision i, and revision j, j<i) are compared using a set of

similarity measures (Section 2.1). At least the first two sets of segmentations generated

by the first two revisions of the segmentation algorithm are required to get the first set of

similarity measurements (i.e., the first set of evaluated segmentation pairs from versions

1 and 2 of the segmentation algorithm). In other words, at least two iterations of the

Segmentation evaluations swimlane (with manual evaluation in Activity C) are

necessary.

Pairing segmentations of the same images/patients across two segmentation sets seti

and setj results in three distinct subsets of paired segmentations. The first set is composed

of the pairs of segmented images that were both deemed correct by an expert, denoted by

setyy (i.e., ‘y’ for “yes” for the two versions). The second set is composed of the pairs of

segmented images where either the first or second segmented image was deemed

incorrect, denoted by setyn (one is correct: ‘y’, and one is incorrect: ‘n’). The third set is

the set of all the pairs of segmented images that were both considered incorrect, denoted

by setnn.

The machine learning algorithm (Activity F) does not use setnn as the information

obtained from comparing two incorrectly segmented images would not help the learning

algorithm construct a classifier to recognize diagnostically equivalent segmentations.

Diagnostically equivalent segmentations refers to two segmentations that both lead to the

same diagnostic by the medical expert. Two segmentations may be incorrect for two

completely different reasons and thus we cannot categorize them as consistent with each

other. Table 3 explains how we categorize a pair of segmentations to be (in)consistent

where Sn,i and Sn,j are two segmentations obtained from image n using versions i and j of

the segmentation algorithm, respectively.

Carleton University, TR SCE-09-06

12

The application of the comparison measures to image pairs in setyy and setyn

generates a set of tuples in the form of (smi1, …, smik, Consistency), where smij denotes

similarity measures j on image pair I and “Consistency” cam take two values: yy

(consistent) or yn (inconsistent). Index k is the number of similarity measures. This set of

tuples is the training set that is fed into the machine learning algorithm: activity F (Learn

Classifier). The machine learning algorithm learns which combination of measures and

which ranges if their values depict consistent or inconsistent segmentation pairs.

Table 3 Consistency of two segmentations

Manual evaluation of Sn,i Manual evaluation of Sn,j Class

Correct Correct Consistent

Correct Incorrect Inconsistent

Incorrect Correct Inconsistent

Incorrect Incorrect Unusable (not a class)

The learnt classifier (activity F) is validated using techniques such as 10-fold cross-

validation (Section 2.2) in activity G (Evaluate classifier). A classifier is deemed valid if

the average error estimate is considered to be sufficiently low to be used in practice. This

means that the classifier correctly predicted a reasonable proportion of segmentations

under test to be consistent or inconsistent with a reference segmentation of the same

image, or in other words predicted if the segmentation under test is correct or not. Once

the classifier is learnt, the evaluation in the Segmentation evaluation swimlane can be

done automatically (Activity D). Even in the case where we do not succeed in learning a

classifier with very high average accuracy, we can expect that there will always be some

parts of the classifier predictions with very low error rate that can be trusted with high

confidence. For example, particular branches in decision trees or rules in rule induction

techniques may exhibit much higher accuracy than other branches or rules. If the

classifier can provide accurate predictions for a practically significant number of cases,

then the classifier is a good candidate for partially automating the segmentation

evaluations.

Carleton University, TR SCE-09-06

13

4 CASE STUDY

This section describes the application of our approach to the verification and

validation of a left ventricle segmentation algorithm (some examples of correct and

incorrect cardiac left ventricle segmentations are given in Appendix C). The details of our

experiments are described in Section 0 (Appendix D describes the tools we used for the

purposes of this case study). We then explain the attribute sets that we have used to train

the classifiers (Section 4.2), show the best performing classifiers and give some intuition

on how to interpret them (Section 4.3) and compare the performance of the classifiers

with respect to the type of attribute set, machine learning algorithm and the filtering

method used in Section 4.4. Section 4.5 compares the run-time of the different measures

with a small summary of the case study results in Section 4.6.

4.1 Experiment Setup

In this case study we intend to reach the following objectives:

1) Analyze the performance of our verification and validation approach to a cardiac

left ventricle segmentation algorithm devised by Siemens Corporate Research. In

other words, can this approach lead to practical benefits?

2) Investigate which similarity measures have the highest impact in determining the

consistency of two segmentations and understand the tradeoff between using more

expensive measures (in terms of run-time and complexity) and achieving better

classifier performance.

3) Analyze and compare the performance of several classification algorithms

combined with attribute filtering techniques to determine whether they are

appropriate for our application and produce plausible results.

The segmentation algorithm we used in this case study identifies the left ventricle of

the heart3 from a Computed Tomography (CT) Scan. CT-Scan images of the heart of 50

patients have been taken at different times during the cardiac cycle, resulting in 181 CT-

Scans. Each CT-Scan is a set of 2D images (that set creates a 3D image). Due to the

3 The volume of the left ventricle can then be computed at different times during the cardiac cycle for diagnosis purposes.

Carleton University, TR SCE-09-06

14

variety in acquisition protocol and equipment across clinical centers, each CT-Scan has

between 53 and 460 2D images, and each 2D image depicts either a 256 by 256 or 512 by

512 pixel slice of the heart. Each CT-Scan, representing a patient’s heart at a given

instant, constitutes a test case in the test suite. The segmentations were obtained using a

form of the general segmentation algorithm presented in [26] that was customized for

cardiac segmentation.

Two successive versions of the segmentation algorithm were considered. The 181 CT-

Scans were segmented and segmentations were evaluated by a medical expert (activities

A, B, and C in Figure 2 were executed twice).

Pairs of segmentations from the two segmentation versions for the same CT-Scan were

compared using the 18 similarity measures of Table 1 (activity E in Figure 2). 181 tuples

(recall Section 3.2) were thus generated combining similarity measures and the

consistency class of each pair: 104 tuples were Consistent and 74 tuples were

Inconsistent.

As explained in Section 2.2, we considered classification (machine learning)

algorithms and selected C4.5, JRIP, and PART (activity F in Figure 2). (Though activity

F in the process of Figure 2 does not require the use of several classification algorithms,

in a research process like ours, we are interested in evaluating several of them.) The

performance of those algorithms is evaluated using the 10 stratified 10-fold cross

validations by measuring their classification accuracy and the area under the ROC curve

(activity G in Figure 2).

4.2 Attribute Sets

Recall from Section 2.1 that we consider three types of measures: volume difference,

overlap, and geometrical measures. The latter category tends to be much more expensive

to compute than the former two. We are interested in studying the changes in

performance of the learning process when using only the least expensive type of measure,

the two least expensive types, or when using all measures. Applying (or not) two attribute

Carleton University, TR SCE-09-06

15

filtering mechanisms to these three, we end up considering nine different

attribute/measure sets (Table 4) to train the machine learning algorithms.

Table 4 Attribute Sets

 We want to see how well the different types of similarity measures would do

standalone and what would be the effect of combining these measures. The overlap and

volume difference measures have been combined together. These measures do not

consider the shape differences between the two segmentations, thus being less complex in

terms of computation, and also take noticeably less run-time (more than two orders of

magnitude faster in most cases) compared to the geometrical measures. We will refer to

these measures as simple measures.

In order to investigate how the classifier performance would change when built using a

filtered set of attributes we have applied the Correlation-based Feature Selection (CFS)

 Attribute Set Selection Criteria Label

1 TC-DSC-TPVF-FPVF-AVD-ANVD Overlap and volume difference measures OV

2 TC-DSC-AVD-ANVD Overlap and volume difference measures chosen by the

CFS filter using exhaustive search

OVC

3 TC-FPVF Overlap and volume difference measures chosen by the

J48 decision tree wrapper using forward selection

greedy search

OVW

4 BD-HD-PFOM-RMSSD-ADBD-SODI-ODI-SUDI-

UDI-PAD-PMME-PMMSE

Geometrical measures G

5 HD-BD-PFOM-RMSSD-ODI-UDI-PAD Geometrical measures chosen by the CFS filter using

exhaustive search

GC

6 PFOM-SODI-SUDI Geometrical measures chosen by the J48 decision tree

wrapper using forward selection greedy search

GW

7 TC-DSC-TPVF-FPVF-AVD-ANVD-BD-HD-

PFOM-RMSSD-ADBD-SODI-ODI-SUDI-UDI-

PAD-PMME-PMMSE

All measures A

8 TC-DSC-AVD-ANVD-HD-RMSSD-ODI-UDI All measures chosen by the CFS filter using exhaustive

search

AC

9 TC-FPVF-SODI All measures chosen by the J48 decision tree wrapper

using forward selection greedy search

AW

Carleton University, TR SCE-09-06

16

filter and a J48 based wrapper to the three main categories of attribute sets creating six

more attribute sets.

4.3 Classifiers

Before we delve into the classifiers, let us summarize the configuration parameters of

the machine learning algorithms (Table 5). The parameters for J48 and PART are similar

as PART uses partial decision trees in its construction process. The number of instances

per leaf node parameter restricts the minimum number of instances that could reach a leaf

node to four. Higher values for this parameter take away the freedom of C4.5 to form leaf

nodes but very low values also may cause over-fitting to the data. Values are chosen after

finding that it is either significantly better or equivalent (using a t-test using accuracy as

the comparison criterion) when the parameter is swept from 2 to 10. Other parameters are

also empirically optimized following a similar procedure. C4.5 pruning also proves to be

either significantly better or equivalent to reduced error pruning, which is the motivation

behind its selection for J48\PART.

Figure 3 shows the best performing decision tree trained with the wrapper selected

attributes (attribute set AW in Table 4) and produced by J48. Based on performing 10

times a 10 fold cross validation, this classifier accuracy is 94.92% and its ROC area is

0.95. The numbers shown in the parentheses in Figure 3 respectively (from left to right)

represent the number of training instances that reach each leaf node and the number of

these instances that are incorrectly classified by that leaf node.

Table 5 Classifier configuration parameters

Parameter Value Algorithm

Number of instances per leaf node 4 J48\PART

Pruning method C4.5 J48\PART

Number of folds for pruning 3 JRIP

Number of global optimizations 4 JRIP

Carleton University, TR SCE-09-06

17

Reading the decision tree shows that if the overlap (using measure TC) between the

two segmentations is less than approximately 75% then the segmentations are categorized

as inconsistent (as confirmed by 59 of the 74 inconsistent pairs in the training set with

only 1 misclassified instance), otherwise a distance of less than 0.13 determined by the

geometrical measure SODI will lead to a consistent pair (confirmed by 98 of the 104

consistent pairs, with only 3 misclassifications). The overlap measure FPVP helps

classify the remaining pairs of segmentations, when the TC overlap is greater than 75%

and the SODI distance is greater than 0.13. If the FPVP overlap between the two

segmentations is less than 0.28% then we have a consistent pair again, otherwise

segmentations are inconsistent. The branch predictions can be considered quite accurate

with a minimum error rate of 3% (TC-SODI-consistent branch) and a maximum error

rate of 22% (TC-SODI-FPVF-consistent branch), which only applies to a small number

of the training instances (2 errors out of only 9 instances). In practice, the maximum

error rate justifiable should be determined for each application, a threshold above which

the manual verification of a segmentation if required.

Figure 3 Best decision tree classifier

Carleton University, TR SCE-09-06

18

Trained with the same attribute set (set AW), PART constructs four rules:

Rule 1: If ((TC>0.7525) & (SODI<=0.129552) then class = consistent (98/3)

Rule 2: Else if (TC<=0.76311) then class = inconsistent (59/1)

Rule 3: Else if (FPVF>0.002778) then class = inconsistent (15/1)

Rule 4: Else class = consistent (9/2)

Interpreting each of the branches in the decision tree of Figure 3 as a rule, we see that

the PART rules are essentially the same as the J48 classifier in Figure 3 with a small

difference in the threshold used for TC for identifying inconsistent pairs (0.76311 in the

second rule versus 0.7525 in the decision tree). This stems from the fact that PART

constructs a different decision tree to generate the second rule, which means that it may

not necessarily come up with the same threshold as the first rule when trying to cover the

remaining instances that are not covered by rule 1.

On the same attribute set (set AW), JRIP generates three rules:

Rule 1: If (TC<=0.737932) then class=inconsistent (58/1)

Rule 2: Else if ((SODI>=0.131275) & (FPVF>=0.002838) then class =

 inconsistent (16/1)

Rule 3: Else class = consistent (107/5)

JRIP covers all the instances that belong to one class before proceeding to the next

class, whereas PART uses partial decision trees for rule induction and depending on the

chosen leaf at each stage, instances belonging to a different class may be covered. Again,

the rules produced by JRIP are very similar to the ones produced by J48 and PART, with

small differences in thresholds used for TC, SODI and FPVP.

We see from all three classifiers that TC is the best discriminator for negative

instances (inconsistent pairs) while the combination of TC and SODI is the best

Carleton University, TR SCE-09-06

19

discriminator of positive instances (consistent pairs). A discussion on the classifiers

produced by the other attribute sets using the three machine learning algorithms (J48,

PART and JRIP) is given in [1].

4.4 Classifier Performance Comparisons

In this section we investigate the performance of the classifiers with respect to the

attribute set (Section 4.4.1), the machine learning algorithm (Section 4.4.2) and the

application of filters\wrappers (Section 4.4.3).We refer to Figure 4 and Figure 5

throughout the discussion. Each point in these figures is the average across the cross

validation results and thus the t-test results described in this section are ran over a sample

size of 100 (using the accuracy metric).

4.4.1 Effect of attribute set type.

In this section, we compare the performance of the classifiers trained with the

geometrical measures compared to simple measures (overlap and volume difference) and

then investigate how using all the measures will affect the classifier performance using

the accuracy and ROC area metrics.

As Figure 4 and Figure 5 show, the geometrical measures (set G) do not show any

noticeable performance improvement compared to just using the simple measures (set

OV). This is also confirmed with a t-test where no significant performance difference is

found between the classifiers trained by geometrical measures as opposed to simple

measures. This indicates that using solely geometrical measures may not be required for

this case study considering that they result in no performance improvement and also are

more complex to implement and test. Indeed we found that, unless an attempt to develop

more efficient implementations is undertaken, geometrical measures will take much more

time to execute than the simple measures (several orders of magnitude slower).

Carleton University, TR SCE-09-06

20

However, combining the geometrical and simple measures (set A) seems to be very

promising. We see (Table 6) significant accuracy improvements for all three classifiers

compared to just using either of the simple (from 4.82% to 6.47%) or geometrical

measures (from 4.91% to 7.35%). A similar trend is visible for the ROC areas (Figure 5).

This shows that the classifiers achieve very high discriminating power when taking

advantage of both the simple and geometrical measures.

Table 6 Comparison of classifier accuracies with respect to the attribute set category

 Sets

 OV G A Δ (A-OV) Δ (A-G)

J48 86.46 85.58 92.93 6.47 7.35

PART 85.46 84.98 91.83 6.37 6.85

JRIP 87.23 87.14 92.05 4.82 4.91

4.4.2 Effect of different machine learning algorithms.

In this section we investigate whether machine learning algorithms yield significant

performance differences. Table 7 shows that there is not a noticeable difference in the

accuracy of the classifiers trained with the three machine learning algorithms. JRIP trains

Figure 5 Accuracy of classifiers

Figure 5 Area under ROC curve of classifiers

Carleton University, TR SCE-09-06

21

a better classifier when only having geometrical measures available performing 2.16%

better than PART and 1.56% better than J48. When using all the measures, regardless of

applying the wrapper, J48 generally performs slightly better, a result also confirmed with

the ROC area. We have not considered the results for the classifiers that are trained with

the CFS filtered attribute sets as these classifiers do not achieve any significant accuracy

improvement over just using the original attribute sets (Section 4.4.3). From Table 7, one

can conclude that using any of the three machine learning algorithms would be equivalent

except for the fact that one may consider interpreting decision trees easier than rules.

Table 7 Comparison of classifier accuracies with respect to the machine learning

algorithm

 J48 PART JRIP Δ(J48-PART) Δ(J48-JRIP) Δ(PART-JRIP)

OV 86.46 85.46 87.23 1 Not Sig. -1.77

OVW 89.78 89.50 90.00 Not Sig. Not Sig. Not Sig.

G 85.58 84.98 87.14 Not Sig. -1.56 -2.16

GW 90.24 91.13 90.46 -0.89 Not Sig. Not Sig.

A 92.93 91.83 92.05 1.1 Not Sig. Not Sig.

AW 94.92 94.32 94.21 0.6 0.71 Not Sig.

4.4.3 Effect of wrappers and filters.

The effect of filtering and using wrappers is investigated in this section. Table 8, Table

9, and Table 10 show respectively the classifier accuracies achieved when trained by the

simple, geometrical and all measures sets before and after applying the CFS filter and J48

wrapper. We see that using the training instances with only the attributes selected by the

wrapper always achieve a significant improvement in the accuracy of the trained

classifier compared to using all the attributes: the maximum accuracy improvement is

7.66% for the J48 classifier when using the geometrical measures. Similar trends were

observed with the ROC area. On the contrary the CFS filter in some cases significantly

degrades the classifier’s accuracy. Using a PART wrapper or a JRIP wrapper also

improves classifier accuracy, but the improvement is not significantly better than the J48

wrapper using any combination of classifier\attribute set, thus we do not report the results

here due to space constraints.

Carleton University, TR SCE-09-06

22

Table 8 Comparison of classifier accuracies with respect to the use of filters and

wrappers (using only simple measures)

 OV OVC OVW Δ(OVC-OV) Δ(OVW-OV)

J48 86.46 85.59 89.78 -0.87 4.19

PART 85.46 85.30 89.50 Not Sig. 4.04

JRIP 87.23 86.63 90.00 Not Sig. 2.77

Table 9 Comparison of classifier accuracies with respect to the use of filters and

wrappers (using only geometrical measures)

 G GC GW Δ(GC-G) Δ(GW-G)

J48 85.58 86.31 93.24 Not Sig. 7.66

PART 84.98 86.31 90.13 1.33 5.15

JRIP 87.14 86.03 90.46 Not Sig. 3.32

Table 10 Comparison of classifier accuracies with respect to the use of filters and

wrappers (using all measures)

 A AC AW Δ(AC-A) Δ(AW-A)

J48 92.93 91.71 94.92 -1.22 1.99

PART 91.83 89.84 94.32 -1.99 2.49

JRIP 92.05 91.17 94.21 Not Sig. 2.16

4.5 Timing Considerations

As mentioned in Appendix D, the comparison measures were implemented in the

MATLAB environment. The matrix-oriented environment of MATLAB makes the

implementations very concise but MATLAB suffers from being very slow in 3D image

processing operations. The graphs in Figure 6 show the calculation time of the various

Carleton University, TR SCE-09-06

23

comparison measures for each of the 181 segmentation pair comparisons. The time varies

based on the size of the segmentation files that have to be compared. Some graphs

represent the aggregate time consumption of a few measures. Graph 1 shows the total

time of calculating TPVF, FPVF, TC and DSC. Although graphs 1, 4, 5 and 6 show the

aggregate calculation time of the measures but as these measures use mostly common

operations in their implementations, the time involved in calculating any one of them is

comparable with the aggregate time.

Table 11 shows the average calculation times of the measures. As shown, the Average

Distance to Boundary Difference is the fastest measure, followed by the overlap

measures (note that we are showing the total time of all the four overlap measures) and

the principal axis. The volume difference measures are also very fast to compute. They

have not been involved here as those numbers were readily available in this case study

and did not require any implementation. The most time-intensive measures are the

Hausdorff and Baddeley distances followed by the other geometrical measures. We see a

significant gap in calculation times of the majority of the geometrical measures

(excluding ADBD and PAD) and the overlap\volume difference measures. This is due to

the fact that the overlap measures do not require any 3D processing while the geometrical

measures all require 3D processing which MATLAB proves to be very slow at. Also the

fact that MATLAB uses an interpreter-based language makes it slower than a compiler

based language. Its garbage collection mechanisms do not prove to be very effective too

as in our experiments large portions of RAM (up to 8 GBs) were allocated at some points

of time. It is important to note that these time considerations will be less notable if using

an efficient C implementation of the measures, as the original image segmentation

algorithm is implemented in the C language and is significantly faster than the

geometrical measure calculations (the segmentation algorithm takes up to a few 10s of

seconds to output the segmentation of the 3D volume). Considering the relatively small

size of the training set, the classifier construction and classification times were

insignificant.

Carleton University, TR SCE-09-06

24

Carleton University, TR SCE-09-06

25

Carleton University, TR SCE-09-06

26

Figure 6 Time consumption of comparison measures (x-axis = segmentation pair number,

y-axis = time consumption in seconds)

 Table 11 Average comparison measure calculation times

Comparison Measures Average Calculation Time (secs)

ADBD 0.80

overlap (TPVF, FPVF, TC, DSC) 3.39

Carleton University, TR SCE-09-06

27

PAD 15.62

PFOM, PMME, PMMSE, RMSSD 1435.57

ODI-SODI-UDI-SUDI 1465.50

HD-BD 1853.61

4.6 Conclusions

We see that taking advantage of both the simple and geometrical measures results in

significantly better performing classifiers compared to using only simple or geometrical

measures. The use of wrappers improves the results even further. Measures such as the

Tanimoto coefficient (overlap) and SODI (geometrical) prove to be very strong measures

for distinguishing consistent pairs of segmentations from inconsistent ones as they are

used in the majority of the best performing classifiers. Although all the classifiers

perform reasonably well but the J48 classifier is the best performing classifier achieving

an approximately 95% accuracy, 0.9 kappa statistic and 0.95 area under the ROC curve.

5 RELATED WORK

There is a large body of work in the image processing field on studying and improving

image segmentation algorithms but this is not the focus of our work. Rather we try to find

a solution to the oracle problem in the (medical) image segmentation verification and

validation domain. Defining an oracle is not a trivial task and may not be feasible at all

times.

In [2, 3] different solutions to the oracle problem are proposed: design redundancy,

data redundancy, consistency checks, and the use of simplified data. Design redundancy

attempts to check if the output of the software under test corresponds to one (or many)

extra implementation of the specification of the software under test. It may be that the

output of all the software versions is incorrect which is less likely if it is assumed that the

software versions are independent. The independence assumption has been empirically

debated in [9], showing that it may not at all times and care should be taken on the

Carleton University, TR SCE-09-06

28

reliability of multi-version programming. Design redundancy is similar to multi-version

programming in regression testing [4]. Our approach is similar to design redundancy

since we use different implementations of the segmentation algorithm. However, there is

no design redundancy. In data redundancy, similar to N-copy programming in the fault

tolerance domain [7], the input is re-expressed in different forms and the output of the

original input is checked for agreement with the re-expressed inputs. Consistency

checking simplifies the oracle to just verifying whether certain plausible conditions are

met by the software under test, and testing with simplified inputs ignores testing with the

more complex inputs and only considers simpler inputs for which an oracle can be

devised.

None of these approaches offer any quantification of the reliability of the oracle.

Design redundancy has the highest overhead though this cost is argued to be very low in

[11] as the implementation of the software is only a fraction of the overall cost of a

software project.

In the case where formal specifications exist for the software under test, researchers

have proposed methods to derive oracles from the formal specifications. This has been

investigated for real-time systems in [8], where the test class consists of some test

executions or sequences of stimuli. Test oracles in the form of assertions are obtained

using symbolic interpretation of the specifications for each control point. A discussion on

oracles that are composed of assertions based on properties specified either in first order

logic or computation tree logic is given in [6]. Assertions under the form of pre and post-

conditions can also be used as test oracles [10].

The use of machine learning in [18] for evaluating the best of two segmentations,

produced by two different segmentation algorithms (or two different settings of one

segmentation algorithm), presents similarities to our approach. However, they do not use

any similarity measures to compare the two segmentations as we do for finding

(in)consistent segmentation pairs. Instead, to measure the goodness (e.g., color

uniformity) of each segmentation, they measure it separately. Each segmentation

measurement leads to one decision tree, and the comparison of segmentations is obtained

Carleton University, TR SCE-09-06

29

by combining the two decision trees using meta-learning. The construction of the

decision trees and the accuracy of the modeling is not clearly discussed in [18]. It is also

noteworthy that their measures require the processing of image properties such as color

and texture while our measures only rely on the data from the segmentation labeling.

6 CONCLUSIONS

In this paper we have proposed an approach to replace the oracle constituted by

(medical) experts by an automated oracle. It is relying on machine learning to construct a

classifier from similarity measures that can predict the consistency between two

segmentations. This is then used to predict the correctness of new segmentations as

algorithms evolve. This approach is generic in the sense that it can be applied to any

image segmentation software that goes through such an iterative

development\verification procedure. The machine learning algorithms are plug and play

components that can be replaced with other algorithms if they result in better

performance. The approach saves time and effort required by (medical) experts, thus

leading to faster development time to delivery and hopefully increased testing.

We investigated the performance of our approach on the evaluation of cardiac left

ventricle segmentation algorithms. Although there is room for improvement, the results

are very promising and fairly simple classifiers show very good classification accuracies,

thus suggesting that the correctness of most segmentations can be determined

automatically. For example, using C4.5 and an attribute set of all the measures that have

been filtered by a wrapper, we achieve an average accuracy of approximately 95% and an

average area of 0.95 under the ROC curve when only using the training data obtained

from the first two revisions of the segmentation algorithm. Using machine learning also

helps to understand which similarity measures are relevant in determining what

differences between segmentations are important from a medical standpoint. Results also

show that the choice of a particular learning algorithm is not a significant decision,

among the ones we considered here generating logical rules. Using a wrapper to pre-

select similarity measures is however effective. For maximum accuracy, all types of

similarity measures should be combined in the constructed classifiers.

Carleton University, TR SCE-09-06

30

Future work will be directed towards testing the performance of the approach on various

other segmentation applications. Most of the measures defined in this report can be re-

used in other segmentation contexts as the measures are not dependant on the left

ventricle segmentation problem. Even though the results in this study are promising,

more experiments need to be conducted in order to investigate how many segmentation

algorithm iterations are required for the machine learning algorithm to be able to

converge towards an accurate classifier in other applications. Also trying out this solution

during the life cycle of a real-world software project will lead to a better quantitative

understanding on the extent of improvement in the quality of the software and the time

required for completing the project.

References
 [1] K. Frounchi, “Learning a Test Oracle Towards Automating Image Segmentation

Evaluation”, M.A.S Thesis, Carleton University, Ottawa, Canada, 2008.

 [2] M.D. Davis and E.J. Weyuker, “Pseudo-oracles for non-testable programs”, ACM,

1981.

[3] E.J. Weyuker, “On Testing Non-testable Programs”, The Computer Journal, vol

25, no. 4, 1982.

[4] P. Amman and J. Offut, Introduction to Software Testing, Cambridge University

Press, 2008.

[5] A.P. Mathur, Foundations of Software Testing, Addison Wesley Professional,

2007.

[6] P.D.L. Machado and W.L. Andrade, “The Oracle Problem for Testing against

Quantified Properties”, QSIC, 2007.

[7] P.E. Ammann an J.C. Knight, “Data Diversity: An Approach to Software Fault

Tolerance”, IEEE Transactions on Computers, vol. 37, no. 4, 1988.

[8] D.J. Richardson, S.L. Aha and T.O.O’Malley,”Specification-based Test Oracles

for Reactive Systems”, ACM, 1992.

[9] J.C. Knight and Nancy G. Leveson, “An experimental evaluation of the

assumption of independence in multi-version programming”, IEEE Transactions on

Software Engineering, SE-12(1), pp. 96-109, 1986.

Carleton University, TR SCE-09-06

31

[10] L.C. Briand, Y. Labiche and H. Sun, “Investigating the Use of Analysis Contracts

to Improve the Testability of Object Oriented Code”, Software - Practice and Experience

(Wiley), vol. 33 (7), pp. 637-672, 2003.

[11] T. Gilb, “Software Metrics”, New Jersey, 1977.

[12] D.L. Pham, C. Xu, and J.L. Prince, “A Survey of Current Methods in Medical

Image Segmentation”, Department of Elec. And Comp. Eng., The john Hopkins

University, and Laboratory of Personality and Cognition, National Institute on Aging,

Technical Report JHU/ECE 99-01, Jan. 1998.

[13] J.K. Udupa, et. al, “A framework for evaluating image segmentation algorithms”,

Elsevier Computerized Medical Imaging and Graphics, vol. 30, pp. 75-87, March 2006.

[14] W.R. Crum, P. Camara, and D.L.G. Hill, “Generalized overlap measures for

evaluation and validation in medical image analysis”, IEEE Transactions on Medical

Imaging, vol. 25, no. 11, pp. 1451-1461, November 2006.

[15] R. Klette, and A. Rosenfeld, Digital Geometry: Geometric Methods for Digital

Picture Analysis, Elsevier, 2004.

[16] C. Rosenberger, S. Chabrier, H. Laurant, and B. Emile, “Unsupervised and

Supervised Image Segmentation Evaluation,” in Advances in Image and Video

Segmentation, Y. Zhang, Ed. IGI, 2006, pp. 365-393.

[17] X. Deng, et. al, “On Simulating Subjective Evaluation Using Combined Objective

Metrics for Validation of 3D Tumor Segmentation”, MICCAI, 2007.

[18] H. Zhang, S. Cholleti, and S. A. Goldman, “Meta-Evaluation of Image

Segmentation Using Machine Learning”, IEEE CVPR, 2006.

[19] A. J. Baddeley, “An Error Metric for Binary Images”, Proceedings of Robust

Computer Vision, 1992.

[20] C. Odet, B. Belaroussi, and H. Benoit-cattin, “Scalable Discrepency measures for

segmentation evaluation”, IEEE ICIP, 2002.

[21] E. Abdou, and W. K. Pratt, “Quantitave Design and Evaluation of

Enhancement/Thresholding Edge Detectors”, Proceedings of the IEEE, vol. 67, no. 5,

1979.

[22] T. Peli, and D. Malah, “A Study of Edge Detection Algorithms”, Computer

graphics and image processing, 20:1-21, 1982.

Carleton University, TR SCE-09-06

32

[23] I. H. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, Second Edition, Elsevier, 2005.

[24] W. W. Cohen, “Fast Effective Rule Induction”, Twelfth International Conference

on Machine Learning, pp. 115-123, 1995.

[25] M. A. Hall and G. Holmes, “Benchmarking Attribute Selection Techniques for

Discrete Class Data Mining”, IEEE Transactions on Knowledge and Data Engineering,

vol. 15, no. 3, 2003.

[26] L. Grady, "Random Walks for Image Segmentation", IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 28, No. 11, pp. 1768-1783, Nov., 2006.

[27] J. H. Friedman, J. L. Bentley and R. A. Finkel, “An Algorithm for Finding Best

Matches in Logarithmic Expected Time,” ACM Transactions on Mathematical

Software, vol. 3, no. 3, pp. 209-226, 1997.

Appendix A Similarity Measure Descriptions

In this appendix we give a more detailed description on the similarity measures

explaining each category separately: volume difference measures, overlap measures and

geometrical measures. For further discussion on each measure please refer to the original

references cited in the text. Throughout the discussion, SUT (Segmentation Under Test)

is the segmentation that has an unknown evaluation (i.e. correct\incorrect) and RS

(Reference Segmentation) is the segmentation with a known evaluation. Set theory is the

adopted notation for defining the equations.

Volume Difference Measures

As their name implies, volume difference measures calculate either in absolute

(Equation 1) or nominal (Equation 2) terms the difference in the number of pixels labeled

in the two segmentations multiplied by the volume associated with each pixel in the

image.

 (1)

Carleton University, TR SCE-09-06

33

 (2)

Overlap Measures

Overlap measures calculate some kind of overlap between the two segmentations.

Dice’s Similarity Coefficient (DSC) [14] defined in Equation 3 divides the number of

common pixels between SUT and RS by the average number of pixels in the two

segmentations and the Tanimoto Coefficient (TC) [14] defined in Equation 4 divides it by

the number of pixels in the union of the two segmentations (Figure 7). In Figure 7, SUT

and RS refer to the labeled region of the segmentations.

 (3)

 (4)

Figure 7 Mutually exclusive overlapping regions between the Segmentation Under

Test (SUT) and the Reference Segmentation (RS)

We define two more overlap measures taken from statistical decision theory as follows

[13]:

 (5)

 (6)

Carleton University, TR SCE-09-06

34

In these measures pixels that are (not) labeled in RS are referred to as positive

(negative), thus for example a truly positive pixel labeled by SUT is a pixel that is

common with RS. TPVF stands for Truly Positive Volume Fraction and divides the

number of pixels in SUT that are common with RS i.e. the Truly Positive

() region by the number of pixels in RS. FPVF or the Falsely Positive

Volume Fraction divides the number of pixels that are labeled in SUT but not a part of

RS (the False Positive () region) by the number of pixels that are not part

of RS. U in Equation 6 refers to all the labeled and non-labeled pixels in the segmentation

i.e. where TN is the Truly Negative region or the region that is

not labeled in neither SUT nor RS (TN = U – SUT – RS) and FN is the Falsely Negative

region that contains pixels that according to RS should be labeled but have not been

labeled by SUT i.e. FN = RS – SUT.

Geometrical Measures

Geometrical measures take into account the shape of the segmentations under

comparison, capturing differences such as the size and position of the segmentation

boundaries. To do so the distance between different sets of pixels in the two

segmentations needs to be measured. This is done by constructing the distance map of

each segmentation which assigns each pixel of the segmentation its distance to the

segmentation boundary. We formally define the distance between two pixels using the

distance function d:S×SR (S is a set of pixels) that satisfies the following condition

[15]:

 (7)

For example the Euclidean distance (Equation 8) satisfies the above condition (7). We

have used the Euclidean distance in the implementation of the similarity measures.

 (8)

Average Distance to Boundary Difference (ADBD)

Carleton University, TR SCE-09-06

35

In the Average Distance to Boundary Difference (ADBD), we calculate the average

distance to the boundary for each of the reference and test segmentations (with the help

of the distance map of the segmentations) and take their difference (Equation 9).

 (9)

Hausdorff and Baddeley’s Distance (HD & BD)

Hausdorff’s Distance (HD) [15] finds the maximum distance between the reference

and test segmentations while Baddeley’s Distance (BD) [19] takes the average of the

difference in the distances to the reference and test segmentations over all the pixels in

the image (U) taking away the noise-sensitivity inherent in HD [16].

 (10)

 (11)

In HD, each pixel in each set (in our case study, each set of pixels here represents the

labeled region in a segmentation) is scanned to find the minimum distance between that

pixel and the boundary of the other set; for each set, the pixel that is farthest to the

boundary of the other set is chosen, and the distance between the two sets is the larger

distance of the two chosen pixels in each set. In Figure 8, is the length

of the arrow pointing from pixel p, is the length of the arrow pointing

from pixel q and the maximum of these two lengths is the Hausdorff distance between

sets A and B (i.e., the length of the arrow pointing from pixel p).

Carleton University, TR SCE-09-06

36

Figure 8 The Hausdorff distance is the distance from pixel p to the nearest common

pixel between sets A and B

The parameter z in BD determines the relative importance of large localization errors

i.e. a higher z penalizes large localization errors more than small localization errors. A

localization error is the error initiated from distance between the boundary pixels of SUT

and the RS. If z reaches infinity, BD tends towards HD [19].

Odet’s Measures (ODI, UDI, SODI, SUDI)

Odet defines a few measures that aim more specifically at finding over-segmentation

(the test segmentation has labeled pixels that are not labeled in the reference

segmentation i.e. the over-segmented pixels (OS in Equation 12)) and under-

segmentation (the test segmentation has not labeled pixels that are labeled in the

reference segmentation i.e. the under-segmented pixels (US in Equation 13)). ODI and

UDI respectively determine the extent of over-segmentation and under-segmentation by

calculating the average distance between the over-segmentation (under-segmentation)

boundary to the reference (test) segmentation boundary. Bd stands for boundary [20].

 (12)

 (13)

Carleton University, TR SCE-09-06

37

SODI and SUDI are scalable versions of ODI and UDI introducing dTH and n. dTH is

a normalization threshold that is set to the maximum perceived distance of the over-

segmented and under-segmented pixels to the corresponding boundaries and n is a scaling

factor similar to z in BD de-emphasizing smaller localization errors (when n>1) and

putting a lot of emphasis on smaller localization errors (when 0<n<1) [20].

 (14)

 (15)

Pratt’s Figure Of Merit (PFOM)

Pratt’s Figure Of Merit (PFOM) [21], defined in Equation 16, is another widely used

measure that has been empirically proven. PFOM only attains values greater than zero

and less than or equal to one leading to higher similarity between the segmentations when

its values reaches 1 where the two segmentations are considered identical with respect to

PFOM.

 (16)

This measure is sensitive to over-segmentation and localization problems, but it does

not take into account under-segmentation or shape errors. The insensitivity of PFOM to

the pattern of pixel errors is seen in Figure 9 (taken from [23]]). If A is the true

segmentation, B and C will result in the same value for PFOM as they both have two

corners of over-segmented pixels (the top and right corners). PFOM has not been

theoretically proven, but is widely used as an empirical measure [16].

Carleton University, TR SCE-09-06

38

Figure 9 PFOM determines B and C as equally similar to A [23]

 Peli and Malah’s Measures (PMME and PMMSE)

Peli and Malah define PMME (Peli and Malah Mean Error) and PMMSE (Peli and

Malah Squared Error) [22] that simply calculate the mean error (Equation 17) and mean

squared error (Equation 18) of the distance between the boundary pixels of the

segmentation under test and the boundary pixels of the reference segmentation. Unlike

PFOM, these two measures are not normalized ranging between zero and infinity, larger

values indicating more deviation between the segmentation under test and the true

segmentation. If two segmentations are identical then the value of PMME and PMMSE

will be zero.

 (17)

 (18)

Root Mean Square Surface Distance (RMMSD)

RMMSD (Root Mean Square Surface Distance) [17] defined in Equation 19 takes the

root mean square type average of the distances between the boundary (surface) pixels of

Carleton University, TR SCE-09-06

39

the segmentation under test and the reference segmentation over all the boundary pixels

of both segmentations.

 (19)

Principal Axis Difference

The principal axes of an object (in our case the labeled region of the segmentation) are

in the direction of the eigenvectors of the covariance matrix representing that object. The

covariance matrix (Equation 20) represents the covariance of the coordinates (Equation

21), in this case 3D Cartesian coordinates. The covariance matrix is a symmetrical matrix

because .

 (20)

 (21)

If we consider C as a transformation (a matrix that in the general case rotates and

shifts the vectors that are applied to it), the eigenvectors are the vectors that do not rotate

when the transformation is applied to them (22).

 (22)

In Equation 22, Vi (i>=1) are the eigenvectors of the covariance matrix and λi (i>=1) are

the associated eigenvalues of the eigenvectors. In the coordinate system represented by

the eigenvectors (principal axes), the covariance matrix, shown by C' in this coordinate

system will have the form of a diagonal matrix (Equation 23) (a matrix that only has

nonzero elements on the diagonal) where the eigenvalues of the covariance matrix are on

the diagonal of the matrix.

Carleton University, TR SCE-09-06

40

 (23)

As you see in the coordinate system represented by the principal axes, the covariances of

the coordinates are zero with respect to each other, which means that the object is

geometrically symmetrical around the principal axes (Figure 10).

 Figure 10 Object is geometrically symmetrical around the principal axes (x'1, x'2,

x'3)

A closer look at C' shows that the eigenvalues are in fact the variances of the coordinates

of the object points (segmentation pixels) in the principal coordinate system. We define

the Principal Axis Difference comparison measure as follows:

PAD is calculating the difference of the largest variance of the pixels along the

principal axes of the true segmentation and the segmentation under test. PAD solely

concentrates on the shape of the segmentations and thus if the shape of the segmentation

under test is the same as the true segmentation PAD would depict no difference between

the segmentations, this is while the labeling in the segmentation under test may be

located at a different location in the image from the expected location, making it an

incorrect segmentation.

Carleton University, TR SCE-09-06

41

Appendix B Tool Support Architecture

The structural components in the design of the automated oracle are shown in Figure 11.

The outputs (in our case the segmentations) from version Vi (where n is the total

number of versions of the Software Under Test (SUT) until its depicted as valid) of the

software under test (in our case the software under test is the segmentation algorithm) are

fed into the oracle and the oracle determines the correctness of the outputs.

Figure 11 Structural components of the automated oracle

To do so, the OutputComparator class is used to retrieve the outputs from the current

version of the SUT via the OutputRetriever interface. Each output Oji

() produced from

input Ij (the input in our case is the 3D volume CT-scan of the subject) is first compared

to the outputs that have been produced from the same input Ij using previous versions of

the software under test (version < Vi). The previously evaluated outputs have been

retrieved via the EvaluatedOutputRetriever interface which may be provided by an

external database used for storing the previously evaluated outputs. The output that is

Carleton University, TR SCE-09-06

42

being tested will be referred to as the Output Under Test (OUT). Table B.1 shows the

contents stored in the external database more vividly.

Table 12 Table of all outputs produced by the previous versions of the SUT (version

< Vi) and their corresponding evaluations

Input SUT V1 SUT V2 … SUT V(i-1)

I1 O11\Correct O12\Correct O1(i-1)\Correct

I2 O21\Incorrect O22\Incorrect O2(i-1)\Incorrect

I3 O31\Correct O32\Incorrect O3(i-1)\Correct

I4 O41\Incorrect O42\Incorrect O4(i-1)\Correct

… … … … …

The OutputComparator uses the similarity measures defined in Appendix A to compare

Oji (OUT) with the outputs: Oj(i-1), Oj(i-2), …, Oj2, Oj1 and for each comparison (for

example if the current version of the SUT is V10, one comparison could be between O2,10

(OUT) and the output produced by the 8th version of the SUT i.e. O2,8; the input

associated with both outputs is I2) will produce a tuple of the comparison measure

calculations (m1, m2, …, mz) where z is the number of defined comparison measures.

The ValidatedClassifier (a classifier that has been validated by Activity G) retrieves these

tuples which serve as the non-classified instances and classifies them producing tuples in

the form (m1, m2, …, mz, consistent\in-consistent) which now contains the classification.

The Consistency to Correctness Mapper class uses the information provided in Table B.1

and the logic explained in Table 2 to map the consistency classifications to correctness

classifications. Table B.2 shows an example on how this is done.

Carleton University, TR SCE-09-06

43

Table 13 An example showing how the Consistency to Correctness Mapper module

obtains the correctness of the OUT

Output that OUT
has been compared
to

Correctness
Classification of Previous
Outputs

Consistency
Classification

Correctness
Classification of
OUT

O9.6 Correct Consistent Correct

O9.5 Incorrect Inconsistent Unknown

O9.4 Correct Inconsistent Incorrect

O9.3 Correct Consistent Correct

O9.2 Incorrect Consistent Incorrect

O9,1 Correct Consistent Correct

In this example, OUT is the output produced from the 7th version (V7) of the

segmentation algorithm from input 9 (I9) i.e. output O9,7. The Consistency to Correctness

Mapper uses a policy to make the final decision as to whether OUT is correct or not. This

policy could be taking a majority vote (in this example, OUT has been determined to be

correct in 3 instances, while it has been deemed incorrect in 2 instances, so OUT is

evaluated to be correct) or just taking the evaluation made using the comparison with the

last version of the SUT. The assumption here is that the last version of the SUT is the

superior version of all the previous versions. We cannot automatically evaluate the

correctness if all the outputs from the previous versions of the SUT are evaluated to be

incorrect and the classifier has classified OUT to be inconsistent with all of them (the

unknown case in Table 4.1) or in the case where there is an equal number of corrects and

in-corrects (this is only an issue when using the majority vote policy). The evaluated

outputs (outputs classified as correct\in-correct by the ValidatedClassifier) are retrieved

Carleton University, TR SCE-09-06

44

by the SUTEvaluator class that uses some defined criteria to determine whether we have

enough correct outputs produced by the current version of the software under test to

evaluate this version as a valid version and thus the final version of the software under

test. The SUTEvaluator class has to provide an interface for the test monitor (the module

that runs the test cases) to retrieve the oracle's evaluation on the current SUT. This is

provided through the SUTEvaluatorInterface.

Appendix C Cardiac Left Ventricle Segmentation Examples

We show here some figures showing the left heart ventricle segmentations. Each

figure is a slice of the CT-Scan of a different patient’s heart where the left ventricle is

segmented by labeling the representative pixels with green using some version of the

segmentation algorithm. Figure 12 shows a correct segmentation while Figures 13, 14

and 15 show incorrect segmentations. Figure 13 shows a typical over-segmentation

scenario (the most common problem in this case study) where the left atrium is also

labeled. In Figure 14 the segmentation algorithm has missed the left ventricle and labeled

the right ventricle instead. Under-segmentation is seen in Figure 15 where the left heart

ventricle is not completely labeled. These are some examples of incorrect segmentations

in this case study. More detailed discussion on the manual evaluation of each

segmentation is out of the context of this research work and requires background in the

heart anatomy. Also note that these figures only outline the segmented region in one slice

of the heart. In order to evaluate the correctness of a segmentation, all the CT-Scan slices

of the heart have to be looked at by an expert where an overall assessment is then given

as to whether the segmentation is correct or not. Minor discrepancies in a few slices may

be ignored by the expert. As explained earlier the tolerance level for accepting a

segmentation as correct may be different for each expert.

Carleton University, TR SCE-09-06

45

Figure 12 Correct Left Heart Ventricle Segmentation

Figure 13 Incorrect Segmentation (over-segmentation to the left atrium)

Carleton University, TR SCE-09-06

46

Figure 14 Incorrect Segmentation (Segmenting an incorrect region i.e. the right

ventricle)

Figure 15 Incorrect Segmentation (under-segmentation)

Appendix D Experimentation Tools

Three main tools have been used in this case study:

Carleton University, TR SCE-09-06

47

1) Left Heart Ventricle Segmentation tool (s): This tool was created by Siemens

Corporate Research experts. Each version of this tool implements a version of the image

segmentation algorithm. To obtain the segmentations for each version of the image

segmentation algorithm the tool had to be run for all of the test cases.

2) MATLAB: We used MATLAB to implement all the comparison measures feeding the

segmentations obtained from the left heart ventricle segmentation tool to the comparison

measures. In order to calculate the distance maps of the segmentations that are required

for the implementation of the geometrical measures, we have used the MATLAB library

function bwdist with the Euclidean metric option. This function uses the implementation

in [27] to implement the distance transform. To find the boundary of the segmentations,

we simply use the gradient function as the gradient at any pixel of a non-boundary pixel

is zero (all neighbor pixels are labeled as 1) while it is nonzero in some direction for

boundary pixels (a zero-labeled neighbor pixel exists in some direction).

3) WEKA: The Waikato Environment for Knowledge Analysis tool was used for

obtaining the entire machine learning results. The raw training data was obtained from

the output of the MATLAB implemented comparison measures. This is a Java-based tool

and is widely used in the research community. It contains the implementation of most of

the various data mining techniques and provides an easy to use environment for

experimentation.

 � 5/13/09 9:36 PM

Comment: Could we reference here?

