
A UML/MARTE Model Analysis Method for Detection

of Data Races in Concurrent Systems

Marwa Shousha1, Lionel Briand
2
, and Yvan Labiche1

1 Carleton University, Software Quality

Engineering Lab, 1125 Colonel By Drive

Ottawa, ON K1S 5B6, Canada

{mshousha, labiche}@sce.carleton.ca

2 Simula Research Laboratory &

University of Oslo, P.O. Box 134, Lysaker,

Norway

briand@simula.no

Abstract. The earlier concurrency problems are identified, the less costly they

are to fix. As larger, more complex concurrent systems are developed, early

detection of problems is made increasingly difficult. Meant to be used in the

context of Model Driven Development, we have developed a general approach,

based on the analysis of design models expressed in the Unified Modeling

Language (UML) that uses specifically designed genetic algorithms to detect

concurrency problems. All relevant concurrency information is extracted from

systems’ UML models that comply with the UML Modeling and Analysis of

Real-Time and Embedded Systems profile. Our approach was previously shown

to work for both deadlocks and starvation. The current paper addresses data

race detection, further illustrating how our approach can be tailored to other

concurrency issues. Our main motivations are (1) to devise practical solutions

that are applicable in the context of UML design of concurrent systems without

requiring additional modeling and (2) to achieve scalable automation. Results

on a case study inspired from the Therac-25 radiation machine show that our

approach is effective in the detection of data races.

Keywords: MDD, data races, model analysis, concurrent systems, UML,

MARTE, genetic algorithms.

1 Introduction

Concurrency problems should be identified early in the design process. This is

made increasingly difficult as larger and more complex concurrent systems are being

developed. With the recent trend towards Model Driven Development (MDD) [15],

the choice of using Unified Modeling Language (UML) models and their extensions

as a source of concurrency information at the design level is natural and practical.

However, the analysis of concurrency properties should not require additional

modeling or a high learning curve on the part of the designers, or should at least

minimize it. When the UML notation is not enough to completely model a system for

a given purpose, the notation is extended via profiles. Of particular interest is the

standardization of the Modeling and Analysis of Real-Time and Embedded Systems

(MARTE) profile [19] that addresses domain specific aspects of real-time, concurrent

system modeling. Our aim is to develop a general, automated approach that can be

2

tailored to several types of concurrency errors (such as deadlocks, starvation, data

races and data flow problems), and that can be easily integrated into a Model Driven

Architecture (MDA) approach, the UML-based MDD standard by the OMG [15]. Our

approach relies on a genetic algorithm (GA) that is tailored to different types of

concurrency errors.

In previous works, we have tailored a GA for the detection of deadlocks [23] and

starvation [13]. This paper is a continuation of these works, where we adapt the

approach to the detection of data races. It differs from its predecessors in three areas:

1. A different UML profile is used. Instead of the SPT profile in [23], which was the

standard at the time, we use the MARTE profile; 2. We have different GA

components. a.) A different chromosome representation (our previous structure of

genes [23, 13] contained lock information, which is not needed in the current paper).

Since the chromosomes are different, the genetic operators of mutation and crossover

are also different (though the principles remain the same, the realizations are

different). b.) We use a different fitness function. We used [23, 13] fitness functions

specifically designed to detect deadlocks and starvation, respectively. Here, we

provide a fitness function geared towards data races; 3. We improve performance

comparison. In both previous works, we measured performance against random

search only. Here, we also compare our approach with a hill climbing search.

Performance of each type of error naturally entails different case studies, each geared

towards the respective problem being examined.

We next provide an overview about data races, highlighting the information needed

as input to our approach, and discuss the principles of genetic algorithms. Sections ‎3

and ‎4 provide details of our tailored GA, and tool support. Section ‎5 describes a case

study inspired from the Therac-25 radiation machine, along with results comparing

random, hill climbing and GA searches. Related work is presented in Section ‎6 and

we conclude in Section ‎7.

2 Background

We next present some background information. In particular, we describe data

races and aspects of relevance in the MARTE profile.

2.1 Data Races

Concurrency introduces the need for communication between executing threads

[7]. Threads may communicate via a shared memory location during various access

times for a defined execution time. These access and execution times may be specified

as ranges, probability distributions, or definite values, although ranges are probably

more common due to uncertainty at design time.

The term race condition has been generally used to describe situations where

unsynchronized concurrent accesses result in unpredictable program states and

behavior [1]. Data races, a specific type of race conditions, are quite common in

concurrent systems [1]. These types of faults are due to unsynchronized access to a

same memory location. Threads may access a shared location as either reader threads

or writer threads. Problems then arise due to the order of execution of events [1].

3

While many times unsynchronized access to shared resources is due to errors on the

part of the designer, it may also be on purpose to satisfy performance constraints. In

general, three conditions must be met before a data race occurs: 1. Two or more

threads access the same memory location concurrently, 2. At least one thread accesses

the memory location for writing, 3. Thread access to the memory location is

unsynchronized. When these three conditions are met, a writer and reader thread may

execute concurrently within the shared memory, resulting in inconsistent data.

To proceed with our approach, we must first map the data race concepts, in

particular those appearing in italics in this section, to UML and MARTE concepts, as

they form the inputs of the GA.

2.2 MARTE Profile to Data Race Mapping

In UML, active objects have their own thread of control, and can be regarded as

concurrent threads [12]. Only extensions of the UML standard, such as the MARTE

profile [19], provide mechanisms to model detailed information pertaining to

concurrency. The MARTE profile is a replacement of the SPT profile [24]. MARTE

is geared towards both the real-time and embedded system domains. The profile is

roughly divided into three major sub-divisions: 1. MARTE foundation (containing the

basis for real-time and embedded system modeling. It defines time concepts and use

of concurrent resources), 2. MARTE design model (specializes the foundation,

allowing modeling of various features of real-time and embedded systems) 3.

MARTE analysis model (allows the annotation of models for system analysis

purposes). Much like SPT, the MARTE profile is modular in structure, allowing users

to choose the appropriate subsets needed for their applications. We next describe the

aspects of the profile that are relevant to our work.

The Software Resource Modeling (SRM) sub-profile presents mechanisms for

designing multitasking applications. SRM is subdivided into four packages:

SW_ResourceCore (which contains all the basic resource concepts),

SW_Concurrency (which contains concurrent execution concepts), SW_Interaction

(which deals with communication and synchronization resources) and SW_Brokering

(which deals with resource management). In the SW_Concurrency package,

concurrently executing entities competing for resources are depicted with the

<<SwConcurrentResource>> stereotype. As aforementioned, concurrency is also

depicted in standard UML, but <<SwConcurrentResource>> enhances concurrent

execution modeling due to its associated attributes, such as priorityElements, which is

used to determine the priority of the associated thread. In the SW_Interaction

package, shared resources are identified as <<SharedDataComResource>>.

The Generic Quantitative Analysis Modeling (GQAM) sub-profile defines

stereotype <<saStep>> (that extends stereotype <<gaStep>>) which is used when

decisions about the allocation of system resources is made. Its tags include priority

(the priority of the action on the host processor), interOccTime (interval between

multiple initiations of the action), and execTime (the execution time of the action).

Execution times can be specified as maximum and minimum time ranges. In Time

Modeling, timed constraints can be specified on the occurrence of an event, on the

duration of an execution, or on the temporal distance between two events. These are

stereotyped with <<TimedConstraint>>.

4

The High-Level Application Modeling (HLAM) sub-profile introduces

<<RtService>>, a specialized service with specific real-time constraints. It contains

several attributes. A particular attribute, concPolicy, can be used to determine the

type of concurrency policy used for the real-time service. Defined types include

reader and writer.

This overview of MARTE illustrates that the input to our approach (the concepts

presented in italics in Section ‎2.1) can be retrieved from a UML/MARTE design

model. The mappings between those concepts and the profile are summarized in

Table 1. It is then clear that the information used by our approach can be

automatically retrieved from UML/MARTE models, in particular from sequence

diagrams where those stereotypes and tags are used.
Table 1 Concept to MARTE Mapping

Concept MARTE Stereotype/Tag MARTE sub-profile

Thread <<SwConcurrentResource>> SRM::SW_Concurrency

Unprotected resource <<SharedDataComResource>> SRM::SW_Interaction

Reader <<RtService>>/concPolicy = reader HLAM

Writer <<RtService>>/concPolicy = writer HLAM

Thread exec. time in res. <<gaStep>>/execTime GQAM::

GQAM_Workload

Thread access time of

res.

<<gaStep>>/interOccTime|
<<gaStep>>/execTime

GQAM::

GQAM_Workload

Time constraints <<TimedConstraint>> Time

2.3 Genetic Algorithms

GAs are a means of solving optimization problems. They are based on concepts

adopted from genetic and evolutionary theories [10]. A GA first randomly creates an

initial population of solutions, called chromosomes, then selects a number of these

solutions and performs various genetic operators (mutation and crossover) to create

new solutions. The measure of goodness of each solution, called fitness, is compared

with other solutions, with only the fittest solutions retained. The process of selection,

crossover and mutation, fitness comparison and replacement continues until the

stopping criterion, such as a maximum number of generations [10], is reached.

3 Tailored Genetic Algorithm

To use a GA to detect the presence of data races, we must first tailor it by defining

the chromosome representation, mutation and crossover operators as well as the

fitness function, which we discuss next.

3.1 Chromosome Representation

A chromosome is composed of genes and models a solution to the optimization

problem. The values to be optimized during data race detection are the access times of

threads to a resource, such that the number of threads accessing a resource

simultaneously is maximized. These access times are the values that will be altered by

5

the GA to try to reach a data race situation. The access times must reflect schedulable

scenarios. In other words, we need to ensure that all execution sequences represented

by chromosomes are schedulable. This entails meeting system specifications of

periods, minimum arrival times, and so on. Thus, we need to encode threads

(<<SwConcurrentResource>>), resources (<<SharedDataComResource>>), read and

write operations (<<RtService>>/ concPolicy = read, <<RtService>>/concPolicy

= write) and access times (<<gaStep>> / interOccTime or <<gaStep>> /

execTime), which are available in the input model (Table 1).

Since, by definition, a data race involves multiple accesses to the same shared

memory location, we consider only one resource at a time. Hence, the gene does not

need to contain encoding of the resource, and can be depicted as a 2-tuple (T, a),

where T is a thread and a is T’s access time of the resource. A tuple represents the

execution of a thread when accessing the resource. Tuples are defined for a user

specified time interval during which the designer wants to study the system’s

behavior. A heuristic for determining an appropriate time interval is given in Section

‎3.4. A special value of -1 is used to depict access times that lie outside this interval:

(T, -1) represents a thread access that does not occur. It is important to note that

information about the type of access (i.e. reader or writer) is not encoded in the gene.

Rather, it is considered as a property of the thread itself, along with the range of valid

access times.

Because a chromosome models a solution to the optimization problem, it needs to

be large enough to model all schedulable scenarios during the time interval. Hence,

the chromosome size (its number of genes) is equal to the total number of times all

threads attempt to access the resource in the given time interval. A thread can appear

more than once in the chromosome if it accesses the resource multiple times.

Three constraints must be met for the formation of valid chromosomes and to

simplify the crossover operation discussed below. 1.) All genes within the

chromosome are ordered according to increasing thread identifiers, then increasing

access times. 2.) Thread access times of the resource must fall within the specified

time interval or are set to -1. 3.) Consecutive genes for the same thread must have

access time differences equal to at least the minimum and at most the maximum

access time range of the associated thread, if start and end times are defined as ranges.

Consider, for example, the set of three threads accessing a resource named MEOS:

T1 (access range [1 325] time units, repeats every 399 time units), T2 (access range

[325 398], repeats 400) and T3 (access range [327 392], repeats 400). In a time

interval of [0 350] time units, the chromosome length would be three since each of the

threads can access the resource at most once during this time interval. The following

is then a valid chromosome: (T1, 324) (T2, 340) (T3, -1) where T1 accesses the

resource at time unit 324, T2’s access is at time 340 and T3 does not access the

resource before time 350.

Figure 1. a.) Crossover example b.) Mutation example

6

3.2 Crossover Operator

Crossover is the means by which desirable traits are passed from parent

chromosomes to their offspring [10]. We use a one-point, sexual crossover operator:

two parents are randomly split at the same location into two parts which are alternated

to produce two children. For example in Figure 1a, the two parents on the left produce

the offspring on the right. If, after crossover, any two consecutive genes of the same

thread no longer meet their access time requirements (constraint 3 is violated), the

second gene’s access time is randomly changed such that constraint 3 is met. This is

repeated until all occurrences of this situation satisfy constraint 3.

3.3 Mutation Operator

Mutation introduces new genetic information, hence further exploring the search

space, while aiding the GA in avoiding getting caught in local optima [10]. Mutation

proceeds as follows: each gene in the chromosome is mutated based on a mutation

probability and the resulting chromosome is evaluated for its new fitness. Our

mutation operator mutates a gene by altering its access time. The rationale is to move

access times along the specified time interval, with the aim of finding the optimal

times at which these access times will be more likely to result in data races. When a

gene is chosen for mutation, a new timing value is randomly chosen from the range of

possible access range values. If the value chosen lies outside the time interval, the

timing information is set to -1 to satisfy constraint 2. Similar to the crossover

operator, if, after mutation, two consecutive genes no longer meet their access time

requirements, the affected genes are altered such that the requirements are met. For

the example of Figure 1b with access times [1 325], [325 398] and [327 392] in a time

interval of [0 350], assume Parent 1’s second gene is chosen for mutation. A new

value (say, 327) is chosen from its access time range [325 398], as shown in Figure

1b.

3.4 Fitness Function

The fitness function determines the merit of a chromosome. Recall that data races

occur when at least two threads share a resource and at least one is a writer thread.

For the fitness function to be effective, the time interval over which it is defined must

be adequate: it should be long enough for data races to occur, but not too long to not

hinder the performance of the search algorithm. This varies from system to system

and depends on the amount of time resources available. We propose a heuristic for

determining the time interval based on the longest thread execution time in the

resource (lt) and the maximum resource access time of all threads (lr). Our heuristic is

to guarantee, using these two variables, that all threads can completely access the

resource at least twice. Therefore, the time interval equals: [0 (lt+lr)*2]. This is a

minimum interval, as having threads access the resource just once may not be enough

to uncover a data race. Designers can opt for a larger interval.

We define the following fitness function:

7

 
0#

1#|)(|
min




 

i

iii

endTimetostartTimei
WifendTime

WifWNW
cf

 (1)

StartTime and endTime are the starting and ending times of the time interval. Wi is

the time unit i during which a writer thread accesses the shared resource. N(Wi) is the

time unit i of the nearest executing thread to Wi within the resource. Wi and N(Wi) are

in the range [startTime endTime]. #Wi is the total number of writer threads that access

the resource during the time unit i. N, Wi and #Wi are obtained after scheduling.

The fitness function of equation (1) is a minimizing function; hence, it gives lower

values to fitter individuals. Essentially, the fitness function minimizes the difference

of resource access times between writer threads and any other thread (reader or

writer). The smaller the difference, the closer the overlapping execution of a writer

thread with another thread. A fitness value of zero indicates the presence of a data

race, whereby the writer thread is executing within the resource at the same time unit

as another thread, hence a data race. This is one of the properties of the function that

guides the search towards situations where data races are possible and increasingly

likely. The fitness function also ensures that scenarios where data races are possible

(two threads executing and at least one is a writer) are always rewarded over

situations where no data races are possible (when zero or one thread is executing,

regardless of its type). Hence, it is never the case that c1 is a chromosome that results

in a data race and c2 is a chromosome that does not yield a data race, but f(c1)>f(c2).

Let us consider the scheduling of the mutated chromosome in Figure 1b, where T1

is a writer thread and all other threads are readers. The time interval is assumed to be

[0 350]. Using equation (1) for Figure 2, we examine the time units for resource R1:

At time units 321, 322, and 323: #Wi = 0, min = 350

At time unit 324: #Wi = 1, Wi = 324, N(Wi)= 327, absolute difference = 3, min = 3

At time unit 325, 326, and 327: #Wi = 0, min = 350

then, f(c) = 3.

4 Tool and GA Parameters

We have built a prototype tool,

Concurrency Fault Detector (CFD), for

detection of data races using our approach.

CFD is an automated system that identifies concurrency errors in any concurrent

application modeled with the UML/MARTE notation. Currently, it can help identify

deadlock, starvation [23, 13] and data race errors. Work is in progress for the

detection of other types of concurrency errors. CFD involves a sequence of steps.

Users first input three categories of information: (1) UML/MARTE sequence

diagrams for the analyzed system, (2) the execution time interval during which the

system is to be analyzed, and (3) the type of concurrency error targeted: data race,

deadlock or starvation. In the latter case, the target thread and target lock are also

inputted. CFD then extracts the required information from the inputted UML/MARTE

model (mainly from its sequence diagrams) and feeds it to the appropriate GA.

CFD is decomposed into two modular portions: a scheduler and a genetic

algorithm. This modularity ensures that modifications can seamlessly be adapted to

meet a wider set of requirements. Modifications to the scheduling strategy would only

Figure 2. Fitness function example

8

require altering the scheduler. Hence, the scheduler does not affect the applicability of

our approach as it is merely a black box that aides in the calculation of the fitness

function. It emulates single processor execution as it tracks all thread executions.

In the GA for data races, if a data race is detected, CFD outputs the sequence

resulting in the data race as well as the time unit at which the data race occurs and a

depiction of the threads executing within the resource at that time. If no such

sequence is found, CFD terminates after 1000 generations, outputting the execution

sequence with the lowest fitness value (since it is a minimization function). This does

not guarantee that no data races exist. However, one can still feel more confident that

such a case is unlikely (i.e., rare in the search space).

Since collecting input data is easy to automate from a UML case tool, and all the

other phases are automated, CFD is meant to be used interactively: the user is

expected to fix the design of the system when CFD terminates with a detected

deadlock, data race, or starvation. This is the main reason why we developed a

strategy that only reports one concurrency fault scenario at a time, i.e., per run of

CFD, allowing designers to fix the system’s design before running the modified

design again on CFD.

Though various parameters of the GA must be specified, we can fortunately rely on

a substantial literature reporting empirical results and making recommendations.

Parameters include the type of GA used, population size, mutation and crossover rates

and selection operator. We use a steady state GA, with a replacement percentage of

100%. The population size we apply is 200. This is higher than the size suggested in

[10], but works more effectively for larger search spaces. The selection operator is

rank selector, whereby chromosomes with higher fitness are more likely to be chosen

than ones with lower fitness [18]. Mutation and crossover rates are l75.1 (where 

denotes the population size and l is the length of the chromosome) and 0.8,

respectively. Both are based on the findings in [16] and [10], respectively.

All parameter values are based on findings reported in the literature, except

population size, which was fine tuned after some experimentation. These parameter

values have worked exceedingly well in all our case studies when considering both

the detection rate and execution time to find a concurrency error. The same parameter

values can be used for other system designs, though further empirical investigation is

required to ensure the generality of these parameter values in our application context.

In the worst case, if one wants to be on the safe side and ensure fully optimal results,

the parameters can be fine tuned once for each new system design: when the system

design being checked is first analyzed. For further design modifications of the same

system, the parameters need not be fine tuned.

We have used CFD on the case study presented next to assess our approach.

5 Case Study: Therac-25 (Therac)

The case study we use was inspired from the Therac-25 machine. The infamous

Therac-25 was a computer controlled radiation therapy machine that was responsible

for overdosing six patients. Investigations into the causes behind the overdoses

revealed faults due to race conditions, whereby the high power electronic beam was

activated (instead of the low power one), without the beam spreader plate rotated into

9

place [4]. The original design of the Therac-25 system—or simply Therac—has been

altered, whereby access times of threads to resources have been increased to provide a

larger search space, thus reflecting more realistic situations.

5.1 Therac Extended with MARTE

Figure 3 shows the UML/MARTE sequence diagram of the shared resources in

Therac. The treatment monitor task, Treat, controls the phases of radiation treatment.

It uses the Tphase control variable to determine which phase of the treatment is to be

executed next. In the first phase, a check is performed to see whether the required

radiation levels have been inputted. This check is performed on a variable named data

entry complete flag (DECF), which is set by the keyboard handler task, where the

operator enters radiation level information. DECF is set whenever the cursor is moved

to the command line. Information about the radiation level specified by the operator is

encoded into a two byte variable named MEOS (Mode/Energy offset). The higher

byte of MEOS is used by Treat to set various parameters. The lower byte is used by

Hand, which rotates the turntable according to the inputted energy and mode.

In the figure, two resources, MEOS and DECF, are shared as indicated by

<<SharedDataComResource>>. The former is accessed by the three available threads

designated with the <<SwConcurrentResource>> stereotype. The latter resource is

only accessed by the Treat and KeyboardHandler threads. Treat periodically reads

DECF between [324 397] and repeating at 400 unit intervals. KeyboardHandler is a

writer thread on the same resource. The same thread also accesses MEOS as a writer

thread. However, the write access to MEOS occurs before the write access to DECF;

there is at least a one second interval. The Hand thread accesses MEOS periodically

every 400 milliseconds.

<<SwConcurrentResource>>

Treat

<<SharedDataComResource>>

Data Entry Complete Flag

<<SharedDataComResource>>

MEOS

Check()

<<RtService>>

{concPolicy = reader}

Read()

Set()

[$N]

<<SwConcurrentResource>>

Keyboard Handler

Set()

<<SwConcurrentResource>>

Hand

Read()

<<RtService>>

{concPolicy = reader}

<<RtService>>

{concPolicy = writer}

<<gaStep>>

{interOccTime =

(‘periodic’, 400, ‘ms’),

execTime (324, ‘ms’,

min), (397, ‘ms’, max)}

<<gaStep>>

{execTime = (1, ‘ms’)}

<<gaStep>>

{execTime = (1, ‘ms’)}

<<gaStep>>

{execTime = (0, ‘ms’, min),

(324, ‘ms’, max),

interOccTime= (‘periodic’,

399, ‘ms’)}

@t0[i]

@t1[i]

<<TimedConstaint>>

t1[i] – t0[i] > (0, ms)

<<gaStep>>

{execTime = (326,’ms’,

min), (391, ‘ms’,

max),interOccTime=

(‘periodic’,400,’ms’)}

<<gaStep>>

{ execTime = (1, ‘ms’)}

<<gaStep>>

{ execTime = (5, ‘ms’)}

<<gaStep>>

{execTime = (3,

‘ms’)}

Figure 3. Therac sequence diagram

10

5.2 Analysis of Search Space

To detect a data race, we need to search the set of possible (i.e. ones that adhere to

the input requirements) events received by shared resources (hence referred to as

sequences) for at least one that yields a data race. This set of possible sequences is

called the search space. The search space differs for the two resources. For MEOS, it

is based on the access time intervals of the Treat, Hand and KeyboardHandler threads

as well as the timing interval. For a timing interval of 802 time units (based on our

heuristic, Section ‎3.4), the search space is approximately 9.8 * 10
12

. Of these, 4.1 *

10
8
 yield a data race. For DECF, the search space is 1.7 * 10

9
, with 360,750 resulting

in a data race.

To further enhance our case study, we altered the access times of threads in both

resources to create two more different search spaces where detecting data races is

significantly more difficult. For the altered MEOS resource, or simply MEOS2, with a

timing interval of 2500 time units, the search space is approximately 4.7 * 10
9
, with

4510 yielding a data race. For the altered DECF, or simply DECF2, with a timing

interval of 800, the search space is 1.0 * 10
7
, with 99 resulting in a data race. We can

then better assess how the performance of search techniques is affected by the

difficulty of the search.

A search space is further characterized by its complexity. Points in the search space

that result in data races are called global optima, whereas local optima are ones where

all surrounding points have worse fitness, but the point itself is not an instance of a

data race. The more local optima in the search space, the more complex it is. In both

MEOS resources, the search space is complex, with many local optima. For DECF

and DECF2, the search space has a few local optima, thus simplifying the search.

5.3 Case Study Design

We begin by briefly describing the techniques used for data race detection, then

relating how the case study was set up to ensure that all techniques are comparable.

Description

We use three different techniques to detect data races: random generation, hill

climbing and our GA approach. Both random and hill climbing are simpler techniques

that are often suggested as benchmarks to justify the need for a GA search [25].

In random generation, a point in the search space (representing a sequence of

resource accesses by various threads) is randomly chosen and checked for a data race.

Running a random search involves running a pre-determined, usually large number of

points in the search space.

For hill climbing, one random point is generated, then neighboring points are

examined, with the one better than the current point replacing it. This continues until

a point is reached that has no better neighbor. For Therac, a neighbor is one that

differs by just one access value from the current point. For example, consider three

threads, T1, T2 and T3, accessing a shared resource during the access time intervals

[1 2], [3 5] and [6 7], respectively. If the current point is (T1, 2) (T2, 3) (T3, 6), one

valid neighbor would be: (T1, 1) (T2, 3) (T3, 6) which differs in only one access

value from the current point.

11

Fairness of Comparisons

Because each of the three techniques proceeds differently, we analyzed the number

of sequences generated by the GA and generated the same number for other

techniques to ensure a fair comparison. As GAs are a heuristic optimization

technique, variance occurs in the results they produce. To account for the variability

in results, we ran our case study 50 times on an Intel Core 2 2.0 GHz processor.

Random generation and hill climbing were also run 50 times, with each run

generating the same number of sequences as the number created and evaluated by a

GA run. In the original design, with a timing interval of 802, a GA run generates on

average 5184 sequences for MEOS and 4640 for DECF. In the altered design, the GA

generates 6786 sequences on average for MEOS2 in a timing interval of 2500, and it

generates 11681 sequences on average for DECF2 in a timing interval of 800. In all

cases, for random, hill climbing and the GA, when a data race is detected, execution

stops and a new run of the 50 is executed.

5.4 Results

Results of the detection rate of data races are presented in Table 2. All three

techniques are capable of detecting data races in both MEOS and DECF, but with

very different probabilities. Hill climbing does not fare very well in the former case. It

appears to be oftentimes caught in local optima: 96% of the time, it is unable to detect

a data race. This empirically suggests that the search space for MEOS is complex. We

observe that our GA does better: 34% detection rate for MEOS. This confirms that

where the search space is large and complex, GAs are known to yield much better

results than the two other techniques [17]. Complexity is not an issue in random

search because information about the landscape of the search space is not used during

the search. However, random search performs poorly in MEOS due to the small

percentage of sequences leading to a data race: only 0.004% of the search space yields

a data race.

Table 2. Comparison of Performance

 MEOS DECF MEOS2 DECF2

 Search Space Size 9.8 * 1012 1.7 * 109 4.7 * 109 1.0 * 107

% of Data Race Sequences 0.004 0.02 9.5 * 10-5 9.5 * 10-4

Random #Detections/#Runs 3/50 10/50 0/50 2/50

Total Runtime (min:sec:ms) 01:07::281 00:44:324 04:29:819 01:52:818

Detection rate 6% 20% 0% 4%

GA #Detections/#Runs 17/50 49/50 4/50 43/50

Total Runtime (min:sec:ms) 01:34:255 01:01:80 05:40:749 02:46:760

Detection rate 34% 98% 8% 86%

Hill Climbing # Detections /#Runs 2/50 50/50 1/50 50/50

Total Runtime (min:sec:ms) 00:53:980 0:12:862 04:38:062 00:14:087

Detection rate 4% 100% 2% 100%

On the other hand, in the case of the simpler DECF search space, hill climbing

does exceedingly well, detecting data races in all runs. Here too, random search

performs relatively well, owing to the higher percentage of sequences leading to a

12

data race (0.02%). A GA is therefore of no benefit in this case, although it too

performs well.

For MEOS2 and DECF2, the search spaces are of similar complexity as MEOS and

DECF, respectively, but with smaller sizes and lower percentage of sequences leading

to a data race. For MEOS2, the search space is large and complex, with 9.5 * 10
-5

% of

sequences leading to a data race. Both random and hill climbing perform very poorly.

The GA, while performing worse than for MEOS, still manages to detect data races

four times as much as hill climbing. In DECF2, random performs worse because of

the lower percentage of data race sequences (9.5 * 10
-4

%). The GA too performs

worse than for DECF. Hill climbing remains unaffected by the size of the search

space and changes in data race probabilities, probably due to the simplicity of the

search space (few local optima).

In all MEOS cases, the GA far outperforms both random and hill climbing

techniques. This confirms that it fares much better in large, complex search spaces,

and is therefore a better option in many practical cases where such characteristics are

likely to be present. As expected, the execution time of the GA is longer than the

other techniques, yet in complex search spaces (MEOS) the difference with hill

climbing is of the order of 20-30%. For both cases of DECF, where the search space

is smaller and less complex, the GA detection rate is somewhat comparable to hill

climbing, which is designed for such search spaces.

In large, complex search spaces, where few sequences yield data races, the GA

yields significantly higher detection probabilities than other techniques. Because these

probabilities for a run can still remain low, the GA must be run as many times as

possible, given time constraints, to obtain the highest possible overall probability of

detecting data races. Using the most complex case (MEOS2) as an example, with an

8% probability of data race detection, 50 GA runs results in a probability of less than

2% (0.92
50

) not to detect a data race in at least one run, with a bit more than five

minutes of execution time. Such execution times can of course be brought down

significantly with faster hardware and parallel computing. Even when in practice the

complexity of the search space is not known and it is not clear what percentage of this

space results in a data race, using the GA will in the worst case yield comparable

detection rates to hill climbing.

6 Related Work

In the context of detecting data races in concurrent systems, a number of works

exist. Some [8, 9, 11, 14], do so using the code of the system under test. Kahlon et al.

[14] begin by statically detecting the presence of shared variables in the code, before

proceeding to output warnings about the presence of data races. Chugh et al. [20] also

use a form of static analysis. In their work, they use program code to develop a data

flow analysis for the system under test. They combine this with an independent race

detection engine to return a version of the analysis that is suitable for concurrent

threads. Both approaches necessitate putting off the detection of data races until the

system under test is implemented. This has the disadvantage that any data races that

are found due to design faults are very costly to fix. Furthermore, data races due to

dynamically allocated shared resources might go undetected. Other works, such as

13

Savage et al., tackle this point. They also use system code in their Eraser tool, but do

so dynamically (at run time). In so doing, they ensure that dynamically allocated

shared variables involved in data races are also detected [21]. There are limitations to

their technique, however, the most important of which is that they are limited to

examining paths that are triggered by their test cases. If the test cases chosen are not

sufficient to visit a particular path where data races occur, the data race will remain

undetected.

Model checking has been used to detect data races in concurrent systems, such as

in the Java Path Finder [22]. The aim here is the same as our aim: to detect problems

arising from system models. However, what differs is the context: our approach is

meant to be used in the context of MDD, specifically MDA. As such, we rely on

UML extended with profiles, rather than temporal logic specifications.

Of particular interest is the work by Lei, Wang and Li [2]. Here, the authors use a

model-based approach for the detection of data races. Data races are identified by

checking the state transitions of shared resources at runtime. The corresponding test

scenarios leading to the race are then identified using UML activity diagrams

extended with data operation tags. This extension is necessary as UML activity

diagrams provide no means to model data sharing. Hence, the authors extend them

with stereotypes to depict data sharing. The extended UML diagrams can then serve

as an oracle for verifying execution traces. They also serve to ensure that both code

and design are consistent. Lei, Wang and Li present results for two case studies. In the

online store system, they discover five instances of data races. In the elevator system,

they discover none. The authors note that they use random testing for comparison, but

do not report results for it. They also do not provide execution times for their

approach [2].

With the current trend towards MDD [15], models are regarded as the essence of

system development. While their development may be time consuming, they can be

used to partially automate other activities. The approach we propose is meant to be

used in the context of the OMG’s MDA, hence our reliance on the UML standard and

MARTE profile, thereby reusing existing design models instead of developing

specific models (as in the work by Lei et al.) or waiting until the system is

implemented to execute its code. As all information required by our approach can be

incorporated in the UML model of a system, this eliminates the need for additional

modeling activities (e.g., using temporal logic). Use of the standard MARTE

extension also eliminates the need for haphazard additions (e.g., extensions for

modeling data sharing by Lei et al.). Furthermore, standard profiles tend to be

implemented within commercial tools, once the profile has been approved. While the

sequence diagrams required by CFD may not be as detailed as required when the

system is initially designed, adding information to these pre-existing diagrams for

testing purposes is probably easier than working with a different model, such as in the

case of Java Path Finder. In essence, our approach can be thought of as a scalable,

guided random search to be used in the context of MDA.

In the context of MDD, a number of works utilize MARTE’s predecessor: the SPT

profile. Such works, (e.g., [3]), mostly focus on performance analysis rather than the

analysis of model properties. Other works such as [6] and [5] use the MARTE profile.

However, in [6], the profile is used to create an approach for real-time embedded

14

system modeling along with transformations to execute those models. In [5], the

authors aim at probing the capabilities of MARTE by applying it to a case study.

7 Conclusions

Concurrency abounds in many software systems, where threads typically access

many shared resources. If not handled properly, such accesses can lead to

concurrency errors, which may lead to serious system failures. The earlier any such

problem is detected during the design process, the better. In this paper, we describe an

approach, based on a tailored genetic algorithm (GA) search, for detecting one type of

concurrency error: data races. The approach is based on the analysis of design

representations in UML completed with the MARTE profile. Since our goal is to

provide an automated approach that can be applied in the context of model-driven,

UML-based development, the choice of UML/MARTE was natural as it is the de

facto standard for the object-oriented modeling of concurrent, real-time applications.

This is also practical as it reduces the need for complex tooling and training, while

reusing models already required for UML-based development. In other words, instead

of adopting more formal representations (e.g., temporal logic), we reuse a standard

UML profile but rely on carefully designed, search-based heuristics for the detection

of data races. Our findings suggest that the GA has much higher chances than simpler

alternatives (e.g., hill climbing) to detect data races when the search space is large and

complex and few sequences lead to a data race, a situation we expect to be

increasingly common in the design of industrial concurrent systems. Results further

show that even in our most complex case the probability of not detecting a data race is

less than 2% using a bit more than five minutes of execution time on a standard PC.

Our current work focuses on providing a general framework that can be easily

adapted to different types of concurrency problems, e.g., deadlocks and starvation.

8 References

[1] Chen, L. "The Challenge of Race Conditions in Parallel Programming". Sun

Developer Network, Sun Microsystems, (2006),

http://developers.sun.com/solaris/articles/raceconditions.html.

[2] Lei, B., Wang, L., Li, X., "UML Activity Diagram Based Testing of Java

Concurrent Programs for Data Race and Inconsistency", ICST, 200-209, (2008).

[3] Petriu,‎D.‎C.:‎“Performance‎analysis‎with‎the‎SPT‎profile”.‎Model-Driven Eng.

Dist. Embed. Sys., 205-224. (2005).

[4] Leveson, N., Safeware: System Safety and Computers, Addison-Wesley, (1995).

[5] Demathieu,‎S.,‎Thomas,‎F.,‎Andre,‎C.‎Gerard,‎S.‎and‎Terrier,‎F.:‎“First‎expe-

riments‎using‎the‎UML‎profile‎for‎MARTE”.‎IEEE ISORC. 50-57. (2008).

[6] Mradiha, C., Tanguy,‎Y.,‎Jouvray,‎C.,‎Terrier,‎F.‎and‎Gerard,‎S.:‎“An‎execution‎

framework for MARTE-based‎models”.‎IEEE ICECCS. 222-227 (2008).

[7] Downey A.B., The Little Book of Semaphores, Green Tea Press, 2
nd

 Ed. (2005).

http://www.sce.carleton.ca/faculty/chinneck/po.html

15

[8] Flanagan, C. and Freund, S. N. "Type-Based Race Detection for Java", ACM

PLDI, 219–232, (2000).

[9] Flanagan, C., Rustan, K., Leino, M., Lillibridge M., Nelson, G., Saxe, J. B., and

Stata, R. "Extended Static Checker for Java", ACM PLDI. 234–245, (2002).

[10] Haupt, R. L. and Haupt, S. E.: Practical genetic algorithms. Wiley, (1998).

[11] Abadi, M., Flanagan, C., and Freund, S. N. "Types for Safe Locking: Static Race

Detection for Java", ACM TOPLAS, Vol. 28, No.2, 207–255, (2006).

[12] OMG: Unified Modeling Language (UML). Version 2.1.2. (2007).

[13] Shousha,‎M.,‎Briand,‎L.C.,‎Labiche,‎Y.,‎“A‎UML/MARTE‎Model‎Analysis‎Me-

thodology‎for‎Detection‎of‎Starvation‎and‎Deadlocks‎in‎Concurrent‎Systems,”‎

Carleton University, Technical Report SCE-09-01, squall.sce.carleton.ca, 2009.

[14] Kahlon, V., Yang, Y., Sankaranarayanan, S. and Gupta, A. "Fast and Accurate

Static Data-Race Detection for Concurrent Programs", CAV, 226-239, (2007).

[15] Kleppe A., Warmer J. and Bast W., MDA Explained - The Model Driven

Architecture: Practice and Promise, Addison-Wesley, 2003.

[16] Back,‎Thomas:‎“Self-adaptation‎in‎genetic‎algorithms”.‎Proc. European Conf.

Artif. Life, 263-271 (1992).

[17] Mahfoud,‎S.‎W.‎and‎Goldberg,‎D.‎E.:‎“Parallel‎recombinative‎simulated‎

annealing:‎a‎genetic‎algorithm”. Parallel Comp. Vol 21, No. 1, 1-28. (1995).

[18] Koza, John R.: Genetic programming: on the programming of computers by

means of natural selection. MIT Press, Cambridge (1992).

[19] OMG: UML Profile for Modeling and Analysis of Real-time and Embedded

Systems. 1.0 Beta (2008), www.omg.org/cgi-bin/apps/doc?ptc/08-06-08.pdf

[20] Chugh, R., Voung, J. W., Jhala, R., and Lerner, S. "Dataflow Analysis for

Concurrent Programs Using Datarace Detection", ACM PLDI, 316-326, (2008).

[21] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P. and Anderson, T. "Eraser: A

Dynamic Data Race Detector for Multithreaded Programs ", ACM Trans. Comp.

Sys., Vol. 15, No. 4, 391–411, (1997).

[22] Brat G., Havelund, K., Park, S., and Visser, W. "Java Pathfinder Second

Generation of a Java Model Checker", Proc. Workshop Adv. Verif., (2000).

[23] Shousha,‎M.,‎Briand,‎L.,‎and‎Labiche,‎Y.:‎“A‎UML/SPT‎model analysis

methodology for concurrent systems based on genetic algorithms‖. Proc.

ACM/IEEE MODELS, 475-489, (2008).

[24] OMG: UML Profile for Schedulability, Performance and Time Specification.

Adopted Specification (2005), http://www.omg.org/docs/formal/05-01-02.pdf

[25] Ali, S., Briand, L. C., Hemmati, H. and Panesar-Walawege, R. K.: ―A

Systematic Review of the Application and Empirical Investigation of Search-

based Test-Case Generation‖, Simula Research Laboratory, Technical Report

Simula.SE.293 (2009).

squall.sce.carleton.ca
http://www.omg.org/docs/formal/05-01-02.pdf

