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Abstract
Changes and improvements to software can generate large benefits to users and to society 

as a whole, but can also be costly. The aggregated effort to change software normally 

constitutes a significant part of total lifecycle development costs. This thesis investigates 

such costs through the analysis of change effort, i.e., the effort spent by developers to 

perform software changes. The first goal was to identify factors that significantly and 

consistently affect change effort. With a better understanding of these factors, development 

technologies and practices could be improved to more effectively manipulate those factors. 

Candidate factors pertained to the people involved in making changes, to the practices they 

used, to the software code they changed, and to the tasks they performed. The second goal 

was to devise a method for software development organizations to assess trends in 

productivity as their software evolves. Under certain assumptions, trends in productivity 

can be captured by analyzing trends in change effort. With better methods to assess 

productivity trends, software development organizations can identify needs for 

improvements, and evaluate improvement initiatives. 

The thesis focuses on software development organized around the implementation of 

change requests from stakeholders of the software. A systematic literature review 

established a framework for measuring changes, and summarized existing evidence on 

factors affecting change effort. Propositions generated from the review were then 

investigated in a case study in two commercial software development organizations. To 

identify relationships between properties of changes and the expended change effort, data 

on changes from version control systems and change trackers was quantitatively analyzed. 

Semi-structured developer interviews about recently completed changes refined and 

complemented the quantitative analysis.  

 One contribution of this thesis is to advance designs of change-based studies. The 

systematic review of such studies enabled a case study design that separated confirmatory 

and explorative analysis. In the confirmatory part, propositions were generated from the 

summary of factors affecting change effort in earlier studies. Testing existing evidence in 

new studies is useful to accumulate and generalize knowledge between contexts. The 

exploratory analyses discovered additional relationships in the data sets, potentially useful 

as a basis for new propositions in subsequent studies. The results support earlier findings 

that factors captured from change management data can explain only some of the 



 
 

 
 

variability in change effort. To find complementary evidence, it was therefore helpful to 

further investigate the changes that corresponded to large model residuals.  

One central result is that dispersion of code changes over source components had a 

consistent effect on change effort, beyond that explained by simple size effects. The 

qualitative analysis suggested that the effort spent on comprehending dispersed code was 

an important underlying cost driver. Comprehension typically occurred along the execution 

paths of the changed user scenarios, rather than within architectural units such as files and 

classes. These findings strengthen and refine earlier results on the effects of dispersion 

from laboratory experiments. The evidence points to design practices and tools that 

recognize developers’ need to comprehend functional crosscuts of the software. 

A second central result confirmed that the number of updates to the change request was 

positively correlated with change effort. The effect on change effort was particularly strong 

when frequent updates reflected difficulties in clarifying impacts on other parts of the 

systems. The developers faced such difficulties in cases where they had insufficient 

knowledge about the affected business rules and the domain experts had insufficient 

knowledge about the software. To better envision impacts of changes, software 

organizations should appreciate and cultivate knowledge in this boundary between the 

software and the business domain. 

Furthermore, this thesis shows how analysis of change effort can capture trends in 

productivity. The method consists of four indicators based on a common, conceptual 

definition of productivity trend, and a set of procedures to evaluate the validity of the 

indicators in a given assessment. Consistent with the subjective experiences of the 

developers in two software organizations, the assessment indicated significant change in 

productivity between two time periods. In a third organization, the productivity assessment 

enabled more insight into the effects of a new development practice. The proposed method 

may represent a step towards more practical and trustworthy measurement practices that 

accelerate the adoption of measurement-based improvement frameworks in the software 

development industry.  

In conclusion, the analysis of individual software changes proved effective both to 

identify factors that affect development costs, and to assess trends in productivity during 

software evolution. The results contribute towards more cost-effective and better managed 

software evolution. 
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Summary

1 Introduction 
1.1 Motivation and objectives 
The statement Our civilization runs on software [3] is no longer controversial. More and 

improved software is a key driver behind advances in public and private services, 

communication, transportation, production systems and entertainment. To remain 

competitive, organizations involved in software development must continuously make wise 

decisions about software qualities to improve. For example, end users require better 

functionality, usability and dependability, while IT operations require the software is 

adapted to the currently supported technological platform. Consequently, the quality goal 

ease of change is important for development organizations, and for any stakeholder 

concerned with lifecycle costs. The potential for cost savings is huge if software could be 

changed more easily. Conservatively estimated, 50 billion USD worth of development 

effort is expended annually to make changes to operational software1.  

The importance of software change was recognized in early software engineering 

research. Lehman [4] expressed the necessity of change in what he termed the first law of 

software evolution: 

A program that is used and that as an implementation of its specification reflects some 

other reality, undergoes continual change or becomes progressively less useful. The 

change or decay process continues until it is judged more cost effective to replace the 

system with a recreated version.

                                                           
1 Estimate based on 5 million software programmers globally, with an average annual cost of 20 000USD, 

and 50% of total programming effort in maintenance and evolution. 
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Software changes differ with respect to factors such as their purpose, priority, size and 

complexity. Swanson proposed a first-cut categorization of changes into corrective, 

adaptive and perfective changes [1]. These dimensions of software maintenance can also 

be considered causes of the continuous need for change: changes in the technological 

environment trigger adaptive changes, errors committed by the development organization 

trigger corrective changes, while new requirements from stakeholders trigger perfective 

changes.  

One goal of this research was to identify factors that significantly and consistently affect 

change effort, i.e., the effort spent by developers to perform software changes. Candidate 

factors are associated with people, practices, product, and the performed changes. Some of 

these factors may be manipulated through process or product improvements, leading to 

more cost-effective software evolution. The second goal was to devise a method to 

measure trends in change effort in ongoing software projects. Under certain assumptions, 

such measurement can be seen as equivalent to measuring trends in productivity during 

software evolution. With practical and trustworthy indicators of productivity trends, 

organizations that maintain and evolve software can identify needs for improvements, and 

evaluate the effects of improvement initiatives. 

Today, trends in the IT industry indicate a unification of initial development and 

evolution. First, the omnipresence of software implies that even new projects must 

somehow cope with a legacy code base [5]. Second, software is increasingly developed in 

the shape of services that fit into already operational, loosely coupled architectures [6]. 

Third, popular agile development processes recommend that new software is deployed 

early and incrementally [7]. These trends make the topic for this thesis relevant to the 

complete software lifecycle. 

1.2 Contributions
A systematic literature review and case studies in three industrial software organizations 

were conducted. The contributions from these studies can be described from three 

perspectives. For the software engineering discipline the main contributions are: 

� Analysis of field data to refine empirical evidence on the effect of dispersion. 

Developers’ effort to comprehend and modify source code that was dispersed over 

many components and component types was higher than what could be explained by 

simple size effects. The comprehension activity typically occurred along the paths of 

the changed user scenarios, rather than within architectural units. These results point to 
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tools and design practices that recognize the importance of comprehending functional 

crosscuts of software, particularly when different languages and technologies are 

involved. 

� Refined evidence on the effect of volatile change requirements. Consistent empirical 

evidence suggests that measures of change requests volatility are useful predictors in 

effort estimation models. The analysis discovered a particularly strong effect of volatile 

requirements on change effort when the development group had insufficient knowledge 

about affected business rules and – simultaneously - domain experts had insufficient 

knowledge about the relevant parts of the software. Rather than unreflectively 

embracing evolving requirements, the results suggest that software organizations 

should cultivate knowledge in the boundary between software and the business domain, 

aiming at more complete specifications early in the change process. Other kinds of 

modifications to requirements, such as refinements to GUI design, can have inherent 

advantages and do not necessarily have severe effects on development effort.

� A method to assess trends in productivity during software evolution using quantitative 

data extracted from change management systems. Application of the method in three 

different software organizations showed that it was feasible to detect major trends in 

productivity, even with a limited number of data points. The method includes 

procedures to evaluate the validity of the indicators in a given context. Analyses can be 

almost fully automated, an important criterion for such methods to be adopted by the 

software industry. 

From the perspective of methodology in empirical software engineering, the thesis 

contributes with: 

� A framework for measuring and analyzing changes, developed as part of a systematic 

review [8]. The framework consists of a (i) conceptual model that clarifies the concepts 

involved in analysis of changes, (ii) a comprehensive set of candidate measures for 

such analysis, and (iii) a summary of results and contributions from change-based 

studies. A common conceptual basis and systematically collected evidence from 

existing change-based studies contribute to more effective accumulation of knowledge 

from such studies. This is important for the longer term goal of developing scientific 

theories in the field of software evolution. 

� A methodology to combine quantitative and qualitative analysis of changes, by 

systematic investigation of changes that correspond to large model residuals. The 
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methodology improved the empirical investigation with respect to causal analysis and 

construct validity issues, and provided more complete and refined evidence on the 

phenomenon under study. Because these are general concerns in empirical software 

engineering studies, the methodology could be useful with other units of analysis and 

in other contexts. 

In addition, the individual organizations that participated in this research benefited 

from: 

� Proposals for improvements to judgement-based estimation practices. The analysis 

pointed to specific factors that were not sufficiently accounted for by current practices. 

� Proposals on possible process improvements to reduce the effort expended to perform 

software changes. These proposals included tool acquisitions and refactoring targets 

within the software. 

1.3 Thesis Structure 
The thesis is structured as follows:

Summary. This part explains the research conducted for this thesis and introduces the 

included papers. Section 2 describes the thesis’ goals, motivation and focus. Section 3 

presents the research method, including an overview of the study procedures. Section 4 

summarizes the results, while Section 5 discusses the implications for practice and 

research. Section 6 concludes.  

Papers. The rest of the thesis consists of four papers submitted or accepted for 

publication in international journals and at one peer-reviewed conference. An overview of 

these papers is given on page ii, in the introductory part of thesis. 
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2 Research Goals
In this thesis, the main variable of interest is change effort. This variable reflects the 

quality goal ease of change - the ease with which developers can change software. 

Concepts such as maintainability, evolvability and changeability are also related to this 

quality goal, but are often assumed to reflect the internal properties of the software. For 

example, the Maintainability index is a one-valued indicator of maintainability calculated 

from measures of such internal properties [9]. In contrast, this thesis assesses the ease of 

change as reflected by the externally observable human effort spent on performing 

changes. This effort is affected by the internal properties of the software artifacts, but also 

by properties of the software organization and its people, of the supporting practices and 

technologies, and of the actual change tasks. 

2.1 Goal 1: Identify Factors that Affect Change Effort 
The first goal was to identify significant and consistent factors that affect change effort.

The motivation is that the aggregated effort to perform software changes constitutes a 

substantial part of lifecycle development costs. A better understanding of such costs has 

interested researchers since the infancy of the software engineering discipline. Three 

decades ago, the initial laws of software evolution were proposed [4, 10], in essence stating 

(i) that change is inevitable and (ii) that evolving software tends to become increasingly 

complex and difficult to change. Better practices during initial development and evolution 

are assumed to counteract such difficulties. However, to devise effective practices, it is 

useful to understand the underlying factors and mechanisms that make change easier or 

more difficult. 

2.1.1 A Holistic View on the Ease of Change 
Existing research related to Goal 1 has investigated different classes of factors. One line of 

research focused solely on internal properties of the software. For example, the effect of 

structural properties of object-oriented code on quality properties of software received 

considerable attention among researchers over the last two decades [11]. Knowing how 

structural properties affect the ease of change is useful because it can lead to improved 

design or coding strategies. A method to assess the ease of change using fine-grained 

measures of structural properties was proposed by this author in a study that led to the 

eventual focus of this thesis [12]. 
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The most optimistic promises of this research are moderated by the inevitable 

interactions between internal software properties and the properties of the software’s 

environment [13]. Controlled experiments have shown that the advantages of certain 

design principles depend on the level of experience and skills of the developers exposed to 

the design in subsequent change tasks [14]. Furthermore, a result from a large 

multidisciplinary investigation on the symptoms, causes and remedies for code decay 

(another term closely related to ease of change) was that the history of code changes was 

more indicative of problems than measures of structural properties of the code [15]. 

Mockus and Weiss argued that properties of the changes themselves are the most 

fundamental and immediate concern in a software project [16], implying that assessments 

of ease of change can be imprecise without considering actual change tasks. In this thesis, 

a holistic view assumes that change effort can be affected by properties of the involved 

people, the practices and technologies they use, the software code they change, and the 

tasks they perform to reach the development goals. 

2.1.2 Change-Based Studies – Key Concepts and Motivation 
Studies on factors that affect software development and evolution have been performed at 

different levels of granularity. Wohlin and Andrews proposed a methodology to investigate 

factors that pertain to the full lifecycle of a project, such as project management principles, 

personnel turnover, geographic distribution, and tools [17]. Lehman’s laws of software 

evolution were developed by studying data on releases during the lifecycle of one specific 

software system [10]. At a very fine level of granularity are a series of maintenance studies 

by Von Mayrhauser [18-21], and research summarized by Detienne [22]. The goal of this 

research was to understand the cognitive processes of people who perform software 

development activities, under the premise that code comprehension is an essential activity.  

Figure 1 illustrates some important concepts in the thesis. Software evolution is seen as 

the aggregation of individual changes. A change task is a cohesive and self-contained unit 

of work that is triggered by a change request. A change task involves detailed design, 

coding, unit testing and integration. Change effort, as measured in this research, is the total 

development time expended for these activities. A change task is manifested in a change

set, which is the tangible set of changes to one or more of the source components. The term 

change conveniently combines these facets when their distinction is not important. A 

change (or the associated change request, change task or change set) can have attributes, 

henceforth referred to as change attributes. Examples of such change attributes are the size 
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and type of change. Empirical case studies using changes as the main unit of analysis are 

referred to as change-based studies. 

 
Figure 1. Software evolution as the composition of changes 

The thesis focuses on factors that vary across change tasks, and that primarily capture 

coding-centric activities. Nevertheless, a broad set of factors was investigated, including 

factors associated with developer experience, collaboration in the development group, size 

and complexity of changes, and the structural properties of the affected software. 

Change-based analysis is a practically feasible, analytically powerful and industrially 

relevant approach to the analysis of development activities during software evolution. 

Practical feasibility comes from the widespread use of change management systems, in the 

form of version control systems and change trackers. Data for a change-based analysis can 

be retrieved from the repositories of such tools, sometimes with little or no measurement 

overhead. Analytic power comes from the cohesiveness and fine granularity of changes. 

Although there will inevitably be interrelationships between changes, each change can be 

considered a small project going through the phases of analysis, design, coding, test and 

integration. Even in moderately sized software development projects, enough changes are 

normally completed to be able to perform powerful statistical analysis. Graves and Mockus 

argued that change-based analysis makes it possible to discover factors that would be 

hidden at more aggregated levels [23]. Industry relevance comes from the direct 

relationship between effort for individual change tasks and total costs of software 

evolution. If improvement in development practices and tools meant that changes were 

completed with less effort, then the total cost of software evolution would be reduced. 
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2.1.3 Related Research and Research Gaps
Several researchers have investigated relationships between change attributes and change 

effort. For example, Niessink [24, 25] and Jørgensen [26, 27] analyzed field data to 

evaluate the accuracy of models to predict change effort from change attributes. In the 

code decay project, the researchers used a small set of preselected change attributes to 

understand the factors that affected change effort, including the effect of evolution itself 

[15, 28]. 

Existing studies related to Goal 1 have to a limited degree been able to base the research 

designs on earlier results, for example by proposing hypotheses on the basis of existing 

empirical evidence. This situation has resulted in scattered evidence that is difficult to 

conceptualize and aggregate. To more effectively collect evidence from existing and future 

change-based studies, a common conceptual basis is needed. This premise motivated a 

systematic review (reported in Paper 1) that (i) builds an ontology for change-based 

studies, (ii) generalizes measures used in change-based studies into a set of conceptual 

change attributes, and (iii) summarizes contributions and specific evidence from individual 

change-based studies.  

The systematic review could not satisfactorily clarify whether the identified factors are 

stable across study contexts, nor shed much light on important contextual factors. 

Moreover, because most of the studies were based on correlation analysis of field data, 

only tentative propositions on causality could be claimed.  

Another open issue was whether it is feasible to construct context-specific change effort 

models that are sufficiently accurate to be used for effort estimation purposes. The 

accuracy of change effort models was also important for the proposed method to assess 

productivity trends, described in Section 2.3. The studies by Niessink and Jørgensen 

indicated that the prediction accuracy in quantitative models of change effort could be 

expected to be moderate or poor by normal standards, such as the standards proposed by 

Conte et al [29].  

To investigate these open issues, a change-based field study with the following 

properties was planned:  

� Evidence-driven analysis investigating the effect on change effort of a small set of 

factors, selected on the basis of existing empirical evidence. 

� Data-driven analysis investigating the effect of a larger set of candidate factors, also 

assessing the potential accuracy for change effort models.  
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� Qualitative analysis based on series of developer interviews to complement, refine and 

explain the quantitative results. 

� Investigation in two organizations to contrast and compare context factors. 

2.2 Goal 2: Improve Methods to Assess Trends in Productivity during Software 
Evolution

The second goal of the thesis was to devise better methods to assess trends in productivity 

in ongoing software projects. Such methods would enable software development 

organizations to evaluate the need for improvement initiatives, and to evaluate the effects 

of such initiatives. For example, the three projects that contributed data for evaluating the 

proposed method had the following motivations: 

� One project wanted to assess the effect on productivity of using two alternative 

practices for estimating and planning change tasks.  

� A second project had planned to restructure parts of the source code and wanted to 

assess whether productivity had changed after this effort. 

� A third project had been in a phase of intensive change to the software and wanted to 

make an informed decision on whether actions were needed to ease future change. 

Productivity is generally defined as the proportion of output production to input effort [30]. 

Defining meaningful measures of output production is the essence of, and the core 

difficulty with, assessing productivity for software development processes. Proposed 

measures of output production in the context of initial development include lines of code, 

function points [31] and specification weight metrics [32]. Productivity indicators based on 

such measures target effort prediction for new projects, as well as post-hoc project 

evaluation. 

Existing research has attempted to adapt basic measures of output production to 

software evolution, for example by quantifying the extent of changes to existing 

components [24, 33, 34]. However, no generally accepted approach to assessing 

productivity during evolution has yet been developed [35]. It is perhaps a more realistic 

ambition to define productivity indicators within clearly defined scopes. In this thesis, the 

scope for the productivity assessment is limited to cases of software evolution where the 

software organization considers it meaningful to compare change tasks and change effort 

between two contexts, such as two time intervals. Furthermore, rather than evaluating 

indicators for general validity, it is more realistic to define validation procedures to be used 

in conjunction with the productivity indicators.  
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The proposed method assumes that the completed change task is a fundamental unit of 

output production. A simple indicator of productivity trend simply compares the average 

change effort between groups of change tasks. A limitation of this indicator is that it does 

not account for possible systematic differences in the properties of the compared change 

tasks. Three of the proposed indicators address this issue by: 

� Analysis of convariance (ANCOVA) to investigate the effect of time, or some other 

factor, on change effort, inspired by Graves and Mockus’ approach to investigating 

code decay [23]. 

� Comparison of actual change effort with predictions obtained from change effort 

models, inspired by Kitchenham’s and Mendes’ method to assess productivity of 

completed projects [36]. 

� Repeated benchmarking of identical change tasks, inspired by the definition of 

changeability decay by Arisholm and Sjøberg [37].  

The proposed productivity indicators are based on a common set of definitions of what 

constitutes change in productivity during software evolution. These definitions make it 

simpler to define, interpret, validate and compare new or modified indicators targeting the 

same scope. 
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3 Research Method 
3.1 Overview of Methodology 
The main research methods employed for this thesis are case study research and systematic 

literature review. A case study is an empirical investigation of a phenomenon in a real-life 

context, particularly suited when the phenomenon and the context are difficult to separate 

[38]. Because there are typically more variables than data points in a case study, 

propositions and generalizations rely on multiple sources of evidence, and the use of 

theory. Single cases or multiple cases can be investigated, using any mix of data sources 

and of qualitative and quantitative evidence. The ambition for Goal 1 was to investigate 

factors that affect change effort in the context of real software development. The case 

study method was chosen because we wanted to consider the full complexity of factors that 

could affect change effort in such a context. 

Case studies are recommended to be designed to confirm, refute, or in some way 

modify theories. A theory makes it possible to understand fundamental and long-lived 

mechanisms in a domain. Results from a single case study become useful in other context 

through an improved theory. Therefore, theory is a mechanism for generalizing from a case 

study. Unfortunately, the theoretic foundation for many topics in software engineering is 

weak, including the topics investigated in this thesis.  

Systematic reviews use a rigorous methodology to ensure a fair evaluation and 

interpretation of all research relevant to a phenomenon [8]. The design and propositions for 

the case study were generated on the basis of a systematic review of change-based studies. 

The results aimed to refine the existing knowledge on the phenomenon of ease of change. 

Hence, basing the case study on a systematic review addresses some of the design 

challenges caused by the lack of relevant scientific theories. 

In summary, the thesis (i) attempts to identify causal links between change attributes 

and change effort and (ii) proposes and evaluates methods for measuring productivity 

trends during software evolution using a methodology that: 

� Bases the propositions and generalization on a systematic review of similar studies. 

� Investigates multiple cases (two and three for Goal 1 and 2, respectively). 

� Uses software change repositories and developer interviews as sources of evidence. 

� Analyzes data quantitatively and qualitatively.  
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3.2 Study Procedures 
An overview of the study procedures is shown in Figure 2. The systematic review 

established a conceptual basis for change-based studies, and summarized evidence relevant 

to Goal 1. Data from change management systems (CMS) and data from monthly 

developer interviews in two commercial software development organizations were used for 

the analysis. The joint results contribute to the existing empirical evidence on factors that 

affect the change effort.  

  

Figure 2. Study procedures  

The proposed productivity measures for Goal 2 were utilized in ongoing projects in 

three commercial software development organizations. In two of the projects, the specific 

goal was to assess the trend in productivity between two time periods. These assessments 

reused the quantitative models constructed for Goal 1, but required equivalent data to be 

collected for the contrast period. The method developed for Goal 2 consists of unified 

definitions of the proposed productivity indicators, a set of evaluation procedures, and 

demonstrations of the feasibility of using the method in ongoing software projects. 
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change-based studies 
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Goal 1: Identification of cost 
factors 

Paper 2 

Correlation 
analysis – 
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and exploratory
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developer
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development practice  
Paper 4  
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interview data collected 
from two projects 

Goal 2: Additional CMS 
data collected from two 
projects 

Goal 1 result:  
Evidence of factors that 
affect the ease of 
change

Goal 2 result:  
Methodology for 
assessing productivity 
during software evolution

Goal 2: Evaluation of trends in 
productivity
Paper 3  

Goal 2: CMS data 
collected from third project 
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3.3 Case Studies and Data Collection
The collaboration with two commercial software development organizations, MT and 

RCN, was initiated by the author. The organizations conformed to the following criteria for 

participation: 

� Use of object-oriented development technology. 

� Development process organized around change requests, and frequent releases. 

� Planned development for at least 12 months ahead. 

� Access to data in change management systems, and developers’ agreement to 

participate in interviews. 

Apart from these criteria, the companies were recruited by convenience. A local 

database of 83 organizations that had collaborated with our research group in the past was 

consulted to identify candidate organizations. Eight organizations were contacted, but only 

MT and RCN conformed to the above requirements. The organizations were motivated by 

prospects for improving their development practices on the basis of empirical evaluation. 

In addition, they considered it beneficial for their company profile to participate in research 

activities. It was crucial for the planned analysis that developers (i) recorded change effort 

expended for completing the change tasks, and that they (ii) tracked the relationships 

between source code changes and the associated change request. To strengthen the 

organizations’ commitment to data collection, the collaboration agreement included 

compensation for the required data collection effort. In total, the companies were 

compensated for 59 work hours. 

 The analysis for Goal 2 used additional data about change tasks from a third 

organization, FK, which already collaborated with our research group. 

The investigated organizations developed bespoke software on behalf of agencies in the 

public sector. Scrum principles [39] were followed for project management, and changes 

were for the most part completed under time-and-material contracts. Staffing was stable 

throughout the period, and most of the developers were classified as senior developers by 

their employer. The systems consisted of between 200 000 and 500 000 lines of code and 

had been in production for 2 to 5 years when data collection started. All organizations used 

Java-based technology. RCN used a stack of technologies that included modeling tools, 

code generators, a workflow engine, and a Java Enterprise Edition application server. MT 

used some C++ code for hardware-near functionality, while FK used a standard Java 

platform. 
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Data was collected from three sources. The quantitative analysis for both goals used 

data from change management systems, i.e. change trackers and version control systems. 

Developer interviews were conducted on a monthly basis, and focused on recently 

completed change tasks. Field experiments of half-day durations were organized on three 

occasions. The first of these experiments prepared for the main study by investigating the 

reliability of developers’ classifications of changes [40]. In the two last sessions, the 

developers benchmarked a set of change tasks as part of data collection for Goal 2. 

 

Table 1. Summary of data collection for the thesis 

 RCN MT FK 
Duration of data collection (months) 24  18  3  
Number of changes analyzed quantitatively 273 228 34 
Total effort for changes analyzed quantitatively (hours) 2590 1349 321 
Number of changes discussed in interviews 120 65 n.a. 
Field experiment sessions 3*3 hours 3*3 hours n.a. 
Total direct cost for data collection (USD)  4500 6000 0 
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4  Summary of Results
This section describes the key results, organized per goal and research paper. The two first 

papers addressed research questions related to Goal 1, while the third and fourth paper 

addressed research questions related to Goal 2. 

4.1 Goal 1 – Identify factors that affect change effort 

4.1.1 Paper 1 
The research question for the systematic review summarized in Paper 1 was: 

Which overall measurement goals have been set in change-based studies, and which 

attributes were measured to achieve these goals? 

The research question was answered by establishing a framework for measurement and 

analysis in change-based studies. Thirty-four reported studies conformed to the inclusion 

criteria for the review and the framework was applied to summarize the results and 

contributions. Figure 3 shows a model of the information that was extracted and 

synthesized. The right part of Figure 3 describes the established framework. It consists of a 

hierarchy of study goals, a conceptual model with interrelated concepts important in 

change-based studies, and a related set of changes attributes. The framework was 

synthesized from the extracted data about studies and measures, described in the left part 

of Figure 3. Paper 1 describes in detail the methodology that was used to extract and 

synthesize this information. 

As illustrated in Figure 3, an operationalization of a change attribute in a particular 

study corresponds to a change measure, typically used as response variables and 

explanatory variables in statistical analyses. Quantitative evidence from the studies was 

collected by extracting results from such statistical analyses.  
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Figure 3. Model of information extracted and synthesized in the literature review 

 

Figure 4. The resulting framework for change-based studies 

Figure 4 shows an excerpt of the actual framework, as it appears in Paper 1. The review 

identified three broad categories of change-based studies, each with three or four sub-

categories. The categorization schema is intended for use to search evidence on a particular 

topic, for example in the planning of new change-based studies, but it is not claimed to be 

definite or absolute. 

In total, 41 change attributes were identified from the reviewed studies. Table 2 

describes five change attributes with consistent effect on the ease of change (as in most 

cases captured by change effort) in the reviewed studies. These attributes were selected for 
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the evidence-driven analysis of factors conjectured to affect change effort (described in 

Paper 2).  

Table 2. Summary of change attributes that have affected the ease of change 

Change attribute Question asked Examples of measures 

Maintenance type What was the purpose of 

the change? 

-Fix/adapt/enhance classified by developers or by 

heuristic search in change data 

Change size and change 

dispersion 

How much code was 

added, deleted or changed? 

-Number of code lines in change set 

-Number of changed files in change set 

Change request volatility To what extent were 

change requests changed? 

-Number of updates in change tracker 

-Number of words in change tracker 

Change experience How experienced was the 

developer in changing the 

system? 

-Average number of previous commits by 

developers who committed in the change set, 

system wide or in components in the change set 

Structural complexity of 

changed components 

How many occurrences are 

there of a given 

programming construct? 

-Size of affected files or classes 

-Measures of control-flow complexity, coupling, 

cohesion, inheritance of affected classes 

4.1.2 Paper 2 
The research question for Paper 2 was: 

From the perspective of developers handling incoming change requests during software 

evolution, which factors affect the effort required to complete the change tasks? 

The analysis consisted of (i) an evidence-driven part that investigated the effect of five 

pre-selected factors (see Table 2) in models of change effort, (ii) a data-driven part that 

used an extended set of 31 candidate variables to identify the variable subsets that 

optimized the cross-correlated model fit, and (iii) a qualitative part that used developer 

interviews to elicit complementary factors that affected change effort. To help in 

identifying the qualitative material that complemented the quantitative analysis, the 

analysis of developer interviews focused on changes that corresponded to large residuals in 

the quantitative models. Table 3a and Table 3b summarize the results from the quantitative 

and qualitative analysis, respectively. In the first column of these tables, factors from the 

evidence-driven, data-driven and qualitative analysis are prefixed with ed, dd and qu, 

respectively.  
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Table 3a. Summary of quantitative results from Paper 2 

Factor

  

Proposition Measured by Result Ref. to further results 

ed_1 Change size and 

dispersion drive effort  

Number of components in the 

change set 

Supported Explained by qu_2 

Consistent with dd_1 

ed_2 Change request 

volatility drives effort 

Number of updates in change 

tracker prior to coding phase 

Supported Explained by qu_1 

ed_3 Change experience 

reduces effort 

Average number of previous 

commits by developers who 

committed changes  

Weak 

supported 

in MT 

Refined by qu_3 

ed_4 Maintenance type 

affects effort  

Corrective vs. non-corrective 

changes, using developers 

classification and text search  

Supported 

in RCN 

Refined by qu_4 

ed_5 Structural complexity 

of changed components 

drives effort 

Average number of lines of 

code in components in the 

change set 

Not 

supported  

Refined by qu_5 

dd_1 Language 

heterogeneity of 

change drives effort 

Number of unique file types in 

the change set 

Supported 

in RCN 

Explained by qu_2 

dd_2 Structural complexity 

of the change drives 

effort 

Number of control-flow 

statements in the change set 

Supported 

in MT 

- 

Table 3b Summary of qualitative results from Paper 2 

Factor Relationships with change effort 

qu_1 Clarifications of functional side effects generate effort throughout the change cycle 

qu_2 Comprehending dispersed code is more difficult than comprehending localized code. 

Comprehension occurred mainly along execution paths of changed user scenarios. 

qu_3 Experience had strong effect on effort in the few cases of unfamiliarity with relevant code 

qu_4 Fixing errors by omission (caused by incomplete requirements) required more effort than did 

errors by commission and enhancive changes 

qu_5 Comprehension occurred along user scenarios and execution paths, rather than within 

architectural units  

qu_6 Frameworks or technologies sometimes had poor support for making the change, resulting in 

extra effort for workarounds. Poor debug support sometimes drove effort. 

qu_7 Development and modification of reusable mechanisms were examples of deep changes, 

which required extensive effort  
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The number of components modified during the change task consistently contributed to 

change effort in the quantitative models (ed_1). Dispersion of change over several 

technologies added to the effect of dispersion over components (dd_1). Comprehension 

effort for dispersed code was an important contributor to change effort (qu_2). Measures of 

change dispersion were better predictors of change effort than were more fine-grained, 

LOC-based measures of change size.  

In sum, multiple sources of evidence pointed to dispersion as a factor that causally 

affected change effort, beyond simple size effects. This interpretation is supported by 

existing evidence on the effect of discontinuities and delocalized plans from studies on text 

and program comprehension [41], and also by controlled experiments on the effect of 

centralized versus decentralized design styles [14].  

The results indicate that effort involved in comprehending dispersed code is more 

important than the effort involved in carrying out modifications to some of that code, 

although the two activities were highly intertwined. The developers typically needed to 

comprehend code along the execution paths of affected user scenarios (qu_2). These paths 

were typically dispersed over many components. Consistent with this importance of 

comprehending functional cross-cuts of the source code, the measures of structural 

properties of individual architectural units did not contribute to change effort in the 

quantitative models (ed_5).  

The number of updates to the initial change request prior to the coding phase 

consistently contributed to change effort in the quantitative models (ed_2). This result is 

perhaps surprising because it is reasonable to expect that more effort spent clarifying 

change requests, would mean fewer problems in the coding phase. A possible explanation 

is that a well considered and described initial change request eases subsequent phases for 

the change. Reversely, many modifications to the change request can indicate difficulty 

arriving at a sufficiently complete specification. The qualitative analysis showed a 

particularly large effect on change effort when the impacts on other user scenarios than the 

scenario originally addressed by the change request needed to be clarified throughout the 

change cycle (qu_1). 

Paper 2 discusses in more detail additional results from the data-driven and the 

qualitative analysis. Those results are explorative in nature, and new propositions based on 

these results are subject to confirmatory analysis in further empirical studies. 
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4.2 Goal 2 - Improved Methods to Assess Trends in Productivity during Software 
Evolution

4.2.1 Paper 3 
Paper 3 proposes methods to assess productivity trends during software evolution. The 

methods were demonstrated and evaluated in ongoing projects in two commercial software 

development organizations. The question asked for the empirical investigation was: 

Did the productivity in the two projects change between the baseline period P0 (Jan-

July 2007) and the subsequent period P1 (Jan-July 2008)? 

To answer this question, we proposed a conceptual definition of productivity change, 

which assumes that change effort for the same changes are compared between two time 

periods. Table 4 describes the four productivity indicators that operationalize this 

definition in alternative ways, the evaluation that accompanies the indicators, advantages 

and disadvantages of each indicator, and the measured productivity trend in the two 

projects. 

Table 4. Summary of proposed productivity indicators  

Indicator Evaluated by (refer to 

Paper 3 for details) 

Advantages (+) and 

disadvantages (-) 

Result  

RCN 

Result  

MT 

Compare 

estimates for 

benchmark tasks 

Statistical significance + Close approximation to the 

theoretical definition.  

- Estimates can be unreliable 

- Practical challenges, including 

measurement overhead  

No change Lower 

Compare average 

change effort 

Statistical significance 

Box plots 

Compare properties of 

changes 

- Data collection is easy 

- Assumptions are easily violated 

- Validation is difficult 

Higher Lower 

ANCOVA-model 

that adjusts for 

differences in 

change attributes 

Statistical significance 

of effect-variable 

Inspection of residual 

plot 

+ Validation is given from well-

known statistical framework.  

- Models must be rebuilt when 

new data arrives 

Higher Lower 

Compare actual 

with predicted 

effort 

Statistical significance  

Stability of model 

structure 

- Assumptions difficult to 

evaluate 

+ Usable with any prediction 

framework 

+ Easy to use once model is built 

Higher Lower 
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The first indicator in Table 4 most closely matches the proposed definition of 

productivity change. For practical reasons, effort estimates were used in place of actual 

change effort. A particular practical challenge with this indicator is to define benchmarking 

tasks that are representative of actual changes. The second indicator simply compares 

average change effort between two time periods, assuming that there are no systematic 

differences in the changes between the periods. The last two indicators use statistical 

models to control for differences in the properties of changes between the compared time 

periods. The models are required to have reasonable model fit, and to be stable across the 

time periods. The evaluation in the projects showed that these requirements are feasible.  

For RCN, a gain in productivity was indicated, consistent with the project’s intended 

and experienced effect of a major code restructuring initiative. For MT, a drop in 

productivity was indicated, consistent with a post-hoc explanation by the project manager 

that developers might have experienced less time-pressure in the second period, caused by 

reduced use of fixed-price maintenance contracts. 

In summary, the empirical study showed that it was feasible to use the indicators even 

with a moderate number of change tasks, and with a moderate model fit for the statistical 

models required for two of the indicators. 

4.2.2 Paper 4 
The initial goal for the research in Paper 4 was to compare two effort estimation methods 

(collaborate estimation using planning poker, versus aggregation of individual estimates) 

with respect to estimation accuracy. Real change requests in the investigated project were 

randomly assigned to an estimation method, and the actual effort and estimation accuracy 

were analyzed. The results showed no differences in estimation accuracy but, perhaps 

surprisingly, large differences in average change effort.  

We wanted to understand whether this apparent difference in productivity could be 

explained by variable size or complexity of changes in the two groups. The results showed 

that after controlling for the increased complexity of code changes with collaborative 

estimation, the estimation method did not affect change effort. Feedback from the project 

members suggested that design discussions during collaborative estimation helped in 

discovering ripple effects of changes. These discoveries, in turn, affected the extent of code 

changes, and eventually the change effort. 

In effect, this study employed the second and third method from Table 4 to assess 

productivity, respectively with and without controlling for differences between changes. 
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The assessment illustrated the added value of using more than one of the proposed 

indicators, as each indicator contributes with specific insight. Also, the assessment showed 

that it is feasible to use the indicators even with only a few dozens change tasks.
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5 Implications and Future Work 
5.1 Implications for Practice 
The implications for practice were (i) consolidated evidence on factors that affect change 

effort, and (ii) methods to assess trends in productivity during software evolution. 

Immediately, an implication of the evidence on change dispersion is that software should 

be designed so that code that needs to be comprehended and changed as part of future 

change tasks is localized rather than dispersed. There are two difficulties with this 

principle. First, design decisions must consider other, potentially higher prioritized quality 

goals than the ease of change. For example, requirements regarding distribution of runtime 

components often imply that source code must also be dispersed. There are often good 

reasons for separating user interface components from business logic components. Second, 

it is difficult to predict what will constitute future changes, and therefore difficult to 

identify clusters of code that need to be comprehended and changed together. Nevertheless, 

when evaluated from the perspective of change effort, the evidence suggests benefits with 

a higher degree of localization of code that is functionally cohesive. 

Another tactic would be to improve development tools to reduce the effect of change 

dispersion. One possibility is that integrated development environments (IDE’s) 

automatically construct change-friendly views of the code, on the basis of configuration 

management information or dynamic runtime-analysis. For example, it is conceptually 

simple to let a class browser or editor present the classes involved in the execution of a 

given user scenario. Code relevant to a given user scenario inside the classes could then be 

filtered or highlighted. A practical difficulty is that such tools are more difficult to create 

where they would be most useful - for physically distributed systems that use multiple 

implementation technologies. Nevertheless, with increasing runtime complexity of 

software systems, it is important that technologies are developed to reduce complexity as 

perceived by the maintainer.  

The results on change request volatility suggest that more complete specifications of 

change impacts prior to the coding phase would have saved effort. A well-known practice 

that addresses this concern is change impact analysis [42]. To be effective, such analysis 

should address impacts on function and other external quality properties, instead of 

focusing only on the internal dependencies within source code. The interview analysis 

indicated that an underlying factor causing problems throughout the change process was 
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insufficient knowledge in the boundary between the software and the business domain. 

Specifically, problems arose when developers knew too little about the business domain 

and domain experts knew too little about the software. To produce more complete 

specifications early in the change process and hence avoid these problems, software 

development organizations should recognize the importance of domain knowledge, and use 

practices and principles that cultivate such knowledge. An example of such practices from 

agile development methods is on-site customer [43]. 

Frameworks have been developed to help the software industry base decisions on 

practices and technologies on objective criteria and empirical evidence [44, 45]. 

Difficulties in defining practical and trustworthy outcome measures, such as measures of 

productivity, have hampered the adoption of such methods. This research demonstrated 

that it is feasible to use data from change management systems to assess productivity 

during software evolution. Conceptually, it is straightforward to automate the calculation 

and validation of the indicators. With productivity assessment capabilities built into change 

management systems, the potentials are larger for quantitative evaluation of software 

projects. 

5.2 Implications for Research 
The contributions of this thesis with respect to research methodology were (i) a conceptual 

framework for change-based studies and (ii) a methodology that combine quantitative and 

qualitative analysis of changes. The conceptual framework for change-based studies can be 

used when designing new change-based studies. A common conceptual basis is important 

to aggregate evidence from such studies, ultimately enabling the development of theories 

of software evolution. 

The thesis supports existing evidence suggesting that quantitative models can explain 

only some of the variability in change effort. Qualitative methods proved effective to 

complement and refine such models. In particular, the qualitative analysis provided more 

insight into causal relationships, into construct validity issues associated with the employed 

quantitative measures, and into additional factors not captured from change management 

data. Also, the quantitative and objective information on residual size reduced the 

subjectivity in interpreting the qualitative data. Because these are very general concerns in 

nearly all kinds of software engineering research, the experiences suggest that similar 

qualitative design elements would be effective in other situations. The strategy of 
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systematically focusing on model residuals is not limited to change effort models, but 

could be applied to any unit of analysis and any model response. 

5.3 Future Work 

5.3.1 Change-Based Measurement as a Basis for Lifecycle Optimization of Designs 
Future work involves collaborating with one or more organizations involved in large-scale 

software evolution, to devise a plan-do-check-act methodology for continuous 

management and reduction of lifecycle costs. Such a methodology will identify 

opportunities for design improvements, establish the business case for such opportunities, 

evaluate the effects of improvement efforts, and feed knowledge back to the identification 

of new opportunities. A key topic of investigation is whether change-based analysis can 

constitute the cornerstone of such enterprise and lifecycle scoped assessment and 

improvement of software evolution. An outline for the methodology is:  

� Identify typical change tasks performed in the organization. Base improvement 

proposals on experienced problems associated with those changes. 

� Develop business cases, for example by comparing past development effort to 

estimates of development effort had the improvements already been completed. 

� Implement the improvements, and evaluate changes in productivity using data from 

real changes. 

Step 1 involves qualitative procedures similar to those described in Paper 2. Step 2 is 

similar to performing benchmarking by estimates, described in Paper 3. In step 3, the 

productivity indicators described in Paper 3 and Paper 4 can be used. 

5.3.2 Semi-Controlled Studies on the Effect of Structural Properties on Change Effort 
For Goal 1, the influence of structural properties of the software, as well as properties of 

people, practices and performed tasks were investigated. No significant effect of structural 

properties was identified in the analysis. It is counterintuitive that the internal properties of 

software have no effect on change effort. One explanation is that measures retrieved from 

architectural units, such as files and classes, did not capture a goal-driven comprehension 

process, which typically involved source code along execution paths of user scenarios. 

Alternatively, the investigated systems may have had a homogenous, overall good design 

which implied that the effect on change effort did not vary across change tasks. It is also 

possible that the measures of structural properties were too rudimentary and did not 

capture the aspects of complexity causing difficulties to the developers. 
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In a study that led to the eventual focus for this thesis, a methodology for assessing the 

maintainability of object oriented systems was proposed and demonstrated [12]. The study 

objects were four java-based systems (see, e.g., http://www.simula.no/des1) that 

conformed to the same requirements. Our research group currently conducts a follow-up 

study that assesses the outcome (including change effort) for real changes performed on 

these systems. With elaborate quantitative and qualitative data to represent candidate 

factors and outcomes, the proposed methodology for assessing the ease of change from 

structural attributes can be evaluated and improved. 

5.3.3 Describing Strategies to Perform Change Tasks 
The relatively poor model fit of change effort models justify more focus on qualitative 

investigations to identify factors that influence change effort. The coding scheme described 

in Paper 2 is a starting point for further qualitative analyses studying how developers spend 

effort to perform change tasks. One particular area would be to develop better taxonomies 

of problem-solving strategies used by developers. An important part of this work is to 

better understand how knowledge and skills affect such strategies and the resulting 

performance. Such taxonomies would be useful as a basis for investigating and ultimately 

recommending the most effective strategy for a given change task. Moreover, tools could 

explicitly support different strategies to performing change tasks. Finally, such taxonomies 

could improve model-based or judgment-based effort estimation, under the premise that 

the choice of strategy affects development effort, and that it is possible to decide on a 

strategy early in the change cycle. Existing research and models of program 

comprehension form a foundation for such taxonomies, but there is a need to develop them 

to consider real development situations that include unclear requirements, complex 

technological environments, and collaboration among developers.  
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6 Conclusion
This thesis focused on the change task as the basic constituent of software evolution. A 

systematic review and a series of empirical studies were conducted to (i) identify the 

factors that affect change effort and (ii) to propose and evaluate methods to assess 

productivity trends during software evolution. A novel approach to combining quantitative 

and qualitative analysis of change tasks was proposed and evaluated. 

The results showed that change-based analysis was effective in eliciting factors that 

influenced change effort. Using data from change trackers and version control systems, it 

was possible to investigate the effect of a wide range of possible effort drivers, including 

those associated with developer experience, design properties of source code, the 

requirements process and the development technologies. 

Because many individual and interpersonal processes do not leave traces in change 

management systems, only a moderate amount of the variability in change effort can 

normally be explained from change management data. Hence, additional sources of 

evidence are necessary for a more complete picture. In particular, the study demonstrated a 

method to make qualitative analysis more effective by focusing on changes corresponding 

to large residuals in the quantitative models. 

One central result showed that the change effort is consistently affected by the 

dispersion of the changed and comprehended code, beyond simple size effects. To 

counteract the effect of dispersion, development tools could offer change-friendlier views 

of code that is somehow relevant to a change, for example by visualizing interactions 

involved in changed user scenarios. Such tools are likely to be particularly useful when the 

runtime components are physically distributed and uses several implementation 

technologies.  

Volatile change requirements were found to affect change effort, although the 

importance of this depended on the causes for volatility. Although there are inherent 

advantages to accepting flexibility in the requirements process, development organizations 

should not uncritically embrace volatile requirements. The results indicate that effort 

would be saved with better developed knowledge in the boundary between the software 

and the business domain. 

The thesis showed promising results for using change-based analysis to assess 

productivity trends during software evolution. The proposed method proved sufficiently 
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sensitive to detect trends in productivity in three software projects, even with a moderate 

number of data points. The procedures gave the software organizations useful insights into 

their own development processes, and they are conceptually simple to generalize and 

automate. The method could therefore accelerate the adoption of quantitative evaluation 

techniques in the software industry.  

Future research will evaluate whether change-based analysis can constitute the 

cornerstone for lifecycle-long improvement process in the context of large scale software 

evolution. Further fundamental research on how structural properties of software affect 

change effort is needed, as is research on strategies used by developers to solve real world 

change tasks. 
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Abstract

Understanding, managing and reducing costs and risks inherent in change are key 

challenges of software maintenance and evolution, addressed in empirical studies with 

many different research approaches. Change-based studies analyze data that describes the 

individual changes made to software systems. This approach can be effective in order to 

discover cost and risk factors that are hidden at more aggregated levels.  However, it is not 

trivial to derive appropriate measures of individual changes for specific measurement 

goals. The purpose of this review is to improve change-based studies by 1) summarizing 

how attributes of changes have been measured to reach specific study goals, and 2) 

describing current achievements and challenges, leading to a guide for future change-based 

studies. Thirty-four papers conformed to the inclusion criteria. Forty-three attributes of 

changes were identified, and classified according to a conceptual model developed for the 

purpose of this classification. The goal of each study was to either characterize the 

evolution process, to assess causal factors of cost and risk, or to predict costs and risks. 

Effective accumulation of knowledge across change-based studies requires precise 

definitions of attributes and measures of change. We recommend that new change-based 

studies base such definitions on the proposed conceptual model. 

1 Introduction 
Software systems that are used actively need to be changed continuously [1, 2]. 

Understanding, managing and reducing costs and risks of software maintenance and 
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evolution are important goals for both research and practice in software engineering. 

However, it is challenging to collect and analyze data in a manner that exposes the intrinsic 

features of software maintenance and evolution, and a number of different approaches have 

been taken in empirical investigations. A key differentiator between classes of software 

maintenance and evolution studies is the selection of entities and attributes to measure and 

analyze: 

� Lehman’s laws of software evolution were developed on the basis of measuring new 

and affected components in subsequent releases of a software system, c.f., [2, 3]. 

� Investigations into cost drivers during software maintenance and evolution have 

investigated the effects of project properties such as maintainer skills, team size, 

development practices, execution environment and documentation, c.f., [4-7]. 

� Measures of structural attributes of the system source code have been used to assess 

and compare the ease with which systems can be maintained and evolved, c.f., [8-10]. 

An alternative perspective is to view software maintenance and evolution as the aggregate 

of the individual changes that are made to a software system throughout its lifecycle. An 

individual change involves a change request, a change task and a set of modifications to 

the components of the system. With this perspective, software maintenance and evolution 

can be assessed from attributes that pertain to the individual changes. Such attributes are 

henceforth referred to as change attributes, the measures that operationalize the change 

attributes are referred to as change measures, and the studies that base the analysis on 

change attributes and change measures are referred to as change-based studies. Two 

examples of topics that can be addressed in a change-based study are: 

� Identify and understand factors that affect change effort during maintenance and 

evolution. This knowledge would contribute to the understanding of software 

maintenance and evolution in general, because the total effort expended by developers 

to perform changes normally constitutes a substantial part of the total lifecycle cost. 

For a particular project, it is essential to know the factors that drive costs in order to 

make effective improvements to the process or product. For example, if system 

components that are particularly costly to change are identified, better decisions can be 

made regarding refactoring. 

� Measure performance trends during maintenance and evolutions.  Projects should be 

able to monitor and understand performance trends in order to plan evolution and take 

corrective actions if negative trends are observed.  
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A central challenge is to identify change attributes and change measures that are effective 

in order to perform such analyses. For example, in order to assess and compare changes 

with respect to the man-hours that were needed to perform them, it is necessary to 

characterize the changes in some way, e.g., by measuring their size and complexity. This 

paper addresses this challenge by performing a comprehensive literature review of change-

based studies. Conducting a comprehensive literature review is a means of identifying, 

evaluating and interpreting all available research relevant to a particular research question, 

or topic area, or phenomenon of interest [11]. The research question for the review is: 

Which overall measurement goals have been set in change-based studies, and which 

attributes were measured to achieve these goals? 

The review summarizes change attributes that have been used in empirical investigations, 

and we propose a conceptual model for change-based studies that enables us to classify the 

attributes. We will argue that new change-based studies can benefit from using this model 

as a basis for definitions of change attributes and change measures. A classification scheme 

for study goals is developed, enabling new studies to identify the current state-of-research 

for a particular goal. To further guide new studies, we exemplify current achievements and 

challenges within each of the main study goals.  

To sum up, the objective of this literature review is to facilitate more effective 

investigations into the costs and risks of software maintenance and evolution, whether they 

are conducted by empirical researchers or by practitioners who are implementing a 

measurement-based improvement program. The approach is to systematically summarize 

and appraise the state of the practice in change-based studies.  

The remainder of this paper is organized as follows: Section 2 provides a summary of 

related work. Section 3 describes the review procedures, including the criteria for inclusion 

and exclusion of primary papers for the review. Section 4 describes the conceptual model 

for change-based studies. Sections 5 answers the research question, while Section 6 

provides a guide for further studies. Section 7 discusses limitations to the review. Section 8 

concludes. 

2 Related Work 
We are not aware of other attempts to provide a comprehensive review of change-based 

studies of software maintenance and evolution. Graves and Mockus summarized three of 
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their own studies that showed that time of change, tool usage, and subsystem affected by 

change affected change effort [12]. They also recommended that statistical models of 

change effort should control for developer effects, change size and maintenance type. 

Niessink listed six change attributes that affect change effort that have been identified in 

empirical work by other authors [13]. Of these, maintenance type and change size matched 

the change attributes identified by Graves and Mockus.  

Kagdi et al. conducted a literature review of studies that have mined data from software 

repositories for the purpose of investigating changes to software components [14]. Their 

review focused on a particular approach to data collection (mining of software repositories) 

while this review focuses on a particular approach to analysis (change-based studies). The 

two reviews are complementary, because mining of software repositories is an appealing, 

though not always sufficient, approach to collecting the data required for change-based 

studies. We expect a new change-based study to benefit from consulting both reviews. 

One contribution of this paper is a proposed conceptual model for change-based studies. 

Existing conceptual models that describe software maintenance and evolution [15-17] 

constituted a foundation for the model. Relationships between these models and our model 

are further described in Section 4. 

3 Review Procedures 
3.1 Criteria for Inclusion and Exclusion 
The following top-level criterion for inclusion of papers was derived from the objective of 

the review that was stated above 

Peer reviewed papers that report on case studies that assessed or predicted 

maintenance and evolution activities on the basis of properties of individual 

changes, in the context of managed development organizations. 

Assessment and prediction are two broad purposes of measurement [18]. They are highly 

interdependent and we chose to include studies that involved one or both purposes. We 

consider studies on commercial software development and studies on volunteer-based, 

open source development to be two main types of software engineering research. This 

review focused on the former kind of studies. An opportunity for further work is to apply 

the developed framework to studies on open source development, with the goal of 

revealing contrasts and similarities between the two types. The review targeted both 
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quantitative and qualitative studies. Candidate papers were identified using the following 

procedure:

1. Send queries based on the inclusion criterion to search engines using full-text search 

2. Read identified papers to the extent necessary to determine whether they conformed to 

the criterion 

3. Follow references to and from included papers; then repeat from step 2 

Step 1 was piloted in several iterations in order to increase the sensitivity and precision of 

the search. A discussion of the tradeoffs between sensitivity and precision in the context of 

research on software engineering is provided by Dieste and Padua [19]. We arrived at the 

following search criterion for the first step, from which we derived search strings in the 

query languages that is supported by the selected search engines: 

((<size | type | complexity> of [a] <change | modification | maintenance> [task | request]) 
OR
(<change | modification | maintenance> [ task | request ] <size | complexity | type>)) 
AND <project | projects> AND software 

Angle brackets denote that exactly one of the enclosed terms is selected, square brackets 

denote that zero or one of the enclosed terms is selected, while parentheses clarify operator 

priority. 

We used Google Scholar (http://scholar.google.com) and IEEExplore 

(http://ieeexplore.ieee.org) because full-text search was required to obtain reasonable 

sensitivity. The queries returned 446 results from Google Scholar and 169 results from 

IEEExplore on the 19 April 2007. In total, 261 papers remained after excluding papers on 

the basis of the title alone, i.e., non-software engineering work, definitely off topic, or not a 

peer reviewed paper. After merging the two sources, 230 papers remained. These 

underwent Steps 2 and 3 above. Sixty-two papers were judged as “included” or “excluded, 

but under some doubt”. These were re-examined by the second and third author, resulting 

in 33 included papers. Disagreements were resolved by discussion and by further clarifying 

and documenting the criteria for inclusion and exclusion. As a final quality assurance, the 

search criterion was applied to all papers from 27 leading software engineering journals 

and conference proceedings (1993 to 2007 volumes), see [20] for details of this source. 

One additional study was identified by this step, resulting in a total of 34 included papers. 

In summary, we have searched Google Scholar, IEEExplore, specifically selected journal 

and papers, and searched in references. We expect this to search to be reasonably 
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complete, although alternative sources exist. For example, we did not use the ACM digital 

library because the service did not feature advanced full-text search. 

In order to convey the criteria for inclusion or exclusion more explicitly, the remainder 

of this section summarizes studies of software maintenance and evolution that were 

excluded, but were considered to lie on the boundaries of the criteria.  

An influential body of research on software evolution has based analysis on software 

releases and the components, i.e., the system parts of some type and at some level of 

granularity, that were present in successive releases. Belady and Lehman [3] measured the 

number of components that were created or affected in successive releases of the same 

system. Using this study as a basis, they postulated the law of continuing change, the law

of increasing entropy, and the law of statistically smooth grow. Kemerer and Slaughter 

[21] provided an overview of empirical studies that have followed this line of research. 

The studies that used another unit of analysis than the individual change, e.g., releases or 

components, were excluded from this review. 

Based on an industrial survey on maintenance of application software, Lientz et al. 

quantified the amount of new development versus maintenance, and how work was 

distributed over types of maintenance [22]. This work has been influential in that it has 

drawn attention to later phases of the software lifecycle, and via the adoption of the change 

classification scheme of corrective, perfective and adaptive changes, originally described 

by Swanson [23], and frequently used as a change attribute in the body of research 

included in this review. This work is not included in the review, because it was based on a 

survey rather than a case study. 

Measures of structural attributes (code metrics) have been conjectured to provide 

inexpensive and possibly early assessments and predictions of system qualities. Measures 

have normally been extracted from individual source code components, or from succeeding 

revisions of source code components. Briand and Wüst [24] provided an overview of 

empirical work on relationships between structural measures of object-oriented software, 

and process and product qualities. In order to identify erroneous components when 

building fault prediction models, some studies identified the components that were affected 

by a corrective change request, c.f., [25-27]. However, we did not consider these studies to 

be change-based, because the unit of analysis was the individual component. 

Studies on the analysis of software defects have attempted to understand the causes and 

origins of defects. Generally, these studies have analyzed and extracted measures from 

individual components. Some of the studies collected data about corrective change tasks, 
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e.g., [28-30]. We chose to exclude studies that analyzed the causes of defects 

retrospectively, but to include studies that analyzed the change tasks that were performed 

to isolate or correct defects. 

 Research on cognitive aspects of software engineering has attempted to understand the 

mental processes that are involved in software engineering tasks. Some of these studies 

have been conducted in the context of change tasks that are performed during software 

maintenance and evolution, c.f., [31]. We chose to exclude these studies, because Détienne 

and Bott [32] have provided a comprehensive summary of this specialized line of research. 

3.2 Extraction of Data 
Goals, change attributes, and study context were described and classified by combining 

existing description frameworks with data-driven analysis similar to the constant 

comparison method of qualitative analysis [33]. In particular, for measurement goals, 

passages of relevant text were identified, condensed, and rephrased using terms consistent 

with the description template for measurement goals under the Goal Questions Metrics 

(GQM) paradigm [34]. The resulting measurement goals are listed in Tables A1, A2 and 

A3. The next step was to classify these instances of measurement goals into categories. We 

attempted to discriminate between lines of research, i.e. studies that have similar overall 

goals and take similar approaches to analysis. The process was driven by the first author of 

this paper. The second and third author proposed changes and clarifications where 

perceived necessary. These procedures resulted in the taxonomy listed in Table 1. 

It was necessary to make a tradeoff with respect to the specificity of categories. If 

categories were too fine-grained, the schema could be over-fitted to particularities of the 

investigated studies. This would make it more difficult to reliably classify new papers 

according to the schema. If categories were too coarse-grained, important distinctions 

between lines of research could be lost, making the schema less useful. An example of a 

tradeoff is the categories 3.2  - assess prediction frameworks and 3.3 - investigate 

predictive power of change measures from Table 1. Prediction frameworks are normally 

assessed assuming one or more change measures, and vice versa. Still, because evaluation 

in the studies focused on either the effectiveness of the prediction frameworks or on the 

effectiveness of the measures, we considered the two categories of studies to contribute 

with two different kinds of results. 

In order to describe and classify conceptual change attributes, we extracted information 

about each individual change measure that was used in the studies. Key information was 
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names, definitions, value ranges, and methods for data collection. This information was 

then compared and grouped with respect to the conceptual model in Figure 1, and with 

respect to a set of more detailed measurement questions, as listed in Table 2. The 

procedures for developing the conceptual model for change-based studies are described in 

Section 4.  

For study context, we describe the business context, measurement procedures and extent 

of data collection. We identified two measures for each of these attributes by using 

information that was available in the reviewed papers. The results are shown in Table A4. 

4 A Conceptual Model for Change-Based Studies 
Our proposed conceptual model for change-based studies is depicted in Figure 1. The goals 

for the design of the model were 1) to create a minimal model that 2) facilitates the 

understanding and definition of entities, attributes and measures that were used in the 

reviewed body of research, while 3) maintaining compatibility with existing concepts that 

have been used to discuss software maintenance and evolution. 

We developed and refined the model iteratively during the course of the review, in order 

to capture the change attributes that were used in the reviewed studies. Table 2 lists the 

relationships between these attributes and the entities in the model. Wherever possible we 

reused concepts from existing conceptual models of software maintenance. In particular, 

the entities Development organization, Human resource, Change task, Change request, 

Component, System and Release, some of them with different names, were reused from the 

proposed ontology of software maintenance by Kitchenham et al. [16]. Similar conceptual 

frameworks have been defined by Dias et al. [15] and Ruiz et al. [17]. We used terms in 

our model that were 1) commonly used in the reviewed body of research, 2) neutral with 

respect to specific technologies, practices or disciplines in software engineering, and 3) 

internally consistent. For example, we used the term change task for the entity that is 

named maintenance task in [16]. Compared to the existing frameworks, the entities 

Change set, Revision and Delta and their interrelationships were added, because they are 

necessary to describe and classify the change attributes that concern changes to the system 

components. The relationships between some of the reused entities were changed, in order 

to better represent the change-oriented perspective taken in this paper.  
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Figure 1. A conceptual model for change-based studies 

Standard UML syntax is used in the diagram. A role multiplicity of 1 should be assumed 

when role multiplicity is not shown. Role names are assigned in one direction only, in 

order to avoid cluttering. For compositions, indicated by filled diamonds, the roles in the 

two directions can be read as composed by and part of. 

The perspective adopted in this paper is that a change task constitutes the fundamental 

activity around which software maintenance and evolution is organized. A change task is a 

coherent and self-contained unit of work that is triggered by a change request. A change 

request describes the requirements for the change task. A change task is manifested in a 

corresponding change set. A change set consists of a set of deltas. A delta is the 

differences between two revisions of the same component. A component can, in principle, 

be any kind of work product that is considered to be part of the system, although the 

reviewed studies focused primarily on measurement of source code components. 

Components can form a hierarchy in where a large component can be composed by 

components of finer granularity. A system is deployed to its users through releases. A 

release is composed by a set of components, each in a specific revision. A release can also 

be described by the change sets or the corresponding change requests that the release 

incorporates.  

It is convenient to use the term change as an aggregating term for the change task, the 

originating change request, and the resulting change set. Changes, in this sense, involve 

human resources, and are managed and resolved by a development organization. Large 

changes can be broken down into smaller changes that are more manageable to the 

development organization. In the reviewed studies, large changes are sometimes referred to 
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as features, although there are many possible underlying causes for large changes, as 

investigated in [35]. 

A change attribute is a property of a change task, of the originating change request, or of 

the resulting change set. A change attribute is sometimes derived from attributes of other 

entities in the conceptual model. For example, the sizes of all components that were 

involved in a change may be averaged, or otherwise combined, in order to form a change 

attribute that represents the size of changed components.  

A change outcome is a change attribute that represents the primary focus of the study, 

e.g., change effort. A change outcome measure is the operationalization of a change 

outcome, and is typically used as the dependent variable in statistical analyses. 

Many change measures can be extracted from change management systems, which are 

tools that manage the kind of information defined by our conceptual model. Such systems 

include change trackers and version control systems. In order to clarify the meaning of the 

entities in the conceptual model, the model entities were mapped to terminology used in 

the popular version control systems CVS and Subversion: A CVS check-in or commit 

creates a delta, i.e. a difference between the previous and the current revision of a 

component. In Subversion, a commit or an atomic commit guarantees that all deltas are 

either committed or rolled back. An atomic commit corresponds to a change set if it 

corresponds to the solution for one change request. CVS does not support change sets, but 

change sets can be deduced from metadata such as username and commit time. In CVS, 

and in our model, a revision refers to a reproducible state of a specific component. In 

Subversion, a revision can also refer to the state of the entire file system under version 

control. A development organization will promote one such Subversion revision to 

constitute a release. Both Subversion and CVS supports tags, which makes it easier to 

retrieve the exact contents of a release. In CVS and Subversion, a file refers to a 

component. The file system under version control corresponds to the system. Change 

management systems use terms such as modification request (MR), bug report, ticket, 

issue, software defect report (SDR) and problem report (PR) to refer to a change request. 

A change task is sometimes referred to as an activity or a task. In the reviewed papers, the 

term maintenance task was often used for the same concept. 

It is beyond the scope of this paper to provide operational definitions of all variations of 

change measures used in the reviewed studies. However, the conceptual model in Figure 1 

can be utilized further in a specific measurement context to facilitate precise definitions of 

change measures. For example, the span of a change could be operationalized as “the 
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number of deltas that are part of a change set”, while a measure of the size of affected 

components can be defined as “the arithmetic mean of lines of code in revisions affected 

by a change set”. Such definitions can be expressed formally using the Object Constraint 

Language (OCL) [36]. 

5 Goals and Measured Change Attributes 
By following the procedures described in Section 3.2, three main categories and 10 sub-

categories of studies were identified, as shown in Table 1. Key properties of each 

individual study are listed in Tables A1, A2 and A3, in Appendix A.  

Table 1. Goals and sub-goals for change-based studies. 
Main category Sub-category References 
Goal 1: 
Characterize the 
work performed on 
evolving systems  
(Table A1) 

Goal 1.1:  Understand and improve the maintenance and evolution 
process in a development organization 

[37-42] 

Goal 1.2: Manage and control the maintenance and evolution 
process in a development organization 

[43-45] 

Goal 1.3: Investigate selected elements in the maintenance and 
evolution process 

[46-49] 

Goal 1.4: Understand the general nature of maintenance and 
evolution work 

[21, 50-52] 

Goal 2: Assess 
change attributes 
that explain change 
outcome (Table 
A2) 

Goal 2.1: Identify change attributes that influence change outcome [53, 54] 
Goal 2.2: Assess effects of a specific process element [55-58] 
Goal 2.3: Validate change measures [59, 60] 

Goal 3: Predict the 
outcome of 
changes  
(Table A3) 

Goal 3.1: Propose methodology for building predictive models [61-64] 
Goal 3.2: Assess prediction frameworks [65, 66] 
Goal 3.3: Investigate predictive power of change measures [13, 67, 68] 

Goal 2 and Goal 3 studies employed quantitative models that related independent change 

measures to the change outcome measure of interest. Goal 2 studies attempted to identify 

causal relationships for the purpose of understanding and assessment, while Goal 3 studies 

focused on correlations and predictions. Conversely, most Goal 1 studies used summary 

statistics to provide a bird’s eye view of the work that was performed during maintenance 

and evolution. They focused on observing trends in the values for selected change 

attributes, rather than attempting to explain the observations. 

Change attributes, typical questions and typical values used during data collection are 

shown in Table 2. All attributes can be regarded as attributes of a change in Figure 1. The 

second column indicates the entity in Figure 1 that provides the data for deriving a change 

attribute. For example, a measure of change size is usually obtained by aggregating data 

from the individual deltas in the change set.  
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Table 2. Change attributes used by the studies 
Change 
attribute 

Data 
provided by 

Question asked Typical values Goal 1 
studies 

Goal 2 
studies 

Goal 3 
studies

Activity Change 
task 

Which activities were 
involved in the change task? 

Requirements/analys
is/design/coding/test 

[37, 41] - - 

Change 
count 

Change 
request 

Was it a change? Simple count of 
changes 

[21, 37, 40-
42, 44-46, 
49-51] 

- - 

Change 
effort 

Change 
task 

How much effort was 
expended on the change 
task? 

Person hours, ordinal 
or ratio 

[37, 40-47] [53-56, 
58-60] 
 

[13, 
61, 62, 
64-68] 

Change 
interval 

Change 
task 

How long did it take to 
resolve the change request? 

Days, ordinal or ratio [45, 47, 48] [53, 57] [63, 
64] 

Change size  Delta How much content was 
added, deleted or changed? 

Lines of code, 
ordinal or ratio 

[37, 38, 41] [54-56, 
59] 

[13, 
61, 63, 
65] 

Change 
span 

Delta How many components were 
affected? 

Count of components [42, 48] [53-58] [13, 
61-63] 

Change/ 
defect 
source 

Change 
request 

Which activity caused the 
defect or the need for 
change?  

Requirements/ 
analysis/design/ 
coding/test 

[41, 42] - [13, 
61] 

Code 
quality 

Revision Had the changed 
components been refactored?

Refactored/ 
not refactored  

- [56] - 

Code 
volatility 

Component How frequently had the 
affected components been 
changed? 

Total number of 
changes 

- [54] - 

Coding 
mode 

Delta Was content changed or 
added?  

Changed/added - - [65] 
 

Component 
type 

Component What kind of component 
was affected? 

Query/report/ 
field/layout/data 

[40] - [13] 

Criticality Revision How critical was the affected 
component? 

Is mission critical? - [54] - 

Data 
operation 

Revision Which data operation did the 
affected components 
perform?  

Read/update/process - [54] 
 

[66] 

Date/ 
Time  

System How old was the system 
when the change occurred? 

Elapsed time since 
first deployment 

[21, 40, 43, 
45, 47, 50-
52] 

[53] 
 

[65, 
69] 

Defect type Change 
request 

What kind of defect was 
introduced? 

Initialization/ 
logic/data/interface/ 
computational 

[41, 45] - [61, 
66] 

Delayed Change 
task 

Was the change task 
resolved later than 
scheduled? 

Delayed/not delayed [45] - - 

Detection Change 
request 

By which technique was the 
defect/need for change 
detected? 

Inspection/test-
run/proof techniques 

[42] - - 

Developer 
id 

Human 
resource 

Who performed the change 
task? 

Nominal measure - [53]  

Developer 
span 

Human 
resource 

How many developers were 
involved in performing the 
change task? 

Number of people - [54, 57] 
 

[63] 

Documenta-
tion quality 

Component How well were the changed 
components documented? 

Was documentation 
rewritten? 

- [58] 
 

[13] 

Execution 
resources 

Delta How much (added) 
computational resources 
were required by the 
change? 

CPU-cycles, bytes of 
memory 

- [54] - 
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Table 2. Continued 
Change 
attribute 

Data 
provided by

Question asked Typical values Goal 1 
studies 

Goal 2 
studies 

Goal 3 
studies 

Function 
points 

Delta How many logical units will 
be changed, added or deleted 
by the change? 

Count of changed, 
added and deleted 
units, weighted by 
complexity  

- [60] 
 

[67] 

Location Develop-
ment org. 

Where were human 
resources located physically?

Distributed/not 
distributed 

- [57] - 

Maintenanc
e experience 

Human 
resource 

For how long had the 
developers performed 
software maintenance work? 

Number of years  
- 

- [65] 

Maintenanc
e type 

Change 
request 

What was the purpose of the 
change? 

Fix/enhance/ 
adapt 

[21, 37, 41-
47, 49-51] 

[53-55, 
57] 

[61, 63-
65, 68] 

Objective 
change 
experience 

Human 
resource 

How many changes had 
earlier been performed by 
the developer? 

Number of previous 
check-ins in version 
control system 

 
- 

- [63] 

Origin Change 
request 

In what context or by which 
party was the change request 
made? 

Internal test/ external 
users 

[37, 46, 52] - - 

Quality 
focus 

Change 
request 

Which system quality was 
improved by the change? 

Functionality/ 
security/efficiency/re
liability 

[42, 45, 47, 
52] 

- - 

Request 
criticality 

Change 
request 

What would be the effect of 
not accepting the change 
request? 

Minor/major 
inconvenience/stop 

- [54, 
57] 
 

[65, 68] 

Requiremen
ts instability 

Change 
request 

To what extent were change 
requirements changed? 

Number of 
requirement changes 

- [54] 
 

[13] 

Size 
 

Revision How large were the changed 
components?  

Lines of code, 
number of 
components affected 

- 
 

[59] 
 

[13, 63, 
65, 67, 
68] 

Status Change 
request 

What is the current state of 
the change request? 

New/accepted/ 
rejected/solved 

[44, 45, 48, 
52] 

- - 

Structural 
attributes 

Revision What was the profile of the 
structural attributes of the 
changed components? 

Count of structural 
elements (coupling, 
branching 
statements) 

- 
 

[59] 
 

[13, 62] 

Subjective 
complexity 

Change 
task 

How complex was the 
change perceived to be? 

3-point ordinal scale - [54] 
 

[13, 65-
67] 

Subjective 
experience 

Human 
resource 

How was experience with 
respect to the affected 
components perceived? 

3-point ordinal scale - - [65] 

System 
experience 

Human 
resource 

For how long time had the 
developers been involved in 
developing or maintaining 
the system? 

Number of years - 
 

- [65] 

System id System To which system or project 
did the change belong? 

Nominal measure [37, 42-44] - - 

Team id Develop-
ment org 

Which team was responsible 
for the change task? 

Nominal measure - - [67] 

Technology Component Which technology was 
applied in the changed 
components? 

3GL/4GL - 
 

- [65] 

Test effort Change 
task 

What was the test effort 
associated with the change? 

Number of test runs - [54] - 

Tool use Develop. 
org. 

Which tool was involved in 
the change task? 

Tool used/not used - [55] - 
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Seventeen of the 43 change attributes were used by one study only. These 17 attributes 

were used by 10 different studies; hence we do not consider Table 2 to be over-influenced 

by any individual paper. The summaries in Sections 5.1 to 5.5 focus on goals and main 

contributions of each study. Section 6 provides a guide for future research on the basis of 

the current contributions within each main category. 

5.1 Summary of Characterization Studies (Goal 1) 
Goal 1 studies were split according to the sub-categories listed in Table 1. Goal 1.1 and 

Goal 1.2 studies are characterized by close involvement with the measured development 

organization. The measurement programs were planned in advance, e.g., following the 

GQM paradigm [34]. They are similar with respect to goals; however, we consider it to be 

an important discriminator whether or not the study aimed at developing management tools 

for monitoring and decision support in ongoing projects. Goal 1.2 studies focused on such 

tools, while Goal 1.1 studies had a longer-term goal of understanding and improving the 

maintenance and evolution process. 

The four earliest Goal 1.1 studies are from the space domain, characterized by a long-

lasting mutual commitment between the development organization and software 

engineering researchers. A certain amount of overhead for data collection was accepted in 

these environments. The studies appear to follow a tendency over time from studies for 

assessment and insight [41, 42], via studies for understanding and improved predictability 

[37], towards studies that took concrete actions in the form of process improvements [39]. 

Lam and Shankararaman [40] showed that these measurement goals were also feasible in 

projects that are managed less strictly. While the above studies focused on analyzing a 

comprehensive set of real changes, Bergin and Keating [38] used a benchmarking 

approach that evaluated the outcome of artificial changes that were designed to be 

representative of actual changes. 

The Goal 1.2 studies were conducted within strictly managed development 

organizations. Arnold and Parker [44] involved management in setting threshold values on 

a set of selected indicators. This was an early attempt to use change measures to support 

decisions made by managers in a development organization. Likewise, Abran and 

Hguyenkim [43] focused on management decision support, and  provided upfront and 

careful considerations about validity issues that pertain to change-based studies. Finally, 

Stark [45] suggested a rich set of indicators that provided answers to questions about the 

services provided by the development organization to its clients. 
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Goal 1.3 and Goal 1.4 studies collected data from change management systems, and 

attempted to provide insight into software maintenance and evolution that was 

generalizable beyond the immediate study context. Generalizability to other contexts was 

claimed on the basis of recurring characteristics of systems and development organizations. 

Goal 1.3 studies investigated the effect or intrinsic properties of specific process 

elements. Ng [46] investigated change effort in the domain of Enterprise Resource 

Planning (ERP) implementation. The remaining three studies addressed three different 

process topics: the intrinsic properties of parallel changes [48], instability in requirements 

[47], and the intrinsic properties of small changes [49].  

Goal 1.4 studies addressed the nature of the software evolution and maintenance process 

in general. Kemerer and Slaughter [21] categorized change logs that had been written by 

developers that maintained 23 systems within one development organization in order to 

identify patterns in the types of change that occurred during the investigated period of 20 

years. Mohagheghi [52] analyzed a smaller set of change requests to answer specific 

questions about who requested changes, which quality aspects that were improved by the 

changes, time/phase at which the requests were created, and to what extent change requests 

were accepted by the development organization.  

5.2 Change Attributes in Characterization Studies (Goal 1) 
In summary, all Goal 1 studies attempted to characterize the work performed by 

development organizations. A predominant principle of measurement was to categorize 

changes according to selected characteristics. The proportion of changes that belonged to 

each category was compared to organizational standards, to other projects/systems, and 

between releases or time periods. Maintenance type, originally described by Swanson et al. 

[23], was the criterion for classification that was applied most frequently. In particular, the 

proportion of corrective change versus other types of change was frequently used as an 

indicator of quality, the assumption being that corrective work is a symptom of 

deficiencies in process or product. In most cases, observations and conclusions were based 

on descriptive statistics. In four studies, the statistical significance of proportions was 

investigated [21, 37, 51, 52]. Change effort, measured in person hours, was a key change 

measure for studies that focused on resource consumption. The number of changes was 

sometimes used as a surrogate measure when data on effort was not available. Some 

studies suggested using the average change effort per maintenance type as a rough 

prediction for the effort required to perform future change tasks of the same type.  
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5.3 Summary of Studies that Assess Change Attributes (Goal 2) 
Goal 2 studies were split according to the goal sub-categories listed in Table 1. The studies 

used correlation analysis at different levels of complexity in order to identify relationships 

between change measures used as independent variables and the change outcome measure. 

An overview of change outcome measures is given in Section 5.5. 

Goal 2.1 studies attempted to identify causal relationships between change attributes and 

change outcome, while Goal 2.2 studies investigated the effect of specific process 

elements. Graves and Mockus [53] controlled for variations due to maintenance type and 

change size, and showed that change effort increased with system age. They automated the 

extraction of change measures from change management systems in order to minimize 

measurement overhead. Schneidewind [54] used historical change requests to investigate 

correlations between change attributes and the presence of defects. Atkins et al. [55] 

showed that introducing a new tool to support the development of parallel versions of the 

same components had a positive effect on effort. Hersleb and Mockus [57] showed that 

decentralization prolonged the change interval. Rostkowycz, Rajlich et al. [58] showed that  

re-documenting a system reduced subsequent change effort, and demonstrated that the 

breakeven point for investment in re-documentation versus saved change effort was 

reached after 18 months. 

Goal 2.3 studies attempted to find appropriate change measures of concepts that are 

commonly assumed to influence change outcome. Maya, Abran et al. [60] described how 

function point analysis could be adapted to the measurement of small functional 

enhancements. They tested whether the function point measure could predict change effort, 

and they observed a weak correlation in their study. Arisholm [59] showed that 

aggregation of certain measures of structural attributes of changed components could be 

used to assess the ease with which object-oriented systems could be changed. 

5.4 Summary of Prediction Studies (Goal 3) 
While Goal 2 studies attempted to identify change attributes that influence change 

outcome, the Goal 3 studies attempted to predict that outcome. These studies used various 

prediction frameworks in order to build development organization specific prediction 

models of change outcome. The studies can be split according to the sub-categories listed 

in Table 1. 

Goal 3.1 studies investigated methods and processes for building prediction models. In 

[61], Briand and Basili suggested and validated a process for building predictive models 
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that classified corrective changes into different categories of effort. Evanco [62] used 

similar procedures to predict effort for isolating and fixing defects, and validated the 

prediction model by comparing the results with the actual outcomes in new projects. Xu et

al. [64] employed decision tree techniques to predict the change interval. The predictions 

from the model were given to the clients to set their expectations, and the authors 

quantified the approach’s effect on customer satisfaction. Mockus and Weiss [63] 

predicted the risk of system failures as a consequence of changes that were made to the 

system. They automated the statistical analysis required to build the models, and integrated 

the predictions into the change process that was used by the developers. 

Goal 3.2 studies compared prediction frameworks with respect to their predictive power 

and the degree to which the frameworks exposed explanations for the predictions. In [65], 

Jørgensen assessed and compared neural networks, pattern recognition and regression 

models for predicting change effort. He concluded that models can assist experts in making 

predictions, especially when the models expose explanations for the predictions. In [66], 

Reformat and Wu compared Bayesian networks, IF-THEN rules and decision trees for 

predicting change effort on an ordinal scale. They concluded that the methods 

complemented each other, and suggested that practitioners should use multi-method 

analysis to obtain more confidence in the predictions. 

Goal 3.3 studies attempted to identify change measures that could operationalize the 

conceptual change attribute of interest. Niessink and van Vliet [13] created and compared 

models for predicting change effort in two different development organizations. They 

suggested that the large difference in explanatory power between the organizations were 

due to the differences in the degree to which the development organizations applied a 

consistent change process. In [67], the same authors investigated variants of function point 

analysis to predict change effort. Although the regression models improved when the size 

of affected components was accounted for, the authors suggested that analogy-based 

predictions might be more appropriate for heterogeneous data sets. Using data on change 

requests and measures of system size from 55 banking systems, Polo et al. [68] attempted 

to build predictive models that could assist in the early determination of the value of 

maintenance contracts. Considerable predictive power was obtained from rudimentary 

measures, a finding that the authors contributed to the homogeneity of context (banking 

systems) and maturity of technology (Cobol). 
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5.5 Change Attributes in Assessment and Prediction Studies (Goal 2 and Goal 3) 
Although Goal 2 and Goal 3 studies have very different goals, they are quite similar from 

the perspective of measurement, and they are therefore described together in this section.  

The choice of dependent variable, i.e., the change outcome measure, is a key 

discriminator with respect to the focus and goal of a study. The dependent variables in the 

reviewed studies are derived from four change attributes: 

Change effort. The number of person hours expended on performing the change task is 

used as a change outcome measure in studies on change attributes that may influence 

productivity, and in studies on the estimation of effort for change tasks. Twelve of 17 

studies had these foci. In most cases, the measure was reported explicitly per change task 

by developers. Graves and Mockus proposed an algorithm that made it possible to infer 

change effort from more aggregated effort data [12]. This algorithm was put to use in, e.g., 

[55].  

Change interval. While change effort is a measure of the internal cost of performing a 

change task, the time interval between receiving and resolving the change request can be a 

relevant dependent variable for stakeholders external to the development organization. 

This change measure was used in studies that focused on customer service and customer 

satisfaction [57, 64], where the measure could be extracted from information resident in 

change management systems. 

Defects and failures. Historical data of defects and failures were used to identify change 

attributes that caused or correlated with defects and failures, to assess probabilities of 

defects or failures, and to assess the effect on defect proneness or failure proneness of a 

specific product improvement program. Such change measures are not straightforward to 

collect, because it can be difficult to establish a link from an observed defect or failure to 

the change that caused it. The two studies that have used this dependent variable analyze 

relatively large changes [54, 63]. 

Change attributes, typical questions and typical values used during data collection in 

Goal 2 and 3 studies are shown in Table 2. Measures of the change request, the change task 

and the deltas that are part of a change set occurred most frequently. Size, structure and age 

were the most frequently measured change attributes that used information from changed

components and their revisions. Information about deltas, revisions and components that 

were involved in a change set could only be measured after the change had been made. For 

the prediction goals, such change measures needed to be predicted first. The degree of 

collaboration (developer span) was the most frequently measured change attribute that 
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used information about the human resources involved. No attribute of the development 

organization was used more than once.  

6 Guide for Future Change-Based Studies  
Change-based studies belong to the more general class of empirical software engineering 

studies, and are normally conducted with the characteristics of a case study. 

Methodological concerns for the more general class of studies can be expected to be 

relevant for change-based studies as well, c.f., [70-75]. A change-based study is 

appropriate when software evolution is organized around cohesive change tasks. Abran and 

Hguyenkim [43] assessed the adequacy of a planned change-based study by comparing the 

reported effort expended on individual changes, to the total effort expended by developers 

in the maintenance organization. These authors also piloted the feasibility of the planned 

data collection, by verifying that changes could be reliably classified into maintenance 

types. Such assessment and piloting reduces the risk of embarking on the wrong kind of 

study, and provides useful context information for the results of the main study.  

Another important requirement for many change-based designs is that it is possible to 

group individual deltas into change sets associated with a change task or a change request. 

If the relationships are not explicitly tracked, the algorithm provided by German [76] can 

be used to recover change sets from individual deltas. Making use of naturally occurring 

data has the benefit over purpose-collected data that it reduces measurement overhead and 

enables researchers to collect more data over longer periods in time. This claim was 

evaluated and supported by analyzing information about data collection in the reviewed 

papers: The median duration of data collection was 48 and 21 months for naturally 

occurring and purpose-created data, respectively. The median number of analyzed changes 

was 1724 and 129 for the same two categories. More details about data collection in the 

reviewed studies are provided in Table A4. 

Relevant literature for a planned change-based study can be identified by matching the 

study goal against the categories in Table 1. Tables A1 to A3 list individual goals, and can 

be consulted to identify studies that most closely match the goal of the planned study. 

Table 2 provides candidate change attributes to measure in the planned study, and points to 

earlier studies that are similar with respect to measurement. The listed relationships 

between change attributes in Table 2 and entities in Figure 1 can help to define and 

operationalize the measures. 
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To further guide future studies, it is necessary to somehow assess the current state-of-

the-art and challenges within each group of studies. We chose to adopt the perspective of 

Perry et al. that empirical studies should go in the direction of being causal, actionable and 

general [73]. When there is a causal relationship, it is known why something happens. 

When the cause is actionable, outcomes can be changed and improved. Generality ensures 

that the study is useful to a wide range of situations. In the following, we present one paper 

for each of the three main goals in Table 1 that we consider to be most advanced with 

respect to these criteria.  

Briand et al [39] (a Goal 1 study) attempted to identify causal links between inadequate 

organizational structures or maintenance practices, and problems in the maintenance phase. 

The actionable root causes of reported problems were expressed in statements like 

“communication between users and maintainers, due in part to a lack of defined standards 

for writing change requirements” and “lack of experience and/or training with respect to 

the application domain”. A notable feature of this study is that it employed qualitative 

analysis to identify causal relationships. Furthermore, to be able to generalize case study 

results, it is recommended that proposals and hypothesis for such studies should be based 

on theories [77]. The results can then be used to refute, support or modify the theory in 

some way. The mentioned study contained elements of theory use, being based on a model 

that proposed causal links between flaws in overall maintenance process, the human errors 

that are committed, and the resulting software defects. 

Atkins, Ball et al [55] (a Goal 2 study) quantified the effect on change effort and change 

interval of a particular development tool. They used an ANCOVA-type model that 

included a binary treatment variable (the tool was/was not used) and variables that 

controlled for factors such as size and type of change. The study showed that analysis of 

change-based field data can provide strong evidence of the causal effects of applying 

technologies and practices in software engineering. Although a controlled experiment 

would better handle threats to internal validity, concerning the existence of a cause-effect 

relationship, the power of Atkin, Ball et al’s methodology was the use of real change data, 

representing exactly the constructs of interest to the organization. The authors were also 

able to control for individual developer differences, which was considered to be the most 

serious threat to internal validity.  

Mockus and Weiss [63] (a Goal 3 study) integrated model-based risk prediction into the 

development process so that developers were alerted when risk threshold values were 

exceeded for new changes. They used candidate variables in their models that represented 
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proposed risk factors, such as size and type of the change. The study attempted to account 

for the effect of developers’ experience by designing experience measures from version 

control data. The prediction models confirmed the correlations between some of the 

proposed factors, and the risks of failure. A particularly promising element of this work 

was the design of automated procedures to extract new data, update prediction models, 

perform predictions, and alert developers on the basis of dynamically adjusted threshold 

values.  

The three mentioned change-based studies illustrate how empirical software engineering 

studies are capable of changing and improving the way development is done within 

specific software organizations. However, there are strong limitations to the 

generalizability of the results. It is the authors’ opinion that a stronger foundation in 

common conceptual models and theories is required to overcome this shortage.  

7 Limitations of this Study 
The process by which papers were selected balanced the use of systematic, repeatable 

procedures with the intent to identify a comprehensive set of change-based studies. A more 

repeatable process could have been achieved by limiting searches to abstracts and titles 

only, by omitting traversal of literature references, and by excluding the Google Scholar 

search engine, which yielded low precision for paper retrieval. However, a more repeatable 

process may have failed to retrieve many of the included papers. Given that meeting the 

objective and answering the research questions of this study relied on identifying a broad 

set of change-based studies we chose to assign lower priority to repeatability. As a 

consequence, the procedures we followed did not fully comply with the procedures for 

systematic reviews that were suggested by Kitchenham et al. [11]. It is worth noting that 

the challenges experienced in attempting to follow systematic procedures stem from the 

lack of common conceptual frameworks. A common conceptual basis would clearly 

improve sensitivity and precision during the selection of papers.

 The ease with which studies can be classified according to the categories in Table 1 was 

evaluated by letting two independent senior researchers in our research group attempt to 

classify six randomly sampled papers. The two researchers worked individually, and were 

instructed to complete the categorization for one paper before turning to the next. On 

average, the researchers used 7 minutes to classify one paper. The preparation material 

consisted of this paper’s abstract, introduction, Table 1, and the descriptions of the 
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categories as they appear in Section 5. The results showed that the agreement between the 

baseline and evaluations was fair by normal standards [78]. An important source for 

disagreements was that some studies contained elements from different goals. For 

example, the study by Schneidewind [54] is described by the author to identify actionable 

risk factors at an early stage in the development cycle (indicating a causal Goal 2 study), 

but the methodology used resembles the methodology of a prediction study (by focusing 

on correlations). This situation resulted in different classifications between the researchers. 

Despite the finding from the evaluation that some studies overlap several categories, we 

consider the schema to be a useful map of the goals for change-based studies. Also, the 

categories are assumed to be useful to help researchers clearly define their research goals, 

possibly covering more than one of the goal categories. It is future work to evaluate and 

improve the classification schema on the basis of new studies, and with respect to open 

sources studies, which were outside the scope of this review.    

8 Conclusions and Further Work 
Change-based studies assume that software maintenance and evolution is organized around 

change tasks that transform change requests into sets of modifications to the components 

of the system. This review of change-based studies has shown that specific study goals 

have been to characterize projects, to understand the factors that drive costs and risks 

during software maintenance and evolution, and to predict costs and risks. Change 

management systems constitute the primary source for extracting change measures. 

Several of the reviewed studies have demonstrated how measurement and analysis can be 

automated and integrated seamlessly into the maintenance and evolution process. 

Although this review includes examples of successful measurement programs, it was 

difficult to determine whether and how insights into software maintenance and evolution 

could be transferred to situations beyond the immediate study context. We recommend that 

new change-based studies should base measurement on conceptual models and, eventually, 

theories. This observation may be seen as an instance of a general need for an improved 

theoretical basis for empirical software engineering research. In order to make progress 

along this line, we anchored this review in a minimal, empirically based, conceptual model 

with the intention of supporting change-based studies. We built the model by ensuring 

compatibility with existing ontologies of software maintenance, and by extracting and 

conceptualizing the change measures applied in 34 change-based studies from a period of 
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25 years. In future work, we will conduct a change-based multiple-case study with the aim 

of understanding more about the factors that drive costs of software maintenance and 

evolution. The results from this review constitute important elements of the study design. 

We believe that this review will be useful by other research and measurement programs, 

and will facilitate a more effective accumulation of knowledge from empirical studies of 

software maintenance and evolution. 
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Appendix A. Summary of Extracted Data 

The three main classes of included studies are listed in Tables A1, A2 and A3. Within each 

class, the studies are listed in chronological order. In Tables A2 and A3, an asterisk (*) is 

used as an indication that the variable was statistically significant, at the level applied by 

the authors of the papers, in multivariate statistical models. Table A4 summarizes business 

context, measurement procedures and extent of data collection in the reviewed studies. 
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Table A1. Characterize the work performed on evolving systems (Goal 1) 

Study Category:Goal Indicators and change attributes 
Arnold and 
Parker [44] 
 

1.2: Manage the 
maintenance 
process 
 

Change count by: 
� Maintenance type (fix, enhance, restructure) 
� Status (solved requests vs. all requests), per maintenance type 
� Change effort (little/moderate vs. extensive) per maintenance type 
Measures were compared to local threshold values for several systems 

Weiss and 
Basili [42] 
 

1.1: Assess 
maintenance 
performance in 
ways that permit 
comparisons 
across systems 

Change count by: 
� Defect source (req. specification, design, language, …) 
� Change effort (<1hr, <1day, >1day) 
� Quality focus (clarity, optimization, user services, unknown) 
� Maintenance type (change, fix non-clerical error, fix clerical error) 
� Change span (number and identity of changed components) 
� Detection (test runs, proof techniques, and more) 
� Change effort (design, code: <1hr, <1day, >1day, unknown) 
Measures were compared between projects/systems 

Rombach, 
Ulery et al. 
[41] 
 

1.1: Understand 
maintenance 
processes, in 
order to improve 
initial 
development and 
management of 
maintenance 
projects 

Change count by: 
� Maintenance type (adapt, correct, enhance, other) 
� Change effort (<1hr, <1day, >1day) 
Average number of  
� Change size (source lines + modules added, changed and deleted) 
Compare development to maintenance with respect to proportion of 
� Change effort (<1hr, <1day, >1 day) per activity  
� Defect type (initialization, logic, interface, data, computational) 
� Defect source (specification, design, code, previous change) 

Abran and 
Hguyenkim 
[43] 

1.2: Analyze and 
manage 
maintenance 
effort  

� Distribution of change effort by maintenance type (corrective, 
adaptive, perfective, user) by system and year 

� Average change effort, per maintenance type, system and time 
 

Basili, 
Briand  al. 
[37]  

1.1: Improve 
understanding 
and 
predictability of 
software release 
effort  

Distribution of change effort by 
� Activity (analysis, design, implementation, test, other) 
� Activity, for costliest projects/systems 
� Activity, compared between maintenance types (correct, enhance)  
� Maintenance type (adapt, correct, enhance, other) 
� Origin (user, tester) 
 
� Compare change count and change size (LOC), between origins 

(internal tester, user) 
Stark [45] 1.2: 

Control customer 
satisfaction, 
maintenance cost 
and schedule 

Time trend in proportions of  
� Delayed (delayed vs. not delayed) 
� Status (solved vs. not yet solved)  
� Status (rejected vs. not rejected) 
� Change interval used to close urgent requests 
� Change count and change effort by defect type/maintenance 

type/quality focus (computational, logic, input, data handling, output, 
interface, operations, performance, specification, improvement) 
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Table A1. Continued 

Study Category: Goal Indicators and change attributes 
Gefen and 
Schneberger [51] 

1.4: Investigate the 
homogeneity of the 
maintenance phase, 
with respect to the 
amount of change 

� Time trend in change count 
� Time trend in change count, by maintenance type (requirement 

change, programming related fix) 
� p-value and coefficient value in regression models of time vs. 

change count in time period, and per maintenance type 
� p-value in t-test of difference between time periods with respect 

to maintenance type (correct, adapt) and change count 
Burch and Kung 
[50] 

1.4: Understand 
time  trends of 
changes 

� Time trend in change count, by maintenance type (support, fix, 
enhance), using statistical models 

Briand, Kim et al. 
[39] 

1.1: Assess and 
improve quality 
and productivity of 
maintenance 

� Qualitative summaries, based on interviews and questionnaires, 
of factors that influence maintenance performance (focused on 
product defects), related to development organization, process, 
product and people 

Lam and 
Shankararaman 
[40] 

1.1: Assess trends 
in maintenance 
performance 

� Average change effort, by component type (domain specific) 
� Change count, by type and time period 
� Change count that resulted in defect, by time period 

Kemerer and 
Slaughter [21] 

1.4: Identify and 
understand the 
phases through 
which software 
systems evolve 

� p-values and coefficient in regression model of time vs. change 
count 

� Degree to which certain maintenance types occur together over 
time, by using gamma analysis [79]. 31 sub-types of corrective, 
adaptive, enhancive and new changes were used 

Ng [46] 1.3: Understand 
ERP maintenance 
effort 

� Change effort and change count by origin (service provider, end-
client) and maintenance type (fix, enhance, master data) 

Perry, Siy et
al.[48] 

1.3: Understand 
parallelism in 
large-scale 
evolution 

Change (at three levels of granularity) count by 
� Change interval (number of days) 
� Status (being worked on, not being worked on) 
� Change span (number of files) 
� Developer span (see Table 3) 

Bergin and 
Keating [38] 

1.1: Assess 
changeability of a 
software system 

� Change size (percentage change to the software required by 
seven typical changes) 

Mohagheghi, 
Conradi et al. [52] 

1.4: Investigate the 
nature of change 
requests in a typical 
project 
 

Proportions, and p-value for one-proportion tests of  
� Quality focus (functional vs. non-functional changes) 
� Origin (inside vs. outside development organization) 
� Time (before vs. after implementation and verification) 
� Status (accepted vs. not accepted), in total and per release 

 
Nurmuliani and 
Zowghi [47] 

1.3: Measure 
requirements 
volatility in a time-
limited project 

� Time trend in maintenance type (add, delete, modify 
requirement) 

� Time trend in quality focus  
� Change interval, by maintenance type and quality focus 
� Mean predicted change effort, by maintenance type and quality 

focus 
Purushothaman 
and Perry [49] 

1.3: Understand the 
nature of small 
code changes 

� Change count by maintenance type (corrective, adaptive, 
perfective, inspect) compared between small and larger changes 
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Table A2. Assess change attributes that explain change outcome (Goal 2) 

Study Study goal and dependent 
variables (DV) 

Independent variables 
of change request, 
change task, change set 
and delta 

Independent 
variables of 
system,  
components or 
revisions 

Independent 
variables of  
human 
resources/ 
organization 

Maya, Abran 
et al. [60] 

2.3: Propose and validate 
function points as measure 
of change size, for the 
purpose of productivity 
assessment and prediction 
DV: Change effort 

Function points (fine 
granularity for 
complexity) 
 

Not used Not used 

Graves and 
Mockus [53]   

2.1: Identify change 
attributes that influence 
change effort and to find 
evidence of code decay 
DV: Change effort 

Maintenance type* 
Change span (check-
ins)* 
Change interval 

Not used 
Time* 

Developer id 
 

Schneide- 
wind [54] 

2.1 : Understand how 
change request attributes 
relate to process and product 
quality, and build quality 
prediction models 
 
DV: Change caused defect 
 

Maintenance type 
Subjective complexity 
Change size * 
Change span ( 
# requirements affected, 
modules affected)  
Change effort (code, 
test) 
Execution resources* 
Request criticality* 

Criticality  
Code volatility 
Data operation 
 

Developer span  
Requirements 
instability* 
Test effort 
 

Atkins, Ball 
et al. [55] 

2.2: Evaluate the impact of a 
tool (version editor) 
DV: Change effort, change 
interval, change caused 
defect 

Maintenance type* 
Change size 
Change span (# check-
ins) 

Not used Tool use* 
(version editor 
used) 

Herbsleb and 
Mockus [57] 

2.2: Evaluate the impact of 
project decentralization  
DV: Change interval 

Maintenance type* 
Change span (check-
ins, modules)* 
Request criticality* 

Not used Developer span*  
Time (date)* 
Location*  

Rostkowycz, 
Rajlich et al. 
[58] 

2.2: Assess the cost-benefit 
of re-documenting software 
components 
DV: Change effort 

Change span Documentation 
quality* 

Time (date)* 

Geppert, 
Mockus et
al.[56] 

2.2: Assess effect of 
refactoring 
DV: Defects, change effort, 
change size, change span 

Not used Code quality 
(affected code 
refactored)* 

Not used 

Arisholm [59] 2.3: Validate measures of 
structural attributes, adapted 
for changes, as indicators of 
changeability 
DV: Change effort 

Change size 
 

Structural 
attributes 
weighted by 
change size 
Export coupling* 
Class size* 

Not used 
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Table A3. Predict the outcome of changes (Goal 3) 

Study Study goal and dependent 
variables (DV) 

Independent variables of 
change request, change 
task, change set and delta 

Independent 
variables of 
system,  
components or 
revisions 

Independent 
variables of  
human 
resources/ 
organization 

Briand and 
Basili [61] 

3.1: Validate a proposed 
process for constructing 
customized prediction 
models of change effort, 
DV: Change effort 

Maintenance type* 
Change source* 
Defect type* 
Change size  
Change span 

Not used Not used 

Jørgensen 
[65] 

3.2: Assess and compare 
modelling frameworks and 
change measures in 
predictive models  
DV: Change effort 

Change size* 
Maintenance type* 
Subjective complexity* 
Coding mode* 
Request criticality 

Technology 
(3GL/4GL) 
Age 
Size 

System 
experience 
Maintenance 
experience 

Niessink and 
van Vliet 
[67] 

3.3: Assess feasibility of 
using function points to 
predict change effort 
DV: Change effort 

Function points* 
Subjective complexity* 

Size (LOC)* Not used 

Niessink and 
van Vliet 
[13] 

3.3: Identify cost drivers 
that can be used in models 
for prediction change effort, 
in two development 
organizations 
DV: Change effort 

Change size* 
Change span (screens, 
lists, components, db 
entities, db attributes, 
temporary programs)* 
Subjective complexity* 
Change source* 

 

Size* 
Structural 
attributes  
(# GOTO’s)* 
Component 
kind* 
Documentation 
quality* 

Subjective 
experience * 
Team id* 
Requirement 
instability* 

Mockus and 
Weiss [63] 

3.1: Investigate attributes 
that influence failure-
proneness  
Construct a usable failure-
prediction model 
DV: Software failure as a 
consequence of change 

Maintenance type* 
Change size* 
Change span (subsystems, 
modules, files, check-ins, 
sub-tasks)* 
Change interval* 

Structural 
attributes (size of 
changed files) 

Developer 
span (# 
developers) 
Objective 
change 
experience* 

Evanco [62] 3.1: Develop and assess a 
prediction model for 
corrective changes 
DV: Change effort 

Change span (subsystems, 
components, compilation 
units affected)* 
 

Structural 
attributes  
(# parameters, 
cyclomatic 
complexity,  
# compilation 
units)* 

Not used

Polo, 
Piattini et
al.[68] 

3.3: Early prediction of 
maintenance effort 
DV: High/low change effort 

 
Maintenance type* 
Request criticality* 

 
Size(LOC, 
modules)* 
 

Not used 

Reformat 
and Wu [66] 

3.2: Assess AI techniques to 
construct predictive modes 
of corrective change effort, 
DV: Change effort 

 
Defect type* 
Subjective complexity* 
 

 
Data operation 
(accessing, 
computational)* 

Not used 

Xu, Yang et
al. [64] 

3.1: Manage customer 
satisfaction 
DV: Change interval 

 
Maintenance type* 
Change effort* 

 
Age (Task id, 
system id, 
version id) 

Not used 
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Table A4. Business context, measurement procedures and extent of data collection 

Category Sub-
category 

Value Value explanation References 

Business 
context 

Business 
model 

In-house 
Embedded 

Embedded system developed for  
internal use 

[37, 39, 41, 42, 44, 54, 
61, 62, 65, 66] 

In-house IS Information system developed 
for internal use 

[13, 21, 43, 46, 60] 

Multi-client System developed for multiple 
business clients 

[40, 45, 47-49, 52, 53, 
55-59, 63, 64, 68] 

Single-client System developed for one 
business client 

[38, 50, 51, 67] 

Business 
domain 

Aero-space NASA [37, 39, 41, 42, 44, 54, 
61, 62] 

Telecom Switching, billing [38, 48, 49, 52, 53, 55-
57, 63, 65] 

Finance Banking, insurance [43, 58, 60, 67, 68] 
Government - [13, 46] 
Other Retail, hotel management [21, 40, 64] 
R&D SW/research tools [59, 66] 
Not reported - 

 
[45, 47, 50, 51] 

Measurement 
procedures 

Data origin Natural Measurements relied on 
footprints of change process  

[13, 37, 39, 41-44, 54, 
59, 61, 65, 66] 

Purpose Data was created for the purpose 
of measurement 

[21, 38, 40, 46-50, 52, 
53, 55-57, 62, 63, 67, 
68] 

Mixed Combination of Natural and 
Purpose  

[45, 51, 58, 60, 64] 

Extraction 
of measures 

Expert Expert resources required for 
measure extraction 

[13, 21, 38, 44, 47, 54, 
60, 66-68] 

Clerical Non-expert resources required 
for measure extraction 

[37, 39-43, 45, 51, 58, 
61, 65] 

Automated Measure extraction  was 
automated 
 

[46, 48-50, 52, 53, 55-
57, 59, 62-64] 

Extent of data 
collection 

Change 
count 

< 25 percentile  # changes <=  127 [13, 38, 41, 47, 54, 58, 
59, 65] 

25 to 75 prcntl. 127 < # changes <= 2945 [37, 42-46, 50-53, 56, 
60-62, 66, 67] 

75 to 95 prcntl. 2945 < # changes <= 20902 [48, 55, 57, 63, 64, 68] 
> 95 prcntl. # changes > 20902 [21, 49] 
Not reported  [39, 40] 

Duration < 25 percentile # months <= 18 [13, 37, 59, 64, 65, 67, 
68] 

25 to 75 prcntl. 18 < # months <= 60 [41-43, 45, 46, 51-53, 
55, 57, 58, 60] 

75 to 95 prcntl. 60 < # months <=195 [48-50, 63] 
> 95 prcntl. # months > 195 [21, 54] 
Not reported  [38-40, 44, 56, 61, 62, 

66] 
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Abstract  

Making changes to software systems can prove costly and it remains a challenge to 

understand the factors that affect the costs of software evolution. This study sought to 

identify such factors by investigating the effort expended by developers to perform 336 

change tasks in two different software organizations. We quantitatively analyzed data from 

version control systems and change trackers to identify factors that correlated with change 

effort. In-depth interviews with the developers about a subset of the change tasks further 

refined the analysis. Two central quantitative results found that dispersion of changed code 

and volatility of the requirements for the change task correlated with change effort. The 

analysis of the qualitative interviews pointed to two important, underlying cost drivers: 

Difficulties in comprehending dispersed code and difficulties in anticipating side effects of 

changes. This study demonstrates a novel method for combining qualitative and 

quantitative analysis to assess cost drivers of software evolution. Given our findings, we 

propose improvements to practices and development tools to manage and reduce the costs. 

1 Introduction 
Software systems must adapt to continuously changing environments [1]. With a greater 

understanding of the cost of software evolution, technologies and practices could be 

improved to act against typical cost drivers. Development organizations could also make 

more targeted process improvements and predict cost more accurately in their specific 
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context. Researchers have used varied approaches to understand the cost of software 

evolution. One class of studies has investigated project factors, such as maintainer skills, 

the size of teams, development practices, and documentation practices, [2-5]. Other studies 

have examined how system factors, such as structural attributes of source code, relate to 

the ease of changing software [6-8]. A third class of studies has focused on human factors 

and probed individual cognitive processes of developers attempting to comprehend and 

change software [9]. 

A premise set forth in this paper is that software evolution consists of change tasks that 

developers perform to resolve change requests, and that change effort, i.e., the effort 

expended to perform these tasks, is a meaningful measure of software evolution cost. Thus, 

by identifying the drivers of change effort, we can better understand the cost of software 

evolution. 

Change effort might be affected by such factors as type of change, developer experience 

and task size. This study distinguishes between a confirmatory analysis testing the effect of 

factors important in earlier change-based studies, and an explorative analysis identifying 

factors that best explain change effort in the data at hand. This is also the first study we are 

aware of that combines quantitative and qualitative analysis of change tasks in a systematic 

manner. The purpose was to paint a rich picture of factors involved when developers spend 

effort to perform change tasks. Ultimately, our goal is to aggregate evidence from change-

based studies into theories of software evolution. 

The main contributions of this paper are threefold: First, from a local perspective the 

study results can improve practices in the two investigated projects. For example, the study 

identifies specific factors that were insufficiently accounted for when the projects 

estimated change effort. Second, from the software engineering perspective, it clarifies 

factors that drive cost of software evolution. For example, the study identifies commonly 

used design practices with an unfavorable effect on change effort. Third, from the

empirical software engineering perspective the paper demonstrates a methodology of 

qualitative and quantitative analysis of software changes to assess factors that affect the 

cost of software evolution. 

The remainder of this paper is organized as follows: Section 2 describes the design of 

the study, and includes a measurement model based on a literature review of empirical 

studies of software change. Sections 3 and 4 provide the results from the quantitative 

analysis, while Section 5 provides the results from the qualitative analysis. Section 6 
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summarizes the results of the analysis and discusses the consequences. Section 7 discusses 

threats to validity, and Section 8 concludes. 

2 Design of the Study 
2.1 Research Question 
The study addresses the following overall research question:  

From the perspective of developers handling incoming change requests during 

software evolution, which factors affect the effort required to complete the change 

tasks? 

In principle, a change can be viewed as a small project involving analysis, design, coding, 

testing and integration. The projects under study used lightweight development practices, 

and did not, for example, maintain the requirements or high-level design documents used 

for initial development. Most of the factors under study therefore pertain to coding-centric 

activities. Change trackers and version control systems were essential tools in order to 

maintain traceability and control of the evolving software. The regression models built for 

the quantitative analysis used data collected from such systems. 

Because regression analysis essentially models statistical relationships between 

variables, evidence from such analysis is not sufficient to claim causal effects of the 

modeled factors. Also, there are many sources of unexplained variability in models of 

change effort, due to activities that leave no traces in change management systems. 

Examples of such activities can be informal discussions among developers, code 

comprehension activities and the maintenance of artifacts that are not fully traced in 

change management systems. To identify complementary factors affecting change effort, 

we therefore interviewed developers about effort expenditure for recently completed 

change tasks. Also, we relied on the interview data to reveal more about the involved 

causal effects.  

2.2 Related Work and Open Issues 
A systematic literature review performed by the authors identified 34 studies analyzing 

properties of change tasks and their outcome [10]. A significant and related research 

program in the area of change-based analysis was the code decay project based at Bell 

Labs, using change management data from the evolution of a large telecom switching 

system. Important findings were effects of the type and size of changes, a time-related 
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effect contributed to code decay [11], effects of change experience [12], tool effects [13], 

and effects of refactorings [14]. Other closely related studies have found effects of 

structural attributes of changed components [15-17]. Subjectively assessed complexity and 

the size increase are other factors found to be important [18, 19].Still, the evidence on 

factors that affect change effort is scattered, and it is unclear whether factors investigated 

in earlier change-based studies capture the most important cost drivers. The moderate or 

poor accuracy obtained in prediction models of change effort [18-20] indicate that 

important factors are not fully captured by quantitative data on changes. To attempt to 

clarify these issues, we established the comprehensive literature-based measurement model 

described in Section 2.6, wanting to answer: 

1. Did the factors identified from earlier change-based studies consistently affect change 

effort? 

2. How accurate were change effort models built from change management data? 

3. What was the added value of using a larger number of candidate measures in the 

models? 

Change-based studies have shown consistent correlations between change effort and 

change set dispersion, typically measured by the number of source code components 

affected by a change [16, 19, 21]. This recurring statistical correlation, also expected in this 

study, may simply capture an effect of size. Mockus and Graves found that measures of 

change set dispersion explained more variability than did counts of changed lines of code 

[11], indicating that dispersion might be a separate factor. This study explores the 

following questions about change set dispersion: 

4. Did change set dispersion affect change effort, beyond what could be explained by size 

alone?  

5. What explained the effect of change set dispersion on change effort, e.g., how was 

dispersion related to the comprehension activity?  

These questions are closely related to research on the effect of delocalized plans [22], and 

of different control styles in object-oriented designs [23]. This research suggests that 

dispersed code hinders comprehension. 

Some researchers have investigated the effects of technologies and tools on change 

effort. Jørgensen found that productivity was almost identical for changes to 3GL code 

versus changes to 4GL code [18]. Atkins et al. found that less effort was required when 

developers used a tool that supported changes to parallel versions of the system [13]. Apart 
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from these studies, the effects of using different languages and technologies have not 

received much focus in change-based studies. Given an effect of change dispersion in the 

quantitative models of change effort, we wanted to answer: 

6. Was the effect of change set dispersion stronger when several languages or technologies 

were involved in changes?  

Schneidewind focused on factors that can be assessed early in the change cycle, and found 

that the number of modifications to a proposed change was significantly correlated with 

fault proneness [24]. Iterative and agile processes take a different viewpoint, 

recommending that changes to requirements should be considered useful [25]. A relevant 

issue is therefore whether software organizations must differentiate between types of 

volatility in requirements. The study explores the following question: 

7. Under which circumstances did change request volatility have the largest effect on 

change effort? 

A large body of research exists on how structural attributes affect change activity [26]. 

Eick et al. found that the history of code changes was more responsible for problems than 

measurable aspects of code complexity [21]. On the other hand, Niessink and van Vliet 

showed that change effort correlated with size of the changed components [20]. Likewise 

Arisholm found a relationship between structural attributes of affected Java classes, and 

change effort [15]. We wanted to answer: 

8. Which structural properties of source code had the largest effect on change effort?  

Several studies have shown that change effort differs between types of changes, c.f. [17, 

27]. Most studies used one category for corrective changes and one or more categories for 

non-corrective changes, e.g., perfective and adaptive changes [28]. Some researchers [29, 

30] used fine-grained categories for corrective changes, similar to those proposed by 

Chillarege et al. [31]. In this study we wanted to use a bottom-up approach, generating 

categories for changes on the basis of the data at hand. We wanted to answer: 

9. What kind of changes required most effort? 

Differences in developer skills may potentially overshadow any other phenomenon in 

software development [32]. Mockus and Weiss used historical change management data to 

measure developers’ experience objectively [12], while Jørgensen used subjective 

measures of skill and experience [18]. This study explores the question: 
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10. Which particular skill shortages had the largest effect on change effort? 

Summarized answers to the questions are provided in Section 6. Most of the analyses for 

the questions above required that change management data was complemented with 

interview data.  

2.3 Overview of Case Study Procedures 
Figure 1 summarizes the case study procedures. Proposals for the case study were 

generated on the basis of empirical evidence from a systematic review of change-based 

studies [10]. Quantitative data to describe change tasks, including change effort, was 

extracted from change trackers and version control system in two software projects, 

henceforth labeled project A and B.  

An evidence-driven analysis tested whether a small set of pre-selected measures 

contributed to change effort in statistical regression models. These measures captured cost 

factors important in earlier change-based studies. In the data-driven analysis, a wider set of 

factors and measures were input to statistical procedures designed to identify the models 

that best explained variations in change effort.  

Roughly once a month, we interviewed the developers about recent change tasks and any 

circumstances making the task easier or more difficult. The interviews aimed to identify 

additional or more fundamental cost factors than those identified by the quantitative 

analysis. To achieve this goal, the analysis focused on the changes that had required 

considerably more or less effort than predicted from the regression models, i.e., the 

residuals were large.  

The evidence from the different parts of the analysis was compared and integrated into a 

set of joint results. This constitutes the basis for discussing consequences from the three 

perspectives mentioned in the introduction. 

With this design, we move towards a theory on software change effort that would be 

valuable both for researchers and practitioners within software engineering.  
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Figure 1. Overview of analyses 

2.4 Generalization of Case Study Results 
The case study paradigm is appropriate when investigating complex phenomena, especially 

when it is difficult to separate the investigated factors from their context [33]. In software 

development and software evolution, social and human factors interact with technological 

characteristics of the software. We chose the case study method because we wanted to 

consider the full complexity of factors affecting change effort in a realistic context. 

A main concern with case studies is whether it is possible to generalize results beyond 

the immediate study context. Case study methodologists recommend that studies are 

designed to build or test theories. Theories can then explain, predict and manage the 

investigated phenomenon in some future situation, and are therefore useful to generalize 

from case studies. Because we are not aware of theories that are directly relevant to the 

research question, the proposals for this study were based on a systematic review of 

relevant empirical evidence. In other words, the systematic review of empirical evidence 

takes the place of theories in this study.  

In particular, the evidence-driven analysis was essential to generalize from this study 

because it was designed to confirm, refute or modify the current empirically based 

knowledge about factors that correlate with or affect change effort. The role of the data-

driven analysis was to discover additional relationships within the investigated projects, 

and to generate proposals for further confirmatory studies. 

The qualitative analysis aimed at refining the quantitative results. For example, while 

regression analysis could show that more effort is expended when a particular 

programming language was used, interviews could reveal that developers used this 
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programming language for a particular type of task, say, to interface with hardware. This 

allows appropriate use of the study results in other contexts. 

 The results of this study are inevitably influenced by context factors pertaining to the 

development organizations in the data collection period. Understanding these factors 

makes it easier to judge the applicability of the results in a new context. By replicating the 

study across two development organizations, and comparing the results and the 

organizations, we were able to evaluate some of these context factors. Data was collected 

over a relatively short period of time. Although this was a pragmatic choice, analyzing data 

in a relatively narrow time span can make cost factors more clearly visible, see, e.g., [13]. 

2.5 Case Selection and Data Collection 
We approached medium and large-sized software development organizations in the 

geographic area of our research group during 2006, using procedures that conformed to 

those described in [34]. The participants had to grant access to the planned sources for 

quantitative and qualitative data, to use object-oriented programming languages, to have 

planned development for at least 12 months ahead, and to use a well-defined change 

process that included some basic data collection procedures. The recruitment phase ended 

when we made agreements with two projects, henceforth named project A and project B. 

Project A develops and maintains a Java-based system that handles the lifecycle of 

research grants for the Research Council of Norway. A publicly available web interface 

provides functionality for people in academia and industry to apply for research grants, and 

to report progress and financial status from ongoing projects [35]. Council officials use a 

Java client to review the research grant applications and reports. The system integrates 

with a number of other systems, such as a web publishing system. The consultancy 

company that we cooperated with was subcontracted by the Council to make 

improvements and add functionality to the system. For the most part, the contractor was 

paid per hour of development effort. Most change requests originated from the users at the 

Council. Roughly once a month, the development group agreed with user representatives 

and the product owner on changes for the next release.  

Project B develops and maintains a Windows PocketPC system written in Java and C++. 

The system allows passengers on the Norwegian State Railways [36] to purchase tickets 

on-board, and offers electronic tickets and credit card payment. The system integrates with 

a back-end accounting system that is shared with other sales channels. The consultancy 

company that we cooperated with had been subcontracted by the Norwegian State 
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Railways to develop the system. Most change requests originated from the product owner 

and user representatives. The members of the development group prioritized and assigned 

development tasks directly in the change tracker, or as part of short and frequent meetings. 

New versions of the system were released roughly once a month. For the most part, the 

contractor was paid per hour of development effort. 

Both projects were medium-sized with extensive change activity. Three to six 

developers were making code changes to the systems in each of the projects. Figure 2 and 

Figure 3 illustrate change activity and system size over a period of 30 months. Project A 

deployed the first version of their system in Q1 2003, while project B deployed the system 

in Q1 2005. The apparent dip in system size for project A around Q3 in 2005 was due to a 

major reorganization of the software that included a change in the technology platform. 

According to the developers, this change eased further development, and they perceived 

the project to be in a relatively healthy state during the period of measurement.  

Figure 2. Accumulated number of check-ins     Figure 3. System size, in lines of code 

  

Table 1. Key information about collected data 

 Project A Project B 

Number of analyzed changes 136 200 

Total effort of analyzed changes  1425 hours 1115 hours 

Changes discussed in interviews 120 65 

Period for data collection Jan 2007-Jul 2007  Aug 2006 – Jul 2007 

Version control system IBM Rational Clearcase LT [37] CVS [38] 

Change tracker Jira [39] Jira [39] 

Total duration of interviews 20 hours 10 hours 

Total time charged for data 

collection 

18 hours 14 hours 
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It was crucial for the analysis that changes to source components could be traced to change 

requests, and that data on change effort was available. The developers recorded the 

identifier of the change request on every check-in to the version control system. During 

and after each change task, the effort expended on detailed design, coding, unit testing and 

integration was recorded in the change tracker. Interviews were conducted on a monthly 

basis, discussing each change according to the interview guide shown in Appendix A.  

The interview sessions allowed us to remind the developers to accurately report code 

changes and change effort according to the agreed procedures (question 3 in the interview 

guide). To further increase commitment to data collection, the companies could charge 

their normal hourly rate for data collection time. In sum, we believe these steps resulted in 

accurate and reliable quantitative data, although some measurement noise is inherent to 

this kind of data.  

Prior to the analysis, four and six data points were removed from project A and B, 

respectively, because they corresponded to continuously ongoing maintenance activities, 

rather than independent and cohesive tasks. 

2.6 Measurement Model 

Figure 4. Key terms and concepts 

This study’s perspective is that software evolution is organized around the change task. A 

conceptual model for change-based studies is given in Figure 4. A change task is a 

cohesive and self-contained unit of work triggered by a change request. In these projects, a 

change task consists of detailed design, coding, unit testing and integration. A change task 

is manifested in a corresponding change set. A change set consists of revisions, each of 

which creates a new version of a component of the system. The new version can be based 
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on a pre-existing version of the component, or it can be the first version of an entirely new 

component.  

A system is deployed to its users through releases. A release is built from particular 

versions of the components of the system. A release can also be described by the change 

sets or corresponding change requests that it incorporates. The term change aggregates the 

change task, the originating change request, and the resulting change set. Changes involve 

human resources, and are managed and resolved by the development organization. 

Changes can be hierarchical, because large changes may be broken down into smaller 

changes that are more manageable for the development organizations. 

Table 2. Summary of measures 

Entity Factor Measure Explanation of measure 
Change task Change effort  ceffort Time expended to design, code, test, and 

integrate change, tracked by developers 
Used as response variable in the study. 

Change 
request 

Change request 
volatility 

crTracks* 
crWords 
crInitWords 
crWait

-Change tracks for CR before first check-in 
-Words in CR before first check-in 
-Words in original CR  
-Calendar time before first check-in 

Change type isCorrective* -Classification + text scanning 
Change set Change set size components* 

addLoc 
chLoc 
delLoc 
newLoc 
segments 

-Changed components 
-Measures collected by  
parsing side-by-side  
output (-y) 
of unix/linux diff 
-diff –y v2 v1 |  cut –c65 | tr –d ‘\n’  | wc –w 

Change set 
complexity 

addCC 
delCC 
addRefs 
delRefs 

Parse output of diff to measure the number of 
structural elements added and deleted. 
Measures control-flow statements and 
reference symbols (. -> ) 

Component 
version 

Structural 
attrib.: 
Size 
 
Coupling 
 
Control flow 

avgSize* 
cpSize 
avgRefs 
cpRefs 
avgCC 
cpCC 

 
-Average/weighted (by segments) size of 
changed components 
-Average/weighted (by segments) number of 
references to members of imported 
components  
-Average/weighted (by segments) number of 
control flow statements 

Component Language 
heterogeneity 

filetypes -Unique file types that were changed  

Specific 
technology  

hasCpp (A) 
hasWorkflow 
(B) 

-Change concerns C++ code 
-Change concerns the workflow engine 

Code volatility avgRevs -Average number of earlier revisions 
Human 
resource and 
Revision 

Change 
experience 
 
 

systExp* -Avg. previous check-ins by developers 
techExp -Avg. previous check-ins on same file types 
packExp -Avg. previous check-ins in same package 
compExp -Avg. previous check-ins in same components 
devspan -Number of developers participating in change 

Development 
organization 

Project identity isA* 1 if change belongs to project A 
0 if change belongs to project B 
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The measures used as explanatory variables in quantitative models of change effort 

captured factors pertaining to the entities of the model shown in Figure 4. Table 2 provides 

a summary of the relationships between entities, factors and measures. For each factor, we 

select one primary measure and zero or more alternative measures. The primary measures 

are used as explanatory variables in models for the evidence-driven analysis. These models 

are a reference point allowing us to assess the added value of the data-driven analysis, 

where we build optimized, project-specific models using all the described measures as 

candidate variables. We preferred primary measures that were likely to be robust to 

variations in measurement context, that have been used and validated in previous empirical 

studies, and that were measurable or assessable at an early stage in the change cycle. 

Measures are written in italics, while primary measures are marked with an additional 

asterisk (*). Summary statistics and correlations for the measures are provided in [40]. 

2.6.1 Change Request Volatility 
Modifications or additions that the developers or other stakeholders make to the original 

change request, the change request volatility, can indicate uncertainty or other problems in 

envisioning the change incorporated into the system. Such problems could propagate to the 

coding phase and affect change effort. In [24], the number of modifications to change 

requests correlated with fault proneness. In [19], the number of new requirements to 

change requests loaded on a principal component that correlated with change effort. A 

straightforward measure of change request volatility is the number of modifications to the 

original change request, as recorded in the change tracker (crTracks*). Related, candidate 

measures include the number of words in the original change request (crInitWords), the 

number of words in all modifications to the change requests (crWords), and the elapsed 

time from when a stakeholder created the change request until a developer started the 

change task (crWait). 

2.6.2 Change Set Size 
The change set size reflects the differences between the current and preceding versions of 

changed source components. The intuitive notion that this affects change effort is verified 

by previous studies [11, 18, 19, 41]. Other studies have shown that after controlling for 

change type or structural complexity of changed components, discussed below, change set 

size is not necessarily a significant factor [13, 15, 29]. A coarse-grained measure of change 

set size is the number of source components that were changed during the change task 

(components*). Finer granularity measures use text difference algorithms [42] to measure 
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the number of lines of code (LOC) that were added (addLoc), deleted (delLoc) and 

changed (chLoc). Added code in existing components can be differentiated from code in 

newly created components (newLoc). Comments and whitespace were removed before 

computing these measures. 

We selected a coarse-grained measure of change set size because there is evidence that 

these perform equally well or better than LOC-based measures [11]. LOC counts are less 

meaningful in technologically heterogeneous environments, and when tools that generate 

code automatically are used. Furthermore, LOC counts may become high for conceptually 

trivial changes, such as when program variables or methods are renamed. For estimation of 

change effort, it is probably easier to estimate the number of components to change than 

the number of lines of code to change. An alternative, medium-grained measure counts the 

number of disjointed places in the existing code where changes were made (segments). 

2.6.3 Change Set Complexity 
If the structural complexity of the change set is high, e.g., if there are many changes to the 

control-flow, an increase in change effort beyond the effect of change set size could be 

expected. Except for one study in the authors’ research group [43], we are not aware of any 

studies investigating this effect of change set complexity on change effort. Fluri and Gall 

showed that measures of edits to the abstract syntax trees of individual components predict 

ripple effects better than measures of textual differences [44]. We constructed two 

measures to capture the number of added control-flow statements and added references to 

members of external components, addCC and addRefs. Corresponding measures were 

constructed for deleted control-flow statements and deleted references to members of 

external components, delCC and delRefs. Because these are likely to correlate with 

measures of change set size, and they are experimental in nature, we only used these 

measures in the data-driven analysis.  

2.6.4 Change Type 
Changes can be described according to their origin, importance, quality focus, and other 

criteria. In change-based studies, the change type has been important in order to understand 

change effort [11, 13, 17, 18, 29]. Corrective, adaptive or perfective change types, as 

suggested by Swanson [28], was the most commonly used classification schema. A 

recurring result from existing change-based studies is that corrective changes are more 

time consuming than other types of change, after controlling for change set size [11, 45]. 

This does not contradict results that have shown that the mean effort for corrective changes 
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is lower than for other change types [17], because corrective changes tend to have smaller 

change set size [46].  

Corrective and non-corrective changes (isCorrective*) are the primary measure of 

classification in the analysis. This decision was based on the results from a field 

experiment in one of the projects, which showed that developers’ classification into fine-

grained change types was unreliable [47]. To further increase reliability of the measures, 

we combined the categorizations performed by the developers with textual search for 

words like “bug”, “fails” and “crash” (in the native language) in change request 

descriptions. 

2.6.5 Structural Attributes of Changed Components 
The structural attributes code relevant to the change may affect comprehension effort 

involved in a change task. [48, 49]. Many change-based studies have investigated whether 

the size of changed modules (avgSize*) correlate with change effort [15, 18-20, 44]. 

Arisholm showed that size and certain other structural properties of the changed source 

components were correlated with change effort [15]. We constructed alternative measures 

of control flow complexity and coupling in the changed components. The first measure 

takes the average number of control-flow statements (avgCC) in the changed components, 

while the second takes the average number of references to members of imported 

components, of each changed component (avgRefs). Variations of the measures were 

constructed by weighting the measures by the relative amount of change in each 

component (cpSize, cpCC and cpRefs), as proposed in [15]. 

2.6.6 Code Volatility 
While many components rarely change, some are involved in a large proportion of the 

change tasks. We propose that the code volatility or change proneness will affect change 

effort, and that change prone components require less effort, simply because developers are 

more experienced with changing these components. Conversely, changes to infrequently 

changed components represent unfamiliarity, and may also indicate more fundamental 

changes. Higher code volatility could also result in increased change effort, because 

frequently changed modules may experience code decay [21]. However, in the investigated 

projects, components believed to have decayed due to frequent changes were re-factored, 

and we therefore expected this effect to be limited. The number of historical revisions, 

averaged over all changed components (avgRevisions), captures code volatility of changed 

components. Several researchers have used volatility of individual components as a 
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predictor of failure proneness, see e.g., [50]. However, we are not aware of studies that 

have investigated the relationships between code volatility and change effort. Due to this 

lack of existing empirical evidence we only used this measure in the data-driven analysis. 

2.6.7 Language Heterogeneity
Language heterogeneity refers to the number of different programming languages involved 

in a change. Using many languages may increase change effort, because it sets higher 

demands on developer skills and integration challenges may arise. One simple way to 

measure language heterogeneity is to count the number of unique file name extensions 

among the changed components (filetypes). For example, changing one java-file and one 

properties-file would give a count of two. We are not aware of studies that have 

investigated how language heterogeneity affects change effort. Due to the lack of existing 

empirical evidence we only used this measure in the data-driven analysis. 

2.6.8 Specific Technology 
Use of a specific technology can affect change effort. For example, Atkins et al. showed 

that when developers used a tool that supported evolution of system variants, change effort 

was significantly reduced [13]. In project B, functionality interfacing with hardware was 

written in C++. We propose that changes that involve C++ will be more expensive to 

change than other code, which was predominantly written in Java. One rationale is that 

more specialized knowledge is required to develop code that interfaces to hardware. An 

effect of the lower abstraction level in C++ as compared to Java would work in the same 

direction. The binary measure hasCpp evaluates to true if any of the changed components 

were written in C++. Project A used a Java-based workflow engine as an important part of 

the technological basis. Although the project assumed that they benefited from the high 

abstraction level of this technology, we wanted to investigate whether the changes 

involving the workflow engine were different with respect to change effort. The binary 

measure hasWorkflow evaluates to true if any of the changed components were based on 

the technology of the Java-based workflow engine. 

2.6.9 Change Experience 
Experiments have shown that there can be large productivity differences between 

individual developers [51, 52]. Because we were not allowed to assess individuals, we used 

measures of change experience to assess one important source of individual differences. A 

basic measure is the total number of previous check-ins by the developer who performed 

the change (systExp*). Other measures include the average number of earlier check-ins of 
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the changed components (compExp), packages (packExp) or technologies (techExp). If 

several developers were involved in the change, the averages of the measures were used, 

weighted by the number of components changed by each developer. Similar measures were 

used in [12]. In that study, the coarsest-grained measure (systExp) significantly affected the 

response variable capturing failure proneness, while the other measures did not. 

2.7 Analysis of Quantitative Data 
2.7.1 Statistical Procedures 
Change effort was used as the response variable for all statistical models. The measures 

discussed in Section 2.6 were used as candidate explanatory variables. The regression 

model framework was Generalized Linear Models (GLM) with a gamma response variable 

distribution (sometimes called the error structure) and a log link-function, see [53]. One 

reason to assume gamma-distributed responses was that the effort data distribution has a 

natural lower bound of zero and was right-skewed with a long right tail. A log link 

function ensures that predicted values are always positive, which is appropriate for wait-

time data. The size of effect of a specific explanatory variable xn is assessed by the 

proportional change in expected change effort that results from a change to xn. Because a 

log link-function is used, the proportional change in expected change effort becomes: 

 

Cross-project models were constructed to identify effects that were present in both 

projects, and to formally test for project differences. Project-specific models were 

constructed to identify effects specific to each project, and to quantify those effects. 

The p-values, sign and magnitude of the coefficients are inspected to interpret the 

models. The significance level is set to 0.05. This means that for a variable to be assessed 

as significant, the probability that the variable has no impact must be less than 5%. It is 

difficult to interpret coefficients when there is a high degree of multicollinearity between 

the explanatory variables. In the evidence-driven analysis we attempted to reduce 

multicollinearity by selecting primary measures designed to capture independent factors. In 

the data-driven analysis, the results from a principal component analysis identified 

orthogonal factors in the data sets. The actual amount of multicollinearity in the fitted 

models was measured by the variance inflation factor (VIF). If the VIF is 1, there is no 

multicollinearity. If VIF is very large, such as 10 or more, multicollinearity is a serious 

problem according to existing rules-of-thumb [54].  
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2.7.2 Measures of Model Fit 
We chose the cross-validated mean and median magnitude of relative error to assess the fit 

of models. The basis for these measures is the magnitude of relative error (MRE) which is 

the absolute value of the difference between the actual and the predicted effort, divided by 

the actual effort. The measures were calculated by n-fold cross-validation. With this 

procedure, the variable subset was fitted in n iterations on n-1 data points. In each iteration, 

the fitted model predicted the last data point. The mean MRE forms MMREcross, while the 

median of the values forms MDMREcross. The cross-validated measures are more realistic 

measures of the predictive ability of regression models than measures not based on cross-

validated predictions. This was particularly important during the data-driven analysis, 

where models were selected on the basis of the MMREcross-measure.  

Another measure to assess model fit is the percentage of data points with an MRE of less 

than a particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of 

the data points that have a MRE of less than 0.25 and 0.50, respectively. The Pearson and 

Spearman correlations between actual and predicted effort are also provided. 

As a reference point to assess the model performance, we calculated the measures of 

model fit for the constant model, i.e. the model that uses a constant value as predictor for 

all data points. A commonly used criteria for accepting a model as “good” is a value of less 

than 0.25 for MMRE or MdMRE, and higher than 0.75 from Pred(25) [55]. 

2.8 Collection and Analysis of Qualitative Data 
We prepared for interviews by studying data about each change request in the change 

trackers and version control systems, and attempted to understand how the changed code 

fulfilled the changes. Appendix A shows the interview guide. The interviews focused on 

phenomena that developers perceived to have affected change effort.  

The changes with the largest magnitude of relative error (MRE) from the data-driven 

analysis were selected for in depth analysis. We limited the analysis to data points with an 

MRE of more than 0.5 for underestimated changes and more than 1.3 for overestimated 

changes. These limits were set somewhat arbitrarily.  

The interviews were transcribed and analyzed in the tool Transana [56], which allows 

navigation between transcripts and audio data. This made it feasible to re-listen to the 

original voice recordings throughout the analysis. The interviews were coded in two 

phases. In phase 1, immediately after each interview session, the interviews were 

transcribed and coded according to a scheme that evolved as more data became available. 
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In phase 2, when the quantitative models had been constructed, we selected changes to be 

analyzed in depth. The focus was narrowed to categories and codes that suggested a 

relationship with change effort. Finally, the exact naming and meaning of codes and 

categories was reconsolidated to make them more straightforward and easy to understand. 

The coding schema that resulted from this process is described in Section 5. 

3 Evidence-Driven Analysis 
3.1 Models Fitted in Evidence-Driven Analysis 
Cross-project models were constructed to identify effects in both projects, and to formally 

test for project differences: 

(M1) 

(M2) 

The model M1 includes one explanatory variable for each of the primary measures. It also 

includes a project indicator (isA) allowing for a constant multiplicative between the 

projects. Model 2 adds interaction terms between the project indicator and each of the 

primary measures, allowing for different coefficients for each factor in each project. Two 

project specific models were also fitted, one for each of the two data sets: 

(M3) 

The constant models were used as yardsticks for the assessment of model fit: 

 (M4) 

3.2 Results from Evidence-Driven Analysis 
Key information about coefficients in the fitted models is provided in Table 3. A p-value 

lower than 0.05* (the chosen significance level), 0.01** and 0.001*** are indicated with 

one, two and three asterisks, respectively. 
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Table 3.  Coefficient values, significance and model fit in evidence-driven analysis 

 Cross 
project, 
M4 

Cross 
project, 
M1 

Cross 
project, 
M2 

Project A, M3 
 (w. standardized 
coefficients) 

Project B, M3 
(w. standardized 
coefficients) 

Intercept (�0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30*** 
crTracks . 0.075** 0.076** 0.08* (0.18) 0.076** (0.26) 
components . 0.098*** 0.12*** 0.076*** (0.76) 0.12*** (0.51) 
systExp . -0.000039 -0.00018** 0.000026 (0.0719) -0.00018** (-0.23) 
avgSize . -0.000033 -0.000061 -0.000011 (-0.0082) -0.000061 (-0.038) 
isCorrective . -0.28* -0.11 -0.78*** (-0.38) -0.11 (-0.050) 
isA 0.63*** 0.18 0.14 . . 
crTracks*isA . . 0.0044 . . 
components*isA . . -0.043 . . 
systExp*isA . . 0.00020** . . 
avgSize*isA . . 0.000051 . . 
isCorrective*isA . . -0.67* . . 
MMREcross 3.29 1.52 1.5192 1.86 1.32 
MdMREcross 1.43 0.69 0.6786 0.72 0.60 
Pred(25) 0.095 0.20 0.23 0.21 0.25 
Pred(50) 0.24 0.36 0.40 0.35 0.43 
Pearson corr. 0.20 0.53 0.63 0.64 0.51 
Spearman corr. 0.091 0.59 0.59 0.66 0.56 

Solving M4 for ceffort, and dividing by 3600 (because the underlying measurement unit 

is seconds) gives an expected change effort of 5.6 hours for project B. The intercept is 

higher (statistically significant) by 0.63 in project A, which gives an expected change 

effort of 10.5 hours. The significant interaction terms in M2 indicate that isCorrective and 

systExp are project specific effects. The project specific models M3 show: 

� The variable crTracks had a significant effect on change effort in all models. A 7% 

increase in change effort could be expected for each additional track in the change 

tracker. This size of effect was similar in the two projects. 

� The variable components had a significant effect on change effort in the models from 

both projects. When one additional component was changed, a 12.9% and 7% increase 

in effort could be expected in project A and B, respectively.  

� In project A, corrective changes were expected to require slightly less than half the 

effort compared to that required by non-corrective changes (e-0.780=46%), after 

controlling for differences in other variables.  

� In project B, systExp was significantly related to change effort. It was expected to 

decrease by 16.2% for every 1000th check-in performed by a developer. In project A, 

the effect was small and statistically insignificant. 

� The estimated coefficients for avgSize indicate that change effort was slightly lower 

when large components are changed, but the effects are very small and statistically 

insignificant. 
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� The standardized regression coefficients show that relative to the statistical variability 

of each variable, components had the largest effect on change effort. For example, one 

standard deviation change in components had double (project B) and quadruple effect 

(project A) than did one standard deviation change in crTracks. 

The variance inflation factor was less than 1.34 for all the coefficients in all models. The 

principal component analysis in Section 4.2.1 and the correlations reported in [40] further 

confirmed that multicollinearity was not a threat to the above interpretation of the 

coefficients. 

Plots of actual versus predicted change effort of projects A and B are provided in Figure 

5 and Figure 6, respectively. MdMREcross was down from 1.43 for the constant model to 

between 0.60 and 0.72 for the rest of the models. However, judged by commonly used 

standard [55], the model fit was relatively poor. 

Figure 5. Predicted vs. actual effort, project A   Figure 6. Predicted vs. actual effort, project B 

3.3 Discussion of Evidence-Driven Analysis 
It is interesting from a practical perspective that a relatively coarse grained, easily 

collectable and early assessable measure of change set size (components) performed well 

as a predictor of change effort. Code changes dispersed among many components could 

possibly require more effort than changing the same number of lines in fewer components. 

The data-driven analysis and the qualitative analysis investigate this topic in more depth. 

The number of updates to change requests (crTracks) can be automatically retrieved in 

an early phase of the change process, and can therefore be useful for effort estimation. The 

qualitative analysis investigates the result in more depth, aiming at actions that could 

reduce the impact of change request volatility.  

Corrective changes required less effort than non-corrective changes, although the 

difference was statistically insignificant in project B. The direction of this effect is opposite 
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to that of earlier studies. A possible explanation is that the tasks and processes involved in 

corrective vs. non-corrective changes are indeed different, but the direction of the 

difference is situation-dependent. A negative coefficient for isCorrective indicates that it is 

relatively easy to correct defects compared to making other types of changes. We consider 

this to be a favorable situation where it is important to quickly correct defects or where 

defects are associated with undesirable noise.  

The measure of system experience, systExp, was statistically significant for project B, 

but not for project A. One problem with systExp as a measure of system experience is that 

it may be confounded with system decay: The favorable effects of more experienced 

developers can be counteracted by an effect of system decay, because systExp and system 

decay may be inversely related to the underlying factor of time. 

We did not obtain any significant effect of the size of changed components. There are 

several possible explanations for this. First, because larger components probably are more 

change-prone, due to the effect of size, developers will have more experience in changing 

these components. Second, the class or the file is not necessarily the natural unit for code 

comprehension during change tasks, as discussed in the qualitative analysis in Section 5. 

4 Data-Driven Analysis 
In the data-driven analysis we explored relationships that were not originally proposed, 

assessed factors that have a weaker foundation in theory and empirical evidence, and 

evaluated the predictive power of alternative measures of the same underlying factor. 

4.1 Procedures for Data-Driven Analysis 
The measures from Table 2 were used as candidate variables in the statistical procedures 

described below. The goal was to identify the models that explained the most possible 

change effort variability, under the constraint that each model variable captured relatively 

orthogonal cost factors. We used: 

� Principal component analysis (PCA) to identify candidate variable subsets, consisting of 

uncorrelated or moderately correlated variables. Selecting among variables on the basis 

of a PCA is a common approach, see, e.g., [57] and [58]. 

� Exhaustive search among variable subsets to identify the best models, described by [59]. 

� A cross-validated measure of model fit (MMRECross) as a selection criterion [60, 61]. 

� Decision trees to identify interaction effects and non-continuous effects [62] 
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4.1.1 Identification of Main Effects 
The structure of the correlations between the candidate variables was analyzed by principal 

component analysis (PCA). Each principal component (PC) resulting from a PCA is a 

linear combination of the original variables, constructed so that the first PC explains the 

maximum of the variance in the data set, while each of the next PC’s explains the 

maximum of the variance that remains, under the constraint that the PC is orthogonal to all 

the previously constructed PC’s. The loading of each variable in PC indicates the degree to 

which it is associated with that PC. In order to interpret a PC, we inspected the variables 

that loaded higher than 0.5, after the varimax rotation [63] had been applied. The results 

from the analysis are provided in Section 4.2.1. 

The results from the PCA were used to construct all possible subsets of candidate 

variables that contained exactly one variable from each PC. This constraint prevents high 

multicollinearity in the models, making them easier to interpret. For each of the 

constructed variable subsets, regression models of change effort were fitted. The models 

with the lowest cross-validated MMRE (MMREcross) in the two projects were selected as 

the best.  

We also performed a principal component regression (PCR) [64], which is an alternative 

approach for data-driven analysis. With this approach, the linear combinations that define 

each principal component produce new variables used in the regression in place of the 

original variables. The new variables are uncorrelated, which completely eliminates the 

problem of interpreting the coefficients of correlated regression variables. This comes at 

the cost that it can be difficult to interpret the meaning of the regression variables. Because 

information from all variables is used in the regression, the approach can yield models that 

are well fitted to the data. 

The best models resulting from the PCR were compared to the models obtained from 

using a single variable as a representative for a principal component. We preferred to use 

the latter models for interpretation, but only if multicollinearity in those models was 

acceptable (measured by the variance inflation factor) and if model performance was 

similar to or better than the PCR models. 

4.1.2 Identification of Decision Tree Rules 
The goal of this step was to identify possible interaction effects and effects applying only 

to parts of the value ranges for the explanatory variables. We used a hybrid regression 
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technique that combines the explorative nature of decision trees with the formality of 

statistical regression [62].  

A decision tree splits the data set at an optimal value for one of the explanatory 

variables. The split is performed so that the significance of the difference between the two 

splits is maximized. This step is performed recursively on the splits, until a stop criterion is 

reached. The stop criterion was that a leaf node should contain no less than 15 data points.  

For use in GLM regression, a binary indicator variable was created for each of the leaf 

nodes in the resulting decision tree. Since this procedure partitions the dataset, every 

change task had the value 1 for one of the indicator variables, and 0 for the rest. Candidate 

variable subsets were generated from all possible combinations of the indicator variables 

and the main effects. The models with the lowest MMREcross were selected as the best. 

4.2 Results from Data-Driven Analysis 
4.2.1 Factors Identified by PCA 
The summary of results from the principal component analyses for project A and B are 

shown in Table 4 and Table 5, respectively.  

Table 4. Summary of principal component analysis, project A 

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A 
Load 
> 0.5 
after 
varimax 
rotation 

avgSize 
avgRefs 
avgCC 
cpRefs 
cpCC 
cpSize 

hasWorkflow 
addCC 
addRefs 
newLoc 
components 
filetypes 
devspan 

delLoc 
delCC 
delRefs 
crWait 

addLoc 
chLoc 
segments 

crWords 
crInitWords 
crTracks 

systExp 
techExp 
packExp 

avgRevs isCorrecti
ve 

Entity 
 
Factor 

Component 
version
Size

Change set 
 
Dispersion 

Change 
set:  
Rework 

Change set 

Size

Change 
request
Volatility 

Human 
resource 
Change 
experience 

Compone
nt version 
Code 
volatility  

Change 
request
Change 
type 

Table 5. Summary of principal component analysis, project B 

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B 
Load 
> 0.5 
after 
varimax 
rotation 

addLoc 
delLoc 
chLoc 
segments 
addCC  
delCC 
addRefs 
delRefs 

avgSize 
avgRefs 
avgCC 
avgRevs 
cpRefs 
cpCC 
cpSize 

components 
filetypes 
devspan 
packExp 
hasCpp 

crWords 
crInitWords 
crTracks 
crWait 

systExp 
techExp 

newLoc 
components 

isCorrective 

Entity 
 
Factor 
 

Change set

Size 

Component 
version
Size

Change set 
 
Dispersion 
 

Change 
request
Volatility 

Human 
resource 
Change 
experience 

Change set 
 
Design 
mismatch 

Change 
request
Change 
type 
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We made the following observations about the match between the conceptual measurement 

model and the PCA: 

� The factors in italics match factors described in Section 2.6. The collected measures for 

these factors are consistent with the measurement model, and capture five orthogonal 

factors in the data set: Change set size, Component version size, Change request 

volatility, Change experience and Change type. 

� PC1A and PC2B show that the suggested measures for control-flow and coupling belong 

to the same principal component as the LOC-based measures of size. The underlying 

factor captured by all these measures is the size of changed components. 

� Likewise, PC1B shows that the suggested measures of change set complexity belong to 

the same principal component as the LOC-based measures of change set size, in project 

B. 

� PC2A and PC3B contain measures that capture the dispersion of changed code over 

components, types of components and developers. We label this dimension change set 

dispersion. It is interesting that this captures a factor that is orthogonal to change set 

size. 

� PC3A contains measures of removed code. This principal component captures the 

amount of rework, apparently distinguishable from the concept of change set size in 

project A.  

� In project A, the measure of code volatility belongs to a distinct principal component 

(PC7A), while in project B, it belongs to the principal component that captures size 

(PC2B). The latter result indicates that large components are more prone to change, 

simply due to size. 

� PC6B contains a measure of lines of code in new components, and the change set 

dispersion. One possible interpretation is that these measures capture the degree of 

mismatch between the current design and the design required by the change. 

These observations are accounted for when the models are interpreted, in Sections 4.3 and 

6. 

4.2.2 Regression Models for the Data-Driven Analysis 
The models resulting from the procedures described in 4.1 are shown in Table 6.  
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Table 6. Coefficient values, significance and model fit in data-driven analysis, discussed results in bold 

Model Variable Coefficient 
(standardized  
coeff. in 
parenthesis) 

MMREcr 
MdMREcr 

 

Pred(25) 
Pred(50) 

Pearson  
Spearma
n corr. 

Project A 
Main 
effects 

Intercept 
crWords 
filetypes 
chLoc 
isCorrective 

9.06*** 
0.00187** (0.25) 
0.279*** (0.72) 
0.005111** (0.31) 
-0.503*  (-0.25) 

1.52 
0.63 

0.23 
0.40 

0.58 
0.72 

Project B 
Main 
effects 

Intercept 
crTracks 
addCC 
components 
systExp 

9.06***  
0.0879***  
0.00949** 
0.1027*** 
-0.000161** 

1.12 
0.60 

0.24 
0.42 

0.46 
0.58 

Project A 
with 
decision 
tree rules  

Intercept 
crWords 
filetypes 
isCorrective
filetypes=1&crWords<24   
filetypes=1&crWords>23&chLoc < 2 
filetypes=1&crWords>23&chLoc>=2  
filetypes>=3&chLoc>= 48 

9.64*** 
0.00109* (0.14) 
0.178*** (0.46) 
-0.376* (-0.18) 
-1.145*** (-0.36) 
-0.831*** (-0.28) 
-0.653**  (-0.22) 
0.963*** (0.32) 

1.37 
0.57 

0.24 
0.46 

0.70 
0.77 

Project B 
with 
decision 
tree rules 

Intercept 
crTracks 
components 
systExp
addCC>=23    

9.15*** 
0.0839*** 
0.0798*** 
-0.000153** 
0.7877** 

1.12 
0.62 

0.22 
0.40 

0.59 
0.54 

Project A 
PCR 
 

PC2A 
PC3A 
PC4A 
PC5A 

0.9686*** 
0.2252* 
0.4058*** 
0.3492*** 

1.71 
0.66 

0.24 
0.42 

0.53 
0.78 

Project B 
PCR 

PC1B 
PC2B 
PC3B 
PC4B 
PC5B 
PC6B 
PC7B 

0.3529*** 
-0.1659* 
0.2640*** 
0.4928*** 
-0.2143*** 
-0.1682*** 
1.4008* 

1.33 
0.55 

0.275 
0.48 

0.39 
0.59 

 
For project A, the results show that: 

� The indicator of change type isCorrective recurred from the evidence-driven analysis  

� The measure filetypes, capturing language heterogeneity, had a strong effect. Change 

effort is expected to increase by around 30 % with one additional file type changed.  

� The number of change lines of code, chLoc, also entered the model. An increase of 30 

% can be expected when around 50 additional lines of code were changed.  

� Three of the decision tree rules handle cases where only one filetype is affected. The 

coefficients show that change effort is particularly low in such cases, beyond the 

continuous effect of the variable. Fifty of the 136 changes were covered by these 

rules. 
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� The last rule indicates a particularly strong effect of changes that span three or more 

languages and at the same time involve a large change set (48 or more code lines 

changed). The coefficient shows that 2.6 times more effort can be expected for such 

changes.  

For project B, the results show that: 

� Compared with the results from the evidence-based analysis, the data-driven analyses 

identified the additional factor addCC (row 2 in Table 6). This measure was intended to 

capture structural complexity of the change set, but the PCA showed that addCC 

captures change set size in this data set. The expected change effort increases by 10% 

when addCC increases by 10.  

� Allowing for decision tree rules (row 4 in Table 6), a simple binary rule replaced a 

continuous effect of addCC: The expected change effort doubles if 23 or more control-

flow statements are added. This rule applies to 12% of the changes. 

The models that combined regression with decision rules performed better than the models 

from principal component regression, shown in the two last rows of Table 6. The variance 

inflation factor was lower than 1.88 for all the coefficients in the models. This verifies that 

multicollinearity is not a problem for the interpretability of the coefficients.  

4.3 Discussion of Data-Driven Analysis 
In project A, fewer filetypes involved in a change strongly contributed to reduced change 

effort. A particularly favorable effect occurred when a change involved only one file type. 

Because such changes often can be identified before the coding phase, this result can be 

useful to improve change effort estimates. 

In project B, addCC and components had significant effects on change effort. The PCA 

showed that these measures captured orthogonal factors in the data set. We conclude that 

change set dispersion affected change effort, beyond the effect of LOC-based size. For 

effort prediction purposes, the simple decision rule (addCC>=23) indicates that even a 

very coarse grained estimate of change set size is useful. 

For project A, the data-driven analysis resulted in models that had better model fit than 

those from the evidence-based analysis. This was mainly due to the measure of language 

heterogeneity. For project B, the model fit did not improve, as the primary measures 

already seemed to capture the important factors. The total amount of explained change 

effort variability was moderate. 
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The plots in Figure 7 and Figure 8 show MRE boundaries for overestimated and 

underestimated changes. The changes that fell outside the area formed by these lines 

received particular attention during the qualitative analysis. In total, 32 underestimated 

changes and 16 overestimated changes (those with MRE limits of 0.5 for underestimated 

changes and 1.3 for overestimated changes, see Figure 7 and 8) were analyzed in depth. 

Figure 7.  Predicted vs. actual effort, project A Figure 8. Predicted vs. actual effort, project B

5 Results from the Qualitative Analysis  
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48 

selected changes. Four changes were excluded from the analysis because the interviews 

showed that code changes had not been properly tracked.  

The three first columns in Table 7 define the coding schema resulting from the coding 

process. Each code captures a factor that was perceived by the interviewees to drive or 

save effort. For example, T0 could drive effort if the developer was unfamiliar with a 

relevant technology, and save effort if the developer had particularly good knowledge 

about the technology.  

The rightmost column shows the number of times a code was used in underestimated 

and overestimated changes, respectively. The numbers can be interpreted as the degree of 

presence of a phenomenon in the projects, but we do not consider evidence from 

exceptional cases to be any less valid or important than frequent cases. Consequently, no 

statistical analyses of the qualitative results are provided. More detailed results from the 

qualitative analysis can be found in [40]. 
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Table 7. Summary of factors from qualitative analysis 
Category Code Description of code Occurr. in 

underest./ 
overest. 
changes 

Understanding 
requirements 

R1 
 

Clarification of change request was needed/not needed  
 

9/2 

Identifying and 
understanding 
relevant code 

U1 
U2 
U3 

It was difficult/easy to understand the relevant source code 
It was difficult/easy to identify the relevant system states 
The developer was unfamiliar/familiar with relevant source code 

7/1 
3/3 
3/2 

Learning 
relevant 
technologies 
and resolving 
technology 
issues 

T0 
T1 
T2 
T3 

Developer was unfamiliar/familiar with the relevant technology 
The features of the technology did not/did suite the task 
Technology had/did not have defects that affected the task 
Technology had limited/good debugging support 

3/0 
1/2 
4/0 
5/0 

Designing and 
applying 
changes to 
source code 

D1 
D2 
D3 

Change required deep/shallow understanding of user scenario 
The needed mechanisms were not/were in place  
Changes were made to many/very few parts of the code 

0/9 
13/2 
0/8 

Verifying 
change 

V1 It was necessary/not necessary to establish test conditions  2/1 

Cause of 
change 
(analyzed for 
all changes) 

C1 
C2 
C3 
C4 

Error by omission – failed to handle a system state 
Error by commission – erroneous handling of a system state 
Improve existing functionality – within current system scope 
Planned expansion of functionality – extend the system scope 

11/5 
1/3 
4/9 
6/5 

 

Many of the codes and categories coincide with concepts studied within the field of 

software comprehension. For example, Von Mayrhauser and Vans suggested lists of 

activities involved in change tasks that largely conform to our categories [65]. In our case, 

a separate category was justified for technology properties. Also, the design activity was 

difficult to distinguish from the coding activity; hence we used a common category. We 

chose to use a common coding schema for all types of changes, and let the cause of change 

be part of the coding schema.  

5.1 Understanding Requirements 
R1. For nine of the underestimated changes, the developers mentioned that the need to 

clarify requirements resulted in increased change effort. For two of the overestimated 

changes, they mentioned that a concise and complete specification made it easier to 

perform the change. This supports the results from quantitative analysis, which showed a 

consistent relationship between the number of updates to the original change request, and 

change effort. For the nine underestimated changes, the requirement clarifications were 

only partially documented in the change tracker. This explains the large residuals for these 

changes. The need to clarify requirements occurred more frequently in project A than in 

project B. However, six of nine underestimated changes for project B were fixes of errors 
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due to missed requirements, see Section 5.6. Hence, incomplete requirements had an 

unfavorable effect in both projects. 

In some cases, the developers said that the user representatives deliberately failed to 

provide complete specifications, in particular for changes that concerned the look and feel 

of the user interface. However, the strongest effect on effort occurred when unanticipated 

side effects of a change needed to be clarified during detailed design and coding. In most 

cases, this meant that existing functionality was somehow impacted by the change, but that 

the developer was uncertain how to deal with these impacts.  

5.2 Identifying and Understanding Relevant Source Code 
A substantial portion of the total change effort can be comprehension effort. Koenemann 

and Robertson suggested that the comprehension process involves code of direct, 

intermediate and strategic relevance [66]. Directly relevant is code that has to be modified. 

Code that is perceived to interact with directly relevant code has intermediate relevance. 

Strategic code acts as a pointer towards other relevant parts of the code.  

U1: Typically, the change requests were described by referencing a user scenario, i.e. a 

sequence of interactions between the user and the system, and by requesting a change to 

that scenario. For seven of the underestimated changes, the developers claimed 

considerable time was spent understanding relevant, intermediate code when it was 

dispersed among many files. The dispersion of changed code had a strong and consistent 

effect on change effort in the quantitative models. The time developers spend to 

comprehend dispersed code might be a more fundamental factor that in many cases 

explains the apparent effect of making dispersed changes.  

The effort involved in comprehending code along the lines of user scenarios can also 

explain why the measures of structural attributes of changed components did not have an 

effect on change effort in the quantitative models. First, only directly affected components 

were captured by these measures, even though the structural attributes of intermediate code 

were likely to be important. Second, the measures capture the structural attributes of 

architectural units rather than of user scenarios. This suggests that it would be useful to 

collect measures of structural attributes along the execution path of the changed user 

scenarios. These measures could be based on models such as UML sequence diagrams, 

which would also aid in comprehension [67], or dynamic code measurement (e.g., by 

executing each user scenario), as proposed in [68].  
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U2: For three of the underestimated changes, the developers expressed that it was 

difficult to identify and understand the system states relevant to the change task. One 

developer stated: “All the states that need to be handled in the GUI make the code mind-

blowing.” This indicates that the perceived code complexity is caused by a complex 

underlying state model. It also suggests that in order to understand the code from the 

functional view discussed above, it is a prerequisite that the underlying state model is 

understood. An obvious proposal is to make it easier to understand the most complex 

underlying state models, e.g., by the use of diagramming techniques such as UML state 

diagrams. 

U3: The degree of familiarity with relevant code was said to have affected change effort 

in five cases. The quantitative results for change experience showed that relatively little of 

the variations in change effort can be explained by familiarity with the systems. The 

qualitative analysis showed that experience was indeed important in both projects, in the 

few extreme cases when it was either very high or very low. 

5.3 Learning Relevant Technologies and Resolving Technology Issues 
T0. Lack of familiarity with relevant technology was perceived to increase change effort 

for three of the changes. The measure of the effect of technology experience (techexp) was 

not significant in the quantitative analysis. One possible explanation is that familiarity with 

the involved technology affected change effort in the relatively few cases where the 

familiarity was particularly low or high. 

T1, T2, T3: The degree of match between the actual and required features of the 

development tools and technologies was considered important in 12 cases. If the 

functionality required by the change task was provided out of the box, the technology was 

considered to save effort. Reversely, if the technology was incompatible with the change 

task, or had defects, considerable effort was required to create workarounds. Unsatisfactory 

facilities for debugging were considered to increase change effort in five cases. 

5.4 Designing and Applying Changes to Source Code 
D1: Empirical studies have shown that the nature of a given task determines the 

comprehension process [69]. Indeed, the interview data showed that the developers 

associated a certain degree of superficiality or shallowness with a change task. A change 

was perceived as shallow when the developer assumed that it was not necessary to 

understand the details of the code involved in the changed user scenario. Typically, 

shallow changes were performed by textual search in intermediate code to identify the 
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direct code to change. Examples of shallow changes were those that concerned the 

appearance in the user interface, user messages, logging behaviour and simple refactoring. 

Deep changes, on the other hand, required full comprehension of the code involved in the 

changed user scenario. The comprehension activities described in the previous section are 

therefore primarily relevant for deep changes. 

D2: We use the term mechanism for code that implements a solution to a recurring need 

in the system. Typically, formalized design patterns [70] can be used directly or as part of a 

mechanism. In the investigated projects, examples of mechanisms are handling of runtime 

exceptions and transfer of data between the physical and logical layers of the system. In 13 

cases, the change was perceived to be particularly challenging because a required 

mechanism had to be constructed. According to the developers, creating these mechanisms 

was challenging for two reasons: First, the mechanism had to be carefully designed for 

reusability. Second, when the purpose of mechanisms was to hide peculiarities of specific 

technologies, these needed to be well understood by the developer of the mechanism. 

D3: The developers expressed that eight of the overestimated changes were easy to 

perform because they were concentrated in one or few parts in the code. This observation 

supports the results for change set dispersion from the quantitative analysis, and suggests a 

particularly strong effect for the most localized changes. However, this explanation is 

contradicted by data from 50 other change tasks that affected only one segment of the code 

without resulting in particularly low change effort. An alternative explanation is that the 

developers perceived the change to be particularly local because the code of intermediate 

relevance was not dispersed among many components, as elaborated in Section 5.2 

5.5 Verifying Change 
V1: The effort expended to test the developers’ own code changes was discussed in the 

interviews. For a large majority of the changes, the developers found it quite easy to verify 

that the change was correctly coded. In two cases, verification was perceived to be difficult 

because the change task affected time-dependent behavior simulated in the test 

environment. In project A, some extra time was needed to generate and execute the system 

on the target mobile platform. In project B, extra time was needed when the technology 

necessitated deployment on a dedicated test server. 
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5.6 Cause of Change 
The cause of each change, i.e. the events that triggered the change request, was discussed 

in the interviews. Based on this, we classified all changes according to the codes shown in 

the last row of Table 7. In order to better understand the results for change type from the 

quantitative analysis, we measured the agreement between the automated classification 

into change types, and the classification from qualitative analysis. Sufficient data was 

available for 87 and 61 changes, for project A and B, respectively. When mapping C1 and 

C2 to corrective change, and C3 and C4 to non-corrective change, the agreement was good 

(Cohen’s kappa=0.64) for project A, but less than what could be expected by pure chance 

(Cohen’s kappa=-0.038) for project B. This result shows that the automated classification 

for project B did not appropriately reflect real differences in change type, which can 

explain why there was no effect of change type in the quantitative models. From the 

qualitative analysis of project B, it can be seen that six out of nine of the underestimated 

changes were fixes of error by omission. A typical reason for such an error was not 

recognizing a side effect of a change. We conclude that for project B, fixes of errors by 

omission were associated with underestimated changes. In line with the conclusion in 

Section 5.1, we recommend practices that help to identify side effects of change 

requirements, because they are likely to reduce occurrences of errors by omission. 

6 Joint Results and Discussion 
The results from the different parts of the analysis are summarized as answers to the 

questions posed in Section 2.2:  

1. Overall, the selected variables proved to be useful predictors in models of change effort. 

A notable exception was variables capturing structural properties of affected code, which 

could partly be explained by item 8 and item 9 below. 

2. The explained variability was quite poor (best MdMREcross was 0.57) in the 

quantitative models. The qualitative analysis focusing on change tasks that corresponded 

to large model residuals was therefore justified. 

3. In project A, the model fit substantially improved when a larger number of candidate 

variables were used (MdMREcross was reduced from 0.72 to 0.57). Improvement was 

due to the use of one additional variable, capturing language heterogeneity (see item 6 

below). 
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4. The principal component analysis showed that measures of change set dispersion 

captured a factor different from pure size. This consistently and strongly contributed to 

change effort in the quantitative models: The standardized coefficients were 0.76 and 

0.51.  

5. The qualitative analysis suggested that the developers’ effort to comprehend highly 

dispersed code was a more fundamental factor than the effort involved in making 

dispersed changes. However, comprehending and modifying code seemed to be closely 

intertwined processes, and therefore difficult to separate. 

6. Language heterogeneity substantially contributed to change effort, as one additional 

affected language implies 30% more effort. A plausible explanation is that the effect of 

dispersion (see item 4 and 5) was amplified when comprehended and modified code 

spanned multiple technologies and languages.  

7. Change request volatility, measured by updates in the change tracker, consistently 

contributed to change effort in the quantitative models. One additional update in the 

change tracker implied a 7% increase in change effort. The qualitative analysis showed 

that when change request volatility was due to difficulties in anticipating functional side 

effects of a change, the effect was particularly large. A possible underlying cause for 

these difficulties was insufficient knowledge in the interface between the software and 

the business domain. 

8. The qualitative analysis showed that change effort was affected by code properties along 

the changed user scenarios. In particular, the complexity of the underlying state model of 

the user scenario was important, as was the dispersion of code that implemented the 

changed user scenario, as described in items 4 and 5. The developers’ focus on 

functional cross-cuts can explain why structural attributes of architectural units, such as 

files and classes, proved inefficient in explaining change effort variability. 

9. In project A, corrective changes required only 46% of the effort compared with non-

corrective changes, after accounting for other factors. No significant difference was 

found for project B. The qualitative analysis for both projects showed that a sub-class of 

corrective changes (fixes of errors by omission) required additional effort. This analysis 

also showed that certain other characteristics of the change task, such as the need for 

innovation, was an important factor that is difficult to capture from change management 

data. 

10. A moderate effect of developers’ experience was identified in project B. A 16.2% 

decrease in change effort could be expected for every 1000th check-in. The qualitative 
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analysis showed that familiarity with the changed functional and technological areas was 

indeed important in both projects, in particular in the extreme cases when the familiarity 

was either very high or very low. This effect of experience was not appropriately 

captured by the quantitative models. 

In the following, we discuss the consequences of these results from the perspective of 

software engineering, the local projects, and that of research methods within empirical 

software engineering. 

6.1 Consequences for Software Engineering 
Earlier change-based studies have assumed that measures such as components, or number 

of check-ins for a change task, can be considered coarse-granularity measures of size. An 

alternative interpretation is that such measures capture delocalization or dispersion. 

Controlled experiments and research into the cognitive processes of programmers have 

demonstrated difficulties in comprehending and changing dispersed code. An important 

contribution of this study is that it found clear evidence of the effect of dispersion in a real 

project setting with real change tasks. More refined results, and related consequences, are:  

� Comprehension typically occurred along functional cross-cuts of the system. Hence, to 

mitigate the effect of dispersion, tools should have the capability of presenting change-

friendlier views of the system based on such functional cross-cuts. Automatic generation 

of sequence diagrams is one possible implementation, c.f. [71, 72]. 

� The results indicate that the effect of dispersion depends on the heterogeneity of the 

involved components, and cannot be fully captured by a simple count of components. It 

seems particularly important that tools aimed at mitigating the effect of dispersion are 

able to handle technological heterogeneous environments. 

� The results point to design practices that minimize dispersion for future change tasks. A 

recommended practice could be that functionally cohesive code should be localized 

rather than dispersed. However, the concern about change effort should be balanced 

against other concerns, such as potentials for reuse and constraints set by the physical 

architecture.  

� Comprehending and changing dispersed code seemed to be intertwined processes. 

Hence, measures of affected components retrieved from version control systems can be 

expected to capture the phenomenon of dispersion reasonably well, though not perfectly. 
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If estimates of dispersion are used as input to prediction models, estimates of 

components to inspect can be just as effective as estimates of components to change. 

Earlier change-based studies have shown a relationship between the number of 

modifications to change requests, and change effort. The confirmatory analysis in this 

study consistently supported the results. From the perspective of effort estimation, it is 

useful insight that such early retrievable measures have been consistently effective 

predictors.  

Software organizations need to make trade-offs between enforcing well-defined upfront 

requirements and allowing for the flexibility of evolving requirements. This study 

contributes with the insight that volatility has the most serious effect on change effort when 

it is caused by lack of knowledge in the interface between software and business domain. 

In consequence, organizations should try to cultivate such knowledge, to avoid inefficient 

iterations towards the final requirements. Other kinds of volatility, such as refining a user 

interface based on customer feedback, have inherent advantages and do not seem to have 

severe effects. We believe that such results provide important insights to the on-going 

debates on plan-driven versus agile development principles. 

Due to the wide prediction intervals implied by the relatively poor model fit obtained in 

this and similar studies [18, 20], it seems infeasible to build models that are sufficiently 

accurate to be accepted as a black-box method for estimating individual change tasks. 

Model-based estimates may still play a role to support projects in planning releases during 

software evolution, where the primary interest is in the aggregate of change effort 

estimates. A reasonable starting point for creating organization specific models is to use 

measures of change request volatility, developers’ experience, type of change, and 

dispersion.  

6.2 Consequences for the Investigated Projects 
In project A, effort estimation was a team activity performed on a regular basis as part of 

release planning. To judge the potential for more accurate effort estimates, we calculated 

the accuracy of the current estimation process, on the basis of effort estimates and actual 

effort for the 107 change tasks where this data was available. The effort estimates were 

given in units of relative size, see [73], and were scaled according to the factor that 

minimized MdMRE. The resulting MMRE and MdMRE was 1.47 and 0.54, respectively. 

Even though these values roughly correspond to the accuracy of the models from the data-

driven analysis, we did not recommend replacing judgement-based estimates with model-
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based estimates, for two reasons. First, change set size or change set dispersion would have 

to be subjectively assessed to obtain the required input measures. This would likely 

decrease the model accuracy, and preclude fully automated procedures. Second, the team 

estimation of change tasks was perceived to be important to share knowledge, to build 

team spirit in the project, and to constitute an initial step of design for a solution to the 

change request. 

To assess whether insight obtained from our analysis was already accounted for by the 

developers, we fitted regression models that included the significant quantitative factors 

and the developers’ estimate as explanatory variables. Measures of change request 

volatility, change set dispersion and change type became statistically insignificant, 

indicating that these factors were already sufficiently accounted for by the subjective 

estimates. The number of different technologies involved, on the other hand, had a 

significant effect on actual effort. The model was: 

log(ceffort)= 9.25 + 0.13*relativeEffortEstimate + 0.14*filetypes 

We recommended that the developers put more emphasis on language heterogeneity when 

they made effort estimates. On the basis of the qualitative analysis we also advised more 

awareness of the effect of particularly strong familiarity or lack of familiarity with code of 

intermediate and direct relevance. On the basis of the results, we were also able to give the 

following recommendations: 

� To reduce the most severe effects of change request volatility, actions should be taken to 

cultivate knowledge in the interface between the software and business domains. 

However, change request volatility should be accepted when solutions are iteratively 

optimized on the basis of immediate feedback, such as in the case of GUI design.  

� Identify the user scenarios that are most frequently changed, and that involve many 

components and languages. Look for opportunities to refactor these, aiming at reducing 

the dispersion. 

� Evaluate tools that make it easier to trace and understand the code involved in user 

scenarios. For example, emerging tools for dynamic code analysis for the Eclipse 

platform might have some of the desired qualities [72]. 

� Document the underlying state models in areas where those models are particularly 

complex 
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6.3 Consequences for Empirical Software Engineering 
This study included a number of design elements that we believe constitute a step forward 

for change-based studies: 

Foundation in a systematic review. The use of systematic reviews in software 

engineering was suggested as an important element of evidence-driven software 

engineering [74]. The factors and measures for the quantitative analysis were selected on 

the basis of a systematic literature review of earlier change-based studies. Systematic 

reviews are particularly useful when study proposals cannot be derived from established 

theories. Currently, this is the situation for most topics investigated within the empirical 

software engineering community. 

Combined confirmatory and explorative analysis. Strong conclusions can only be drawn 

from confirmatory studies, while explorative studies are important to generate hypothesis 

and guide further research [75]. The evidence-driven analysis largely confirmed existing 

evidence. The data-driven analysis explored and identified additional factors to be 

investigated in future confirmatory studies.  

Procedures for performing data-driven analysis. The data-driven analysis combined 

known sub-strategies for variable selection into an overall procedure for selecting the 

models, based on well-defined criteria. This was shown to perform better than a more 

traditional approach based on principal component regression. It is future work to attempt 

to improve this approach by, e.g., using alternative prediction frameworks. 

Qualitative analysis to explain large model residuals. Even though the role of qualitative 

methods in this field has long been recognized, see e.g., [76], empirical researchers have 

developed and used quantitative methods to a larger extent [77]. Because we used the

individual change as a common unit of analysis, and change effort as the dependent 

variable, we were able to tightly integrate the quantitative analysis of data from version 

control systems and change trackers with the qualitative analyses of developer interviews. 

This method also focuses the more expensive qualitative analysis on the most interesting 

data. This can be particularly important for practitioners who use lightweight empirical 

methods to evaluate their own practices such as Postmortem analysis [78] or Agile 

Retrospectives [79].  

  



Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation... 

 
104 
 

7 Threats to Validity 
Construct validity. Quantitative measures were based on data from version control systems 

and change trackers. Such data will not perfectly capture the factors of interest. For 

example, change request volatility may not be fully documented in the change tracker. In 

this and other cases, we were able to use the qualitative data to compensate for these 

threats to construct validity. There were also threats to construct validity in the qualitative 

coding schema. We attempted to mitigate this by reconsolidating the coding schema to 

reflect commonly used concepts within our field.  

Code complexity cannot be fully captured by one or a few measures [80]. To judge, in a 

meaningful and repeatable manner, whether a piece of code is “more complex than” 

another piece of code, very specific criteria must be defined. Therefore, there were obvious 

construct validity threats in the measurement of complexity of change sets and changed

components. As indicated from the qualitative analysis, the apparent insignificance of code 

complexity could be due to problems with operationalizing the concept. For change 

experience, it is obviously a simplification to associate one check-in with one unit of 

experience. Moreover, averaging experience measures over developers does not perfectly 

capture the concept of joint experience. Measurement noise due to unreliable collection of 

change effort data could also have affected the results, although random noise would 

normally weaken the conclusions rather than incorrectly strengthening them.  

In sum, it is likely that some of the unexplained variability in the quantitative models 

was due to the inability to fully capture the intended factors by measures retrieved from 

version controls systems. 

Internal validity. Internal validity refers to the degree to which causal relationships can 

be claimed. Issues of internal validity are important when the context, tasks and procedures 

for allocating study units to groups cannot be controlled, which is the case with data that 

occurs naturally in software development projects. Qualitative data from developer 

interviews was useful to evaluate such threats. For example, the qualitative analysis 

suggested that a more fundamental, causal factor than the effect of dispersion of changed 

code was the effect of dispersion of intermediate code that needed to be comprehended.  

Another threat to internal validity was the possibility of shotgun correlations. In the data-

driven analysis, a large number of factors and measures were tested. This increases the 

likelihood that one or more of the significant effects occurred due to chance, rather than to 

a true underlying effect. This risk was lower in the evidence-driven analysis, because this 
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investigated the effect of a small set of factors and measures selected on the basis of 

existing empirical evidence.  

A third type of threat to internal validity was the potential bias introduced by missing 

data points in the data set, see [81]. For project A, change effort was not recorded for 

around 10% of the actual changes that were performed. For project B, it was not recorded 

for 25% of the changes. Most of the missing data points were due to challenges with 

establishing the routines to track change effort and code changes. Because the data points 

that we did collect from the initial periods can be considered randomly selected, we do not 

expect the missing data points to constitute a serious threat to internal validity. 

The use of interviews introduced the possibility of researcher bias, consciously or 

unconsciously skewing the investigation to conform to the competencies, opinions, values 

or interests of the involved researchers. Although such threats apply to quantitative 

research as well, they can be particularly difficult to assess handle when subjectivity is 

involved. Imperfect memory, lack of trust or other communication barriers between the 

interviewer and the interviewee may also introduce biases. We believe that the strict focus 

on relatively small, cohesive tasks recently performed by the interviewee helped to 

mitigate such biases. To mitigate communication barriers, the interviewer made extensive 

efforts to be prepared for the interviews, and data from the version control systems and 

change trackers was readily available during the interviews to help the developers recollect 

details. 

External validity. The ability to generalize results beyond the study context is one of the 

key concerns with case studies. Section 2.4 described the design elements introduced to 

interpret the results in a wider context. We believe that the lack of relevant theories on 

which to base the study proposals is a major obstacle to generalizing the results. In this 

situation, we chose to base the study proposals on a comprehensive review of earlier 

empirical studies with similar research questions.  

8 Conclusion 
Software engineering practices can be improved if they address factors that have been 

shown empirically to affect developers’ effort during software evolution. In this study, we 

identified such factors by analyzing data about changes in two software organizations. 

Regression models were constructed to identify factors that correlated with change effort, 
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and developer interviews explored additional factors at play when the developers expended 

effort to perform change tasks. Two central results were: 

� Change request volatility had a consistent effect on effort in the quantitative models. The 

effect was particularly large when volatility resulted from difficulties in anticipating side 

effects of a change. Such difficulties also resulted in errors by omission, which in turn 

were particularly expensive to correct.  

� The dispersion of modified code also had a large and consistent effect on change effort 

in the quantitative models, beyond the effect of size alone. The qualitative analysis 

indicated that the dispersion of comprehended code was a more fundamental factor. 

Because these results are also consistent with results from earlier empirical studies, we 

suggest that these (admittedly quite course-grained) factors should be considered when 

attempting to improve software engineering practices.  

The specific analyses of the two projects provided additional and more fine-grained 

results. In one project, changes that concerned only one language required considerably 

less effort. The analysis of estimation accuracy indicated that this factor was not 

sufficiently accounted for when developers made their estimates. This exemplifies how 

projects can benefit from analyzing data from their version control systems and change 

trackers to improve their estimation practices.  

One important direction for further work is to investigate further the causal relationships 

occurring when developers perform change tasks. Interviewing developers about recent 

changes was an effective method for making tentative suggestions about such 

relationships. However, studies that control possibly confounding factors should be 

conducted before firm conclusions are drawn. It is also necessary to paint a richer picture 

of how context factors, such as size and type of the system, influence change effort. 

Ultimately, the empirical results could be aggregated into a theory on software change 

effort, which would define invariant knowledge about software evolution, and be 

immediately useful for practitioners within the field. 
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Appendix A  
Interview Guide 

Part 1. (Only in first interview with each developers - Information about the purpose of the 

research. Agree on procedures, confidentiality voluntariness, audio-recording).  

Question: Can you describe your work and your role in the project?

Part 2. Project context (factors intrinsic to the time period covered by the changes under 

discussion) 

How would you describe the project and your work in the last time period? Did any 

particular event require special focus in the period?  

For each change (CR-nnnn, CR-nnnn, CR-nnnn….,) 

 

Part 3. Measurement control (change effort and name of changed components shown to 

the interviewee) 

Are change effort and code changes correctly registered? 

Part 4. Change request characteristics (change tracker information shown on screen to 

support discussion) 

Can you describe the change from the viewpoint of the user? Why was the change needed? 

Part 5. General cost factors 

Can you roughly indicate how the X hours were distributed on different activities?  

Part 6. Properties of relevant code (output from windiff showed on screen to support the 

discussions)  

Can you summarize the changes that you made to the components?  

What can you say about the code that was relevant for the change? Was it easy or difficult 

to understand and make changes to the code?  

Part 7. Stability 

Did you go through several iterations before you reached the final solution? If so, why? 

Did anything not go as expected?  

How did you proceed to test the change? 

Go to Part 3 for next change 

 

Part 8. Concluding remarks 

Do you think this interview covered your activities during the last period? 
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Abstract 

Organizations that maintain and evolve software would benefit from being able to measure 

productivity in an easy and reliable way. This could allow them to determine if new or 

improved practices are needed, and to evaluate improvement efforts. We propose and 

evaluate indicators of productivity trends that are based on the premise that productivity 

during software evolution is closely related to the effort required to complete change tasks. 

Three indicators use data about change tasks from change management systems, while a 

fourth compares effort estimates of benchmarking tasks. We evaluated the indicators using 

data from 18 months of evolution in two commercial software projects. The productivity 

trend in the two projects had opposite directions according to the indicators. The evaluation 

showed that productivity trends can be quantified with little measurement overhead. We 

expect the methodology to be a step towards making quantitative self-assessment practices 

feasible even in low ceremony projects.  

1 Introduction 
1.1 Background
The productivity of a software organization that maintains and evolves software can 

decrease over time due to factors like code decay [1] and difficulties in preserving and 

developing the required expertise [2]. Refactoring [3] and collaborative programming [4] 
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are practices that can counteract negative trends. A development organization might have 

expectations and gut feelings about the total effect of such factors and accept a moderate 

decrease in productivity as the system grows bigger and more complex. However, with the 

ability to quantify changes in productivity with reasonable accuracy, organizations could 

make informed decisions about the need for improvement actions. The effects of new 

software practices are context dependent, and so it would be useful to subsequently 

evaluate whether the negative trend was broken. 

The overall aim for the collaboration between our research group and two commercial 

software projects (henceforth referred to as MT and RCN) was to understand and manage 

evolution costs for object-oriented software. This paper was motivated by the need to 

answer the following practical question in a reliable way: 

Did the productivity in the two projects change between the baseline period P0 (Jan-

July 2007) and the subsequent period P1 (Jan-July 2008)? 

The project RCN performed a major restructuring of their system during the fall of 

2007. It was important to evaluate whether the project benefitted as expected from the 

restructuring effort. The project MT added a substantial set of new features since the start 

of P0 and queried whether actions that could ease further development were needed. The 

methodology used to answer this question was designed to become part of the projects’ 

periodic self-assessments, and aimed to be a practical methodology in other contexts as 

well. 

1.2 Approaches to Measuring Productivity 
In a business or industrial context, productivity refers to the ratio of output production to 

input effort [5]. In software engineering processes, inputs and outputs are multidimensional 

and often difficult to measure. In most cases, development effort measured in man-hours is 

a reasonable measure of input effort. In their book on software measurement, Fenton and 

Pfleeger [6] discussed measures of productivity based on the following definition of 

software productivity: 

 
(1)

Measures of developed size include lines of code, affected components [7], function

points [8-10] and specification weight metrics [11]. By plotting the productivity measure, 

say, every month, projects can examine trends in productivity. Ramil and Lehman used a 

effort
sizetyproductivi �
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statistical test (CUSUM) to detect statistically significant changes over time [12]. The 

same authors proposed to model development effort as a function of size:  

. (2) 

They suggested collecting data on effort and size periodically, e.g., monthly, and to 

interpret changes in the regression coefficients as changes in evolvability. Number of 

changed modules was proposed as a measure of size. The main problem with these 

approaches is to define a size measure that is both meaningful and easy to collect. This is 

particularly difficult when software is changed rather than developed from scratch. 

An alternative approach, corresponding to this paper’s proposal, is to focus on the 

completed change task as the fundamental unit of output production. A change task is the 

development activity that transforms a change request into a set of modifications to the 

source components of the system. When software evolution is organized around a queue of 

change requests, the completed change task is a more intuitive measure of output 

production than traditional size measures, because it has more direct value to complete a 

change task than to produce another n lines of code. A corresponding input measure is the 

development effort required to complete the change task, referred to as change effort. 

Several authors compared average change effort between time periods to assess trends 

in the maintenance process [13-15]. Variations of this indicator include average change 

effort per maintenance type (e.g., corrective, adaptive or enhancive maintenance). One of 

the proposed indicators uses direct analysis of change effort. However, characteristics of 

change tasks may change over time, so focusing solely on change effort might give an 

incomplete picture of productivity trends.  

Arisholm and Sjøberg argued that changeability may be evaluated with respect to the 

same change task, and defined that changeability had decayed with respect to a given 

change task c if the effort to complete c (including the consequential change propagation) 

increased between two points in time [16]. We consider productivity to be closely related 

to changeability, and we will adapt their definition of changeability decay to productivity 

change.  

In practice, comparing the same change tasks over time is not straightforward, because 

change tasks rarely re-occur. To overcome this practical difficulty, developers could 

perform a set of “representative” tasks in periodic benchmarking sessions. One of the 

proposed indicators is based on benchmarking identical change tasks. For practical 

sizeeffort 10 �����
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reasons, the tasks are only estimated (in terms of expected change effort) but are not 

completed by the developers. 

An alternative to benchmarking sessions is using naturally occurring data about change 

tasks and adjusting for differences between them when assessing trends in productivity. 

Graves and Mockus retrieved data on 2794 change tasks completed over 45 months from 

the version control system for a large telecommunication system [17]. A regression model 

with the following structure was fitted on this data: 

 (3)

The resulting regression coefficient for date was used to assess whether there was a 

time trend in the effort required to complete change tasks, while controlling for variations 

in other variables. One of our proposed indicators is an adaption of this approach. 

A conceptually appealing way to think about productivity change is to compare change 

effort for a set of completed change tasks to the hypothetical change effort had the same 

changes been completed at an earlier point in time. One indicator operationalizes this 

approach by comparing change effort for completed change tasks to the corresponding 

effort estimates from statistical models. This is inspired by Kitchenham and Mendes’ 

approach to measuring the productivity of finalized projects by comparing actual project 

effort to model-based effort estimates [18]. 

The contribution of this paper is i) to define the indicators within a framework that 

allows for a common and straightforward interpretation, and ii) to evaluate the validity of 

the indicators in the context of two commercial software projects. The evaluation 

procedures are important, because the validity of the indicators depends on the data at 

hand. 

The remainder of this paper is structured as follows: Section 2 describes the design of 

the study, Section 3 presents the results and the evaluation of the indicators and Section 4 

discusses the potential for using the indicators. Section 5 concludes. 

2 Design of the Study 
2.1 Context for Data Collection 
The overall goal of the research collaboration with the projects RCN and MT was to better 

understand lifecycle development costs for object-oriented software. The projects’ 

incentive for participating was the prospect of improving development practices by 

participating in empirical studies.  

)date,size,type,developer(feffortChange �
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The system developed by MT is owned by a public transport operator, and enables 

passengers to purchase tickets on-board. The system developed by RCN is owned by the 

Research Council of Norway, and is used by applicants and officials at the council to 

manage the lifecycle of research grants. MT is mostly written in Java, but uses C++ for 

low-level control of hardware. RCN is based on Java-technology, and uses a workflow 

engine, a JEE application server, and a UML-based code generation tool. Both projects use 

management principles from Scrum [19]. Incoming change requests are scheduled for the 

monthly releases by the development group and the product owner. Typically, 10-20 

percent of the development effort was expended on corrective change tasks. The projects 

worked under time-and-material contracts, although fixed-price contracts were used in 

some cases. The staffing in the projects was almost completely stable in the measurement 

period.  

Project RCN had planned for a major restructuring in their system during the summer 

and early fall of 2007 (between P0 and P1), and was interested in evaluating whether the 

system was easier to maintain after this effort. Project MT added a substantial set of new 

features over the two preceding years and needed to know if actions easing further 

development were now needed. 

Data collection is described in more detail below and is summarized in Table 1. 

Table 1. Summary of data collection 

 RCN MT 
Period P0 Jan 01 2007 - Jun 30 2007 Aug 30 2006 - Jun 30 2007 
Period P1 Jan 30 2008 - Jun 30 2008 Jan 30 2008 - Jun 30 2008 
Change tasks in P0/P1 136/137 200/28 
Total change effort in P0/P1 1425/1165 hours 1115/234 hours 
Benchmarking sessions Mar 12 2007, Apr 14 2008 Mar 12 2007, Apr 14 2008 
Benchmark tasks  16  16  
Developers  4  (3 in benchmark) 4 

2.2 Data on Real Change Tasks 
The first three proposed indicators use data about change tasks completed in the two 

periods under comparison. It was crucial for the planned analysis that data on change effort 

was recorded by the developers, and that source code changes could be traced back to the 

originating change request. Although procedures that would fulfil these requirements were 

already defined by the projects, we offered an economic compensation for extra effort 

required to follow the procedures consistently. 

We retrieved data about the completed change tasks from the projects’ change trackers 

and version control systems by the end of the baseline period (P0) and by the end of the 
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second period (P1). From this data, we constructed measures of change tasks that covered 

requirements, developers’ experience, size and complexity of the change task and affected 

components, and the type of task (corrective vs. non-corrective). The following measures 

are used in the definitions of the productivity indicators in this paper:  

� crTracks and crWords are the number of updates and words for the change request in the 

change tracker. They attempt to capture the volatility of requirements for a change task. 

� components is the number of source components modified as part of a change task. It 

attempts to capture the dispersion of the change task. 

� isCorrective is 1 if the developers had classified the change task as corrective, or if the 

description for the change task in the change tracker contained strings such as bug, fail 

and crash. In all other cases, the value of isCorrective is 0.  

� addCC is the number of control flow statements added to the system as part of a change 

task. It attempts to capture the control-flow complexity of the change task. 

� systExp is the number of earlier version control check-ins by the developer of a change 

task. 

�  chLoc is the number of code lines that are modified in the change task. 

A complete description of measures that were hypothesized to affect or correlate with 

change effort is provided in [20]. 

2.3 Data on Benchmark Tasks 
The fourth indicator compares developers’ effort estimates for benchmark change tasks 

between two benchmarking sessions. The 16 benchmark tasks for each project were 

collaboratively designed by the first author of this paper and the project managers. The 

project manager’s role was to ensure that the benchmark tasks were representative of real 

change tasks. This meant that the change tasks should not be perceived as artificial by the 

developers, and they should cross-cut the main architectural units and functional areas of 

the systems. 

The sessions were organized approximately in the midst of P0 and P1. All developers in 

the two projects participated, except for one who joined RCN during P0. We provided the 

developers with the same material and instructions in the two sessions. The developers 

worked independently, and had access to their normal development environment. They 

were instructed to identify and record affected methods and classes before they recorded 

the estimate of most likely effort for a benchmark task. They also recorded estimates of 
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uncertainty, the time spent to estimate each task, and an assessment of their knowledge 

about the task. Because our interest was in the productivity of the project, the developers 

were instructed to assume a normal assignment of tasks to developers in the project, rather 

than estimating on one’s own behalf.  

2.4 Design of Productivity Indicators 
We introduce the term productivity ratio (PR) to capture the change in productivity 

between period P0 and a subsequent period P1.  

The productivity ratio with respect to a single change task c is the ratio between the 

effort required to complete c in P1 and the effort required to complete c in P0: 

 (4) 

The productivity ratio with respect to a set of change tasks C is defined as the set of 

individual values for PR(c): 

 (5) 

The central tendency of values in PR(C), CPR(C), is a useful single-valued statistic to 

assess the typical productivity ratio for change tasks in C: 

 (6) 

The purpose of the above definition is to link practical indicators to a common 

theoretical definition of productivity change. This enables us to define scale-free, 

comparable indicators with a straightforward interpretation. For example, a value of 1.2 

indicates a 20% increase in effort from P0 to P1 to complete the same change tasks. A 

value of 1 indicates no change in productivity, whereas a value of 0.75 indicates that only 

75% of the effort in P0 is required in P1. Formal definitions of the indicators are provided 

in Section 2.4.1 to 2.4.4.  

2.4.1 Simple Comparison of Change Effort 
The first indicator requires collecting only change effort data. A straightforward way to 

compare two series of unpaired effort data is to compare their arithmetic means: 

 
(7) 

The Wilcoxon rank-sum test determines whether there is a statistically significant 

difference in change effort values between P0 and P1. One interpretation of this test is that 

)0P,c(effort
)1P,c(effort)c(PR �

}Cc|
)0P,c(effort
)1P,c(effort{)C(PR 	�

}Cc|
)0P,c(effort
)1P,c(effort{central)C(CPR 	�

)0P0c|)0c(effort(mean
)1P1c|)1c(effort(mean

1ICPR
	
	

�



Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends… 
 

 
120 

it assesses whether the median of all possible differences between change effort in P0 and 

P1 is different from 0: 

 (8)

This statistic, known as the Hodges-Lehmann estimate of the difference between values 

in two data sets, can be used to complement ICPR1. The actual value for this statistic is 

provided with the evaluation of ICPR1, in Section 3.1. 

ICPR1 assumes that the change tasks in P0 and P1 are comparable, i.e. that there are no 

systematic differences in the properties of the change tasks between the periods. We 

checked this assumption by using descriptive statistics and statistical tests to compare 

measures that we assumed (and verified) to be correlated with change effort in the projects 

(see Section 3.2). These measures were defined in Section 2.2. 

2.4.2 Controlled Comparison of Change Effort 
ICPR2 also compares change effort between P0 and P1, but uses a statistical model to 

control for differences in properties of the change tasks between the periods. Regression 

models with the following structure for respectively RCN and MT are used:  

(9)

 
(10)

The models (9) and (10) are project specific models that we found best explained 

variability in change effort, c.f. [20]. The dependent variable effort is the reported change 

effort for a change task. The variable inP1 is 1 if the change task c was completed in P1 

and is zero otherwise. The other variables were explained in Section 2.2. When all 

explanatory variables except inP1 are held constant, which would be the case if one applies 

the model on the same change tasks but in the two, different time periods P0 and P1, the 

ratio between change effort in P1 and P0 becomes 

 

(11)

Hence, the value of the indicator can be obtained by looking at the regression 

coefficient for inP1, �5. Furthermore, the p-value for �5 is used to assess whether �5 is 

significantly different from 0, i.e. that the indicator is different from 1 (e0=1). 
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Corresponding project specific models must be constructed to apply the indicator in 

other contexts. The statistical framework used was Generalized Linear Models assuming 

Gamma-distributed responses (change effort) and a log link-function. 

2.4.3 Comparison between Actual and Hypothetical Change Effort 
ICPR3 compares change effort for tasks in P1 with the hypothetical change effort had the 

same tasks been performed in P0. These hypothetical change effort values are generated 

with a project-specific prediction model built on data from change tasks in P0. The model 

structure is identical to (9) and (10), but without the variable inP1. 

Having generated this paired data on change effort, the definition (6) can be used 

directly to define ICPR3. To avoid over-influence of outliers, the median is used as a 

measure of central tendency.  

 
(12) 

A two-sided sign test is used to assess whether actual change effort is higher (or lower) 

than the hypothetical change effort in more cases than expected from chance. This 

corresponds to testing whether the indicator is statistically different from 1. 

2.4.4 Benchmarking
ICPR4 compares developers’ estimates for 16 benchmark change tasks between P0 and P1. 

Assuming the developers’ estimation accuracy does not change between the periods, a 

systematic change in the estimates for the same change tasks would mean that the 

productivity with respect to these change tasks had changed. Effort estimates made by 

developers D for benchmarking tasks Cb in periods P1 and P0 therefore give rise to the 

following indicator: 

 
(13) 

A two-sided sign test determines whether estimates in P0 were higher (or lower) than 

the estimates in P1 in more cases than expected from chance. This corresponds to testing 

whether the indicator is statistically different from 1. 

Controlled studies show that judgement-based estimates can be unreliable, i.e. that there 

can be large random variations in estimates by the same developer [21]. Collecting more 

estimates reduces the threat implied by random variation. The available time for the 

benchmarking session allowed us to collect 48 (RCN – three developers) and 64 (MT – 

four developers) pairs of estimates. 
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One source of change in estimation accuracy over time is that developers may become 

more experienced, and hence provide more realistic estimates. For project RCN, it was 

possible to evaluate this threat by comparing the estimation bias for actual changes 

between the periods. For project MT, we did not have enough data about estimated change 

effort for real change tasks, and we could not evaluate this threat. 

Other sources of change in estimation accuracy between the sessions are the context for 

the estimation, the exact instructions and procedures, and the mental state of the 

developers. While impossible to control perfectly, we attempted to make the two 

benchmarking sessions as identical as possible, using the same, precise instructions and 

material. The developers were led to a consistent (bottom-up) approach by our instructions 

to identify and record affected parts of the system before they made each estimate. 

Estimates made in P1 could be influenced by estimates in P0 if developers remembered 

their previous estimates. After the session in P1, the feedback from all developers was that 

they did not remember their estimates or any of the tasks. 

An alternative benchmarking approach is comparing change effort for benchmark tasks 

that were actually completed by the developers. Although intuitively appealing, the 

analysis would still have to control for random variation in change effort, outcomes beyond 

change effort, representativeness of change tasks, and also possible learning effects 

between benchmarking sessions.  

In certain situations, it would even be possible to compare change effort for change 

tasks that recur naturally during maintenance and evolution (e.g., adding a new data 

provider to a price aggregation service). Most of the threats mentioned above would have 

to be considered in this case, as well. We did not have the opportunities to use these 

indicators in our study. 

2.5 Accounting for Changes in Quality 
Productivity analysis could be misleading if it does not control for other outcomes of 

change tasks, such as the change task’s effect on system qualities. For example, if more 

time pressure is put on developers, change effort could decrease at the expense of 

correctness. We limit this validation to a comparison of the amount of corrective and non-

corrective work between the periods. The evaluation assumes that the change task that 

introduced a fault was completed within the same period as the task that corrected the fault. 

Due to the short release-cycle and half-year leap between the end of P0 and the start of P1, 
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we are confident that change tasks in P0 did not trigger fault corrections in P1, a situation 

that would have precluded this evaluation. 

3 Results and Validation 
The indicator values with associated p-values are given in Table 2.  

Table 2. Results for the indicators 

 RCN MT 
Indicator  Value p-value Value p-value 
ICPR1  0.81 0.92 1.50 0.21 
ICPR2  0.90 0.44 1.50 0.054 
ICPR3  0.78 <0.0001 1.18 0.85 
ICPR4  1.00 0.52 1.33 0.0448 

For project RCN, the analysis of real change tasks indicate that productivity increased, 

since between 10 and 22% less effort was required to complete change tasks in P1. ICPR4 

indicates no change in productivity between the periods. The project had refactored the 

system throughout the fall of 2008 as planned. Overall, the indicators are consistent with 

the expectation that the refactoring initiative would be effective. Furthermore, the 

subjective judgment by the developers was that the goal of the refactoring was met, and 

that change tasks were indeed easier to perform in P1.  

For project MT, the analysis of real change tasks (ICPR1, ICPR2 and ICPR3) indicate a 

drop in productivity, with somewhere between 18 and 50% more effort to complete 

changes in P1 compared with P0. The indicator that uses benchmarking data (ICPR4) 

supports this estimate, being almost exactly in the middle of this range. The project 

manager in MT proposed post-hoc explanations as to why productivity might have 

decreased. During P0, project MT performed most of the changes under fixed-price 

contracts. In P1, most of the changes were completed under time-and material contracts. 

The project manager indicated that the developers may have experienced more time 

pressure in P0.  

As discussed in Section 2.5, the indicators only consider trends in change effort, and not 

trends in other important outcome variables that might confound the results, e.g., positive 

or negative trends in quality of the delivered changes. To assess the validity of our 

indicators with respect to such confounding effects, we compared the amount of corrective 

versus non-corrective work in the periods. For MT, the percentage of total effort spent on 

corrective work dropped from 35.6% to 17.1% between the periods. A plausible 

explanation is that the developers, due to less time pressure, expended more time in P1 
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ensuring that the change tasks were correctly implemented. So even though the 

productivity indicators suggest a drop, the correctness of changes was also higher. For 

RCN, the percentage of the total effort spent on corrective work increased from 9.7% to 

15%, suggesting that increased productivity was at the expense of slightly lesser quality. 

3.1 Validation of ICPR1

The distribution of change effort in the two periods is shown in Figure 1 (RCN) and Figure 

2 (MT). The square boxes include the mid 50% of the data points. A log scale is used on 

the y-axis, with units in hours. Triangles show outliers in the data set. 

For RCN, the plots for the two periods are very similar. The Hodges-Lehmann estimate 

of difference between two data sets (8) is 0, and the associated statistical test does not 

indicate a difference between the two periods. For MT, the plots show a trend towards 

higher change effort values in P1. The Hodges-Lehmann estimate is plus one hour in P1, 

and the statistical test showed that the probability is 0.21 that this result was obtained by 

pure chance. 

 
Figure 1. Change effort in RCN, P0 (left) vs. P1

 
Figure 2. Change effort in MT, P0 (left) vs. P1

If there were systematic differences in the properties of the change tasks between the 

periods, ICPR1 can be misleading. This was assessed by comparing values for variables 

that capture certain important properties. The results are shown in Table 3 and Table 4. 

The Wilcoxon rank-sum test determined whether changes in these variables were 

statistically significant. In the case of isCorrective, the Fischer’s exact test determined 

whether the proportion of corrective change tasks was significantly different in the two 

periods. 
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For RCN, chLoc significantly increased between the periods, while there were no 

statistically significant changes in the values of other variables. This indicates that larger 

changes were completed in P1, and that the indicated gain in productivity is a conservative 

estimate 

For MT, crTracks significantly decreased between P0 and P1, while addCC and 

components increased in the same period. This indicates that more complex changes were 

completed in P1, but that there was less uncertainty about requirements. Because these 

effects counteract, it cannot be determined whether the value for ICPR1 is conservative. 

This motivates the use of ICPR2 and ICPR3, which explicitly control for changes in the 

mentioned variables.  

Table 3. Properties of change tasks in RCN 

Variable P0 P1 p-value 
chLoc (mean) 26 104 0.0004 
crWords (mean) 107 88 0.89 
filetypes (mean) 2.7  2.9 0.50 
isCorrective (%) 38 39 0.90  

Table 4. Properties of change tasks in MT 

Variable P0 P1 p-value 
addCC (mean) 8.7 44 0.06 
components (mean) 3.6 7 0.09 
crTracks (mean) 4.8 2.5 <0.0001 
systExp (mean) 1870 2140 0.43 

3.2 Validation of ICPR2

ICPR2 is obtained by fitting a model of change effort on change task data from P0 and P1. 

The model includes a binary variable representing period of change (inP1) to allow for a 

constant proportional difference in change effort between the two periods. The statistical 

significance of the difference can be observed directly from the p-value of that variable. 

The fitted regression expressions for RCN and MT were:  

 (14) 

 (15) 

The p-value for inP1 is low (0.054) for MT and high (0.44) for RCN. All the other 

model variables have p-values lower than 0.05. For MT, the interpretation is that when 

these model variables are held constant, change effort increases by 50% (e0.40=1.50). A plot 

of deviance residuals in Figure 3 and Figure 4 is used to assess whether the modelling 
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framework (GLM with gamma distributed change effort and log link function) was 

appropriate. If the deviance residuals increase with higher outcomes (overdispersion) the 

computed p-values would be misleading. The plots show no sign of overdispersion. This 

validation increases the confidence in this indicator for project MT. For project RCN, the 

statistical significance is too weak to allow confidence in this indicator alone. 

Figure 3. Residual plot for RCN model (14) Figure 4. Residual plot for MT model (15) 

3.3 Validation of ICPR3

ICPR3 compares change effort in P1 with the model-based estimates for the same change 

tasks had they been completed in P0. The model was fitted on data from P0. Figure 5 

shows that actual change effort tends to be higher than estimated effort for MT, while the 

tendency is opposite for RCN. For RCN, the low p-value shows that that actual change 

effort is systematically lower than the model-based estimates. For project MT, the high p-

value means that actual effort was not systematically higher.  

 
Figure 5. Model estimates subtracted from actual effort 

If the variable subset is overfitted to data from P0, the model-based estimates using data 

from P1 can be misleading. To evaluate the stability of the model structure, we compared 

the model residuals in the P0 model with those in a new model fitted on data from P1 

(using the same variable subset). For MT, the model residuals were systematically larger 

(Wilcoxon rank-sum test, p=0.0048). There was no such trend for RCN (Wilcoxon rank-

sum test, p=0.78), indicating a more stable model structure. 
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Another possible problem with ICPR3 is that model estimates can degenerate for 

variable values poorly covered by the original data set. Inspection of the distributions for 

the independent variables showed that there was a potential problem with the variable 

chLoc, also indicated by the large difference in mean, shown in Table 3. We re-calculated 

ICPR3 after removing the 10 data points that were poorly covered by the original model, 

but this did not affect the value of the indicator.  

In summary, the validation for ICPR3 gives us high confidence in the result for project 

RCN, due to high statistical significance, and evidence of a stable underlying model 

structure. For project MT, the opposite conclusion applies.  

3.4 Validation of ICPR4

ICPR4 is obtained by comparing the estimates that were made in the benchmarking 

sessions in P0 and P1. Figure 6 shows that for project MT, the estimates tended to be 

higher in P1 than in P0. For project RCN, there was no apparent difference.  

A two-sided sign determines whether the differences are positive or negative in more 

cases than could be expected by pure chance. For project MT, the low p-value shows that 

estimates in P1 are systematically higher than estimates in P0. For project RCN, the high 

p-value means that estimates in P1 were not systematically different from in P0. 

A change in estimation accuracy constitutes a threat to the validity of ICPR4. For 

example, if developers tended to underestimate changes in P0, experience may have taught 

them to provide more relaxed estimates in P1. Because this would apply to real change 

tasks as well, we evaluated this threat by comparing estimation accuracy for real changes 

between the periods. The required data for this computation (developers’ estimates and 

actual change effort) was only available for RCN. Figure 7 shows a difference in 

estimation bias between the periods (Wilcoxon rank-sum test, p=0.086).  

 
Figure 6. Differences in estimates 

 
Figure 7. RCN: Estimates subtracted from actual effort 
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Changes tended to be overestimated in P0 and underestimated in P1. Hence, the 

developers became more optimistic, indicating that ICPR4 can be biased towards a higher 

value. This agrees with the results for the other indicators. 

In summary, the benchmarking sessions supported the results from data on real change 

tasks. An additional result from the benchmarking session was that uncertainty estimates 

consistently increased between the periods in both projects. The developers explained this 

result by claiming they were more realistic in their assessments of uncertainty. 

4 Discussion
The described approach to measuring productivity of software processes has some notable 

features compared with earlier work in this area. First, rather than searching for generally 

valid indicators of productivity, we believe it is more realistic to devise such indicators 

within more limited scopes. Our indicators target situations of software evolution where 

comparable change tasks are performed during two time intervals that are subject to the 

assessment. Second, rather than attempting to assess general validity, we believe it is more 

prudent to integrate validation procedures with the indicators. Third, our indicators are 

flexible within the defined scope, in that the structure of the underlying change effort 

models can vary in different contexts.  

In a given project context, it may not be obvious which indicator will work best. Our 

experience is that additional insight was gained about the projects from using and assessing 

several indicators. The three first indicators require that data on change effort from 

individual change tasks is available. The advantage of ICPR1 is that data on change effort 

is the only requirement for data collection. The caveat is that additional quantitative data is 

needed to assess the validity of the indicator. If this data is not available, a development 

organization may choose to be more pragmatic, and make qualitative judgments about 

potential differences in the properties of change tasks between the periods. 
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ICPR2 and ICPR3 require projects to collect data about factors that affect change effort, 

and that statistical models of change effort are established. To do this, it is essential to 

track relationships between change requests and code changes committed to the version 

control system. An advantage of ICPR3 is that any type of prediction framework can be 

used to establish the initial model. For example, data mining techniques such as decision 

trees or neural networks might be just as appropriate as multiple regression. Once the 

model is established, spreadsheets can be used to generate the estimates, construct the 

indicator and perform the associated statistical test.  

ICPR2 relies on a statistical regression model fitted on data from the periods under 

consideration. This approach better accounts for underlying changes in the cost drivers 

between the periods, than does ICPR3. In organizations with a homogenous process and a 

large amount of change data, the methodology developed by Graves and Mockus could be 

used to construct the regression model [17]. With their approach, data on development 

effort need only be available on a more aggregated level (e.g., monthly), and relationships 

between change requests and code commits need not be explicitly tracked.  

ICPR4 most closely approximates the hypothetical measure of comparing change effort 

for identical change tasks. However, it can be difficult to design benchmarking tasks that 

resemble real change tasks, and to evaluate whether changes in estimation accuracy have 

affected the results. If the benchmarking sessions are organized frequently, developers’ 

recollection of earlier estimates would constitute a validity threat. 

As part of our analysis, we developed a collection of scripts to retrieve data, construct 

basic measures and indicators, and produce data and graphics for the evaluation. This 

means that it is straightforward and inexpensive to continue to use the indicators in the 

studied projects. It is conceptually straightforward to streamline the scripts so that they can 

be used with other data sources and statistical packages. 

5 Conclusions
We conducted a field study in two software organizations to measure productivity changes 

between two time periods. Our perspective was that productivity during software evolution 

is closely related to the effort required to complete change tasks. Three of the indicators 

used the same data from real change tasks, but different methods to control for differences 

in the properties of the change tasks. The fourth indicator compared estimated change 

effort for a set of benchmarking tasks designed to be representative of real change tasks. 
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The indicators suggested that productivity trends had opposite directions in the two 

projects. It is interesting that these findings are consistent with major changes and events in 

the two projects: Between the measured periods, the project with the indicated higher 

productivity performed a reorganization of their system with the goal of simplifying further 

maintenance and evolution. The project with indicated lower productivity had changed 

from fixed-price maintenance contracts to time-and-material contracts, which may have 

relaxed the time pressure on developers. 

The paper makes a contribution towards the longer term goal of using methods and 

automated tools to assess trends in productivity during software evolution. We believe 

such methods and tools are important for software projects to assess and optimize 

development practices. 
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Abstract 

When producing estimates in software projects, expert opinions are frequently combined. 

However, it is poorly understood whether, when, and how to combine expert estimates. In 

order to study the effects of a combination technique called planning poker, the technique 

was introduced in a software project for half of the tasks. The tasks estimated with 

planning poker provided: 1) group consensus estimates that were less optimistic than the 

statistical combination (mean) of individual estimates for the same tasks, and 2) group 

consensus estimates that were more accurate than the statistical combination of individual 

estimates for the same tasks. For tasks in the same project, individual experts who 

estimated a set of control tasks achieved estimation accuracy similar to that achieved by 

estimators who estimated tasks using planning poker. Moreover, for both planning poker 

and the control group, measures of the median estimation bias indicated that both groups 

had unbiased estimates, because the typical estimated task was perfectly on target. A code 

analysis revealed that for tasks estimated with planning poker, more effort was expended 

due to the complexity of the changes to be made, possibly caused by the information 

provided in group discussions.  

1 Introduction 
In the software industry, various techniques are used to combine estimates. One of the 

most recent additions is planning poker, introduced by Grenning in 2002 [1] and also 

described in a popular textbook on agile estimating and planning by Mike Cohn [2]. There 
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exist few empirical studies on the combining of estimates in software engineering, but 

there are some indications that combination may reduce the bias towards optimism in 

estimates [3]. 

However, plenty of evidence from other research communities details the possible 

hazards of group processes [4]. For example, some recent papers published in psychology 

and forecasting emphasize the problems of decision-making in groups [5, 6]. Bueler et al. 

found that a) both individual and group predictions had an optimistic bias, b) group 

discussion increased individual biases, and c) this increase of bias in groups was mediated 

by the participants’ focus on factors that promote the successful completion of tasks [6]. 

Scott Armstrong states that he has been unable to obtain evidence that supports the use of 

face-to-face groups in decision making [5].  

These recent observations are in line with many previous classic studies on decision 

making in groups; individuals are inherently optimistic and this optimistic bias is increased 

by group interaction [4, 7, 8].  

In contrast to the foregoing, our studies on software expert estimates have found that 

individuals are, in general, biased towards optimism, but that this bias can actually be 

reduced by group discussions [3].  

The explanation for this apparent disparity may be that there are differences between a 

typical software estimation task and the tasks studied in other research areas. First, other 

studies frequently use ad hoc groups (e.g. [6]), whereas software estimation usually 

involves professionals who are accustomed to collaborating with each other and are 

motivated to perform in a professional manner [3]. Second, other studies tend to use tasks 

of which kind the participants might have little experience [4], whereas in software 

projects the participants are usually experienced. Third, another oft-reported problem is 

that laboratory studies tend to investigate hypothetical task and/or outcomes [4], and not 

real executed tasks with a recorded outcome.  

Table 1. Overview of some common combination techniques 

Method Structure Anonymity Interaction Overhead 
Delphi Heavy Yes No Major 
Wideband Delphi Moderate Limited Limited Moderate 
Planning Poker Light No Yes Limited 
Unstructured groups  Light No Yes Limited 
Statistical groups Light Yes No Limited 
Decision markets Heavy Yes No Moderate 
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It might be that estimating software projects is a type of task that it is, for some reason, 

sensible to discuss in groups. However, it might also be that previous studies in software 

engineering have had methodological shortcomings. 

The purpose of this study was to 1) explore the group processes that may occur when 

planning poker is used to estimate tasks, and 2) compare planning poker estimates with 

existing individual estimation methods. Section 2 introduces group estimation. In Sections 

3 and 4 respectively, research questions and methods are described. The results are 

presented in Section 5 and discussed in Section 6. Section 7 concludes. 

2 Combining Estimates in Groups 
Group estimation has not been widely studied in a software engineering context. In fact, a 

recent review [3] of the leading journals in the systems and software engineering field did 

not find a single paper that described empirical studies of group estimates in an industrial 

context. Since that review, at least two studies have been published, one of which 

compared individual expert estimates (combined in statistical groups) with an unstructured 

group estimation method [3] and the other of which compared unstructured group 

estimates with planning poker [9]. In addition, the combining of estimates has been studied 

in student tasks [10, 11]. 

Various techniques can be used to combine estimates. A simplified overview of six of 

the most common techniques, including what we perceive to be central properties, is 

displayed in Table 1.  

Structure describes the level of formality, amount of learning requirements, and degree 

of rigidity associated with the technique. Anonymity describes whether the estimators are 

anonymous to each other. Interaction describes whether, and if so to what extent, the 

estimators interact with each other. Overhead describes the typical extra amount of effort 

spent on estimating each project or task. 

Perhaps the most well-known technique for combination is the Delphi technique [12], 

which was devised by the RAND corporation in the 1950s [13]. The Delphi technique does 

not involve face-to-face discussions, but anonymous expert interaction through several 

iterations, supervised by a moderator until a majority position is attained. In addition to 

anonymity, the method needs to include iterations, controlled feedback and statistical 

aggregation of responses for it to be implemented properly [13].   
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It is claimed that even though the technique has been used widely, actual scientific 

studies of the techniques’ merits are sparse and often conducted inappropriately [13, 14]. 

However, even though reviews advise caution, there is evidence that the Delphi technique 

outperforms statistical groups and unstructured interacting groups [13] and that it is a 

sound method for harnessing the opinions of a diverse group [14]. However, there is no 

conclusive evidence that Delphi outperforms other structured group combination 

techniques.   

We have found no empirical research on the accuracy of Delphi in a software 

engineering context. However, it is frequently recommended in papers on software 

management, e.g. [15].  

The Wideband Delphi technique is a modification of the Delphi technique and includes 

more group interaction than Delphi [16]. As in the Delphi technique, there is a moderator, 

who supervises the process and collects estimates. However, in this approach the experts 

meet for group discussions both prior to, and during, the estimation iterations.  

The Wideband Delphi technique is very similar to the Nominal Group technique, which 

is also know as the estimate-talk-estimate technique [17]. Due to its similarities to the 

Wideband Delphi technique, the Nominal Group technique is neither presented nor 

discussed in this paper. 

Wideband Delphi has been proposed as an estimation method in books [16], and papers 

on software metrics [18] and software process improvement [19]. To the best of our 

knowledge, the Wideband Delphi technique has not been studied empirically. 

The planning poker technique is relatively new. It is a lightweight technique, with face-

to-face interaction and discussions. In short, the steps of the technique, as originally 

described by Grenning, are: “The customer reads a story. There is a discussion clarifying 

the story as necessary. Each programmer writes their estimate on a note card without 

discussing their estimate. Anticipation builds. Once all programmers have written their 

estimate, turn over all the cards. If there is agreement, great, no discussion is necessary, 

record the estimate and move on to the next story. If there is disagreement in the estimates, 

the team can then discuss their different estimates and try to get to consensus [1]”. By 

story, Grenning means a user story. A user story is a software system requirement that is 

formulated as one or two sentences in the everyday language of the user. The technique, 

and how it was adopted to the project studied, will be described in greater detail in Section 

4. 
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Being a relatively new technique, planning poker has, as far as we are aware, been the 

subject of only one published empirical study [9]. In that study, planning poker was 

compared to unstructured group estimation. It was found that for familiar tasks, the 

planning poker technique produced more accurate estimates than unstructured 

combination, whereas the opposite was found for unfamiliar tasks. 

Unstructured group combination is, as the name implies, basically discussions with a 

group decision being made at the end. Depending on needs, individuals can derive their 

own estimates before the discussion. 

A review of the literature on forecasting [20] suggests that unstructured groups were, on 

average, outperformed by Delphi-groups. However, the review also found that there are 

tasks for which unstructured groups are better suited. In some situations, it is possible that 

an unstructured group can outperform a Delphi group if the motivation of, and information 

sharing among, the participants is adequate [20]. 

In a previous study on software estimation [3], we found that group estimates made 

after an unstructured discussion were less optimistic and more realistic than individual 

estimates derived prior to the group discussion and combined in a statistical group. The 

main sources of this decrease in optimism seemed to be the identification of additional 

activities and an awareness that activities may be more complicated than was initially 

thought.  

Note that that study used an unstructured technique that involved prior individual 

estimates. Often, companies use an unstructured combination where experts meet to 

provide consensus estimates, without having previously made their individual estimates. 

This latter procedure is perhaps more susceptible to peer-pressure than when individual 

estimates have been derived initially. 

In a statistical group, there is no interaction between the group members. They are a 

group only in the sense that their individual estimates are combined statistically.  

When considering how to combine estimates given by several individuals into an 

estimate, well-known statistical methods can be used. Computing the mean or median of 

the different individual estimates will give us one estimate that is based on multiple 

estimates.  

Jørgensen claims that taking a simple average often works as the best method for 

combining estimates [21].  

A decision market is a technique for combining opinions that can also be used in 

estimation. Hanson provides the following definition: “Decision markets are (markets) 
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designed primarily for the purpose of using the information in market values to make 

decisions [22]”. 

A decision market can be set up like a stock market, with decisions being substituted 

for stocks. Traders are invited to invest money in the alternative, represented by stocks 

(decisions), that they think will be the eventual outcome. A trader holding a stock 

(decision) that becomes the actual outcome receives a fixed amount of money, prize or 

similar. Through the dynamics of a market, this results in higher stock (decision) prices for 

the alternatives that most people think will be the outcome, which creates a likelihood 

distribution for the different outcomes. 

According to Surowiecki, such a market is wise because it aggregates the opinions of 

traders. A market may be especially powerful if the traders are diverse in their 

backgrounds, independent of each other, and have local knowledge [23]. 

Inspired by Surowiecki, Berndt, Jones et al. advocate the use of decision markets in 

software effort estimation [24]. They stress that by allowing all project stakeholders to 

participate in the decision market, one ensures diversity in the input to the estimation 

process and aggregates the knowledge from all the project stakeholders. According to 

Berndt, Jones et al., another positive feature of decision markets is that the different traders 

can apply whatever estimation technique they like, thus enabling a combination of 

different estimation techniques. 

 A decision market is, as is Delphi, a way of aggregating different opinions without 

face-to-face meetings. Like Delphi, a decision market seeks to preempt the social and 

political problems caused by the use of interacting groups, while at the same time utilizing 

the increase in knowledge that using groups offers. An important factor is that the 

participants can receive (continuous) feedback on their own opinion compared to others. 

The main difference between Delphi and decision markets is the way in which the 

knowledge and opinions of the group members are aggregated. 

We have not managed to find any empirical research on the use of decision markets for 

software estimates. However, a recent paper by Berndt, Jones et al. describes an ongoing 

study [24].  

Studies on the combining of estimates for student tasks have shown some positive 

effects, both when combining estimates statistically [11] and in face-to-face discussions 

[10]. 

To summarize, the strategy of combining estimates for groups in general, and for 

software estimation in particular, is far from understood.  
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In addition, some studies, e.g., by Buehler et al., specify some limitations that may 

reduce the strategy’s applicability to real life problems, mainly that the groups studied 

consisted of individuals who were unfamiliar with each other [6]. 

It is also important to note that findings may vary in their applicability as task 

characteristics, motivational factors, social relations, and communication structure differ. 

In general, when reviewing studies on group processes, it is also important to differentiate 

between studies in which the participants cannot influence the outcome and those in which 

they can.  

3 Research Questions 
It is possible that typical software estimation tasks are suitable for group combination, such 

as planning poker. In an estimation process, there may be several experts who contribute 

different project experiences and knowledge. Such experiences can be shared more easily 

in a face-to-face group, as with planning poker, than through a moderator, as with the 

Delphi technique. In addition, face-to-face interaction may make the participants more 

committed to the decisions. 

We wanted to further explore whether, as found in a previous study on group estimation 

[3], optimism could be reduced by group discussions. From this, we derived the following 

research question: 

RQ1: Are group consensus estimates less optimistic than the statistical combination of 

individual expert estimates? 

We define optimism of estimates in the relative sense, and irrespective of accuracy. We 

deem one estimate to be more optimistic than another if and only if it states that it will take 

less time to complete a task than the other estimate. I.e., an estimate of 4 hours is more 

optimistic than an estimate of 5 hours. 

Any observation of reduced optimism would indicate a choice-shift, defined by Zuber, 

Crott et al. as the difference between the arithmetic average (mean) of individual decisions 

and the group consensus decision [25]. Such an observation of reduced optimism would be 

contrary to that which is typically reported from other research areas, where the choice-

shift is generally in the direction of increased risk willingness and optimism [6].  

It is important to note that our study does not merely confirm or undermine the results 

of the previous study on group estimation [3]. It also generates a new result, because the 
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subjects used planning poker rather than the unstructured discussion used in the previous 

study.

Even if a reduction in optimism were observed, it would not necessarily guarantee that 

estimates would be more accurate, because some or all of the individual estimates might 

already be biased towards pessimism. Thus, we also wanted to investigate whether group 

consensus estimates made after a discussion are more accurate than mean individual 

estimates. This concern generated the following research question: 

RQ2: Are group consensus estimates more accurate than the statistical combination of 

individual expert estimates?

The previous empirical study on planning poker compared planning poker with an 

unstructured method for combining estimates in groups [9]. Therefore, we wanted to 

compare the estimates that were derived by using planning poker to a series of estimates 

that were derived by individual experts, and not subject to subsequent group discussions. 

This generated the following research question:  

RQ3: Are group consensus estimates more accurate than the existing individual 

estimation method?

In addition to possibly influencing estimation accuracy, the introduction of group 

estimation might lead to changes in how the developers work. Such changes might include 

differences in the amount of total effort spent on the estimation phase, or effort spent on 

restructuring code during implementation. The final research question to explore is 

therefore: 

RQ4: Does the introduction of a group technique for estimation affect other aspects of 

the developers’ work, when compared to the individual estimation method? 

The sizes of changes have been shown to be  fundamental in explaining change effort 

variations; see, e.g., [26].  It is therefore necessary to explore: 

RQ4A. Are there differences between the planning poker tasks and the control group 

tasks that are related to the size of the changes? 

A larger change size for the planning poker tasks may, at least partly, explain any 

differences between the groups in actual effort, and provide an intermediate link for the 

causal analysis. 

The other subquestion to investigate is:
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RQ4B. Are there differences between the planning poker tasks and the control group 

tasks that are related to the complexity of the changes? 

Conclusions drawn from the analysis for question 4B are tentative, because only a 

subset of possible factors was investigated. However, the analysis can provide partial 

evidence and insight that can be useful in a wider causal analysis in combination with the 

other study results. Thus, it is of interest to assess any difference in effort after controlling 

for possible differences in change size and complexity.  

Research questions 1 and 2 concerns intragroup differences, while research questions 3, 

4A and 4B concerns intergroup differences. 

4 Research Method 
The research method was designed to address some of the issues pertaining to validity that 

arose in our previous studies [3, 9].  

The main limitation of the previous study of individual estimates (combined in 

statistical groups) followed by unstructured group combination was that the groups of 

professionals did not themselves implement the project they estimated [3]. This was done 

by a separate team; thus, the estimators did not estimate their own work. Therefore, from 

the perspective of the estimators in that study, there was a hypothetical outcome. However, 

as the project was actually implemented, it was possible to discern estimates that were 

clearly optimistic or pessimistic.  

The previous study on planning poker was limited to one team [9]. Another limitation 

was an unknown effect of increased system experience, because there was no 

randomization of tasks to the different methods (unstructured group estimation vs. 

planning poker). In addition, the study compared two different group estimation methods 

(planning poker vs. unstructured groups), and did not compare group estimation with 

individual estimation. 

In the study reported herein, we wanted a design that could both measure any shift in 

choices among the planning poker tasks and compare planning poker with a control group 

of tasks estimated with the existing individual estimation method. In addition, it was 

important that the design allowed for the comparison of estimates with the actual effort for 

all tasks.  

We also wanted to perform an analysis of code following the completion of the tasks, to 

explore any possible differences related to the size or complexity of the changes. Finally, 
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we wanted to conduct face-to-face interviews with the participants, in order to further 

explore and explain possible findings. 

A simplified overview of the study design is presented in Table 2. 

Table 2. Study overview 

Planning poker  Control group 

A Tasks requested by client entered into the task tracking system and 
given an initial estimate 

B  Tasks assigned randomly to planning poker or control group 

C Initial estimate discarded Initial estimate kept 

D Task presented to team N/A 

E Task discussed briefly N/A 

F Individual estimates derived N/A 

G  Individual estimates revealed N/A 

H Estimates discussed N/A 

I Consensus estimate derived by 
group 

Initial estimate used as estimate 

J Task performed 

K Actual effort recorded 

L Source-code analyzed 

M Participants interviewed 

4.1 The Company and Project Studied 
The company studied is a medium-size Norwegian software company that delivers custom-

made solutions to various private and public clients. The project team studied had been 

working for a large public client for several months at the start of the study and was using 

Scrum (http://www.controlchaos.com/) as the project methodology. The project team 

estimates the tasks to be performed in the upcoming sprint (Scrum terminology for the next 

period). In the team studied, this happens once each fortnight, and about 15-20 tasks are 

selected for each sprint. From four to six team members participate in each sprint, 

depending on the demands of the tasks. 

All project participants in the study were guaranteed anonymity and assured that no 

results regarding performance could be traced. 

 

4.2 The Estimation Methods Studied
The existing estimation method of the project was that the tasks were estimated 

individually by the team member responsible for the part of the system that would be 
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affected by the change. Changes requested by the client were analyzed, estimated and 

recorded (Step A; Table 2) in their task tracking system, Jira 

(http://www.atlassian.com/software/jira/). The tasks were of varying size and character, 

ranging from two-hour bug fixes to three-day analyses of larger changes, and were 

relatively well defined in the task-tracking system, which used text and screenshots. All 

members of the team participated in estimating tasks. This was done individually and 

estimates were not revealed to other team members. This method was used in the control 

group in our study. 

For each sprint, half of the tasks were to be re-estimated with a variation of planning 

poker, while the initial estimate was retained for the other half (Step C). The tasks were 

assigned randomly to either the planning poker or the control group (Step B). 

Before the study, the team was given an introduction to planning poker by the 

company’s chief scientist. The estimation method for the planning poker condition was 

employed with the following steps in sequence for each task: 

� The task was presented to the team (Step D) by the developer who registered the task in 

the task tracking system. The initial estimate was not revealed to other team members 

and was discarded (Step C). 

� The task was discussed briefly by the team (Step E), to ensure that everybody had the 

same interpretation before estimates were made.  

� The team members then estimated, individually, the most likely effort needed to 

perform the task specified (Step F). The estimate was given in work-hours. 

� All team members revealed their estimates simultaneously (Step G): 

o If any estimates were larger than 18 hours, there was a brief discussion of how to 

break the task down into subtasks. A full day of work was deemed to be six hours. 

From previous experience, the team felt that estimates larger than 18 hours (i.e. three 

days) were less accurate. Therefore, they decided to split tasks above this size. 

o Those with the lowest and highest estimates had to justify their estimates. A brief 

debate followed (Step H). The debate was led by the company’s chief scientist for 

the first sprint; thereafter, the team worked on its own. 

o If a consensus was reached on an estimate, this was recorded (Step I) and the team 

moved on to the next task (Step C). If no consensus could be reached, the members 

revised their estimates and participated in a new individual estimation round for that 

particular task.  
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� After the task had been performed, the developer who performed the task recorded the 

actual effort expended, together with his or her initials (Step K). 

Note that this method differs somewhat from the description given by Grenning [1]. For 

example, planning poker was, in our case, used for task estimation, and not estimation of 

user stories [2] or features (for which use it is most commonly recommended).  

After all the tasks had been performed, the code for solutions in both study groups was 

analysed (Step L) and the participants were interviewed to get their opinions (Step M).  

4.3 Calculation of Estimation Accuracy 
To calculate estimation accuracy, we employed the BRE (Balanced Relative Error), 

because it is a more balanced measure than the MRE [27]. It is calculated as: 

 x=actual and y=estimate 

In order to measure whether there was a bias towards optimism or pessimism, the 

BREbias was calculated, because this measures both the size and the direction of the 

estimation error: 

 x=actual and y=estimate 

To measure the size of any difference in mean values, we used Cohen’s size of effect 

measure (d) [28], where 

 

Here, pooledStDev denotes the pooled standard deviation, a method for assessing the 

true standard deviation of different samples. 

 

4.4 Code analysis 
Checkins to the code repository, Subversion (http://subversion.tigris.org), were tagged by 

the developers with a task identifier. Hence, we were able to retrieve the exact state of the 

application before and after each task, and quantitative measures of changes could be 

extracted. By studying the changes to the application code associated with the individual 

tasks, we were better prepared to investigate and discuss whether, and how, the estimation 

method may have influenced how effort was spent for each task. 
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More specifically, the code analysis sought to compare the amount and complexity of 

code that was added, changed, and removed during the tasks. This allowed a more focused 

root cause analysis of possible differences in change effort. Research question 4A was 

investigated by inspecting mean and median values for change size and performing a 

Kruskal-Wallis test [29] on the medians. 

For both questions, regression models of change effort versus measures of change size 

and change complexity were used to gain insight into factors that explain change effort. 

When applying these models and measures, we used the same statistical framework as, and 

similar procedures to, those discussed and used by Graves and Mockus [26], who 

performed  similar analyses of change effort. In brief, the framework utilizes Generalized 

Linear Models using change effort (measured in work-hours) as a dependent variable, 

measures of possibly influential factors as covariates, and a log link. It assumes Poisson 

distributed errors, and allows a free scale parameter to adjust for possible overdispersion, 

c.f. [30]. 

Although artifacts such as binaries, design models, and build scripts were present in the 

code repository, only source code was considered for this analysis.  Source code included 

files for Java, Java Server Pages, the eXtensible Stylesheet Language, XML, and XML 

Schema Definitions. 

Added, deleted and changed lines were measured by processing the side-by-side (-y 

option) output of the standard Linux program diff, c.f. [31, 32]. Frequently used measure 

of change size is the sum of these measures (SIZE1); see e.g., [33]. Graves and Mockus 

[26] evaluated several size measures and found that the number of file check-ins to the 

code repository (SIZE2) best explained change effort. We constructed a third measure, the 

number of changed segments of code (SIZE3). A changed segment of code is a set of 

consecutive lines of code, where all lines were either added, changed or deleted. The 

measures from the code repository were extracted automatically. Their definitions are 

provided in Table 3.  
Table 3. Change measures 

ADD Number of source code lines added 

CH Number of source code lines changed 

DEL Number of source code lines deleted 

SIZE1 ADD + CH + DEL 

SIZE2 Number of file revisions checked in (deltas) 

SIZE3 Number of changed segments of code 
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ACS Number of control-flow statements added 

DCS Number of control-flow statements deleted 

AOR Number of out-of-class references added 

DOR Number of out-of-class referencesdeleted 

SZAFF Mean number of source code lines in affected modules 

isControl Binary variable representing group membership. Value set to 1 if task was in 
control group, 0 if task estimated by PP 

In order to select the most appropriate size measure among the three candidates, the 

deviance of the three regression models of the type described above was compared. Lower 

deviance values indicate a better fit between model and the actual data [30]. A model based 

on SIZE3 and a mathematical intercept value provided the best fit and SIZE3 was selected 

as the size measure to use for the analysis; see Table 4. 

Table 4. Model fit with alternative size measures 

Variables Coefficient p-value Deviance 
Intercept 2.05 <0.0001 188 
SIZE1 0.000738 0.0487  
Intercept 2.03 <0.0001 180 
SIZE2 0.0203 0.0177  
Intercept 1.95 <0.0001 154 
SIZE3 0.00793 0.0009  

We used three types of measures of change complexity. These were hypothesized to 

explain possible change effort variations: Measures of the size of the affected code, similar 

to SZAFF, have been found by other researchers to affect change effort significantly [34], 

[35]. 

Measures of the type of change, similar to ADD, DEL, CH were used by, e.g., 

Jørgensen [33]. Measures of additions and deletions of structural attributes (ACS, DCS, 

AOR, DOR) are less common, but have been investigated at the file level by Fluri and Gall 

[36].  An out-of-class reference means that the measured class uses a method or attribute in 

another class. A control-flow statement changes the sequential flow of control. Hence, the 

measures are similar to the concepts of import coupling  [37] and cyclomatic complexity 

[38], but adapted to measuring complexity change at the task level. 

4.5 Interviews 
All project participants were interviewed individually on a range of issues. These 

interviews sought to a) uncover background information regarding project priorities, b) ask 

specific questions regarding the planning poker technique, and c) determine the 
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participants’ perception of differences between the planning poker technique and the 

individual estimation technique. 

The interviews were performed in person and followed a structured questionnaire. 

5 Results
In total, 55 tasks were estimated and implemented, of which 24 were estimated with 

planning poker and 29 with the existing individual estimation method. Two tasks were 

deleted from the dataset due to suspicion of faulty registration in the database. A brief 

summary of important data is presented in Table 5. The first column represents the initial 

estimates (Step A; Table 2), the second the statistical combination of individual estimates 

for the planning poker tasks (Step F), the third the final estimates (consensus estimate for 

the planning poker tasks, individual estimate for the control group, Step I), the fourth 

column the actual effort (Step J), the fifth the estimation accuracy of planning poker tasks 

measured against the statistical combination of individual estimates, the sixth estimation 

accuracy against final estimates, and the final column contains estimation bias. 

Table 5. Key results 

Initial 
estim
ate 

Statistical 
comb. 
(hrs) 

Estimate 
(hrs) 

Actual 
effort 
(hrs) 

BRE  
statistical  
comb.  

BRE  BREbias 

Planning 
poker (n=24) 

Mean 6.6 6.3 7.1 10.4 0.94 0.82 0.33 

Median 5.0 6.0 6.0 8.0 0.56 0.50 0.00 

Control group 
(n=29) 

Mean 5.3  5.3 6.1  0.78 -0.04 

Median 4.0  4.0 4.0  0.33 0.00 

The first two research questions relate only to the 24 tasks that were estimated with 

planning poker. The third research question compares accuracy results from the 24 tasks 

estimated by using planning poker with the 29 tasks estimated by using the existing 

individual estimation method. The final research question examines possible differences in 

change size and complexity. 

5.1 RQ1: Are group consensus estimates less optimistic than the statistical 
combination of individual expert estimates? 

For the 24 tasks that were estimated using planning poker, the mean of the statistical 

combination of individual estimates before group discussion was 6.3 hours (median 6.0 

hours). After group discussion, the mean consensus estimate was 7.1 hours (median 6.0 

hours). An analysis was performed with a paired t-test, as suggested in similar research on 
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choice shift [39]. Since the research question suggests a direction of effect (group 

discussion reduces optimism), the paired t-test was one-sided. We provide the actual p-

values, as suggested by Wonnacott and Wonnacott [29], instead of predefining a 

significance level for rejection. The results are displayed in Table 6. The analysis of 

possible choice shift on the estimates yielded a p-value of 0.04 and an effect size of 0.16. 

Table 6. RQ1 results 

N 24 

Statistical combination (mean hours) 6.3 

Group consensus (mean hours) 7.1 

Difference 0.8 

PooledStDev 4.6 

p-value 0.04 

Size of effect (d) 0.16 

5.2 RQ2: Are group consensus estimates more accurate than the statistical 
combination of individual expert estimates? 

On the basis of the estimates, we calculated the estimation accuracy measured in BRE. 

The mean BRE of the statistical combination of individual estimates before group 

discussion was 0.94 (median 0.56). The mean BRE of the consensus estimates after group 

discussion was 0.82 (median 0.50). The calculation of the statistics followed the same 

procedure as for the previous research question. A summary is presented in Table 7.  

The analysis of a possible difference in accuracy between the statistical combination of 

individual estimates and the group consensus estimates yielded a p-value of 0.07 and an 

effect-size of 0.11. 
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Table 7. RQ2 results 

N 24 

BRE Statistical combination  (mean) 0.94 

BRE Group consensus (mean) 0.82 

Difference 0.12 

Pooled StDev 1.02 

p-value 0.07 

Size of effect (d) 0.11 

5.3 RQ3: Are group consensus estimates more accurate than the existing individual 
estimation method? 

The mean BRE of the tasks completed using the existing individual estimation method was 

0.78 (median 0.33), compared to a mean BRE of 0.82 (median 0.50) for the planning poker 

tasks. For the statistical test of difference between the two groups, a Kruskal-Wallis test 

[29] was performed on the medians. A summary for both groups is found in Table 8.  

Table 8. RQ4 results 

BRE planning poker group (mean, n=24) 0.82 

BRE control group (mean, n=29) 0.78 

Difference 0.04 

Pooled StDev 1.22 

p-value (Kruskal Wallis) 0.77 

Size of effect (d) 0.03 

The analysis of difference between the two study groups yielded a p-value of 0.77, and 

a size of effect of 0.03. Regarding any difference in estimation bias, the BREbias values 

are presented in Figure 1 (see also Table 5).  

 

Figure 1. BREbias 
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An interesting finding emerges. The median BREbias for both the planning poker group 

and the control group is 0.00, which indicates that the typical case is estimated perfectly on 

target. 

However, the mean BREbias of the planning poker tasks was 0.33, compared to -0.04 

for the control group (see also Table 5).  

5.4 RQ4: Does the introduction of a group technique for estimation affect other 
aspects of the developers’ work, when compared to the individual estimation 
method?

Thirty-four of the 53 tasks studied involved changing code. For seven of the 34 tasks that 

involved code changes, the developers did not tag the associated code repository checkins. 

Interviews revealed that this could sometimes happen for minor changes. Hence, the 

analysis below is based on 27 valid data points. An overview of the results of the code 

analysis is presented in Table 9. 

Table 9. Mean values of key measures compared

Measure Mean value control Mean value PP 

Estimate 7.5 7.6 

Actual 8.1 12.8 

ADD 246 326 

CH 23.5 36.0 

DEL 66.5 50.9 

SIZE1 336 413
SIZE2 17.0 12.3 

SIZE3 45.3 39.9 

ACS 21.6 14.4 

DCS 14.1 6.8 

AOR 209 206 

DOR 65 50 

SZAFF 224 151 

The mean actual effort for both groups is somewhat higher for this subset than for the 

complete set of tasks, which is presented in Table 5. This is not surprising, because tasks 

that involve changes to the code are usually larger than other tasks. The mean actual effort 

for the planning poker tasks involving code change is 12.8 hours, compared to 10.4 hours 

for the complete planning poker subset. Similarly, the mean actual effort of the control 

group is 8.1 hours for the tasks involving code, compared with 6.1 hours for all control 

tasks.  
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Research question 4A asked: Are there differences between the planning poker tasks 

and the control group tasks related to the size of the changes? 

The control group has a higher mean value for the SIZE3 measure than the planning 

poker group (see Table 9). Given this, it appears that the control group tasks took less time 

and were larger than the planning poker tasks. However, this difference in size is not 

statistically significant using a Kruskal-Wallis test (p=0.59). The individual data points of 

SIZE3 vs. change effort are depicted in Figure 2.  

 
Figure 2. Change effort and size 

In order to further explore research question 4A, we fitted two regression models of the 

type discussed in Section 4.4, one that included isControl (the group indicator, refer to 

Table 3) only, and one that added the size variable, SIZE3. The results are summarized in 

Table 10.  

Table 10. Models of change effort, without and with size measure included as covariate 

Variable Coefficient p-value Deviance 

Intercept 2.55 <0.0001 210 

isControl -0.449 0.25  

Intercept 2.12 <0.0001 139 

SIZE3 0.00795 0.0004  

isControl -0.482 0.10  

As can be seen, when accounting for size (the second model), the difference in change 

effort between the groups become clearer (the p-value of the isControl variable decreases), 

and is statistically significant at the 0.1 level. In other words, there is initial evidence that, 

after controlling for size, effort expended on tasks estimated by planning poker is greater 

than effort expended on tasks in the control group. 
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Returning to the summary statistics in Table 9, we observe that planning poker tasks 

involved more changes (CH) and fewer deletions (DEL) to existing code. These factors can 

account for the observed difference in change effort. 

Research Question 4B asked: Are there differences between the planning poker tasks 

and the control group tasks related to the complexity of the changes? 

To analyze possible differences in complexity, we entered all complexity measures into 

the model presented in Section 4.4., and applied a variable selection method called 

backward elimination to attempt to identify factors that explain change effort variations. 

The results are presented in the top half of Table 11.  

Measures of changed lines (CH), added control statements (ACS), and deleted out-of-

class references (DOR) contribute positively to change effort. The measure of deleted lines 

(DEL) contributes negatively to change effort. When entering these measures of change 

complexity into the model, the estimation method (isControl) was no longer related 

significantly to change effort.  

Thus, there is no evidence that effort expended on tasks estimated by planning poker is 

greater than effort expended on tasks in the control group after controlling for change 

complexity. 

Note that the measures selected by the backward elimination procedure may have been 

influenced by correlations between the measures. ACS is correlated heavily with AOR and 

DOR is correlated heavily with DCS; hence, it is likely that AOR and DCS will provide 

almost as good explanatory power as ACS and DOR. We confirmed this by refitting a 

model forcing in the AOR and DCS variables; see the results in the bottom half of Table 

11. 

Table 11. Models for change complexity 

Variable Coefficient p-value Deviance 

Intercept 1.71 <0.0001 76 

DEL -0.0242 <0.0001  

CH 0.0193 <0.0001  

ACS 0.0184 0.016  

DOR 0.0166 0.0005  

Intercept 1.79 <0.0001 92 

DEL -0.017 0.0003  

CH 0.0198 <0.0001  

AOR 0.00136 0.0081  

DCS 0.0493 0.0018  
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Given the above, we answer Research Question 4B positively: there are differences in 

change complexity between the planning poker tasks and the control tasks,   

These differences in complexity might explain differences in effort. The underlying 

reasons for differences in complexity will be explored in the next section. 

A final observation is that there is no evidence that the observed bias between the 

groups with respect to the mean size of affected modules resulted in differences in change 

effort. 

5.5 Results from the participant interviews 
The interviews provided information that will be used in the discussion section to try to 

explain the results presented above. The interviews focused on a) background information 

regarding project priorities, b) specific questions regarding planning poker, and c) the 

participants’ perception of differences between the planning poker technique and the 

individual estimation technique. 

The participants were asked to rate how they perceived the priorities of the project used 

in this study on a five-point Likert scale (1=very important, 2=important, 3=of medium 

importance, 4=somewhat important, 5=not important). The respondents were free to use 

their personal interpretation of parameters such as quality and functionality. The results are 

displayed in Table 12. 

Table 12. Perceived importance of project parameters 

Parameter Mean Median StDev 
Customer satisfaction 1.8 2.0 0.8 

Functionality 2.0 2.0 0.6 

Quality 2.2 2.0 0.8 

Schedule 2.7 2.5 0.8 

Effort 3.0 2.5 1.3 

There are several reasons for why people change their opinion about the estimate of a 

task after group discussion [4]. Some of the more common reasons are a) pressure (direct 

or perceived) from seniors, b) new information revealed, or c) a desire for consensus. 

The participants were asked to rate how much these reasons affected their estimates on 

a five-point Likert-scale (1=influence in all tasks, 2=influence in most tasks, 3=influence 

in about half of the tasks, 4=influence in some tasks, 5=influence in none of the tasks).  

The results are displayed in Table 13. 

Table 13. Perceived influence when changing opinion 
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Parameter Mean Median StDev 

New information  1.8 2.0 0.4 

Pressure from seniors 2.7 2.0 1.2 

Desire for consensus 3.3 3.5 0.8 

The participants were interviewed regarding possible differences induced by the 

planning poker technique when compared to the individual estimation method (control 

group). They were asked to rate their perception of whether, and if so how, several aspects 

of their work was influenced. This included both effort spent in various phases and 

suitability. They rated these aspects on a five-point Likert-scale (1=much more, 2=more, 

3=similar, 4=less, 5=much less). The results are summarized in Table 14. 

Table 14. Perceived differences of planning poker compared to control group tasks 

Property Rating 
(mean) 

Median StDev 

Suitability for identifying task challenges 1.5 1.5 0.5 
Suitability for identifying subtasks 1.7 1.5 0.8 
Effort spent on estimation 1.8 2.0 0.4 
Motivation to follow estimates 2.0 2.0 0.6 
Estimation accuracy 2.2 2.0 0.8 
Effort spent on analysis and design 2.8 2.5 1.0 
Effort spent on refactoring of code 3.0 3.0 0.6 
Effort spent on clarifying tasks during 
implementation (i.e. not including the 
estimation phase) 

3.2 3.0 0.8 

6 Discussion
In general, small differences in estimation accuracy were found between the groups, 

whether the comparison was between a statistical combination of individual estimates and 

group consensus estimates for the planning poker tasks (choice shift), or between planning 

poker tasks and the control group. 

Interestingly, there appeared to be a difference between the planning poker tasks and the 

control tasks that was related to change size and change complexity.  

6.1 RQ1: Are group consensus estimates less optimistic than the statistical 
combination of individual expert estimates?

When we looked in isolation at the tasks estimated with planning poker, the results 

indicated a slight shift in choices that showed a reduction of optimism after group 

discussion. For these tasks, there was an initial individual bias towards optimism, as in 

other studies [6]. However, in our study, this optimism was not increased by group 

discussion. Rather, we found the opposite, that optimism was reduced, as in a previous 
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study on software estimation [3]. However, note that the effect must be considered small 

(Cohen’s d<0.20). 

The more common reasons for a change of opinion regarding the estimate of a task 

following group discussion have already been noted. The results of the interviews 

presented in Section 5.5 show that the respondents rated new information as the most 

important reason for changing their minds (mean response 1.8, and standard deviation of 

0.4). However, pressure (2.7) and desire for consensus (3.3) were also rated as important 

for changes of opinion for about half of the tasks. 

6.2 RQ2: Are group consensus estimates more accurate than the statistical 
combination of individual expert estimates? 

There were indications of a slight shift towards increased accuracy when comparing 

consensus estimates with the statistical combination of individual estimates. This comes as 

a direct function of an initial bias towards optimism in the individual estimates. When, as 

found with respect to RQ1, this optimism was reduced, accuracy increased. However, the 

size of effect is considered small (Cohen’s d<0.20). 

When exploring differences between a group’s consensus estimate and the statistical 

combining of individual estimates, a relevant property is the initial (dis)agreement of the 

estimates for each task. This (dis)agreement can be measured by the standard deviation 

(StDev).  For the 24 tasks estimated with planning poker, the StDev of the individual 

estimates varied from 0.00 to 6.65, and the median and mean StDev were 2.23 and 2.20 

respectively. 

However, initial agreement on the part of the estimators (reflected in a low standard 

deviation) did not entail more accurate group consensus estimates. A correlation test of 

standard deviation (StDev) of individual estimates, and the accuracy (BRE) of the group 

estimates resulted in a Pearson correlation of -0.54 and a p-value of 0.80. 

6.3 RQ3: Are group consensus estimates more accurate than the existing individual 
estimation method? 

The planning poker and control group had fairly similar estimation accuracy. 

Regarding the observed difference in the direction of inaccuracy between the planning 

poker tasks and the control tasks, as seen by the difference in mean BREbias, one possible 

explanation is that some of the planning poker tasks were, purely by chance, more difficult 

to complete. Even though the tasks were assigned at random to the two study groups, 

anomalies may appear, especially in datasets of this size.  
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The mean of the initial estimates, i.e. estimates made before the assignment of the 

estimation procedure, was 5.3 hours (median 4 hours) for the control group, compared to 

6.6 hours (median 5 hours) for the tasks estimated using planning poker. So, it is possible 

that the planning poker tasks were a bit more difficult, because they had initial estimates 

that were somewhat larger.  

Comparison of the actual effort of the tasks in the two study groups yields an interesting 

observation. The average size in the control group tasks was 6.1 hours (median 4 hours), 

compared to 10.4 hours (median 8 hours) in the planning poker tasks. While the median 

initial estimates were 25% larger in the planning poker group, the difference in median 

actual effort was 100%. Even though it is possible that initially, the tasks in the planning 

poker tasks carried a somewhat larger workload, this cannot account for the observed 

difference in actual effort between the groups.  

The observations of differences in actual effort between planning poker and control 

tasks was unexpected, and, as stated in Sections 1 and 2, there is very little research on the 

combining of estimates for comparison. At this stage, we can only speculate about a set of 

interacting causes that may explain our observations: 

1. Group discussion identifies subtasks and complexity. Previous studies have shown 

that groups are able to identify more tasks than individuals [3]. When the group discusses a 

task (as when estimating using planning poker), they are likely to look at it from different 

angles, especially if they have diverse backgrounds [23]. They may offer different 

perspectives on a task and identify different subproblems.  

Software engineering textbooks [16, 40] and papers [15, 41, 42] frequently mention 

forgotten tasks as major obstacles to successful estimation by experts. Several estimators 

who discuss the same task will identify at least as many subtasks as any single estimator 

alone. It might be that this happened for the tasks that were estimated using planning 

poker.  

As seen from the results of the interviews presented in Section 5.5, the participants 

perceived that planning poker influenced their work most with respect to identifying 

subtasks and challenges. They also thought that they spent more time estimating and that 

they were more motivated to match their estimates. Even though estimation accuracy did 

not increase when using planning poker, the participants believed that it did. The three 

areas in which the participants did not perceive any changes were related to effort spent on 

analysis and design, refactoring, and clarifications. 
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The code analysis revealed that more effort was spent on performing complex changes 

in the planning poker tasks. This might have been induced by the group discussion. 

2. Anchor-effect from individual estimates. Even if the participants identified more 

subtasks and complexity during group discussion, it is possible that they were not able to 

make sufficient adjustments on the basis of this new information when seeking consensus 

estimates. Even though the group decision exhibited decreased optimism when compared 

to the statistical combining of individual estimates, this was, for some tasks, not sufficient, 

and they were underestimated. 

It is probable that the initial individual estimates acted as anchors [43] when group 

consensus was sought. Participants were frequently willing to increase their estimates 

somewhat, e.g. by about one hour, but it seldom happened that consensus estimates 

deviated substantially from the statistical combination. As seen from results of the 

interviews, presented in subsection 5.5, it was important for the participants to reach a 

consensus.  

3. Priority of scope over effort and schedule. If we assume that more task work and 

greater complexity was identified during planning poker discussions (as follows from 

explanation 1), and the participants have their original estimates (and group mean) as 

anchors (as follows from explanation 2), this may lead to underestimated tasks. 

When a task is estimated in a group (as with planning poker), and then handed to an 

individual, that individual must address all the aspects of the work discussed by the group 

when implementing the solution. By contrast, individual programmers who estimate and 

plan alone (as in the control group) have a more limited range of work aspects to address.  

When underestimated tasks are encountered, the implementation will be affected, 

according to how priority is assigned to scope, effort, schedule, etc. A recent study found 

that software professionals gave priority to “project scope” when defining project success 

[44]. The professionals in that study, independent of their role in the company, stated that 

scope was more important than cost (effort) or time (schedule) when asked to state their 

priorities. We have also recently conducted a study in Norway, where it was found that 

(lack of) estimation accuracy did not affect perceived project success [45]. 

As seen from the results of the interviews presented in Section 5.5, effort and schedule 

were perceived as least important by the participants, while functionality and customer 

satisfaction were perceived as most important. 

Thus, if more work is identified during discussion, programmers may feel inclined to 

expend more effort in order to implement it. It might just be that for some of the planning 
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poker tasks, work such as the restructuring of code uncovered in our analysis caused some 

overruns. 

6.4  RQ4: Does the introduction of a group technique for estimation affect other 
aspects of the developers’ work, when compared to the individual estimation 
method? 

Differences in effort between groups were amplified when controlling for change size: 

More effort was expended on the planning poker tasks and the sizes of these tasks were 

smaller than in the control group.  

Differences with respect to the complexity of the tasks can explain the difference. 

Changes made in the tasks estimated by planning poker were more complex, as manifested 

in measures of the changed code.   

This observation must be seen together with the respondents’ claim that planning poker 

was more suitable for identifying subtasks and challenges. It is possible that the planning 

poker method itself influenced the way the developers translated the change requests into 

working code. 

6.5 Study Validity 
In their framework for analysing the accuracy of software estimation [46], Grimstad and 

Jørgensen describe several factors that can have a major impact on the measured 

estimation error. Their top-level categories are: 1) estimation ability factors,  

2) estimation complexity factors, and 3) measurement process factors.  

When discussing the internal validity of our comparison of the planning poker and 

control groups (RQ3 and RQ4), many of the factors in the framework do not cause 

concern, because they are similar for both groups. Examples of these are: a) the project 

manager’s ability to control costs, b) client and subcontractor performance, c) 

completeness and certainty of the information upon which the estimates were based, d) 

project priorities, e) project member skill, f) inherent complexity of project execution, g) 

experience with similar tasks, h) experience of the system under consideration, i) flexibility 

in product and process execution, j) terminology and measures, and k) the recording of 

data.  

These factors were similar in both groups and did not have any effect, because all tasks 

in the study were taken from the same project, with, e.g., the same client, participants, and 

prioritizations. 
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In addition, the isolation strategy used was randomization, which is the most powerful 

strategy.  This approach addresses concerns such as skill in the selection of estimation 

approach, because this was assigned randomly. However, as described previously, even 

randomization is no guarantee that the samples will have similar properties with respect to 

all factors. As seen, the sizes of the initial estimates of the tasks were not entirely similar in 

the groups, even though the variations were small. 

Perhaps the most challenging issue concerns one of the estimation ability factors; 

namely, skill in the use of estimation approach [46]. Since the estimators were more 

familiar with their existing individual estimation method (control group), it might be that 

their skill in employing this was superior to their skill in using planning poker. However, 

we do not believe that this factor had any major impact, because planning poker is a 

straightforward and easy-to-use approach that should not require a steep learning curve. 

We performed an analysis of the estimation accuracy of the planning poker tasks to 

determine whether there was any learning. It was found that the estimation accuracy was 

similar for the planning poker tasks throughout the entire study. 

The internal validity of the choice shift (RQ1 and RQ2) research questions is relatively 

unproblematic, because it involved several estimates for the same task.  

Regarding external validity, only one project team was studied. Therefore, several 

factors must be considered when generalizing. In particular, factors such as team 

motivation [4] and team composition [23] will probably have a large impact on the results. 

For example, a team that lacks diversity and motivation may increase an optimistic bias 

instead of reducing it. Most important perhaps, is that this study was on task estimation, 

which has properties other than user-story estimation (for which planning poker is 

recommended), project estimation, and factors related to bidding.  
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Finally, regarding generalization, it is important to note that the tasks studied here were 

relatively small and were to be performed in an agile project environment. At this time, we 

have no opportunity to assess the merits of using planning poker in other project 

environments.  

A general concern is that the study had a relative small sample size with respect to 

statistical analysis.  The source-code data, especially, contained few data points with large 

variances; hence the analysis is sensitive to the values of small groups of data points. In 

particular, one data point has a large influence on the mean change effort of planning poker 

tasks. However, removing this data point does not change the observation that change effort is 

greater, by median or mean value, for planning poker tasks. In addition, when controlling for 

size, this data point can no longer be considered an outlier. We therefore included the data 

point in our analysis. 

Given the above reservations, this study must be interpreted with care and used primarily 

in combination with previous studies on group estimation (presented in Section 2) as a 

stepping stone for further research. 

7 Conclusions
Previous reviews of the literature and experiments have concluded that it does not seem to be 

very important which of a set of structured methods for combining estimates is used in order 

to achieve accuracy [47]. The Delphi technique is probably the best studied example, and 

though it has been found to outperform unstructured groups, there is no evidence that it 

outperforms other structured techniques [13]. There are also general findings to the effect that 

group performance is increased when motivation exists [4] and that group goals can increase 

productivity [6]. 
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On the surface, planning poker has several properties that, in theory, should make it 

suitable for estimation; for example, the possibility of combining knowledge from diverse 

sources [23], the use of iterative techniques, and the fact that estimates are revealed 

simultaneously in order to reduce the impact of social comparison [4].  

Considering a summary of our findings and combining them with previous studies, we 

may conclude tentatively that planning poker reduces optimism when compared to the 

statistical combining of individual estimates and is also, in some cases, more accurate than 

the unstructured combining of estimates in a group.  

In this study, the set of control tasks in the same project were estimated by individual 

experts with accuracy similar to that of the estimates of the tasks when using planning 

poker. Moreover, for both the planning poker and control groups, the median estimation 

bias indicated that both groups had fairly unbiased estimates. In addition, as seen in our 

study, group discussion (facilitated by planning poker) may have certain positive side 

effects that, at this stage, we cannot fully explain. An interesting issue, derived from the 

analysis of code, is whether the use of planning poker leads to an increased focus on the 

quality of the code. 

Equally important as findings from the quantitative data, the project team seemed to 

receive the planning poker technique very well. They found that the technique was useful 

for discussing implementation strategies for each task and that it provided a better 

overview of what each developer was working on. Given that it is difficult to measure the 

full effect of the knowledge sharing aspect of planning poker, we cannot provide any 

empirical results on whether the benefit exceeds the work and effort it takes to conduct this 

technique compared to individual estimating. However, the team decided to implement the 

planning poker technique for all forthcoming tasks in the project. 

Future studies might seek to complement these findings by investigating projects with 

different constraints regarding team size and client, and using planning poker for 

estimating user stories.  

 In addition, we should investigate how planning poker can be combined with 

complementary techniques for tracking time/cost, i.e., having developers report progress 

daily (at the stand-up meeting), having all tasks posted on the wall to visualize the total 

work load for the sprint, and/or using a burn-down chart to visualize progress.  

It is also important to compare planning poker with more structured techniques, such as 

Delphi, and to investigate whether planning poker affects other technical or social aspects, 

such as the quality of the code or the accountability of the team.  
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