

Empirical Assessment of Cost Factors and

Productivity during Software Evolution through the

Analysis of Software Change Effort

Hans Christian Benestad

Thesis submitted for the degree of Ph.D.

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

June 2009

© Hans Christian Benestad, 2009

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
Nr. 871

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2009.

Produced in co-operation with Unipub AS.
The thesis is produced by Unipub AS merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

Abstract
Changes and improvements to software can generate large benefits to users and to society

as a whole, but can also be costly. The aggregated effort to change software normally

constitutes a significant part of total lifecycle development costs. This thesis investigates

such costs through the analysis of change effort, i.e., the effort spent by developers to

perform software changes. The first goal was to identify factors that significantly and

consistently affect change effort. With a better understanding of these factors, development

technologies and practices could be improved to more effectively manipulate those factors.

Candidate factors pertained to the people involved in making changes, to the practices they

used, to the software code they changed, and to the tasks they performed. The second goal

was to devise a method for software development organizations to assess trends in

productivity as their software evolves. Under certain assumptions, trends in productivity

can be captured by analyzing trends in change effort. With better methods to assess

productivity trends, software development organizations can identify needs for

improvements, and evaluate improvement initiatives.

The thesis focuses on software development organized around the implementation of

change requests from stakeholders of the software. A systematic literature review

established a framework for measuring changes, and summarized existing evidence on

factors affecting change effort. Propositions generated from the review were then

investigated in a case study in two commercial software development organizations. To

identify relationships between properties of changes and the expended change effort, data

on changes from version control systems and change trackers was quantitatively analyzed.

Semi-structured developer interviews about recently completed changes refined and

complemented the quantitative analysis.

 One contribution of this thesis is to advance designs of change-based studies. The

systematic review of such studies enabled a case study design that separated confirmatory

and explorative analysis. In the confirmatory part, propositions were generated from the

summary of factors affecting change effort in earlier studies. Testing existing evidence in

new studies is useful to accumulate and generalize knowledge between contexts. The

exploratory analyses discovered additional relationships in the data sets, potentially useful

as a basis for new propositions in subsequent studies. The results support earlier findings

that factors captured from change management data can explain only some of the

variability in change effort. To find complementary evidence, it was therefore helpful to

further investigate the changes that corresponded to large model residuals.

One central result is that dispersion of code changes over source components had a

consistent effect on change effort, beyond that explained by simple size effects. The

qualitative analysis suggested that the effort spent on comprehending dispersed code was

an important underlying cost driver. Comprehension typically occurred along the execution

paths of the changed user scenarios, rather than within architectural units such as files and

classes. These findings strengthen and refine earlier results on the effects of dispersion

from laboratory experiments. The evidence points to design practices and tools that

recognize developers’ need to comprehend functional crosscuts of the software.

A second central result confirmed that the number of updates to the change request was

positively correlated with change effort. The effect on change effort was particularly strong

when frequent updates reflected difficulties in clarifying impacts on other parts of the

systems. The developers faced such difficulties in cases where they had insufficient

knowledge about the affected business rules and the domain experts had insufficient

knowledge about the software. To better envision impacts of changes, software

organizations should appreciate and cultivate knowledge in this boundary between the

software and the business domain.

Furthermore, this thesis shows how analysis of change effort can capture trends in

productivity. The method consists of four indicators based on a common, conceptual

definition of productivity trend, and a set of procedures to evaluate the validity of the

indicators in a given assessment. Consistent with the subjective experiences of the

developers in two software organizations, the assessment indicated significant change in

productivity between two time periods. In a third organization, the productivity assessment

enabled more insight into the effects of a new development practice. The proposed method

may represent a step towards more practical and trustworthy measurement practices that

accelerate the adoption of measurement-based improvement frameworks in the software

development industry.

In conclusion, the analysis of individual software changes proved effective both to

identify factors that affect development costs, and to assess trends in productivity during

software evolution. The results contribute towards more cost-effective and better managed

software evolution.

Acknowledgement
Many people have been important in the process that materialized in this thesis. First of all,

I am indebted to my supervisors Bente Anda and Erik Arisholm for sharing their profound

knowledge on scientific methods and software engineering research, and for ensuring that

my work was on track and progressing satisfactorily. I wish to thank Dag Sjøberg for

recommending me for a PhD-position at Simula Research Laboratory, and for the strategic

advice he provided at critical points. Magne Jørgensen challenged my initial research

proposal and thereby significantly influenced the eventual focus for the thesis. I greatly

enjoyed and benefited from the daily discussions about research methods and life in

general with Jo Hannay in Room 453 at Simula. Stein Grimstad showed continuous

interest in my work and contributed excellent ideas for improving the study and the papers.

Audris Mockus provided inspiring feedback on two early drafts of one of the included

papers. I thank Kjetil Moløkken-Østvold and Nils Christian Haugen for inviting me to

participate in their research at Vegvesenet. Oxford Editing and Matt J. Duffy are to be

thanked for proofreading the thesis’ summary, and two of the included papers.

I am grateful to Simula Research Laboratory and the Simula School of Research and

Innovation for accepting me as a PhD-student, and for the excellent environment they offer

for learning the research discipline and conducting research. I thank all the people in the

SE-department for generating such an inspiring environment with a fine balance between a

continuous pursuit for excellence, and gallows humour when required by the situation.

The research would not have been possible without support from the people at Esito,

Unified Consulting and KnowIT Objectnet. I thank Lars Ivar Næss and Mette Wam for

allocating time and space for this research, and the developers who participated in data

collection with a positive and open attitude. The IT-departments at NSB, the Research

Council of Norway, and Vegvesenet are to be thanked for allowing me to use their projects

as study objects.

Last but not least, I am grateful to my family and friends who strongly supported my

decision to pursue a PhD-degree, and who continuously challenged me to explain the

contribution and consequences of my work. My closest family deserves a special thank,

Hildegunn, August (9) and Ingvald (6), and my dear mother and father.

i

List of papers
The following papers are included in this thesis:

1. Understanding software maintenance and evolution by analyzing individual changes: A
literature review

H. C. Benestad, B. C. D. Anda, and E. Arisholm

Revision submitted to the Journal of Software Maintenance and Evolution: Research

and Practice, November, 2008.

2. Understanding the cost of change: A quantitative and qualitative investigation of change
effort during evolution of two software projects

H. C. Benestad, B. C. D. Anda, and E. Arisholm

Revision submitted to the Journal of Empirical Software Engineering, March 2009

3. Are we more productive now? Analyzing change tasks to assess trends in productivity
during software evolution

H. C. Benestad, B. C. D. Anda, and E. Arisholm

Presented at the Proceedings of the 4th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE) 2009

4. Using planning poker for combining expert estimates in software projects

K. J. Moløkken-Østvold, N. C. Haugen, and H. C. Benestad.

Published in Journal of Systems and Software, December 2008.

My contributions

For papers 1, 2 and 3, I was responsible for the idea, the study design, data collection,

analysis and writing. My supervisors contributed with both general advice and concrete

suggestions for improvements in all phases of the work. For paper 4, I was responsible for

the parts that concerned code analysis, including the writing. For the other parts in paper 4,

I contributed with comments and improvements to the manuscript.

ii

I was the first author and main contributor in all parts of the work for two other papers that

are not included as part of this thesis.

A. Assessing Software Product Maintainability Based on Class-Level Structural Measures

H. C. Benestad, B. C. D. Anda, and E. Arisholm

In: 7th International Conference on Product-focused Software Process Improvement

(PROFES), ed. by Jürgen Münch, pp. 94-111, Springer-Verlag. Lecture Notes in Computer

Science (ISBN: 0302-9743), 2006.

This paper proposes methods to aggregate fine-grained measures of structural properties

for an assessment of maintainability at the system level. Maintainability was compared

between four software systems, developed with the same requirement specification. The

results were compared with judgements made by expert developers. Assessment of

maintainability is equivalent to making predictions about the ease with which changes can

be made to software. The paper is not included in the thesis, because I chose to focus

directly on investigating change effort, rather than on predicting change effort indirectly

from structural properties of source code.

B. Assessing the reliability of developers’ classification of change tasks: A field experiment

H.C. Benestad, Technical report 12-2008, Simula Research Laboratory

This paper reports on a field experiment in one of the organizations participating in the

data collection for the thesis. The goal was to investigate whether changes could be

reliably classified by the developers. Reliable classification of changes can be important

for empirical research, but is also of interest to software project managers and sponsors.

Two alternative classification schemes were compared, one based on the dimensions of

maintenance proposed by Swanson [1], the second based on the ISO 9126 product quality

model [2]. The results affected the plans for data collection for this thesis, and provided

some upfront warnings against putting too much trust in change classifications made by

developers. The topic for this report is directly relevant to the thesis, but the manuscript

has not yet been sufficiently developed to be published, or included in the thesis.

iii

Contents
Summary ... 1�
1� Introduction .. 1�
1.1� Motivation and objectives .. 1�
1.2� Contributions ... 2�
1.3� Thesis Structure ... 4�
2� Research Goals ... 5�
2.1� Goal 1: Identify Factors that Affect Change Effort .. 5�
2.1.1� A Holistic View on the Ease of Change ... 5�
2.1.2� Change-Based Studies – Key Concepts and Motivation .. 6�
2.1.3� Related Research and Research Gaps .. 8�
2.2� Goal 2: Improve Methods to Assess Trends in Productivity during Software Evolution 9�
3� Research Method .. 11�
3.1� Overview of Methodology ... 11�
3.2� Study Procedures ... 12�
3.3� Case Studies and Data Collection .. 13�
4� Summary of Results ... 15�
4.1� Goal 1 – Identify factors that affect change effort ... 15�
4.1.1� Paper 1 ... 15�
4.1.2� Paper 2 ... 17�
4.2� Goal 2 - Improved Methods to Assess Trends in Productivity during Software Evolution 20�
4.2.1� Paper 3 ... 20�
4.2.2� Paper 4 ... 21�
5� Implications and Future Work .. 23�
5.1� Implications for Practice .. 23�
5.2� Implications for Research .. 24�
5.3� Future Work ... 25�
5.3.1� Change-Based Measurement as a Basis for Lifecycle Optimization of Designs 25�
5.3.2� Semi-Controlled Studies on the Effect of Structural Properties on Change Effort 25�
5.3.3� Describing Strategies to Perform Change Tasks .. 26�
6� Conclusion .. 27�
References for the Summary ... 29�
Paper 1: ... 33�
Understanding Software Maintenance and Evolution by Analyzing Individual Changes: A Literature

Review ... 33�
1� Introduction .. 33�
2� Related Work.. 35�
3� Review Procedures ... 36�
3.1� Criteria for Inclusion and Exclusion .. 36�
3.2� Extraction of Data .. 39�
4� A Conceptual Model for Change-Based Studies .. 40�
5� Goals and Measured Change Attributes ... 43�
5.1� Summary of Characterization Studies (Goal 1) ... 46�
5.2� Change Attributes in Characterization Studies (Goal 1) .. 47�
5.3� Summary of Studies that Assess Change Attributes (Goal 2) .. 48�
5.4� Summary of Prediction Studies (Goal 3) ... 48�
5.5� Change Attributes in Assessment and Prediction Studies (Goal 2 and Goal 3) 50�
6� Guide for Future Change-Based Studies .. 51�
7� Limitations of this Study .. 53�
8� Conclusions and Further Work ... 54�
Acknowledgements ... 55�
Appendix A. Summary of Extracted Data .. 55�
References ... 61�
Paper 2: ... 67�
Understanding Cost Drivers of Software Evolution: A Quantitative and Qualitative Investigation of

Change Effort in Two Evolving Software Systems ... 67�
1� Introduction .. 67�

iv

2� Design of the Study ... 69�
2.1� Research Question .. 69�
2.2� Related Work and Open Issues ... 69�
2.3� Overview of Case Study Procedures .. 72�
2.4� Generalization of Case Study Results ... 73�
2.5� Case Selection and Data Collection .. 74�
2.6� Measurement Model ... 76�
2.6.1� Change Request Volatility .. 78�
2.6.2� Change Set Size .. 78�
2.6.3� Change Set Complexity .. 79�
2.6.4� Change Type ... 79�
2.6.5� Structural Attributes of Changed Components ... 80�
2.6.6� Code Volatility ... 80�
2.6.7� Language Heterogeneity ... 81�
2.6.8� Specific Technology ... 81�
2.6.9� Change Experience ... 81�
2.7� Analysis of Quantitative Data ... 82�
2.7.1� Statistical Procedures .. 82�
2.7.2� Measures of Model Fit .. 83�
2.8� Collection and Analysis of Qualitative Data .. 83�
3� Evidence-Driven Analysis .. 84�
3.1� Models Fitted in Evidence-Driven Analysis ... 84�
3.2� Results from Evidence-Driven Analysis ... 84�
3.3� Discussion of Evidence-Driven Analysis ... 86�
4� Data-Driven Analysis .. 87�
4.1� Procedures for Data-Driven Analysis ... 87�
4.1.1� Identification of Main Effects ... 88�
4.1.2� Identification of Decision Tree Rules ... 88�
4.2� Results from Data-Driven Analysis .. 89�
4.2.1� Factors Identified by PCA .. 89�
4.2.2� Regression Models for the Data-Driven Analysis .. 90�
4.3� Discussion of Data-Driven Analysis .. 92�
5� Results from the Qualitative Analysis ... 93�
5.1� Understanding Requirements.. 94�
5.2� Identifying and Understanding Relevant Source Code ... 95�
5.3� Learning Relevant Technologies and Resolving Technology Issues .. 96�
5.4� Designing and Applying Changes to Source Code ... 96�
5.5� Verifying Change ... 97�
5.6� Cause of Change ... 98�
6� Joint Results and Discussion ... 98�
6.1� Consequences for Software Engineering .. 100�
6.2� Consequences for the Investigated Projects .. 101�
6.3� Consequences for Empirical Software Engineering ... 103�
7� Threats to Validity .. 104�
8� Conclusion .. 105�
Acknowledgement ... 106�
Appendix A ... 107�
References ... 108�
Paper 3: .. 113�
Are We More Productive Now? Analyzing Change Tasks to Assess Productivity Trends During Software

Evolution .. 113�
1� Introduction ... 113�
1.1� Background... 113�
1.2� Approaches to Measuring Productivity .. 114�
2� Design of the Study ... 116�
2.1� Context for Data Collection .. 116�
2.2� Data on Real Change Tasks .. 117�
2.3� Data on Benchmark Tasks .. 118�
2.4� Design of Productivity Indicators ... 119�
2.4.1� Simple Comparison of Change Effort .. 119�

v

2.4.2� Controlled Comparison of Change Effort .. 120�
2.4.3� Comparison between Actual and Hypothetical Change Effort .. 121�
2.4.4� Benchmarking .. 121�
2.5� Accounting for Changes in Quality.. 122�
3� Results and Validation.. 123�
3.1� Validation of ICPR1 ... 124�
3.2� Validation of ICPR2 ... 125�
3.3� Validation of ICPR3 ... 126�
3.4� Validation of ICPR4 ... 127�
4� Discussion .. 128�
5� Conclusions .. 129�
Acknowledgement .. 130�
References ... 131�
Paper 4: ... 133�
Using Planning Poker for Combining Expert Estimates in Software Projects .. 133�
1� Introduction .. 133�
2� Combining Estimates in Groups ... 135�
3� Research Questions .. 139�
4� Research Method .. 141�
4.1� The Company and Project Studied ... 142�
4.2� The Estimation Methods Studied ... 142�
4.3� Calculation of Estimation Accuracy .. 144�
4.4� Code analysis ... 144�
4.5� Interviews ... 146�
5� Results .. 147�
5.1� RQ1: Are group consensus estimates less optimistic than the statistical combination of individual

expert estimates? ... 147�
5.2� RQ2: Are group consensus estimates more accurate than the statistical combination of individual

expert estimates? ... 148�
5.3� RQ3: Are group consensus estimates more accurate than the existing individual estimation

method? 149�
5.4� RQ4: Does the introduction of a group technique for estimation affect other aspects of the

developers’ work, when compared to the individual estimation method? ... 150�
5.5� Results from the participant interviews .. 153�
6� Discussion .. 154�
6.1� RQ1: Are group consensus estimates less optimistic than the statistical combination of individual

expert estimates? ... 154�
6.2� RQ2: Are group consensus estimates more accurate than the statistical combination of individual

expert estimates? ... 155�
6.3� RQ3: Are group consensus estimates more accurate than the existing individual estimation

method? 155�
6.4� RQ4: Does the introduction of a group technique for estimation affect other aspects of the

developers’ work, when compared to the individual estimation method? ... 158�
6.5� Study Validity .. 158�
7� Conclusions .. 160�
Acknowledgement .. 162�

References ... 163�

vi

1

Summary

1 Introduction
1.1 Motivation and objectives
The statement Our civilization runs on software [3] is no longer controversial. More and

improved software is a key driver behind advances in public and private services,

communication, transportation, production systems and entertainment. To remain

competitive, organizations involved in software development must continuously make wise

decisions about software qualities to improve. For example, end users require better

functionality, usability and dependability, while IT operations require the software is

adapted to the currently supported technological platform. Consequently, the quality goal

ease of change is important for development organizations, and for any stakeholder

concerned with lifecycle costs. The potential for cost savings is huge if software could be

changed more easily. Conservatively estimated, 50 billion USD worth of development

effort is expended annually to make changes to operational software1.

The importance of software change was recognized in early software engineering

research. Lehman [4] expressed the necessity of change in what he termed the first law of

software evolution:

A program that is used and that as an implementation of its specification reflects some

other reality, undergoes continual change or becomes progressively less useful. The

change or decay process continues until it is judged more cost effective to replace the

system with a recreated version.

1 Estimate based on 5 million software programmers globally, with an average annual cost of 20 000USD,

and 50% of total programming effort in maintenance and evolution.

Summary

2

Software changes differ with respect to factors such as their purpose, priority, size and

complexity. Swanson proposed a first-cut categorization of changes into corrective,

adaptive and perfective changes [1]. These dimensions of software maintenance can also

be considered causes of the continuous need for change: changes in the technological

environment trigger adaptive changes, errors committed by the development organization

trigger corrective changes, while new requirements from stakeholders trigger perfective

changes.

One goal of this research was to identify factors that significantly and consistently affect

change effort, i.e., the effort spent by developers to perform software changes. Candidate

factors are associated with people, practices, product, and the performed changes. Some of

these factors may be manipulated through process or product improvements, leading to

more cost-effective software evolution. The second goal was to devise a method to

measure trends in change effort in ongoing software projects. Under certain assumptions,

such measurement can be seen as equivalent to measuring trends in productivity during

software evolution. With practical and trustworthy indicators of productivity trends,

organizations that maintain and evolve software can identify needs for improvements, and

evaluate the effects of improvement initiatives.

Today, trends in the IT industry indicate a unification of initial development and

evolution. First, the omnipresence of software implies that even new projects must

somehow cope with a legacy code base [5]. Second, software is increasingly developed in

the shape of services that fit into already operational, loosely coupled architectures [6].

Third, popular agile development processes recommend that new software is deployed

early and incrementally [7]. These trends make the topic for this thesis relevant to the

complete software lifecycle.

1.2 Contributions
A systematic literature review and case studies in three industrial software organizations

were conducted. The contributions from these studies can be described from three

perspectives. For the software engineering discipline the main contributions are:

� Analysis of field data to refine empirical evidence on the effect of dispersion.

Developers’ effort to comprehend and modify source code that was dispersed over

many components and component types was higher than what could be explained by

simple size effects. The comprehension activity typically occurred along the paths of

the changed user scenarios, rather than within architectural units. These results point to

1 Introduction

3

tools and design practices that recognize the importance of comprehending functional

crosscuts of software, particularly when different languages and technologies are

involved.

� Refined evidence on the effect of volatile change requirements. Consistent empirical

evidence suggests that measures of change requests volatility are useful predictors in

effort estimation models. The analysis discovered a particularly strong effect of volatile

requirements on change effort when the development group had insufficient knowledge

about affected business rules and – simultaneously - domain experts had insufficient

knowledge about the relevant parts of the software. Rather than unreflectively

embracing evolving requirements, the results suggest that software organizations

should cultivate knowledge in the boundary between software and the business domain,

aiming at more complete specifications early in the change process. Other kinds of

modifications to requirements, such as refinements to GUI design, can have inherent

advantages and do not necessarily have severe effects on development effort.

� A method to assess trends in productivity during software evolution using quantitative

data extracted from change management systems. Application of the method in three

different software organizations showed that it was feasible to detect major trends in

productivity, even with a limited number of data points. The method includes

procedures to evaluate the validity of the indicators in a given context. Analyses can be

almost fully automated, an important criterion for such methods to be adopted by the

software industry.

From the perspective of methodology in empirical software engineering, the thesis

contributes with:

� A framework for measuring and analyzing changes, developed as part of a systematic

review [8]. The framework consists of a (i) conceptual model that clarifies the concepts

involved in analysis of changes, (ii) a comprehensive set of candidate measures for

such analysis, and (iii) a summary of results and contributions from change-based

studies. A common conceptual basis and systematically collected evidence from

existing change-based studies contribute to more effective accumulation of knowledge

from such studies. This is important for the longer term goal of developing scientific

theories in the field of software evolution.

� A methodology to combine quantitative and qualitative analysis of changes, by

systematic investigation of changes that correspond to large model residuals. The

Summary

4

methodology improved the empirical investigation with respect to causal analysis and

construct validity issues, and provided more complete and refined evidence on the

phenomenon under study. Because these are general concerns in empirical software

engineering studies, the methodology could be useful with other units of analysis and

in other contexts.

In addition, the individual organizations that participated in this research benefited

from:

� Proposals for improvements to judgement-based estimation practices. The analysis

pointed to specific factors that were not sufficiently accounted for by current practices.

� Proposals on possible process improvements to reduce the effort expended to perform

software changes. These proposals included tool acquisitions and refactoring targets

within the software.

1.3 Thesis Structure
The thesis is structured as follows:

Summary. This part explains the research conducted for this thesis and introduces the

included papers. Section 2 describes the thesis’ goals, motivation and focus. Section 3

presents the research method, including an overview of the study procedures. Section 4

summarizes the results, while Section 5 discusses the implications for practice and

research. Section 6 concludes.

Papers. The rest of the thesis consists of four papers submitted or accepted for

publication in international journals and at one peer-reviewed conference. An overview of

these papers is given on page ii, in the introductory part of thesis.

2 Research goals

5

2 Research Goals
In this thesis, the main variable of interest is change effort. This variable reflects the

quality goal ease of change - the ease with which developers can change software.

Concepts such as maintainability, evolvability and changeability are also related to this

quality goal, but are often assumed to reflect the internal properties of the software. For

example, the Maintainability index is a one-valued indicator of maintainability calculated

from measures of such internal properties [9]. In contrast, this thesis assesses the ease of

change as reflected by the externally observable human effort spent on performing

changes. This effort is affected by the internal properties of the software artifacts, but also

by properties of the software organization and its people, of the supporting practices and

technologies, and of the actual change tasks.

2.1 Goal 1: Identify Factors that Affect Change Effort
The first goal was to identify significant and consistent factors that affect change effort.

The motivation is that the aggregated effort to perform software changes constitutes a

substantial part of lifecycle development costs. A better understanding of such costs has

interested researchers since the infancy of the software engineering discipline. Three

decades ago, the initial laws of software evolution were proposed [4, 10], in essence stating

(i) that change is inevitable and (ii) that evolving software tends to become increasingly

complex and difficult to change. Better practices during initial development and evolution

are assumed to counteract such difficulties. However, to devise effective practices, it is

useful to understand the underlying factors and mechanisms that make change easier or

more difficult.

2.1.1 A Holistic View on the Ease of Change
Existing research related to Goal 1 has investigated different classes of factors. One line of

research focused solely on internal properties of the software. For example, the effect of

structural properties of object-oriented code on quality properties of software received

considerable attention among researchers over the last two decades [11]. Knowing how

structural properties affect the ease of change is useful because it can lead to improved

design or coding strategies. A method to assess the ease of change using fine-grained

measures of structural properties was proposed by this author in a study that led to the

eventual focus of this thesis [12].

Summary

6

The most optimistic promises of this research are moderated by the inevitable

interactions between internal software properties and the properties of the software’s

environment [13]. Controlled experiments have shown that the advantages of certain

design principles depend on the level of experience and skills of the developers exposed to

the design in subsequent change tasks [14]. Furthermore, a result from a large

multidisciplinary investigation on the symptoms, causes and remedies for code decay

(another term closely related to ease of change) was that the history of code changes was

more indicative of problems than measures of structural properties of the code [15].

Mockus and Weiss argued that properties of the changes themselves are the most

fundamental and immediate concern in a software project [16], implying that assessments

of ease of change can be imprecise without considering actual change tasks. In this thesis,

a holistic view assumes that change effort can be affected by properties of the involved

people, the practices and technologies they use, the software code they change, and the

tasks they perform to reach the development goals.

2.1.2 Change-Based Studies – Key Concepts and Motivation
Studies on factors that affect software development and evolution have been performed at

different levels of granularity. Wohlin and Andrews proposed a methodology to investigate

factors that pertain to the full lifecycle of a project, such as project management principles,

personnel turnover, geographic distribution, and tools [17]. Lehman’s laws of software

evolution were developed by studying data on releases during the lifecycle of one specific

software system [10]. At a very fine level of granularity are a series of maintenance studies

by Von Mayrhauser [18-21], and research summarized by Detienne [22]. The goal of this

research was to understand the cognitive processes of people who perform software

development activities, under the premise that code comprehension is an essential activity.

Figure 1 illustrates some important concepts in the thesis. Software evolution is seen as

the aggregation of individual changes. A change task is a cohesive and self-contained unit

of work that is triggered by a change request. A change task involves detailed design,

coding, unit testing and integration. Change effort, as measured in this research, is the total

development time expended for these activities. A change task is manifested in a change

set, which is the tangible set of changes to one or more of the source components. The term

change conveniently combines these facets when their distinction is not important. A

change (or the associated change request, change task or change set) can have attributes,

henceforth referred to as change attributes. Examples of such change attributes are the size

2 Research goals

7

and type of change. Empirical case studies using changes as the main unit of analysis are

referred to as change-based studies.

Figure 1. Software evolution as the composition of changes

The thesis focuses on factors that vary across change tasks, and that primarily capture

coding-centric activities. Nevertheless, a broad set of factors was investigated, including

factors associated with developer experience, collaboration in the development group, size

and complexity of changes, and the structural properties of the affected software.

Change-based analysis is a practically feasible, analytically powerful and industrially

relevant approach to the analysis of development activities during software evolution.

Practical feasibility comes from the widespread use of change management systems, in the

form of version control systems and change trackers. Data for a change-based analysis can

be retrieved from the repositories of such tools, sometimes with little or no measurement

overhead. Analytic power comes from the cohesiveness and fine granularity of changes.

Although there will inevitably be interrelationships between changes, each change can be

considered a small project going through the phases of analysis, design, coding, test and

integration. Even in moderately sized software development projects, enough changes are

normally completed to be able to perform powerful statistical analysis. Graves and Mockus

argued that change-based analysis makes it possible to discover factors that would be

hidden at more aggregated levels [23]. Industry relevance comes from the direct

relationship between effort for individual change tasks and total costs of software

evolution. If improvement in development practices and tools meant that changes were

completed with less effort, then the total cost of software evolution would be reduced.

Summary

8

2.1.3 Related Research and Research Gaps
Several researchers have investigated relationships between change attributes and change

effort. For example, Niessink [24, 25] and Jørgensen [26, 27] analyzed field data to

evaluate the accuracy of models to predict change effort from change attributes. In the

code decay project, the researchers used a small set of preselected change attributes to

understand the factors that affected change effort, including the effect of evolution itself

[15, 28].

Existing studies related to Goal 1 have to a limited degree been able to base the research

designs on earlier results, for example by proposing hypotheses on the basis of existing

empirical evidence. This situation has resulted in scattered evidence that is difficult to

conceptualize and aggregate. To more effectively collect evidence from existing and future

change-based studies, a common conceptual basis is needed. This premise motivated a

systematic review (reported in Paper 1) that (i) builds an ontology for change-based

studies, (ii) generalizes measures used in change-based studies into a set of conceptual

change attributes, and (iii) summarizes contributions and specific evidence from individual

change-based studies.

The systematic review could not satisfactorily clarify whether the identified factors are

stable across study contexts, nor shed much light on important contextual factors.

Moreover, because most of the studies were based on correlation analysis of field data,

only tentative propositions on causality could be claimed.

Another open issue was whether it is feasible to construct context-specific change effort

models that are sufficiently accurate to be used for effort estimation purposes. The

accuracy of change effort models was also important for the proposed method to assess

productivity trends, described in Section 2.3. The studies by Niessink and Jørgensen

indicated that the prediction accuracy in quantitative models of change effort could be

expected to be moderate or poor by normal standards, such as the standards proposed by

Conte et al [29].

To investigate these open issues, a change-based field study with the following

properties was planned:

� Evidence-driven analysis investigating the effect on change effort of a small set of

factors, selected on the basis of existing empirical evidence.

� Data-driven analysis investigating the effect of a larger set of candidate factors, also

assessing the potential accuracy for change effort models.

2 Research goals

9

� Qualitative analysis based on series of developer interviews to complement, refine and

explain the quantitative results.

� Investigation in two organizations to contrast and compare context factors.

2.2 Goal 2: Improve Methods to Assess Trends in Productivity during Software
Evolution

The second goal of the thesis was to devise better methods to assess trends in productivity

in ongoing software projects. Such methods would enable software development

organizations to evaluate the need for improvement initiatives, and to evaluate the effects

of such initiatives. For example, the three projects that contributed data for evaluating the

proposed method had the following motivations:

� One project wanted to assess the effect on productivity of using two alternative

practices for estimating and planning change tasks.

� A second project had planned to restructure parts of the source code and wanted to

assess whether productivity had changed after this effort.

� A third project had been in a phase of intensive change to the software and wanted to

make an informed decision on whether actions were needed to ease future change.

Productivity is generally defined as the proportion of output production to input effort [30].

Defining meaningful measures of output production is the essence of, and the core

difficulty with, assessing productivity for software development processes. Proposed

measures of output production in the context of initial development include lines of code,

function points [31] and specification weight metrics [32]. Productivity indicators based on

such measures target effort prediction for new projects, as well as post-hoc project

evaluation.

Existing research has attempted to adapt basic measures of output production to

software evolution, for example by quantifying the extent of changes to existing

components [24, 33, 34]. However, no generally accepted approach to assessing

productivity during evolution has yet been developed [35]. It is perhaps a more realistic

ambition to define productivity indicators within clearly defined scopes. In this thesis, the

scope for the productivity assessment is limited to cases of software evolution where the

software organization considers it meaningful to compare change tasks and change effort

between two contexts, such as two time intervals. Furthermore, rather than evaluating

indicators for general validity, it is more realistic to define validation procedures to be used

in conjunction with the productivity indicators.

Summary

10

The proposed method assumes that the completed change task is a fundamental unit of

output production. A simple indicator of productivity trend simply compares the average

change effort between groups of change tasks. A limitation of this indicator is that it does

not account for possible systematic differences in the properties of the compared change

tasks. Three of the proposed indicators address this issue by:

� Analysis of convariance (ANCOVA) to investigate the effect of time, or some other

factor, on change effort, inspired by Graves and Mockus’ approach to investigating

code decay [23].

� Comparison of actual change effort with predictions obtained from change effort

models, inspired by Kitchenham’s and Mendes’ method to assess productivity of

completed projects [36].

� Repeated benchmarking of identical change tasks, inspired by the definition of

changeability decay by Arisholm and Sjøberg [37].

The proposed productivity indicators are based on a common set of definitions of what

constitutes change in productivity during software evolution. These definitions make it

simpler to define, interpret, validate and compare new or modified indicators targeting the

same scope.

3 Research method

11

3 Research Method
3.1 Overview of Methodology
The main research methods employed for this thesis are case study research and systematic

literature review. A case study is an empirical investigation of a phenomenon in a real-life

context, particularly suited when the phenomenon and the context are difficult to separate

[38]. Because there are typically more variables than data points in a case study,

propositions and generalizations rely on multiple sources of evidence, and the use of

theory. Single cases or multiple cases can be investigated, using any mix of data sources

and of qualitative and quantitative evidence. The ambition for Goal 1 was to investigate

factors that affect change effort in the context of real software development. The case

study method was chosen because we wanted to consider the full complexity of factors that

could affect change effort in such a context.

Case studies are recommended to be designed to confirm, refute, or in some way

modify theories. A theory makes it possible to understand fundamental and long-lived

mechanisms in a domain. Results from a single case study become useful in other context

through an improved theory. Therefore, theory is a mechanism for generalizing from a case

study. Unfortunately, the theoretic foundation for many topics in software engineering is

weak, including the topics investigated in this thesis.

Systematic reviews use a rigorous methodology to ensure a fair evaluation and

interpretation of all research relevant to a phenomenon [8]. The design and propositions for

the case study were generated on the basis of a systematic review of change-based studies.

The results aimed to refine the existing knowledge on the phenomenon of ease of change.

Hence, basing the case study on a systematic review addresses some of the design

challenges caused by the lack of relevant scientific theories.

In summary, the thesis (i) attempts to identify causal links between change attributes

and change effort and (ii) proposes and evaluates methods for measuring productivity

trends during software evolution using a methodology that:

� Bases the propositions and generalization on a systematic review of similar studies.

� Investigates multiple cases (two and three for Goal 1 and 2, respectively).

� Uses software change repositories and developer interviews as sources of evidence.

� Analyzes data quantitatively and qualitatively.

Summary

12

3.2 Study Procedures
An overview of the study procedures is shown in Figure 2. The systematic review

established a conceptual basis for change-based studies, and summarized evidence relevant

to Goal 1. Data from change management systems (CMS) and data from monthly

developer interviews in two commercial software development organizations were used for

the analysis. The joint results contribute to the existing empirical evidence on factors that

affect the change effort.

Figure 2. Study procedures

The proposed productivity measures for Goal 2 were utilized in ongoing projects in

three commercial software development organizations. In two of the projects, the specific

goal was to assess the trend in productivity between two time periods. These assessments

reused the quantitative models constructed for Goal 1, but required equivalent data to be

collected for the contrast period. The method developed for Goal 2 consists of unified

definitions of the proposed productivity indicators, a set of evaluation procedures, and

demonstrations of the feasibility of using the method in ongoing software projects.

Goal 1: Systematic review of
change-based studies
Paper 1

Goal 1: Identification of cost
factors

Paper 2

Correlation
analysis –
confirmatory
and exploratory

Qualitative
analysis of
developer
interviews

Goal 2: Evaluation of the effect
on productivity of a new
development practice
Paper 4

Goal 1: CMS data and
interview data collected
from two projects

Goal 2: Additional CMS
data collected from two
projects

Goal 1 result:
Evidence of factors that
affect the ease of
change

Goal 2 result:
Methodology for
assessing productivity
during software evolution

Goal 2: Evaluation of trends in
productivity
Paper 3

Goal 2: CMS data
collected from third project

3 Research method

13

3.3 Case Studies and Data Collection
The collaboration with two commercial software development organizations, MT and

RCN, was initiated by the author. The organizations conformed to the following criteria for

participation:

� Use of object-oriented development technology.

� Development process organized around change requests, and frequent releases.

� Planned development for at least 12 months ahead.

� Access to data in change management systems, and developers’ agreement to

participate in interviews.

Apart from these criteria, the companies were recruited by convenience. A local

database of 83 organizations that had collaborated with our research group in the past was

consulted to identify candidate organizations. Eight organizations were contacted, but only

MT and RCN conformed to the above requirements. The organizations were motivated by

prospects for improving their development practices on the basis of empirical evaluation.

In addition, they considered it beneficial for their company profile to participate in research

activities. It was crucial for the planned analysis that developers (i) recorded change effort

expended for completing the change tasks, and that they (ii) tracked the relationships

between source code changes and the associated change request. To strengthen the

organizations’ commitment to data collection, the collaboration agreement included

compensation for the required data collection effort. In total, the companies were

compensated for 59 work hours.

 The analysis for Goal 2 used additional data about change tasks from a third

organization, FK, which already collaborated with our research group.

The investigated organizations developed bespoke software on behalf of agencies in the

public sector. Scrum principles [39] were followed for project management, and changes

were for the most part completed under time-and-material contracts. Staffing was stable

throughout the period, and most of the developers were classified as senior developers by

their employer. The systems consisted of between 200 000 and 500 000 lines of code and

had been in production for 2 to 5 years when data collection started. All organizations used

Java-based technology. RCN used a stack of technologies that included modeling tools,

code generators, a workflow engine, and a Java Enterprise Edition application server. MT

used some C++ code for hardware-near functionality, while FK used a standard Java

platform.

Summary

14

Data was collected from three sources. The quantitative analysis for both goals used

data from change management systems, i.e. change trackers and version control systems.

Developer interviews were conducted on a monthly basis, and focused on recently

completed change tasks. Field experiments of half-day durations were organized on three

occasions. The first of these experiments prepared for the main study by investigating the

reliability of developers’ classifications of changes [40]. In the two last sessions, the

developers benchmarked a set of change tasks as part of data collection for Goal 2.

Table 1. Summary of data collection for the thesis

 RCN MT FK
Duration of data collection (months) 24 18 3
Number of changes analyzed quantitatively 273 228 34
Total effort for changes analyzed quantitatively (hours) 2590 1349 321
Number of changes discussed in interviews 120 65 n.a.
Field experiment sessions 3*3 hours 3*3 hours n.a.
Total direct cost for data collection (USD) 4500 6000 0

4 Summary of results

15

4 Summary of Results
This section describes the key results, organized per goal and research paper. The two first

papers addressed research questions related to Goal 1, while the third and fourth paper

addressed research questions related to Goal 2.

4.1 Goal 1 – Identify factors that affect change effort

4.1.1 Paper 1
The research question for the systematic review summarized in Paper 1 was:

Which overall measurement goals have been set in change-based studies, and which

attributes were measured to achieve these goals?

The research question was answered by establishing a framework for measurement and

analysis in change-based studies. Thirty-four reported studies conformed to the inclusion

criteria for the review and the framework was applied to summarize the results and

contributions. Figure 3 shows a model of the information that was extracted and

synthesized. The right part of Figure 3 describes the established framework. It consists of a

hierarchy of study goals, a conceptual model with interrelated concepts important in

change-based studies, and a related set of changes attributes. The framework was

synthesized from the extracted data about studies and measures, described in the left part

of Figure 3. Paper 1 describes in detail the methodology that was used to extract and

synthesize this information.

As illustrated in Figure 3, an operationalization of a change attribute in a particular

study corresponds to a change measure, typically used as response variables and

explanatory variables in statistical analyses. Quantitative evidence from the studies was

collected by extracting results from such statistical analyses.

Summary

16

Figure 3. Model of information extracted and synthesized in the literature review

Figure 4. The resulting framework for change-based studies

Figure 4 shows an excerpt of the actual framework, as it appears in Paper 1. The review

identified three broad categories of change-based studies, each with three or four sub-

categories. The categorization schema is intended for use to search evidence on a particular

topic, for example in the planning of new change-based studies, but it is not claimed to be

definite or absolute.

In total, 41 change attributes were identified from the reviewed studies. Table 2

describes five change attributes with consistent effect on the ease of change (as in most

cases captured by change effort) in the reviewed studies. These attributes were selected for

4 Summary of results

17

the evidence-driven analysis of factors conjectured to affect change effort (described in

Paper 2).

Table 2. Summary of change attributes that have affected the ease of change

Change attribute Question asked Examples of measures

Maintenance type What was the purpose of

the change?

-Fix/adapt/enhance classified by developers or by

heuristic search in change data

Change size and change

dispersion

How much code was

added, deleted or changed?

-Number of code lines in change set

-Number of changed files in change set

Change request volatility To what extent were

change requests changed?

-Number of updates in change tracker

-Number of words in change tracker

Change experience How experienced was the

developer in changing the

system?

-Average number of previous commits by

developers who committed in the change set,

system wide or in components in the change set

Structural complexity of

changed components

How many occurrences are

there of a given

programming construct?

-Size of affected files or classes

-Measures of control-flow complexity, coupling,

cohesion, inheritance of affected classes

4.1.2 Paper 2
The research question for Paper 2 was:

From the perspective of developers handling incoming change requests during software

evolution, which factors affect the effort required to complete the change tasks?

The analysis consisted of (i) an evidence-driven part that investigated the effect of five

pre-selected factors (see Table 2) in models of change effort, (ii) a data-driven part that

used an extended set of 31 candidate variables to identify the variable subsets that

optimized the cross-correlated model fit, and (iii) a qualitative part that used developer

interviews to elicit complementary factors that affected change effort. To help in

identifying the qualitative material that complemented the quantitative analysis, the

analysis of developer interviews focused on changes that corresponded to large residuals in

the quantitative models. Table 3a and Table 3b summarize the results from the quantitative

and qualitative analysis, respectively. In the first column of these tables, factors from the

evidence-driven, data-driven and qualitative analysis are prefixed with ed, dd and qu,

respectively.

Summary

18

Table 3a. Summary of quantitative results from Paper 2

Factor

Proposition Measured by Result Ref. to further results

ed_1 Change size and

dispersion drive effort

Number of components in the

change set

Supported Explained by qu_2

Consistent with dd_1

ed_2 Change request

volatility drives effort

Number of updates in change

tracker prior to coding phase

Supported Explained by qu_1

ed_3 Change experience

reduces effort

Average number of previous

commits by developers who

committed changes

Weak

supported

in MT

Refined by qu_3

ed_4 Maintenance type

affects effort

Corrective vs. non-corrective

changes, using developers

classification and text search

Supported

in RCN

Refined by qu_4

ed_5 Structural complexity

of changed components

drives effort

Average number of lines of

code in components in the

change set

Not

supported

Refined by qu_5

dd_1 Language

heterogeneity of

change drives effort

Number of unique file types in

the change set

Supported

in RCN

Explained by qu_2

dd_2 Structural complexity

of the change drives

effort

Number of control-flow

statements in the change set

Supported

in MT

-

Table 3b Summary of qualitative results from Paper 2

Factor Relationships with change effort

qu_1 Clarifications of functional side effects generate effort throughout the change cycle

qu_2 Comprehending dispersed code is more difficult than comprehending localized code.

Comprehension occurred mainly along execution paths of changed user scenarios.

qu_3 Experience had strong effect on effort in the few cases of unfamiliarity with relevant code

qu_4 Fixing errors by omission (caused by incomplete requirements) required more effort than did

errors by commission and enhancive changes

qu_5 Comprehension occurred along user scenarios and execution paths, rather than within

architectural units

qu_6 Frameworks or technologies sometimes had poor support for making the change, resulting in

extra effort for workarounds. Poor debug support sometimes drove effort.

qu_7 Development and modification of reusable mechanisms were examples of deep changes,

which required extensive effort

4 Summary of results

19

The number of components modified during the change task consistently contributed to

change effort in the quantitative models (ed_1). Dispersion of change over several

technologies added to the effect of dispersion over components (dd_1). Comprehension

effort for dispersed code was an important contributor to change effort (qu_2). Measures of

change dispersion were better predictors of change effort than were more fine-grained,

LOC-based measures of change size.

In sum, multiple sources of evidence pointed to dispersion as a factor that causally

affected change effort, beyond simple size effects. This interpretation is supported by

existing evidence on the effect of discontinuities and delocalized plans from studies on text

and program comprehension [41], and also by controlled experiments on the effect of

centralized versus decentralized design styles [14].

The results indicate that effort involved in comprehending dispersed code is more

important than the effort involved in carrying out modifications to some of that code,

although the two activities were highly intertwined. The developers typically needed to

comprehend code along the execution paths of affected user scenarios (qu_2). These paths

were typically dispersed over many components. Consistent with this importance of

comprehending functional cross-cuts of the source code, the measures of structural

properties of individual architectural units did not contribute to change effort in the

quantitative models (ed_5).

The number of updates to the initial change request prior to the coding phase

consistently contributed to change effort in the quantitative models (ed_2). This result is

perhaps surprising because it is reasonable to expect that more effort spent clarifying

change requests, would mean fewer problems in the coding phase. A possible explanation

is that a well considered and described initial change request eases subsequent phases for

the change. Reversely, many modifications to the change request can indicate difficulty

arriving at a sufficiently complete specification. The qualitative analysis showed a

particularly large effect on change effort when the impacts on other user scenarios than the

scenario originally addressed by the change request needed to be clarified throughout the

change cycle (qu_1).

Paper 2 discusses in more detail additional results from the data-driven and the

qualitative analysis. Those results are explorative in nature, and new propositions based on

these results are subject to confirmatory analysis in further empirical studies.

Summary

20

4.2 Goal 2 - Improved Methods to Assess Trends in Productivity during Software
Evolution

4.2.1 Paper 3
Paper 3 proposes methods to assess productivity trends during software evolution. The

methods were demonstrated and evaluated in ongoing projects in two commercial software

development organizations. The question asked for the empirical investigation was:

Did the productivity in the two projects change between the baseline period P0 (Jan-

July 2007) and the subsequent period P1 (Jan-July 2008)?

To answer this question, we proposed a conceptual definition of productivity change,

which assumes that change effort for the same changes are compared between two time

periods. Table 4 describes the four productivity indicators that operationalize this

definition in alternative ways, the evaluation that accompanies the indicators, advantages

and disadvantages of each indicator, and the measured productivity trend in the two

projects.

Table 4. Summary of proposed productivity indicators

Indicator Evaluated by (refer to

Paper 3 for details)

Advantages (+) and

disadvantages (-)

Result

RCN

Result

MT

Compare

estimates for

benchmark tasks

Statistical significance + Close approximation to the

theoretical definition.

- Estimates can be unreliable

- Practical challenges, including

measurement overhead

No change Lower

Compare average

change effort

Statistical significance

Box plots

Compare properties of

changes

- Data collection is easy

- Assumptions are easily violated

- Validation is difficult

Higher Lower

ANCOVA-model

that adjusts for

differences in

change attributes

Statistical significance

of effect-variable

Inspection of residual

plot

+ Validation is given from well-

known statistical framework.

- Models must be rebuilt when

new data arrives

Higher Lower

Compare actual

with predicted

effort

Statistical significance

Stability of model

structure

- Assumptions difficult to

evaluate

+ Usable with any prediction

framework

+ Easy to use once model is built

Higher Lower

4 Summary of results

21

The first indicator in Table 4 most closely matches the proposed definition of

productivity change. For practical reasons, effort estimates were used in place of actual

change effort. A particular practical challenge with this indicator is to define benchmarking

tasks that are representative of actual changes. The second indicator simply compares

average change effort between two time periods, assuming that there are no systematic

differences in the changes between the periods. The last two indicators use statistical

models to control for differences in the properties of changes between the compared time

periods. The models are required to have reasonable model fit, and to be stable across the

time periods. The evaluation in the projects showed that these requirements are feasible.

For RCN, a gain in productivity was indicated, consistent with the project’s intended

and experienced effect of a major code restructuring initiative. For MT, a drop in

productivity was indicated, consistent with a post-hoc explanation by the project manager

that developers might have experienced less time-pressure in the second period, caused by

reduced use of fixed-price maintenance contracts.

In summary, the empirical study showed that it was feasible to use the indicators even

with a moderate number of change tasks, and with a moderate model fit for the statistical

models required for two of the indicators.

4.2.2 Paper 4
The initial goal for the research in Paper 4 was to compare two effort estimation methods

(collaborate estimation using planning poker, versus aggregation of individual estimates)

with respect to estimation accuracy. Real change requests in the investigated project were

randomly assigned to an estimation method, and the actual effort and estimation accuracy

were analyzed. The results showed no differences in estimation accuracy but, perhaps

surprisingly, large differences in average change effort.

We wanted to understand whether this apparent difference in productivity could be

explained by variable size or complexity of changes in the two groups. The results showed

that after controlling for the increased complexity of code changes with collaborative

estimation, the estimation method did not affect change effort. Feedback from the project

members suggested that design discussions during collaborative estimation helped in

discovering ripple effects of changes. These discoveries, in turn, affected the extent of code

changes, and eventually the change effort.

In effect, this study employed the second and third method from Table 4 to assess

productivity, respectively with and without controlling for differences between changes.

Summary

22

The assessment illustrated the added value of using more than one of the proposed

indicators, as each indicator contributes with specific insight. Also, the assessment showed

that it is feasible to use the indicators even with only a few dozens change tasks.

5 Implications and future work

23

5 Implications and Future Work
5.1 Implications for Practice
The implications for practice were (i) consolidated evidence on factors that affect change

effort, and (ii) methods to assess trends in productivity during software evolution.

Immediately, an implication of the evidence on change dispersion is that software should

be designed so that code that needs to be comprehended and changed as part of future

change tasks is localized rather than dispersed. There are two difficulties with this

principle. First, design decisions must consider other, potentially higher prioritized quality

goals than the ease of change. For example, requirements regarding distribution of runtime

components often imply that source code must also be dispersed. There are often good

reasons for separating user interface components from business logic components. Second,

it is difficult to predict what will constitute future changes, and therefore difficult to

identify clusters of code that need to be comprehended and changed together. Nevertheless,

when evaluated from the perspective of change effort, the evidence suggests benefits with

a higher degree of localization of code that is functionally cohesive.

Another tactic would be to improve development tools to reduce the effect of change

dispersion. One possibility is that integrated development environments (IDE’s)

automatically construct change-friendly views of the code, on the basis of configuration

management information or dynamic runtime-analysis. For example, it is conceptually

simple to let a class browser or editor present the classes involved in the execution of a

given user scenario. Code relevant to a given user scenario inside the classes could then be

filtered or highlighted. A practical difficulty is that such tools are more difficult to create

where they would be most useful - for physically distributed systems that use multiple

implementation technologies. Nevertheless, with increasing runtime complexity of

software systems, it is important that technologies are developed to reduce complexity as

perceived by the maintainer.

The results on change request volatility suggest that more complete specifications of

change impacts prior to the coding phase would have saved effort. A well-known practice

that addresses this concern is change impact analysis [42]. To be effective, such analysis

should address impacts on function and other external quality properties, instead of

focusing only on the internal dependencies within source code. The interview analysis

indicated that an underlying factor causing problems throughout the change process was

Summary

24

insufficient knowledge in the boundary between the software and the business domain.

Specifically, problems arose when developers knew too little about the business domain

and domain experts knew too little about the software. To produce more complete

specifications early in the change process and hence avoid these problems, software

development organizations should recognize the importance of domain knowledge, and use

practices and principles that cultivate such knowledge. An example of such practices from

agile development methods is on-site customer [43].

Frameworks have been developed to help the software industry base decisions on

practices and technologies on objective criteria and empirical evidence [44, 45].

Difficulties in defining practical and trustworthy outcome measures, such as measures of

productivity, have hampered the adoption of such methods. This research demonstrated

that it is feasible to use data from change management systems to assess productivity

during software evolution. Conceptually, it is straightforward to automate the calculation

and validation of the indicators. With productivity assessment capabilities built into change

management systems, the potentials are larger for quantitative evaluation of software

projects.

5.2 Implications for Research
The contributions of this thesis with respect to research methodology were (i) a conceptual

framework for change-based studies and (ii) a methodology that combine quantitative and

qualitative analysis of changes. The conceptual framework for change-based studies can be

used when designing new change-based studies. A common conceptual basis is important

to aggregate evidence from such studies, ultimately enabling the development of theories

of software evolution.

The thesis supports existing evidence suggesting that quantitative models can explain

only some of the variability in change effort. Qualitative methods proved effective to

complement and refine such models. In particular, the qualitative analysis provided more

insight into causal relationships, into construct validity issues associated with the employed

quantitative measures, and into additional factors not captured from change management

data. Also, the quantitative and objective information on residual size reduced the

subjectivity in interpreting the qualitative data. Because these are very general concerns in

nearly all kinds of software engineering research, the experiences suggest that similar

qualitative design elements would be effective in other situations. The strategy of

5 Implications and future work

25

systematically focusing on model residuals is not limited to change effort models, but

could be applied to any unit of analysis and any model response.

5.3 Future Work

5.3.1 Change-Based Measurement as a Basis for Lifecycle Optimization of Designs
Future work involves collaborating with one or more organizations involved in large-scale

software evolution, to devise a plan-do-check-act methodology for continuous

management and reduction of lifecycle costs. Such a methodology will identify

opportunities for design improvements, establish the business case for such opportunities,

evaluate the effects of improvement efforts, and feed knowledge back to the identification

of new opportunities. A key topic of investigation is whether change-based analysis can

constitute the cornerstone of such enterprise and lifecycle scoped assessment and

improvement of software evolution. An outline for the methodology is:

� Identify typical change tasks performed in the organization. Base improvement

proposals on experienced problems associated with those changes.

� Develop business cases, for example by comparing past development effort to

estimates of development effort had the improvements already been completed.

� Implement the improvements, and evaluate changes in productivity using data from

real changes.

Step 1 involves qualitative procedures similar to those described in Paper 2. Step 2 is

similar to performing benchmarking by estimates, described in Paper 3. In step 3, the

productivity indicators described in Paper 3 and Paper 4 can be used.

5.3.2 Semi-Controlled Studies on the Effect of Structural Properties on Change Effort
For Goal 1, the influence of structural properties of the software, as well as properties of

people, practices and performed tasks were investigated. No significant effect of structural

properties was identified in the analysis. It is counterintuitive that the internal properties of

software have no effect on change effort. One explanation is that measures retrieved from

architectural units, such as files and classes, did not capture a goal-driven comprehension

process, which typically involved source code along execution paths of user scenarios.

Alternatively, the investigated systems may have had a homogenous, overall good design

which implied that the effect on change effort did not vary across change tasks. It is also

possible that the measures of structural properties were too rudimentary and did not

capture the aspects of complexity causing difficulties to the developers.

Summary

26

In a study that led to the eventual focus for this thesis, a methodology for assessing the

maintainability of object oriented systems was proposed and demonstrated [12]. The study

objects were four java-based systems (see, e.g., http://www.simula.no/des1) that

conformed to the same requirements. Our research group currently conducts a follow-up

study that assesses the outcome (including change effort) for real changes performed on

these systems. With elaborate quantitative and qualitative data to represent candidate

factors and outcomes, the proposed methodology for assessing the ease of change from

structural attributes can be evaluated and improved.

5.3.3 Describing Strategies to Perform Change Tasks
The relatively poor model fit of change effort models justify more focus on qualitative

investigations to identify factors that influence change effort. The coding scheme described

in Paper 2 is a starting point for further qualitative analyses studying how developers spend

effort to perform change tasks. One particular area would be to develop better taxonomies

of problem-solving strategies used by developers. An important part of this work is to

better understand how knowledge and skills affect such strategies and the resulting

performance. Such taxonomies would be useful as a basis for investigating and ultimately

recommending the most effective strategy for a given change task. Moreover, tools could

explicitly support different strategies to performing change tasks. Finally, such taxonomies

could improve model-based or judgment-based effort estimation, under the premise that

the choice of strategy affects development effort, and that it is possible to decide on a

strategy early in the change cycle. Existing research and models of program

comprehension form a foundation for such taxonomies, but there is a need to develop them

to consider real development situations that include unclear requirements, complex

technological environments, and collaboration among developers.

6 Conclusion

27

6 Conclusion
This thesis focused on the change task as the basic constituent of software evolution. A

systematic review and a series of empirical studies were conducted to (i) identify the

factors that affect change effort and (ii) to propose and evaluate methods to assess

productivity trends during software evolution. A novel approach to combining quantitative

and qualitative analysis of change tasks was proposed and evaluated.

The results showed that change-based analysis was effective in eliciting factors that

influenced change effort. Using data from change trackers and version control systems, it

was possible to investigate the effect of a wide range of possible effort drivers, including

those associated with developer experience, design properties of source code, the

requirements process and the development technologies.

Because many individual and interpersonal processes do not leave traces in change

management systems, only a moderate amount of the variability in change effort can

normally be explained from change management data. Hence, additional sources of

evidence are necessary for a more complete picture. In particular, the study demonstrated a

method to make qualitative analysis more effective by focusing on changes corresponding

to large residuals in the quantitative models.

One central result showed that the change effort is consistently affected by the

dispersion of the changed and comprehended code, beyond simple size effects. To

counteract the effect of dispersion, development tools could offer change-friendlier views

of code that is somehow relevant to a change, for example by visualizing interactions

involved in changed user scenarios. Such tools are likely to be particularly useful when the

runtime components are physically distributed and uses several implementation

technologies.

Volatile change requirements were found to affect change effort, although the

importance of this depended on the causes for volatility. Although there are inherent

advantages to accepting flexibility in the requirements process, development organizations

should not uncritically embrace volatile requirements. The results indicate that effort

would be saved with better developed knowledge in the boundary between the software

and the business domain.

The thesis showed promising results for using change-based analysis to assess

productivity trends during software evolution. The proposed method proved sufficiently

Summary

28

sensitive to detect trends in productivity in three software projects, even with a moderate

number of data points. The procedures gave the software organizations useful insights into

their own development processes, and they are conceptually simple to generalize and

automate. The method could therefore accelerate the adoption of quantitative evaluation

techniques in the software industry.

Future research will evaluate whether change-based analysis can constitute the

cornerstone for lifecycle-long improvement process in the context of large scale software

evolution. Further fundamental research on how structural properties of software affect

change effort is needed, as is research on strategies used by developers to solve real world

change tasks.

 References for the summary

29

References for the Summary

[1] E. B. Swanson, "The Dimensions of Maintenance," in 2nd International
Conference on Software Engineering, San Francisco, California, United States,
1976, pp. 492-497.

[2] ISO/IEC, "Software Engineering — Product Quality — Part 1: Quality Model,"
2001.

[3] B. Stroustrup, "The quote "Our Civilization Runs on Software" is widely
contributed to Bjarne Stroustrup, the inventor of the C++ Programming Language."

[4] M. M. Lehman, "Programs, Life Cycles, and Laws of Software Evolution,"
Proceedings of the IEEE, vol. 68, pp. 1060-1076, 1980.

[5] A. De Lucia, A. R. Fasolino, and E. Pompella, "A Decisional Framework for
Legacy System Management," pp. 642-651.

[6] M. P. Papazoglou and D. Georgakopoulos, "Service-Oriented Computing,"
Communications of the ACM, vol. 46, pp. 25-28, 2003.

[7] K. Beck, "Embracing Change with Extreme Programming," Computer, vol. 32, pp.
70-77, 1999.

[8] B. A. Kitchenham, "Procedures for Performing Systematic Reviews," Keele
University Technical report EBSE-2007-01, 2007.

[9] P. Oman and J. Hagemeister, "Construction and Testing of Polynomials Predicting
Software Maintainability," Journal of Systems and Software, vol. 24, pp. 251-266,
1994.

[10] L. A. Belady and M. M. Lehman, "A Model of Large Program Development," IBM
Systems Journal, vol. 15, pp. 225-252, 1976.

[11] L. Briand and J. Wuest, "Empirical Studies of Quality Models in Object-Oriented
Systems," Advances in Computers, vol. 59, pp. 97-166, 2002.

[12] H. C. Benestad, B. Anda, and E. Arisholm, "Assessing Software Product
Maintainability Based on Class-Level Structural Measures," in Proceedings of the
7th International Conference on Product-focused Software Process Improvement
(PROFES), edited by Jürgen Münch. Springer-Verlag, 2006, pp. 94-111.

[13] D. I. K. Sjøberg, T. Dybå, and M. Jørgensen, "The Future of Empirical Methods in
Software Engineering Research," 2007, pp. 358-378.

[14] E. Arisholm and D. I. K. Sjøberg, "Evaluating the Effect of a Delegated Versus
Centralized Control Style on the Maintainability of Object-Oriented Software,"
IEEE Transactions on Software Engineering, vol. 30, pp. 521-534, 2004.

[15] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, "Does Code
Decay? Assessing the Evidence from Change Management Data," IEEE
Transactions on Software Engineering, vol. 27, pp. 1-12, 2001.

[16] A. Mockus and D. M. Weiss, "Predicting Risk of Software Changes," Bell Labs
Technical Journal, vol. 5, pp. 169-180, 2000.

[17] C. Wohlin and A. A. Andrews, "Assessing Project Success Using Subjective
Evaluation Factors," Software Quality Journal, vol. 9, pp. 43-70, 2001.

Summary

30

[18] A. von Mayrhauser, A. M. Vans, and A. E. Howe, "Program Understanding
Behaviour During Enhancement of Large-Scale Software," Journal of Software
Maintenance Research and Practice, vol. 9, pp. 299-327, 1997.

[19] A. von Mayrhauser and A. M. Vans, "Program Understanding Behavior During
Adaptation of Large Scalesoftware," in 6th International Workshop on Program
Comprehension 1998, pp. 164-172.

[20] A. von Mayrhauser and A. M. Vans, "Program Understanding Behavior During
Debugging of Large Scale Software," in Seventh workshop on empirical studies of
programmers, 1997, pp. 157-179.

[21] A. von Mayrhauser and A. M. Vans, "Program Understanding Needs During
Corrective Maintenance of Large Scale Software," in Computer Software and
Applications Conference, 1997, pp. 630-637.

[22] F. Détienne and F. Bott, Software Design - Cognitive Aspects. London: Springer-
Verlag, 2002.

[23] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Databases," in 5th International Symposium on Software Metrics,
1998, pp. 267–273.

[24] F. Niessink and H. van Vliet, "Predicting Maintenance Effort with Function
Points," in 1997 International Conference on Software Maintenance, 1997, pp. 32-
39.

[25] F. Niessink and H. van Vliet, "Two Case Studies in Measuring Software
Maintenance Effort," in 14th International Conference on Software Maintenance,
1998, pp. 76–85.

[26] M. Jørgensen, "Experience with the Accuracy of Software Maintenance Task Effort
Prediction Models," IEEE Transactions on Software Engineering, vol. 21, pp. 674-
681, 1995.

[27] M. Jørgensen, "An Empirical Study of Software Maintenance Tasks," Journal of
Software Maintenance: Research and Practice, vol. 7, pp. 27-48, 1995.

[28] T. Graves and A. Mockus, "Identifying Productivity Drivers by Modeling Work
Units Using Partial Data," Technometrics, vol. 43, pp. 168-179, 2001.

[29] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and
Models: Benjamin-Cummings Publishing Co., Inc. Redwood City, CA, USA, 1986.

[30] G. L. Tonkay, "Productivity," in Encyclopedia of Science & Technology: McGraw-
Hill, 2008.

[31] A. J. Albrecht and J. E. Gaffney Jr, "Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation," IEEE
Transactions on Software Engineering, vol. 9, pp. 639-648, 1983.

[32] T. DeMarco, "An Algorithm for Sizing Software Products," ACM SIGMETRICS
Performance Evaluation Review, vol. 12, pp. 13-22, 1984.

[33] A. Abran and M. Maya, "A Sizing Measure for Adaptive Maintenance Work
Products," in International Conference on Software Maintenance, Nice, France,
1995, pp. 286-294.

 References for the summary

31

[34] J. F. Ramil and M. M. Lehman, "Defining and Applying Metrics in the Context of
Continuing Software Evolution," in Software Metrics Symposium, London, 2001,
pp. 199-209.

[35] N. E. Fenton and S. L. Pfleeger, "Measuring Productivity," in Software Metrics, a
Rigorous & Practical Approach, 1997, pp. 412-425.

[36] B. Kitchenham and E. Mendes, "Software Productivity Measurement Using
Multiple Size Measures," IEEE Transactions on Software Engineering, vol. 30, pp.
1023-1035, 2004.

[37] E. Arisholm and D. I. K. Sjøberg, "Towards a Framework for Empirical
Assessment of Changeability Decay," Journal of Systems and Software, vol. 53, pp.
3-14, 2000.

[38] R. K. Yin, Case Study Research: Design and Methods: Sage Publications Inc,
2003.

[39] K. Schwaber, Agile Project Management with Scrum: Microsoft Press, 2004.

[40] H. C. Benestad, "Technical Report 12-2008: Assessing the Reliability of
Developers’ Classification of Change Tasks: A Field Experiment," Simula
Research Laboratory2008.

[41] F. Détienne and F. Bott, "Discontinuities and Delocalized Plans," in Software
Design - Cognitive Aspects London: Springer-Verlag, 2002, pp. 113-114.

[42] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis: IEEE Computer
Society Press, 1996.

[43] K. Beck, "On-Site Custimer," in Extreme Programming Explained: Addison-
Wesley Reading, MA, 2000, pp. 60-61.

[44] V. R. Basili and H. D. Rombach, "The Tame Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering,
vol. 14, pp. 758-773, 1988.

[45] L. C. Briand, C. M. Differding, and H. D. Rombach, "Practical Guidelines for
Measurement-Based Process Improvement," Software Process Improvement and
Practice, vol. 2, pp. 253-280, 1996.

32

33

Paper 1:

Understanding Software Maintenance and Evolution
by Analyzing Individual Changes: A Literature
Review

Hans Christian Benestad, Bente Anda, Erik Arisholm

Submitted to the Journal of Software Maintenance and Evolution: Research and Practice

Abstract

Understanding, managing and reducing costs and risks inherent in change are key

challenges of software maintenance and evolution, addressed in empirical studies with

many different research approaches. Change-based studies analyze data that describes the

individual changes made to software systems. This approach can be effective in order to

discover cost and risk factors that are hidden at more aggregated levels. However, it is not

trivial to derive appropriate measures of individual changes for specific measurement

goals. The purpose of this review is to improve change-based studies by 1) summarizing

how attributes of changes have been measured to reach specific study goals, and 2)

describing current achievements and challenges, leading to a guide for future change-based

studies. Thirty-four papers conformed to the inclusion criteria. Forty-three attributes of

changes were identified, and classified according to a conceptual model developed for the

purpose of this classification. The goal of each study was to either characterize the

evolution process, to assess causal factors of cost and risk, or to predict costs and risks.

Effective accumulation of knowledge across change-based studies requires precise

definitions of attributes and measures of change. We recommend that new change-based

studies base such definitions on the proposed conceptual model.

1 Introduction
Software systems that are used actively need to be changed continuously [1, 2].

Understanding, managing and reducing costs and risks of software maintenance and

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

34

evolution are important goals for both research and practice in software engineering.

However, it is challenging to collect and analyze data in a manner that exposes the intrinsic

features of software maintenance and evolution, and a number of different approaches have

been taken in empirical investigations. A key differentiator between classes of software

maintenance and evolution studies is the selection of entities and attributes to measure and

analyze:

� Lehman’s laws of software evolution were developed on the basis of measuring new

and affected components in subsequent releases of a software system, c.f., [2, 3].

� Investigations into cost drivers during software maintenance and evolution have

investigated the effects of project properties such as maintainer skills, team size,

development practices, execution environment and documentation, c.f., [4-7].

� Measures of structural attributes of the system source code have been used to assess

and compare the ease with which systems can be maintained and evolved, c.f., [8-10].

An alternative perspective is to view software maintenance and evolution as the aggregate

of the individual changes that are made to a software system throughout its lifecycle. An

individual change involves a change request, a change task and a set of modifications to

the components of the system. With this perspective, software maintenance and evolution

can be assessed from attributes that pertain to the individual changes. Such attributes are

henceforth referred to as change attributes, the measures that operationalize the change

attributes are referred to as change measures, and the studies that base the analysis on

change attributes and change measures are referred to as change-based studies. Two

examples of topics that can be addressed in a change-based study are:

� Identify and understand factors that affect change effort during maintenance and

evolution. This knowledge would contribute to the understanding of software

maintenance and evolution in general, because the total effort expended by developers

to perform changes normally constitutes a substantial part of the total lifecycle cost.

For a particular project, it is essential to know the factors that drive costs in order to

make effective improvements to the process or product. For example, if system

components that are particularly costly to change are identified, better decisions can be

made regarding refactoring.

� Measure performance trends during maintenance and evolutions. Projects should be

able to monitor and understand performance trends in order to plan evolution and take

corrective actions if negative trends are observed.

2 Related work

35

A central challenge is to identify change attributes and change measures that are effective

in order to perform such analyses. For example, in order to assess and compare changes

with respect to the man-hours that were needed to perform them, it is necessary to

characterize the changes in some way, e.g., by measuring their size and complexity. This

paper addresses this challenge by performing a comprehensive literature review of change-

based studies. Conducting a comprehensive literature review is a means of identifying,

evaluating and interpreting all available research relevant to a particular research question,

or topic area, or phenomenon of interest [11]. The research question for the review is:

Which overall measurement goals have been set in change-based studies, and which

attributes were measured to achieve these goals?

The review summarizes change attributes that have been used in empirical investigations,

and we propose a conceptual model for change-based studies that enables us to classify the

attributes. We will argue that new change-based studies can benefit from using this model

as a basis for definitions of change attributes and change measures. A classification scheme

for study goals is developed, enabling new studies to identify the current state-of-research

for a particular goal. To further guide new studies, we exemplify current achievements and

challenges within each of the main study goals.

To sum up, the objective of this literature review is to facilitate more effective

investigations into the costs and risks of software maintenance and evolution, whether they

are conducted by empirical researchers or by practitioners who are implementing a

measurement-based improvement program. The approach is to systematically summarize

and appraise the state of the practice in change-based studies.

The remainder of this paper is organized as follows: Section 2 provides a summary of

related work. Section 3 describes the review procedures, including the criteria for inclusion

and exclusion of primary papers for the review. Section 4 describes the conceptual model

for change-based studies. Sections 5 answers the research question, while Section 6

provides a guide for further studies. Section 7 discusses limitations to the review. Section 8

concludes.

2 Related Work
We are not aware of other attempts to provide a comprehensive review of change-based

studies of software maintenance and evolution. Graves and Mockus summarized three of

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

36

their own studies that showed that time of change, tool usage, and subsystem affected by

change affected change effort [12]. They also recommended that statistical models of

change effort should control for developer effects, change size and maintenance type.

Niessink listed six change attributes that affect change effort that have been identified in

empirical work by other authors [13]. Of these, maintenance type and change size matched

the change attributes identified by Graves and Mockus.

Kagdi et al. conducted a literature review of studies that have mined data from software

repositories for the purpose of investigating changes to software components [14]. Their

review focused on a particular approach to data collection (mining of software repositories)

while this review focuses on a particular approach to analysis (change-based studies). The

two reviews are complementary, because mining of software repositories is an appealing,

though not always sufficient, approach to collecting the data required for change-based

studies. We expect a new change-based study to benefit from consulting both reviews.

One contribution of this paper is a proposed conceptual model for change-based studies.

Existing conceptual models that describe software maintenance and evolution [15-17]

constituted a foundation for the model. Relationships between these models and our model

are further described in Section 4.

3 Review Procedures
3.1 Criteria for Inclusion and Exclusion
The following top-level criterion for inclusion of papers was derived from the objective of

the review that was stated above

Peer reviewed papers that report on case studies that assessed or predicted

maintenance and evolution activities on the basis of properties of individual

changes, in the context of managed development organizations.

Assessment and prediction are two broad purposes of measurement [18]. They are highly

interdependent and we chose to include studies that involved one or both purposes. We

consider studies on commercial software development and studies on volunteer-based,

open source development to be two main types of software engineering research. This

review focused on the former kind of studies. An opportunity for further work is to apply

the developed framework to studies on open source development, with the goal of

revealing contrasts and similarities between the two types. The review targeted both

3 Review procedures

37

quantitative and qualitative studies. Candidate papers were identified using the following

procedure:

1. Send queries based on the inclusion criterion to search engines using full-text search

2. Read identified papers to the extent necessary to determine whether they conformed to

the criterion

3. Follow references to and from included papers; then repeat from step 2

Step 1 was piloted in several iterations in order to increase the sensitivity and precision of

the search. A discussion of the tradeoffs between sensitivity and precision in the context of

research on software engineering is provided by Dieste and Padua [19]. We arrived at the

following search criterion for the first step, from which we derived search strings in the

query languages that is supported by the selected search engines:

((<size | type | complexity> of [a] <change | modification | maintenance> [task | request])
OR
(<change | modification | maintenance> [task | request] <size | complexity | type>))
AND <project | projects> AND software

Angle brackets denote that exactly one of the enclosed terms is selected, square brackets

denote that zero or one of the enclosed terms is selected, while parentheses clarify operator

priority.

We used Google Scholar (http://scholar.google.com) and IEEExplore

(http://ieeexplore.ieee.org) because full-text search was required to obtain reasonable

sensitivity. The queries returned 446 results from Google Scholar and 169 results from

IEEExplore on the 19 April 2007. In total, 261 papers remained after excluding papers on

the basis of the title alone, i.e., non-software engineering work, definitely off topic, or not a

peer reviewed paper. After merging the two sources, 230 papers remained. These

underwent Steps 2 and 3 above. Sixty-two papers were judged as “included” or “excluded,

but under some doubt”. These were re-examined by the second and third author, resulting

in 33 included papers. Disagreements were resolved by discussion and by further clarifying

and documenting the criteria for inclusion and exclusion. As a final quality assurance, the

search criterion was applied to all papers from 27 leading software engineering journals

and conference proceedings (1993 to 2007 volumes), see [20] for details of this source.

One additional study was identified by this step, resulting in a total of 34 included papers.

In summary, we have searched Google Scholar, IEEExplore, specifically selected journal

and papers, and searched in references. We expect this to search to be reasonably

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

38

complete, although alternative sources exist. For example, we did not use the ACM digital

library because the service did not feature advanced full-text search.

In order to convey the criteria for inclusion or exclusion more explicitly, the remainder

of this section summarizes studies of software maintenance and evolution that were

excluded, but were considered to lie on the boundaries of the criteria.

An influential body of research on software evolution has based analysis on software

releases and the components, i.e., the system parts of some type and at some level of

granularity, that were present in successive releases. Belady and Lehman [3] measured the

number of components that were created or affected in successive releases of the same

system. Using this study as a basis, they postulated the law of continuing change, the law

of increasing entropy, and the law of statistically smooth grow. Kemerer and Slaughter

[21] provided an overview of empirical studies that have followed this line of research.

The studies that used another unit of analysis than the individual change, e.g., releases or

components, were excluded from this review.

Based on an industrial survey on maintenance of application software, Lientz et al.

quantified the amount of new development versus maintenance, and how work was

distributed over types of maintenance [22]. This work has been influential in that it has

drawn attention to later phases of the software lifecycle, and via the adoption of the change

classification scheme of corrective, perfective and adaptive changes, originally described

by Swanson [23], and frequently used as a change attribute in the body of research

included in this review. This work is not included in the review, because it was based on a

survey rather than a case study.

Measures of structural attributes (code metrics) have been conjectured to provide

inexpensive and possibly early assessments and predictions of system qualities. Measures

have normally been extracted from individual source code components, or from succeeding

revisions of source code components. Briand and Wüst [24] provided an overview of

empirical work on relationships between structural measures of object-oriented software,

and process and product qualities. In order to identify erroneous components when

building fault prediction models, some studies identified the components that were affected

by a corrective change request, c.f., [25-27]. However, we did not consider these studies to

be change-based, because the unit of analysis was the individual component.

Studies on the analysis of software defects have attempted to understand the causes and

origins of defects. Generally, these studies have analyzed and extracted measures from

individual components. Some of the studies collected data about corrective change tasks,

3 Review procedures

39

e.g., [28-30]. We chose to exclude studies that analyzed the causes of defects

retrospectively, but to include studies that analyzed the change tasks that were performed

to isolate or correct defects.

 Research on cognitive aspects of software engineering has attempted to understand the

mental processes that are involved in software engineering tasks. Some of these studies

have been conducted in the context of change tasks that are performed during software

maintenance and evolution, c.f., [31]. We chose to exclude these studies, because Détienne

and Bott [32] have provided a comprehensive summary of this specialized line of research.

3.2 Extraction of Data
Goals, change attributes, and study context were described and classified by combining

existing description frameworks with data-driven analysis similar to the constant

comparison method of qualitative analysis [33]. In particular, for measurement goals,

passages of relevant text were identified, condensed, and rephrased using terms consistent

with the description template for measurement goals under the Goal Questions Metrics

(GQM) paradigm [34]. The resulting measurement goals are listed in Tables A1, A2 and

A3. The next step was to classify these instances of measurement goals into categories. We

attempted to discriminate between lines of research, i.e. studies that have similar overall

goals and take similar approaches to analysis. The process was driven by the first author of

this paper. The second and third author proposed changes and clarifications where

perceived necessary. These procedures resulted in the taxonomy listed in Table 1.

It was necessary to make a tradeoff with respect to the specificity of categories. If

categories were too fine-grained, the schema could be over-fitted to particularities of the

investigated studies. This would make it more difficult to reliably classify new papers

according to the schema. If categories were too coarse-grained, important distinctions

between lines of research could be lost, making the schema less useful. An example of a

tradeoff is the categories 3.2 - assess prediction frameworks and 3.3 - investigate

predictive power of change measures from Table 1. Prediction frameworks are normally

assessed assuming one or more change measures, and vice versa. Still, because evaluation

in the studies focused on either the effectiveness of the prediction frameworks or on the

effectiveness of the measures, we considered the two categories of studies to contribute

with two different kinds of results.

In order to describe and classify conceptual change attributes, we extracted information

about each individual change measure that was used in the studies. Key information was

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

40

names, definitions, value ranges, and methods for data collection. This information was

then compared and grouped with respect to the conceptual model in Figure 1, and with

respect to a set of more detailed measurement questions, as listed in Table 2. The

procedures for developing the conceptual model for change-based studies are described in

Section 4.

For study context, we describe the business context, measurement procedures and extent

of data collection. We identified two measures for each of these attributes by using

information that was available in the reviewed papers. The results are shown in Table A4.

4 A Conceptual Model for Change-Based Studies
Our proposed conceptual model for change-based studies is depicted in Figure 1. The goals

for the design of the model were 1) to create a minimal model that 2) facilitates the

understanding and definition of entities, attributes and measures that were used in the

reviewed body of research, while 3) maintaining compatibility with existing concepts that

have been used to discuss software maintenance and evolution.

We developed and refined the model iteratively during the course of the review, in order

to capture the change attributes that were used in the reviewed studies. Table 2 lists the

relationships between these attributes and the entities in the model. Wherever possible we

reused concepts from existing conceptual models of software maintenance. In particular,

the entities Development organization, Human resource, Change task, Change request,

Component, System and Release, some of them with different names, were reused from the

proposed ontology of software maintenance by Kitchenham et al. [16]. Similar conceptual

frameworks have been defined by Dias et al. [15] and Ruiz et al. [17]. We used terms in

our model that were 1) commonly used in the reviewed body of research, 2) neutral with

respect to specific technologies, practices or disciplines in software engineering, and 3)

internally consistent. For example, we used the term change task for the entity that is

named maintenance task in [16]. Compared to the existing frameworks, the entities

Change set, Revision and Delta and their interrelationships were added, because they are

necessary to describe and classify the change attributes that concern changes to the system

components. The relationships between some of the reused entities were changed, in order

to better represent the change-oriented perspective taken in this paper.

4 A conceptual model for change-based studies

41

Figure 1. A conceptual model for change-based studies

Standard UML syntax is used in the diagram. A role multiplicity of 1 should be assumed

when role multiplicity is not shown. Role names are assigned in one direction only, in

order to avoid cluttering. For compositions, indicated by filled diamonds, the roles in the

two directions can be read as composed by and part of.

The perspective adopted in this paper is that a change task constitutes the fundamental

activity around which software maintenance and evolution is organized. A change task is a

coherent and self-contained unit of work that is triggered by a change request. A change

request describes the requirements for the change task. A change task is manifested in a

corresponding change set. A change set consists of a set of deltas. A delta is the

differences between two revisions of the same component. A component can, in principle,

be any kind of work product that is considered to be part of the system, although the

reviewed studies focused primarily on measurement of source code components.

Components can form a hierarchy in where a large component can be composed by

components of finer granularity. A system is deployed to its users through releases. A

release is composed by a set of components, each in a specific revision. A release can also

be described by the change sets or the corresponding change requests that the release

incorporates.

It is convenient to use the term change as an aggregating term for the change task, the

originating change request, and the resulting change set. Changes, in this sense, involve

human resources, and are managed and resolved by a development organization. Large

changes can be broken down into smaller changes that are more manageable to the

development organization. In the reviewed studies, large changes are sometimes referred to

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

42

as features, although there are many possible underlying causes for large changes, as

investigated in [35].

A change attribute is a property of a change task, of the originating change request, or of

the resulting change set. A change attribute is sometimes derived from attributes of other

entities in the conceptual model. For example, the sizes of all components that were

involved in a change may be averaged, or otherwise combined, in order to form a change

attribute that represents the size of changed components.

A change outcome is a change attribute that represents the primary focus of the study,

e.g., change effort. A change outcome measure is the operationalization of a change

outcome, and is typically used as the dependent variable in statistical analyses.

Many change measures can be extracted from change management systems, which are

tools that manage the kind of information defined by our conceptual model. Such systems

include change trackers and version control systems. In order to clarify the meaning of the

entities in the conceptual model, the model entities were mapped to terminology used in

the popular version control systems CVS and Subversion: A CVS check-in or commit

creates a delta, i.e. a difference between the previous and the current revision of a

component. In Subversion, a commit or an atomic commit guarantees that all deltas are

either committed or rolled back. An atomic commit corresponds to a change set if it

corresponds to the solution for one change request. CVS does not support change sets, but

change sets can be deduced from metadata such as username and commit time. In CVS,

and in our model, a revision refers to a reproducible state of a specific component. In

Subversion, a revision can also refer to the state of the entire file system under version

control. A development organization will promote one such Subversion revision to

constitute a release. Both Subversion and CVS supports tags, which makes it easier to

retrieve the exact contents of a release. In CVS and Subversion, a file refers to a

component. The file system under version control corresponds to the system. Change

management systems use terms such as modification request (MR), bug report, ticket,

issue, software defect report (SDR) and problem report (PR) to refer to a change request.

A change task is sometimes referred to as an activity or a task. In the reviewed papers, the

term maintenance task was often used for the same concept.

It is beyond the scope of this paper to provide operational definitions of all variations of

change measures used in the reviewed studies. However, the conceptual model in Figure 1

can be utilized further in a specific measurement context to facilitate precise definitions of

change measures. For example, the span of a change could be operationalized as “the

5 Goals and measured change attributes

43

number of deltas that are part of a change set”, while a measure of the size of affected

components can be defined as “the arithmetic mean of lines of code in revisions affected

by a change set”. Such definitions can be expressed formally using the Object Constraint

Language (OCL) [36].

5 Goals and Measured Change Attributes
By following the procedures described in Section 3.2, three main categories and 10 sub-

categories of studies were identified, as shown in Table 1. Key properties of each

individual study are listed in Tables A1, A2 and A3, in Appendix A.

Table 1. Goals and sub-goals for change-based studies.
Main category Sub-category References
Goal 1:
Characterize the
work performed on
evolving systems
(Table A1)

Goal 1.1: Understand and improve the maintenance and evolution
process in a development organization

[37-42]

Goal 1.2: Manage and control the maintenance and evolution
process in a development organization

[43-45]

Goal 1.3: Investigate selected elements in the maintenance and
evolution process

[46-49]

Goal 1.4: Understand the general nature of maintenance and
evolution work

[21, 50-52]

Goal 2: Assess
change attributes
that explain change
outcome (Table
A2)

Goal 2.1: Identify change attributes that influence change outcome [53, 54]
Goal 2.2: Assess effects of a specific process element [55-58]
Goal 2.3: Validate change measures [59, 60]

Goal 3: Predict the
outcome of
changes
(Table A3)

Goal 3.1: Propose methodology for building predictive models [61-64]
Goal 3.2: Assess prediction frameworks [65, 66]
Goal 3.3: Investigate predictive power of change measures [13, 67, 68]

Goal 2 and Goal 3 studies employed quantitative models that related independent change

measures to the change outcome measure of interest. Goal 2 studies attempted to identify

causal relationships for the purpose of understanding and assessment, while Goal 3 studies

focused on correlations and predictions. Conversely, most Goal 1 studies used summary

statistics to provide a bird’s eye view of the work that was performed during maintenance

and evolution. They focused on observing trends in the values for selected change

attributes, rather than attempting to explain the observations.

Change attributes, typical questions and typical values used during data collection are

shown in Table 2. All attributes can be regarded as attributes of a change in Figure 1. The

second column indicates the entity in Figure 1 that provides the data for deriving a change

attribute. For example, a measure of change size is usually obtained by aggregating data

from the individual deltas in the change set.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

44

Table 2. Change attributes used by the studies
Change
attribute

Data
provided by

Question asked Typical values Goal 1
studies

Goal 2
studies

Goal 3
studies

Activity Change
task

Which activities were
involved in the change task?

Requirements/analys
is/design/coding/test

[37, 41] - -

Change
count

Change
request

Was it a change? Simple count of
changes

[21, 37, 40-
42, 44-46,
49-51]

- -

Change
effort

Change
task

How much effort was
expended on the change
task?

Person hours, ordinal
or ratio

[37, 40-47] [53-56,
58-60]

[13,
61, 62,
64-68]

Change
interval

Change
task

How long did it take to
resolve the change request?

Days, ordinal or ratio [45, 47, 48] [53, 57] [63,
64]

Change size Delta How much content was
added, deleted or changed?

Lines of code,
ordinal or ratio

[37, 38, 41] [54-56,
59]

[13,
61, 63,
65]

Change
span

Delta How many components were
affected?

Count of components [42, 48] [53-58] [13,
61-63]

Change/
defect
source

Change
request

Which activity caused the
defect or the need for
change?

Requirements/
analysis/design/
coding/test

[41, 42] - [13,
61]

Code
quality

Revision Had the changed
components been refactored?

Refactored/
not refactored

- [56] -

Code
volatility

Component How frequently had the
affected components been
changed?

Total number of
changes

- [54] -

Coding
mode

Delta Was content changed or
added?

Changed/added - - [65]

Component
type

Component What kind of component
was affected?

Query/report/
field/layout/data

[40] - [13]

Criticality Revision How critical was the affected
component?

Is mission critical? - [54] -

Data
operation

Revision Which data operation did the
affected components
perform?

Read/update/process - [54]

[66]

Date/
Time

System How old was the system
when the change occurred?

Elapsed time since
first deployment

[21, 40, 43,
45, 47, 50-
52]

[53]

[65,
69]

Defect type Change
request

What kind of defect was
introduced?

Initialization/
logic/data/interface/
computational

[41, 45] - [61,
66]

Delayed Change
task

Was the change task
resolved later than
scheduled?

Delayed/not delayed [45] - -

Detection Change
request

By which technique was the
defect/need for change
detected?

Inspection/test-
run/proof techniques

[42] - -

Developer
id

Human
resource

Who performed the change
task?

Nominal measure - [53]

Developer
span

Human
resource

How many developers were
involved in performing the
change task?

Number of people - [54, 57]

[63]

Documenta-
tion quality

Component How well were the changed
components documented?

Was documentation
rewritten?

- [58]

[13]

Execution
resources

Delta How much (added)
computational resources
were required by the
change?

CPU-cycles, bytes of
memory

- [54] -

5 Goals and measured change attributes

45

Table 2. Continued
Change
attribute

Data
provided by

Question asked Typical values Goal 1
studies

Goal 2
studies

Goal 3
studies

Function
points

Delta How many logical units will
be changed, added or deleted
by the change?

Count of changed,
added and deleted
units, weighted by
complexity

- [60]

[67]

Location Develop-
ment org.

Where were human
resources located physically?

Distributed/not
distributed

- [57] -

Maintenanc
e experience

Human
resource

For how long had the
developers performed
software maintenance work?

Number of years
-

- [65]

Maintenanc
e type

Change
request

What was the purpose of the
change?

Fix/enhance/
adapt

[21, 37, 41-
47, 49-51]

[53-55,
57]

[61, 63-
65, 68]

Objective
change
experience

Human
resource

How many changes had
earlier been performed by
the developer?

Number of previous
check-ins in version
control system

-

- [63]

Origin Change
request

In what context or by which
party was the change request
made?

Internal test/ external
users

[37, 46, 52] - -

Quality
focus

Change
request

Which system quality was
improved by the change?

Functionality/
security/efficiency/re
liability

[42, 45, 47,
52]

- -

Request
criticality

Change
request

What would be the effect of
not accepting the change
request?

Minor/major
inconvenience/stop

- [54,
57]

[65, 68]

Requiremen
ts instability

Change
request

To what extent were change
requirements changed?

Number of
requirement changes

- [54]

[13]

Size

Revision How large were the changed
components?

Lines of code,
number of
components affected

-

[59]

[13, 63,
65, 67,
68]

Status Change
request

What is the current state of
the change request?

New/accepted/
rejected/solved

[44, 45, 48,
52]

- -

Structural
attributes

Revision What was the profile of the
structural attributes of the
changed components?

Count of structural
elements (coupling,
branching
statements)

-

[59]

[13, 62]

Subjective
complexity

Change
task

How complex was the
change perceived to be?

3-point ordinal scale - [54]

[13, 65-
67]

Subjective
experience

Human
resource

How was experience with
respect to the affected
components perceived?

3-point ordinal scale - - [65]

System
experience

Human
resource

For how long time had the
developers been involved in
developing or maintaining
the system?

Number of years -

- [65]

System id System To which system or project
did the change belong?

Nominal measure [37, 42-44] - -

Team id Develop-
ment org

Which team was responsible
for the change task?

Nominal measure - - [67]

Technology Component Which technology was
applied in the changed
components?

3GL/4GL -

- [65]

Test effort Change
task

What was the test effort
associated with the change?

Number of test runs - [54] -

Tool use Develop.
org.

Which tool was involved in
the change task?

Tool used/not used - [55] -

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

46

Seventeen of the 43 change attributes were used by one study only. These 17 attributes

were used by 10 different studies; hence we do not consider Table 2 to be over-influenced

by any individual paper. The summaries in Sections 5.1 to 5.5 focus on goals and main

contributions of each study. Section 6 provides a guide for future research on the basis of

the current contributions within each main category.

5.1 Summary of Characterization Studies (Goal 1)
Goal 1 studies were split according to the sub-categories listed in Table 1. Goal 1.1 and

Goal 1.2 studies are characterized by close involvement with the measured development

organization. The measurement programs were planned in advance, e.g., following the

GQM paradigm [34]. They are similar with respect to goals; however, we consider it to be

an important discriminator whether or not the study aimed at developing management tools

for monitoring and decision support in ongoing projects. Goal 1.2 studies focused on such

tools, while Goal 1.1 studies had a longer-term goal of understanding and improving the

maintenance and evolution process.

The four earliest Goal 1.1 studies are from the space domain, characterized by a long-

lasting mutual commitment between the development organization and software

engineering researchers. A certain amount of overhead for data collection was accepted in

these environments. The studies appear to follow a tendency over time from studies for

assessment and insight [41, 42], via studies for understanding and improved predictability

[37], towards studies that took concrete actions in the form of process improvements [39].

Lam and Shankararaman [40] showed that these measurement goals were also feasible in

projects that are managed less strictly. While the above studies focused on analyzing a

comprehensive set of real changes, Bergin and Keating [38] used a benchmarking

approach that evaluated the outcome of artificial changes that were designed to be

representative of actual changes.

The Goal 1.2 studies were conducted within strictly managed development

organizations. Arnold and Parker [44] involved management in setting threshold values on

a set of selected indicators. This was an early attempt to use change measures to support

decisions made by managers in a development organization. Likewise, Abran and

Hguyenkim [43] focused on management decision support, and provided upfront and

careful considerations about validity issues that pertain to change-based studies. Finally,

Stark [45] suggested a rich set of indicators that provided answers to questions about the

services provided by the development organization to its clients.

5 Goals and measured change attributes

47

Goal 1.3 and Goal 1.4 studies collected data from change management systems, and

attempted to provide insight into software maintenance and evolution that was

generalizable beyond the immediate study context. Generalizability to other contexts was

claimed on the basis of recurring characteristics of systems and development organizations.

Goal 1.3 studies investigated the effect or intrinsic properties of specific process

elements. Ng [46] investigated change effort in the domain of Enterprise Resource

Planning (ERP) implementation. The remaining three studies addressed three different

process topics: the intrinsic properties of parallel changes [48], instability in requirements

[47], and the intrinsic properties of small changes [49].

Goal 1.4 studies addressed the nature of the software evolution and maintenance process

in general. Kemerer and Slaughter [21] categorized change logs that had been written by

developers that maintained 23 systems within one development organization in order to

identify patterns in the types of change that occurred during the investigated period of 20

years. Mohagheghi [52] analyzed a smaller set of change requests to answer specific

questions about who requested changes, which quality aspects that were improved by the

changes, time/phase at which the requests were created, and to what extent change requests

were accepted by the development organization.

5.2 Change Attributes in Characterization Studies (Goal 1)
In summary, all Goal 1 studies attempted to characterize the work performed by

development organizations. A predominant principle of measurement was to categorize

changes according to selected characteristics. The proportion of changes that belonged to

each category was compared to organizational standards, to other projects/systems, and

between releases or time periods. Maintenance type, originally described by Swanson et al.

[23], was the criterion for classification that was applied most frequently. In particular, the

proportion of corrective change versus other types of change was frequently used as an

indicator of quality, the assumption being that corrective work is a symptom of

deficiencies in process or product. In most cases, observations and conclusions were based

on descriptive statistics. In four studies, the statistical significance of proportions was

investigated [21, 37, 51, 52]. Change effort, measured in person hours, was a key change

measure for studies that focused on resource consumption. The number of changes was

sometimes used as a surrogate measure when data on effort was not available. Some

studies suggested using the average change effort per maintenance type as a rough

prediction for the effort required to perform future change tasks of the same type.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

48

5.3 Summary of Studies that Assess Change Attributes (Goal 2)
Goal 2 studies were split according to the goal sub-categories listed in Table 1. The studies

used correlation analysis at different levels of complexity in order to identify relationships

between change measures used as independent variables and the change outcome measure.

An overview of change outcome measures is given in Section 5.5.

Goal 2.1 studies attempted to identify causal relationships between change attributes and

change outcome, while Goal 2.2 studies investigated the effect of specific process

elements. Graves and Mockus [53] controlled for variations due to maintenance type and

change size, and showed that change effort increased with system age. They automated the

extraction of change measures from change management systems in order to minimize

measurement overhead. Schneidewind [54] used historical change requests to investigate

correlations between change attributes and the presence of defects. Atkins et al. [55]

showed that introducing a new tool to support the development of parallel versions of the

same components had a positive effect on effort. Hersleb and Mockus [57] showed that

decentralization prolonged the change interval. Rostkowycz, Rajlich et al. [58] showed that

re-documenting a system reduced subsequent change effort, and demonstrated that the

breakeven point for investment in re-documentation versus saved change effort was

reached after 18 months.

Goal 2.3 studies attempted to find appropriate change measures of concepts that are

commonly assumed to influence change outcome. Maya, Abran et al. [60] described how

function point analysis could be adapted to the measurement of small functional

enhancements. They tested whether the function point measure could predict change effort,

and they observed a weak correlation in their study. Arisholm [59] showed that

aggregation of certain measures of structural attributes of changed components could be

used to assess the ease with which object-oriented systems could be changed.

5.4 Summary of Prediction Studies (Goal 3)
While Goal 2 studies attempted to identify change attributes that influence change

outcome, the Goal 3 studies attempted to predict that outcome. These studies used various

prediction frameworks in order to build development organization specific prediction

models of change outcome. The studies can be split according to the sub-categories listed

in Table 1.

Goal 3.1 studies investigated methods and processes for building prediction models. In

[61], Briand and Basili suggested and validated a process for building predictive models

5 Goals and measured change attributes

49

that classified corrective changes into different categories of effort. Evanco [62] used

similar procedures to predict effort for isolating and fixing defects, and validated the

prediction model by comparing the results with the actual outcomes in new projects. Xu et

al. [64] employed decision tree techniques to predict the change interval. The predictions

from the model were given to the clients to set their expectations, and the authors

quantified the approach’s effect on customer satisfaction. Mockus and Weiss [63]

predicted the risk of system failures as a consequence of changes that were made to the

system. They automated the statistical analysis required to build the models, and integrated

the predictions into the change process that was used by the developers.

Goal 3.2 studies compared prediction frameworks with respect to their predictive power

and the degree to which the frameworks exposed explanations for the predictions. In [65],

Jørgensen assessed and compared neural networks, pattern recognition and regression

models for predicting change effort. He concluded that models can assist experts in making

predictions, especially when the models expose explanations for the predictions. In [66],

Reformat and Wu compared Bayesian networks, IF-THEN rules and decision trees for

predicting change effort on an ordinal scale. They concluded that the methods

complemented each other, and suggested that practitioners should use multi-method

analysis to obtain more confidence in the predictions.

Goal 3.3 studies attempted to identify change measures that could operationalize the

conceptual change attribute of interest. Niessink and van Vliet [13] created and compared

models for predicting change effort in two different development organizations. They

suggested that the large difference in explanatory power between the organizations were

due to the differences in the degree to which the development organizations applied a

consistent change process. In [67], the same authors investigated variants of function point

analysis to predict change effort. Although the regression models improved when the size

of affected components was accounted for, the authors suggested that analogy-based

predictions might be more appropriate for heterogeneous data sets. Using data on change

requests and measures of system size from 55 banking systems, Polo et al. [68] attempted

to build predictive models that could assist in the early determination of the value of

maintenance contracts. Considerable predictive power was obtained from rudimentary

measures, a finding that the authors contributed to the homogeneity of context (banking

systems) and maturity of technology (Cobol).

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

50

5.5 Change Attributes in Assessment and Prediction Studies (Goal 2 and Goal 3)
Although Goal 2 and Goal 3 studies have very different goals, they are quite similar from

the perspective of measurement, and they are therefore described together in this section.

The choice of dependent variable, i.e., the change outcome measure, is a key

discriminator with respect to the focus and goal of a study. The dependent variables in the

reviewed studies are derived from four change attributes:

Change effort. The number of person hours expended on performing the change task is

used as a change outcome measure in studies on change attributes that may influence

productivity, and in studies on the estimation of effort for change tasks. Twelve of 17

studies had these foci. In most cases, the measure was reported explicitly per change task

by developers. Graves and Mockus proposed an algorithm that made it possible to infer

change effort from more aggregated effort data [12]. This algorithm was put to use in, e.g.,

[55].

Change interval. While change effort is a measure of the internal cost of performing a

change task, the time interval between receiving and resolving the change request can be a

relevant dependent variable for stakeholders external to the development organization.

This change measure was used in studies that focused on customer service and customer

satisfaction [57, 64], where the measure could be extracted from information resident in

change management systems.

Defects and failures. Historical data of defects and failures were used to identify change

attributes that caused or correlated with defects and failures, to assess probabilities of

defects or failures, and to assess the effect on defect proneness or failure proneness of a

specific product improvement program. Such change measures are not straightforward to

collect, because it can be difficult to establish a link from an observed defect or failure to

the change that caused it. The two studies that have used this dependent variable analyze

relatively large changes [54, 63].

Change attributes, typical questions and typical values used during data collection in

Goal 2 and 3 studies are shown in Table 2. Measures of the change request, the change task

and the deltas that are part of a change set occurred most frequently. Size, structure and age

were the most frequently measured change attributes that used information from changed

components and their revisions. Information about deltas, revisions and components that

were involved in a change set could only be measured after the change had been made. For

the prediction goals, such change measures needed to be predicted first. The degree of

collaboration (developer span) was the most frequently measured change attribute that

6 Guide for future change-based studies

51

used information about the human resources involved. No attribute of the development

organization was used more than once.

6 Guide for Future Change-Based Studies
Change-based studies belong to the more general class of empirical software engineering

studies, and are normally conducted with the characteristics of a case study.

Methodological concerns for the more general class of studies can be expected to be

relevant for change-based studies as well, c.f., [70-75]. A change-based study is

appropriate when software evolution is organized around cohesive change tasks. Abran and

Hguyenkim [43] assessed the adequacy of a planned change-based study by comparing the

reported effort expended on individual changes, to the total effort expended by developers

in the maintenance organization. These authors also piloted the feasibility of the planned

data collection, by verifying that changes could be reliably classified into maintenance

types. Such assessment and piloting reduces the risk of embarking on the wrong kind of

study, and provides useful context information for the results of the main study.

Another important requirement for many change-based designs is that it is possible to

group individual deltas into change sets associated with a change task or a change request.

If the relationships are not explicitly tracked, the algorithm provided by German [76] can

be used to recover change sets from individual deltas. Making use of naturally occurring

data has the benefit over purpose-collected data that it reduces measurement overhead and

enables researchers to collect more data over longer periods in time. This claim was

evaluated and supported by analyzing information about data collection in the reviewed

papers: The median duration of data collection was 48 and 21 months for naturally

occurring and purpose-created data, respectively. The median number of analyzed changes

was 1724 and 129 for the same two categories. More details about data collection in the

reviewed studies are provided in Table A4.

Relevant literature for a planned change-based study can be identified by matching the

study goal against the categories in Table 1. Tables A1 to A3 list individual goals, and can

be consulted to identify studies that most closely match the goal of the planned study.

Table 2 provides candidate change attributes to measure in the planned study, and points to

earlier studies that are similar with respect to measurement. The listed relationships

between change attributes in Table 2 and entities in Figure 1 can help to define and

operationalize the measures.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

52

To further guide future studies, it is necessary to somehow assess the current state-of-

the-art and challenges within each group of studies. We chose to adopt the perspective of

Perry et al. that empirical studies should go in the direction of being causal, actionable and

general [73]. When there is a causal relationship, it is known why something happens.

When the cause is actionable, outcomes can be changed and improved. Generality ensures

that the study is useful to a wide range of situations. In the following, we present one paper

for each of the three main goals in Table 1 that we consider to be most advanced with

respect to these criteria.

Briand et al [39] (a Goal 1 study) attempted to identify causal links between inadequate

organizational structures or maintenance practices, and problems in the maintenance phase.

The actionable root causes of reported problems were expressed in statements like

“communication between users and maintainers, due in part to a lack of defined standards

for writing change requirements” and “lack of experience and/or training with respect to

the application domain”. A notable feature of this study is that it employed qualitative

analysis to identify causal relationships. Furthermore, to be able to generalize case study

results, it is recommended that proposals and hypothesis for such studies should be based

on theories [77]. The results can then be used to refute, support or modify the theory in

some way. The mentioned study contained elements of theory use, being based on a model

that proposed causal links between flaws in overall maintenance process, the human errors

that are committed, and the resulting software defects.

Atkins, Ball et al [55] (a Goal 2 study) quantified the effect on change effort and change

interval of a particular development tool. They used an ANCOVA-type model that

included a binary treatment variable (the tool was/was not used) and variables that

controlled for factors such as size and type of change. The study showed that analysis of

change-based field data can provide strong evidence of the causal effects of applying

technologies and practices in software engineering. Although a controlled experiment

would better handle threats to internal validity, concerning the existence of a cause-effect

relationship, the power of Atkin, Ball et al’s methodology was the use of real change data,

representing exactly the constructs of interest to the organization. The authors were also

able to control for individual developer differences, which was considered to be the most

serious threat to internal validity.

Mockus and Weiss [63] (a Goal 3 study) integrated model-based risk prediction into the

development process so that developers were alerted when risk threshold values were

exceeded for new changes. They used candidate variables in their models that represented

7 Limitations of this study

53

proposed risk factors, such as size and type of the change. The study attempted to account

for the effect of developers’ experience by designing experience measures from version

control data. The prediction models confirmed the correlations between some of the

proposed factors, and the risks of failure. A particularly promising element of this work

was the design of automated procedures to extract new data, update prediction models,

perform predictions, and alert developers on the basis of dynamically adjusted threshold

values.

The three mentioned change-based studies illustrate how empirical software engineering

studies are capable of changing and improving the way development is done within

specific software organizations. However, there are strong limitations to the

generalizability of the results. It is the authors’ opinion that a stronger foundation in

common conceptual models and theories is required to overcome this shortage.

7 Limitations of this Study
The process by which papers were selected balanced the use of systematic, repeatable

procedures with the intent to identify a comprehensive set of change-based studies. A more

repeatable process could have been achieved by limiting searches to abstracts and titles

only, by omitting traversal of literature references, and by excluding the Google Scholar

search engine, which yielded low precision for paper retrieval. However, a more repeatable

process may have failed to retrieve many of the included papers. Given that meeting the

objective and answering the research questions of this study relied on identifying a broad

set of change-based studies we chose to assign lower priority to repeatability. As a

consequence, the procedures we followed did not fully comply with the procedures for

systematic reviews that were suggested by Kitchenham et al. [11]. It is worth noting that

the challenges experienced in attempting to follow systematic procedures stem from the

lack of common conceptual frameworks. A common conceptual basis would clearly

improve sensitivity and precision during the selection of papers.

 The ease with which studies can be classified according to the categories in Table 1 was

evaluated by letting two independent senior researchers in our research group attempt to

classify six randomly sampled papers. The two researchers worked individually, and were

instructed to complete the categorization for one paper before turning to the next. On

average, the researchers used 7 minutes to classify one paper. The preparation material

consisted of this paper’s abstract, introduction, Table 1, and the descriptions of the

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

54

categories as they appear in Section 5. The results showed that the agreement between the

baseline and evaluations was fair by normal standards [78]. An important source for

disagreements was that some studies contained elements from different goals. For

example, the study by Schneidewind [54] is described by the author to identify actionable

risk factors at an early stage in the development cycle (indicating a causal Goal 2 study),

but the methodology used resembles the methodology of a prediction study (by focusing

on correlations). This situation resulted in different classifications between the researchers.

Despite the finding from the evaluation that some studies overlap several categories, we

consider the schema to be a useful map of the goals for change-based studies. Also, the

categories are assumed to be useful to help researchers clearly define their research goals,

possibly covering more than one of the goal categories. It is future work to evaluate and

improve the classification schema on the basis of new studies, and with respect to open

sources studies, which were outside the scope of this review.

8 Conclusions and Further Work
Change-based studies assume that software maintenance and evolution is organized around

change tasks that transform change requests into sets of modifications to the components

of the system. This review of change-based studies has shown that specific study goals

have been to characterize projects, to understand the factors that drive costs and risks

during software maintenance and evolution, and to predict costs and risks. Change

management systems constitute the primary source for extracting change measures.

Several of the reviewed studies have demonstrated how measurement and analysis can be

automated and integrated seamlessly into the maintenance and evolution process.

Although this review includes examples of successful measurement programs, it was

difficult to determine whether and how insights into software maintenance and evolution

could be transferred to situations beyond the immediate study context. We recommend that

new change-based studies should base measurement on conceptual models and, eventually,

theories. This observation may be seen as an instance of a general need for an improved

theoretical basis for empirical software engineering research. In order to make progress

along this line, we anchored this review in a minimal, empirically based, conceptual model

with the intention of supporting change-based studies. We built the model by ensuring

compatibility with existing ontologies of software maintenance, and by extracting and

conceptualizing the change measures applied in 34 change-based studies from a period of

8 Conclusions and further work

55

25 years. In future work, we will conduct a change-based multiple-case study with the aim

of understanding more about the factors that drive costs of software maintenance and

evolution. The results from this review constitute important elements of the study design.

We believe that this review will be useful by other research and measurement programs,

and will facilitate a more effective accumulation of knowledge from empirical studies of

software maintenance and evolution.

Acknowledgements

We thank the Simula School of Research and Innovation for funding this work, the

anonymous reviewers for important feedback, Simon Andresen for our discussions on

conceptual models of software change, Aiko Fallas Yamashita for her comments that

improved the readability of the paper, and Leon Moonen and Dietmar Pfahl for

participating in the evaluation procedures.

Appendix A. Summary of Extracted Data

The three main classes of included studies are listed in Tables A1, A2 and A3. Within each

class, the studies are listed in chronological order. In Tables A2 and A3, an asterisk (*) is

used as an indication that the variable was statistically significant, at the level applied by

the authors of the papers, in multivariate statistical models. Table A4 summarizes business

context, measurement procedures and extent of data collection in the reviewed studies.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

56

Table A1. Characterize the work performed on evolving systems (Goal 1)

Study Category:Goal Indicators and change attributes
Arnold and
Parker [44]

1.2: Manage the
maintenance
process

Change count by:
� Maintenance type (fix, enhance, restructure)
� Status (solved requests vs. all requests), per maintenance type
� Change effort (little/moderate vs. extensive) per maintenance type
Measures were compared to local threshold values for several systems

Weiss and
Basili [42]

1.1: Assess
maintenance
performance in
ways that permit
comparisons
across systems

Change count by:
� Defect source (req. specification, design, language, …)
� Change effort (<1hr, <1day, >1day)
� Quality focus (clarity, optimization, user services, unknown)
� Maintenance type (change, fix non-clerical error, fix clerical error)
� Change span (number and identity of changed components)
� Detection (test runs, proof techniques, and more)
� Change effort (design, code: <1hr, <1day, >1day, unknown)
Measures were compared between projects/systems

Rombach,
Ulery et al.
[41]

1.1: Understand
maintenance
processes, in
order to improve
initial
development and
management of
maintenance
projects

Change count by:
� Maintenance type (adapt, correct, enhance, other)
� Change effort (<1hr, <1day, >1day)
Average number of
� Change size (source lines + modules added, changed and deleted)
Compare development to maintenance with respect to proportion of
� Change effort (<1hr, <1day, >1 day) per activity
� Defect type (initialization, logic, interface, data, computational)
� Defect source (specification, design, code, previous change)

Abran and
Hguyenkim
[43]

1.2: Analyze and
manage
maintenance
effort

� Distribution of change effort by maintenance type (corrective,
adaptive, perfective, user) by system and year

� Average change effort, per maintenance type, system and time

Basili,
Briand al.
[37]

1.1: Improve
understanding
and
predictability of
software release
effort

Distribution of change effort by
� Activity (analysis, design, implementation, test, other)
� Activity, for costliest projects/systems
� Activity, compared between maintenance types (correct, enhance)
� Maintenance type (adapt, correct, enhance, other)
� Origin (user, tester)

� Compare change count and change size (LOC), between origins

(internal tester, user)
Stark [45] 1.2:

Control customer
satisfaction,
maintenance cost
and schedule

Time trend in proportions of
� Delayed (delayed vs. not delayed)
� Status (solved vs. not yet solved)
� Status (rejected vs. not rejected)
� Change interval used to close urgent requests
� Change count and change effort by defect type/maintenance

type/quality focus (computational, logic, input, data handling, output,
interface, operations, performance, specification, improvement)

Appendix A

57

Table A1. Continued

Study Category: Goal Indicators and change attributes
Gefen and
Schneberger [51]

1.4: Investigate the
homogeneity of the
maintenance phase,
with respect to the
amount of change

� Time trend in change count
� Time trend in change count, by maintenance type (requirement

change, programming related fix)
� p-value and coefficient value in regression models of time vs.

change count in time period, and per maintenance type
� p-value in t-test of difference between time periods with respect

to maintenance type (correct, adapt) and change count
Burch and Kung
[50]

1.4: Understand
time trends of
changes

� Time trend in change count, by maintenance type (support, fix,
enhance), using statistical models

Briand, Kim et al.
[39]

1.1: Assess and
improve quality
and productivity of
maintenance

� Qualitative summaries, based on interviews and questionnaires,
of factors that influence maintenance performance (focused on
product defects), related to development organization, process,
product and people

Lam and
Shankararaman
[40]

1.1: Assess trends
in maintenance
performance

� Average change effort, by component type (domain specific)
� Change count, by type and time period
� Change count that resulted in defect, by time period

Kemerer and
Slaughter [21]

1.4: Identify and
understand the
phases through
which software
systems evolve

� p-values and coefficient in regression model of time vs. change
count

� Degree to which certain maintenance types occur together over
time, by using gamma analysis [79]. 31 sub-types of corrective,
adaptive, enhancive and new changes were used

Ng [46] 1.3: Understand
ERP maintenance
effort

� Change effort and change count by origin (service provider, end-
client) and maintenance type (fix, enhance, master data)

Perry, Siy et
al.[48]

1.3: Understand
parallelism in
large-scale
evolution

Change (at three levels of granularity) count by
� Change interval (number of days)
� Status (being worked on, not being worked on)
� Change span (number of files)
� Developer span (see Table 3)

Bergin and
Keating [38]

1.1: Assess
changeability of a
software system

� Change size (percentage change to the software required by
seven typical changes)

Mohagheghi,
Conradi et al. [52]

1.4: Investigate the
nature of change
requests in a typical
project

Proportions, and p-value for one-proportion tests of
� Quality focus (functional vs. non-functional changes)
� Origin (inside vs. outside development organization)
� Time (before vs. after implementation and verification)
� Status (accepted vs. not accepted), in total and per release

Nurmuliani and
Zowghi [47]

1.3: Measure
requirements
volatility in a time-
limited project

� Time trend in maintenance type (add, delete, modify
requirement)

� Time trend in quality focus
� Change interval, by maintenance type and quality focus
� Mean predicted change effort, by maintenance type and quality

focus
Purushothaman
and Perry [49]

1.3: Understand the
nature of small
code changes

� Change count by maintenance type (corrective, adaptive,
perfective, inspect) compared between small and larger changes

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

58

Table A2. Assess change attributes that explain change outcome (Goal 2)

Study Study goal and dependent
variables (DV)

Independent variables
of change request,
change task, change set
and delta

Independent
variables of
system,
components or
revisions

Independent
variables of
human
resources/
organization

Maya, Abran
et al. [60]

2.3: Propose and validate
function points as measure
of change size, for the
purpose of productivity
assessment and prediction
DV: Change effort

Function points (fine
granularity for
complexity)

Not used Not used

Graves and
Mockus [53]

2.1: Identify change
attributes that influence
change effort and to find
evidence of code decay
DV: Change effort

Maintenance type*
Change span (check-
ins)*
Change interval

Not used
Time*

Developer id

Schneide-
wind [54]

2.1 : Understand how
change request attributes
relate to process and product
quality, and build quality
prediction models

DV: Change caused defect

Maintenance type
Subjective complexity
Change size *
Change span (
requirements affected,
modules affected)
Change effort (code,
test)
Execution resources*
Request criticality*

Criticality
Code volatility
Data operation

Developer span
Requirements
instability*
Test effort

Atkins, Ball
et al. [55]

2.2: Evaluate the impact of a
tool (version editor)
DV: Change effort, change
interval, change caused
defect

Maintenance type*
Change size
Change span (# check-
ins)

Not used Tool use*
(version editor
used)

Herbsleb and
Mockus [57]

2.2: Evaluate the impact of
project decentralization
DV: Change interval

Maintenance type*
Change span (check-
ins, modules)*
Request criticality*

Not used Developer span*
Time (date)*
Location*

Rostkowycz,
Rajlich et al.
[58]

2.2: Assess the cost-benefit
of re-documenting software
components
DV: Change effort

Change span Documentation
quality*

Time (date)*

Geppert,
Mockus et
al.[56]

2.2: Assess effect of
refactoring
DV: Defects, change effort,
change size, change span

Not used Code quality
(affected code
refactored)*

Not used

Arisholm [59] 2.3: Validate measures of
structural attributes, adapted
for changes, as indicators of
changeability
DV: Change effort

Change size

Structural
attributes
weighted by
change size
Export coupling*
Class size*

Not used

Appendix A

59

Table A3. Predict the outcome of changes (Goal 3)

Study Study goal and dependent
variables (DV)

Independent variables of
change request, change
task, change set and delta

Independent
variables of
system,
components or
revisions

Independent
variables of
human
resources/
organization

Briand and
Basili [61]

3.1: Validate a proposed
process for constructing
customized prediction
models of change effort,
DV: Change effort

Maintenance type*
Change source*
Defect type*
Change size
Change span

Not used Not used

Jørgensen
[65]

3.2: Assess and compare
modelling frameworks and
change measures in
predictive models
DV: Change effort

Change size*
Maintenance type*
Subjective complexity*
Coding mode*
Request criticality

Technology
(3GL/4GL)
Age
Size

System
experience
Maintenance
experience

Niessink and
van Vliet
[67]

3.3: Assess feasibility of
using function points to
predict change effort
DV: Change effort

Function points*
Subjective complexity*

Size (LOC)* Not used

Niessink and
van Vliet
[13]

3.3: Identify cost drivers
that can be used in models
for prediction change effort,
in two development
organizations
DV: Change effort

Change size*
Change span (screens,
lists, components, db
entities, db attributes,
temporary programs)*
Subjective complexity*
Change source*

Size*
Structural
attributes
(# GOTO’s)*
Component
kind*
Documentation
quality*

Subjective
experience *
Team id*
Requirement
instability*

Mockus and
Weiss [63]

3.1: Investigate attributes
that influence failure-
proneness
Construct a usable failure-
prediction model
DV: Software failure as a
consequence of change

Maintenance type*
Change size*
Change span (subsystems,
modules, files, check-ins,
sub-tasks)*
Change interval*

Structural
attributes (size of
changed files)

Developer
span (#
developers)
Objective
change
experience*

Evanco [62] 3.1: Develop and assess a
prediction model for
corrective changes
DV: Change effort

Change span (subsystems,
components, compilation
units affected)*

Structural
attributes
(# parameters,
cyclomatic
complexity,
compilation
units)*

Not used

Polo,
Piattini et
al.[68]

3.3: Early prediction of
maintenance effort
DV: High/low change effort

Maintenance type*
Request criticality*

Size(LOC,
modules)*

Not used

Reformat
and Wu [66]

3.2: Assess AI techniques to
construct predictive modes
of corrective change effort,
DV: Change effort

Defect type*
Subjective complexity*

Data operation
(accessing,
computational)*

Not used

Xu, Yang et
al. [64]

3.1: Manage customer
satisfaction
DV: Change interval

Maintenance type*
Change effort*

Age (Task id,
system id,
version id)

Not used

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

60

Table A4. Business context, measurement procedures and extent of data collection

Category Sub-
category

Value Value explanation References

Business
context

Business
model

In-house
Embedded

Embedded system developed for
internal use

[37, 39, 41, 42, 44, 54,
61, 62, 65, 66]

In-house IS Information system developed
for internal use

[13, 21, 43, 46, 60]

Multi-client System developed for multiple
business clients

[40, 45, 47-49, 52, 53,
55-59, 63, 64, 68]

Single-client System developed for one
business client

[38, 50, 51, 67]

Business
domain

Aero-space NASA [37, 39, 41, 42, 44, 54,
61, 62]

Telecom Switching, billing [38, 48, 49, 52, 53, 55-
57, 63, 65]

Finance Banking, insurance [43, 58, 60, 67, 68]
Government - [13, 46]
Other Retail, hotel management [21, 40, 64]
R&D SW/research tools [59, 66]
Not reported -

[45, 47, 50, 51]

Measurement
procedures

Data origin Natural Measurements relied on
footprints of change process

[13, 37, 39, 41-44, 54,
59, 61, 65, 66]

Purpose Data was created for the purpose
of measurement

[21, 38, 40, 46-50, 52,
53, 55-57, 62, 63, 67,
68]

Mixed Combination of Natural and
Purpose

[45, 51, 58, 60, 64]

Extraction
of measures

Expert Expert resources required for
measure extraction

[13, 21, 38, 44, 47, 54,
60, 66-68]

Clerical Non-expert resources required
for measure extraction

[37, 39-43, 45, 51, 58,
61, 65]

Automated Measure extraction was
automated

[46, 48-50, 52, 53, 55-
57, 59, 62-64]

Extent of data
collection

Change
count

< 25 percentile # changes <= 127 [13, 38, 41, 47, 54, 58,
59, 65]

25 to 75 prcntl. 127 < # changes <= 2945 [37, 42-46, 50-53, 56,
60-62, 66, 67]

75 to 95 prcntl. 2945 < # changes <= 20902 [48, 55, 57, 63, 64, 68]
> 95 prcntl. # changes > 20902 [21, 49]
Not reported [39, 40]

Duration < 25 percentile # months <= 18 [13, 37, 59, 64, 65, 67,
68]

25 to 75 prcntl. 18 < # months <= 60 [41-43, 45, 46, 51-53,
55, 57, 58, 60]

75 to 95 prcntl. 60 < # months <=195 [48-50, 63]
> 95 prcntl. # months > 195 [21, 54]
Not reported [38-40, 44, 56, 61, 62,

66]

References for paper 1

61

References

[1] K. Beck, "Embracing Change with Extreme Programming," Computer, vol. 32, pp.
70-77, 1999.

[2] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,
"Metrics and Laws of Software Evolution - the Nineties View," in 4th International
Symposium on Software Metrics, 1997, pp. 20-32.

[3] L. A. Belady and M. M. Lehman, "A Model of Large Program Development," IBM
Systems Journal, vol. 15, pp. 225-252, 1976.

[4] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, "Software Complexity
and Maintenance Costs," Communications of the ACM, vol. 36, pp. 81-94, 1993.

[5] P. Bhatt, G. Shroff, C. Anantaram, and A. K. Misra, "An Influence Model for
Factors in Outsourced Software Maintenance," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, pp. 385-423, 2006.

[6] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T. Mukhopadhyay., "An Empirical
Analysis of Productivity and Quality in Software Products," Management Science,
vol. 46, pp. 745-759, 2000.

[7] B. P. Lientz, "Issues in Software Maintenance," ACM Computing Surveys, vol. 15,
pp. 271-278, 1983.

[8] J. H. Hayes, S. C. Patel, and L. Zhao, "A Metrics-Based Software Maintenance
Effort Model," in 8th European Conference on Software Maintenance and
Reengineering, 2004, pp. 254-258.

[9] C. Kemerer, "Software Complexity and Software Maintenance: A Survey of
Empirical Research," Annals of Software Engineering, vol. 1, pp. 1-22, 1995.

[10] J. C. Munson and S. G. Elbaum, "Code Churn: A Measure for Estimating the
Impact of Code Change," in 14th International Conference on Software
Maintenance, 1998, pp. 24-31.

[11] B. A. Kitchenham, "Procedures for Performing Systematic Reviews," Keele
University Technical report EBSE-2007-01, 2007.

[12] T. L. Graves and A. Mockus, "Identifying Productivity Drivers by Modeling Work
Units Using Partial Data," Technometrics, vol. 43, pp. 168-179, 2001.

[13] F. Niessink and H. van Vliet, "Two Case Studies in Measuring Software
Maintenance Effort," in 14th International Conference on Software Maintenance,
1998, pp. 76–85.

[14] H. Kagdi, M. Collard, and J. I. Maletic, "A Survey and Taxonomy of Approaches
for Mining Software Repositories in the Context of Software Evolution," Journal of
Software Maintenance and Evolution: Research and Practice, vol. 19, pp. 77-131,
2007.

[15] M. G. B. Dias, N. Anquetil, and K. M. de Oliveira, "Organizing the Knowledge
Used in Software Maintenance," Journal of Universal Computer Science, vol. 9,
pp. 641-658, 2003.

[16] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F. Niessink, N. F.
Schneidewind, J. Singer, S. Takada, R. Vehvilainen, and H. Yang, "Towards an

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

62

Ontology of Software Maintenance," Journal of Software Maintenance: Research
and Practice, vol. 11, pp. 365-389, 1999.

[17] F. Ruiz, A. Vizcaíno, M. Piattini, and F. García, "An Ontology for the Management
of Software Maintenance Projects," International Journal of Software Engineering
and Knowledge Engineering, vol. 14, pp. 323-349, 2004.

[18] N. Fenton, "Software Measurement: A Necessary Scientific Basis," IEEE
Transactions on Software Engineering, vol. 20, pp. 199-205, 1994.

[19] O. Dieste and A. G. Padua, "Developing Search Strategies for Detecting Relevant
Experiments for Systematic Reviews," in 1st International Symposium on
Empirical Software Engineering and Measurement, 2007, pp. 215-224.

[20] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.
Liborg, and A. C. Rekdal, "A Survey of Controlled Experiments in Software
Engineering," IEEE Transactions on Software Engineering, vol. 31, pp. 733-753,
2005.

[21] C. F. Kemerer and S. Slaughter, "An Empirical Approach to Studying Software
Evolution," IEEE Transactions on Software Engineering, vol. 25, pp. 493-509,
1999.

[22] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristics of Application
Software Maintenance," Communications of the ACM, vol. 21, pp. 466-471, 1978.

[23] E. B. Swanson, "The Dimensions of Maintenance," in 2nd International
Conference on Software Engineering, San Francisco, California, United States,
1976, pp. 492-497.

[24] L. C. Briand and J. Wüst, "Empirical Studies of Quality Models in Object-Oriented
Systems," Advances in Computers, vol. 59, pp. 97-166, 2002.

[25] E. Arisholm and L. C. Briand, "Predicting Fault-Prone Components in a Java
Legacy System," in 5th International Symposium on Empirical Software
Engineering, 2006, pp. 8-17.

[26] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault Incidence
Using Software Change History," IEEE Transactions on Software Engineering,
vol. 26, pp. 653-661, 2000.

[27] M. Lindvall, "Monitoring and Measuring the Change-Prediction Process at
Different Granularity Levels," Software Process: Improvement and Practice, vol. 4,
pp. 3-10, 1998.

[28] V. R. Basili and B. T. Perricone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, vol. 27, pp. 42-52, 1984.

[29] M. Leszak, D. E. Perry, and D. Stoll, "Classification and Evaluation of Defects in a
Project Retrospective," The Journal of Systems & Software, vol. 61, pp. 173-187,
2002.

[30] D. E. Perry and C. S. Stieg, "Software Faults in Evolving a Large, Real-Time
System: A Case Study," in 4th European Software Engineering Conference, 1993,
pp. 48-67.

[31] A. von Mayrhauser and A. M. Vans, "Program Comprehension During Software
Maintenance and Evolution," Computer, vol. 28, pp. 44-55, 1995.

References for paper 1

63

[32] F. Détienne and F. Bott, Software Design - Cognitive Aspects. London: Springer-
Verlag, 2002.

[33] B. G. Glaser, "The Constant Comparative Method of Qualitative Analysis," Social
Problems, vol. 12, pp. 436-445, 1965.

[34] V. R. Basili, G. Caldiera, and H. D. Rombach, "The Goal Question Metric
Approach," in Encyclopedia of Software Engineering. vol. 1, 2002, pp. 578-583.

[35] A. Hindle, D. M. German, and R. Holt, "What Do Large Commits Tell Us?: A
Taxonomical Study of Large Commits," in International working conference on
mining software repositories, Leipzig, Germany, 2008, pp. 99-108.

[36] OMG, "OCL 2.0 Specification," in http://www.omg.org/docs/ptc/03-10-14.pdf,
2005.

[37] V. Basili, L. C. Briand, S. Condon, Y. M. Kim, W. L. Melo, and J. D. Valett,
"Understanding and Predicting the Process of Software Maintenance Releases," in
18th International Conference on Software Engineering, 1996, pp. 464–474.

[38] S. Bergin and J. Keating, "A Case Study on the Adaptive Maintenance of an
Internet Application," Journal of Software Maintenance and Evolution: Research
and Practice, vol. 15, pp. 245-264, 2003.

[39] L. C. Briand, Y. M. Kim, W. Melo, C. Seaman, and V. R. Basili, "Q-MOPP:
Qualitative Evaluation of Maintenance Organizations, Processes and Products,"
Journal of Software Maintenance: Research and Practice, vol. 10, pp. 249-278,
1998.

[40] W. Lam and V. Shankararaman, "Managing Change in Software Development
Using a Process Improvement Approach," in 24th Euromicro Conference, 1998,
pp. 779-786.

[41] H. D. Rombach, B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control:
Adding Maintenance Measurement to the SEL," Journal of Systems and Software,
vol. 18, pp. 125-138, 1992.

[42] D. M. Weiss and V. R. Basili, "Evaluating Software Development by Analysis of
Changes - Some Data from the Software Engineering Laboratory," IEEE
Transactions on Software Engineering, vol. 11, pp. 157-168, 1985.

[43] A. Abran and H. Hguyenkim, "Measurement of the Maintenance Process from a
Demand-Based Perspective," Journal of Software Maintenance: Research and
Practice, vol. 5, pp. 63-90, 1993.

[44] R. S. Arnold and D. A. Parker, "The Dimensions of Healthy Maintenance," in 6th
International Conference on Software engineering, 1982, pp. 10-27.

[45] G. E. Stark, "Measurements for Managing Software Maintenance," in 1996
International Conference on Software Maintenance, 1996, pp. 152-161.

[46] C. S. P. Ng, "A Decision Framework for Enterprise Resource Planning
Maintenance and Upgrade: A Client Perspective," Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, pp. 431-468, 2001.

[47] N. Nurmuliani and D. Zowghi, "Characterising Requirements Volatility: An
Empirical Case Study," in 4th International Symposium on Empirical Software
Engineering, Noosa Heads, Australia, 2005, pp. 427-436.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

64

[48] D. E. Perry, H. P. Siy, and L. G. Votta, "Parallel Changes in Large-Scale Software
Development: An Observational Case Study," ACM Transactions on Software
Engineering and Methodology, vol. 10, pp. 308-337, 2001.

[49] R. Purushothaman and D. E. Perry, "Toward Understanding the Rhetoric of Small
Source Code Changes," IEEE Transactions on Software Engineering, vol. 31, pp.
511-526, 2005.

[50] E. Burch and H. Kung, "Modeling Software Maintenance Requests: A Case Study,"
in 1997 International Conference on Software Maintenance, 1997, pp. 40-47.

[51] D. Gefen and S. L. Schneberger, "The Non-Homogeneous Maintenance Periods: A
Case Study of Software Modifications," in 1996 International Conference on
Software Maintenance, 1996, pp. 134-141.

[52] P. Mohagheghi and R. Conradi, "An Empirical Study of Software Change: Origin,
Acceptance Rate, and Functionality Vs. Quality Attributes," in 3rd International
Symposium on Empirical Software Engineering, 2004, pp. 7-16.

[53] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Databases," in 5th International Symposium on Software Metrics,
1998, pp. 267–273.

[54] N. F. Schneidewind, "Investigation of the Risk to Software Reliability and
Maintainability of Requirements Changes," in 2001 International Conference on
Software Maintenance, 2001, pp. 127-136.

[55] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus, "Using Version Control Data
to Evaluate the Impact of Software Tools: A Case Study of the Version Editor,"
IEEE Transactions on Software Engineering, vol. 28, pp. 625-637, 2002.

[56] B. Geppert, A. Mockus, and F. Rößler, "Refactoring for Changeability: A Way to
Go?," in 11th International Symposium on Software Metrics, 2005.

[57] J. D. Herbsleb and A. Mockus, "An Empirical Study of Speed and Communication
in Globally Distributed Software Development," IEEE Transactions on Software
Engineering, vol. 29, pp. 481-494, 2003.

[58] A. J. Rostkowycz, V. Rajlich, and A. Marcus, "A Case Study on the Long-Term
Effects of Software Redocumentation," in 2004 International Conference on
Software Maintenance 2004, pp. 92-101.

[59] E. Arisholm, "Empirical Assessment of the Impact of Structural Properties on the
Changeability of Object-Oriented Software," Information and Software
Technology, vol. 48, pp. 1046-1055, 2006.

[60] M. Maya, A. Abran, and P. Bourque, "Measuring the Size of Small Functional
Enhancements to Software," in 6th International Workshop on Software Metrics,
1996.

[61] L. C. Briand and V. R. Basili, "A Classification Procedure for the Effective
Management of Changes During the Maintenance Process," in 1992 Conference on
Software Maintenance, 1992, pp. 328-336.

[62] W. M. Evanco, "Prediction Models for Software Fault Correction Effort," in 5th
European Conference on Software Maintenance and Reengineering, 2001, pp. 114-
120.

References for paper 1

65

[63] A. Mockus and D. M. Weiss, "Predicting Risk of Software Changes," Bell Labs
Technical Journal, vol. 5, pp. 169-180, 2000.

[64] B. Xu, M. Yang, H. Liang, and H. Zhu, "Maximizing Customer Satisfaction in
Maintenance of Software Product Family," in 18th Canadian Conference on
Electrical and Computer Engineering, 2005, pp. 1320-1323.

[65] M. Jørgensen, "Experience with the Accuracy of Software Maintenance Task Effort
Prediction Models," IEEE Transactions on Software Engineering, vol. 21, pp. 674-
681, 1995.

[66] M. Reformat and V. Wu, "Analysis of Software Maintenance Data Using Multi-
Technique Approach," in 15th International Conference on Tools with Artificial
Intelligence, 2003, pp. 53-59.

[67] F. Niessink and H. van Vliet, "Predicting Maintenance Effort with Function
Points," in 1997 International Conference on Software Maintenance, 1997, pp. 32-
39.

[68] M. Polo, M. Piattini, and F. Ruiz, "Using Code Metrics to Predict Maintenance of
Legacy Programs: A Case Study," in 2001 International Conference on Software
Maintenance, 2001, pp. 202-208.

[69] B. Xu, "Managing Customer Satisfaction in Maintenance of Software Product
Family Via Id3," Machine Learning and Cybernetics, 2005. Proceedings of 2005
International Conference on, vol. 3, 2005.

[70] B. A. Kitchenham, S. L. Pleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg, "Preliminary Guidelines for Empirical Research in
Software Engineering," IEEE Transactions on Software Engineering, vol. 12, pp.
1106-1125, 2002.

[71] T. C. Lethbridge, S. E. Sim, and J. Singer, "Studying Software Engineers: Data
Collection Techniques for Software Field Studies," Empirical Software
Engineering, vol. 10, pp. 311-341, 2005.

[72] A. Mockus, "Missing Data in Software Engineering," in Guide to Advanced
Empirical Software Engineering, 2000, pp. 185-200.

[73] D. E. Perry, A. A. Porter, and L. G. Votta, "Empirical Studies of Software
Engineering: A Roadmap," in Conference on The Future of Software Engineering,
2000, pp. 345-355.

[74] C. B. Seaman, "Qualitative Methods in Empirical Studies of Software
Engineering," IEEE Transactions on Software Engineering, vol. 25, pp. 557-572,
1999.

[75] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay, "Building Theories in
Software Engineering," in Guide to Advanced Empirical Software Engineering
London: Springer-Verlag, 2008, pp. 312-336.

[76] D. M. German, "An Empirical Study of Fine-Grained Software Modifications,"
Empirical Software Engineering, vol. 11, pp. 369-393, 2006.

[77] R. K. Yin, "Designing Case Studies," in Case Study Research: Design and
Methods: Sage Publications:Thousand Oaks, CA, 2003, pp. 19-53.

[78] J. R. Landis and G. G. Koch, "The Measurement of Observer Agreement for
Categorical Data," Biometrics, vol. 33, pp. 159-74, 1977.

Paper 1: Understanding software maintenance and evolution by analyzing individual changes…

66

[79] D. C. Pelz, "Innovation Complexity and the Sequence of Innovating Stages,"
Science Communication, vol. 6, pp. 261-291, 1985.

67

Paper 2:

Understanding Cost Drivers of Software Evolution: A
Quantitative and Qualitative Investigation of Change
Effort in Two Evolving Software Systems

Hans Christian Benestad, Bente Anda, Erik Arisholm

Submitted to the Journal of Empirical Software Engineering

Abstract

Making changes to software systems can prove costly and it remains a challenge to

understand the factors that affect the costs of software evolution. This study sought to

identify such factors by investigating the effort expended by developers to perform 336

change tasks in two different software organizations. We quantitatively analyzed data from

version control systems and change trackers to identify factors that correlated with change

effort. In-depth interviews with the developers about a subset of the change tasks further

refined the analysis. Two central quantitative results found that dispersion of changed code

and volatility of the requirements for the change task correlated with change effort. The

analysis of the qualitative interviews pointed to two important, underlying cost drivers:

Difficulties in comprehending dispersed code and difficulties in anticipating side effects of

changes. This study demonstrates a novel method for combining qualitative and

quantitative analysis to assess cost drivers of software evolution. Given our findings, we

propose improvements to practices and development tools to manage and reduce the costs.

1 Introduction
Software systems must adapt to continuously changing environments [1]. With a greater

understanding of the cost of software evolution, technologies and practices could be

improved to act against typical cost drivers. Development organizations could also make

more targeted process improvements and predict cost more accurately in their specific

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

68

context. Researchers have used varied approaches to understand the cost of software

evolution. One class of studies has investigated project factors, such as maintainer skills,

the size of teams, development practices, and documentation practices, [2-5]. Other studies

have examined how system factors, such as structural attributes of source code, relate to

the ease of changing software [6-8]. A third class of studies has focused on human factors

and probed individual cognitive processes of developers attempting to comprehend and

change software [9].

A premise set forth in this paper is that software evolution consists of change tasks that

developers perform to resolve change requests, and that change effort, i.e., the effort

expended to perform these tasks, is a meaningful measure of software evolution cost. Thus,

by identifying the drivers of change effort, we can better understand the cost of software

evolution.

Change effort might be affected by such factors as type of change, developer experience

and task size. This study distinguishes between a confirmatory analysis testing the effect of

factors important in earlier change-based studies, and an explorative analysis identifying

factors that best explain change effort in the data at hand. This is also the first study we are

aware of that combines quantitative and qualitative analysis of change tasks in a systematic

manner. The purpose was to paint a rich picture of factors involved when developers spend

effort to perform change tasks. Ultimately, our goal is to aggregate evidence from change-

based studies into theories of software evolution.

The main contributions of this paper are threefold: First, from a local perspective the

study results can improve practices in the two investigated projects. For example, the study

identifies specific factors that were insufficiently accounted for when the projects

estimated change effort. Second, from the software engineering perspective, it clarifies

factors that drive cost of software evolution. For example, the study identifies commonly

used design practices with an unfavorable effect on change effort. Third, from the

empirical software engineering perspective the paper demonstrates a methodology of

qualitative and quantitative analysis of software changes to assess factors that affect the

cost of software evolution.

The remainder of this paper is organized as follows: Section 2 describes the design of

the study, and includes a measurement model based on a literature review of empirical

studies of software change. Sections 3 and 4 provide the results from the quantitative

analysis, while Section 5 provides the results from the qualitative analysis. Section 6

2 Design of the study

69

summarizes the results of the analysis and discusses the consequences. Section 7 discusses

threats to validity, and Section 8 concludes.

2 Design of the Study
2.1 Research Question
The study addresses the following overall research question:

From the perspective of developers handling incoming change requests during

software evolution, which factors affect the effort required to complete the change

tasks?

In principle, a change can be viewed as a small project involving analysis, design, coding,

testing and integration. The projects under study used lightweight development practices,

and did not, for example, maintain the requirements or high-level design documents used

for initial development. Most of the factors under study therefore pertain to coding-centric

activities. Change trackers and version control systems were essential tools in order to

maintain traceability and control of the evolving software. The regression models built for

the quantitative analysis used data collected from such systems.

Because regression analysis essentially models statistical relationships between

variables, evidence from such analysis is not sufficient to claim causal effects of the

modeled factors. Also, there are many sources of unexplained variability in models of

change effort, due to activities that leave no traces in change management systems.

Examples of such activities can be informal discussions among developers, code

comprehension activities and the maintenance of artifacts that are not fully traced in

change management systems. To identify complementary factors affecting change effort,

we therefore interviewed developers about effort expenditure for recently completed

change tasks. Also, we relied on the interview data to reveal more about the involved

causal effects.

2.2 Related Work and Open Issues
A systematic literature review performed by the authors identified 34 studies analyzing

properties of change tasks and their outcome [10]. A significant and related research

program in the area of change-based analysis was the code decay project based at Bell

Labs, using change management data from the evolution of a large telecom switching

system. Important findings were effects of the type and size of changes, a time-related

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

70

effect contributed to code decay [11], effects of change experience [12], tool effects [13],

and effects of refactorings [14]. Other closely related studies have found effects of

structural attributes of changed components [15-17]. Subjectively assessed complexity and

the size increase are other factors found to be important [18, 19].Still, the evidence on

factors that affect change effort is scattered, and it is unclear whether factors investigated

in earlier change-based studies capture the most important cost drivers. The moderate or

poor accuracy obtained in prediction models of change effort [18-20] indicate that

important factors are not fully captured by quantitative data on changes. To attempt to

clarify these issues, we established the comprehensive literature-based measurement model

described in Section 2.6, wanting to answer:

1. Did the factors identified from earlier change-based studies consistently affect change

effort?

2. How accurate were change effort models built from change management data?

3. What was the added value of using a larger number of candidate measures in the

models?

Change-based studies have shown consistent correlations between change effort and

change set dispersion, typically measured by the number of source code components

affected by a change [16, 19, 21]. This recurring statistical correlation, also expected in this

study, may simply capture an effect of size. Mockus and Graves found that measures of

change set dispersion explained more variability than did counts of changed lines of code

[11], indicating that dispersion might be a separate factor. This study explores the

following questions about change set dispersion:

4. Did change set dispersion affect change effort, beyond what could be explained by size

alone?

5. What explained the effect of change set dispersion on change effort, e.g., how was

dispersion related to the comprehension activity?

These questions are closely related to research on the effect of delocalized plans [22], and

of different control styles in object-oriented designs [23]. This research suggests that

dispersed code hinders comprehension.

Some researchers have investigated the effects of technologies and tools on change

effort. Jørgensen found that productivity was almost identical for changes to 3GL code

versus changes to 4GL code [18]. Atkins et al. found that less effort was required when

developers used a tool that supported changes to parallel versions of the system [13]. Apart

2 Design of the study

71

from these studies, the effects of using different languages and technologies have not

received much focus in change-based studies. Given an effect of change dispersion in the

quantitative models of change effort, we wanted to answer:

6. Was the effect of change set dispersion stronger when several languages or technologies

were involved in changes?

Schneidewind focused on factors that can be assessed early in the change cycle, and found

that the number of modifications to a proposed change was significantly correlated with

fault proneness [24]. Iterative and agile processes take a different viewpoint,

recommending that changes to requirements should be considered useful [25]. A relevant

issue is therefore whether software organizations must differentiate between types of

volatility in requirements. The study explores the following question:

7. Under which circumstances did change request volatility have the largest effect on

change effort?

A large body of research exists on how structural attributes affect change activity [26].

Eick et al. found that the history of code changes was more responsible for problems than

measurable aspects of code complexity [21]. On the other hand, Niessink and van Vliet

showed that change effort correlated with size of the changed components [20]. Likewise

Arisholm found a relationship between structural attributes of affected Java classes, and

change effort [15]. We wanted to answer:

8. Which structural properties of source code had the largest effect on change effort?

Several studies have shown that change effort differs between types of changes, c.f. [17,

27]. Most studies used one category for corrective changes and one or more categories for

non-corrective changes, e.g., perfective and adaptive changes [28]. Some researchers [29,

30] used fine-grained categories for corrective changes, similar to those proposed by

Chillarege et al. [31]. In this study we wanted to use a bottom-up approach, generating

categories for changes on the basis of the data at hand. We wanted to answer:

9. What kind of changes required most effort?

Differences in developer skills may potentially overshadow any other phenomenon in

software development [32]. Mockus and Weiss used historical change management data to

measure developers’ experience objectively [12], while Jørgensen used subjective

measures of skill and experience [18]. This study explores the question:

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

72

10. Which particular skill shortages had the largest effect on change effort?

Summarized answers to the questions are provided in Section 6. Most of the analyses for

the questions above required that change management data was complemented with

interview data.

2.3 Overview of Case Study Procedures
Figure 1 summarizes the case study procedures. Proposals for the case study were

generated on the basis of empirical evidence from a systematic review of change-based

studies [10]. Quantitative data to describe change tasks, including change effort, was

extracted from change trackers and version control system in two software projects,

henceforth labeled project A and B.

An evidence-driven analysis tested whether a small set of pre-selected measures

contributed to change effort in statistical regression models. These measures captured cost

factors important in earlier change-based studies. In the data-driven analysis, a wider set of

factors and measures were input to statistical procedures designed to identify the models

that best explained variations in change effort.

Roughly once a month, we interviewed the developers about recent change tasks and any

circumstances making the task easier or more difficult. The interviews aimed to identify

additional or more fundamental cost factors than those identified by the quantitative

analysis. To achieve this goal, the analysis focused on the changes that had required

considerably more or less effort than predicted from the regression models, i.e., the

residuals were large.

The evidence from the different parts of the analysis was compared and integrated into a

set of joint results. This constitutes the basis for discussing consequences from the three

perspectives mentioned in the introduction.

With this design, we move towards a theory on software change effort that would be

valuable both for researchers and practitioners within software engineering.

2 Design of the study

73

Figure 1. Overview of analyses

2.4 Generalization of Case Study Results
The case study paradigm is appropriate when investigating complex phenomena, especially

when it is difficult to separate the investigated factors from their context [33]. In software

development and software evolution, social and human factors interact with technological

characteristics of the software. We chose the case study method because we wanted to

consider the full complexity of factors affecting change effort in a realistic context.

A main concern with case studies is whether it is possible to generalize results beyond

the immediate study context. Case study methodologists recommend that studies are

designed to build or test theories. Theories can then explain, predict and manage the

investigated phenomenon in some future situation, and are therefore useful to generalize

from case studies. Because we are not aware of theories that are directly relevant to the

research question, the proposals for this study were based on a systematic review of

relevant empirical evidence. In other words, the systematic review of empirical evidence

takes the place of theories in this study.

In particular, the evidence-driven analysis was essential to generalize from this study

because it was designed to confirm, refute or modify the current empirically based

knowledge about factors that correlate with or affect change effort. The role of the data-

driven analysis was to discover additional relationships within the investigated projects,

and to generate proposals for further confirmatory studies.

The qualitative analysis aimed at refining the quantitative results. For example, while

regression analysis could show that more effort is expended when a particular

programming language was used, interviews could reveal that developers used this

Empirical evidence

Quantitative analysis

Evidence-driven Data-driven
Joint results Residuals

Qualitative
Analysis

New evidence

Partial results

Interview data
project A&B

Change data
project A&B

Proposals generated from review

Results A
Results B

Results A
Results B

Results A
Results B

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

74

programming language for a particular type of task, say, to interface with hardware. This

allows appropriate use of the study results in other contexts.

 The results of this study are inevitably influenced by context factors pertaining to the

development organizations in the data collection period. Understanding these factors

makes it easier to judge the applicability of the results in a new context. By replicating the

study across two development organizations, and comparing the results and the

organizations, we were able to evaluate some of these context factors. Data was collected

over a relatively short period of time. Although this was a pragmatic choice, analyzing data

in a relatively narrow time span can make cost factors more clearly visible, see, e.g., [13].

2.5 Case Selection and Data Collection
We approached medium and large-sized software development organizations in the

geographic area of our research group during 2006, using procedures that conformed to

those described in [34]. The participants had to grant access to the planned sources for

quantitative and qualitative data, to use object-oriented programming languages, to have

planned development for at least 12 months ahead, and to use a well-defined change

process that included some basic data collection procedures. The recruitment phase ended

when we made agreements with two projects, henceforth named project A and project B.

Project A develops and maintains a Java-based system that handles the lifecycle of

research grants for the Research Council of Norway. A publicly available web interface

provides functionality for people in academia and industry to apply for research grants, and

to report progress and financial status from ongoing projects [35]. Council officials use a

Java client to review the research grant applications and reports. The system integrates

with a number of other systems, such as a web publishing system. The consultancy

company that we cooperated with was subcontracted by the Council to make

improvements and add functionality to the system. For the most part, the contractor was

paid per hour of development effort. Most change requests originated from the users at the

Council. Roughly once a month, the development group agreed with user representatives

and the product owner on changes for the next release.

Project B develops and maintains a Windows PocketPC system written in Java and C++.

The system allows passengers on the Norwegian State Railways [36] to purchase tickets

on-board, and offers electronic tickets and credit card payment. The system integrates with

a back-end accounting system that is shared with other sales channels. The consultancy

company that we cooperated with had been subcontracted by the Norwegian State

2 Design of the study

75

Railways to develop the system. Most change requests originated from the product owner

and user representatives. The members of the development group prioritized and assigned

development tasks directly in the change tracker, or as part of short and frequent meetings.

New versions of the system were released roughly once a month. For the most part, the

contractor was paid per hour of development effort.

Both projects were medium-sized with extensive change activity. Three to six

developers were making code changes to the systems in each of the projects. Figure 2 and

Figure 3 illustrate change activity and system size over a period of 30 months. Project A

deployed the first version of their system in Q1 2003, while project B deployed the system

in Q1 2005. The apparent dip in system size for project A around Q3 in 2005 was due to a

major reorganization of the software that included a change in the technology platform.

According to the developers, this change eased further development, and they perceived

the project to be in a relatively healthy state during the period of measurement.

Figure 2. Accumulated number of check-ins Figure 3. System size, in lines of code

Table 1. Key information about collected data

 Project A Project B

Number of analyzed changes 136 200

Total effort of analyzed changes 1425 hours 1115 hours

Changes discussed in interviews 120 65

Period for data collection Jan 2007-Jul 2007 Aug 2006 – Jul 2007

Version control system IBM Rational Clearcase LT [37] CVS [38]

Change tracker Jira [39] Jira [39]

Total duration of interviews 20 hours 10 hours

Total time charged for data

collection

18 hours 14 hours

0

100000

200000

300000

400000

500000

Q4-
04

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Start of study

0

5000

10000

15000

20000

25000

Q1-
05

Q2-
05

Q3-
05

Q4-
05

Q1-
06

Q2-
06

Q3-
06

Q4-
06

Q1-
07

Q2-
07

A

B

Start of study

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

76

It was crucial for the analysis that changes to source components could be traced to change

requests, and that data on change effort was available. The developers recorded the

identifier of the change request on every check-in to the version control system. During

and after each change task, the effort expended on detailed design, coding, unit testing and

integration was recorded in the change tracker. Interviews were conducted on a monthly

basis, discussing each change according to the interview guide shown in Appendix A.

The interview sessions allowed us to remind the developers to accurately report code

changes and change effort according to the agreed procedures (question 3 in the interview

guide). To further increase commitment to data collection, the companies could charge

their normal hourly rate for data collection time. In sum, we believe these steps resulted in

accurate and reliable quantitative data, although some measurement noise is inherent to

this kind of data.

Prior to the analysis, four and six data points were removed from project A and B,

respectively, because they corresponded to continuously ongoing maintenance activities,

rather than independent and cohesive tasks.

2.6 Measurement Model

Figure 4. Key terms and concepts

This study’s perspective is that software evolution is organized around the change task. A

conceptual model for change-based studies is given in Figure 4. A change task is a

cohesive and self-contained unit of work triggered by a change request. In these projects, a

change task consists of detailed design, coding, unit testing and integration. A change task

is manifested in a corresponding change set. A change set consists of revisions, each of

which creates a new version of a component of the system. The new version can be based

2 Design of the study

77

on a pre-existing version of the component, or it can be the first version of an entirely new

component.

A system is deployed to its users through releases. A release is built from particular

versions of the components of the system. A release can also be described by the change

sets or corresponding change requests that it incorporates. The term change aggregates the

change task, the originating change request, and the resulting change set. Changes involve

human resources, and are managed and resolved by the development organization.

Changes can be hierarchical, because large changes may be broken down into smaller

changes that are more manageable for the development organizations.

Table 2. Summary of measures

Entity Factor Measure Explanation of measure
Change task Change effort ceffort Time expended to design, code, test, and

integrate change, tracked by developers
Used as response variable in the study.

Change
request

Change request
volatility

crTracks*
crWords
crInitWords
crWait

-Change tracks for CR before first check-in
-Words in CR before first check-in
-Words in original CR
-Calendar time before first check-in

Change type isCorrective* -Classification + text scanning
Change set Change set size components*

addLoc
chLoc
delLoc
newLoc
segments

-Changed components
-Measures collected by
parsing side-by-side
output (-y)
of unix/linux diff
-diff –y v2 v1 | cut –c65 | tr –d ‘\n’ | wc –w

Change set
complexity

addCC
delCC
addRefs
delRefs

Parse output of diff to measure the number of
structural elements added and deleted.
Measures control-flow statements and
reference symbols (. ->)

Component
version

Structural
attrib.:
Size

Coupling

Control flow

avgSize*
cpSize
avgRefs
cpRefs
avgCC
cpCC

-Average/weighted (by segments) size of
changed components
-Average/weighted (by segments) number of
references to members of imported
components
-Average/weighted (by segments) number of
control flow statements

Component Language
heterogeneity

filetypes -Unique file types that were changed

Specific
technology

hasCpp (A)
hasWorkflow
(B)

-Change concerns C++ code
-Change concerns the workflow engine

Code volatility avgRevs -Average number of earlier revisions
Human
resource and
Revision

Change
experience

systExp* -Avg. previous check-ins by developers
techExp -Avg. previous check-ins on same file types
packExp -Avg. previous check-ins in same package
compExp -Avg. previous check-ins in same components
devspan -Number of developers participating in change

Development
organization

Project identity isA* 1 if change belongs to project A
0 if change belongs to project B

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

78

The measures used as explanatory variables in quantitative models of change effort

captured factors pertaining to the entities of the model shown in Figure 4. Table 2 provides

a summary of the relationships between entities, factors and measures. For each factor, we

select one primary measure and zero or more alternative measures. The primary measures

are used as explanatory variables in models for the evidence-driven analysis. These models

are a reference point allowing us to assess the added value of the data-driven analysis,

where we build optimized, project-specific models using all the described measures as

candidate variables. We preferred primary measures that were likely to be robust to

variations in measurement context, that have been used and validated in previous empirical

studies, and that were measurable or assessable at an early stage in the change cycle.

Measures are written in italics, while primary measures are marked with an additional

asterisk (*). Summary statistics and correlations for the measures are provided in [40].

2.6.1 Change Request Volatility
Modifications or additions that the developers or other stakeholders make to the original

change request, the change request volatility, can indicate uncertainty or other problems in

envisioning the change incorporated into the system. Such problems could propagate to the

coding phase and affect change effort. In [24], the number of modifications to change

requests correlated with fault proneness. In [19], the number of new requirements to

change requests loaded on a principal component that correlated with change effort. A

straightforward measure of change request volatility is the number of modifications to the

original change request, as recorded in the change tracker (crTracks*). Related, candidate

measures include the number of words in the original change request (crInitWords), the

number of words in all modifications to the change requests (crWords), and the elapsed

time from when a stakeholder created the change request until a developer started the

change task (crWait).

2.6.2 Change Set Size
The change set size reflects the differences between the current and preceding versions of

changed source components. The intuitive notion that this affects change effort is verified

by previous studies [11, 18, 19, 41]. Other studies have shown that after controlling for

change type or structural complexity of changed components, discussed below, change set

size is not necessarily a significant factor [13, 15, 29]. A coarse-grained measure of change

set size is the number of source components that were changed during the change task

(components*). Finer granularity measures use text difference algorithms [42] to measure

2 Design of the study

79

the number of lines of code (LOC) that were added (addLoc), deleted (delLoc) and

changed (chLoc). Added code in existing components can be differentiated from code in

newly created components (newLoc). Comments and whitespace were removed before

computing these measures.

We selected a coarse-grained measure of change set size because there is evidence that

these perform equally well or better than LOC-based measures [11]. LOC counts are less

meaningful in technologically heterogeneous environments, and when tools that generate

code automatically are used. Furthermore, LOC counts may become high for conceptually

trivial changes, such as when program variables or methods are renamed. For estimation of

change effort, it is probably easier to estimate the number of components to change than

the number of lines of code to change. An alternative, medium-grained measure counts the

number of disjointed places in the existing code where changes were made (segments).

2.6.3 Change Set Complexity
If the structural complexity of the change set is high, e.g., if there are many changes to the

control-flow, an increase in change effort beyond the effect of change set size could be

expected. Except for one study in the authors’ research group [43], we are not aware of any

studies investigating this effect of change set complexity on change effort. Fluri and Gall

showed that measures of edits to the abstract syntax trees of individual components predict

ripple effects better than measures of textual differences [44]. We constructed two

measures to capture the number of added control-flow statements and added references to

members of external components, addCC and addRefs. Corresponding measures were

constructed for deleted control-flow statements and deleted references to members of

external components, delCC and delRefs. Because these are likely to correlate with

measures of change set size, and they are experimental in nature, we only used these

measures in the data-driven analysis.

2.6.4 Change Type
Changes can be described according to their origin, importance, quality focus, and other

criteria. In change-based studies, the change type has been important in order to understand

change effort [11, 13, 17, 18, 29]. Corrective, adaptive or perfective change types, as

suggested by Swanson [28], was the most commonly used classification schema. A

recurring result from existing change-based studies is that corrective changes are more

time consuming than other types of change, after controlling for change set size [11, 45].

This does not contradict results that have shown that the mean effort for corrective changes

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

80

is lower than for other change types [17], because corrective changes tend to have smaller

change set size [46].

Corrective and non-corrective changes (isCorrective*) are the primary measure of

classification in the analysis. This decision was based on the results from a field

experiment in one of the projects, which showed that developers’ classification into fine-

grained change types was unreliable [47]. To further increase reliability of the measures,

we combined the categorizations performed by the developers with textual search for

words like “bug”, “fails” and “crash” (in the native language) in change request

descriptions.

2.6.5 Structural Attributes of Changed Components
The structural attributes code relevant to the change may affect comprehension effort

involved in a change task. [48, 49]. Many change-based studies have investigated whether

the size of changed modules (avgSize*) correlate with change effort [15, 18-20, 44].

Arisholm showed that size and certain other structural properties of the changed source

components were correlated with change effort [15]. We constructed alternative measures

of control flow complexity and coupling in the changed components. The first measure

takes the average number of control-flow statements (avgCC) in the changed components,

while the second takes the average number of references to members of imported

components, of each changed component (avgRefs). Variations of the measures were

constructed by weighting the measures by the relative amount of change in each

component (cpSize, cpCC and cpRefs), as proposed in [15].

2.6.6 Code Volatility
While many components rarely change, some are involved in a large proportion of the

change tasks. We propose that the code volatility or change proneness will affect change

effort, and that change prone components require less effort, simply because developers are

more experienced with changing these components. Conversely, changes to infrequently

changed components represent unfamiliarity, and may also indicate more fundamental

changes. Higher code volatility could also result in increased change effort, because

frequently changed modules may experience code decay [21]. However, in the investigated

projects, components believed to have decayed due to frequent changes were re-factored,

and we therefore expected this effect to be limited. The number of historical revisions,

averaged over all changed components (avgRevisions), captures code volatility of changed

components. Several researchers have used volatility of individual components as a

2 Design of the study

81

predictor of failure proneness, see e.g., [50]. However, we are not aware of studies that

have investigated the relationships between code volatility and change effort. Due to this

lack of existing empirical evidence we only used this measure in the data-driven analysis.

2.6.7 Language Heterogeneity
Language heterogeneity refers to the number of different programming languages involved

in a change. Using many languages may increase change effort, because it sets higher

demands on developer skills and integration challenges may arise. One simple way to

measure language heterogeneity is to count the number of unique file name extensions

among the changed components (filetypes). For example, changing one java-file and one

properties-file would give a count of two. We are not aware of studies that have

investigated how language heterogeneity affects change effort. Due to the lack of existing

empirical evidence we only used this measure in the data-driven analysis.

2.6.8 Specific Technology
Use of a specific technology can affect change effort. For example, Atkins et al. showed

that when developers used a tool that supported evolution of system variants, change effort

was significantly reduced [13]. In project B, functionality interfacing with hardware was

written in C++. We propose that changes that involve C++ will be more expensive to

change than other code, which was predominantly written in Java. One rationale is that

more specialized knowledge is required to develop code that interfaces to hardware. An

effect of the lower abstraction level in C++ as compared to Java would work in the same

direction. The binary measure hasCpp evaluates to true if any of the changed components

were written in C++. Project A used a Java-based workflow engine as an important part of

the technological basis. Although the project assumed that they benefited from the high

abstraction level of this technology, we wanted to investigate whether the changes

involving the workflow engine were different with respect to change effort. The binary

measure hasWorkflow evaluates to true if any of the changed components were based on

the technology of the Java-based workflow engine.

2.6.9 Change Experience
Experiments have shown that there can be large productivity differences between

individual developers [51, 52]. Because we were not allowed to assess individuals, we used

measures of change experience to assess one important source of individual differences. A

basic measure is the total number of previous check-ins by the developer who performed

the change (systExp*). Other measures include the average number of earlier check-ins of

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

82

the changed components (compExp), packages (packExp) or technologies (techExp). If

several developers were involved in the change, the averages of the measures were used,

weighted by the number of components changed by each developer. Similar measures were

used in [12]. In that study, the coarsest-grained measure (systExp) significantly affected the

response variable capturing failure proneness, while the other measures did not.

2.7 Analysis of Quantitative Data
2.7.1 Statistical Procedures
Change effort was used as the response variable for all statistical models. The measures

discussed in Section 2.6 were used as candidate explanatory variables. The regression

model framework was Generalized Linear Models (GLM) with a gamma response variable

distribution (sometimes called the error structure) and a log link-function, see [53]. One

reason to assume gamma-distributed responses was that the effort data distribution has a

natural lower bound of zero and was right-skewed with a long right tail. A log link

function ensures that predicted values are always positive, which is appropriate for wait-

time data. The size of effect of a specific explanatory variable xn is assessed by the

proportional change in expected change effort that results from a change to xn. Because a

log link-function is used, the proportional change in expected change effort becomes:

Cross-project models were constructed to identify effects that were present in both

projects, and to formally test for project differences. Project-specific models were

constructed to identify effects specific to each project, and to quantify those effects.

The p-values, sign and magnitude of the coefficients are inspected to interpret the

models. The significance level is set to 0.05. This means that for a variable to be assessed

as significant, the probability that the variable has no impact must be less than 5%. It is

difficult to interpret coefficients when there is a high degree of multicollinearity between

the explanatory variables. In the evidence-driven analysis we attempted to reduce

multicollinearity by selecting primary measures designed to capture independent factors. In

the data-driven analysis, the results from a principal component analysis identified

orthogonal factors in the data sets. The actual amount of multicollinearity in the fitted

models was measured by the variance inflation factor (VIF). If the VIF is 1, there is no

multicollinearity. If VIF is very large, such as 10 or more, multicollinearity is a serious

problem according to existing rules-of-thumb [54].

nß
nCnß1-nC1-nß..1C1ß 0ß

1)n(Cnß1-nC1-nß..1C1ß 0ß

),11..11(
)1,11..11(

e
e

e
nCnxnCnxCxceffort

nCnxnCnxCxceffort
�����

�����
������

������

2 Design of the study

83

2.7.2 Measures of Model Fit
We chose the cross-validated mean and median magnitude of relative error to assess the fit

of models. The basis for these measures is the magnitude of relative error (MRE) which is

the absolute value of the difference between the actual and the predicted effort, divided by

the actual effort. The measures were calculated by n-fold cross-validation. With this

procedure, the variable subset was fitted in n iterations on n-1 data points. In each iteration,

the fitted model predicted the last data point. The mean MRE forms MMREcross, while the

median of the values forms MDMREcross. The cross-validated measures are more realistic

measures of the predictive ability of regression models than measures not based on cross-

validated predictions. This was particularly important during the data-driven analysis,

where models were selected on the basis of the MMREcross-measure.

Another measure to assess model fit is the percentage of data points with an MRE of less

than a particular threshold value. PRED(0.25) and PRED(0.50) measure the percentages of

the data points that have a MRE of less than 0.25 and 0.50, respectively. The Pearson and

Spearman correlations between actual and predicted effort are also provided.

As a reference point to assess the model performance, we calculated the measures of

model fit for the constant model, i.e. the model that uses a constant value as predictor for

all data points. A commonly used criteria for accepting a model as “good” is a value of less

than 0.25 for MMRE or MdMRE, and higher than 0.75 from Pred(25) [55].

2.8 Collection and Analysis of Qualitative Data
We prepared for interviews by studying data about each change request in the change

trackers and version control systems, and attempted to understand how the changed code

fulfilled the changes. Appendix A shows the interview guide. The interviews focused on

phenomena that developers perceived to have affected change effort.

The changes with the largest magnitude of relative error (MRE) from the data-driven

analysis were selected for in depth analysis. We limited the analysis to data points with an

MRE of more than 0.5 for underestimated changes and more than 1.3 for overestimated

changes. These limits were set somewhat arbitrarily.

The interviews were transcribed and analyzed in the tool Transana [56], which allows

navigation between transcripts and audio data. This made it feasible to re-listen to the

original voice recordings throughout the analysis. The interviews were coded in two

phases. In phase 1, immediately after each interview session, the interviews were

transcribed and coded according to a scheme that evolved as more data became available.

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

84

In phase 2, when the quantitative models had been constructed, we selected changes to be

analyzed in depth. The focus was narrowed to categories and codes that suggested a

relationship with change effort. Finally, the exact naming and meaning of codes and

categories was reconsolidated to make them more straightforward and easy to understand.

The coding schema that resulted from this process is described in Section 5.

3 Evidence-Driven Analysis
3.1 Models Fitted in Evidence-Driven Analysis
Cross-project models were constructed to identify effects in both projects, and to formally

test for project differences:

(M1)

(M2)

The model M1 includes one explanatory variable for each of the primary measures. It also

includes a project indicator (isA) allowing for a constant multiplicative between the

projects. Model 2 adds interaction terms between the project indicator and each of the

primary measures, allowing for different coefficients for each factor in each project. Two

project specific models were also fitted, one for each of the two data sets:

(M3)

The constant models were used as yardsticks for the assessment of model fit:

 (M4)

3.2 Results from Evidence-Driven Analysis
Key information about coefficients in the fitted models is provided in Table 3. A p-value

lower than 0.05* (the chosen significance level), 0.01** and 0.001*** are indicated with

one, two and three asterisks, respectively.

 veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß 0ßt)log(ceffor �������

isA11ßisAveisCorrecti10ßisA avgSize9ßisA systExp8ßisA components7ß

 crTracks6ß veisCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß 0ßt)log(ceffor

��������

��������

visCorrecti5ß avgSize4ß systExp3ß components2ß crTracks1ß 0ßt)log(ceffor ������

isA1ß 0ßt)log(ceffor ��

3 Evidence-driven analysis

85

Table 3. Coefficient values, significance and model fit in evidence-driven analysis

 Cross
project,
M4

Cross
project,
M1

Cross
project,
M2

Project A, M3
 (w. standardized
coefficients)

Project B, M3
(w. standardized
coefficients)

Intercept (�0) 9.91*** 9.17*** 9.30*** 9.44*** 9.30***
crTracks . 0.075** 0.076** 0.08* (0.18) 0.076** (0.26)
components . 0.098*** 0.12*** 0.076*** (0.76) 0.12*** (0.51)
systExp . -0.000039 -0.00018** 0.000026 (0.0719) -0.00018** (-0.23)
avgSize . -0.000033 -0.000061 -0.000011 (-0.0082) -0.000061 (-0.038)
isCorrective . -0.28* -0.11 -0.78*** (-0.38) -0.11 (-0.050)
isA 0.63*** 0.18 0.14 . .
crTracks*isA . . 0.0044 . .
components*isA . . -0.043 . .
systExp*isA . . 0.00020** . .
avgSize*isA . . 0.000051 . .
isCorrective*isA . . -0.67* . .
MMREcross 3.29 1.52 1.5192 1.86 1.32
MdMREcross 1.43 0.69 0.6786 0.72 0.60
Pred(25) 0.095 0.20 0.23 0.21 0.25
Pred(50) 0.24 0.36 0.40 0.35 0.43
Pearson corr. 0.20 0.53 0.63 0.64 0.51
Spearman corr. 0.091 0.59 0.59 0.66 0.56

Solving M4 for ceffort, and dividing by 3600 (because the underlying measurement unit

is seconds) gives an expected change effort of 5.6 hours for project B. The intercept is

higher (statistically significant) by 0.63 in project A, which gives an expected change

effort of 10.5 hours. The significant interaction terms in M2 indicate that isCorrective and

systExp are project specific effects. The project specific models M3 show:

� The variable crTracks had a significant effect on change effort in all models. A 7%

increase in change effort could be expected for each additional track in the change

tracker. This size of effect was similar in the two projects.

� The variable components had a significant effect on change effort in the models from

both projects. When one additional component was changed, a 12.9% and 7% increase

in effort could be expected in project A and B, respectively.

� In project A, corrective changes were expected to require slightly less than half the

effort compared to that required by non-corrective changes (e-0.780=46%), after

controlling for differences in other variables.

� In project B, systExp was significantly related to change effort. It was expected to

decrease by 16.2% for every 1000th check-in performed by a developer. In project A,

the effect was small and statistically insignificant.

� The estimated coefficients for avgSize indicate that change effort was slightly lower

when large components are changed, but the effects are very small and statistically

insignificant.

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

86

� The standardized regression coefficients show that relative to the statistical variability

of each variable, components had the largest effect on change effort. For example, one

standard deviation change in components had double (project B) and quadruple effect

(project A) than did one standard deviation change in crTracks.

The variance inflation factor was less than 1.34 for all the coefficients in all models. The

principal component analysis in Section 4.2.1 and the correlations reported in [40] further

confirmed that multicollinearity was not a threat to the above interpretation of the

coefficients.

Plots of actual versus predicted change effort of projects A and B are provided in Figure

5 and Figure 6, respectively. MdMREcross was down from 1.43 for the constant model to

between 0.60 and 0.72 for the rest of the models. However, judged by commonly used

standard [55], the model fit was relatively poor.

Figure 5. Predicted vs. actual effort, project A Figure 6. Predicted vs. actual effort, project B

3.3 Discussion of Evidence-Driven Analysis
It is interesting from a practical perspective that a relatively coarse grained, easily

collectable and early assessable measure of change set size (components) performed well

as a predictor of change effort. Code changes dispersed among many components could

possibly require more effort than changing the same number of lines in fewer components.

The data-driven analysis and the qualitative analysis investigate this topic in more depth.

The number of updates to change requests (crTracks) can be automatically retrieved in

an early phase of the change process, and can therefore be useful for effort estimation. The

qualitative analysis investigates the result in more depth, aiming at actions that could

reduce the impact of change request volatility.

Corrective changes required less effort than non-corrective changes, although the

difference was statistically insignificant in project B. The direction of this effect is opposite

4 Data-driven analysis

87

to that of earlier studies. A possible explanation is that the tasks and processes involved in

corrective vs. non-corrective changes are indeed different, but the direction of the

difference is situation-dependent. A negative coefficient for isCorrective indicates that it is

relatively easy to correct defects compared to making other types of changes. We consider

this to be a favorable situation where it is important to quickly correct defects or where

defects are associated with undesirable noise.

The measure of system experience, systExp, was statistically significant for project B,

but not for project A. One problem with systExp as a measure of system experience is that

it may be confounded with system decay: The favorable effects of more experienced

developers can be counteracted by an effect of system decay, because systExp and system

decay may be inversely related to the underlying factor of time.

We did not obtain any significant effect of the size of changed components. There are

several possible explanations for this. First, because larger components probably are more

change-prone, due to the effect of size, developers will have more experience in changing

these components. Second, the class or the file is not necessarily the natural unit for code

comprehension during change tasks, as discussed in the qualitative analysis in Section 5.

4 Data-Driven Analysis
In the data-driven analysis we explored relationships that were not originally proposed,

assessed factors that have a weaker foundation in theory and empirical evidence, and

evaluated the predictive power of alternative measures of the same underlying factor.

4.1 Procedures for Data-Driven Analysis
The measures from Table 2 were used as candidate variables in the statistical procedures

described below. The goal was to identify the models that explained the most possible

change effort variability, under the constraint that each model variable captured relatively

orthogonal cost factors. We used:

� Principal component analysis (PCA) to identify candidate variable subsets, consisting of

uncorrelated or moderately correlated variables. Selecting among variables on the basis

of a PCA is a common approach, see, e.g., [57] and [58].

� Exhaustive search among variable subsets to identify the best models, described by [59].

� A cross-validated measure of model fit (MMRECross) as a selection criterion [60, 61].

� Decision trees to identify interaction effects and non-continuous effects [62]

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

88

4.1.1 Identification of Main Effects
The structure of the correlations between the candidate variables was analyzed by principal

component analysis (PCA). Each principal component (PC) resulting from a PCA is a

linear combination of the original variables, constructed so that the first PC explains the

maximum of the variance in the data set, while each of the next PC’s explains the

maximum of the variance that remains, under the constraint that the PC is orthogonal to all

the previously constructed PC’s. The loading of each variable in PC indicates the degree to

which it is associated with that PC. In order to interpret a PC, we inspected the variables

that loaded higher than 0.5, after the varimax rotation [63] had been applied. The results

from the analysis are provided in Section 4.2.1.

The results from the PCA were used to construct all possible subsets of candidate

variables that contained exactly one variable from each PC. This constraint prevents high

multicollinearity in the models, making them easier to interpret. For each of the

constructed variable subsets, regression models of change effort were fitted. The models

with the lowest cross-validated MMRE (MMREcross) in the two projects were selected as

the best.

We also performed a principal component regression (PCR) [64], which is an alternative

approach for data-driven analysis. With this approach, the linear combinations that define

each principal component produce new variables used in the regression in place of the

original variables. The new variables are uncorrelated, which completely eliminates the

problem of interpreting the coefficients of correlated regression variables. This comes at

the cost that it can be difficult to interpret the meaning of the regression variables. Because

information from all variables is used in the regression, the approach can yield models that

are well fitted to the data.

The best models resulting from the PCR were compared to the models obtained from

using a single variable as a representative for a principal component. We preferred to use

the latter models for interpretation, but only if multicollinearity in those models was

acceptable (measured by the variance inflation factor) and if model performance was

similar to or better than the PCR models.

4.1.2 Identification of Decision Tree Rules
The goal of this step was to identify possible interaction effects and effects applying only

to parts of the value ranges for the explanatory variables. We used a hybrid regression

4 Data-driven analysis

89

technique that combines the explorative nature of decision trees with the formality of

statistical regression [62].

A decision tree splits the data set at an optimal value for one of the explanatory

variables. The split is performed so that the significance of the difference between the two

splits is maximized. This step is performed recursively on the splits, until a stop criterion is

reached. The stop criterion was that a leaf node should contain no less than 15 data points.

For use in GLM regression, a binary indicator variable was created for each of the leaf

nodes in the resulting decision tree. Since this procedure partitions the dataset, every

change task had the value 1 for one of the indicator variables, and 0 for the rest. Candidate

variable subsets were generated from all possible combinations of the indicator variables

and the main effects. The models with the lowest MMREcross were selected as the best.

4.2 Results from Data-Driven Analysis
4.2.1 Factors Identified by PCA
The summary of results from the principal component analyses for project A and B are

shown in Table 4 and Table 5, respectively.

Table 4. Summary of principal component analysis, project A

PC PC1A PC2A PC3A PC4A PC5A PC6A PC7A PC8A
Load
> 0.5
after
varimax
rotation

avgSize
avgRefs
avgCC
cpRefs
cpCC
cpSize

hasWorkflow
addCC
addRefs
newLoc
components
filetypes
devspan

delLoc
delCC
delRefs
crWait

addLoc
chLoc
segments

crWords
crInitWords
crTracks

systExp
techExp
packExp

avgRevs isCorrecti
ve

Entity

Factor

Component
version
Size

Change set

Dispersion

Change
set:
Rework

Change set

Size

Change
request
Volatility

Human
resource
Change
experience

Compone
nt version
Code
volatility

Change
request
Change
type

Table 5. Summary of principal component analysis, project B

PC PC1B PC2B PC3B PC4B PC5B PC6B PC7B
Load
> 0.5
after
varimax
rotation

addLoc
delLoc
chLoc
segments
addCC
delCC
addRefs
delRefs

avgSize
avgRefs
avgCC
avgRevs
cpRefs
cpCC
cpSize

components
filetypes
devspan
packExp
hasCpp

crWords
crInitWords
crTracks
crWait

systExp
techExp

newLoc
components

isCorrective

Entity

Factor

Change set

Size

Component
version
Size

Change set

Dispersion

Change
request
Volatility

Human
resource
Change
experience

Change set

Design
mismatch

Change
request
Change
type

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

90

We made the following observations about the match between the conceptual measurement

model and the PCA:

� The factors in italics match factors described in Section 2.6. The collected measures for

these factors are consistent with the measurement model, and capture five orthogonal

factors in the data set: Change set size, Component version size, Change request

volatility, Change experience and Change type.

� PC1A and PC2B show that the suggested measures for control-flow and coupling belong

to the same principal component as the LOC-based measures of size. The underlying

factor captured by all these measures is the size of changed components.

� Likewise, PC1B shows that the suggested measures of change set complexity belong to

the same principal component as the LOC-based measures of change set size, in project

B.

� PC2A and PC3B contain measures that capture the dispersion of changed code over

components, types of components and developers. We label this dimension change set

dispersion. It is interesting that this captures a factor that is orthogonal to change set

size.

� PC3A contains measures of removed code. This principal component captures the

amount of rework, apparently distinguishable from the concept of change set size in

project A.

� In project A, the measure of code volatility belongs to a distinct principal component

(PC7A), while in project B, it belongs to the principal component that captures size

(PC2B). The latter result indicates that large components are more prone to change,

simply due to size.

� PC6B contains a measure of lines of code in new components, and the change set

dispersion. One possible interpretation is that these measures capture the degree of

mismatch between the current design and the design required by the change.

These observations are accounted for when the models are interpreted, in Sections 4.3 and

6.

4.2.2 Regression Models for the Data-Driven Analysis
The models resulting from the procedures described in 4.1 are shown in Table 6.

4 Data-driven analysis

91

Table 6. Coefficient values, significance and model fit in data-driven analysis, discussed results in bold

Model Variable Coefficient
(standardized
coeff. in
parenthesis)

MMREcr
MdMREcr

Pred(25)
Pred(50)

Pearson
Spearma
n corr.

Project A
Main
effects

Intercept
crWords
filetypes
chLoc
isCorrective

9.06***
0.00187** (0.25)
0.279*** (0.72)
0.005111** (0.31)
-0.503* (-0.25)

1.52
0.63

0.23
0.40

0.58
0.72

Project B
Main
effects

Intercept
crTracks
addCC
components
systExp

9.06***
0.0879***
0.00949**
0.1027***
-0.000161**

1.12
0.60

0.24
0.42

0.46
0.58

Project A
with
decision
tree rules

Intercept
crWords
filetypes
isCorrective
filetypes=1&crWords<24
filetypes=1&crWords>23&chLoc < 2
filetypes=1&crWords>23&chLoc>=2
filetypes>=3&chLoc>= 48

9.64***
0.00109* (0.14)
0.178*** (0.46)
-0.376* (-0.18)
-1.145*** (-0.36)
-0.831*** (-0.28)
-0.653** (-0.22)
0.963*** (0.32)

1.37
0.57

0.24
0.46

0.70
0.77

Project B
with
decision
tree rules

Intercept
crTracks
components
systExp
addCC>=23

9.15***
0.0839***
0.0798***
-0.000153**
0.7877**

1.12
0.62

0.22
0.40

0.59
0.54

Project A
PCR

PC2A
PC3A
PC4A
PC5A

0.9686***
0.2252*
0.4058***
0.3492***

1.71
0.66

0.24
0.42

0.53
0.78

Project B
PCR

PC1B
PC2B
PC3B
PC4B
PC5B
PC6B
PC7B

0.3529***
-0.1659*
0.2640***
0.4928***
-0.2143***
-0.1682***
1.4008*

1.33
0.55

0.275
0.48

0.39
0.59

For project A, the results show that:

� The indicator of change type isCorrective recurred from the evidence-driven analysis

� The measure filetypes, capturing language heterogeneity, had a strong effect. Change

effort is expected to increase by around 30 % with one additional file type changed.

� The number of change lines of code, chLoc, also entered the model. An increase of 30

% can be expected when around 50 additional lines of code were changed.

� Three of the decision tree rules handle cases where only one filetype is affected. The

coefficients show that change effort is particularly low in such cases, beyond the

continuous effect of the variable. Fifty of the 136 changes were covered by these

rules.

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

92

� The last rule indicates a particularly strong effect of changes that span three or more

languages and at the same time involve a large change set (48 or more code lines

changed). The coefficient shows that 2.6 times more effort can be expected for such

changes.

For project B, the results show that:

� Compared with the results from the evidence-based analysis, the data-driven analyses

identified the additional factor addCC (row 2 in Table 6). This measure was intended to

capture structural complexity of the change set, but the PCA showed that addCC

captures change set size in this data set. The expected change effort increases by 10%

when addCC increases by 10.

� Allowing for decision tree rules (row 4 in Table 6), a simple binary rule replaced a

continuous effect of addCC: The expected change effort doubles if 23 or more control-

flow statements are added. This rule applies to 12% of the changes.

The models that combined regression with decision rules performed better than the models

from principal component regression, shown in the two last rows of Table 6. The variance

inflation factor was lower than 1.88 for all the coefficients in the models. This verifies that

multicollinearity is not a problem for the interpretability of the coefficients.

4.3 Discussion of Data-Driven Analysis
In project A, fewer filetypes involved in a change strongly contributed to reduced change

effort. A particularly favorable effect occurred when a change involved only one file type.

Because such changes often can be identified before the coding phase, this result can be

useful to improve change effort estimates.

In project B, addCC and components had significant effects on change effort. The PCA

showed that these measures captured orthogonal factors in the data set. We conclude that

change set dispersion affected change effort, beyond the effect of LOC-based size. For

effort prediction purposes, the simple decision rule (addCC>=23) indicates that even a

very coarse grained estimate of change set size is useful.

For project A, the data-driven analysis resulted in models that had better model fit than

those from the evidence-based analysis. This was mainly due to the measure of language

heterogeneity. For project B, the model fit did not improve, as the primary measures

already seemed to capture the important factors. The total amount of explained change

effort variability was moderate.

5 Results from qualitative analysis

93

The plots in Figure 7 and Figure 8 show MRE boundaries for overestimated and

underestimated changes. The changes that fell outside the area formed by these lines

received particular attention during the qualitative analysis. In total, 32 underestimated

changes and 16 overestimated changes (those with MRE limits of 0.5 for underestimated

changes and 1.3 for overestimated changes, see Figure 7 and 8) were analyzed in depth.

Figure 7. Predicted vs. actual effort, project A Figure 8. Predicted vs. actual effort, project B

5 Results from the Qualitative Analysis
Table 7 provides a summary of the results from the qualitative analysis of 44 of the 48

selected changes. Four changes were excluded from the analysis because the interviews

showed that code changes had not been properly tracked.

The three first columns in Table 7 define the coding schema resulting from the coding

process. Each code captures a factor that was perceived by the interviewees to drive or

save effort. For example, T0 could drive effort if the developer was unfamiliar with a

relevant technology, and save effort if the developer had particularly good knowledge

about the technology.

The rightmost column shows the number of times a code was used in underestimated

and overestimated changes, respectively. The numbers can be interpreted as the degree of

presence of a phenomenon in the projects, but we do not consider evidence from

exceptional cases to be any less valid or important than frequent cases. Consequently, no

statistical analyses of the qualitative results are provided. More detailed results from the

qualitative analysis can be found in [40].

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

94

Table 7. Summary of factors from qualitative analysis
Category Code Description of code Occurr. in

underest./
overest.
changes

Understanding
requirements

R1

Clarification of change request was needed/not needed

9/2

Identifying and
understanding
relevant code

U1
U2
U3

It was difficult/easy to understand the relevant source code
It was difficult/easy to identify the relevant system states
The developer was unfamiliar/familiar with relevant source code

7/1
3/3
3/2

Learning
relevant
technologies
and resolving
technology
issues

T0
T1
T2
T3

Developer was unfamiliar/familiar with the relevant technology
The features of the technology did not/did suite the task
Technology had/did not have defects that affected the task
Technology had limited/good debugging support

3/0
1/2
4/0
5/0

Designing and
applying
changes to
source code

D1
D2
D3

Change required deep/shallow understanding of user scenario
The needed mechanisms were not/were in place
Changes were made to many/very few parts of the code

0/9
13/2
0/8

Verifying
change

V1 It was necessary/not necessary to establish test conditions 2/1

Cause of
change
(analyzed for
all changes)

C1
C2
C3
C4

Error by omission – failed to handle a system state
Error by commission – erroneous handling of a system state
Improve existing functionality – within current system scope
Planned expansion of functionality – extend the system scope

11/5
1/3
4/9
6/5

Many of the codes and categories coincide with concepts studied within the field of

software comprehension. For example, Von Mayrhauser and Vans suggested lists of

activities involved in change tasks that largely conform to our categories [65]. In our case,

a separate category was justified for technology properties. Also, the design activity was

difficult to distinguish from the coding activity; hence we used a common category. We

chose to use a common coding schema for all types of changes, and let the cause of change

be part of the coding schema.

5.1 Understanding Requirements
R1. For nine of the underestimated changes, the developers mentioned that the need to

clarify requirements resulted in increased change effort. For two of the overestimated

changes, they mentioned that a concise and complete specification made it easier to

perform the change. This supports the results from quantitative analysis, which showed a

consistent relationship between the number of updates to the original change request, and

change effort. For the nine underestimated changes, the requirement clarifications were

only partially documented in the change tracker. This explains the large residuals for these

changes. The need to clarify requirements occurred more frequently in project A than in

project B. However, six of nine underestimated changes for project B were fixes of errors

5 Results from qualitative analysis

95

due to missed requirements, see Section 5.6. Hence, incomplete requirements had an

unfavorable effect in both projects.

In some cases, the developers said that the user representatives deliberately failed to

provide complete specifications, in particular for changes that concerned the look and feel

of the user interface. However, the strongest effect on effort occurred when unanticipated

side effects of a change needed to be clarified during detailed design and coding. In most

cases, this meant that existing functionality was somehow impacted by the change, but that

the developer was uncertain how to deal with these impacts.

5.2 Identifying and Understanding Relevant Source Code
A substantial portion of the total change effort can be comprehension effort. Koenemann

and Robertson suggested that the comprehension process involves code of direct,

intermediate and strategic relevance [66]. Directly relevant is code that has to be modified.

Code that is perceived to interact with directly relevant code has intermediate relevance.

Strategic code acts as a pointer towards other relevant parts of the code.

U1: Typically, the change requests were described by referencing a user scenario, i.e. a

sequence of interactions between the user and the system, and by requesting a change to

that scenario. For seven of the underestimated changes, the developers claimed

considerable time was spent understanding relevant, intermediate code when it was

dispersed among many files. The dispersion of changed code had a strong and consistent

effect on change effort in the quantitative models. The time developers spend to

comprehend dispersed code might be a more fundamental factor that in many cases

explains the apparent effect of making dispersed changes.

The effort involved in comprehending code along the lines of user scenarios can also

explain why the measures of structural attributes of changed components did not have an

effect on change effort in the quantitative models. First, only directly affected components

were captured by these measures, even though the structural attributes of intermediate code

were likely to be important. Second, the measures capture the structural attributes of

architectural units rather than of user scenarios. This suggests that it would be useful to

collect measures of structural attributes along the execution path of the changed user

scenarios. These measures could be based on models such as UML sequence diagrams,

which would also aid in comprehension [67], or dynamic code measurement (e.g., by

executing each user scenario), as proposed in [68].

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

96

U2: For three of the underestimated changes, the developers expressed that it was

difficult to identify and understand the system states relevant to the change task. One

developer stated: “All the states that need to be handled in the GUI make the code mind-

blowing.” This indicates that the perceived code complexity is caused by a complex

underlying state model. It also suggests that in order to understand the code from the

functional view discussed above, it is a prerequisite that the underlying state model is

understood. An obvious proposal is to make it easier to understand the most complex

underlying state models, e.g., by the use of diagramming techniques such as UML state

diagrams.

U3: The degree of familiarity with relevant code was said to have affected change effort

in five cases. The quantitative results for change experience showed that relatively little of

the variations in change effort can be explained by familiarity with the systems. The

qualitative analysis showed that experience was indeed important in both projects, in the

few extreme cases when it was either very high or very low.

5.3 Learning Relevant Technologies and Resolving Technology Issues
T0. Lack of familiarity with relevant technology was perceived to increase change effort

for three of the changes. The measure of the effect of technology experience (techexp) was

not significant in the quantitative analysis. One possible explanation is that familiarity with

the involved technology affected change effort in the relatively few cases where the

familiarity was particularly low or high.

T1, T2, T3: The degree of match between the actual and required features of the

development tools and technologies was considered important in 12 cases. If the

functionality required by the change task was provided out of the box, the technology was

considered to save effort. Reversely, if the technology was incompatible with the change

task, or had defects, considerable effort was required to create workarounds. Unsatisfactory

facilities for debugging were considered to increase change effort in five cases.

5.4 Designing and Applying Changes to Source Code
D1: Empirical studies have shown that the nature of a given task determines the

comprehension process [69]. Indeed, the interview data showed that the developers

associated a certain degree of superficiality or shallowness with a change task. A change

was perceived as shallow when the developer assumed that it was not necessary to

understand the details of the code involved in the changed user scenario. Typically,

shallow changes were performed by textual search in intermediate code to identify the

5 Results from qualitative analysis

97

direct code to change. Examples of shallow changes were those that concerned the

appearance in the user interface, user messages, logging behaviour and simple refactoring.

Deep changes, on the other hand, required full comprehension of the code involved in the

changed user scenario. The comprehension activities described in the previous section are

therefore primarily relevant for deep changes.

D2: We use the term mechanism for code that implements a solution to a recurring need

in the system. Typically, formalized design patterns [70] can be used directly or as part of a

mechanism. In the investigated projects, examples of mechanisms are handling of runtime

exceptions and transfer of data between the physical and logical layers of the system. In 13

cases, the change was perceived to be particularly challenging because a required

mechanism had to be constructed. According to the developers, creating these mechanisms

was challenging for two reasons: First, the mechanism had to be carefully designed for

reusability. Second, when the purpose of mechanisms was to hide peculiarities of specific

technologies, these needed to be well understood by the developer of the mechanism.

D3: The developers expressed that eight of the overestimated changes were easy to

perform because they were concentrated in one or few parts in the code. This observation

supports the results for change set dispersion from the quantitative analysis, and suggests a

particularly strong effect for the most localized changes. However, this explanation is

contradicted by data from 50 other change tasks that affected only one segment of the code

without resulting in particularly low change effort. An alternative explanation is that the

developers perceived the change to be particularly local because the code of intermediate

relevance was not dispersed among many components, as elaborated in Section 5.2

5.5 Verifying Change
V1: The effort expended to test the developers’ own code changes was discussed in the

interviews. For a large majority of the changes, the developers found it quite easy to verify

that the change was correctly coded. In two cases, verification was perceived to be difficult

because the change task affected time-dependent behavior simulated in the test

environment. In project A, some extra time was needed to generate and execute the system

on the target mobile platform. In project B, extra time was needed when the technology

necessitated deployment on a dedicated test server.

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

98

5.6 Cause of Change
The cause of each change, i.e. the events that triggered the change request, was discussed

in the interviews. Based on this, we classified all changes according to the codes shown in

the last row of Table 7. In order to better understand the results for change type from the

quantitative analysis, we measured the agreement between the automated classification

into change types, and the classification from qualitative analysis. Sufficient data was

available for 87 and 61 changes, for project A and B, respectively. When mapping C1 and

C2 to corrective change, and C3 and C4 to non-corrective change, the agreement was good

(Cohen’s kappa=0.64) for project A, but less than what could be expected by pure chance

(Cohen’s kappa=-0.038) for project B. This result shows that the automated classification

for project B did not appropriately reflect real differences in change type, which can

explain why there was no effect of change type in the quantitative models. From the

qualitative analysis of project B, it can be seen that six out of nine of the underestimated

changes were fixes of error by omission. A typical reason for such an error was not

recognizing a side effect of a change. We conclude that for project B, fixes of errors by

omission were associated with underestimated changes. In line with the conclusion in

Section 5.1, we recommend practices that help to identify side effects of change

requirements, because they are likely to reduce occurrences of errors by omission.

6 Joint Results and Discussion
The results from the different parts of the analysis are summarized as answers to the

questions posed in Section 2.2:

1. Overall, the selected variables proved to be useful predictors in models of change effort.

A notable exception was variables capturing structural properties of affected code, which

could partly be explained by item 8 and item 9 below.

2. The explained variability was quite poor (best MdMREcross was 0.57) in the

quantitative models. The qualitative analysis focusing on change tasks that corresponded

to large model residuals was therefore justified.

3. In project A, the model fit substantially improved when a larger number of candidate

variables were used (MdMREcross was reduced from 0.72 to 0.57). Improvement was

due to the use of one additional variable, capturing language heterogeneity (see item 6

below).

6 Joint results and discussion

99

4. The principal component analysis showed that measures of change set dispersion

captured a factor different from pure size. This consistently and strongly contributed to

change effort in the quantitative models: The standardized coefficients were 0.76 and

0.51.

5. The qualitative analysis suggested that the developers’ effort to comprehend highly

dispersed code was a more fundamental factor than the effort involved in making

dispersed changes. However, comprehending and modifying code seemed to be closely

intertwined processes, and therefore difficult to separate.

6. Language heterogeneity substantially contributed to change effort, as one additional

affected language implies 30% more effort. A plausible explanation is that the effect of

dispersion (see item 4 and 5) was amplified when comprehended and modified code

spanned multiple technologies and languages.

7. Change request volatility, measured by updates in the change tracker, consistently

contributed to change effort in the quantitative models. One additional update in the

change tracker implied a 7% increase in change effort. The qualitative analysis showed

that when change request volatility was due to difficulties in anticipating functional side

effects of a change, the effect was particularly large. A possible underlying cause for

these difficulties was insufficient knowledge in the interface between the software and

the business domain.

8. The qualitative analysis showed that change effort was affected by code properties along

the changed user scenarios. In particular, the complexity of the underlying state model of

the user scenario was important, as was the dispersion of code that implemented the

changed user scenario, as described in items 4 and 5. The developers’ focus on

functional cross-cuts can explain why structural attributes of architectural units, such as

files and classes, proved inefficient in explaining change effort variability.

9. In project A, corrective changes required only 46% of the effort compared with non-

corrective changes, after accounting for other factors. No significant difference was

found for project B. The qualitative analysis for both projects showed that a sub-class of

corrective changes (fixes of errors by omission) required additional effort. This analysis

also showed that certain other characteristics of the change task, such as the need for

innovation, was an important factor that is difficult to capture from change management

data.

10. A moderate effect of developers’ experience was identified in project B. A 16.2%

decrease in change effort could be expected for every 1000th check-in. The qualitative

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

100

analysis showed that familiarity with the changed functional and technological areas was

indeed important in both projects, in particular in the extreme cases when the familiarity

was either very high or very low. This effect of experience was not appropriately

captured by the quantitative models.

In the following, we discuss the consequences of these results from the perspective of

software engineering, the local projects, and that of research methods within empirical

software engineering.

6.1 Consequences for Software Engineering
Earlier change-based studies have assumed that measures such as components, or number

of check-ins for a change task, can be considered coarse-granularity measures of size. An

alternative interpretation is that such measures capture delocalization or dispersion.

Controlled experiments and research into the cognitive processes of programmers have

demonstrated difficulties in comprehending and changing dispersed code. An important

contribution of this study is that it found clear evidence of the effect of dispersion in a real

project setting with real change tasks. More refined results, and related consequences, are:

� Comprehension typically occurred along functional cross-cuts of the system. Hence, to

mitigate the effect of dispersion, tools should have the capability of presenting change-

friendlier views of the system based on such functional cross-cuts. Automatic generation

of sequence diagrams is one possible implementation, c.f. [71, 72].

� The results indicate that the effect of dispersion depends on the heterogeneity of the

involved components, and cannot be fully captured by a simple count of components. It

seems particularly important that tools aimed at mitigating the effect of dispersion are

able to handle technological heterogeneous environments.

� The results point to design practices that minimize dispersion for future change tasks. A

recommended practice could be that functionally cohesive code should be localized

rather than dispersed. However, the concern about change effort should be balanced

against other concerns, such as potentials for reuse and constraints set by the physical

architecture.

� Comprehending and changing dispersed code seemed to be intertwined processes.

Hence, measures of affected components retrieved from version control systems can be

expected to capture the phenomenon of dispersion reasonably well, though not perfectly.

6 Joint results and discussion

101

If estimates of dispersion are used as input to prediction models, estimates of

components to inspect can be just as effective as estimates of components to change.

Earlier change-based studies have shown a relationship between the number of

modifications to change requests, and change effort. The confirmatory analysis in this

study consistently supported the results. From the perspective of effort estimation, it is

useful insight that such early retrievable measures have been consistently effective

predictors.

Software organizations need to make trade-offs between enforcing well-defined upfront

requirements and allowing for the flexibility of evolving requirements. This study

contributes with the insight that volatility has the most serious effect on change effort when

it is caused by lack of knowledge in the interface between software and business domain.

In consequence, organizations should try to cultivate such knowledge, to avoid inefficient

iterations towards the final requirements. Other kinds of volatility, such as refining a user

interface based on customer feedback, have inherent advantages and do not seem to have

severe effects. We believe that such results provide important insights to the on-going

debates on plan-driven versus agile development principles.

Due to the wide prediction intervals implied by the relatively poor model fit obtained in

this and similar studies [18, 20], it seems infeasible to build models that are sufficiently

accurate to be accepted as a black-box method for estimating individual change tasks.

Model-based estimates may still play a role to support projects in planning releases during

software evolution, where the primary interest is in the aggregate of change effort

estimates. A reasonable starting point for creating organization specific models is to use

measures of change request volatility, developers’ experience, type of change, and

dispersion.

6.2 Consequences for the Investigated Projects
In project A, effort estimation was a team activity performed on a regular basis as part of

release planning. To judge the potential for more accurate effort estimates, we calculated

the accuracy of the current estimation process, on the basis of effort estimates and actual

effort for the 107 change tasks where this data was available. The effort estimates were

given in units of relative size, see [73], and were scaled according to the factor that

minimized MdMRE. The resulting MMRE and MdMRE was 1.47 and 0.54, respectively.

Even though these values roughly correspond to the accuracy of the models from the data-

driven analysis, we did not recommend replacing judgement-based estimates with model-

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

102

based estimates, for two reasons. First, change set size or change set dispersion would have

to be subjectively assessed to obtain the required input measures. This would likely

decrease the model accuracy, and preclude fully automated procedures. Second, the team

estimation of change tasks was perceived to be important to share knowledge, to build

team spirit in the project, and to constitute an initial step of design for a solution to the

change request.

To assess whether insight obtained from our analysis was already accounted for by the

developers, we fitted regression models that included the significant quantitative factors

and the developers’ estimate as explanatory variables. Measures of change request

volatility, change set dispersion and change type became statistically insignificant,

indicating that these factors were already sufficiently accounted for by the subjective

estimates. The number of different technologies involved, on the other hand, had a

significant effect on actual effort. The model was:

log(ceffort)= 9.25 + 0.13*relativeEffortEstimate + 0.14*filetypes

We recommended that the developers put more emphasis on language heterogeneity when

they made effort estimates. On the basis of the qualitative analysis we also advised more

awareness of the effect of particularly strong familiarity or lack of familiarity with code of

intermediate and direct relevance. On the basis of the results, we were also able to give the

following recommendations:

� To reduce the most severe effects of change request volatility, actions should be taken to

cultivate knowledge in the interface between the software and business domains.

However, change request volatility should be accepted when solutions are iteratively

optimized on the basis of immediate feedback, such as in the case of GUI design.

� Identify the user scenarios that are most frequently changed, and that involve many

components and languages. Look for opportunities to refactor these, aiming at reducing

the dispersion.

� Evaluate tools that make it easier to trace and understand the code involved in user

scenarios. For example, emerging tools for dynamic code analysis for the Eclipse

platform might have some of the desired qualities [72].

� Document the underlying state models in areas where those models are particularly

complex

6 Joint results and discussion

103

6.3 Consequences for Empirical Software Engineering
This study included a number of design elements that we believe constitute a step forward

for change-based studies:

Foundation in a systematic review. The use of systematic reviews in software

engineering was suggested as an important element of evidence-driven software

engineering [74]. The factors and measures for the quantitative analysis were selected on

the basis of a systematic literature review of earlier change-based studies. Systematic

reviews are particularly useful when study proposals cannot be derived from established

theories. Currently, this is the situation for most topics investigated within the empirical

software engineering community.

Combined confirmatory and explorative analysis. Strong conclusions can only be drawn

from confirmatory studies, while explorative studies are important to generate hypothesis

and guide further research [75]. The evidence-driven analysis largely confirmed existing

evidence. The data-driven analysis explored and identified additional factors to be

investigated in future confirmatory studies.

Procedures for performing data-driven analysis. The data-driven analysis combined

known sub-strategies for variable selection into an overall procedure for selecting the

models, based on well-defined criteria. This was shown to perform better than a more

traditional approach based on principal component regression. It is future work to attempt

to improve this approach by, e.g., using alternative prediction frameworks.

Qualitative analysis to explain large model residuals. Even though the role of qualitative

methods in this field has long been recognized, see e.g., [76], empirical researchers have

developed and used quantitative methods to a larger extent [77]. Because we used the

individual change as a common unit of analysis, and change effort as the dependent

variable, we were able to tightly integrate the quantitative analysis of data from version

control systems and change trackers with the qualitative analyses of developer interviews.

This method also focuses the more expensive qualitative analysis on the most interesting

data. This can be particularly important for practitioners who use lightweight empirical

methods to evaluate their own practices such as Postmortem analysis [78] or Agile

Retrospectives [79].

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

104

7 Threats to Validity
Construct validity. Quantitative measures were based on data from version control systems

and change trackers. Such data will not perfectly capture the factors of interest. For

example, change request volatility may not be fully documented in the change tracker. In

this and other cases, we were able to use the qualitative data to compensate for these

threats to construct validity. There were also threats to construct validity in the qualitative

coding schema. We attempted to mitigate this by reconsolidating the coding schema to

reflect commonly used concepts within our field.

Code complexity cannot be fully captured by one or a few measures [80]. To judge, in a

meaningful and repeatable manner, whether a piece of code is “more complex than”

another piece of code, very specific criteria must be defined. Therefore, there were obvious

construct validity threats in the measurement of complexity of change sets and changed

components. As indicated from the qualitative analysis, the apparent insignificance of code

complexity could be due to problems with operationalizing the concept. For change

experience, it is obviously a simplification to associate one check-in with one unit of

experience. Moreover, averaging experience measures over developers does not perfectly

capture the concept of joint experience. Measurement noise due to unreliable collection of

change effort data could also have affected the results, although random noise would

normally weaken the conclusions rather than incorrectly strengthening them.

In sum, it is likely that some of the unexplained variability in the quantitative models

was due to the inability to fully capture the intended factors by measures retrieved from

version controls systems.

Internal validity. Internal validity refers to the degree to which causal relationships can

be claimed. Issues of internal validity are important when the context, tasks and procedures

for allocating study units to groups cannot be controlled, which is the case with data that

occurs naturally in software development projects. Qualitative data from developer

interviews was useful to evaluate such threats. For example, the qualitative analysis

suggested that a more fundamental, causal factor than the effect of dispersion of changed

code was the effect of dispersion of intermediate code that needed to be comprehended.

Another threat to internal validity was the possibility of shotgun correlations. In the data-

driven analysis, a large number of factors and measures were tested. This increases the

likelihood that one or more of the significant effects occurred due to chance, rather than to

a true underlying effect. This risk was lower in the evidence-driven analysis, because this

8 Conclusions, consequences and further work

105

investigated the effect of a small set of factors and measures selected on the basis of

existing empirical evidence.

A third type of threat to internal validity was the potential bias introduced by missing

data points in the data set, see [81]. For project A, change effort was not recorded for

around 10% of the actual changes that were performed. For project B, it was not recorded

for 25% of the changes. Most of the missing data points were due to challenges with

establishing the routines to track change effort and code changes. Because the data points

that we did collect from the initial periods can be considered randomly selected, we do not

expect the missing data points to constitute a serious threat to internal validity.

The use of interviews introduced the possibility of researcher bias, consciously or

unconsciously skewing the investigation to conform to the competencies, opinions, values

or interests of the involved researchers. Although such threats apply to quantitative

research as well, they can be particularly difficult to assess handle when subjectivity is

involved. Imperfect memory, lack of trust or other communication barriers between the

interviewer and the interviewee may also introduce biases. We believe that the strict focus

on relatively small, cohesive tasks recently performed by the interviewee helped to

mitigate such biases. To mitigate communication barriers, the interviewer made extensive

efforts to be prepared for the interviews, and data from the version control systems and

change trackers was readily available during the interviews to help the developers recollect

details.

External validity. The ability to generalize results beyond the study context is one of the

key concerns with case studies. Section 2.4 described the design elements introduced to

interpret the results in a wider context. We believe that the lack of relevant theories on

which to base the study proposals is a major obstacle to generalizing the results. In this

situation, we chose to base the study proposals on a comprehensive review of earlier

empirical studies with similar research questions.

8 Conclusion
Software engineering practices can be improved if they address factors that have been

shown empirically to affect developers’ effort during software evolution. In this study, we

identified such factors by analyzing data about changes in two software organizations.

Regression models were constructed to identify factors that correlated with change effort,

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

106

and developer interviews explored additional factors at play when the developers expended

effort to perform change tasks. Two central results were:

� Change request volatility had a consistent effect on effort in the quantitative models. The

effect was particularly large when volatility resulted from difficulties in anticipating side

effects of a change. Such difficulties also resulted in errors by omission, which in turn

were particularly expensive to correct.

� The dispersion of modified code also had a large and consistent effect on change effort

in the quantitative models, beyond the effect of size alone. The qualitative analysis

indicated that the dispersion of comprehended code was a more fundamental factor.

Because these results are also consistent with results from earlier empirical studies, we

suggest that these (admittedly quite course-grained) factors should be considered when

attempting to improve software engineering practices.

The specific analyses of the two projects provided additional and more fine-grained

results. In one project, changes that concerned only one language required considerably

less effort. The analysis of estimation accuracy indicated that this factor was not

sufficiently accounted for when developers made their estimates. This exemplifies how

projects can benefit from analyzing data from their version control systems and change

trackers to improve their estimation practices.

One important direction for further work is to investigate further the causal relationships

occurring when developers perform change tasks. Interviewing developers about recent

changes was an effective method for making tentative suggestions about such

relationships. However, studies that control possibly confounding factors should be

conducted before firm conclusions are drawn. It is also necessary to paint a richer picture

of how context factors, such as size and type of the system, influence change effort.

Ultimately, the empirical results could be aggregated into a theory on software change

effort, which would define invariant knowledge about software evolution, and be

immediately useful for practitioners within the field.

Acknowledgement

We are indebted to the managers and developers at Esito and Know IT who provided us

with high quality empirical data. The research was funded by the Simula School of

Research and Innovation.

Appendix A- Interview guide

107

Appendix A
Interview Guide

Part 1. (Only in first interview with each developers - Information about the purpose of the

research. Agree on procedures, confidentiality voluntariness, audio-recording).

Question: Can you describe your work and your role in the project?

Part 2. Project context (factors intrinsic to the time period covered by the changes under

discussion)

How would you describe the project and your work in the last time period? Did any

particular event require special focus in the period?

For each change (CR-nnnn, CR-nnnn, CR-nnnn….,)

Part 3. Measurement control (change effort and name of changed components shown to

the interviewee)

Are change effort and code changes correctly registered?

Part 4. Change request characteristics (change tracker information shown on screen to

support discussion)

Can you describe the change from the viewpoint of the user? Why was the change needed?

Part 5. General cost factors

Can you roughly indicate how the X hours were distributed on different activities?

Part 6. Properties of relevant code (output from windiff showed on screen to support the

discussions)

Can you summarize the changes that you made to the components?

What can you say about the code that was relevant for the change? Was it easy or difficult

to understand and make changes to the code?

Part 7. Stability

Did you go through several iterations before you reached the final solution? If so, why?

Did anything not go as expected?

How did you proceed to test the change?

Go to Part 3 for next change

Part 8. Concluding remarks

Do you think this interview covered your activities during the last period?

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

108

References

[1] L. A. Belady and M. M. Lehman, "A Model of Large Program Development," IBM
Systems Journal, vol. 15, pp. 225-252, 1976.

[2] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, "Software Complexity
and Maintenance Costs," Communications of the ACM, vol. 36, pp. 81-94, 1993.

[3] P. Bhatt, G. Shroff, C. Anantaram, and A. K. Misra, "An Influence Model for
Factors in Outsourced Software Maintenance," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, pp. 385-423, 2006.

[4] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T. Mukhopadhyay., "An Empirical
Analysis of Productivity and Quality in Software Products," Management Science,
vol. 46, pp. 745-759, 2000.

[5] B. P. Lientz, "Issues in Software Maintenance," ACM Computing Surveys, vol. 15,
pp. 271-278, 1983.

[6] J. H. Hayes, S. C. Patel, and L. Zhao, "A Metrics-Based Software Maintenance
Effort Model," in 8th European Conference on Software Maintenance and
Reengineering, 2004, pp. 254-258.

[7] C. Kemerer, "Software Complexity and Software Maintenance: A Survey of
Empirical Research," Annals of Software Engineering, vol. 1, pp. 1-22, 1995.

[8] J. C. Munson and S. G. Elbaum, "Code Churn: A Measure for Estimating the
Impact of Code Change," in 14th International Conference on Software
Maintenance, 1998, pp. 24-31.

[9] F. Détienne and F. Bott, Software Design - Cognitive Aspects. London: Springer-
Verlag, 2002.

[10] H. C. Benestad, B. C. Anda, and E. Arisholm, "Technical Report 10-2008: A
Systematic Review of Empirical Software Engineering Studies That Analyze
Individual Changes," Simula Research Laboratory, 2008.

[11] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Databases," in 5th International Symposium on Software Metrics,
1998, pp. 267–273.

[12] A. Mockus and D. M. Weiss, "Predicting Risk of Software Changes," Bell Labs
Technical Journal, vol. 5, pp. 169-180, 2000.

[13] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus, "Using Version Control Data
to Evaluate the Impact of Software Tools: A Case Study of the Version Editor,"
IEEE Transactions on Software Engineering, vol. 28, pp. 625-637, 2002.

[14] B. Geppert, A. Mockus, and F. Rößler, "Refactoring for Changeability: A Way to
Go?," in 11th International Symposium on Software Metrics, 2005.

[15] E. Arisholm, "Empirical Assessment of the Impact of Structural Properties on the
Changeability of Object-Oriented Software," Information and Software
Technology, vol. 48, pp. 1046-1055, 2006.

References for paper 2

109

[16] W. M. Evanco, "Prediction Models for Software Fault Correction Effort," in 5th
European Conference on Software Maintenance and Reengineering, 2001, pp. 114-
120.

[17] M. Polo, M. Piattini, and F. Ruiz, "Using Code Metrics to Predict Maintenance of
Legacy Programs: A Case Study," in 2001 International Conference on Software
Maintenance, 2001, pp. 202-208.

[18] M. Jørgensen, "Experience with the Accuracy of Software Maintenance Task Effort
Prediction Models," IEEE Transactions on Software Engineering, vol. 21, pp. 674-
681, 1995.

[19] F. Niessink and H. van Vliet, "Two Case Studies in Measuring Software
Maintenance Effort," in 14th International Conference on Software Maintenance,
1998, pp. 76–85.

[20] F. Niessink and H. van Vliet, "Predicting Maintenance Effort with Function
Points," in 1997 International Conference on Software Maintenance, 1997, pp. 32-
39.

[21] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, "Does Code
Decay? Assessing the Evidence from Change Management Data," IEEE
Transactions on Software Engineering, vol. 27, pp. 1-12, 2001.

[22] E. Soloway, J. Pinto, and S. Letovsky, "Designing Documentation to Compensate
for Delocalized Plans," Communications of the ACM, vol. 31, pp. 1259–1267.

[23] E. Arisholm and D. I. K. Sjøberg, "Evaluating the Effect of a Delegated Versus
Centralized Control Style on the Maintainability of Object-Oriented Software,"
IEEE Transactions on Software Engineering, vol. 30, pp. 521-534, 2004.

[24] N. F. Schneidewind, "Investigation of the Risk to Software Reliability and
Maintainability of Requirements Changes," in 2001 International Conference on
Software Maintenance, 2001, pp. 127-136.

[25] K. Beck, "Embracing Change with Extreme Programming," Computer, vol. 32, pp.
70-77, 1999.

[26] L. C. Briand and J. Wüst, "Empirical Studies of Quality Models in Object-Oriented
Systems," Advances in Computers, vol. 59, pp. 97-166, 2002.

[27] B. Xu, M. Yang, H. Liang, and H. Zhu, "Maximizing Customer Satisfaction in
Maintenance of Software Product Family," in 18th Canadian Conference on
Electrical and Computer Engineering, 2005, pp. 1320-1323.

[28] E. B. Swanson, "The Dimensions of Maintenance," in 2nd International
Conference on Software Engineering, San Francisco, California, United States,
1976, pp. 492-497.

[29] L. C. Briand and V. R. Basili, "A Classification Procedure for the Effective
Management of Changes During the Maintenance Process," in 1992 Conference on
Software Maintenance, 1992, pp. 328-336.

[30] M. Reformat and V. Wu, "Analysis of Software Maintenance Data Using Multi-
Technique Approach," in 15th International Conference on Tools with Artificial
Intelligence, 2003, pp. 53-59.

[31] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray,
and M. Y. Wong, "Orthogonal Defect Classification-a Concept for in-Process

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

110

Measurements," Software Engineering, IEEE Transactions on, vol. 18, pp. 943-
956, 1992.

[32] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A. Boehm-Davis,
"Experimental Evaluation of Software Documentation Formats," Journal of
Systems and Software, vol. 9, pp. 167-207, 1989.

[33] R. K. Yin, "Designing Case Studies," in Case Study Research: Design and
Methods: Sage Publications:Thousand Oaks, CA, 2003, pp. 19-53.

[34] H. C. Benestad, E. Arisholm, and D. Sjøberg, "How to Recruit Professionals as
Subjects in Software Engineering Experiments," Information Systems Research in
Scandinavia (IRIS), Kristiansand, Norway, 2005.

[35] RCN, 2008, Research Council of Norway, My RCN Web.
http://www.forskningsradet.no

[36] NSB, 2008, Norwegian State Railways, http://www.nsb.no

[37] IBM, 2008, IBM Rational ClearCase, http://www-01.ibm.com/software/rational

[38] GNU, 2008, Concurrent Versions System, http://www.nongnu.org/cvs

[39] Atlassian, 2008, Jira bug and issue tracker, http://www.atlassian.com

[40] H. C. Benestad, B. Anda, and E. Arisholm, "Technical Report 02-2009: An
Investigation of Change Effort in Two Evolving Software Systems," Simula
Research Laboratory Technical report 01/2009, 2009.

[41] W. M. Evanco, "Analyzing Change Effort in Software During Development," in
6th International Symposium on Software Metrics (METRICS99), 1999, pp. 179-
188.

[42] J. W. Hunt and M. D. McIlroy, "An Algorithm for Differential File Comparison,"
in Computing Science Technical Report 41, Bell Laboratories, 1975.

[43] K. Moløkken-Østvold, N. C. Haugen, and H. C. Benestad, "Using Planning Poker
for Combining Expert Estimates in Software Projects," Accepted for publication in
Journal of Systems and Software, 2008.

[44] B. Fluri and H. C. Gall, "Classifying Change Types for Qualifying Change
Couplings," in 14th International Conference on Program Comprehension (ICPC),
Athens, Greece, 2006, pp. 35-45.

[45] M. Jørgensen, "An Empirical Study of Software Maintenance Tasks," Journal of
Software Maintenance: Research and Practice, vol. 7, pp. 27-48, 1995.

[46] R. Purushothaman and D. E. Perry, "Toward Understanding the Rhetoric of Small
Source Code Changes," IEEE Transactions on Software Engineering, vol. 31, pp.
511-526, 2005.

[47] H. C. Benestad, "Technical Report 12-2008: Assessing the Reliability of
Developers’ Classification of Change Tasks: A Field Experiment," Simula
Research Laboratory2008.

[48] L. Etzkorn, J. Bansiya, and C. Davis, "Design and Code Complexity Metrics for Oo
Classes," Journal of Object-Oriented Programming, vol. 12, pp. 35-40, 1999.

References for paper 2

111

[49] C. Rajaraman and M. R. Lyu, "Reliability and Maintainability Related Software
Coupling Metrics in C++ Programs," in Third International Symposium on
Software Reliability Engineering, 1992, pp. 303-311.

[50] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault Incidence
Using Software Change History," IEEE Transactions on Software Engineering,
vol. 26, pp. 653-661, 2000.

[51] T. DeMarco and T. Lister, "Programmer Performance and the Effects of the
Workplace," in Proceedings of the 8th international conference on Software
engineering, 1985, pp. 268-272.

[52] H. Sackman, W. J. Erikson, and E. E. Grant, "Exploratory Experimental Studies
Comparing Online and Offline Programming Performance," Communications of the
ACM, vol. 11, pp. 3-11, 1968.

[53] R. H. Myers, D. C. Montgomery, and G. G. Vining, "The Generalized Linear
Model," in Generalized Linear Models with Applications in Engineering and the
Sciences: Wiley Series in Probability and Statistics, 2001, pp. 4-6.

[54] R. L. Ott and M. Longnecker, "Inferences in Multiple Regression," in Statistical
Methods and Data Analysis: Duxbury, 2001, pp. 646-657.

[55] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and
Models: Benjamin-Cummings Publishing Co., Inc. Redwood City, CA, USA, 1986.

[56] D. Woods, 2008, Transana - Qualitative analysis software for video and audio data.
Developed at the University of Wisconsin-Madison Center for Education Research

[57] G. E. Pinches and K. A. Mingo, "A Multivariate Analysis of Industrial Bond
Ratings," Journal of Finance, vol. 28, pp. 1-18, 1973.

[58] L. C. Briand and J. Wüst, "Integrating Scenario-Based and Measurement-Based
Software Product Assessment," The Journal of Systems & Software, vol. 59, pp. 3-
22, 2001.

[59] A. Miller, "Generating All Subsets," in Subset Selection in Regression, 2002, pp.
48-52.

[60] M. Shin and A. L. Goel, "Empirical Data Modeling in Software Engineering Using
Radial Basis Functions," IEEE Transactions on Software Engineering, vol. 26, pp.
567-576, 2000.

[61] M. Stone, "Cross-Validatory Choice and Assessment of Statistical Predictions,"
Journal of the Royal Statistical Society, vol. 36, pp. 111-133, 1974.

[62] L. C. Briand and J. Wüst, "The Impact of Design Properties on Development Cost
in Object-Oriented Systems," IEEE Transactions on Software Engineering, vol. 27,
pp. 963-986, 2001.

[63] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer-Verlag,
2002.

[64] R. Christensen, "Principal Component Regression," in Analysis of Variance,
Design and Regression, 1996, pp. 446-451.

[65] A. von Mayrhauser and A. M. Vans, "Program Comprehension During Software
Maintenance and Evolution," Computer, vol. 28, pp. 44-55, 1995.

Paper 2: Understanding cost drivers of software evolution: A quantitative and qualitative investigation...

112

[66] J. Koenemann and S. P. Robertson, "Expert Problem Solving Strategies for
Program Comprehension," in SIGCHI conference on Human factors in computing
systems: Reaching through technology, 1991, pp. 125-130.

[67] W. J. Dzidek, E. Arisholm, and L. C. Briand, "A Realistic Empirical Evaluation of
the Costs and Benefits of UML in Software Maintenance," IEEE Transactions on
Software Engineering, vol. 34, pp. 407-432, 2008.

[68] E. Arisholm, L. C. Briand, and A. Føyen, "Dynamic Coupling Measurement for
Object-Oriented Software," IEEE Transactions on Software Engineering, vol. 30,
pp. 491-506, 2004.

[69] F. Détienne and F. Bott, "Influence of the Task," in Software Design - Cognitive
Aspects London: Springer-Verlag, 2002, pp. 105-110.

[70] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software: Addison-Wesley, 1995.

[71] L. C. Briand, Y. Labiche, and Y. Miao, "Towards the Reverse Engineering of UML
Sequence Diagrams," in 10th Working Conference on Reverse Engineering, WCRE
2003, 2003, pp. 57-66.

[72] TPTP, 2008, Eclipse Test&Performance Tools Platform Project,
http://www.eclipse.org/tptp

[73] M. Cohn, Agile Estimating and Planning: Pearson Education, Inc. Boston, MA,
2006.

[74] B. A. Kitchenham, T. Dybå, and M. Jørgensen, "Evidence-Based Software
Engineering," in 26th International Conference on Software Engineering (ICSE),
Edinburgh, Scotland, 2004, pp. 273-281.

[75] B. A. Kitchenham, S. L. Pleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg, "Preliminary Guidelines for Empirical Research in
Software Engineering," IEEE Transactions on Software Engineering, vol. 12, pp.
1106-1125, 2002.

[76] C. B. Seaman, "Qualitative Methods in Empirical Studies of Software
Engineering," IEEE Transactions on Software Engineering, vol. 25, pp. 557-572,
1999.

[77] D. E. Perry, A. A. Porter, and L. G. Votta, "Empirical Studies of Software
Engineering: A Roadmap," in Conference on The Future of Software Engineering,
2000, pp. 345-355.

[78] A. Birk, T. Dingsøyr, and T. Stålhane, "Postmortem: Never Leave a Project without
It," IEEE Software, vol. 19, pp. 43-45, 2002.

[79] E. Derby and D. Larsen, Agile Retrospectives: Making Good Teams Great:
Raleigh, NC: Pragmatic Bookshelf, 2006.

[80] N. Fenton, "Software Measurement: A Necessary Scientific Basis," IEEE
Transactions on Software Engineering, vol. 20, pp. 199-205, 1994.

[81] A. Mockus, "Missing Data in Software Engineering," in Guide to Advanced
Empirical Software Engineering, 2000, pp. 185-200.

113

Paper 3:

Are We More Productive Now?
Analyzing Change Tasks to Assess Productivity
Trends During Software Evolution

Hans Christian Benestad, Bente Anda, Erik Arisholm

Proceedings of the 4th International Conference on Evaluation of Novel Approaches to

Software Engineering

Abstract

Organizations that maintain and evolve software would benefit from being able to measure

productivity in an easy and reliable way. This could allow them to determine if new or

improved practices are needed, and to evaluate improvement efforts. We propose and

evaluate indicators of productivity trends that are based on the premise that productivity

during software evolution is closely related to the effort required to complete change tasks.

Three indicators use data about change tasks from change management systems, while a

fourth compares effort estimates of benchmarking tasks. We evaluated the indicators using

data from 18 months of evolution in two commercial software projects. The productivity

trend in the two projects had opposite directions according to the indicators. The evaluation

showed that productivity trends can be quantified with little measurement overhead. We

expect the methodology to be a step towards making quantitative self-assessment practices

feasible even in low ceremony projects.

1 Introduction
1.1 Background
The productivity of a software organization that maintains and evolves software can

decrease over time due to factors like code decay [1] and difficulties in preserving and

developing the required expertise [2]. Refactoring [3] and collaborative programming [4]

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

114

are practices that can counteract negative trends. A development organization might have

expectations and gut feelings about the total effect of such factors and accept a moderate

decrease in productivity as the system grows bigger and more complex. However, with the

ability to quantify changes in productivity with reasonable accuracy, organizations could

make informed decisions about the need for improvement actions. The effects of new

software practices are context dependent, and so it would be useful to subsequently

evaluate whether the negative trend was broken.

The overall aim for the collaboration between our research group and two commercial

software projects (henceforth referred to as MT and RCN) was to understand and manage

evolution costs for object-oriented software. This paper was motivated by the need to

answer the following practical question in a reliable way:

Did the productivity in the two projects change between the baseline period P0 (Jan-

July 2007) and the subsequent period P1 (Jan-July 2008)?

The project RCN performed a major restructuring of their system during the fall of

2007. It was important to evaluate whether the project benefitted as expected from the

restructuring effort. The project MT added a substantial set of new features since the start

of P0 and queried whether actions that could ease further development were needed. The

methodology used to answer this question was designed to become part of the projects’

periodic self-assessments, and aimed to be a practical methodology in other contexts as

well.

1.2 Approaches to Measuring Productivity
In a business or industrial context, productivity refers to the ratio of output production to

input effort [5]. In software engineering processes, inputs and outputs are multidimensional

and often difficult to measure. In most cases, development effort measured in man-hours is

a reasonable measure of input effort. In their book on software measurement, Fenton and

Pfleeger [6] discussed measures of productivity based on the following definition of

software productivity:

(1)

Measures of developed size include lines of code, affected components [7], function

points [8-10] and specification weight metrics [11]. By plotting the productivity measure,

say, every month, projects can examine trends in productivity. Ramil and Lehman used a

effort
sizetyproductivi �

1 Introduction

115

statistical test (CUSUM) to detect statistically significant changes over time [12]. The

same authors proposed to model development effort as a function of size:

. (2)

They suggested collecting data on effort and size periodically, e.g., monthly, and to

interpret changes in the regression coefficients as changes in evolvability. Number of

changed modules was proposed as a measure of size. The main problem with these

approaches is to define a size measure that is both meaningful and easy to collect. This is

particularly difficult when software is changed rather than developed from scratch.

An alternative approach, corresponding to this paper’s proposal, is to focus on the

completed change task as the fundamental unit of output production. A change task is the

development activity that transforms a change request into a set of modifications to the

source components of the system. When software evolution is organized around a queue of

change requests, the completed change task is a more intuitive measure of output

production than traditional size measures, because it has more direct value to complete a

change task than to produce another n lines of code. A corresponding input measure is the

development effort required to complete the change task, referred to as change effort.

Several authors compared average change effort between time periods to assess trends

in the maintenance process [13-15]. Variations of this indicator include average change

effort per maintenance type (e.g., corrective, adaptive or enhancive maintenance). One of

the proposed indicators uses direct analysis of change effort. However, characteristics of

change tasks may change over time, so focusing solely on change effort might give an

incomplete picture of productivity trends.

Arisholm and Sjøberg argued that changeability may be evaluated with respect to the

same change task, and defined that changeability had decayed with respect to a given

change task c if the effort to complete c (including the consequential change propagation)

increased between two points in time [16]. We consider productivity to be closely related

to changeability, and we will adapt their definition of changeability decay to productivity

change.

In practice, comparing the same change tasks over time is not straightforward, because

change tasks rarely re-occur. To overcome this practical difficulty, developers could

perform a set of “representative” tasks in periodic benchmarking sessions. One of the

proposed indicators is based on benchmarking identical change tasks. For practical

sizeeffort 10 �����

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

116

reasons, the tasks are only estimated (in terms of expected change effort) but are not

completed by the developers.

An alternative to benchmarking sessions is using naturally occurring data about change

tasks and adjusting for differences between them when assessing trends in productivity.

Graves and Mockus retrieved data on 2794 change tasks completed over 45 months from

the version control system for a large telecommunication system [17]. A regression model

with the following structure was fitted on this data:

 (3)

The resulting regression coefficient for date was used to assess whether there was a

time trend in the effort required to complete change tasks, while controlling for variations

in other variables. One of our proposed indicators is an adaption of this approach.

A conceptually appealing way to think about productivity change is to compare change

effort for a set of completed change tasks to the hypothetical change effort had the same

changes been completed at an earlier point in time. One indicator operationalizes this

approach by comparing change effort for completed change tasks to the corresponding

effort estimates from statistical models. This is inspired by Kitchenham and Mendes’

approach to measuring the productivity of finalized projects by comparing actual project

effort to model-based effort estimates [18].

The contribution of this paper is i) to define the indicators within a framework that

allows for a common and straightforward interpretation, and ii) to evaluate the validity of

the indicators in the context of two commercial software projects. The evaluation

procedures are important, because the validity of the indicators depends on the data at

hand.

The remainder of this paper is structured as follows: Section 2 describes the design of

the study, Section 3 presents the results and the evaluation of the indicators and Section 4

discusses the potential for using the indicators. Section 5 concludes.

2 Design of the Study
2.1 Context for Data Collection
The overall goal of the research collaboration with the projects RCN and MT was to better

understand lifecycle development costs for object-oriented software. The projects’

incentive for participating was the prospect of improving development practices by

participating in empirical studies.

)date,size,type,developer(feffortChange �

2 Design of the study

117

The system developed by MT is owned by a public transport operator, and enables

passengers to purchase tickets on-board. The system developed by RCN is owned by the

Research Council of Norway, and is used by applicants and officials at the council to

manage the lifecycle of research grants. MT is mostly written in Java, but uses C++ for

low-level control of hardware. RCN is based on Java-technology, and uses a workflow

engine, a JEE application server, and a UML-based code generation tool. Both projects use

management principles from Scrum [19]. Incoming change requests are scheduled for the

monthly releases by the development group and the product owner. Typically, 10-20

percent of the development effort was expended on corrective change tasks. The projects

worked under time-and-material contracts, although fixed-price contracts were used in

some cases. The staffing in the projects was almost completely stable in the measurement

period.

Project RCN had planned for a major restructuring in their system during the summer

and early fall of 2007 (between P0 and P1), and was interested in evaluating whether the

system was easier to maintain after this effort. Project MT added a substantial set of new

features over the two preceding years and needed to know if actions easing further

development were now needed.

Data collection is described in more detail below and is summarized in Table 1.

Table 1. Summary of data collection

 RCN MT
Period P0 Jan 01 2007 - Jun 30 2007 Aug 30 2006 - Jun 30 2007
Period P1 Jan 30 2008 - Jun 30 2008 Jan 30 2008 - Jun 30 2008
Change tasks in P0/P1 136/137 200/28
Total change effort in P0/P1 1425/1165 hours 1115/234 hours
Benchmarking sessions Mar 12 2007, Apr 14 2008 Mar 12 2007, Apr 14 2008
Benchmark tasks 16 16
Developers 4 (3 in benchmark) 4

2.2 Data on Real Change Tasks
The first three proposed indicators use data about change tasks completed in the two

periods under comparison. It was crucial for the planned analysis that data on change effort

was recorded by the developers, and that source code changes could be traced back to the

originating change request. Although procedures that would fulfil these requirements were

already defined by the projects, we offered an economic compensation for extra effort

required to follow the procedures consistently.

We retrieved data about the completed change tasks from the projects’ change trackers

and version control systems by the end of the baseline period (P0) and by the end of the

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

118

second period (P1). From this data, we constructed measures of change tasks that covered

requirements, developers’ experience, size and complexity of the change task and affected

components, and the type of task (corrective vs. non-corrective). The following measures

are used in the definitions of the productivity indicators in this paper:

� crTracks and crWords are the number of updates and words for the change request in the

change tracker. They attempt to capture the volatility of requirements for a change task.

� components is the number of source components modified as part of a change task. It

attempts to capture the dispersion of the change task.

� isCorrective is 1 if the developers had classified the change task as corrective, or if the

description for the change task in the change tracker contained strings such as bug, fail

and crash. In all other cases, the value of isCorrective is 0.

� addCC is the number of control flow statements added to the system as part of a change

task. It attempts to capture the control-flow complexity of the change task.

� systExp is the number of earlier version control check-ins by the developer of a change

task.

� chLoc is the number of code lines that are modified in the change task.

A complete description of measures that were hypothesized to affect or correlate with

change effort is provided in [20].

2.3 Data on Benchmark Tasks
The fourth indicator compares developers’ effort estimates for benchmark change tasks

between two benchmarking sessions. The 16 benchmark tasks for each project were

collaboratively designed by the first author of this paper and the project managers. The

project manager’s role was to ensure that the benchmark tasks were representative of real

change tasks. This meant that the change tasks should not be perceived as artificial by the

developers, and they should cross-cut the main architectural units and functional areas of

the systems.

The sessions were organized approximately in the midst of P0 and P1. All developers in

the two projects participated, except for one who joined RCN during P0. We provided the

developers with the same material and instructions in the two sessions. The developers

worked independently, and had access to their normal development environment. They

were instructed to identify and record affected methods and classes before they recorded

the estimate of most likely effort for a benchmark task. They also recorded estimates of

2 Design of the study

119

uncertainty, the time spent to estimate each task, and an assessment of their knowledge

about the task. Because our interest was in the productivity of the project, the developers

were instructed to assume a normal assignment of tasks to developers in the project, rather

than estimating on one’s own behalf.

2.4 Design of Productivity Indicators
We introduce the term productivity ratio (PR) to capture the change in productivity

between period P0 and a subsequent period P1.

The productivity ratio with respect to a single change task c is the ratio between the

effort required to complete c in P1 and the effort required to complete c in P0:

 (4)

The productivity ratio with respect to a set of change tasks C is defined as the set of

individual values for PR(c):

 (5)

The central tendency of values in PR(C), CPR(C), is a useful single-valued statistic to

assess the typical productivity ratio for change tasks in C:

 (6)

The purpose of the above definition is to link practical indicators to a common

theoretical definition of productivity change. This enables us to define scale-free,

comparable indicators with a straightforward interpretation. For example, a value of 1.2

indicates a 20% increase in effort from P0 to P1 to complete the same change tasks. A

value of 1 indicates no change in productivity, whereas a value of 0.75 indicates that only

75% of the effort in P0 is required in P1. Formal definitions of the indicators are provided

in Section 2.4.1 to 2.4.4.

2.4.1 Simple Comparison of Change Effort
The first indicator requires collecting only change effort data. A straightforward way to

compare two series of unpaired effort data is to compare their arithmetic means:

(7)

The Wilcoxon rank-sum test determines whether there is a statistically significant

difference in change effort values between P0 and P1. One interpretation of this test is that

)0P,c(effort
)1P,c(effort)c(PR �

}Cc|
)0P,c(effort
)1P,c(effort{)C(PR 	�

}Cc|
)0P,c(effort
)1P,c(effort{central)C(CPR 	�

)0P0c|)0c(effort(mean
)1P1c|)1c(effort(mean

1ICPR
	
	

�

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

120

it assesses whether the median of all possible differences between change effort in P0 and

P1 is different from 0:

 (8)

This statistic, known as the Hodges-Lehmann estimate of the difference between values

in two data sets, can be used to complement ICPR1. The actual value for this statistic is

provided with the evaluation of ICPR1, in Section 3.1.

ICPR1 assumes that the change tasks in P0 and P1 are comparable, i.e. that there are no

systematic differences in the properties of the change tasks between the periods. We

checked this assumption by using descriptive statistics and statistical tests to compare

measures that we assumed (and verified) to be correlated with change effort in the projects

(see Section 3.2). These measures were defined in Section 2.2.

2.4.2 Controlled Comparison of Change Effort
ICPR2 also compares change effort between P0 and P1, but uses a statistical model to

control for differences in properties of the change tasks between the periods. Regression

models with the following structure for respectively RCN and MT are used:

(9)

(10)

The models (9) and (10) are project specific models that we found best explained

variability in change effort, c.f. [20]. The dependent variable effort is the reported change

effort for a change task. The variable inP1 is 1 if the change task c was completed in P1

and is zero otherwise. The other variables were explained in Section 2.2. When all

explanatory variables except inP1 are held constant, which would be the case if one applies

the model on the same change tasks but in the two, different time periods P0 and P1, the

ratio between change effort in P1 and P0 becomes

(11)

Hence, the value of the indicator can be obtained by looking at the regression

coefficient for inP1, �5. Furthermore, the p-value for �5 is used to assess whether �5 is

significantly different from 0, i.e. that the indicator is different from 1 (e0=1).

)0P0c,1P1c|)0c(effort)1c(effort(medianHL 		��

.1inPisCorrfiletypeschLoccrWords)effortlog(543210 �����������������

.1inP
systExpcomponentsaddCCcrTracks)effortlog(

5

43210

��
���������������

.5e0ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

1ß5Var4ß4Var3ß3Var2ß2Var1 ß1ß0e

)01inP,4Var..1Var(effort
)11inP,4Var..1Var(effort

2ICPR

������������

����������
�

�
�

�

2 Design of the study

121

Corresponding project specific models must be constructed to apply the indicator in

other contexts. The statistical framework used was Generalized Linear Models assuming

Gamma-distributed responses (change effort) and a log link-function.

2.4.3 Comparison between Actual and Hypothetical Change Effort
ICPR3 compares change effort for tasks in P1 with the hypothetical change effort had the

same tasks been performed in P0. These hypothetical change effort values are generated

with a project-specific prediction model built on data from change tasks in P0. The model

structure is identical to (9) and (10), but without the variable inP1.

Having generated this paired data on change effort, the definition (6) can be used

directly to define ICPR3. To avoid over-influence of outliers, the median is used as a

measure of central tendency.

(12)

A two-sided sign test is used to assess whether actual change effort is higher (or lower)

than the hypothetical change effort in more cases than expected from chance. This

corresponds to testing whether the indicator is statistically different from 1.

2.4.4 Benchmarking
ICPR4 compares developers’ estimates for 16 benchmark change tasks between P0 and P1.

Assuming the developers’ estimation accuracy does not change between the periods, a

systematic change in the estimates for the same change tasks would mean that the

productivity with respect to these change tasks had changed. Effort estimates made by

developers D for benchmarking tasks Cb in periods P1 and P0 therefore give rise to the

following indicator:

(13)

A two-sided sign test determines whether estimates in P0 were higher (or lower) than

the estimates in P1 in more cases than expected from chance. This corresponds to testing

whether the indicator is statistically different from 1.

Controlled studies show that judgement-based estimates can be unreliable, i.e. that there

can be large random variations in estimates by the same developer [21]. Collecting more

estimates reduces the threat implied by random variation. The available time for the

benchmarking session allowed us to collect 48 (RCN – three developers) and 64 (MT –

four developers) pairs of estimates.

}1Pc|
)c(ffortpredictedE

)c(effort{medianICPR 3 	�

}Dd,bCc|
)c,d,0P(estEffort
)c,d,1P(estEffort{medianICPR 4 		�

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

122

One source of change in estimation accuracy over time is that developers may become

more experienced, and hence provide more realistic estimates. For project RCN, it was

possible to evaluate this threat by comparing the estimation bias for actual changes

between the periods. For project MT, we did not have enough data about estimated change

effort for real change tasks, and we could not evaluate this threat.

Other sources of change in estimation accuracy between the sessions are the context for

the estimation, the exact instructions and procedures, and the mental state of the

developers. While impossible to control perfectly, we attempted to make the two

benchmarking sessions as identical as possible, using the same, precise instructions and

material. The developers were led to a consistent (bottom-up) approach by our instructions

to identify and record affected parts of the system before they made each estimate.

Estimates made in P1 could be influenced by estimates in P0 if developers remembered

their previous estimates. After the session in P1, the feedback from all developers was that

they did not remember their estimates or any of the tasks.

An alternative benchmarking approach is comparing change effort for benchmark tasks

that were actually completed by the developers. Although intuitively appealing, the

analysis would still have to control for random variation in change effort, outcomes beyond

change effort, representativeness of change tasks, and also possible learning effects

between benchmarking sessions.

In certain situations, it would even be possible to compare change effort for change

tasks that recur naturally during maintenance and evolution (e.g., adding a new data

provider to a price aggregation service). Most of the threats mentioned above would have

to be considered in this case, as well. We did not have the opportunities to use these

indicators in our study.

2.5 Accounting for Changes in Quality
Productivity analysis could be misleading if it does not control for other outcomes of

change tasks, such as the change task’s effect on system qualities. For example, if more

time pressure is put on developers, change effort could decrease at the expense of

correctness. We limit this validation to a comparison of the amount of corrective and non-

corrective work between the periods. The evaluation assumes that the change task that

introduced a fault was completed within the same period as the task that corrected the fault.

Due to the short release-cycle and half-year leap between the end of P0 and the start of P1,

3 Results and validation

123

we are confident that change tasks in P0 did not trigger fault corrections in P1, a situation

that would have precluded this evaluation.

3 Results and Validation
The indicator values with associated p-values are given in Table 2.

Table 2. Results for the indicators

 RCN MT
Indicator Value p-value Value p-value
ICPR1 0.81 0.92 1.50 0.21
ICPR2 0.90 0.44 1.50 0.054
ICPR3 0.78 <0.0001 1.18 0.85
ICPR4 1.00 0.52 1.33 0.0448

For project RCN, the analysis of real change tasks indicate that productivity increased,

since between 10 and 22% less effort was required to complete change tasks in P1. ICPR4

indicates no change in productivity between the periods. The project had refactored the

system throughout the fall of 2008 as planned. Overall, the indicators are consistent with

the expectation that the refactoring initiative would be effective. Furthermore, the

subjective judgment by the developers was that the goal of the refactoring was met, and

that change tasks were indeed easier to perform in P1.

For project MT, the analysis of real change tasks (ICPR1, ICPR2 and ICPR3) indicate a

drop in productivity, with somewhere between 18 and 50% more effort to complete

changes in P1 compared with P0. The indicator that uses benchmarking data (ICPR4)

supports this estimate, being almost exactly in the middle of this range. The project

manager in MT proposed post-hoc explanations as to why productivity might have

decreased. During P0, project MT performed most of the changes under fixed-price

contracts. In P1, most of the changes were completed under time-and material contracts.

The project manager indicated that the developers may have experienced more time

pressure in P0.

As discussed in Section 2.5, the indicators only consider trends in change effort, and not

trends in other important outcome variables that might confound the results, e.g., positive

or negative trends in quality of the delivered changes. To assess the validity of our

indicators with respect to such confounding effects, we compared the amount of corrective

versus non-corrective work in the periods. For MT, the percentage of total effort spent on

corrective work dropped from 35.6% to 17.1% between the periods. A plausible

explanation is that the developers, due to less time pressure, expended more time in P1

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

124

ensuring that the change tasks were correctly implemented. So even though the

productivity indicators suggest a drop, the correctness of changes was also higher. For

RCN, the percentage of the total effort spent on corrective work increased from 9.7% to

15%, suggesting that increased productivity was at the expense of slightly lesser quality.

3.1 Validation of ICPR1

The distribution of change effort in the two periods is shown in Figure 1 (RCN) and Figure

2 (MT). The square boxes include the mid 50% of the data points. A log scale is used on

the y-axis, with units in hours. Triangles show outliers in the data set.

For RCN, the plots for the two periods are very similar. The Hodges-Lehmann estimate

of difference between two data sets (8) is 0, and the associated statistical test does not

indicate a difference between the two periods. For MT, the plots show a trend towards

higher change effort values in P1. The Hodges-Lehmann estimate is plus one hour in P1,

and the statistical test showed that the probability is 0.21 that this result was obtained by

pure chance.

Figure 1. Change effort in RCN, P0 (left) vs. P1

Figure 2. Change effort in MT, P0 (left) vs. P1

If there were systematic differences in the properties of the change tasks between the

periods, ICPR1 can be misleading. This was assessed by comparing values for variables

that capture certain important properties. The results are shown in Table 3 and Table 4.

The Wilcoxon rank-sum test determined whether changes in these variables were

statistically significant. In the case of isCorrective, the Fischer’s exact test determined

whether the proportion of corrective change tasks was significantly different in the two

periods.

3 Results and validation

125

For RCN, chLoc significantly increased between the periods, while there were no

statistically significant changes in the values of other variables. This indicates that larger

changes were completed in P1, and that the indicated gain in productivity is a conservative

estimate

For MT, crTracks significantly decreased between P0 and P1, while addCC and

components increased in the same period. This indicates that more complex changes were

completed in P1, but that there was less uncertainty about requirements. Because these

effects counteract, it cannot be determined whether the value for ICPR1 is conservative.

This motivates the use of ICPR2 and ICPR3, which explicitly control for changes in the

mentioned variables.

Table 3. Properties of change tasks in RCN

Variable P0 P1 p-value
chLoc (mean) 26 104 0.0004
crWords (mean) 107 88 0.89
filetypes (mean) 2.7 2.9 0.50
isCorrective (%) 38 39 0.90

Table 4. Properties of change tasks in MT

Variable P0 P1 p-value
addCC (mean) 8.7 44 0.06
components (mean) 3.6 7 0.09
crTracks (mean) 4.8 2.5 <0.0001
systExp (mean) 1870 2140 0.43

3.2 Validation of ICPR2

ICPR2 is obtained by fitting a model of change effort on change task data from P0 and P1.

The model includes a binary variable representing period of change (inP1) to allow for a

constant proportional difference in change effort between the two periods. The statistical

significance of the difference can be observed directly from the p-value of that variable.

The fitted regression expressions for RCN and MT were:

 (14)

 (15)

The p-value for inP1 is low (0.054) for MT and high (0.44) for RCN. All the other

model variables have p-values lower than 0.05. For MT, the interpretation is that when

these model variables are held constant, change effort increases by 50% (e0.40=1.50). A plot

of deviance residuals in Figure 3 and Figure 4 is used to assess whether the modelling

.1inP10.0veisCorrecti79.0
changed00073.0filetypes2258.0crWords0018.05.9)effortlog(

���
��������

.1inP40.0systExp00013.0
components098.0addCC0041.0crTracks088.01.9)effortlog(

���
��������

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

126

framework (GLM with gamma distributed change effort and log link function) was

appropriate. If the deviance residuals increase with higher outcomes (overdispersion) the

computed p-values would be misleading. The plots show no sign of overdispersion. This

validation increases the confidence in this indicator for project MT. For project RCN, the

statistical significance is too weak to allow confidence in this indicator alone.

Figure 3. Residual plot for RCN model (14) Figure 4. Residual plot for MT model (15)

3.3 Validation of ICPR3

ICPR3 compares change effort in P1 with the model-based estimates for the same change

tasks had they been completed in P0. The model was fitted on data from P0. Figure 5

shows that actual change effort tends to be higher than estimated effort for MT, while the

tendency is opposite for RCN. For RCN, the low p-value shows that that actual change

effort is systematically lower than the model-based estimates. For project MT, the high p-

value means that actual effort was not systematically higher.

Figure 5. Model estimates subtracted from actual effort

If the variable subset is overfitted to data from P0, the model-based estimates using data

from P1 can be misleading. To evaluate the stability of the model structure, we compared

the model residuals in the P0 model with those in a new model fitted on data from P1

(using the same variable subset). For MT, the model residuals were systematically larger

(Wilcoxon rank-sum test, p=0.0048). There was no such trend for RCN (Wilcoxon rank-

sum test, p=0.78), indicating a more stable model structure.

3 Results and validation

127

Another possible problem with ICPR3 is that model estimates can degenerate for

variable values poorly covered by the original data set. Inspection of the distributions for

the independent variables showed that there was a potential problem with the variable

chLoc, also indicated by the large difference in mean, shown in Table 3. We re-calculated

ICPR3 after removing the 10 data points that were poorly covered by the original model,

but this did not affect the value of the indicator.

In summary, the validation for ICPR3 gives us high confidence in the result for project

RCN, due to high statistical significance, and evidence of a stable underlying model

structure. For project MT, the opposite conclusion applies.

3.4 Validation of ICPR4

ICPR4 is obtained by comparing the estimates that were made in the benchmarking

sessions in P0 and P1. Figure 6 shows that for project MT, the estimates tended to be

higher in P1 than in P0. For project RCN, there was no apparent difference.

A two-sided sign determines whether the differences are positive or negative in more

cases than could be expected by pure chance. For project MT, the low p-value shows that

estimates in P1 are systematically higher than estimates in P0. For project RCN, the high

p-value means that estimates in P1 were not systematically different from in P0.

A change in estimation accuracy constitutes a threat to the validity of ICPR4. For

example, if developers tended to underestimate changes in P0, experience may have taught

them to provide more relaxed estimates in P1. Because this would apply to real change

tasks as well, we evaluated this threat by comparing estimation accuracy for real changes

between the periods. The required data for this computation (developers’ estimates and

actual change effort) was only available for RCN. Figure 7 shows a difference in

estimation bias between the periods (Wilcoxon rank-sum test, p=0.086).

Figure 6. Differences in estimates

Figure 7. RCN: Estimates subtracted from actual effort

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

128

Changes tended to be overestimated in P0 and underestimated in P1. Hence, the

developers became more optimistic, indicating that ICPR4 can be biased towards a higher

value. This agrees with the results for the other indicators.

In summary, the benchmarking sessions supported the results from data on real change

tasks. An additional result from the benchmarking session was that uncertainty estimates

consistently increased between the periods in both projects. The developers explained this

result by claiming they were more realistic in their assessments of uncertainty.

4 Discussion
The described approach to measuring productivity of software processes has some notable

features compared with earlier work in this area. First, rather than searching for generally

valid indicators of productivity, we believe it is more realistic to devise such indicators

within more limited scopes. Our indicators target situations of software evolution where

comparable change tasks are performed during two time intervals that are subject to the

assessment. Second, rather than attempting to assess general validity, we believe it is more

prudent to integrate validation procedures with the indicators. Third, our indicators are

flexible within the defined scope, in that the structure of the underlying change effort

models can vary in different contexts.

In a given project context, it may not be obvious which indicator will work best. Our

experience is that additional insight was gained about the projects from using and assessing

several indicators. The three first indicators require that data on change effort from

individual change tasks is available. The advantage of ICPR1 is that data on change effort

is the only requirement for data collection. The caveat is that additional quantitative data is

needed to assess the validity of the indicator. If this data is not available, a development

organization may choose to be more pragmatic, and make qualitative judgments about

potential differences in the properties of change tasks between the periods.

5 Conclusions

129

ICPR2 and ICPR3 require projects to collect data about factors that affect change effort,

and that statistical models of change effort are established. To do this, it is essential to

track relationships between change requests and code changes committed to the version

control system. An advantage of ICPR3 is that any type of prediction framework can be

used to establish the initial model. For example, data mining techniques such as decision

trees or neural networks might be just as appropriate as multiple regression. Once the

model is established, spreadsheets can be used to generate the estimates, construct the

indicator and perform the associated statistical test.

ICPR2 relies on a statistical regression model fitted on data from the periods under

consideration. This approach better accounts for underlying changes in the cost drivers

between the periods, than does ICPR3. In organizations with a homogenous process and a

large amount of change data, the methodology developed by Graves and Mockus could be

used to construct the regression model [17]. With their approach, data on development

effort need only be available on a more aggregated level (e.g., monthly), and relationships

between change requests and code commits need not be explicitly tracked.

ICPR4 most closely approximates the hypothetical measure of comparing change effort

for identical change tasks. However, it can be difficult to design benchmarking tasks that

resemble real change tasks, and to evaluate whether changes in estimation accuracy have

affected the results. If the benchmarking sessions are organized frequently, developers’

recollection of earlier estimates would constitute a validity threat.

As part of our analysis, we developed a collection of scripts to retrieve data, construct

basic measures and indicators, and produce data and graphics for the evaluation. This

means that it is straightforward and inexpensive to continue to use the indicators in the

studied projects. It is conceptually straightforward to streamline the scripts so that they can

be used with other data sources and statistical packages.

5 Conclusions
We conducted a field study in two software organizations to measure productivity changes

between two time periods. Our perspective was that productivity during software evolution

is closely related to the effort required to complete change tasks. Three of the indicators

used the same data from real change tasks, but different methods to control for differences

in the properties of the change tasks. The fourth indicator compared estimated change

effort for a set of benchmarking tasks designed to be representative of real change tasks.

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

130

The indicators suggested that productivity trends had opposite directions in the two

projects. It is interesting that these findings are consistent with major changes and events in

the two projects: Between the measured periods, the project with the indicated higher

productivity performed a reorganization of their system with the goal of simplifying further

maintenance and evolution. The project with indicated lower productivity had changed

from fixed-price maintenance contracts to time-and-material contracts, which may have

relaxed the time pressure on developers.

The paper makes a contribution towards the longer term goal of using methods and

automated tools to assess trends in productivity during software evolution. We believe

such methods and tools are important for software projects to assess and optimize

development practices.

Acknowledgement

We thank Esito AS and KnowIT Objectnet for providing us with high quality empirical

data, and the Simula School of Research and Innovation for funding the research.

References for paper 3

131

References

[1] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, "Does Code
Decay? Assessing the Evidence from Change Management Data," IEEE
Transactions on Software Engineering, vol. 27, pp. 1-12, 2001.

[2] T. DeMarco and T. Lister, "Human Capital," in Peopleware. Productive Projects
and Teams New York: Dorset House Publishing, 1999, pp. 202-208.

[3] T. Mens and T. Tourwé, "A Survey of Software Refactoring," IEEE Transactions
on Software Engineering, vol. 30, pp. 126-139, 2004.

[4] T. Dybå, E. Arisholm, D. I. K. Sjøberg, J. E. Hannay, and F. Shull, "Are Two
Heads Better Than One? On the Effectiveness of Pair Programming," IEEE
Software, vol. 24, pp. 12-15, 2007.

[5] G. L. Tonkay, "Productivity," in Encyclopedia of Science & Technology: McGraw-
Hill, 2008.

[6] N. E. Fenton and S. L. Pfleeger, "Measuring Productivity," in Software Metrics, a
Rigorous & Practical Approach, 1997, pp. 412-425.

[7] J. F. Ramil and M. M. Lehman, "Cost Estimation and Evolvability Monitoring for
Software Evolution Processes," in Workshop on Empirical Studies of Software
Maintenance, San Jose, CA, USA, 2000.

[8] A. Abran and M. Maya, "A Sizing Measure for Adaptive Maintenance Work
Products," in International Conference on Software Maintenance, Nice, France,
1995, pp. 286-294.

[9] A. J. Albrecht and J. E. Gaffney Jr, "Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation," IEEE
Transactions on Software Engineering, vol. 9, pp. 639-648, 1983.

[10] M. Maya, A. Abran, and P. Bourque, "Measuring the Size of Small Functional
Enhancements to Software," in 6th International Workshop on Software Metrics,
1996.

[11] T. DeMarco, "An Algorithm for Sizing Software Products," ACM SIGMETRICS
Performance Evaluation Review, vol. 12, pp. 13-22, 1984.

[12] J. F. Ramil and M. M. Lehman, "Defining and Applying Metrics in the Context of
Continuing Software Evolution," in Software Metrics Symposium, London, 2001,
pp. 199-209.

[13] A. Abran and H. Hguyenkim, "Measurement of the Maintenance Process from a
Demand-Based Perspective," Journal of Software Maintenance: Research and
Practice, vol. 5, pp. 63-90, 1993.

[14] H. D. Rombach, B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control:
Adding Maintenance Measurement to the SEL," Journal of Systems and Software,
vol. 18, pp. 125-138, 1992.

[15] G. E. Stark, "Measurements for Managing Software Maintenance," in 1996
International Conference on Software Maintenance, 1996, pp. 152-161.

[16] E. Arisholm and D. I. K. Sjøberg, "Towards a Framework for Empirical
Assessment of Changeability Decay," Journal of Systems and Software, vol. 53, pp.
3-14, 2000.

Paper 3: Are we more productive now? Analyzing change tasks to assess productivity trends…

132

[17] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Databases," in 5th International Symposium on Software Metrics,
1998, pp. 267–273.

[18] B. Kitchenham and E. Mendes, "Software Productivity Measurement Using
Multiple Size Measures," IEEE Transactions on Software Engineering, vol. 30, pp.
1023-1035, 2004.

[19] K. Schwaber, "Scrum Development Process," in 10th Annual ACM Conference on
Object Oriented Programming Systems, Languages, and Applications, Austin,
Texas, USA, 1995, pp. 117-134.

[20] H. C. Benestad, B. Anda, and E. Arisholm, "Technical Report 02-2009: An
Investigation of Change Effort in Two Evolving Software Systems," Simula
Research Laboratory Technical report 01/2009, 2009.

[21] S. Grimstad and M. Jørgensen, "Inconsistency of Expert Judgment-Based Estimates
of Software Development Effort," Journal of Systems and Software, vol. 80, pp.
1770-1777, 2007.

133

Paper 4:

Using Planning Poker for Combining Expert
Estimates in Software Projects

Kjetil Moløkken-Østvold, Nils Christian Haugen, Hans Christian Benestad

Journal of Systems and Software, Vol. 81, Issue 12, pp. 2106-2117, 2008.

Abstract

When producing estimates in software projects, expert opinions are frequently combined.

However, it is poorly understood whether, when, and how to combine expert estimates. In

order to study the effects of a combination technique called planning poker, the technique

was introduced in a software project for half of the tasks. The tasks estimated with

planning poker provided: 1) group consensus estimates that were less optimistic than the

statistical combination (mean) of individual estimates for the same tasks, and 2) group

consensus estimates that were more accurate than the statistical combination of individual

estimates for the same tasks. For tasks in the same project, individual experts who

estimated a set of control tasks achieved estimation accuracy similar to that achieved by

estimators who estimated tasks using planning poker. Moreover, for both planning poker

and the control group, measures of the median estimation bias indicated that both groups

had unbiased estimates, because the typical estimated task was perfectly on target. A code

analysis revealed that for tasks estimated with planning poker, more effort was expended

due to the complexity of the changes to be made, possibly caused by the information

provided in group discussions.

1 Introduction
In the software industry, various techniques are used to combine estimates. One of the

most recent additions is planning poker, introduced by Grenning in 2002 [1] and also

described in a popular textbook on agile estimating and planning by Mike Cohn [2]. There

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

134

exist few empirical studies on the combining of estimates in software engineering, but

there are some indications that combination may reduce the bias towards optimism in

estimates [3].

However, plenty of evidence from other research communities details the possible

hazards of group processes [4]. For example, some recent papers published in psychology

and forecasting emphasize the problems of decision-making in groups [5, 6]. Bueler et al.

found that a) both individual and group predictions had an optimistic bias, b) group

discussion increased individual biases, and c) this increase of bias in groups was mediated

by the participants’ focus on factors that promote the successful completion of tasks [6].

Scott Armstrong states that he has been unable to obtain evidence that supports the use of

face-to-face groups in decision making [5].

These recent observations are in line with many previous classic studies on decision

making in groups; individuals are inherently optimistic and this optimistic bias is increased

by group interaction [4, 7, 8].

In contrast to the foregoing, our studies on software expert estimates have found that

individuals are, in general, biased towards optimism, but that this bias can actually be

reduced by group discussions [3].

The explanation for this apparent disparity may be that there are differences between a

typical software estimation task and the tasks studied in other research areas. First, other

studies frequently use ad hoc groups (e.g. [6]), whereas software estimation usually

involves professionals who are accustomed to collaborating with each other and are

motivated to perform in a professional manner [3]. Second, other studies tend to use tasks

of which kind the participants might have little experience [4], whereas in software

projects the participants are usually experienced. Third, another oft-reported problem is

that laboratory studies tend to investigate hypothetical task and/or outcomes [4], and not

real executed tasks with a recorded outcome.

Table 1. Overview of some common combination techniques

Method Structure Anonymity Interaction Overhead
Delphi Heavy Yes No Major
Wideband Delphi Moderate Limited Limited Moderate
Planning Poker Light No Yes Limited
Unstructured groups Light No Yes Limited
Statistical groups Light Yes No Limited
Decision markets Heavy Yes No Moderate

2 Combining Estimates in Groups

135

It might be that estimating software projects is a type of task that it is, for some reason,

sensible to discuss in groups. However, it might also be that previous studies in software

engineering have had methodological shortcomings.

The purpose of this study was to 1) explore the group processes that may occur when

planning poker is used to estimate tasks, and 2) compare planning poker estimates with

existing individual estimation methods. Section 2 introduces group estimation. In Sections

3 and 4 respectively, research questions and methods are described. The results are

presented in Section 5 and discussed in Section 6. Section 7 concludes.

2 Combining Estimates in Groups
Group estimation has not been widely studied in a software engineering context. In fact, a

recent review [3] of the leading journals in the systems and software engineering field did

not find a single paper that described empirical studies of group estimates in an industrial

context. Since that review, at least two studies have been published, one of which

compared individual expert estimates (combined in statistical groups) with an unstructured

group estimation method [3] and the other of which compared unstructured group

estimates with planning poker [9]. In addition, the combining of estimates has been studied

in student tasks [10, 11].

Various techniques can be used to combine estimates. A simplified overview of six of

the most common techniques, including what we perceive to be central properties, is

displayed in Table 1.

Structure describes the level of formality, amount of learning requirements, and degree

of rigidity associated with the technique. Anonymity describes whether the estimators are

anonymous to each other. Interaction describes whether, and if so to what extent, the

estimators interact with each other. Overhead describes the typical extra amount of effort

spent on estimating each project or task.

Perhaps the most well-known technique for combination is the Delphi technique [12],

which was devised by the RAND corporation in the 1950s [13]. The Delphi technique does

not involve face-to-face discussions, but anonymous expert interaction through several

iterations, supervised by a moderator until a majority position is attained. In addition to

anonymity, the method needs to include iterations, controlled feedback and statistical

aggregation of responses for it to be implemented properly [13].

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

136

It is claimed that even though the technique has been used widely, actual scientific

studies of the techniques’ merits are sparse and often conducted inappropriately [13, 14].

However, even though reviews advise caution, there is evidence that the Delphi technique

outperforms statistical groups and unstructured interacting groups [13] and that it is a

sound method for harnessing the opinions of a diverse group [14]. However, there is no

conclusive evidence that Delphi outperforms other structured group combination

techniques.

We have found no empirical research on the accuracy of Delphi in a software

engineering context. However, it is frequently recommended in papers on software

management, e.g. [15].

The Wideband Delphi technique is a modification of the Delphi technique and includes

more group interaction than Delphi [16]. As in the Delphi technique, there is a moderator,

who supervises the process and collects estimates. However, in this approach the experts

meet for group discussions both prior to, and during, the estimation iterations.

The Wideband Delphi technique is very similar to the Nominal Group technique, which

is also know as the estimate-talk-estimate technique [17]. Due to its similarities to the

Wideband Delphi technique, the Nominal Group technique is neither presented nor

discussed in this paper.

Wideband Delphi has been proposed as an estimation method in books [16], and papers

on software metrics [18] and software process improvement [19]. To the best of our

knowledge, the Wideband Delphi technique has not been studied empirically.

The planning poker technique is relatively new. It is a lightweight technique, with face-

to-face interaction and discussions. In short, the steps of the technique, as originally

described by Grenning, are: “The customer reads a story. There is a discussion clarifying

the story as necessary. Each programmer writes their estimate on a note card without

discussing their estimate. Anticipation builds. Once all programmers have written their

estimate, turn over all the cards. If there is agreement, great, no discussion is necessary,

record the estimate and move on to the next story. If there is disagreement in the estimates,

the team can then discuss their different estimates and try to get to consensus [1]”. By

story, Grenning means a user story. A user story is a software system requirement that is

formulated as one or two sentences in the everyday language of the user. The technique,

and how it was adopted to the project studied, will be described in greater detail in Section

4.

2 Combining Estimates in Groups

137

Being a relatively new technique, planning poker has, as far as we are aware, been the

subject of only one published empirical study [9]. In that study, planning poker was

compared to unstructured group estimation. It was found that for familiar tasks, the

planning poker technique produced more accurate estimates than unstructured

combination, whereas the opposite was found for unfamiliar tasks.

Unstructured group combination is, as the name implies, basically discussions with a

group decision being made at the end. Depending on needs, individuals can derive their

own estimates before the discussion.

A review of the literature on forecasting [20] suggests that unstructured groups were, on

average, outperformed by Delphi-groups. However, the review also found that there are

tasks for which unstructured groups are better suited. In some situations, it is possible that

an unstructured group can outperform a Delphi group if the motivation of, and information

sharing among, the participants is adequate [20].

In a previous study on software estimation [3], we found that group estimates made

after an unstructured discussion were less optimistic and more realistic than individual

estimates derived prior to the group discussion and combined in a statistical group. The

main sources of this decrease in optimism seemed to be the identification of additional

activities and an awareness that activities may be more complicated than was initially

thought.

Note that that study used an unstructured technique that involved prior individual

estimates. Often, companies use an unstructured combination where experts meet to

provide consensus estimates, without having previously made their individual estimates.

This latter procedure is perhaps more susceptible to peer-pressure than when individual

estimates have been derived initially.

In a statistical group, there is no interaction between the group members. They are a

group only in the sense that their individual estimates are combined statistically.

When considering how to combine estimates given by several individuals into an

estimate, well-known statistical methods can be used. Computing the mean or median of

the different individual estimates will give us one estimate that is based on multiple

estimates.

Jørgensen claims that taking a simple average often works as the best method for

combining estimates [21].

A decision market is a technique for combining opinions that can also be used in

estimation. Hanson provides the following definition: “Decision markets are (markets)

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

138

designed primarily for the purpose of using the information in market values to make

decisions [22]”.

A decision market can be set up like a stock market, with decisions being substituted

for stocks. Traders are invited to invest money in the alternative, represented by stocks

(decisions), that they think will be the eventual outcome. A trader holding a stock

(decision) that becomes the actual outcome receives a fixed amount of money, prize or

similar. Through the dynamics of a market, this results in higher stock (decision) prices for

the alternatives that most people think will be the outcome, which creates a likelihood

distribution for the different outcomes.

According to Surowiecki, such a market is wise because it aggregates the opinions of

traders. A market may be especially powerful if the traders are diverse in their

backgrounds, independent of each other, and have local knowledge [23].

Inspired by Surowiecki, Berndt, Jones et al. advocate the use of decision markets in

software effort estimation [24]. They stress that by allowing all project stakeholders to

participate in the decision market, one ensures diversity in the input to the estimation

process and aggregates the knowledge from all the project stakeholders. According to

Berndt, Jones et al., another positive feature of decision markets is that the different traders

can apply whatever estimation technique they like, thus enabling a combination of

different estimation techniques.

 A decision market is, as is Delphi, a way of aggregating different opinions without

face-to-face meetings. Like Delphi, a decision market seeks to preempt the social and

political problems caused by the use of interacting groups, while at the same time utilizing

the increase in knowledge that using groups offers. An important factor is that the

participants can receive (continuous) feedback on their own opinion compared to others.

The main difference between Delphi and decision markets is the way in which the

knowledge and opinions of the group members are aggregated.

We have not managed to find any empirical research on the use of decision markets for

software estimates. However, a recent paper by Berndt, Jones et al. describes an ongoing

study [24].

Studies on the combining of estimates for student tasks have shown some positive

effects, both when combining estimates statistically [11] and in face-to-face discussions

[10].

To summarize, the strategy of combining estimates for groups in general, and for

software estimation in particular, is far from understood.

2 Combining Estimates in Groups

139

In addition, some studies, e.g., by Buehler et al., specify some limitations that may

reduce the strategy’s applicability to real life problems, mainly that the groups studied

consisted of individuals who were unfamiliar with each other [6].

It is also important to note that findings may vary in their applicability as task

characteristics, motivational factors, social relations, and communication structure differ.

In general, when reviewing studies on group processes, it is also important to differentiate

between studies in which the participants cannot influence the outcome and those in which

they can.

3 Research Questions
It is possible that typical software estimation tasks are suitable for group combination, such

as planning poker. In an estimation process, there may be several experts who contribute

different project experiences and knowledge. Such experiences can be shared more easily

in a face-to-face group, as with planning poker, than through a moderator, as with the

Delphi technique. In addition, face-to-face interaction may make the participants more

committed to the decisions.

We wanted to further explore whether, as found in a previous study on group estimation

[3], optimism could be reduced by group discussions. From this, we derived the following

research question:

RQ1: Are group consensus estimates less optimistic than the statistical combination of

individual expert estimates?

We define optimism of estimates in the relative sense, and irrespective of accuracy. We

deem one estimate to be more optimistic than another if and only if it states that it will take

less time to complete a task than the other estimate. I.e., an estimate of 4 hours is more

optimistic than an estimate of 5 hours.

Any observation of reduced optimism would indicate a choice-shift, defined by Zuber,

Crott et al. as the difference between the arithmetic average (mean) of individual decisions

and the group consensus decision [25]. Such an observation of reduced optimism would be

contrary to that which is typically reported from other research areas, where the choice-

shift is generally in the direction of increased risk willingness and optimism [6].

It is important to note that our study does not merely confirm or undermine the results

of the previous study on group estimation [3]. It also generates a new result, because the

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

140

subjects used planning poker rather than the unstructured discussion used in the previous

study.

Even if a reduction in optimism were observed, it would not necessarily guarantee that

estimates would be more accurate, because some or all of the individual estimates might

already be biased towards pessimism. Thus, we also wanted to investigate whether group

consensus estimates made after a discussion are more accurate than mean individual

estimates. This concern generated the following research question:

RQ2: Are group consensus estimates more accurate than the statistical combination of

individual expert estimates?

The previous empirical study on planning poker compared planning poker with an

unstructured method for combining estimates in groups [9]. Therefore, we wanted to

compare the estimates that were derived by using planning poker to a series of estimates

that were derived by individual experts, and not subject to subsequent group discussions.

This generated the following research question:

RQ3: Are group consensus estimates more accurate than the existing individual

estimation method?

In addition to possibly influencing estimation accuracy, the introduction of group

estimation might lead to changes in how the developers work. Such changes might include

differences in the amount of total effort spent on the estimation phase, or effort spent on

restructuring code during implementation. The final research question to explore is

therefore:

RQ4: Does the introduction of a group technique for estimation affect other aspects of

the developers’ work, when compared to the individual estimation method?

The sizes of changes have been shown to be fundamental in explaining change effort

variations; see, e.g., [26]. It is therefore necessary to explore:

RQ4A. Are there differences between the planning poker tasks and the control group

tasks that are related to the size of the changes?

A larger change size for the planning poker tasks may, at least partly, explain any

differences between the groups in actual effort, and provide an intermediate link for the

causal analysis.

The other subquestion to investigate is:

4 Research Method

141

RQ4B. Are there differences between the planning poker tasks and the control group

tasks that are related to the complexity of the changes?

Conclusions drawn from the analysis for question 4B are tentative, because only a

subset of possible factors was investigated. However, the analysis can provide partial

evidence and insight that can be useful in a wider causal analysis in combination with the

other study results. Thus, it is of interest to assess any difference in effort after controlling

for possible differences in change size and complexity.

Research questions 1 and 2 concerns intragroup differences, while research questions 3,

4A and 4B concerns intergroup differences.

4 Research Method
The research method was designed to address some of the issues pertaining to validity that

arose in our previous studies [3, 9].

The main limitation of the previous study of individual estimates (combined in

statistical groups) followed by unstructured group combination was that the groups of

professionals did not themselves implement the project they estimated [3]. This was done

by a separate team; thus, the estimators did not estimate their own work. Therefore, from

the perspective of the estimators in that study, there was a hypothetical outcome. However,

as the project was actually implemented, it was possible to discern estimates that were

clearly optimistic or pessimistic.

The previous study on planning poker was limited to one team [9]. Another limitation

was an unknown effect of increased system experience, because there was no

randomization of tasks to the different methods (unstructured group estimation vs.

planning poker). In addition, the study compared two different group estimation methods

(planning poker vs. unstructured groups), and did not compare group estimation with

individual estimation.

In the study reported herein, we wanted a design that could both measure any shift in

choices among the planning poker tasks and compare planning poker with a control group

of tasks estimated with the existing individual estimation method. In addition, it was

important that the design allowed for the comparison of estimates with the actual effort for

all tasks.

We also wanted to perform an analysis of code following the completion of the tasks, to

explore any possible differences related to the size or complexity of the changes. Finally,

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

142

we wanted to conduct face-to-face interviews with the participants, in order to further

explore and explain possible findings.

A simplified overview of the study design is presented in Table 2.

Table 2. Study overview

Planning poker Control group

A Tasks requested by client entered into the task tracking system and
given an initial estimate

B Tasks assigned randomly to planning poker or control group

C Initial estimate discarded Initial estimate kept

D Task presented to team N/A

E Task discussed briefly N/A

F Individual estimates derived N/A

G Individual estimates revealed N/A

H Estimates discussed N/A

I Consensus estimate derived by
group

Initial estimate used as estimate

J Task performed

K Actual effort recorded

L Source-code analyzed

M Participants interviewed

4.1 The Company and Project Studied
The company studied is a medium-size Norwegian software company that delivers custom-

made solutions to various private and public clients. The project team studied had been

working for a large public client for several months at the start of the study and was using

Scrum (http://www.controlchaos.com/) as the project methodology. The project team

estimates the tasks to be performed in the upcoming sprint (Scrum terminology for the next

period). In the team studied, this happens once each fortnight, and about 15-20 tasks are

selected for each sprint. From four to six team members participate in each sprint,

depending on the demands of the tasks.

All project participants in the study were guaranteed anonymity and assured that no

results regarding performance could be traced.

4.2 The Estimation Methods Studied
The existing estimation method of the project was that the tasks were estimated

individually by the team member responsible for the part of the system that would be

4 Research Method

143

affected by the change. Changes requested by the client were analyzed, estimated and

recorded (Step A; Table 2) in their task tracking system, Jira

(http://www.atlassian.com/software/jira/). The tasks were of varying size and character,

ranging from two-hour bug fixes to three-day analyses of larger changes, and were

relatively well defined in the task-tracking system, which used text and screenshots. All

members of the team participated in estimating tasks. This was done individually and

estimates were not revealed to other team members. This method was used in the control

group in our study.

For each sprint, half of the tasks were to be re-estimated with a variation of planning

poker, while the initial estimate was retained for the other half (Step C). The tasks were

assigned randomly to either the planning poker or the control group (Step B).

Before the study, the team was given an introduction to planning poker by the

company’s chief scientist. The estimation method for the planning poker condition was

employed with the following steps in sequence for each task:

� The task was presented to the team (Step D) by the developer who registered the task in

the task tracking system. The initial estimate was not revealed to other team members

and was discarded (Step C).

� The task was discussed briefly by the team (Step E), to ensure that everybody had the

same interpretation before estimates were made.

� The team members then estimated, individually, the most likely effort needed to

perform the task specified (Step F). The estimate was given in work-hours.

� All team members revealed their estimates simultaneously (Step G):

o If any estimates were larger than 18 hours, there was a brief discussion of how to

break the task down into subtasks. A full day of work was deemed to be six hours.

From previous experience, the team felt that estimates larger than 18 hours (i.e. three

days) were less accurate. Therefore, they decided to split tasks above this size.

o Those with the lowest and highest estimates had to justify their estimates. A brief

debate followed (Step H). The debate was led by the company’s chief scientist for

the first sprint; thereafter, the team worked on its own.

o If a consensus was reached on an estimate, this was recorded (Step I) and the team

moved on to the next task (Step C). If no consensus could be reached, the members

revised their estimates and participated in a new individual estimation round for that

particular task.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

144

� After the task had been performed, the developer who performed the task recorded the

actual effort expended, together with his or her initials (Step K).

Note that this method differs somewhat from the description given by Grenning [1]. For

example, planning poker was, in our case, used for task estimation, and not estimation of

user stories [2] or features (for which use it is most commonly recommended).

After all the tasks had been performed, the code for solutions in both study groups was

analysed (Step L) and the participants were interviewed to get their opinions (Step M).

4.3 Calculation of Estimation Accuracy
To calculate estimation accuracy, we employed the BRE (Balanced Relative Error),

because it is a more balanced measure than the MRE [27]. It is calculated as:

 x=actual and y=estimate

In order to measure whether there was a bias towards optimism or pessimism, the

BREbias was calculated, because this measures both the size and the direction of the

estimation error:

 x=actual and y=estimate

To measure the size of any difference in mean values, we used Cohen’s size of effect

measure (d) [28], where

Here, pooledStDev denotes the pooled standard deviation, a method for assessing the

true standard deviation of different samples.

4.4 Code analysis
Checkins to the code repository, Subversion (http://subversion.tigris.org), were tagged by

the developers with a task identifier. Hence, we were able to retrieve the exact state of the

application before and after each task, and quantitative measures of changes could be

extracted. By studying the changes to the application code associated with the individual

tasks, we were better prepared to investigate and discuss whether, and how, the estimation

method may have influenced how effort was spent for each task.

,
),min(

||
yx

yxBRE �
�

,
),min(

)(
yx

yxBREbias �
�

StdDevpooled
samplesampled 21�

�

Researh Method

145

More specifically, the code analysis sought to compare the amount and complexity of

code that was added, changed, and removed during the tasks. This allowed a more focused

root cause analysis of possible differences in change effort. Research question 4A was

investigated by inspecting mean and median values for change size and performing a

Kruskal-Wallis test [29] on the medians.

For both questions, regression models of change effort versus measures of change size

and change complexity were used to gain insight into factors that explain change effort.

When applying these models and measures, we used the same statistical framework as, and

similar procedures to, those discussed and used by Graves and Mockus [26], who

performed similar analyses of change effort. In brief, the framework utilizes Generalized

Linear Models using change effort (measured in work-hours) as a dependent variable,

measures of possibly influential factors as covariates, and a log link. It assumes Poisson

distributed errors, and allows a free scale parameter to adjust for possible overdispersion,

c.f. [30].

Although artifacts such as binaries, design models, and build scripts were present in the

code repository, only source code was considered for this analysis. Source code included

files for Java, Java Server Pages, the eXtensible Stylesheet Language, XML, and XML

Schema Definitions.

Added, deleted and changed lines were measured by processing the side-by-side (-y

option) output of the standard Linux program diff, c.f. [31, 32]. Frequently used measure

of change size is the sum of these measures (SIZE1); see e.g., [33]. Graves and Mockus

[26] evaluated several size measures and found that the number of file check-ins to the

code repository (SIZE2) best explained change effort. We constructed a third measure, the

number of changed segments of code (SIZE3). A changed segment of code is a set of

consecutive lines of code, where all lines were either added, changed or deleted. The

measures from the code repository were extracted automatically. Their definitions are

provided in Table 3.
Table 3. Change measures

ADD Number of source code lines added

CH Number of source code lines changed

DEL Number of source code lines deleted

SIZE1 ADD + CH + DEL

SIZE2 Number of file revisions checked in (deltas)

SIZE3 Number of changed segments of code

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

146

ACS Number of control-flow statements added

DCS Number of control-flow statements deleted

AOR Number of out-of-class references added

DOR Number of out-of-class referencesdeleted

SZAFF Mean number of source code lines in affected modules

isControl Binary variable representing group membership. Value set to 1 if task was in
control group, 0 if task estimated by PP

In order to select the most appropriate size measure among the three candidates, the

deviance of the three regression models of the type described above was compared. Lower

deviance values indicate a better fit between model and the actual data [30]. A model based

on SIZE3 and a mathematical intercept value provided the best fit and SIZE3 was selected

as the size measure to use for the analysis; see Table 4.

Table 4. Model fit with alternative size measures

Variables Coefficient p-value Deviance
Intercept 2.05 <0.0001 188
SIZE1 0.000738 0.0487
Intercept 2.03 <0.0001 180
SIZE2 0.0203 0.0177
Intercept 1.95 <0.0001 154
SIZE3 0.00793 0.0009

We used three types of measures of change complexity. These were hypothesized to

explain possible change effort variations: Measures of the size of the affected code, similar

to SZAFF, have been found by other researchers to affect change effort significantly [34],

[35].

Measures of the type of change, similar to ADD, DEL, CH were used by, e.g.,

Jørgensen [33]. Measures of additions and deletions of structural attributes (ACS, DCS,

AOR, DOR) are less common, but have been investigated at the file level by Fluri and Gall

[36]. An out-of-class reference means that the measured class uses a method or attribute in

another class. A control-flow statement changes the sequential flow of control. Hence, the

measures are similar to the concepts of import coupling [37] and cyclomatic complexity

[38], but adapted to measuring complexity change at the task level.

4.5 Interviews
All project participants were interviewed individually on a range of issues. These

interviews sought to a) uncover background information regarding project priorities, b) ask

specific questions regarding the planning poker technique, and c) determine the

5 Results

147

participants’ perception of differences between the planning poker technique and the

individual estimation technique.

The interviews were performed in person and followed a structured questionnaire.

5 Results
In total, 55 tasks were estimated and implemented, of which 24 were estimated with

planning poker and 29 with the existing individual estimation method. Two tasks were

deleted from the dataset due to suspicion of faulty registration in the database. A brief

summary of important data is presented in Table 5. The first column represents the initial

estimates (Step A; Table 2), the second the statistical combination of individual estimates

for the planning poker tasks (Step F), the third the final estimates (consensus estimate for

the planning poker tasks, individual estimate for the control group, Step I), the fourth

column the actual effort (Step J), the fifth the estimation accuracy of planning poker tasks

measured against the statistical combination of individual estimates, the sixth estimation

accuracy against final estimates, and the final column contains estimation bias.

Table 5. Key results

Initial
estim
ate

Statistical
comb.
(hrs)

Estimate
(hrs)

Actual
effort
(hrs)

BRE
statistical
comb.

BRE BREbias

Planning
poker (n=24)

Mean 6.6 6.3 7.1 10.4 0.94 0.82 0.33

Median 5.0 6.0 6.0 8.0 0.56 0.50 0.00

Control group
(n=29)

Mean 5.3 5.3 6.1 0.78 -0.04

Median 4.0 4.0 4.0 0.33 0.00

The first two research questions relate only to the 24 tasks that were estimated with

planning poker. The third research question compares accuracy results from the 24 tasks

estimated by using planning poker with the 29 tasks estimated by using the existing

individual estimation method. The final research question examines possible differences in

change size and complexity.

5.1 RQ1: Are group consensus estimates less optimistic than the statistical
combination of individual expert estimates?

For the 24 tasks that were estimated using planning poker, the mean of the statistical

combination of individual estimates before group discussion was 6.3 hours (median 6.0

hours). After group discussion, the mean consensus estimate was 7.1 hours (median 6.0

hours). An analysis was performed with a paired t-test, as suggested in similar research on

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

148

choice shift [39]. Since the research question suggests a direction of effect (group

discussion reduces optimism), the paired t-test was one-sided. We provide the actual p-

values, as suggested by Wonnacott and Wonnacott [29], instead of predefining a

significance level for rejection. The results are displayed in Table 6. The analysis of

possible choice shift on the estimates yielded a p-value of 0.04 and an effect size of 0.16.

Table 6. RQ1 results

N 24

Statistical combination (mean hours) 6.3

Group consensus (mean hours) 7.1

Difference 0.8

PooledStDev 4.6

p-value 0.04

Size of effect (d) 0.16

5.2 RQ2: Are group consensus estimates more accurate than the statistical
combination of individual expert estimates?

On the basis of the estimates, we calculated the estimation accuracy measured in BRE.

The mean BRE of the statistical combination of individual estimates before group

discussion was 0.94 (median 0.56). The mean BRE of the consensus estimates after group

discussion was 0.82 (median 0.50). The calculation of the statistics followed the same

procedure as for the previous research question. A summary is presented in Table 7.

The analysis of a possible difference in accuracy between the statistical combination of

individual estimates and the group consensus estimates yielded a p-value of 0.07 and an

effect-size of 0.11.

5 Results

149

Table 7. RQ2 results

N 24

BRE Statistical combination (mean) 0.94

BRE Group consensus (mean) 0.82

Difference 0.12

Pooled StDev 1.02

p-value 0.07

Size of effect (d) 0.11

5.3 RQ3: Are group consensus estimates more accurate than the existing individual
estimation method?

The mean BRE of the tasks completed using the existing individual estimation method was

0.78 (median 0.33), compared to a mean BRE of 0.82 (median 0.50) for the planning poker

tasks. For the statistical test of difference between the two groups, a Kruskal-Wallis test

[29] was performed on the medians. A summary for both groups is found in Table 8.

Table 8. RQ4 results

BRE planning poker group (mean, n=24) 0.82

BRE control group (mean, n=29) 0.78

Difference 0.04

Pooled StDev 1.22

p-value (Kruskal Wallis) 0.77

Size of effect (d) 0.03

The analysis of difference between the two study groups yielded a p-value of 0.77, and

a size of effect of 0.03. Regarding any difference in estimation bias, the BREbias values

are presented in Figure 1 (see also Table 5).

Figure 1. BREbias

Method

BR
E-

bi
as

ControlPP

1,5

1,0

0,5

0,0

-0,5

-1,0

Boxplot of BRE-bias vs Method

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

150

An interesting finding emerges. The median BREbias for both the planning poker group

and the control group is 0.00, which indicates that the typical case is estimated perfectly on

target.

However, the mean BREbias of the planning poker tasks was 0.33, compared to -0.04

for the control group (see also Table 5).

5.4 RQ4: Does the introduction of a group technique for estimation affect other
aspects of the developers’ work, when compared to the individual estimation
method?

Thirty-four of the 53 tasks studied involved changing code. For seven of the 34 tasks that

involved code changes, the developers did not tag the associated code repository checkins.

Interviews revealed that this could sometimes happen for minor changes. Hence, the

analysis below is based on 27 valid data points. An overview of the results of the code

analysis is presented in Table 9.

Table 9. Mean values of key measures compared

Measure Mean value control Mean value PP

Estimate 7.5 7.6

Actual 8.1 12.8

ADD 246 326

CH 23.5 36.0

DEL 66.5 50.9

SIZE1 336 413
SIZE2 17.0 12.3

SIZE3 45.3 39.9

ACS 21.6 14.4

DCS 14.1 6.8

AOR 209 206

DOR 65 50

SZAFF 224 151

The mean actual effort for both groups is somewhat higher for this subset than for the

complete set of tasks, which is presented in Table 5. This is not surprising, because tasks

that involve changes to the code are usually larger than other tasks. The mean actual effort

for the planning poker tasks involving code change is 12.8 hours, compared to 10.4 hours

for the complete planning poker subset. Similarly, the mean actual effort of the control

group is 8.1 hours for the tasks involving code, compared with 6.1 hours for all control

tasks.

5 Results

151

Research question 4A asked: Are there differences between the planning poker tasks

and the control group tasks related to the size of the changes?

The control group has a higher mean value for the SIZE3 measure than the planning

poker group (see Table 9). Given this, it appears that the control group tasks took less time

and were larger than the planning poker tasks. However, this difference in size is not

statistically significant using a Kruskal-Wallis test (p=0.59). The individual data points of

SIZE3 vs. change effort are depicted in Figure 2.

Figure 2. Change effort and size

In order to further explore research question 4A, we fitted two regression models of the

type discussed in Section 4.4, one that included isControl (the group indicator, refer to

Table 3) only, and one that added the size variable, SIZE3. The results are summarized in

Table 10.

Table 10. Models of change effort, without and with size measure included as covariate

Variable Coefficient p-value Deviance

Intercept 2.55 <0.0001 210

isControl -0.449 0.25

Intercept 2.12 <0.0001 139

SIZE3 0.00795 0.0004

isControl -0.482 0.10

As can be seen, when accounting for size (the second model), the difference in change

effort between the groups become clearer (the p-value of the isControl variable decreases),

and is statistically significant at the 0.1 level. In other words, there is initial evidence that,

after controlling for size, effort expended on tasks estimated by planning poker is greater

than effort expended on tasks in the control group.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

152

Returning to the summary statistics in Table 9, we observe that planning poker tasks

involved more changes (CH) and fewer deletions (DEL) to existing code. These factors can

account for the observed difference in change effort.

Research Question 4B asked: Are there differences between the planning poker tasks

and the control group tasks related to the complexity of the changes?

To analyze possible differences in complexity, we entered all complexity measures into

the model presented in Section 4.4., and applied a variable selection method called

backward elimination to attempt to identify factors that explain change effort variations.

The results are presented in the top half of Table 11.

Measures of changed lines (CH), added control statements (ACS), and deleted out-of-

class references (DOR) contribute positively to change effort. The measure of deleted lines

(DEL) contributes negatively to change effort. When entering these measures of change

complexity into the model, the estimation method (isControl) was no longer related

significantly to change effort.

Thus, there is no evidence that effort expended on tasks estimated by planning poker is

greater than effort expended on tasks in the control group after controlling for change

complexity.

Note that the measures selected by the backward elimination procedure may have been

influenced by correlations between the measures. ACS is correlated heavily with AOR and

DOR is correlated heavily with DCS; hence, it is likely that AOR and DCS will provide

almost as good explanatory power as ACS and DOR. We confirmed this by refitting a

model forcing in the AOR and DCS variables; see the results in the bottom half of Table

11.

Table 11. Models for change complexity

Variable Coefficient p-value Deviance

Intercept 1.71 <0.0001 76

DEL -0.0242 <0.0001

CH 0.0193 <0.0001

ACS 0.0184 0.016

DOR 0.0166 0.0005

Intercept 1.79 <0.0001 92

DEL -0.017 0.0003

CH 0.0198 <0.0001

AOR 0.00136 0.0081

DCS 0.0493 0.0018

5 Results

153

Given the above, we answer Research Question 4B positively: there are differences in

change complexity between the planning poker tasks and the control tasks,

These differences in complexity might explain differences in effort. The underlying

reasons for differences in complexity will be explored in the next section.

A final observation is that there is no evidence that the observed bias between the

groups with respect to the mean size of affected modules resulted in differences in change

effort.

5.5 Results from the participant interviews
The interviews provided information that will be used in the discussion section to try to

explain the results presented above. The interviews focused on a) background information

regarding project priorities, b) specific questions regarding planning poker, and c) the

participants’ perception of differences between the planning poker technique and the

individual estimation technique.

The participants were asked to rate how they perceived the priorities of the project used

in this study on a five-point Likert scale (1=very important, 2=important, 3=of medium

importance, 4=somewhat important, 5=not important). The respondents were free to use

their personal interpretation of parameters such as quality and functionality. The results are

displayed in Table 12.

Table 12. Perceived importance of project parameters

Parameter Mean Median StDev
Customer satisfaction 1.8 2.0 0.8

Functionality 2.0 2.0 0.6

Quality 2.2 2.0 0.8

Schedule 2.7 2.5 0.8

Effort 3.0 2.5 1.3

There are several reasons for why people change their opinion about the estimate of a

task after group discussion [4]. Some of the more common reasons are a) pressure (direct

or perceived) from seniors, b) new information revealed, or c) a desire for consensus.

The participants were asked to rate how much these reasons affected their estimates on

a five-point Likert-scale (1=influence in all tasks, 2=influence in most tasks, 3=influence

in about half of the tasks, 4=influence in some tasks, 5=influence in none of the tasks).

The results are displayed in Table 13.

Table 13. Perceived influence when changing opinion

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

154

Parameter Mean Median StDev

New information 1.8 2.0 0.4

Pressure from seniors 2.7 2.0 1.2

Desire for consensus 3.3 3.5 0.8

The participants were interviewed regarding possible differences induced by the

planning poker technique when compared to the individual estimation method (control

group). They were asked to rate their perception of whether, and if so how, several aspects

of their work was influenced. This included both effort spent in various phases and

suitability. They rated these aspects on a five-point Likert-scale (1=much more, 2=more,

3=similar, 4=less, 5=much less). The results are summarized in Table 14.

Table 14. Perceived differences of planning poker compared to control group tasks

Property Rating
(mean)

Median StDev

Suitability for identifying task challenges 1.5 1.5 0.5
Suitability for identifying subtasks 1.7 1.5 0.8
Effort spent on estimation 1.8 2.0 0.4
Motivation to follow estimates 2.0 2.0 0.6
Estimation accuracy 2.2 2.0 0.8
Effort spent on analysis and design 2.8 2.5 1.0
Effort spent on refactoring of code 3.0 3.0 0.6
Effort spent on clarifying tasks during
implementation (i.e. not including the
estimation phase)

3.2 3.0 0.8

6 Discussion
In general, small differences in estimation accuracy were found between the groups,

whether the comparison was between a statistical combination of individual estimates and

group consensus estimates for the planning poker tasks (choice shift), or between planning

poker tasks and the control group.

Interestingly, there appeared to be a difference between the planning poker tasks and the

control tasks that was related to change size and change complexity.

6.1 RQ1: Are group consensus estimates less optimistic than the statistical
combination of individual expert estimates?

When we looked in isolation at the tasks estimated with planning poker, the results

indicated a slight shift in choices that showed a reduction of optimism after group

discussion. For these tasks, there was an initial individual bias towards optimism, as in

other studies [6]. However, in our study, this optimism was not increased by group

discussion. Rather, we found the opposite, that optimism was reduced, as in a previous

6 Discussion

155

study on software estimation [3]. However, note that the effect must be considered small

(Cohen’s d<0.20).

The more common reasons for a change of opinion regarding the estimate of a task

following group discussion have already been noted. The results of the interviews

presented in Section 5.5 show that the respondents rated new information as the most

important reason for changing their minds (mean response 1.8, and standard deviation of

0.4). However, pressure (2.7) and desire for consensus (3.3) were also rated as important

for changes of opinion for about half of the tasks.

6.2 RQ2: Are group consensus estimates more accurate than the statistical
combination of individual expert estimates?

There were indications of a slight shift towards increased accuracy when comparing

consensus estimates with the statistical combination of individual estimates. This comes as

a direct function of an initial bias towards optimism in the individual estimates. When, as

found with respect to RQ1, this optimism was reduced, accuracy increased. However, the

size of effect is considered small (Cohen’s d<0.20).

When exploring differences between a group’s consensus estimate and the statistical

combining of individual estimates, a relevant property is the initial (dis)agreement of the

estimates for each task. This (dis)agreement can be measured by the standard deviation

(StDev). For the 24 tasks estimated with planning poker, the StDev of the individual

estimates varied from 0.00 to 6.65, and the median and mean StDev were 2.23 and 2.20

respectively.

However, initial agreement on the part of the estimators (reflected in a low standard

deviation) did not entail more accurate group consensus estimates. A correlation test of

standard deviation (StDev) of individual estimates, and the accuracy (BRE) of the group

estimates resulted in a Pearson correlation of -0.54 and a p-value of 0.80.

6.3 RQ3: Are group consensus estimates more accurate than the existing individual
estimation method?

The planning poker and control group had fairly similar estimation accuracy.

Regarding the observed difference in the direction of inaccuracy between the planning

poker tasks and the control tasks, as seen by the difference in mean BREbias, one possible

explanation is that some of the planning poker tasks were, purely by chance, more difficult

to complete. Even though the tasks were assigned at random to the two study groups,

anomalies may appear, especially in datasets of this size.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

156

The mean of the initial estimates, i.e. estimates made before the assignment of the

estimation procedure, was 5.3 hours (median 4 hours) for the control group, compared to

6.6 hours (median 5 hours) for the tasks estimated using planning poker. So, it is possible

that the planning poker tasks were a bit more difficult, because they had initial estimates

that were somewhat larger.

Comparison of the actual effort of the tasks in the two study groups yields an interesting

observation. The average size in the control group tasks was 6.1 hours (median 4 hours),

compared to 10.4 hours (median 8 hours) in the planning poker tasks. While the median

initial estimates were 25% larger in the planning poker group, the difference in median

actual effort was 100%. Even though it is possible that initially, the tasks in the planning

poker tasks carried a somewhat larger workload, this cannot account for the observed

difference in actual effort between the groups.

The observations of differences in actual effort between planning poker and control

tasks was unexpected, and, as stated in Sections 1 and 2, there is very little research on the

combining of estimates for comparison. At this stage, we can only speculate about a set of

interacting causes that may explain our observations:

1. Group discussion identifies subtasks and complexity. Previous studies have shown

that groups are able to identify more tasks than individuals [3]. When the group discusses a

task (as when estimating using planning poker), they are likely to look at it from different

angles, especially if they have diverse backgrounds [23]. They may offer different

perspectives on a task and identify different subproblems.

Software engineering textbooks [16, 40] and papers [15, 41, 42] frequently mention

forgotten tasks as major obstacles to successful estimation by experts. Several estimators

who discuss the same task will identify at least as many subtasks as any single estimator

alone. It might be that this happened for the tasks that were estimated using planning

poker.

As seen from the results of the interviews presented in Section 5.5, the participants

perceived that planning poker influenced their work most with respect to identifying

subtasks and challenges. They also thought that they spent more time estimating and that

they were more motivated to match their estimates. Even though estimation accuracy did

not increase when using planning poker, the participants believed that it did. The three

areas in which the participants did not perceive any changes were related to effort spent on

analysis and design, refactoring, and clarifications.

6 Discussion

157

The code analysis revealed that more effort was spent on performing complex changes

in the planning poker tasks. This might have been induced by the group discussion.

2. Anchor-effect from individual estimates. Even if the participants identified more

subtasks and complexity during group discussion, it is possible that they were not able to

make sufficient adjustments on the basis of this new information when seeking consensus

estimates. Even though the group decision exhibited decreased optimism when compared

to the statistical combining of individual estimates, this was, for some tasks, not sufficient,

and they were underestimated.

It is probable that the initial individual estimates acted as anchors [43] when group

consensus was sought. Participants were frequently willing to increase their estimates

somewhat, e.g. by about one hour, but it seldom happened that consensus estimates

deviated substantially from the statistical combination. As seen from results of the

interviews, presented in subsection 5.5, it was important for the participants to reach a

consensus.

3. Priority of scope over effort and schedule. If we assume that more task work and

greater complexity was identified during planning poker discussions (as follows from

explanation 1), and the participants have their original estimates (and group mean) as

anchors (as follows from explanation 2), this may lead to underestimated tasks.

When a task is estimated in a group (as with planning poker), and then handed to an

individual, that individual must address all the aspects of the work discussed by the group

when implementing the solution. By contrast, individual programmers who estimate and

plan alone (as in the control group) have a more limited range of work aspects to address.

When underestimated tasks are encountered, the implementation will be affected,

according to how priority is assigned to scope, effort, schedule, etc. A recent study found

that software professionals gave priority to “project scope” when defining project success

[44]. The professionals in that study, independent of their role in the company, stated that

scope was more important than cost (effort) or time (schedule) when asked to state their

priorities. We have also recently conducted a study in Norway, where it was found that

(lack of) estimation accuracy did not affect perceived project success [45].

As seen from the results of the interviews presented in Section 5.5, effort and schedule

were perceived as least important by the participants, while functionality and customer

satisfaction were perceived as most important.

Thus, if more work is identified during discussion, programmers may feel inclined to

expend more effort in order to implement it. It might just be that for some of the planning

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

158

poker tasks, work such as the restructuring of code uncovered in our analysis caused some

overruns.

6.4 RQ4: Does the introduction of a group technique for estimation affect other
aspects of the developers’ work, when compared to the individual estimation
method?

Differences in effort between groups were amplified when controlling for change size:

More effort was expended on the planning poker tasks and the sizes of these tasks were

smaller than in the control group.

Differences with respect to the complexity of the tasks can explain the difference.

Changes made in the tasks estimated by planning poker were more complex, as manifested

in measures of the changed code.

This observation must be seen together with the respondents’ claim that planning poker

was more suitable for identifying subtasks and challenges. It is possible that the planning

poker method itself influenced the way the developers translated the change requests into

working code.

6.5 Study Validity
In their framework for analysing the accuracy of software estimation [46], Grimstad and

Jørgensen describe several factors that can have a major impact on the measured

estimation error. Their top-level categories are: 1) estimation ability factors,

2) estimation complexity factors, and 3) measurement process factors.

When discussing the internal validity of our comparison of the planning poker and

control groups (RQ3 and RQ4), many of the factors in the framework do not cause

concern, because they are similar for both groups. Examples of these are: a) the project

manager’s ability to control costs, b) client and subcontractor performance, c)

completeness and certainty of the information upon which the estimates were based, d)

project priorities, e) project member skill, f) inherent complexity of project execution, g)

experience with similar tasks, h) experience of the system under consideration, i) flexibility

in product and process execution, j) terminology and measures, and k) the recording of

data.

These factors were similar in both groups and did not have any effect, because all tasks

in the study were taken from the same project, with, e.g., the same client, participants, and

prioritizations.

6 Discussion

159

In addition, the isolation strategy used was randomization, which is the most powerful

strategy. This approach addresses concerns such as skill in the selection of estimation

approach, because this was assigned randomly. However, as described previously, even

randomization is no guarantee that the samples will have similar properties with respect to

all factors. As seen, the sizes of the initial estimates of the tasks were not entirely similar in

the groups, even though the variations were small.

Perhaps the most challenging issue concerns one of the estimation ability factors;

namely, skill in the use of estimation approach [46]. Since the estimators were more

familiar with their existing individual estimation method (control group), it might be that

their skill in employing this was superior to their skill in using planning poker. However,

we do not believe that this factor had any major impact, because planning poker is a

straightforward and easy-to-use approach that should not require a steep learning curve.

We performed an analysis of the estimation accuracy of the planning poker tasks to

determine whether there was any learning. It was found that the estimation accuracy was

similar for the planning poker tasks throughout the entire study.

The internal validity of the choice shift (RQ1 and RQ2) research questions is relatively

unproblematic, because it involved several estimates for the same task.

Regarding external validity, only one project team was studied. Therefore, several

factors must be considered when generalizing. In particular, factors such as team

motivation [4] and team composition [23] will probably have a large impact on the results.

For example, a team that lacks diversity and motivation may increase an optimistic bias

instead of reducing it. Most important perhaps, is that this study was on task estimation,

which has properties other than user-story estimation (for which planning poker is

recommended), project estimation, and factors related to bidding.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

160

Finally, regarding generalization, it is important to note that the tasks studied here were

relatively small and were to be performed in an agile project environment. At this time, we

have no opportunity to assess the merits of using planning poker in other project

environments.

A general concern is that the study had a relative small sample size with respect to

statistical analysis. The source-code data, especially, contained few data points with large

variances; hence the analysis is sensitive to the values of small groups of data points. In

particular, one data point has a large influence on the mean change effort of planning poker

tasks. However, removing this data point does not change the observation that change effort is

greater, by median or mean value, for planning poker tasks. In addition, when controlling for

size, this data point can no longer be considered an outlier. We therefore included the data

point in our analysis.

Given the above reservations, this study must be interpreted with care and used primarily

in combination with previous studies on group estimation (presented in Section 2) as a

stepping stone for further research.

7 Conclusions
Previous reviews of the literature and experiments have concluded that it does not seem to be

very important which of a set of structured methods for combining estimates is used in order

to achieve accuracy [47]. The Delphi technique is probably the best studied example, and

though it has been found to outperform unstructured groups, there is no evidence that it

outperforms other structured techniques [13]. There are also general findings to the effect that

group performance is increased when motivation exists [4] and that group goals can increase

productivity [6].

7 Conclusions

161

On the surface, planning poker has several properties that, in theory, should make it

suitable for estimation; for example, the possibility of combining knowledge from diverse

sources [23], the use of iterative techniques, and the fact that estimates are revealed

simultaneously in order to reduce the impact of social comparison [4].

Considering a summary of our findings and combining them with previous studies, we

may conclude tentatively that planning poker reduces optimism when compared to the

statistical combining of individual estimates and is also, in some cases, more accurate than

the unstructured combining of estimates in a group.

In this study, the set of control tasks in the same project were estimated by individual

experts with accuracy similar to that of the estimates of the tasks when using planning

poker. Moreover, for both the planning poker and control groups, the median estimation

bias indicated that both groups had fairly unbiased estimates. In addition, as seen in our

study, group discussion (facilitated by planning poker) may have certain positive side

effects that, at this stage, we cannot fully explain. An interesting issue, derived from the

analysis of code, is whether the use of planning poker leads to an increased focus on the

quality of the code.

Equally important as findings from the quantitative data, the project team seemed to

receive the planning poker technique very well. They found that the technique was useful

for discussing implementation strategies for each task and that it provided a better

overview of what each developer was working on. Given that it is difficult to measure the

full effect of the knowledge sharing aspect of planning poker, we cannot provide any

empirical results on whether the benefit exceeds the work and effort it takes to conduct this

technique compared to individual estimating. However, the team decided to implement the

planning poker technique for all forthcoming tasks in the project.

Future studies might seek to complement these findings by investigating projects with

different constraints regarding team size and client, and using planning poker for

estimating user stories.

 In addition, we should investigate how planning poker can be combined with

complementary techniques for tracking time/cost, i.e., having developers report progress

daily (at the stand-up meeting), having all tasks posted on the wall to visualize the total

work load for the sprint, and/or using a burn-down chart to visualize progress.

It is also important to compare planning poker with more structured techniques, such as

Delphi, and to investigate whether planning poker affects other technical or social aspects,

such as the quality of the code or the accountability of the team.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

162

Acknowledgement

We thank all the subjects and the management of the studied company for providing data,

and Magne Jørgensen, Stein Grimstad, Mike Cohn, Amund Tveit, Kristian Marius

Furulund, and Chris Wright for valuable comments. This research was funded by the

Research Council of Norway under the project INCO.

References for paper 4

163

References

[1] J. Grenning, "Planning Poker or How to Avoid Analysis Paralysis While Release
Planning," 2002.

[2] M. Cohn, Agile Estimating and Planning: Addison-Wesley, 2005.

[3] K. Moløkken-Østvold and M. Jørgensen, "Group Processes in Software Effort
Estimation," Empirical Software Engineering, vol. 9, pp. 315-334, 2004.

[4] R. Brown, Group Processes, 2nd ed.: Blackwell Publishers, 2000.

[5] J. S. Armstrong, "How to Make Better Forecasts and Decisions: Avoid Face-to-
Face Meetings," The International Journal of Applied Forecasting, vol. Fall 2006,
pp. 3-15, 2006.

[6] R. Buehler, D. Messervey, and D. Griffin, "Collaborative Planning and Prediction:
Does Group Discussion Affect Optimistic Biases in Time Estimation?,"
Organizational Behaviour and Human Decision Processes, vol. 97, pp. 47-63,
2005.

[7] E. Aronson, T. D. Wilson, and R. M. Akert, Social Psychology, 3rd ed.: Addison-
Wesley Educational Publishers Inc., 1999.

[8] R. L. Atkinson, R. C. Atkinson, E. E. Smith, D. J. Bem, and S. Nolen-Hoeksema,
Hilgard's Introduction to Psychology, 12th ed. Orlando: Harcourt Brace College
Publishers, 1996.

[9] N. C. Haugen, "An Empirical Study of Using Planning Poker for User Story
Estimation," in Agile 2006 Conference (Agile'06), 2006.

[10] U. Passing and M. Shepperd, "An Experiment on Software Project Size and Effort
Estimation," in 2003 International Symposium on Empirical Software Engineering
(ISESE 2003), Frascati - Monte Porzio Catone (RM), ITALY, 2003, pp. 120-129.

[11] M. Höst and C. Wohlin, "An Experimental Study of Individual Subjective Effort
Estimationsand Combinations of the Estimates," in (20th) International Conference
on Software Engineering, Kyoto, Japan, 199, pp. 332-339.

[12] O. Helmer, Social Technology. New York: Basic Books, 1966.

[13] G. Rowe and G. Wright, "The Delphi Technique as a Forecasting Tool: Issues and
Analysis," International Journal of Forecasting, pp. 353-375, 1999.

[14] C. Powell, "The Delphi Technique: Myths and Realities," Journal of Advanced
Nursing, vol. 41, pp. 376-382, 2003.

[15] D. Fairley, "Making Accurate Estimates," IEEE Software, vol. 19, pp. 61-63, 2002.

[16] B. Boehm, Software Engineering Economics: Prentice Hall PTR, 1981.

[17] A. H. Van de Ven and A. L. Delbecq, "Nominal Versus Interacting Group
Processes for Committee Decision Making Effectiveness," Academy of
Management Journal, vol. 14, pp. 203-212, 1971.

[18] N. E. Fenton, Software Metrics. London: Thompson Computer Press, 1995.

[19] W. S. Humphrey, Managing the Software Process: Addison-Wesley Publishing
Company, Inc., 1990.

Paper 4: Using Planning Poker for Combining Expert Estimates in Software Projects

164

[20] G. Rowe and G. Wright, "Expert Opinions in Forecasting: The Role of the Delphi
Technique," in Principles of Forecasting, J. S. Armstrong, Ed. Boston: Kluwer
Academic Publishers, 2001.

[21] M. Jørgensen, "Practical Guidelines for Expert-Judgment-Based Software Effort
Estimation," IEEE Software, vol. 22, p. 57, 2005.

[22] R. Hanson, "Decision Markets," IEEE intelligent systems, vol. 14, p. 16, 1999.

[23] J. Surowiecki, The Wisdom of Crowds Doubleday, 2004.

[24] D. J. Berndt, J. L. Jones, and D. Finch, "Milestone Markets: Software Cost
Estimation through Market Trading," in 39th Hawaii International Conference on
System Science, Hawaii, 2006.

[25] J. A. Zuber, H. W. Crott, and J. Werner, "Choice Shift and Group Polarization: An
Analysis of the Status of Arguments and Social Decision Schemes," Journal of
Personality and Social Psychology, vol. 62, pp. 50-61, 1992.

[26] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Databases," Proceedings of the 5th International Symposium on
Software Metrics, pp. 267–272, 1998.

[27] Y. Miyazaki, A. Takanou, H. Nozaki, N. Nakagawa, and K. Okada, "Method to
Estimate Parameter Values in Software Prediction Models.," Information and
Software Technology, vol. 33, pp. 239-243, 1991.

[28] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. New York:
Academic Press, Inc., 1969.

[29] T. H. Wonnacott and R. J. Wonnacott, Introductory Statistics, 5th ed.: John Wiley
& Sons, Inc., 1990.

[30] R. H. Myers, D. C. Montgomery, and G. G. Vining, Generalized Linear Models
with Applications in Engineering and the Sciences: Wiley Series in Probability and
Statistics, 2002.

[31] J. W. Hunt and M. D. McIlroy, "An Algorithm for Differential File Comparison,"
Computing Science Technical Report, Bell Laboratories, vol. 41, 1976.

[32] D. MacKenzie, P. Eggert, and R. Stallman, "Comparing and Merging Files with
Gnu Diff and Patch," Network Theory Ltd., 2003.

[33] M. Jørgensen, "Experience with the Accuracy of Software Maintenance Task Effort
Prediction Models," IEEE Transactions on Software Engineering, vol. 21, pp. 674-
681, 1995.

[34] F. Niessink and H. van Vliet, "Two Case Studies in Measuring Software
Maintenance Effort," International Conference on Software Maintenance, pp. 76–
85, 1998.

[35] E. Arisholm, "Empirical Assessment of the Impact of Structural Properties on the
Changeability of Object-Oriented Software," Information and Software
Technology, 2006.

[36] B. Fluri and H. Gall, "Classifying Change Types for Qualifying Change
Couplings," Proceedings of 14th IEEE International Conference on Program
Comprehension, Athens, Greece, Jun, pp. 14-16, 2006.

References for paper 4

165

[37] L. C. Briand, J. W. Daly, and J. K. Wust, "A Unified Framework for Coupling
Measurement in Object-Oriented Systems," IEEE Transactions on Software
Engineering, vol. 25, pp. 91-121, 1999.

[38] McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering,
vol. SE-2, pp. 308-320, 1976.

[39] R. C. Liden, S. J. Wayne, R. T. Sparrowe, M. L. Kraimer, T. A. Judge, and T. M.
Franz, "Management of Poor Performance: A Comparison of Manager, Group
Member, and Group Disciplinary Decisions," Journal of Applied Psychology, vol.
84, pp. 835-850, 1999.

[40] B. Kitchenham, Software Metrics: Measurement for Software Process
Improvement. Oxford: NCC Blackwell, 1996.

[41] B. Boehm, "Software Engineering Economics," IEEE Transactions on Software
Engineering, vol. 10, pp. 4-21, 1984.

[42] R. T. Hughes, "Expert Judgment as an Estimating Method," Information and
Software Technology, pp. 67-75, 1996.

[43] M. Jørgensen and D. I. K. Sjøberg, "The Impact of Customer Expectation on
Software Development Effort Estimates," International Journal of Project
Management, vol. 22, pp. 317-325, 2004.

[44] N. Agarwal and U. Rathod, "Defining "Success" For Software Projects: An
Exploratory Revelation," International Journal of Project Management, vol. 24,
pp. 358-370, 2006.

[45] M. K. Furulund and K. Moløkken-Østvold, "The Role of Effort and Schedule in
Assessing Software Project Success - an Empirical Study," To be submitted, 2007.

[46] S. Grimstad and M. Jørgensen, "A Framework for the Analysis of Software Cost,"
in ISESE 2006, Rio de Janeiro, Brazil, 2006, pp. 58–65.

[47] G. W. Fischer, "When Oracles Fail--a Comparison of Four Procedures for
Aggregating Subjective Probability Forecasts.," Organizational Behaviour and
Human Performance, vol. 28, pp. 96-110, Aug. 1981 1981.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press Quality_Anna'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars true
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

